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Abstract

The goal of this dissertation was to present a comprehensive analysis of the
ORB-SLAM2 algorithm. By introducing the basis of points triangulation and
ORB features, the whole structure of the algorithm has been analyzed, with
a centralized focus on the graph-based optimization involved, as well as the
place recognition mechanism. Additionally, the original code has been ana-
lyzed and optimized, resulting in a substantial increase in time performance
while keeping a similar accuracy to the original one, proved by several sim-
ulations performed. The final goal of this thesis has been the testing of the
obtained algorithm on a real quadcopter and the analysis of its outcomes: the
results were affected by the limited computational resources available in the
vehicle, obtaining a lower accuracy with respect to the simulation, but still
proving the efficiency of the improvements applied on the original code.
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Introduction

Nowadays, Simultaneous Localization and Mapping (SLAM) has emerged as
a fundamental problem in robotics, involving a vast variety of topics, from
computer vision to mathematics. SLAM algorithms are involved in a wide
range of applications, including for example autonomous vehicles, drones,
and augmented reality.
The main obstacle to the development of efficient and robust SLAM algo-
rithms on embedded systems is their high computational demand for achiev-
ing high accuracy.
Among the various SLAM algorithms, the families of the ORB-SLAM ones
have become a milestone in the realm of visual SLAM. Starting from the first
algorithm introduced in [1], its authors have continued to evolve it over the
years creating ORB-SLAM2, introduced in [2], up to to the most recent ORB-
SLAM3, brought to life in [3]. This family of algorithms, thanks to their ro-
bustness, efficiency and open-source availability, has gained a great response
from the scientific community.
The purpose of this thesis is to dive deeply into the functioning of the ORB-
SLAM2 algorithm, keeping as goal the understanding of the weaknesses and
strengths of the original implementation and to try to optimize it, by increas-
ing its real-time capability while keeping the same performance. This is done
in the optics of an implementation on a real embedded device, more pre-
cisely a quadcopter, to see if it’s possible to bring the power of state-of-the-art
algorithms into a platform with limited capabilities. This work hopes to high-
light the possibilities of improvements of already existing SLAM algorithms,
by showing that a deep knowledge of the original material can be exploited
to enhance its qualities.
More precisely, the thesis is structured in the following way: in the chapter
1 an introduction of the SLAM thematic, its classifications and some famous
example are illustrated, along with a more extended focus on the visual SLAM
scenario; in the chapter 2 a brief explanation of common computer vision
topics and problematic, together with a detailed explanation of the ORB fea-
tures used by the ORB-SLAM family is present; then, in the chapter 3 an illus-
tration of the fundamentals of graph based optimization and its applicability
to SLAM algorithms, with an enhanced focus on its use in the ORB-SLAM
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case, is performed; in the chapter 4 the main techniques for place recogni-
tion exploited by the ORB-SLAM2 algorithm are presented, along with their
use in loop closing and relocalization; the chapter 5 presents some topics
and ideas that can be investigated in the future for further increase the effi-
ciency of the ORB-SLAM2 algorithm, some of which are taken directly from
ORB-SLAM3 but needs more study in order to be applicable in embedded
platforms; finally, in the chapter 6 an explanation of the changes performed
on the original code is presented, followed by the results obtained both in
simulations (performing a comparison with the original code) as also the re-
sult of the test performed onto the real quadcopter.



Chapter 1

SLAM introduction

Simultaneous Localization and Mapping (SLAM) is a key element of every
application involving an autonomous vehicle, especially for situations where
information regarding position and environment is not known in advance.
Given this property, a vast range of techniques have been developed to face
the problem, resorting to different types of sensors and assumptions both on
the environment and the vehicle considered.
Some techniques, for example, are specifically designed for terrestrial vehi-
cles, exploiting the advantage of having to estimate only 2D-pose (this means
needing two coordinates for translation and one for the orientation) to fully
localize the vehicle in an environment.
The more challenging scenario is the one regarding aerial vehicles, which
needs a 3D-pose to be correctly localized, so it requires 3 variables for trans-
lation and 3 for the orientation.

1.1 SLAM classification

The various existing SLAM algorithms can be categorized based on the type
of map created, the type of sensors used and the type of functions imple-
mented.

1.1.1 Map types

SLAM algorithms can build three main different types of maps: metric, topo-
logical and semantic.
Metric maps are detailed reconstructions of the environment where the po-
sition of each object or landmark is defined by a set of coordinates. The maps
reconstructed in this way can be dense, sparse or semi-sparse, depending on
how many points of the environment are triangulated and used. Dense maps
carry more information at the cost of being more memory-consuming, while
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Chapter 1. SLAM introduction 4

sparse maps are more efficient, containing fewer points, but less useful for
tasks such as accurate reconstruction of the environment.
Topological maps are instead more focused on creating a map based on topo-
logical information (like mutual connections) regarding the different posi-
tions or areas of the environment. A common example of this type of map
is the generalized Voronoi graph [4], which divides the environment space
into areas, depending on the distance from obstacles and other details, con-
structing a type of representation pretty useful for path planning.
Semantic maps are becoming more and more powerful in SLAM applications
involving neural networks. They incorporate semantic information on the
observed environment, like for example objects’ labels, which can be used for
advanced tasks like obstacle detection. Given they’re nature, they are mostly
used in applications regarding advanced autonomous driving and when the
computational burden is not an issue.
SLAM algorithms can of course use a mixed representation of the environ-
ment, without limiting themselves to only one, increasing the power and us-
ability of the map.

1.1.2 Sensor types

SLAM algorithms can resort to different types of sensors to capture infor-
mation about the environment and/or the robot’s state. The type of sensor
strongly impacts the type of map that could be created and also the type of
algorithms that could be used.
However, rather than using a single sensor type, multi-sensor SLAM algo-
rithms have been proposed, allowing to enrich the accuracy and the type of
information provided. Of course, using more sensors results in higher eco-
nomic costs and also higher computational demands, given the necessity of
elaborating more types of information.

LIDAR A vast gamma of SLAM algorithms involves the usage of LIDAR (Light
Detection and Ranging) sensors to perceive the environment and build a
map of it. They can be 2D or 3D, depending on the environment’s nature
to observe: a terrestrial vehicle will need only a 2D LIDAR, while an aerial
one should use a 3D one, in order to reconstruct a wider portion of the envi-
ronment with a single scan.
LIDAR sensors can build a map of the surroundings with high accuracy, de-
tecting even small particles. This allows, in the case of 3D LIDAR, to construct
also point-clouds of the environment that can be used to build a dense map
of it, almost effortlessly. For those reasons LIDAR sensors have spread enor-
mously in SLAM applications, both for 2D and 3D localization.
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The main drawback of LIDAR sensors is their high cost, especially for high-
quality and 3D ones, which limits their usage in various applications and
some fields.

Inertial Sensors Another set of sensors commonly used in SLAM are iner-
tial sensors like accelerometers and gyroscopes. They are useful to read infor-
mation about the robot state, like linear acceleration and angular velocities,
beside the environment.
The main advantages of this sensors are being economic and lightweight,
but they suffer from high disturbances and a severe error accumulation, es-
pecially the information regarding the linear accelerations, that makes their
usage basically useless without any additional information. For this reasons
they are almost never used alone, but always in collaboration with other sen-
sors to enrich the information provided to the SLAM algorithm.

Camera The sensors that bring the higher balance between cost and infor-
mation submitted are cameras. They are mostly economic and can bring rich
information about the environment.
The information contained in an image can be used to reconstruct 3D posi-
tions of the points observed but, compared to the LIDAR sensors, their accu-
racy decreases when moving away from the camera. In addition to this, the
information provided is bi-dimensional so, in order to correctly triangulate a
point of the environment, more observations of the same point are required.
A common solution to this problem is the usage of a special type of multi-
camera, like for example stereo ones, which are composed of more cameras
aligned on the same axis, that allows triangulating the positions of the ob-
served points from a single observation from all the cameras involved.
SLAM systems based on cameras are also spreading in a very fast manner,
especially in the last few years. Since localization using only camera infor-
mation is more challenging with respect to using sensors such as LIDAR (be-
cause it involves further elaboration of the data, computer vision techniques,
and is more prone to environmental disturbances), it has become a main
topic in SLAM literature.

RGB-D RGB-D sensors are special types of cameras that provide color and
depth information in a single step, enhancing the quality of data provided to
the algorithm with respect to classic cameras. They have a higher cost than
cameras, with in general smaller resolutions. However, the high quality of
the information provided has caused a high spread of the use of this type of
sensor.
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1.1.3 Algorithms

SLAM systems are mostly based on statistical techniques, which aim to pro-
duce an accurate estimation of the robot’s state and the sensed map. Since all
the variables in the general setting are unknown, all the quantities describ-
ing the problem are probabilistic. The most common techniques used are
Extended Kalman Filters (EKF), particle filters and maximum a posteriori es-
timation (MAP).

Extended Kalman Filter One of the oldest methods of SLAM is the one us-
ing Extended Kalman Filter (EKF) to estimate the agent’s pose, the environ-
ment or both.
The EKF is the non-linear version of the Kalman Filter, which is the optimal
linear estimator for linear systems subjected to additive white noise. Since
the systems in which SLAM algorithms are involved are strongly non-linear
(as most of the systems of interest in engineering), studies were performed
to extend the theory and the advantages of the Kalman Filter to non-linear
systems. In a compact mathematical form, the system of interest in which
the EKF can be applied is the following:

xt+1 = f(xt,ut) +wt wt ∼ N (0, Qt)

zt = h(xt) + vt vt ∼ N (0, Rt)
(1.1)

where xt, ut and zt are respectively the system state, the control input and
the measurement, all considered in discrete-time, and wt and vt are the pro-
cess and observations noise, both assumed zero-mean multivariate Gaussian
noises with covariance Qt and Rt. As stated, both the system model and the
measurement one are non-linear.
Given a measurement of the real variable zt, the steps to estimate the system
state are mainly two: first, a prediction is performed, exploiting the system
knowledge, then the correction using the real measurement is applied.

Predicted State Estimation x̂t|t−1 = f(x̂t−1|t−1,ut)

Predicted Covariance Estimate Pt|t−1 = FtPt−1|t−1F
T
t +Qt

Measurement Residual ẽt = zt − h(x̂t|t−1)

Residual Covariance St = HtPt|t−1H
T
t +Rt

Kalman Gain Kt = Pt|t−1H
T
t S

−1
t

Update State Estimate x̂t|t = x̂t|t−1 +Ktẽt

Update Covariance Estimate Pt|t = (I −KtHt)Pt|t−1

(1.2)

In the (1.2), the variables Ft and Ht are respectively the Jacobians of the sys-
tem model and the measurement one. This algorithm is general and has be-
come a standard technique for SLAM. In the most general case, the system
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state represents both the agent position and the environment landmark co-
ordinates, while the measurement model depends of course on the type of
sensor considered. Its advantages are that is easily implementable and re-
quires low computational power (directly related to the state dimensions),
but it heavily depends on the initial estimate of the state and the correct-
ness of the model, so its performances drop quickly in case of non-modeled
elements or other type of disturbances, like a non-static environment. An-
other drawback of EKF is directly related to their state dimension that, since
it involves all the landmarks present in the map, could easily bring an ex-
plosion of computational complexity if used for large environments and for
long periods of time. Despite that, the SLAM algorithms based on EKF are
very common and their performances are reasonable, especially when aided
with high-precision sensors like GPS.

Particle Filters Particle filters, also known as sequential Monte Carlo meth-
ods, are a type of algorithms that aims to find an estimate of the internal state
of a dynamical system. This type of methods doesn’t take any assumptions on
the type of errors and disturbs involving the variables, as long as the system
state behaves as a Markov process (by mean, the current state only depends
on the previous one).
The Monte Carlo localization at each step tries to find the robot pose by find-
ing the optimal one in a set of N particles Xt = {x1

t ,x
2
t , . . . ,x

N
t }, which are

predicted states of the system, each one with a proper weight. They are usu-
ally initialized with a uniform distribution along the environment and then,
as long as new sensor information comes in, the particles’ positions are up-
dated to find the best state estimate.
At every time step each particle is updated according to the system model:

x̂i
t+1 = f(xi

t,ut) (1.3)

wherewt is a disturbance with an unknown distribution. Each particle’s weight
is then updated using an importance function, a special type of probabilis-
tic function that takes as input the previous weight, the predicted state, the
predicted observations (according to the (1.1)) and the sensor information.
These weights are then normalized.
These updates, going on with time, cause most of the particle weights to go
to almost zero, causing a degeneration of the performances. This problem is
reduced by resampling the particles, eliminating the ones with small weights
and creating new ones associated with the higher weights. This method al-
lows the particles to converge to the correct state of the system if a sufficient
number of observations are provided.
The main drawbacks of this method are the assumptions of the Markov model,
which eliminates the possibility of using it in a non-static environment, and
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the computational effort, which grows linearly with the number of particles
and with the state dimensions. Since having a high number of particles as-
sures higher accuracy, a compromise must be found. Fortunately, techniques
such as Kullback-Leibler divergence (KLD) sampling can be used, which adapts
the number of particles used for prediction according to the error estimate.

Maximum a posteriori estimation This type of techniques (known as MAP)
are very popular when the sensors involved provide visual data of the en-
vironment, such as 2D image or, more in general, when a structure resem-
bling an optimization problem can be found. MAP algorithms, in general, are
strongly related to the Maximum likelihood (ML) estimation since they aim
to maximize the likelihood function f(z|x), the probability of z when the pa-
rameter is x, with respect to the model parameter. In the specific SLAM case
the observations are the information provided by the sensors and the model
parameters are the system state’s coordinates. In addition to the classic ML
estimation, the assumption of MAP methods is that a prior distribution of x,
such as g(x), is known, and this allows to calculate the likelihood function
using the Bayes’ theorem:

f(x|z) = f(z|x)g(x)∫
X f(z|x)g(x)dx

(1.4)

where X is the domain of the density function g(x).
The MAP method then estimates x as the mode of the posterior distribution
of the variable:

x̂MAP = argmax
x

f(x|z) = argmax
x

f(z|x)g(x), (1.5)

where the denominator in the (1.4) has been canceled out since it doesn’t
depend on x. Bundle adjustment (BA) techniques take the theory of MAP es-
timates and adapt them to be used with image data, relating the likelihood
function to the reprojection error, allowing to minimize a cost function that
connects the system state (such as landmarks and robot position) to the pix-
els data provided by the sensors.
The biggest advantage of this approach is that allows the optimization of not
only the current system state using only the current data, but also the opti-
mization of past states using past data, allowing a better estimation of the
current state and reducing the error drift due to errors accumulation in the
measurement of the environment.
Despite the solution of an optimization problem could be in general more
computationally demanding with respect to the other methods seen, the na-
ture of the problem allows the use of special optimization algorithms that ex-
ploit the structure of the problem (like Levenberg–Marquardt, one of the best
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ones for non-linear least square optimization problems) and the sparsity of
the same (due to the lack of interaction among the different parameters of
the various poses). These peculiarities, along with an increase in the compu-
tational power availability of commercial devices have led to a huge spread
of this type of algorithms in the literature.

1.2 Visual SLAM

As stated before, SLAM algorithms that use cameras as main sensors have
spread more and more in recent years [5]. These types of algorithms, which
use only visual information, are specifically referred as visual SLAM (vSLAM)
algorithms. With respect to the ones that use other sensors, vSLAM tech-
niques present in general a higher difficulty, because cameras can acquire
less visual input from a limited field of view, and the information provided
requires in general further elaboration before they could be used for position
estimation.

1.2.1 Modules of vSLAM

Basically, all vSLAM algorithms follow a common modular structure, with
two main modules always running (tracking and mapping ) plus an initial-
ization one used to initialize the system and the map. In addition to these
modules, other two important ones are usually implemented in order to ob-
tain a robust and accurate vSLAM algorithm: relocalization and global map
optimization.

Initialization The initialization is mandatory for every algorithm since it
defines the global coordinate system and an initial map of the environment
is computed in order to start to estimate the pose. Depending on the type of
sensors (monocular, stereo or RGB-D) initialization could be more or less de-
manding. A RGB-D or stereo camera can track immediately the depth of the
observed points (even if with uncertainty depending on the distance from the
sensor), allowing an immediate first triangulation of the point of interest in
the environment. A monocular sensor, instead, needs more observations of
the target points in order to correctly triangulate them; this requires so more
sensor information and more time in order to correctly estimate an initial
map of the environment.

Tracking Once the system is running, the tracking module is in charge of
estimating the camera position given the last or the latest observations. The
basic idea, not depending on the specific type of algorithm used, is to match
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already mapped points with the ones observed and to use the correspon-
dence between the 2D coordinates on the camera and the 3D poses of the
points to reconstruct the pose of the camera. Since the position of the drone
could be used by other critical time algorithms, the new pose prediction must
be performed as quickly as possible.
The accuracy of the tracking not only depends on the disturbances of the
sensors, but also on the reliability of the mapped points. Poor accuracy of
the map causes a degrading in the performance of the tracking, which could
result also in wrong pose estimates.

Mapping The mapping module is in charge of reconstructing and enriching
the environment map using new observations. The construction of the map
is a crucial task because the pose estimation can be only as good as the map
is accurate. An accurate map could also be used by other algorithms like
planning or obstacle avoidance.
New observations can not only be used to track new points, but also to refine
the ones already observed, augmenting the map’s quality.
Since the triangulation of the observed points strongly depends on the cam-
era position, mapping and tracking are strongly coupled modules, where er-
rors in one task impact the other and vice versa.

Relocalization When fast motion occurs, or when the camera encounters
strongly disturbed scenarios (like blur, strong light change and so on), the
track could fail. It’s exactly in this situation that the relocalization module
starts its task. It has the job of estimating again the position of the robot with
respect to the map.
Without a proper and efficient relocalization technique, most of the SLAM
algorithms become practically useless, because if their tracking module fails,
the position of the robot is lost forever. This scenario is also referred to as the
”kidnapped robot problem” in literature.

Global map optimization As said before, since tracking and mapping are
strongly related, they suffer of mutual errors, that usually accumulate over
time, resulting in an increasing pose estimation drift. For long tracking sce-
nario this could result in unusable pose prediction.
The job of this module is precisely to reduce and correct, when possible, this
accumulated error. The basic idea is to use the whole global map (while
tracking only needs the portion that the camera is able to see) and to rec-
ognize already visited places. When a positive match is encountered, infor-
mation is then used to enforce a loop constraint, used to suppress the accu-
mulated error.
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1.2.2 vSLAM approaches

The families of all the vSLAM algorithms belong to two main typologies: feature-
based approach and direct approach. The first ones are based on extracting
feature points from the images and using them to build the map, being also
the first approach introduced, in the early 2000s. On the contrary, direct ap-
proaches are based on using the whole image for tracking, without extracting
features points. This type of algorithms are especially useful with texture-less
or feature-less environments.
In the last few years, there has been also an increase of vSLAM algorithms
that uses neural networks to capture semantic information on the environ-
ment, but their computational requirements are high and not easily satisfied
by most of the common mobile devices such as robot and vehicles, resulting
more interesting in application like autonomous driving. For this reason they
will be not treated here.

Feature-based methods This type of methods involves filter-based algo-
rithms and also BA-based ones. Their performance depends not only on the
type of estimation algorithm used, but also on the feature extraction meth-
ods: algorithms extracting high-level features are often more computation-
ally demanding, but allow a higher accuracy of the map created. Given the
nature of the features, and also depending on the type of sensor used, the
map created by this type of method is usually sparse.
MonoSLAM [6] is the first monocular vSLAM, developed in 2007 by Davison
et al. Based on feature extraction, it estimates both the camera position and
the 3D structure of the environment with an EKF, while the initialization is
performed by observing a known object with a defined global coordinate sys-
tem. As stated before, the main drawback of EKF methods is that its com-
putational demand increases with the environment’s size: so if the explored
ambiance is large, the increasing dimension of the state vector can easily lead
to a loss of real-time constraints.
PTAM [7] is the first algorithm that introduced the splitting of the tracking
and mapping in two different threads, allowing the division of the computa-
tional burden of the two modules. The tracking is performed by projecting
the mapped points on the camera to make 3D-2D correspondences, while
the 3D features are optimized in a BA algorithm that is run in the mapping
thread. The initialization is performed using the 5-Point algorithm: a tech-
nique that allows to estimate the relative position of two cameras using a
minimal set of features’ correspondences. The second main contribution
of PTAM is the introduction of keyframes-based mapping. Essentially, new
map points are triangulated only from certain positions, called keyframes,
which are frames with a substantial disparity between them and the other
keyframes. The triangulation performed in this way is more accurate than
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using standard frames. In the mapping thread some keyframes are then used
to perform a local BA, to increase the accuracy of the tracked points. Finally, a
global BA run to optimize all the keyframes to reduce the accumulated error.
Since the accuracy of vSLAM algorithms depends on the number of feature
points, an EKF approach has worse performances with respect to BA meth-
ods, since the latter allows the maintenance of a bigger map without a degra-
dation in the performances. The global BA allows also to maintain the ge-
ometric consistency of the whole map, even if problems of local minimum
could arise and cause a degradation in the results. After the introduction of
PTAM, other algorithms were constructed to improve the performances and
to correct the weaknesses. The ORB-SLAM [1] algorithm and its evolved ver-
sions [2] [3] are, so far, one of the best circulating vSLAM algorithms.

Direct methods This type of method, in contrast to the previous ones, use
directly the input image without any further elaboration. To estimate the po-
sition of the camera photometric consistency is often used as an error mea-
surement, calculating the intensity of the pixels with respect to the predicted
ones.
DTAM, proposed by Newcombe et al. [8], is the first monocular SLAM sys-
tem that creates a dense 3D surface model and uses it for camera tracking.
The mapping is performed using a multi-baseline stereo (to achieve a high
depth’s accuracy) and then optimized by considering space continuity. Track-
ing is instead performed by registration of the observed image and the 3D
map model, while initialization is performed with stereo measurements. The
density of the problem requires however a GPU to allow the system to track
the camera pose with real-time performances.
LSD-SLAM [9] is another leading method above the direct ones. With re-
spect to the previous algorithm, LSD-SLAM tracks the position of the cam-
era reconstructing only areas with high-intensity gradients, by so ignoring
texture-less areas. In the mapping modules, the depth values are first set
randomly and then optimized using photometric consistency. LSD-SLAM
implements also loop-closure detection and a 7 DoF global pose-graph opti-
mization (with monocular cameras, the depth of the point is an additional
parameter of the problem since it cannot be fixed with a single observa-
tion), to assure high accuracy and small errors. With respect to DTAM, this
semi-dense approach allows real-time performance also on CPUs, resulting
in higher integrability on mobile devices.



Chapter 2

Triangulation basis and ORB
features

Since the algorithm treated is specifically designed for use with cameras, an
illustration of the basic theory of triangulating new points from images is now
performed, as well as the definition of the type of features used, ORB, along
with the techniques for their extraction.

2.1 Triangulation basis

The process that allows to determine a point in the 3D space given its projec-
tion on an image, is known as triangulation in computer vision theory. The
basic formulation of the problem assumes a pinhole model for the camera:
no lenses are present and the aperture of the camera is seen as a point. Given
its simplicity, this model can be used only as a first-order approximation for
the mapping of 3D points to 2D ones.
However, this geometry can be adapted to several types of cameras, depend-
ing on the lens and optics structure used. However, independently from the
camera type, the inverse mapping procedure (so from a 2D view to a 3D cor-
respondence), is more complex, since it requires more than one observation
from different positions to correctly estimate the scale of the point.

2.1.1 Perspective projection

The general geometry of the system is reported in the figure 2.1, where the
point P with coordinates x, y, z in the camera coordinate system (with the z
axis called also as optical axis) is projected onto the point Q, with coordinates
u, v, on the camera plane trough the optical center C. The focal plane, the
place where the projecting hole is situated, is parallel with distance f , called
focal length, to the focal one.

13
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Figure 2.1: Scheme of a general pinhole camera.

The relationship between the coordinates of the point Q and P is given by the
simple optical projection law:

u

x
=

v

y
= −f

z
→

{
u = −xf

z

v = −y f
z

. (2.1)

Since this projection leads to a rotation of the observed points, a change of
coordinates is introduced, assuming the origin of the camera coordinate sys-
tem on the upper left corner of the camera plane, with the v axes pointing
downward. This change of reference system cancels out the minus sign from
the (2.1) and requires adding a translation represented by the coordinates of
the camera center c (this point is obtained by intersecting the optical axis
with the camera plane). In practice the f coefficient is not the same for x and
y, due to flaws in the camera sensor, errors in camera calibration and other
sources of non-ideality. For this reason they are distinguished in two different
coefficients, fx and fy, and the resulting projection equation is:{

u = fx
x
z
+ cx

v = fy
y
z
+ cy

(2.2)

where the cx and cy are the coordinates of the camera center.
In reality the coordinates of the projected point, u and v, are not continuous
but discrete, since they are associated with the pixels of the image. For this
reason, the parameters are usually expressed in pixel units as measurement
units. Using pixels unit, the inequality between fx and fy can be seen as a
non-perfect square form of the single pixel.
This parameters are also used in literature to build the intrinsic matrix of a
camera, defined as
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K =

fx γ cx
0 fy cy
0 0 1

 , (2.3)

where the parameter γ is introduced in the cases of axis skew (that causes
shear distortion of the image) and is usually zero. This matrix can so be used
to project the normalized 3D coordinates {x/z, y/z, 1} onto the point {u, v, 1}
by a simple multiplication.
The pinhole model is impracticable in reality since a point-dimensional hole
would never ensure sufficient light intensity for the sensor to correctly cap-
ture an image. Lens use was introduced exactly for this reason, since it per-
mits to focus more light on a single point, enhancing the quality of the image.
Lens causes however several distortions to the captured images, so a calibra-
tion of the camera is mandatory in order to estimate the distortion parame-
ters and compensate them, without which the information acquired would
be useless. There are two major kinds of distortion studied in the literature
for pinhole cameras: radial and tangential. The first causes straight lines to
appear curved, enhancing this effect the farther the points are from the im-
age center, and the distortion can be modeled as:{

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6)

(2.4)

where r is the distance of the considered pixel from the center of the camera
and k1, k2, k3 are characteristic parameters of the lens used. The second type,
the tangential one, occurs when the lens plane is not perfectly parallel to the
image plane, causing some areas to look closer than expected. This distortion
is usually modeled as:{

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)]

ydistorted = y + [p1(r
2 + 2y2) + 2p2xy]

(2.5)

where p1 and p2 also depends on the lens. So, to correctly rectify the image
(name of the process that allows to eliminate the distortion effects and to
apply the (2.2)), at least 5 parameters are needed, k1, k2, p1, p2, k3, where the
last parameter is usually set to zero to reduce the order of the radial effects
and so to simplify the image elaboration.
Fortunately there are plenty of open-source libraries, like OpenCV, with al-
ready implemented functions that allow to easily calibrate cameraa (the pro-
cess to extract the characteristic parameters of the camera) and to elaborate
the images provided.
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Kannala-Brandt model Despite being very simple, the pinhole camera model
(2.2) cannot be applied to all types of cameras, even if the distortion models
(2.4) and (2.5) are considered. This is the case of the fisheye lens, invented in
1906 by Robert W. Wood: a particular type of photographic lens with an ultra-
wide angle (usually around 180°, sometimes even bigger). In this disserta-
tion, fisheye lenses are taken under observation because the type of cameras
mounted on the drone used are Intel RealSense Tracking Camera T265, and
they involve the use of fisheye lenses to capture images.
This particular type of view causes the sensor to capture a spherical vision
and to project it on a circular image, causing naturally a severe distortion,
making, therefore, the previous model useless.
Kannala and Brandt, in [10], have introduced a new type of model with the
purpose of canceling out the difficulties of adapting the classic pinhole model
to the fisheye lens.
While pinhole cameras obey the classic (2.1), that can be summarized with
the relationship

r = f tan θ (2.6)

where r is the distance of the projected point from the image center and θ is
the angle between the optical axis and the projecting ray, the fisheye lens is
more suited to be modeled with the so-called equidistance projection

r = fθ (2.7)

where points are projected through an observing semi-sphere instead of a
plane like the classic model.
The distortion model is in this case directly applied on the angle θ, becoming

θdistorted = θ + k1θ
3 + k2θ

5 + k3θ
7 + k4θ

9. (2.8)

Then, from the (2.7) with the distorted angle, is possible to reconstruct the
two pixel coordinates u and v as

{
u = fx(x

′ + γy′) + cx

v = fyy
′ + cy

x′ =

(
θdistorted

r

)
x

z

y′ =

(
θdistorted

r

)
y

z

(2.9)

where, by naming f ′
x = fxθdistorted/r, f ′

y = fyθdistorted/r and by putting γ equal
to zero as in the usual case, a structure equivalent to the (2.2) can be ob-
tained, allowing to interface it with all the structure using pinhole models
effortless.
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Figure 2.2: Scheme of epipolar constraints of two cameras observing the same
point.

Naturally, a calibration technique to obtain the intrinsic parameters of the
camera (pinhole, fisheye or any other model) is mandatory, and this is usu-
ally done by capturing an image with a known pattern and then reconstruct-
ing the parameters from a set of measurements. Different techniques, both
for pinhole and fisheye models exist, but they are outside of the purpose of
this dissertation and will not be reported. The parameters used for rectifi-
cation and undistortion are all already provided or in the dataset used for
simulations, or as data directly published by the T265 camera.

2.1.2 Epipolar Geometry

As it can be seen by the (2.2), with a single image point is impossible to re-
cover the full 3D pose of the original point, since the system of equations’
rank is less than three, having more variables than equations at disposal. Us-
ing the pinhole camera model it can be proven that in fact all the points that
lie on an optical ray (a line that passes through the pinhole), are projected
onto the same 2D point, resulting in insufficient information to reconstruct
the original position.
However, this situation is solved when the same point is observed by two or
more distinct positions since certain geometrical relationships arise between
the different projected points. These geometric constraints are called epipo-
lar constraints and are the basis for stereo vision and point triangulation.
Given two pinhole cameras that look at the same point X, as reported in the
figure 2.2, different characteristics can be observed: for simplicity, in order to
avoid the inversion of the projection in this example, the two image planes
have been brought in front of the optical center.
The projection of each camera’s optical center into the other camera’s plane



Chapter 2. Triangulation basis and ORB features 18

Figure 2.3: Illustration of the standard stereo projection.

creates a pair of points, called epipoles, respectively eL and eR. Given their
construction, both the epipoles and the two optical centers lies on the same
3D line.
Given xL and xR, respectively the projections of point X on the two camera’s
plane, two special lines can be defined, called epipolar lines, that connect
respectively the points xL and eL on one camera and xR and eR on the other.
A peculiarity of the epipolar lines so constructed is that each point lying on
the ray that connects the point X to its projection on one of the two camera’s
plane (xL or xR), is projected on the epipolar line of the other images.
This constraint is used to enforce the triangulation of the same 3D point seen
from different positions and also to check if two projected points belong to
the same 3D point.
A further simplification of the epipolar geometry happens when the two cam-
era’s plane coincides, as in the case of stereo cameras. This type of camera,
precisely designed for obtaining a more accurate scale estimation of the ob-
served points, is simply obtained by putting two cameras aligned on the same
plane, with a certain translation along the horizontal axis. In this case the two
epipolar lines coincide and all the epipolar lines of the images are parallel to
the line that connects the two optical centers.
In the resulting scheme, as it can be seen in the image 2.3, the coordinates of
the 3D point, with respect to the two different cameras’ coordinate systems,
are

xL = xR + b

yL = yR

zL = zR

, (2.10)
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where b, called baseline, is the distance between the two optical centers. Now,
by writing the (2.2) for both the cameras, a new constraint connecting the two
coordinates uL and uR can be written:

uL − uR = b
fx
z
. (2.11)

This difference between uL and uR is usually called disparity in literature.
The equations (2.11) and (2.2) can be put together to find a system of equa-
tions with full rank: 

uL = fx
x
z
+ cx

vL = fy
y
z
+ cy

uR = fx
x−b
z

+ cx

(2.12)

where, for simplicity, the intrinsic parameters have been assumed equal for
both cameras.
Those relationships can finally be inverted to find the coordinates of the 3D
point given the pixel coordinates on the two images:

z = bfx
uL−uR

x = z uL−cx
fx

y = z vL−cy
fy

. (2.13)

2.1.3 Linear triangulation

While the equation (2.13) holds for points that are close to the camera, its
precision decreases the further the landmarks are from the image plane. This
is caused by the geometry of the projection mechanism that directly links the
precision of a point projected into a pair of pixels to its distance from the
camera, resulting in a bigger amount of points being projected in the same
image area.
For this reason the above benefits of stereo cameras are used only for fast
close points triangulation, while for far ones the solution is to resort to stan-
dard triangulation techniques that use multiple observations from different
positions. Therefore, in the algorithm considered, not only the points whose
a stereo match has been found are kept, but also all the other ones, since
other matches could be found from other observations.
There are several ways of performing this triangulation, and the one used in
the ORB-SLAM2 is the one using tools from linear algebra to solve it.
Since the equations (2.2) and (2.13) perform a projection starting from a point
already in the camera coordinate reference system, a relationship between
the 3D pose of the point in the global coordinate system and the one ex-
pressed in the camera frame must be defined, such as
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x = TX, T ∈ R3×4 (2.14)

where the T matrix, known as projection matrix, describes the projection
from the world coordinate system, expressed in homogeneous form (X =
[xw, yw, zw, 1]

T ) into the camera frame (x = [xc, yc, zc]
T ), where the 4th homo-

geneous coordinate has been dropped to simplify the mathematical struc-
ture, given its redundancy. The matrix T can in fact be obtained from the first
three rows of the homogeneous matrix Tcw, the one describing the position
of the world coordinate system with respect to the camera one. The camera
point x can then be projected into the camera plane (or reconstructed from
it) using the standard (2.2).
In this case the quantity X is the unknown variable to be determined and,
by not having reliable information on the scale from one single observation,
at least two of them are needed. Writing so the linear system obtained by
putting together two of the (2.14), gained from two different positions, an
exact solution could ideally be found, but given the noises and flaws over the
two measurements, this usually leads to a non-solvable problem.
However, the equation (2.14) can be seen as a similarity transformation, since
if a scale factor is involved the result doesn’t change: every point on the same
ray as X and x is projected into the same one, and those points can be found
by multiply the (2.14) by any scale factor. Given this property, instead of us-
ing the whole vector x = [xc, yc, zc]

T that has only two independent coordi-
nates, being derived from the (2.2), a scaled quantity of this vector can be
used, namely x′ = [x′, y′, 1]T , where x′ = xc/zc and y′ = yc/zc can be obtained
directly from the pinhole model.
This type of problem is tackled with the Direct Linear Transformation (DLT)
method, which consists of scale factor removal and transformation into a lin-
ear system, that can be solved with the tools of linear algebra.
The basic idea of DLT is to apply the cross-product property of parallel vector
(that is equal to zero) to the scaled quantity in the (2.14):

x = αTX → x ∧ TX = 0. (2.15)

So, by performing the due calculations, the linear system resulting from the
cross-product can be written as

x ∧ TX =

 y′tT3X − tT2X
tT1X − x′tT3X
x′tT2X − y′tT1X

 =

00
0

 , T =

tT1tT2
tT3

 (2.16)

where the last row is a linear combination of the other two.
Now, by putting together two of the (2.16) originated from two observations
of the same point and by defining x′

i =
ui−cx
fx

and y′i =
vi−cy
fy

(where the sub-
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scripts i are referred to the camera considered), the following homogeneous
linear system can be obtained:

AX = 0, A =


x′
1t

T
31 − tT11

y′1t
T
31 − tT21

x′
2t

T
32 − tT12

y′2t
T
32 − tT22

 (2.17)

where the first subscript on tij specifies the row of the matrix taken, while the
second refers to the matrix itself (referring to the first or to the second camera
pose).
Since the equality to zero will never be reached, given the non-ideality of the
observations, the solution is to find the value of X that minimizes the (2.17),
and this is given by the right eigenvector associated with the smallest eigen-
values of A. This can be easily done by performing a SVD of A, which can be
done by many numerical calculus libraries.

2.2 ORB features

Oriented FAST and Rotated BRIEF (commonly called ORB) was developed by
Ethan et al. in [11] as an efficient alternative to the, at the time, most used fea-
ture detectors, SIFT and SURF: these two algorithms, despite having optimal
accuracy, where first of all patented, so not for free use, and also computa-
tionally expensive, with no real-time performance on devices without GPUs.
The idea of ORB features is to combine two methods, one for the extraction
and one for the description, from which it takes the name: the FAST detector,
with additional scale and orientation components, and a modified version of
the BRIEF descriptor.

2.2.1 Oriented FAST

FAST detector, as the name suggests, is a rapid method for extracting fea-
tures from an image. By recalling computer vision fundamentals, a point in
an image can defined as a feature if it represents a recognizable and distin-
guishable entity, like an edge or similar, of a 3D correspondence. The FAST
detector, to identify features, simply compares the intensity of a pixel with
the ones in a fixed size circle around it: if more than a fixed threshold (that is
one of the parameters that can be customized) of them are darker or brighter
than the target pixel, the latter is set as a keypoint. The basic idea behind this
is that if a point represents an element like an edge, it will be on the corner
of the observed object, and so an observable change of intensity around it
should be observable. Of course this idea is not flawless, since shadow and
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Figure 2.4: Example of pyramid construction from an image.

illumination, for example, could lead to a misdetection of the feature. These
errors, however, can be mitigated by performing a substantial number of ob-
servations followed by an outlier rejection policy, as will be stated later.
Since FAST doesn’t measure the goodness of the keypoints detected, a Harris
corner measure is implemented to keep the best N points of the ones de-
tected, in order to discard the ones considered as misdetection of edges.
Another addiction to FAST, performed by the author of the article, is the pro-
duction of multi-scale features with the construction of a multi-scale image
pyramid, as it can be observed in the figure 2.4: at each level of the pyramid
(that is a scaled version of the previous layer), FAST keypoints are detected
and then measured with the Harris detector. The first layer of the pyramid
is usually the image itself, while the scale factor is a parameter of the ORB
features that can be set in advance.
The best keypoints individuated are kept along with the level of the layer at
which they were identified: this assures a partial scale-invariant property of
the ORB features, being able to identify the same 3D keypoint on multiple
scales, and also to partially estimate the accuracy on the measurement of the
observed point.
The last addition to the FAST detector is an orientation measure, applied with
the intensity centroid method, since the original version of FAST doesn’t bring
a rotation measurement. The assumption of this technique is that a corner’s
intensity is offset from its center, so the idea is to use the vector that connects
the corner’s center to the centroid to estimate the orientation of the detected
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feature.
The centroid is calculated as:

C =

(
m10

m00

,
m01

m00

)
mpq =

∑
x,y

xpyqI(x, y), (2.18)

where the sum on x and y is performed on the pixels inside a fixed radius
circle around the keypoint. Once the the vector that connects the keypoint
to the centroid has been constructed, the orientation is easily computed as

θ = atan2(m01,m10). (2.19)

By using this evolved version of FAST detector, keypoints from a picture can
easily be detected, each one with an associated rotation and scale.

2.2.2 rBRIEF descriptor

Once the coordinates of a keypoint have been identified, is mandatory also
to compute a descriptor: a quantity that must be as unique as possible for
the observed 3D point, in order to correctly identify the same one even if
observed by different positions.
The standard BRIEF (Binary Robust Independent Elementary Features) de-
scriptor is essentially a bit string description of an image patch (a set of pixels
around a target one). It is computed by randomly taking two pixels inside this
patch of which the intensity is compared, according to the following formula

τ(p;x, y) :=

{
1 : p(x) < p(y)

0 : p(x) ≥ p(y)
, (2.20)

where the quantity p(x) is the intensity of the pixel at position x.
The feature descriptor is then defined as a vector of n binary tests:

fn(p) :=
∑

1≤i≤n

2i−1τ(p;xi, yi). (2.21)

Of course, the bigger n, the better the descriptor is. This test could also be ex-
tended to compare 3 or 4 points for each test, obtaining two bits for each one
of them. A common way to choose the random points is to use a Gaussian
distribution around the interested keypoint.
Before performing the test is important to smooth the images, to obtain more
robust descriptors, and this is usually done with a Gaussian filter.
However, the original BRIEF descriptor is not rotational invariant, so a modi-
fication was mandatory to increase its performance. The solution was to use
the angle θ obtained in the (2.19) to steer the BRIEF descriptor, incorporating
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in this way the orientation information into the vector itself. This is done by
defining the matrix S as

S =

[
x1, x2, . . . , xn

y1, y2, . . . , yn

]
, (2.22)

filled with the coordinates of all the pixels chosen for the binary test, and
steering it with the rotation expressed by θ:

Sθ = RθS. (2.23)

Finally, the rBRIEF descriptor, by putting together the original BRIEF descrip-
tor and the new information about the feature orientation, can be computed
as

gn(p, θ) := fn(p)|(xi, yi) ∈ Sθ. (2.24)

To speed up the computation of the descriptor, the angle θ is discretized into
increments of 12 degrees (2π/30) and the BRIEF patterns can be precom-
puted in advance and put into a look-up table.
To measure how similar a keypoint is to another, the two points’ descriptors
are compared. Since the two vectors are binary, the Hamming distance can
be used, being basically a count of the number of bits that are different for
each position, which can be done in a very fast way.
The combination of FAST and rBRIEF (the ”r” is added to denote the rota-
tion application) allows so to obtain a feature detector and descriptor, that is
an order of magnitude faster with respect to SIFT and SURF extractor, being
easily implementable on simple CPU’s only hardware.
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Graph-based SLAM

As stated in chapter 1, the PTAM algorithm was one of the first to use the idea
of a graph-based SLAM, but not the first one. The idea was first introduced
in [12] where, in contrast with the other, at the time, SLAM techniques (that
used mostly incremental approaches), the idea of keeping the data of all the
passed frames and then performing a maximum likelihood estimation was
proposed. In this way the accumulated errors of the various measurements
could be all taken into account together, resulting in an accuracy increase.

3.1 Illustration of graph-based SLAM

The basic idea of graph-based SLAM is to organize the SLAM problem into,
as the name says, a graph that highlights the spatial structure of the prob-
lem. Each robot pose is modeled as a node in this graph, each one labeled
with its position. All the information acquired from environmental observa-
tions and/or from odometry measurements are modeled as edges between
two nodes, as stated in [13].
Each edge, essentially, represents a constraint between the two connected
nodes’ poses and, since the information and data involved are all affected
by uncertainties and/or errors (since they originate from sensor measure-
ments), they can mathematically be modeled as probability distributions over
the relative transformations between the two poses while, for the same rea-
sons, the nodes can be modeled as distributions over the actual poses of the
robot or agent considered.
Each constraint can be built by taking into account odometry related infor-
mation, directly connecting two poses, or can be determined by aligning the
observations information taken by two distinct robot locations, as it is in the
case of vSLAM. In this latter case, the 3D poses of the landmarks observed
could be included as variables in the graph itself (despite not being actually
nodes), so that they could be optimized later along with the nodes (even the
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Figure 3.1: Example of graph construction from a set of measurements. In the
picture all the nodes report the agent pose and the connections between them
are highlighted: the red lines are edge created from odometry measurements,
while the green lines are edges created from observation of mutual landmarks
(the observations are reported in yellow dotted lines).

map points’ poses can be modeled as random distributions, constrained by
all the robot’s poses that observe it). An example of the structure of the graph
here described is reported in the figure 3.1.
Given these premises, a graph-based SLAM can be usually decoupled in two
subsequent tasks: the graph construction (building of the graph structure
from the sensors measurements) and the graph optimization (finding the
most likely configuration of edges and poses given the measurements).
Since both nodes and edges originate from probability distributions that could
very likely overlap each other, multiple potential edges connecting different
poses could be generated by a single observation, leading to the description
of the connectivity of the graph itself as a probability distribution. Since this
could easily leads to an exploding complexity (in a combinatorial speed), in
most practical approaches a simplification is applied, by restricting the pos-
sibles topologies of the graph to the most probable ones. This can be done
by interleaving the graph construction with the graph optimization, in a way
that at each new node insertion the graph structure is as close as possible to
the most likely one.
Having stated the general idea for the graph construction, the specific details
heavily depend on the desired implementation and could vary a lot from one
algorithm to another. As far as concern the optimization, instead, a deeper
analysis can be exploited, in order to highlight the general structure of the
problem: by assuming a Gaussian distribution for the noise affecting the ob-
servations and recalling the MAP estimate (1.5), the graph optimization can
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be reduced to the computation of a Gaussian a posteriori approximation over
the robot poses. Thanks to the special structure of a generic multivariate
Gaussian distribution

f(x) =
1√

2πn detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
x,µ ∈ Rn, Σ ∈ Rn×n

(3.1)
with mean µ and covariance matrix Σ, this maximization problem can be
simplified. It can be proven that maximizing a likelihood function depending
on a random variable with a given probability density function is equivalent
to the maximization of the density itself. By also observing that the likelihood
function could be substituted by its logarithm (given its crescent monotony),
the maximization of the problem involving the (3.1) automatically translates
into a non-linear least squares form

log f(x) = −1

2
(x− µ)TΣ−1(x− µ), (3.2)

where all the constants that don’t play any role in the maximization have
been canceled out. It is then easy to understand that the variable that max-
imizes the (3.2) is the mean itself, so the optimization is performed in or-
der to find it. The (3.2) is essentially the form of the standard residual of the
problem: the general cost function to optimize the graph can be obtained by
summing up all the residual regarding the robot’s and the map points’ poses.
By recalling the system and the observation models, f(xi,ui) and h(xi,pj)
(where xi is the agent pose and pj is the landmark pose), the general opti-
mization problem can be written as

min
xi,pj

N−1∑
i=0

||f(xi,ui)− xi+1||2Λi
+

N∑
i=0

M∑
j=1

||h(xi,pj)− zij||2Σij
, (3.3)

whereN andM are respectively the number of robot poses and landmarks, Λi

and Σij are the covariance matrices associated with the error in the odometry
and in the observation, and finally zij is the measurement of the landmark j
from the position i.
By analyzing the (3.3), the high coupling of the problem can be highlighted,
especially by the second term. However, the special construction of the graph,
with edges and nodes, makes the structure of the second term pretty sparse,
since only the terms that correspond to actual edges are different from zero.
This, of course, doesn’t mean that the poses are independent (given the strong
connectivity of the graph, all the poses depend on the others, as well as the
map points), but only that the corresponding error term is not present in the
(3.3) and that the information is propagated in an indirect way.
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This sparsity of the problem can be exploited by several numerical algorithms
in order to speed up the computation and the resolution of the general prob-
lem. Of course, given the non-linearity of the terms, a proper initialization is
crucial for achieving a solution close to the optimal one (given the presence
of local minima). This reflects the precedent issue of correctly interspers-
ing the graph construction with the graph optimization because leaving too
much behind the latter will result in an incorrect estimation of the solutions.
A common technique done for reducing the computational effort of perform-
ing the (3.3), is to optimize only a portion of the graph, usually around the
last node inserted: this reduces the burden of the computation but of course,
could lead to an increasing drift (due to error accumulation) as it would hap-
pen with standard incremental SLAM algorithm, so it should be properly
managed.

3.2 Graph structure and creation

The ORB-SLAM algorithm [1] resorts to a graph-based structure performing
the construction as done in the PTAM algorithm [7]: without using all the
camera poses, but only a subset of them, called keyframes (where a classic
camera pose is usually referred as a frame). This leads to a graph reduced
in size but with still enough information to perform an accurate estimation,
making the problem faster to be solved without impacting the quality of the
result.
The main difference with respect to the formulation previously seen, given its
implementation for a vSLAM algorithm, is that there are no odometry edges
since every connection of the graph is only due to mutual landmarks’ ob-
servations. This could seem like a deterioration of the general graph struc-
ture, but the observations measurement provides still enough information
to build a well-posed graph connectivity, resulting in good accuracy and a
decrease in the computational burden.

3.2.1 Connections

In order to obtain a connectivity that brings enough information for a correct
estimation, but at the same time doesn’t become too redundant for keeping
the computational effort low, the connections between keyframes are created
in a selective manner: basically, only keyframes sharing (by mean, both ob-
serving) a minimum number of points are considered connected. The con-
nections created with this procedure form the so-called covisibility graph,
where two keyframes are linked only if they share at least 15 points.
While the covisibility graph is used especially for local optimization, so for re-
trieving connectivity information only for a small portion of the graph, global
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optimizations (such the one brought by a loop closure) use a more restrictive
spanning graph of the covisibility one, where only links that are composed
by more than 100 points are kept: this new graph is called essential graph.
This is done to keep low the effort done for optimizing the complete struc-
ture but still preserving enough information to assure a correct estimation of
the poses involved.
To ensure a fast keyframe retrieval, another connectivity information of the
graph that is kept: the spanning tree. This is updated every time a node is
inserted or deleted, and basically links each keyframe to a parent, designed
as the one with the most point in common among the one in its covisibility
neighbors. This is a minimal representation of the graph, by keeping only the
more promising edges for each pair of keyframes, which allows the retrieval
and the propagation of information among them in a very fast manner. In
order to not have orphan keyframes, every time that a node with children is
deleted, they are repartitioned between their covisibility connections and the
culled keyframe’s parent.
The last type of link that could be present in the graph used is a loop edge,
which is created every time a loop closure is performed, by strongly connect-
ing two keyframes observing the same place. This type of connection is the
stronger one, since it binds two keyframes together, not only with a covisibil-
ity mechanism but also enforcing a loop connection that helps in reducing
the accumulated error during the life of the algorithm.

3.2.2 Keyframes

The process of selection of keyframes is crucial since too many of them would
cancel out the benefits of a reduced graph size, while too few would impact
negatively the graph connectivity, making it useless. To maintain the num-
ber of keyframes stable, a double control is performed: a selection procedure
assures keyframe insertion only when needed, and a culling one assures the
elimination of redundant keyframes that do not bring additional informa-
tion.
The general condition to insert a new keyframe is that it must bring enough
new information with respect to the others keyframes already present in the
graph. To make the tracking more robust to fast camera movements (such as
rotation) and rapid scenario changes, this procedure is not too tight, allow-
ing a pretty fast insertion of keyframes and leaving the job of removing the
redundant ones to the local mapping module. With respect to the original
PTAM procedure, which used a distance criterion to insert new keyframes,
the set of conditions imposed by the ORB-SLAM algorithm (and their evolu-
tion in ORB-SLAM2 [2]) are less restrictive and more functional, increasing
the tracking efficiency. Given the tight coupling between the tracking and
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the graph structure, several of the conditions imposed refer to the reference
keyframe of the actual frame, which is basically the one with the most points
in common.
Given the specific formulation for stereo cameras of the ORB-SLAM2, a new
distinction between far and close points is reported (as previously stated in
the section 2.1.3), that allows the insertion of additional conditions to guar-
antee a sufficient amount of close points tracked. So essentially, to insert new
keyframes, all the following conditions must be met:

• No loop closure procedures must be running, to avoid keyframes inser-
tion during the graph update.

• At least a fixed number of frames (usually determined by the fps fre-
quency of the camera) must have passed from the last global relocal-
ization, to ensure a good relocalization.

• The current frame observes less than 75% of the points observed by the
reference keyframe or a sufficient amount of new close points could be
inserted. In any case, more than 15 points must be tracked.

• To allow good interfacing with the local mapping module, if it is not idle,
new keyframes can be inserted only if a sufficient number of keyframes
have passed from the last keyframe insertion or if the tracking is weak
(insufficient amount of close points or less than 25% of the points tracked
with respect to the reference keyframe).

The 3rd condition allows a good tracking, while the 4th one is kept to avoid
the that local mapping could impact negatively the tracking. The condition
on the close points is structured in a way that new keyframes are inserted if
not sufficient close points are found between the ones already tracked in the
map, but a substantial new amount of them could be created. This is done
since only close points guarantee strong position tracking (while the far ones
are good mainly for orientation).
In parallel, in the local mapping module, keyframes are culled by performing,
each time that a new keyframe is inserted, a search in the latter covisibility
neighbor, by eliminating the keyframes whose 90% of the tracked map points
are seen in at least others three keyframes, in the same or finer scale (accord-
ing to the ORB scale definition). This procedure permits a compact structure
of the graph, keeping at the same time only the map points observed with the
highest level of precision.
Of course, to avoid conflicts with the loop closing module, the elimination of
each keyframe that is being managed by a loop detection or correction mech-
anism is delayed until its completion. In the case of keyframes connected
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by a loop edge, this culling is postponed indefinitely because the informa-
tion provided by the link is stronger with respect to the benefits of avoiding
keyframes’ redundancy.

3.2.3 Map points

Not only the robot’s poses, but also the map points’ positions are quantities
that must be kept in consideration when constructing a graph-based SLAM.
For this reason, each keyframe has a kind of link with the map points tracked
(even if they do not appear directly as nodes): basically, each keyframe mem-
orizes the map point tracked by it, associating each one of them to the ob-
served 2D features. In this way, additional information as descriptors and
observed scale are directly linked to the interested map point.

To allow a fast recall of the keyframes that observe a map point, also each
one of them keeps in a container the information regarding the observing
keyframes, by creating a doubly linked connection between them.

As explained in the sections 2.1.2 and 2.1.3, map points are created by trian-
gulating stereo observations of close points, while the further ones are recon-
structed by combining multiple observations of more keyframes, enforcing
epipolar constraints for points matching.

To avoid duplication of the same points a larger search is performed after
new points creation from the new keyframe (extending the searching area
also to keyframes not covisible with the current one), and a fusion procedure
is then adopted (by relating the 3D poses of the points with the feature ex-
tracted from the keyframes involved) by merging the duplicated points into
one, modifying in this way the keyframes observations. Of course, this fusing
usually leads to the creation of more connections with other keyframes.

Since new map points are inserted in a pretty fast manner, a culling proce-
dure is required to settle the landmarks’ validity (since incorrect triangulation
could arise from spurious data association). The restrictive test is performed
for every map point during the first three keyframes insertion after its cre-
ation: during this period, to be retained in the map, a point must be found
from the tracking in at least the 25% of the frames in which is predicted to be
visible. Another condition that is instead kept during the whole point’s life
is that it must be observed from at least three keyframes. If one of these two
conditions is violated, map points are culled.

This procedure, despite its restrictiveness, allows a compact (by keeping only
points that are useful for tracking) and robust (by rapidly discarding outliers)
sparse map representation of the environment.
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3.3 Graph optimization

As stated before, the second main part of a graph-based SLAM is the graph
optimization, which has the job of finding the most likely values and dispo-
sition for nodes and edges given the observation data.
An efficient graph optimization is mandatory since it will simplify also the
graph construction, by allowing the introduction of new edges and nodes on
an already quasi-optimal graph, reducing the randomness of the new entries
and making the optimization itself easier. This tight coupling between the
two parts requires an efficient and reliable graph optimization, that should
not be too computationally demanding to not impact too much the tracking
performance but also reliable enough to still achieve a good accuracy.
In the ORB-SLAM algorithm, more precisely, more than one type of optimiza-
tion (regarding the graph and its nodes and connections) is performed, de-
pending on the modules in which they run and the targets whom they aim.

3.3.1 Motion-only bundle adjustment

The basic optimization procedure performed is the one regarding the current
frame, namely the current position of the robot. This type of optimization
actually doesn’t involve directly the graph, but its main purpose is to esti-
mate the current frame pose, given map points matches. Naming X the set
of matches between the tracked map points and the keypoints detected, the
reference optimization problem is:

{Rcw, tcw} = argmin
Rcw,tcw

∑
i∈X

ρ
(
||xi − π(RcwX i + tcw)||2Σi

)
(3.4)

where the quantities Rcw and tcw represent the transformation linking the
world coordinate system to the current camera’s one, X is the position of
the map point in the world frame, while x contains the coordinates of the
matched keypoint in the image (for a stereo observation x = [uL, vL, uR]

T ,
while for a monocular one x = [uL, vL]

T ). The transformation π(·) is the pro-
jection from the points in the camera coordinate frame into the keypoints in
the image plane: having two types of observations, stereo for tracked close
points and monocular for the far ones, this transformation either assume the
form (2.13) or (2.2), depending on the type of points involved. These two
types of projection are both needed since not all the keypoints tracked have
a corresponding stereo match.
The weighting matrix Σ is due to the uncertainties in the observed keypoints
coordinate, and is directly linked to the scale at which the interesting key-
point has been observed:
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Σi =

σi 0 0
0 σi 0
0 0 σi

 , σi =
1

s2ni
, (3.5)

where s is the scale factor associated to the multi-scale pyramid of the ORB
extraction, and ni is the level at which the keypoint has been observed. Re-
calling the definition of the MAP estimate (3.2), the matrix Σ is basically the
inverse of the covariance of the residual.
To increase the robustness of the optimization to outliers (that could origi-
nate from spurious data association), each term of the (3.4) is subjected to
the robust Huber loss function:

ρδ(a
2) =

{
1
2
a2 , |a| ≤ δ

δ
(
|a| − δ

2

)
|a| > δ

, (3.6)

where δ is a parameter that must be chosen depending on the type of prob-
lem. This loss function increases the robustness of the optimization, reduc-
ing the impact on the overall cost of the residuals that fall too far with respect
to the other ones.
Every time the (3.4) is involved, four subsequent optimizations are actually
performed: after every optimization a χ2-test is performed on the final resid-
uals obtained, and all the points classified as outliers are excluded from the
next optimization, in order to further increase the robustness of the solution.

3.3.2 Local bundle adjustment

The local bundle adjustment is run instead in the local mapping module and
has the job of optimizing the poses and the map points regarding the last
keyframe inserted, along with its covisibility neighbor.
After having processed a new keyframe (created its connections, triangulated
new map points and fused the cloned ones) the local mapping launches an
optimization in order to assess the local graph structure. Using covisibil-
ity information, the modules extract all the keyframes that are connected to
the current one in the actual graph, proceeding then to retrieve all the map
points that are seen from this group. Finally, it retrieves also every other
keyframe that observes the map points considered. The poses of this last
group of keyframes, however, don’t take an active part in the optimization,
since they are set as fixed, but they are only used to bring additional informa-
tion for the optimization of the map points.
By defining the set of local keyframes as KL, the set of fixed ones as KF , the
set of observed points as PL and the set of matches between the map points
and the keypoints in a certain keyframe k as Xk, the following optimization
problem can be written:
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{X i, Rlw, tlw|i ∈ PL, l ∈ KL} = argmin
Xi,Rlw,tlw

∑
k∈KL∪KF

∑
j∈Xk

ρ(Ekj) (3.7)

where Ekj is the standard reprojection error

Ekj = ||xj − π(RkwXj + tkw)||2Σkj
. (3.8)

The quantities Rkw and tkw represent, of course, the transformations that ex-
press the world coordinate system into the keyframe k reference frame. Also
in this case the robust Huber cost function ρ is applied and the matrix Σkj is
calculated in the same way as in the (3.5), depending in this case both on the
map point and the observing keyframe.
Also in this case an additional policy for outlier removal is applied and, more
precisely, two sequential optimization are performed: the outlier detected
from the first one are removed for the second one. All the points classified as
outliers are then removed from all the keyframes involved. Naturally, given
the necessity of high interactivity with the tracking module, the optimization
can be stopped at any time if a new keyframe is inserted, according to the
policy presented in the section 3.2.2.

3.3.3 Essential graph optimization

After having detected a loop (by mean, a place that has already been visited
before) a new type of connection, called loop edge can be established be-
tween the two keyframes involved.
This new edge brings with itself the relative position between the two keyframes
and, once established, it can be used to propagate the correction to the re-
maining part of the graph, in order to reduce the accumulated drift due to
uncertainties and errors in the measurements.
To reduce the computational burden of the procedure, the optimization is
performed on the essential graph. To be sure of not having isolated keyframes,
also parent’s links and previously detected loop edges are added in the result-
ing graph.
This type of optimization doesn’t involve directly the observed map points,
since it is performed only on the keyframe poses using as constraint precisely
the relative poses between them. Since several of these have been corrected
by the loop detection, this optimization basically propagates this correction
over the whole graph, by refining the keyframes’ poses.
By naming G as the set of all the keyframes in the graph and E as the set of the
edges present in the essential graph, the optimization problem involved can
be formulated as:
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{Tiw|i ∈ G} = argmin
Tiw

∑
j,k∈E

(
eTjkΛjkejk

)
(3.9)

where

ejk = logSE(3)

(
TjkTkwT

−1
jw

)
, ejk ∈ R6. (3.10)

Since the homogeneous transformation are a redundant representation of
pose in space, the error term (3.10) is projected into the SE(3) tangent space
by the logarithmic transformation logSE(3), to obtain a vector in R6.
This projection involves mainly rotations since they are usually better repre-
sented using redundant parameterization, such as rotation matrices in R3×3

or quaternions in R4, to avoid singularities. In the optic of a minimal param-
eterization for the optimization procedure, a projection called logarithmic
map into the tangent space of the manifold considered is performed1.
The matrix Λjk ∈ R6×6 is chosen as an identity because additional informa-
tion on the uncertainties of the edges is not present, so no residual of the (3.9)
must have a higher or lower weighting than the others.

3.3.4 Global bundle adjustment

The local bundle adjustment (3.7) is designed to optimize only a local portion
of the graph: this is done to speed up the optimization but causes other parts
of the graphs to be misaligned with the updated one, resulting in a decreased
accuracy when revisiting old areas. As a compromise between obtaining the
optimal solution and a small overhead on the computation, a global bundle
adjustment is performed, but only after an essential graph optimization. To
further reduce the computational request, this procedure is run in another
thread so that the system can continue to detect loops and create the map,
to allow the insertion of new keyframes and map points during the global
bundle adjustment.
The general structure of the optimization problem recalls the one from the
(3.7), more precisely

{X i, Rkw, tkw|i ∈ P , k ∈ G} = argmin
Xi,Rkw,tkw

∑
k∈G

∑
j∈Xk

ρ(Ekj) (3.11)

where this time all the keyframes belonging to the graph G are involved, as
well as the map points belonging to the global map P ; Xk is always the set
of tracked map points for each keyframe and Ekj is exactly the same as the
(3.8). The only fixed keyframe in this optimization is the one representing the

1A wider explanation of this mathematical relationship is reported in the appendix A
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origin (introduced in the initialization of the algorithm) and is mandatory to
have it in order to eliminate the gauge freedom.
Since the global BA is asynchronous with respect to the loop closing and the
local mapping modules, there is the need to define a procedure to merge the
output of the global optimization with the current state of the graph, since
new keyframes and map points could be present. Additionally, if a new loop
is detected while the global BA is running, the latter is aborted immediately
and restarted once the loop closure procedure has finished, in order to per-
form the global optimization on the latest updated graph available.
Once the global bundle adjustment has finished, the corrections are prop-
agated through the whole graph, using the spanning tree: starting from the
first keyframe created, the correction is propagated to the children until com-
pletion. If a keyframe has been involved in the optimization, its corrected
pose is already available and so this is directly used. For all the other keyframes
not processed (so that were created during the global bundle adjustment ex-
ecution) a special procedure is used: each child pose is updated from the
parent pose, using its relative position with it.
More precisely, by naming T new

pw and T old
pw the corrected and the old poses of

the parent and as T old
cw the uncorrected pose of the child, the new child’s pose

can be computed as:

T new
cw = TcpT

new
pw , Tcp = T old

cw

(
T old
pw

)−1
(3.12)

where as always the subscripts on Tij state that the transformation express
the coordinate system of j into the reference system of i.
A similar procedure is run for the map points: the ones processed by the
global optimization are directly updated, while the other ones that were added
later are updated using the relative position with respect to their reference
keyframe (basically, the keyframe from which they were first observed). By
naming Xw the position of the map point in the world coordinate system
and Xc the position of the map point in the reference keyframe coordinate
system (that, given its origin from the observation, it remain the same during
all his life), this procedure can be summarized as follow:

Xnew
w = T new

wc Xc, Xc = T old
cw Xold

w . (3.13)



Chapter 4

Place recognition

As stated in the chapter 1, one of the most important features of a robust
SLAM algorithm is an efficient method to perform place recognition. This is
mandatory in both relocalization frameworks and for loop detection: in the
first one, place recognition is used to relocalize the robot when the default
tracking algorithm falls (due for example to motion blur, sudden motions or
severe ambient occlusions), while in the latter is used to recognize places vis-
ited before, in order to correct the drift originated from error accumulation.
In visual SLAM two main types of techniques for performing place recogni-
tion exist: map-to-image and image-to-image. The first type consists, as the
name says, in finding a match between the actual image seen and the points
already present in a memorized map. This is pretty efficient in the case of
small environments, but in the case of larger ones this method could lead to
an increase in computational burden (caused by the need to perform a search
over a bigger set of map points). For this reasons image-to-image methods,
that match the actually observed image with information directly extracted
from the already seen ones, scale much better.
The idea behind image-to-image methods is to rely on a database built from
the images collected by the robot during the exploration so that, when a new
image is captured, all the similar ones can be retrieved and compared. A
common way to build this type of database is to use the Bag of Words (BoW)
model. Having this in mind, the ORB-SLAM’s authors opted for the use of the
DBoW mechanism, [14], in order to construct the database.

4.1 DBoW

Given the goal of constructing an image database, one of the best ways of
doing it is to memorize a set of features associated with each image, instead
of the image itself. The chosen features extractor is an ORB one, illustrated in
chapter 2, since it’s both fast and reliable.

37
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The idea of a BoW technique originated from document classification, where
the purpose was to classify a piece of text by counting how many times each
word would appear on it, without considering grammar laws or words’ order.
To reduce the impact of commonly used words, the frequencies of the words
counted are normalized using Term Frequency-Inverse Document Frequency,
TF-IDF, as measurement. This method provides a useful way to adjust the
words’ frequency, by taking into account not only how many times a word
appears in a document with respect to every other word, but also how many
times it appears in all the other documents, by so reducing the weight of the
commonly used ones.
By adapting the technique of the BoW to the features extracted from an im-
age, it’s therefore possible to obtain a set of elements with which to construct
a database. To efficiently organize it, a vocabulary tree is used, [15], that uses
a direct and an inverse index to speed up the database access.

4.1.1 Vocabulary tree

Inheriting the definition from document classification, a vocabulary must be
constructed in order to apply the BoW classification idea. The main advan-
tage of using a vocabulary is that it can be constructed offline from visual
descriptors obtained from an image dataset. This is done by dividing the
hyperspace generated by all the ORB descriptors extracted into smaller and
smaller subsets until a word is obtained, that is in practice only a set of de-
scriptors very similar to each other. By doing that, each descriptor extracted
from any other image can be associated with a word in the vocabulary, allow-
ing the construct of the BoW for the image interested.
To construct the vocabulary a partition is basically performed. The sets of
all the ORB descriptors describe a binary space with high dimensionality so
the idea is to recursively split this high dimension space into smaller chunks
and, for doing that, a tree structure is used: to construct this tree only two
parameters are needed, k and L, that defines the number of children of each
node and the maximum level of deepness reached.
Starting from the raw descriptor space, it is partitioned into k clusters by a
k-means process, that basically joins together the descriptors that are more
similar to each other. Formally, this goal can be defined as an optimization
problem: by defining S = {S1,S2, . . . ,Sk} the set of clusters that must be
found, each one defined by its mean

µi =
1

#Si

∑
x∈Si

x (4.1)

where #Si is simply the cardinality of the set considered, the general form of
the problem becomes:
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Figure 4.1: Illustration of the process. At each level the parent cluster is divided
into k sub-clusters (in this example k = 3).

argmin
S

k∑
i=1

∑
x∈Si

||x− µi||
2 . (4.2)

An illustration of this procedure is depicted in the figure 4.1.
The problem can however be pretty demanding from the computational point
of view (depending of course on the number of descriptors considered), but
since all its computations are performed offline, this does not bring any dis-
advantage.
Each one of this cluster is then partitioned again in other k clusters, using
always the same technique (4.2), recursively performing this process till an L
number of subdivisions have been performed.
The process is therefore equivalent to a tree construction, by assigning to
each node the clusters generated from its partition as children. The tree cre-
ated in this way directly defines the visual vocabulary (being the leaf nodes
the designed words) and also an efficient search procedure. In fact, to find
the word assigned to a specified descriptor during the online phase, it is suf-
ficient to simply compare the interested descriptor to the k candidate cluster
centers (each of whom is associated with one of the k children) for each level
until the final level, and so the designed word, is obtained. Since in this case
the descriptors used are binary vectors, the comparison can be done really
fast by simply performing an xor operation between all the elements of two
vectors, to obtain the Hamming distance.
By performing this search for the descriptors of all the features extracted from
an image, and by so finding a word for each one of them, the BoW of the
specified image can finally be computed.

4.1.2 Scoring

Given two BoW vectors, computed as said before, a way to measure their sim-
ilarities must be provided, to be able to match a query image with the ones
in the database.
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First, to each tree’s leaf node (namely to each word) a weight is assigned, fol-
lowing the TF-IDF measure. More precisely, the weight of each word in a BoW
of an image t, following the idea expressed in [16], can be calculated as:

vti =
nit

nt

ln
N

ni

(4.3)

where nit is the number of occurrences of the word i in the image t, nt is the
total number of words in the image considered, N is the total number of im-
ages in the database and ni is the number of images with at least one descrip-
tor vector through the node i. The first term of the (4.3), as it can be seen, de-
pends only on the image interested (that could already be in the database or
be the one queried), while the second depends only on the whole database.
So, as the name said, the weight of each word is a mix between its frequency
in a given document, for the contribution of the first term, and its frequency
in the whole database, thanks to the second term.
Given two images, each one with their BoW vectors vi and vj , whose ele-
ments are calculated according to the (4.3), the similarity score between two
images can be calculated as:

s(vi,vj) = 1− 1

2

∣∣∣∣ vi

|vi|
− vj

|vj|

∣∣∣∣ . (4.4)

The values of this score (where a L1-norm is used, since it gives better result
with respect to the classic L2-norm), lies in [0, 1], being the closer to one the
more similar the two vectors are.

4.1.3 Direct and inverse index

As often done for BoW databases, an inverse index is maintained along with
the bag of words: each word wi in the vocabulary stores a list of the images It
where it is present. This allows a very fast database query, by easily retrieving
all the images with some words in common, to easily perform comparisons
between them. To speed up the efficiency, the inverse index is augmented by
storing pairs ⟨It, vit⟩, in order to quickly retrieve also the weight of the refer-
enced words in the image pointed. The inverse index structure is updated, of
course, every time a new image is added to the database.
In addition, a direct index is also used to better store the features of each im-
age: the idea in this case is to keep, for each image, the index of the words
that belong to it. More precisely, the quantities stored are the ancestor nodes
of the words present in the image It, as well as the list of local features associ-
ated with each node. This permits to speed up the geometrical verification of
two observed images by computing correspondences only between the fea-
tures that belong to the same words, or with common ancestors (by mean,
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parent nodes) at a certain level. The utility of that is exploited, for example,
in the tracking module when correspondences with the reference keyframe
of the currently processed frame must be found (since a reliable relative pose
between them is not available) or also for speeding up the matches’ search
between two keyframes. As for the inverse index structure, also this one is
updated every time a new image is added to the database.

4.2 Loop detection

In the original work [14], place recognition was performed by searching the
image database to find the best candidates, and temporal and geometric con-
sistency validations were then performed, in order to filter out the candidates
retrieved and find the best one.

Using a graph-based SLAM, these steps are still performed but in a different
way, since covisibility information can be used to speed up the various steps.

4.2.1 Candidates selection

First of all, when a new keyframe arrives, the similarity scores between its
BoW and its neighbor’s ones in the covisibility graph are computed, and the
minimum among them, smin, is then searched. This score is then used as
lower bound for the database query, by discarding all the memorized keyframes
having a score lower than the minimum obtained. This technique allows to
obtain more robust candidates to match, by essentially performing a nor-
malization of the last keyframe’s score along its covisibility neighbor since it
depends deeply on the query image and its distribution of BoW.

To discard candidates that are too close in time to the actual observation, all
the keyframes in the covisibility graph that are connected to the last keyframe
inserted (the one to match) are discarded. In addition, to augment the ro-
bustness of the retrieved candidates, each one of them must be consistent
with previously detected candidates. More precisely, a candidate is consid-
ered consistent with another one if they share at least a keyframe in their
covisibility neighbor. After all these steps, finally, a candidate is marked as
good if at least three previous consecutive consistent candidates have been
detected.

Naturally, more than one candidate could be retrieved for a single keyframe
(due to places with similar appearance). So it’s mandatory to find the one that
best matches with the current keyframe, and to discard the false positive.
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4.2.2 Geometric consistency

Once that the candidates are retrieved, additional tests must be performed
to discard the bad ones. First of all a direct check on the ORB features ob-
served by them and the current keyframe is performed, by using the direct
index of the database to compute the matches. Only if a sufficient amount of
correspondence is found the candidate keyframe can be kept and continue
the tests.
After the BoW matching of the previous step, a set of map point correspon-
dences is available between each successful candidate and the current keyframe.
By having therefore 3D-to-3D correspondences for each candidate, relative
poses between the current keyframe and each one of them can be computed,
and it can be used to further refine the matching search. The relative pose
calculus is carried on in various steps, in order to cancel out the outliers and
the wrong matches.
First, a series of RANSAC iterations is performed between the current keyframe
and each candidate, to find out a suitable SE(3) pose (if it exists) among
them. This first search is performed using the Horn method [17], which re-
quires a minimal number of points in order to compute a solution. If the
search is successful, further correspondence searching between the current
keyframe and the proposed candidate is performed, taking advantage of the
new estimated relative position. If enough matches are found, a final opti-
mization procedure is performed (using all the matched map points) to find
the optimal SE(3) pose connecting the two keyframes. If this one is sup-
ported by enough inliers then the candidate is marked as good and a loop
closure procedure, as reported in 3.3.3, can be performed. This search is car-
ried out among all the loop candidates, till one is successful or all fail.
Now an exhaustive explanation of the RANSAC iterations scheme, the Horn
method and the SE(3) optimization is presented.

RANSAC Random sample consensus (RANSAC) is an iterative method, in-
troduced in [18] by Fischer and Bolles, with the goal of estimating the pa-
rameters of a mathematical model given a set of measured data containing
outliers.
Standard fitting techniques, such as for example linear least squares, are heav-
ily influenced by outliers in the model. Some expedients as loss functions can
help to reduce their impact, but nevertheless the solution obtained will be
degraded with respect to the optimal one. RANSAC, however, was designed
precisely to overcome this issue at the cost of resulting in a nondeterminis-
tic algorithm, producing a good result only with a certain probability, being
dependent on the number of iterations performed.
The RANSAC algorithm is based on two main assumptions: there are few out-
liers with respect to the good data (otherwise it would be impossible to set a
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criterion for distinction) and that enough inliers to produce a good model are
present. The main difference of the RANSAC algorithm with respect to other
fitting techniques is that it doesn’t resort to the use of all the data available,
but it tries to find a model with the minimal set of data that is possible to
use. Having stated that, the RANSAC algorithm can be seen as an iterative
execution of the following steps:

• A minimal subset from the set of data is randomly selected. This set
must contain the minimal number of data needed in order to produce
a good estimate of the desired model and can be seen as a guess of the
inliers of the problem.

• The set of data extracted is used to fit a model. The specific calculus
performed on this step depends of course on the type of model to fit.

• All the data in the original dataset are tested against the obtained model,
using some criteria or loss function that varies with the type of model
itself. This check will result in a subdivision of the original dataset into
inliers and outliers, depending on the model found.

• If the number of inliers found is sufficiently high, then the model is
marked as good and the algorithm can stop, otherwise it will start all
over again, by still keeping the best model found till the actual iteration
in memory.

The most crucial part of a correct RANSAC procedure is the proper choice
for the algorithm’s three parameters: the threshold to classify a point as an
outlier or inlier given the model, the minimal number of good points to be
found in order to mark the model found as correct and the number of itera-
tion performed. By leaving the decision of the first two to the specific model
involved in the procedure, it can be proven that the latter one (the number of
iterations) is directly dependent on the goodness of the result achieved.
The key to proving that is to see the successful model as the one obtained
when only inliers are selected during the first step. Having stated this, the
probability ε of choosing an inlier every time a point is selected can be for-
mulated as:

ε =
nmin

N
, (4.5)

where nmin is the minimal number of data required to properly estimate the
model and N is the total number of data available. Actually, the numerator
should match the number of actual inliers present in the set of data, but since
this quantity is not available, a solution is to put this value equal to the min-
imal number of inliers required by the algorithm to be successful, so using
one of the parameters provided.
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After this introduction, another assumption is made in order to obtain the
result: each point must be selected independently from the others. This as-
sumption in reality is not verified, since each time a data is selected it must
be removed from the set of available ones for the next extraction (this must
be done in order to not select the same data twice). However, this approxima-
tion becomes less impacting the bigger the number of data available. Having
stated that, it’s easy to state that the probability that all the nmin data chosen
are inliers is εnmin , while 1 − εnmin is the probability that at least one of this
chosen data is an outlier (resulting so in an incorrect model estimation). By
naming p the probability that the algorithm produces a good result, which
became the parameter to choose instead of the number of iterations k, it’s
easy to obtain the following relationship:

1− p = (1− εnmin)k, (4.6)

which expresses the probability that the algorithm would never produce a
good result (by never selecting nmin good points) during all the k iteration.
Now, from this relationship, the minimal number of iterations required to
obtain a good result with a probability equal to ε can finally be calculated as:

k =
log(1− p)

log(1− εnmin)
. (4.7)

Absolute orientation The problem of estimating the relative pose between
two systems that observe a common set of 3D points is referred to in the lit-
erature as absolute orientation, and a closed-form solution to this problem
was provided by Horn in [17].
The original method was designed for points with monocular observations,
the most general case, so the scale was considered an unknown variable.
Having stated that, the original problem has therefore a total of 7 DoF, so
at least 3 points, called control points, are needed (providing 9 independent
constraints) in order to find the solution.
Given the noisy nature of the observations, the map points would never match
perfectly the captured features in the two images, so the solution is found by
optimizing the sum of squares of residual errors, given by:

R̂, t̂ = argmin
R,t

N∑
i=1

||r1,i −Rr2,i − t||2 (4.8)

where the vectors r1,i and r2,i are the coordinates of the N observed points
seen by the two keyframes reference systems. As previously stated, in the
original formulation also a scale λwas involved in the procedure (multiplying
the matrix R), but since in the treated case the scale is observable (given the
stereo constraints), λ can be fixed to one and removed from the treatment.
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Since the mutual orientation doesn’t depend on the translation, the problem
can be decoupled by first finding the optimal rotation R̂ and then using it to
compute the optimal translation t̂.
The ideas proposed by Horn are actually three: to use relative coordinate (re-
ferred to two virtual points called centroids) in the (4.8), to split the rotation
solution from the translation one (since orientation doesn’t depend on trans-
lation) and to resort using quaternions as a rotation representation, to reduce
the number of variables and constraint involved in the optimization. So by
defining, as done in the paper, the two centroids (calculated in the two coor-
dinate system) as:

r1 =
1

N

N∑
i=1

r1,i, r2 =
1

N

N∑
i=1

r2,i. (4.9)

By then expressing the points coordinates with respect to the two centroids
as r′

j,i = rj,i − rj , the error term in the (4.8) can be rewritten as:

ei = r′
2,i −R(r1,i)− t′ (4.10)

where R(·) is a notation to express any type of rotation, by making so the
formulation more general, and

t′ = t− r2 +R(r1). (4.11)

By then putting the new error term inside the (4.8), the problem can be rewrit-
ten, performing the calculus (since the norm of a vector can be seen as the
dot product of the vector with itself), as:

min
R,t

N∑
i=1

∣∣∣∣r′
2,i −R(r′

1,i)
∣∣∣∣2 − 2t′ ·

N∑
i=1

l
[
r′
2,i −R(r′

1,i)
]
+N ||t′|| . (4.12)

By recalling that
∑N

i=1 rj,i = 0 for construction, the second term is obviously
equal to zero. The first and last terms show instead the independence of the
orientation part from the translation.
By carrying the calculus on the first term, it can be found that it is the only
one term depending on the rotation, and so the problem is reduced to

min
R

−
N∑
i=1

r′
2,i ·R(r′

1,i) (4.13)

while the difference of the two sums depending only on ||r′
j,i|| is as close to

zero as the less is the mismatch between the two frame’s measurements (so
is constant in the optimization).
Now, by using the quaternion q and its property to express the rotation R(·),
the problem (4.13) translates in:
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q̂ = argmax
q

N∑
i=1

(
qr′

1,iq
∗) · r′

2,i = argmax
q

N∑
i=1

(
qr′

1,i

)
·
(
r′
2,iq
)
. (4.14)

It can be proven, by using the property of quaternion multiplication, that the
last expression can be written as:

q̂ = argmax
q

N∑
i=1

qNiq = argmax
q

q

(
N∑
i=1

Ni

)
q = argmax

q
qN q (4.15)

where N is a symmetric matrix constructed as

N =


M11 +M22 +M33 M23 −M32 M31 −M13 M12 −M21

M23 −M32 M11 −M22 −M33 M12 +M21 M31 +M13

M31 −M13 M12 +M21 −M11 +M22 −M33 M23 +M32

M12 −M21 M31 +M13 M23 +M32 −M11 −M22 +M33


(4.16)

where the terms Mij are the terms of the M matrix

M =
N∑
i=1

r′
1,ir

′T
2,i. (4.17)

Having stated that, the optimal rotation can be found using linear algebra:
the quaternion that maximizes the (4.15) is the one having the same direction
of the eigenvector of the matrix (4.16) associated with its highest eigenvalue.
Finally, once the rotation is found, the optimal translation can be found by
minimizing the last term of the (4.12), which happens obviously when t′ is
zero. Remembering the (4.11), the optimal translation can then be easily
found as:

t̂ = r2 − R̂r1, (4.18)

where R̂ is the optimal rotation matrix obtained by the optimal quaternion q̂.
In conclusion, the Horn’s method for solving the absolute orientation prob-
lem is fast and efficient, providing in a single step both the optimal trans-
lation and rotation, allowing its implementation on a RANSAC procedure,
explained before, to augment its robustness to outliers and errors.

SE(3) optimization As reported earlier, after having an available initial es-
timate and enough matches between the two observing keyframes, an op-
timization procedure is performed. The enforce the constraint on the two
keyframes, the problem is structured so that double linking constraints are
present between the two keyframes.
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Given the set Xof N map points to match, in common for both the keyframes
involved, the following quantities can be introduced: X i,j are the coordinates
of the map point i in the keyframe j; xi,j are instead the coordinates of the
observed keypoint, in the image plane belonging to the keyframe i, associ-
ated to the map point j; finally, Tij is the homogeneous transformation that
transform points expressed in the reference system j into the i.
Having stated that, two types of errors are defined:

e1,i = x1,i − π1 (T12X2,i)

e2,i = x2,i − π2

(
T−1
12 X1,i

) (4.19)

where π(·), in this case, represents only the projection law (2.2), being a monoc-
ular observation with a fixed scale sufficient for finding an optimal solution.
The general optimization problem can then be written as:

T̂12 = argmin
T12

N∑
i=1

(
ρ(eT

1,iΣ1,ie1,i) + ρ(eT
2,iΣ2,ie2,i)

)
(4.20)

where the matrix Σj,i is the inverse of the covariance matrix of the measure-
ments of the points i in the keyframe j, calculated in the same way as in (3.5),
and ρ is as always the robust Huber loss function (3.6).
To further increase the robustness of the optimization, even this one is per-
formed twice, by eliminating outliers with a χ2-test between the two ones.

4.2.3 Loop correction

After having finally confirmed a loop, the new information must be used
to correct the accumulated drift error and propagate it through the whole
graph. This is done by using the relative pose obtained by solving the (4.20),
and by taking as granted the pose of the keyframe detected as a loop closure.
The correction procedure is now illustrated.
First of all, the current frame pose is updated, using:

Tcw = TclTlw (4.21)

where the l subscript is referred to the loop keyframe and so, naturally, Tcl is
simply the solution obtained by the (4.20). After that, the new information is
propagated through the whole covisibility neighbor of the current keyframe.
Being thenT old

wc the uncorrected transformation that links the current keyframe
to the world, T new

cw the corrected one and T old
iw the transformation between the

world and the i-neighbor keyframe, the new corrected pose T new
iw is computed

as:

T new
iw = (T old

iw T old
wc )T

new
cw = T old

ic T new
cw (4.22)
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where T old
ic is the non-corrected relative pose between the current keyframe

and the neighbor considered.
After that, also the poses of all the map points observed by this group are cor-
rected by first projecting the point in the observing keyframe with the non-
corrected pose (since this position never changes, depending only on the de-
tected feature), and then re-projecting the point back in the world using the
corrected pose:

pnew
i = T new

wi T old
iw pold

i (4.23)

where pold
i and pnew

i are the old and the new 3D pose of the map point in the
world.
Then the correction is performed on the map points that are observed by the
current keyframe and the loop one, by fusing the duplicates and by adding
the new ones, in order to align both sides of the loop.
The same fusion procedure is finally performed for all the keyframes in the
neighbors of the current keyframe and the loop one, by finally closing the
loop and connecting in an exhaustive way both sides of the graph (in fact the
map points fusion will lead to the creation of new connections among all the
keyframes involved).
After this correction, the graph is now ready to perform the essential graph
optimization as explained in the section 3.3.3, to propagate the correction of
the pose along all the keyframes.

4.3 Relocalization

The other main process that uses place recognition is, of course, the global
relocalization module. This module is practically mandatory, as stated in 1,
if a robust tracking is desired. In fact, vSLAM algorithms are particularly sen-
sitive to fast camera motion or image blur, which could cause the loss of po-
sition information (since each pose estimate relies on the previous one). For
this reason, the ability to correct relocalize the camera pose is mandatory.
The general idea is to take advantage of the BoW database to retrieve pos-
sible candidates, and then compute RANSAC iterations (as explained in the
previous section) using the EPnP algorithm [19].
The main difference with respect to loop detection is that, for relocalization,
no time consistency is required since no information is available on the ac-
tual position. For this reason the geometrical check is performed right after
the candidates’ retrieval, by computing correspondences of the ORB features
(using the database direct index for matching).
All the candidates that pass this test go then under a RANSAC procedure that
tries to compute an initial estimate of the vehicle pose.
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If a candidate is marked as good by the RANSAC procedure, the outliers de-
tected are discarded and the pose is refined: essentially, the optimization
3.3.1 and an ORB search using the optimal pose are alternatively computed,
until enough correspondences are found. If the optimization retrieves di-
rectly a pose with enough inliers, then the estimated pose is marked as good
and the tracking can continue; otherwise two additional subsequent searches
and optimizations are performed to try to enlarge the quantity of correspon-
dences supporting the pose. If this is successful then the candidate’s pose is
marked as good, otherwise the procedure continues elaborating on the next
candidate.
This is done for every image captured until a new pose estimation is available.
The assumption of this procedure is that, in order to correct relocalize the
vehicle, the observed area must be already mapped, otherwise it would be
impossible to estimate a pose for the algorithm.
Now a detailed explanation of the technique used for computing the robot
pose in the RANSAC procedure is provided.

4.3.1 EPnP

The problem of finding the 3D pose of a camera given n 3D points and their
2D reprojection is known as Perspective-n-Point problem in the literature.
The minimal number of points required to correctly compute the pose is 3,
since 7 DoF are present in the problem (3 for translation, 3 for orientation and
one for scale). One of the most famous algorithms is in fact P3P, which uses
exactly 3 points to compute the camera pose. This however could easily result
in solution ambiguity, since the basic approach of P3P leads produces up to
four feasible solutions for the camera pose. For this reason, PnP problems
(with n ≥ 4) are of deep interest to the research community.
This problem is mainly tackled in two different ways: with iterative approaches,
usually trying to minimize a cost function in order to find the better solution,
or by closed-form ones, which seek to arrange a system of equations (often
non-linear) that can be solved in a single step.
However, if not correctly treated, the resolution of a general PnP problem
could require a non-negligible computational complexity. This was espe-
cially true until the introduction of EPnP in 2009 by Lepetit et. al in their
article [19]. Other PnP algorithms (at the time), required for example O(n5)
or O(n8) as computationally complexity, while EPnP is simply O(n).
The EPnP algorithm is closed-form based, so theoretically it doesn’t require
iterations to be performed. Since the authors of the algorithm found that
its accuracy was less precise than other iterative approaches under proper
initialization, they decided to enrich the algorithm with an additional Gauss-
Newton method to increase its accuracy (without significant impact on the
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computation) and so achieve state-of-the-art performances.
The key idea of the EPnP algorithm is to solve the problem using only 4 virtual
points, called control points calculated from the whole set of n points avail-
able, bounding in this way the computational complexity of the problem.
Givenpw

i as a 3D point in the world coordinates system, pc
i as a 3D point in the

camera coordinates system, cwj and ccj the coordinates of the chosen control
points in the two frame’s system, the following relationships can be written:

pw
i =

4∑
j=1

αijc
w
j , pc

i =
4∑

j=1

αijc
c
j, with

4∑
j=1

αij = 1, ∀i = 1, . . . , n. (4.24)

Basically, the (4.24) states that every map point can be seen as a linear com-
bination of the 4 control points, using the same coefficients in both frames.
These control points can be chosen arbitrarily, but the method’s stability in-
creases if the first one is taken as the centroid of the points, while the others
3 along the principal directions of the data.
The general approach of the EPnP algorithm is to retrieve the coordinates
of all the control points cci , so that then the relative transformation between
them and cwi can be computed, returning the desired camera pose.
The first step is to compute the 4 cwi in order to find the corresponding αij

coefficients. After that, the general projection law can be written:

wiui = Kpc
i = K

4∑
j=1

αijc
c
j, ∀i, (4.25)

where ui = [ui, vi, 1]
T are the coordinates of the corresponding keypoints in

the image, K is the intrinsic camera matrix and wi are the scalar projective
parameters. This expression can now be expanded, as:

wi

ui

vi
1

 =

fx 0 cx
0 fy cy
0 0 1

 4∑
j=1

αij

xc
j

ycj
zcj

 , ∀i. (4.26)

The unknown parameters of this linear system, are the 12 control points’ co-
ordinates and the n projective parameters. However, the last row of the (4.26)
shows that wi =

∑4
j=1 αijz

c
j , and this can be substituted in the remaining ex-

pressions, leading to two linear equations for each reference point and can-
celing out the projective parameters themselves:{∑4

j=1

[
αijfxx

c
j + αij(cx − ui)z

c
j

]
= 0∑4

j=1

[
αijfyy

c
j + αij(cy − vi)z

c
j

]
= 0

. (4.27)

Writing these equations for all the n correspondences, the general system
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Mx = 0 (4.28)

can be obtained, with x = [cc1
T , cc2

T , cc3
T , cc4

T ]T ∈ R12 and M ∈ R2n×12 ma-
trix. The desired solution belongs therefore to the kernel of M and can be
expressed as:

x =
N∑
i=1

βivi (4.29)

where vi are the right-singular eigenvectors of M , corresponding so to its N
singular eigenvalues. Given the structure of the matrix M , they can be di-
rectly found as the null eigenvectors of the matrix MTM , which will always
be a constant 12 × 12 matrix. Its construction is essentially the most time-
consuming step of the whole procedure (especially for large n), and it’s in
fact the only step whose computational demands increase with the number
of correspondences (in a linear fashion). All the other operations performed
(before and later) are bounded and almost constant in time.
The peculiarity of this approach is that the eigenvectors decomposition can
be applied in constant time, independently from the number n of correspon-
dences (if at least greater than 4), and also if the rank of the system is less than
the number of unknowns (12). This happens because the matrix on which
the decomposition is applied, MTM , doesn’t depend anymore on n.
The dimension N of the null space of MTM can vary from 1 to 4, depend-
ing on the camera model: in the ideal case, with perfect correspondence
matches, it should be one, but affine camera models (first-order approxima-
tion of the general camera model) could bring this dimensionality up to 4,
given the scale uncertainties on all the 4 control points. By also consider-
ing that noise presence and non-ideality of the matches would never assure
perfectly zero eigenvalues, the number N cannot be known in advance.
This problem is tackled by computing the solutions (the estimated pose) for
all four values of N (by using the four eigenvectors associated with the four
smallest eigenvalues), and then keeping the one that better minimizes the
reprojection error:

N∑
i=1

||ui − π(Tcwx
w
i )||

2 . (4.30)

The last problem to tackle is so how to compute the βi coefficients in the
(4.29), depending on the number N of eigenvectors involved. The basic idea,
used for all four possible values of N , is to compute B imposing as a con-
straint that the distances between the control points in the camera frame,
obtained with the (4.29), must be equal to the ones between the actual con-
trol points obtained by the real 3D points coordinates:
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∣∣∣∣∣
∣∣∣∣∣

N∑
k=1

βkv
[i]
k − βkv

[j]
k

∣∣∣∣∣
∣∣∣∣∣
2

= ||cwi − cwj ||2, (4.31)

where v[i] is the sub-vector of the eigenvector v corresponding to the coordi-
nates of the control point cci .
Basically, all the quantities involved (the distance between the various v

[i]
k

and between the control points cwi ) can be computed in advance after the
decomposition of MTM , allowing to speeding up the computation.

• N=1: In this case the (4.29) is simply equivalent to x = βv. So, by im-
posing the equality (4.31), an easy computation prove that:

β =

∑
i,j∈[1,4] ||v[i] − v[j]|| · ||cwi − cwj ||∑

i,j∈[1,4] ||v[i] − v[j]||2
. (4.32)

• N=2: From the (4.31), it can be shown that the unknown variables are
basically β11 = β2

1 , β12 = β1β2 and β22 = β2
2 (this approach in cryptog-

raphy is known as linearization). Therefore a linear system of six equa-
tions in the three variables can be constructed and easily solved:

Lβ = ρ, L ∈ R6×3, β ∈ R3, ρ ∈ R6, (4.33)

where the elements of L and ρ are respectively derived from v1, v2 and
from the distance between the control points cwi .

• N=3: The procedure is basically the same as for the previous case, ex-
cept for the fact that in this case L ∈ R6×5 and β ∈ R5, since not all the
βab are necessary for the solution.

• N=4: In this case it is not possible to use the same linearization used
previously, because the number of unknowns would increase too much,
(all the products βaβb are threatened as independent variables). How-
ever, relinearizing again (and employing the commutativity of the mul-
tiplication) a similar linear system to the previous cases can be obtained,
with L ∈ R6×4 and β = [β11, β12, β13, β14]

T .

To further increase the accuracy, the candidate values for β (for all four cases)
are refined by also adding an optimization procedure. More precisely, using
as always the constraints of distances between the control points, the follow-
ing optimization is performed:

β = argmin
β

∑
i,j∈[1,4]s.ti<j

(
||cci − ccj||2 − ||cwi − cwj ||2

)
(4.34)
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where cci is the estimated control points calculated with the (4.29).
Since this optimization depends only on β, it requires practically constant
time, not depending neither on the number of correspondences used nei-
ther on N , so the computational requirement is basically negligible, bringing
nevertheless a pretty boost in the quality of the solution.
Finally, once the coordinates of the control points in the camera frame are
available, the desired position and orientation can be computed. This oper-
ation is performed in a similar way to the previously treated absolute orien-
tation problem, having basically the same structure to optimize:

R̂, t̂ = argmin
R,t

N∑
i=1

|cci − (Rcwi + t) |||2 (4.35)

The problem is tackled in a similar way as done for the Horn method: decou-
pling the rotation and the translation, estimating the optimal orientation by
exploiting the quaternions representation (by so finding the one associated
with the higher eigenvalues), and then computing the optimal translation. As
previously stated, this procedure is actually performed for all four values of
N , by finding therefore four valid transformations linking the camera to the
world: the best one is the one that best minimizes the (4.30).
Since the EPnP algorithm is performed in a RANSAC procedure, its robust-
ness to outliers is increased and, in addition, a double execution is performed:
the first one is done as in the classic RANSAC scheme with only the minimal
number of correspondences required (4), randomly extracted from the avail-
able set; then, after having classified outliers and inliers, if the obtained pose
has enough inliers to pass the RANSAC test is further refined by performing
again the EPnP using all the inliers found as correspondences. This ensures
good quality in the obtained pose, along with additional robustness to out-
liers, that will be further refined by the following optimizations as stated be-
fore.
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Chapter 5

Future developments

Since its release, ORB-SLAM2 has been one of the state-of-the-art algorithms,
given its accuracy and versatility. However, its goodness was surpassed by its
heir, ORB-SLAM3, which by adding IMU integration and a multi-map system
brought its accuracy to a higher level.
Of course, this type of addition increases the computational demand of the
algorithm, so a study on how to improve these features in order to implement
them in an embedded system should be performed.
Additionally, a way to introduce the possibility of building a human-readable
3D map of the environment (or expanding an already existing one) would
be a great addition, allowing also to reduce computational time by avoiding
optimization of map points whose location is known in advance.
In this chapter, an explanation of how IMU measurements could be inte-
grated, following the same idea of ORB-SLAM3 [3], will be illustrated, along
with an illustration of the Octomap algorithm, one of the most efficient tech-
niques to build and memorize a dense map of an environment.

5.1 Pre-integrated IMU measurements

The introduction of IMU measurements proposed in the ORB-SLAM3 algo-
rithm is based on the article [20], which presents a preintegration theory
based on the rotation group SO(3)1, allowing to introduce IMU measure-
ments as additional constraints between the graph keyframes themselves.
The basic idea is to capture all IMU data as long as they are available and
then to build a single constraint (imposing relative position and orientation)
between two consecutive keyframes, by putting together and integrating all
these measurements. This allows of course the creation of additional edges
besides the ones illustrated in the section 3.2.1.

1Manifold theory of rotation group is treated in the appendix A
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5.1.1 IMU and kinematic model

The model used for the IMU is a simple double integrator, that takes the
measurements of the gyroscope and the accelerometer, affected however by
noise:

ω̃b
wb = ωb

wb + bg + ηg

ãb = Rbw(a
w − gw) + ba + ηa

(5.1)

where the superscript indicates the frame in which those quantities are ex-
pressed, and η and b are the two types of disturbances affecting the mea-
surements, respectively a white noise and a bias (modeled as a random walk
process). It is then natural to understand the meaning of all the other sym-
bols in the (5.1). Of course, all the values presented in these equations are
time-dependent, but to simplify the notation this dependency has not been
highlighted.
Then, by assuming that both aw and ωw

wb remain constant in the interval of
time ∆t between two IMU measurements, and by using the standard kine-
matic model for a rigid body motion in space

Ṙwb = RwbSωb
wb
, v̇w = aw, ṗw = vw (5.2)

where Sωb
wb

is the skew-symmetric matrix associated with the angular velocity
of the body, the general dynamic model of the vehicle can be written as:

Rwb(t+∆t) = Rwb(t) expSO(3) (ω
b
wb(t)∆t)

vw(t+∆t) = vw(t) + aw(t)∆t

pw(t+∆t) = pw(t) + vw(t)∆t+
1

2
aw(t)∆t2

. (5.3)

The quantity ωb
wb and aw can be easily found by using the (5.1). Of course,

this approximation of the integration can be considered valid only if the IMU
measurements are provided at sufficiently high frequency, otherwise higher
order methods should be used. In the (5.3), the expSO(3) symbol represents
the exponential map that links the rotational manifold SO(3) to the tangent
vector space (more precisely, the exponential map brings quantities from the
tangent space to the manifold).

5.1.2 Pre-integrated measurements

Then, by putting together the (5.1) and the (5.3), and by iterating the inte-
gration for all the IMU measurements at time k between two consecutive
keyframes i and j (as illustrated in the figure 5.1), it’s possible to find:
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Figure 5.1: Illustration, taken from the article, on how several IMU measure-
ments are preintegrated in a single component, imposing a constraint between
two keyframes.

Rj =Ri

j−1∏
k=i

expSO(3) ((ω̃k − bgk − ηg
k)∆t)

vj =vi + g∆tij +

j−1∑
k=i

Rk (ãk − bak − ηa
k)∆t

pj =pi +

j−1∑
k=i

[
vk∆t+

1

2
g∆t2 +

1

2
Rk (ãk − bak − ηa

k)∆t2
]

(5.4)

where ∆tij is the time distant between the two keyframes. From this model, it
is then pretty fast to obtain the so-called pre-integrated IMU measurements
between the two keyframes, as:

∆Rij =

j−1∏
k=i

expSO(3) ((ω̃k − bgk − ηg
k)∆t)

∆vij =

j−1∑
k=i

∆Rik (ãk − bak − ηa
k)∆t

∆pij =

j−1∑
k=i

[
∆vik∆t+

1

2
∆Rik (ãk − bak − ηa

k)∆t2
]
. (5.5)

The greatest advantage of the measurements written in this way is that they
are independent of the actual poses of the keyframes, while the (5.4) should
be recalculated every time that the position of the keyframe i changes.

5.1.3 IMU residuals

The quantities in the (5.5) can now be used to enforce an additional edge
between two keyframes, allowing to further increase the power of the graph-
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based optimization.
However, in order to properly add these constraints to the graph-based opti-
mization reported in the chapter 3, additional variables to optimize must be
added for each keyframe, namely the velocity vi and the two biases estimate
bgi and bai . In addition to that, the keyframe poses must be elaborated to be re-
ferred to the same body frame in which the IMU measurements are referred.
This of course doesn’t add any additional variables but requires an additional
relationship between the camera pose, used for example in the (3.4), and the
one used by the inertial residuals.
Having said that a general form of the inertial residual between two consec-
utive keyframes i and j can be written as:

rij =
[
rT
∆Rij

rT
∆vij

rT
∆pij

]T
r∆Rij

= logSO(3)

(
∆RT

ijR
T
i Rj

)
r∆vij =RT

i (vj − vi − g∆tij)−∆vij

r∆pij =RT
i

(
pj − pi − vi∆tij −

1

2
g∆t2ij

)
−∆pij

(5.6)

where the quantities ∆Rij , ∆vij and ∆pij are calculated as in the (5.5). Then,
a general cost term can be added to all the optimization involving multiple
keyframes (as for example in the local BA (3.7)):∑

i,j∈G|j=i+1

||rij||2Σ−1
Iij

. (5.7)

The covariance matrix ΣIij expresses the uncertainties related to the mea-
surements and the procedure to obtain it, along with a formal proof on how
to obtain the (5.6) as a MAP estimate residual, is reported in the original arti-
cle [20].
The addition of IMU measurements into the SLAM algorithm could lead to a
great increase in estimation accuracy, allowing the enrichment of the infor-
mation provided by pure camera systems. One of the main benefits would be
an increase in tracking robustness since having IMU measurements at dis-
posal would overcome the weakness of the camera to localization under fast
motions.

5.2 Octomap

Since the dense representation of the environment is of crucial importance
for various map-based tasks, such as obstacle avoidance and path planning,
an efficient way for performing this environment reconstruction is manda-
tory.
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Figure 5.2: Illustration, taken from the article, on how an octree construction
works. Each full voxel is marked as black, while all the children of a node are
pruned if they store the same value.

Octomap was introduced in [21] precisely for this reason, bringing a new on-
the-edge way to construct a dense map. More precisely, the Octomap algo-
rithm builds an environment representation fusing an octree structure with
a probabilistic occupancy grid mapping.

5.2.1 Octrees

Octrees are a special type of hierarchical data structure used for spatial subdi-
vision of 3D spaces, whose use for 3D computer graphics was first introduced
in [22].
An octree is basically a graph where each node has eight children: each node
represents the space contained in a cubic volume, usually called voxel in
computer vision, and each one of the eight children is associated with one of
the eight sub-volumes in which the parent voxel is divided. By recursively ap-
plying this division on a 3D space (by starting from one node representing all
the available space), e hierarchical subdivision of the space can be obtained,
whose resolution is defined by the minimum voxel size (directly related to the
tree depth).
Originally they were thought for usage in binary space, as for example an oc-
cupancy grid, whose cell can be empty or full. The ambiguity of an unknown
cell (that could be treated as empty or uninitialized), in the octomap imple-
mentation is tackled by explicitly representing free volumes in the tree, by so
leaving uninitialized all the nodes belonging to unmapped area.
The main advantage of octrees is that by using binary values for the voxels,
all the children of a node can be pruned if they share all the same values.
This allows a very compact representation of the environment, discarding all
redundant data regarding for example voxels inside objects and voxels in free
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space. An example of octree construction can be seen in 5.2.
With respect to a full-size binary grid, that would require a voxel for every
little portion of space, the access to the elements is of course slower (the one
of a grid is O(1)), but its still pretty fast, being O(d) with d being the depth
of the octree considered, adding however a substantial decrease in memory
usage.

5.2.2 Probabilistic occupancy grid

Instead of using binary values for voxels, in a probabilistic occupancy grid
they are instead filled with their probability of being occupied given some
sensor measurements: more precisely, given zt the current measurement of
the sensor, the occupancy probability of a voxel n can be estimated as:

P (n|z1:t) =
(
1 +

1− P (n|zt)
P (n|zt)

1− P (n|z1:t−1)

P (n|z1:t−1)

P (n)

1− P (n)

)−1

, (5.8)

where P (n|zt) is the probability of the observed voxel to be occupied given
the measurement zt (depending so on the type os sensor used) and P (n) is a
prior probability. The assumption on an uniform prior probability (so all the
voxel with the same probability of being occupied) leads to P (n) = 0.5.
Using logarithmic functions the (5.8) can be rewritten as

L(n|z1:t) = L(n|z1:t−1) + L(n|zt), L(·) = ln
P (·)

1− P (·)
, (5.9)

that allows faster computation, using just additions.
The main advantage of using this type of grid is that probabilistic values can
be updated basically without limits and so this approach can also take into
account dynamic environments and sensor disturbances.
To efficiently use an occupancy probability grid a threshold is usually ap-
plied, such that a voxel is considered free or occupied only when its occu-
pancy probability is below or upper a certain value. So, while the (5.9) is valid
for static environments, dynamic ones require higher responsiveness in or-
der to quickly detect map changes. For this reason the (5.9) is modified into:

L(n|z1:t) = max(min(L(n|z1:t−1) + L(n|zt)), lmax, lmin) (5.10)

leading basically to a truncated update (values are updated up to their limit
threshold), speeding up the detection of changes in the map and assuring a
bounded confidence in the map.
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5.2.3 Octomap fusion

The octomap algorithm basically takes and puts together the two idea above
illustrated: each node in the octree memorize its occupancy probability as
(5.10), taking so both the benefits of the compact size of the octree and the
fast map update of probabilistic occupancy grid. The clamped update de-
fined by the (5.10) allow also for pruning techniques since brings with itself
the possibility to mark a voxel as empty or full if the threshold is reached.
Since the probability update is applied only on the leaf nodes, a method to
extend the occupancy probability to the parent nodes must be provided: sev-
eral methods are available, from which the most common are a mean value
or a maximum criterion:

Lp(n) =
1

8

8∑
i=1

L(ni) Lp(n) = max
i

L(ni). (5.11)

The choice of this criteria depends on the conservative’s level desired, by as-
signing or not a full value to an actually empty cell (by making the path plan-
ning more collision-free).

5.2.4 Sparse outlier removal

One of the main problems of building an octomap from a raw points cloud
(obtained for example from an RGBD camera), is that point cloud data with
whom build the map are still available but they are affected by outliers (due
for example to errors in the measurements and incorrect triangulations): if
an octomap is built directly with these point clouds, the map would be inac-
curate and dangerous to use for navigation tasks.
A methodology to deal with this problem has been introduced in [23], which
proposed the usage of K-Nearest Neighbor and Gaussian distribution to per-
form outliers removal.
The K-Nearest Neighbor is a standard technique for outlier removal, that per-
forms an organization of the measured raw point cloud using a K-dimensional
tree: it is basically a binary tree, in which every node is a K-dimensional
point, and each non-leaf node splits the space in half, from which then the
tree construction proceeds.
To filter out the outliers, the approach is based on evaluating how much a
point is closer to its neighbor, and can be summarized in the following steps:

• For each point pn in the points cloud, take the closest K points pi.

• Compute the average distance of each point with respect to its K-neighbor:
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dn =
1

k

k∑
i=1

||pn − pi|| . (5.12)

• A point is considered an outlier and discarded if its average distance dn
is above a certain threshold dt, meaning basically that the target point
is too far with respect to the other points.

The main drawback of this technique is that the value dt must be set manually
and it strongly affects the outlier filtering mechanism. For this reason, in the
article cited, a change in the classic K-Nearest Neighbor approach is made:
a Gaussian distribution of the average distances computed for each point is
assumed and then used to overcome this flaw.
More precisely, after having calculated dn for all the points in the point clouds,
the following quantities are calculated:

µ =
1

N

N∑
n=1

dn, σ =

√√√√ 1

N

N∑
n=1

(dn − µ)2, (5.13)

being naturally the mean and the standard deviation of the Gaussian distri-
bution considered. Then a confidence level can be set, determined by:{

c1 = µ− ασ

c2 = µ+ ασ
(5.14)

where α is an optional scale factor used to adjust the size of the range (in the
article was set equal to 1). Then a point is preserved if its K-neighbor average
distance dn falls inside the range [c1, c2], and marked as outlier and discarded
otherwise.
This approach allows to improve the classic K-Nearest Neighbor by dynami-
cally adapting the filter intensity to the specific points cloud measured.

5.2.5 Octomap from vSLAM

The original technique for building octomap takes into account mainly laser
sensor measurements, from which points clouds can be directly constructed.
The advantage of these sensors, in which also RGB-D cameras can be in-
cluded, is that they provide a direct and reliable depth measurement. How-
ever, in stereo cameras for example, this depth must be estimated from ob-
servations and its accuracy depends on the distance of the observed point
from the image plane (recalling the (2.10)).
This problem is tackled in [24], where the uncertainties due to stereo camera
observations are taken into account by introducing a new formulation for



63 5.2. Octomap

the probabilities in (5.9). This is done by defining a range [dmin, dmax] in which
depths are considered valid; then the voxel probability is computed taking
into account the decreasing accuracy of the measurements. More precisely,
given the sigmoid function

P =
1

1 + exp(−α)
, α = ln

(
P

1− P

)
(5.15)

obtained by inverting the logarithmic map of the (5.9), the new probability
can be formulated as a function of the depth d:

P (d) = 1− 1

1 + exp[−k(d− d0)]
, k = 2

ln (P−1
max − 1)

dmin − dmax
, d0 =

dmin + dmax

2
(5.16)

where Pmax is the probability assigned at an observation at the distance dmin.
This formulation allows so to define a distributed varying probability along
all the feasible range bringing, due to the symmetry of the sigmoid function,
P (dmax) = Pmin = 1− Pmax and P (d0) = 0.5. The (5.16) takes basically the role
of P (n|zt) in the standard octomap probability formulation (5.8).
Given the uncertainties of observations, however, the same map point could
still be added repeatedly times at slightly different positions. To avoid this
phenomenon a probabilistic merging is applied: when a new point c1 is added
to the map, the distance from the closest point c2 is calculated, and if below
a certain threshold (directly depending on the map resolution) a new map
point c3 is created by fusing together the two previous observations. The po-
sition of the new points is calculated as:

S(c3) =
P (d1)

P (d1) + P (d2)
S(c1) +

P (d2)

P (d1) + P (d2)
S(c2), S(ci) =


xi

yi
zi
di

 . (5.17)

Then the occupancy probability can be calculated directly using the(5.16).
The procedure is then performed recursively until no more points whose dis-
tance is below the threshold are present around the new point.
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Chapter 6

Simulations and results

The main purpose of this dissertation was not only to provide an exhaustive
analysis of the ORB-SLAM2 algorithm, but also to try to implement it in an
embedded system, so where computational power is limited with respect to
a modern laptop.
For doing this, the main thing to do was to speed up the original ORB-SLAM2
code, in order to reduce its computational burden. After having done that,
a series of tests using the EuRoC dataset for stereo camera [25] were per-
formed, comparing the performance of the custom version against the orig-
inal one. Finally, a real test, by implementing the code on a quadcopter was
performed, in order to see how well the new version of the ORB-SLAM2 could
perform.

6.1 Implementation details

Given the age of the original code, built on top of the original ORB-SLAM
code, the first changes performed aimed to modernize the code.
The major change in this optic was to substitute basically every raw pointer
used inside the code with a smart one. The main difference between smart
pointers with respect to raw ones is that their resource access is automatically
handled by the pointer itself: this avoids the explicit deletion of the pointed
object, mandatory instead for the raw ones associated with the heap mem-
ory. Smart pointers ensure that every resource is assigned to the object at the
creation time and, more importantly, that is released as soon as the pointer
is canceled. More precisely, two main types of smart pointers exist: shared
and unique. The latter, as the name says, points to an object that must have
a unique owner: the ownership can of course change, but the object would
never have two owners at the same time, raising exceptions if this occurs.
This type of smart pointer frees the resources taken by the object as soon as
it is dereferenced. Shared ones, instead, allow multi-ownership and the re-
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sources are freed as soon as the last pointer referring to the object is canceled.
The use of smart pointers permits a better use of resources, avoids conflicts
and assures a deterministic usage of the memory (since the creation and the
destruction of the object is fully controllable by the programmer).
The second main change done, resulting in the first computational reduc-
tion, was to use the Eigen library for all the algebraic operations involved
while leaving OpenCV (that in the original code was used for everything) only
for features and keypoints managing. This was done because the Eigen li-
brary has more optimized functions for matrix and vector calculations, al-
lowing also the use of both dynamic and fixed size matrices, so taking into
account all the information already available at compile time to further opti-
mize the code.
In addition, Eigen is fully compatible with the optimization library used, G2O
[26], while OpenCV matrices all required an additional conversion step in or-
der to be used. G2O is an open-source C++ framework, specifically designed
for optimizing graph-based nonlinear error functions. Given this peculiar-
ity, it provides a direct API for interfacing with SLAM and BA problems. It
is worth noticing that also the Ceres library was considered as a candidate
substitute for optimization, given its API that is directly related to the mathe-
matical formulation of the problem while G2O, being graph-based, requires
an explicit construction of the nodes and the edges between them. However,
in the end, the use of G2O was preserved, given its higher compatibility with
the algorithm structure.
The choice of using the Eigen library has made it possible to use more spe-
cific functions taking advantage of the matrix structure involved: for exam-
ple, in the case of SVD of symmetric matrices (that happens for examples
in the Horn method and also in the EPnP algorithm), Eigen makes available
specific function in order to take advantage of it. Also when dealing with
SE(3) transformations, Eigen allows the use of special matrix containers that
exploit the specific structure of the homogeneous transformations both for
multiplication and inverse calculation.
An additional improvement were also made by directly acting on the code,
by for example performing in more efficient ways the same computation (for
example, by avoiding repeating the same operation multiple times if possi-
ble).
One of the biggest changes was acting directly on the function responsible
for the creation of stereo matches. The original implementation was pretty
accurate by performing first a grid search to find possible candidates in the
right image, and then by performing an interpolation based on the multi-
scale observations of the identified keypoint, to find the best one. Finally, the
right matches were filtered by discarding the ones with a disparity too high
with respect to the others.
Despite being very accurate, this implementation was pretty demanding from
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the computational point of view, especially for a function executed on the
tracking module, the most critical from the time point of view.
For this reason, a lightweight implementation of the stereo matching has
been performed. The basic idea is to order the keypoints of the right image
by the increasing order of the vR coordinate. After that, for each left keypoint
a search is performed by checking all the right keypoints whose vR is simi-
lar to vL. To take into account the multi-scale observations, only keypoints
observed in a similar scale (so at a distance of a maximum of one level) are
maintained. Finally, the same filtering criteria of the original code on dispar-
ity is applied. This procedure, despite being more approximated, has led to
a decrease in the computational time, by however keeping almost the same
accuracy of the original keypoints.
Since the algorithm structure is divided into three main threads, performing
respectively tracking, local mapping and loop closing, a better explanation of
the structure of the three threads is now provided. All the actions taken by the
following threads that could cause race conditions (for example, two threads
modifying the same keyframe or the same map point) and all not-safe op-
erations are handled with the use of mutex locks. Given the not ideality of
mutex locks from a computational viewpoint, their use is maintained for the
smallest amount of time possible.

6.1.1 Tracking thread

The tracking thread is the module that, taking as input a stereo image, cal-
culates the estimated camera pose. For performing this procedure, the first
step is the creation of a frame (that is basically a structure associated with
each camera pose). Each frame is created by extracting the ORB features
from the two images (left and right) and performing a search to find stereo
matches. The keypoints without correspondences are marked as monocular.
Every keypoint is then associated with a grid structure, in order to perform a
fast retrieval of the coordinates of each one of them.
After the frame creation, which is also the most time-consuming step given
the ORB features extraction, the pose estimation procedure is performed.
The whole procedure can be summarized in two steps: a pose initial predic-
tion and a pose refining, both based on the optimization (3.4). The first step
can be performed in three different ways, according to the camera situation.

• The standard procedure is to track map points by projecting in the cur-
rent frame the ones seen in the last one. The correspondences are found
by exploiting the ORB descriptors’ distance and by taking benefits of
the grid organization of the keypoints. The search is performed by also
taking advantage of the estimated relative pose between the last and
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the actual frame. If enough correspondences are found, the pose opti-
mization can then be exploited. Given the optimization problem (3.4),
an initial pose estimation must be available: this estimate is calculated
using the last frame pose, assuming a constant motion law (so the dis-
placement of the current frame with respect to the last one is assumed
equal to the displacement between the last frame and the previous one).

• If the precedent step fails for too few correspondences (or if a relocal-
ization has happened recently) the search is performed on the points
tracked by the reference keyframe of the last frame, exploiting the BoW
direct index for fast matching (so the BoW of the current frame must be
computed). In this case, the initial pose of the optimization is obtained
by setting the last frame pose as a candidate.

• If even the previous step fails, then this means that the tracking has lost
information on the current frame position and a relocalization proce-
dure is launched. The relocalization, performed from the next frame,
has the job of re-estimating a feasible position of the camera. Only if a
solution is found then the tracking thread can proceed.

To take advantage of the local mapping module running in parallel (that re-
fines keyframes and map points poses), the last frame pose is always updated
with respect to its relative position to its reference keyframe, as well as the
points tracked.
After the first pose prediction, a second optimization is performed, with a
wider search of map point correspondences to enhance the accuracy. Start-
ing from the matches tracked, all the keyframes observing the matched map
points are retrieved (thanks to the information stored in the map points them-
selves this is done in a pretty fast manner). From this set of local keyframes,
the one with the higher correspondence of point with the current frame is
targeted as its reference keyframe. Moreover, also some keyframes that are
neighbors to the already included ones are taken, to further extend the search
area.
Then, all the map points observed by these keyframes are projected into the
current frame, searching for correspondences with the extracted keypoints.
Finally, the optimization (3.4) is performed again on this bigger set of matches,
refining the estimation accuracy. Also in this case, if the number of matched
drops below a certain threshold, the tracking is considered lost and a global
relocalization is launched.
After having produced a pose estimate, the current frame is analyzed to see
if the requirements for a new keyframe creation are met and, in the last case,
the keyframe and its associated map points (obtained by triangulating close
stereo points) are created.
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6.1.2 Local mapping thread

The local mapping thread is composed of a main cycle, running periodically,
that checks if a new keyframe has been inserted. If the search is successful,
then the following activities are performed, one after the other.

• First, the newly created keyframe is processed, in order to create the
proper covisibility connections, and is so added to the graph.

• Right after the previous step, the map point culling procedure is exe-
cuted, canceling out the one with too few observations.

• Then, a procedure to create and triangulate new map points is per-
formed, exploiting the different observations available from more keyframes.

• Then a fusing procedure is performed on the same points observed by
different keyframes, but associated with different keypoints, in order to
construct a more compact map. This procedure is however performed
only if there aren’t any additional keyframes waiting to be processed.

• Then a local BA is performed, following the procedure highlighted in
the section 3.3.2.

• Finally a culling step on the covisibility neighbor of the current keyframe
is performed.

Once all the listed steps are performed, the new keyframe is passed to the
loop closing module and the local mapping thread will wait for the next keyframe
to be inserted (or will start to process the pending ones).

6.1.3 Loop closing thread

The last thread running is the loop closing one, which tries to detect a loop for
every keyframe passed to it. The general functioning is the same as the local
mapping, consisting of a loop execution: when a new keyframe is passed to
this thread the database is queried, in order to detect the loop, as explained in
the section 4.2; if it is successful, then the loop closing procedure reported in
the section 3.3.3 is performed. Finally, a global BA optimization is performed,
launched however on another thread to reduce its impact on the other SLAM
modules. To avoid conflicts the local mapping thread is stopped and any
running global BA thread is also aborted. This is done during the correction
phase to avoid the creation or destruction of connections and keyframes by
one thread, while they are processed by the other one.
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6.2 Simulations

To test the algorithm, as said before, the EuRoC dataset was used, since it
provided both stereo camera images and ground truth data along with a wide
variety of scenarios captured, at different levels of difficulty.
Given the multi-thread approach, bringing so a non-deterministic outcome
of the algorithm under the same dataset, multiple tests were performed on
the same set of images so that an average behavior would be available.
More precisely, four simulations for every set present in the EuRoC dataset
were performed, both for the original and the custom algorithm, on a laptop
equipped with an Intel Core i7-8550U, a platform definitively less powerful
than the one used for testing in the original work of ORB-SLAM2.
The outcomes were satisfactory: the new version of the algorithm has around
the same accuracy as the original one, despite being faster and so more reli-
able in devices with small computational power available.
More precisely, in the figure 6.1 the comparison between the ground truth
and the estimate position (respectively for the coordinate X, Y and Z) ob-
tained in the set V202 (a Vicon room exploration classified with a medium
difficulty) is shown. Analyzing the plots, it can be seen how the estimation
and the ground truths follow the same identical behavior, despite a slightly
increasing drift of the estimate: however, as it can be seen, this drift is re-
duced in several parts of the plot, and this is due to the loop closing mecha-
nism, that has the job of providing exactly this result.
In the original article, in order to measure the accuracy of the algorithm,
all the predictions were corrected offline using the relative position of the
frames to their reference keyframes, in order to fully exploit the graph struc-
ture of the problem (by so correcting also poses acquired before a loop clo-
sure). Despite being an optimal index for evaluating the whole algorithm,
this approach doesn’t provide useful results in a real-time scenario, where the
SLAM algorithm must provide an immediately available pose. The errors ob-
tained with these two different approaches are visible in the figure 6.2, both
for the original algorithm and the custom one.
As it can be seen in the plots, the error with the offline prediction is of course
smaller, but also the online one performs quite well, resulting even in a slight
improvement with respect to the original algorithm.
To conclude the analysis of this dataset, the measured times for both the orig-
inal and the custom one are reported in the table 6.1. The times were mea-
sured by splitting each module into its most fundamental parts, in order to
have an overall view of the performance impacts. The response time is in-
stead a measure of the time that is needed by the algorithm to return a pose
prediction after having received a pair of images (it is basically a measure of
the responsiveness of the algorithm).
As far as concerns the loop closing mechanism, the distinction between the
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(a) Simulation result of coordinate X.

(b) Simulation result of coordinate Y.

(c) Simulation result of coordinate Z.

Figure 6.1: Simulation result on the dataset V202 (medium).
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(a) Online prediction error of the custom version
of the algorithm.

(b) Online prediction error of the original version
of the algorithm.

(c) Offline prediction error of the custom version
of the algorithm.

(d) Offline prediction error of the original version
of the algorithm.

Figure 6.2: Comparison between the online and offline errors obtained in the
dataset V202.
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SE3 detection and the SE3 computation highlights, respectively, the time needed
for the whole SE(3) detection and computation (ending with the loop con-
firmation) and the time needed by the RANSAC iteration to find a feasible
candidate using the correspondences. The loop detection is instead the mea-
sure of time required to retrieve one or more candidates from the database
query.

As it can be seen, the new version of the algorithm performs better in ba-
sically all the tasks, with some exceptions. All the tasks that involved the
OpenCV functionality, such as stereo rectification and ORB extraction are ba-
sically the same and, as far as concern the tracking module, they are the most
time-consuming part. For all the other parts, the new version performs quite
better, with an average time reduction of almost 40%. In some cases, as for
example the stereo matching and the SE3 computation, the new algorithm is
about ten times faster. The only tasks that are degraded are the culling pro-
cedure and the database querying, but the overhead is highly negligible with
respect to all the other times reduction.

In the figures 6.2, 6.4 and 6.5 the comparisons of the errors obtained in the
other simulations are reported. For the reasons specified earlier, only the
errors obtained with the online prediction have been reported.

The correspondent times have been reported in the tables 6.2, 6.3, 6.4, 6.5,
6.6, 6.7, 6.8, 6.9 and 6.10. As it can be seen, the performances obtained in
the MH datasets are worse than the ones obtained in the Vicon rooms 1 and
2: this is probably due to the fact that in the MH dataset, the area in which
the exploration is performed is very wide, forcing the SLAM to use more far
points than close ones to localize the drone, resulting in both an increasing
in time needed and also in a worse performance obtained. However, the pre-
cision of the new algorithms, on average, is similar to the original one, by also
gaining a significant time reduction in all the simulations exploited, proving
the success of the applied approach.

An additional test on the dataset V203 was also performed but, as for the
original ORB-SLAM2 algorithm, the performances were really degraded with
respect to all the other datasets, given its high difficulty.

However, for completeness and also to prove the algorithm’s robustness to
tracking loss, the simulation results are reported in the figure 6.6, along with
the time measurements in the table 6.11 (in the time table, given its presence
with respect to the other datasets, also the relocalization time measurement
is reported).

As it can be seen, despite the tracking loss and the increasing accumulating
error, the algorithm is still able to correctly relocalize itself if the right condi-
tions are met, as well as to fully detect loop closure and use them to correct
the accumulated error.
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Vicon room 2 - medium
- Original Custom

Rectification 1.91 ± 0.59 1.93 ± 0.50
ORB extraction 26.62 ± 4.39 25.85 ± 4.07

Stereo matching 17.85 ± 5.12 1.76 ± 0.39
Pose prediction 2.83 ± 1.07 2.85 ± 1.02

Local map tracking 13.83 ± 8.43 7.52 ± 3.62
New KF decision 0.070 ± 0.086 0.082 ± 0.121
New KF creation 1.99 ± 0.86 0.72 ± 0.25

Response time 63.36 ± 15.73 38.83 ± 6.51

KF insertion 17.19 ± 6.79 11.44 ± 4.82
Map points culling 0.51 ± 0.29 0.70 ± 0.43

Map points triangulation 9.21 ± 4.94 6.77 ± 3.68
Map points fusion 72.96 ± 29.12 24.72 ± 12.44

Local BA 214.64 ± 187.46 165.33 ± 154.46
KF culling 7.73 ± 7.75 8.44 ± 8.07

Loop detection 6.34 ± 5.45 6.59 ± 4.51
SE3 detection 33.66 14.46

SE3 computation 1.17 0.034
Loop correction 208.35 77.16

Essential graph optimization 129.41 78.37

Global BA 648.27 604.97
Graph update 176.44 71.51

Table 6.1: Table representing the time comparison obtained on the set V202.
All the times are measured in ms (mean ± std. deviation).
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(a) Online prediction error of the custom version
of the algorithm on MH01.

(b) Online prediction error of the original version
of the algorithm on MH01.

(c) Online prediction error of the custom version
of the algorithm on MH02.

(d) Online prediction error of the original version
of the algorithm on MH02.

(e) Online prediction error of the custom version
of the algorithm on MH03.

(f) Online prediction error of the original version
of the algorithm on MH03.

Figure 6.3: Errors comparison of the simulation in the datasets MH01 (easy),
MH02 (easy), MH03 (medium).
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(a) Online prediction error of the custom version
of the algorithm on MH04.

(b) Online prediction error of the original version
of the algorithm on MH04.

(c) Online prediction error of the custom version
of the algorithm on MH05.

(d) Online prediction error of the original version
of the algorithm on MH05.

(e) Online prediction error of the custom version
of the algorithm on V101.

(f) Online prediction error of the original version
of the algorithm on V101.

Figure 6.4: Errors comparison of the simulation in the datasets MH04 (diffi-
cult), MH05 (difficult), V101 (easy).
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(a) Online prediction error of the custom version
of the algorithm on V102.

(b) Online prediction error of the original version
of the algorithm on V102.

(c) Online prediction error of the custom version
of the algorithm on V103.

(d) Online prediction error of the original version
of the algorithm on V103.

(e) Online prediction error of the custom version
of the algorithm on V201.

(f) Online prediction error of the original version
of the algorithm on V201.

Figure 6.5: Errors comparison of the simulation in the datasets V102
(medium), V103 (difficult), V201 (easy).
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Machine Hall 01 - easy
- Original Custom

Rectification 1.90 ± 0.55 1.96 ± 1.03
ORB extraction 30.63 ± 4.41 30.82 ± 4.40

Stereo matching 15.81 ± 5.60 1.67 ± 0.37
Pose prediction 3.32 ± 1.21 3.37 ± 0.78

Local map tracking 16.11 ± 9.50 11.62 ± 5.84
New KF decision 0.073 ± 0.17 0.078 ± 0.033
New KF creation 0.90 ± 0.35 0.40 ± 0.085

Response time 68.58 ± 18.74 47.16 ± 11.4

KF insertion 26.85 ± 10.81 22.38 ± 8.39
Map points culling 0.23 ± 0.12 0.34 ± 0.26

Map points triangulation 9.73 ± 4.67 7.75 ± 4.19
Map points fusion 79.6 ± 23.5 42.7 ± 15.46

Local BA 246.85 ± 201.88 202.46 ± 193.3
KF culling 12.41 ± 10.18 16.94 ± 12.35

Loop detection 13.12 ± 9.84 15.13 ± 11.48
SE3 detection - -

SE3 computation - -
Loop correction - -

Essential graph optimization - -

Global BA - -
Graph update - -

Table 6.2: Table representing the time comparison obtained on the set MH01.
All the times are measured in ms (mean ± std. deviation).
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Machine Hall 02 - easy
- Original Custom

Rectification 1.88 ± 0.59 1.93 ± 0.54
ORB extraction 30.90 ± 4.85 30.49 ± 4.35

Stereo matching 16.01 ± 5.60 1.68 ± 0.33
Pose prediction 3.27 ± 1.13 3.2 ± 1.03

Local map tracking 14.85 ± 9.50 10.26 ± 6.45
New KF decision 0.072 ± 0.12 0.083 ± 0.074
New KF creation 0.94 ± 0.39 0.43 ± 0.13

Response time 67.94 ± 18.12 46.62 ± 8.66

KF insertion 26.30 ± 12.71 22.84 ± 13.02
Map points culling 0.25 ± 0.20 0.32 ± 0.17

Map points triangulation 10.03 ± 5.03 7.34 ± 4.43
Map points fusion 76.13 ± 24.5 39.04 ± 20.34

Local BA 254.96 ± 208.36 170.19 ± 158.81
KF culling 11.17 ± 10.48 15.401 ± 16.61

Loop detection 12.99 ± 8.98 15.26 ± 11.90
SE3 detection - -

SE3 computation - -
Loop correction - -

Essential graph optimization - -

Global BA - -
Graph update - -

Table 6.3: Table representing the time comparison obtained on the set MH02.
All the times are measured in ms (mean ± std. deviation).
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Machine Hall 03 - medium
- Original Custom

Rectification 1.91 ± 0.55 2.03 ± 0.71
ORB extraction 30.9 ± 5.32 29.95 ± 5.45

Stereo matching 17.35 ± 5.74 1.73 ± 0.34
Pose prediction 3.21 ± 1.04 3.2 ± 1.02

Local map tracking 16.32 ± 8.43 11.32 ± 5.85
New KF decision 0.076 ± 0.13 0.086 ± 0.082
New KF creation 0.91 ± 0.38 0.45 ± 0.14

Response time 69.56 ± 18.41 47.41 ± 9.5

KF insertion 24.45 ± 10.53 20.10 ± 10.52
Map points culling 0.24 ± 0.13 0.35 ± 0.19

Map points triangulation 10.01 ± 7.72 4.85 ± 4.43
Map points fusion 81.12 ± 28.51 38.31 ± 17.51

Local BA 281.37 ± 305.51 190.31 ± 230.45
KF culling 12.11 ± 12.35 14.91 ± 15.11

Loop detection 12.54 ± 7.5 14.61 ± 9.41
SE3 detection - -

SE3 computation - -
Loop correction - -

Essential graph optimization - -

Global BA - -
Graph update - -

Table 6.4: Table representing the time comparison obtained on the set MH03.
All the times are measured in ms (mean ± std. deviation).
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Machine Hall 04 - difficult
- Original Custom

Rectification 1.88 ± 0.51 1.96 ± 0.62
ORB extraction 27.51 ± 4.35 29.95 ± 5.45

Stereo matching 17.93 ± 5.74 1.73 ± 0.34
Pose prediction 2.78 ± 1.04 2.84 ± 0.98

Local map tracking 11.58 ± 7.78 7.29 ± 5.85
New KF decision 0.055 ± 0.28 0.070 ± 0.029
New KF creation 0.8 ± 0.37 0.39 ± 0.16

Response time 61.43 ± 18.41 41.2 ± 6.51

KF insertion 19.11 ± 9.15 13.77 ± 6.15
Map points culling 0.26 ± 0.15 0.32 ± 0.27

Map points triangulation 12.82 ± 6.87 7.82 ± 6.57
Map points fusion 63.52 ± 22.31 26.32 ± 11.43

Local BA 211.21 ± 153.11 156.89 ± 150.39
KF culling 4.56 ± 4.67 7.23 ± 6.94

Loop detection 5.62 ± 3.45 8.49 ± 5.35
SE3 detection - 26.18

SE3 computation - 0.120
Loop correction - 145.54

Essential graph optimization - 511.66

Global BA - 5.99·103
Graph update - 120.55

Table 6.5: Table representing the time comparison obtained on the set MH04.
All the times are measured in ms (mean ± std. deviation).
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Machine Hall 05 - difficult
- Original Custom

Rectification 1.89 ± 0.59 1.99 ± 0.59
ORB extraction 28.1 ± 4.55 27.80 ± 4.32

Stereo matching 18.32 ± 5.47 1.81 ± 0.35
Pose prediction 3.09 ± 0.98 2.9 ± 0.98

Local map tracking 11.13 ± 6.06 8.11 ± 4.35
New KF decision 0.073 ± 0.081 0.073 ± 0.041
New KF creation 0.79 ± 0.33 0.41 ± 0.14

Response time 63.53 ± 15.42 41.83 ± 8.37

KF insertion 21.01 ± 9.07 18.92 ± 12.95
Map points culling 0.25 ± 0.13 0.33 ± 0.19

Map points triangulation 11.98 ± 6.72 7.51 ± 6.2
Map points fusion 69.68 ± 25.65 33.21 ± 16.52

Local BA 226.50 ± 187.48 185.45 ± 220.21
KF culling 6.37 ± 7.20 9.85 ± 9.34

Loop detection 7.34 ± 4.34 10.56 ± 6.37
SE3 detection 17.46 10.43

SE3 computation 1.11 0.038
Loop correction 825.3 630.32

Essential graph optimization 653.6 677.9

Global BA 14.417·103 7.17·103
Graph update 202.65 82.66

Table 6.6: Table representing the time comparison obtained on the set MH05.
All the times are measured in ms (mean ± std. deviation).
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Vicon room 1 - easy
- Original Custom

Rectification 1.82 ± 0.45 1.89 ± 0.54
ORB extraction 26.65 ± 3.63 26.78 ± 4.07

Stereo matching 15.66 ± 3.55 1.68 ± 0.35
Pose prediction 2.65 ± 0.92 2.82 ± 1.01

Local map tracking 8.87 ± 4.03 5.63 ± 1.91
New KF decision 0.059 ± 0.024 0.076 ± 0.048
New KF creation 2.02 ± 0.78 0.78 ± 0.26

Response time 54.69 ± 8.11 37.7 ± 5.28

KF insertion 13.54 ± 3.46 9.41 ± 1.95
Map points culling 0.44 ± 0.24 0.75 ± 0.41

Map points triangulation 6.97 ± 4.57 6.75 ± 3.18
Map points fusion 61.71 ± 26.37 20.58 ± 8.15

Local BA 147.13 ± 100.87 122.82 ± 79.91
KF culling 4.72 ± 4.58 6.3 ± 4.93

Loop detection 3.58 ± 2.18 4.01 ± 1.55
SE3 detection - -

SE3 computation - -
Loop correction - -

Essential graph optimization - –

Global BA - -
Graph update - -

Table 6.7: Table representing the time comparison obtained on the set V101.
All the times are measured in ms (mean ± std. deviation).
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Vicon room 1 - medium
- Original Custom

Rectification 1.89 ± 0.51 1.97 ± 0.55
ORB extraction 26.98 ± 4.48 26.24 ± 4.31

Stereo matching 16.88 ± 5.82 1.74 ± 0.36
Pose prediction 2.88 ± 1.27 2.84 ± 1.24

Local map tracking 10.17 ± 5.71 5.68 ± 2.65
New KF decision 0.068 ± 0.036 0.081 ± 0.037
New KF creation 2.19 ± 0.99 0.782 ± 0.28

Response time 58.31 ± 12.16 37.33 ± 6.08

KF insertion 10.86 ± 4.34 9.44 ± 2.49
Map points culling 0.51 ± 0.36 0.83 ± 0.70

Map points triangulation 7.56 ± 3.91 6.72 ± 3.25
Map points fusion 67.17 ± 31.00 20.58 ± 10.51

Local BA 181.57 ± 137.24 123.11 ± 98.89
KF culling 4.77 ± 4.50 5.00 ± 5.34

Loop detection 5.45 ± 2.18 5.34 ± 3.98
SE3 detection 18.48 15.81

SE3 computation 1.325 0.11
Loop correction 85.62 60.69

Essential graph optimization 138.20 68.78

Global BA 741.41 321.45
Graph update 27.51 43.71

Table 6.8: Table representing the time comparison obtained on the set V102.
All the times are measured in ms (mean ± std. deviation).
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Vicon room 1 - difficult
- Original Custom

Rectification 1.91 ± 0.54 2.04 ± 0.63
ORB extraction 25.38 ± 4.40 26.32 ± 5.01

Stereo matching 16.25 ± 5.71 1.75 ± 0.45
Pose prediction 2.65 ± 1.17 2.72 ± 1.12

Local map tracking 9.84 ± 5.05 5.49 ± 2.64
New KF decision 0.064 ± 0.037 0.083 ± 0.039
New KF creation 2.29 ± 1.22 0.780 ± 0.31

Response time 55.52 ± 12.77 37.14 ± 6.63

KF insertion 11.93 ± 4.32 7.61 ± 2.40
Map points culling 0.53 ± 0.28 0.69 ± 0.45

Map points triangulation 7.04 ± 4.87 5.04 ± 4.00
Map points fusion 61.04 ± 31.55 18.82 ± 12.72

Local BA 156.34 ± 131.37 108.54 ± 106.65
KF culling 5.09 ± 5.26 4.98 ± 4.88

Loop detection 3.94 ± 2.42 4.05 ± 3.12
SE3 detection 20.06 13.16

SE3 computation 0.98 0.026
Loop correction 92.84 64.06

Essential graph optimization 108.47 90.49

Global BA 978.32 1.25·103
Graph update 30.19 27.95

Table 6.9: Table representing the time comparison obtained on the set V103.
All the times are measured in ms (mean ± std. deviation).
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Vicon room 2 - easy
- Original Custom

Rectification 1.81 ± 0.45 2.04 ± 0.63
ORB extraction 25.92 ± 3.69 27.20 ± 5.01

Stereo matching 16.24 ± 4.33 1.77 ± 0.41
Pose prediction 2.75 ± 1.05 3.12 ± 1.20

Local map tracking 6.19 ± 2.34 4.95 ± 1.62
New KF decision 0.055 ± 0.021 0.079 ± 0.025
New KF creation 1.96 ± 0.72 0.73 ± 0.23

Response time 51.89 ± 7.51 37.77 ± 5.75

KF insertion 12.87 ± 3.97 8.53 ± 2.32
Map points culling 0.55 ± 0.34 0.57 ± 0.31

Map points triangulation 8.22 ± 4.01 5.90 ± 3.27
Map points fusion 55.043 ± 24.02 18.24 ± 8.32

Local BA 86.51 ± 55.48 76.26 ± 52.05
KF culling 2.05 ± 1.85 3.00 ± 2.57

Loop detection 2.21 ± 1.30 3.09 ± 1.58
SE3 detection - -

SE3 computation - -
Loop correction - -

Essential graph optimization - -

Global BA - -
Graph update - -

Table 6.10: Table representing the time comparison obtained on the set V201.
All the times are measured in ms (mean ± std. deviation).
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(a) Simulation result of coordinate X.

(b) Simulation result of coordinate Y.

(c) Simulation result of coordinate Z.

Figure 6.6: Simulation result on the dataset V203 (difficult).
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Vicon room 2 - difficult
- Original Custom

Rectification 1.92 ± 0.58 2.02 ± 0.66
ORB extraction 25.90 ± 4.74 24.72 ± 4.46

Stereo matching 17.56 ± 5.72 1.67 ± 0.44
Pose prediction 2.72 ± 1.19 2.68 ± 1.20

Local map tracking 7.88 ± 4.06 4.95 ± 2.06
New KF decision 0.062 ± 0.071 0.071 ± 0.035
New KF creation 2.29 ± 1.16 0.75 ± 0.23

Relocalization time 7.21 ± 9.89 6.12 ± 1.76

Response time 55.05 ± 12.78 34.65 ± 6.34

KF insertion 9.31 ± 3.26 8.67 ± 2.50
Map points culling 0.53 ± 0.43 0.75 ± 0.31

Map points triangulation 7.99 ± 5.01 6.51 ± 3.82
Map points fusion 53.22 ± 27.34 18.40 ± 10.98

Local BA 87.98 ± 88.27 86.72 ± 77.78
KF culling 2.51 ± 4.50 4.07 ± 4.54

Loop detection 2.55 ± 1.11 3.19 ± 1.89
SE3 detection 24.66 10.21

SE3 computation 1.19 0.032
Loop correction 119.98 28.63

Essential graph optimization 192.80 63.02

Global BA 1.37·103 618.76
Graph update 63.84 47.21

Table 6.11: Table representing the time comparison obtained on the set V203.
All the times are measured in ms (mean ± std. deviation).
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6.3 Real setup

In order to fully test the applicability of the algorithm in a real platform, a
test on a real quadcopter has been performed. The vehicle considered is
equipped with a Jetson Xavier NX. The test consisted of a simple exploration
in a small environment, while the ground-truth position was provided by a
Vicon system.
The main problem in the area explored was the lack of a rich feature environ-
ment, which negatively impacted the algorithm behavior, especially in cer-
tain areas. The result of the simulation can be seen in the figure 6.7, with the
time reported in the table 6.12. As it can be seen, the algorithm has a worse
behavior with respect to the simulation performed on the EuRoC dataset.
The main problem, as it can be seen by the computation time, is the lag be-
tween the image captured by the camera and the position returned by the
drone: given a camera frame rate of 30fps, the average response time is about
three times longer. This is highlighted by the horizontal drift in the plots of
all three coordinates. However, despite the performance degradation, the al-
gorithm runs without ever losing the state and always following the general
drone behavior. More importantly, as it can be seen from the last time in-
stants, when the vehicle returned to the initial position, it detected a loop
closure and performed the correction, resulting so in a substantial decrease
of the accumulated drift.
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(a) Result of coordinate X.

(b) Result of coordinate Y.

(c) Result of coordinate Z.

Figure 6.7: Outcome of the algorithms executed on a real embedded device.
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Real setup

ORB extraction 56.14 ± 10.87
Stereo matching 1.10 ± 0.12
Pose prediction 5.24 ± 1.79

Local map tracking 18.38 ± 12.66
New KF decision 0.17 ± 0.077
New KF creation 1.02 ± 0.23

Response time 89.89 ± 23.94

KF insertion 19.58 ± 11.30
Map points culling 0.58 ± 0.29

Map points triangulation 10.45 ± 5.91
Map points fusion 48.23 ± 22.12

Local BA 137.64 ± 370.0
KF culling 21.60 ± 43.81

Loop detection 13.84 ± 13.70
SE3 detection 86.83

SE3 computation 0.31
Loop correction 1.42·103

Essential graph optimization 1.30·103

Global BA -
Graph update -

Table 6.12: Table representing the computation time obtained during the real
experiment. All the times are measured in ms (mean ± std. deviation).
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Conclusion

The work of this thesis was to undertake a comprehensive analysis of the
ORB-SLAM2 algorithm, by suggesting ways to obtain a more optimized code,
requiring less computational power to achieve the same accuracy as the orig-
inal one.
The proposed optimization resulted in an effective and substantial time re-
duction concerning the original algorithm while keeping an almost equal ac-
curacy. Despite the non-optimal result obtained with the quadcopter, the
more general goal of achieving an algorithm with the same accuracy as the
original one, but with a lower computational demand, has been accomplished.
In conclusion, this study highlighted the possibilities of optimization of the
ORB-SLAM2 code, by pushing forward its applicability in real-time scenarios
with low computational power at its disposal.
To ensure reproducibility and transparency, the new version of the code has
been made available on GitHub1, with the hope that this work will push for-
ward the research on the implementation of embedded real-time SLAM al-
gorithm.

1Available at the link https://github.com/Luigi940260/orb-slam2-optimized.git
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Appendix A

Rotation manifold

In this appendix a brief explanation about rotation manifold theory will be
presented, bearing in mind that the purpose of this dissertation is not to pro-
vide an exhaustive coverage of this field.

A.1 SO(3) group

To better explain the argument, the definition of group from algebra is first
recalled: a group is a non-empty set G with an associated binary operation,
satisfying the following properties:

• The set is closed under the associated operation. In other words, if A
and B belong to the group, also A ·B, where · is a symbol for the opera-
tion involved, must be inside the group.

• The operation is associative: (A ·B) ·C = A · (B ·C), for any A,B,C ∈ G.

• The identity element associated with the operation exists inside the set:
∃I ∈ G such that A · I = A, ∀A ∈ G.

• For every element of the set, an inverse element with respect to the op-
eration exists inside the set itself: ∀A ∈ G, ∃A−1 : A · A−1 = I.

By stating that, is then obvious to see the set of all 3D rotations about the
origin, belonging to the Euclidean space R3, as a group under the operation
of composition. More precisely, given the orthogonal group O(n) (whose el-
ements are linear transformations that preserve orthogonality between two
vectors), the rotations are defined as special orthogonal group SO(3), whose
elements are all direct isometries, transformations preserving both euclidean
distances and orientation of the space.
More in detail, the rotation group is in fact a Lie-group, being both the com-
position operation and its inverse differentiable. From this property, SO(3)
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has a three-dimensional manifold structure, that so cannot be represented
directly into Euclidean space. This leads, as it could be expected, to several
problems for their representations.
More precisely, despite SO(3) ∈ R3, a direct representation of rotation in an
Euclidean vector space in R3 doesn’t exist. More precisely, recalling the Eu-
ler’s rotation theorem, it can be proven that every three-dimensional rotation
can be described as a single rotation of a certain angle around a fixed axis, so
at least an R4 quantity must be used (another example of this are quater-
nions).
This type of representation, however, is of course redundant with respect to
the problem (in both the angle-axis and the quaternion representation only
three variables are actually independent), and it leads to some singularity.
For example, in the angle-axis representation, every rotation about a direc-
tion leads to the exact same result of making a rotation of the inverse angle
around an axis in the opposite direction. Also, any rotation of θ + 2kπ, with k
an integer number, is equivalent to the rotation θ.
This type of redundancy also happens with quaternions since every quater-
nion q represents the same rotation as its opposite −q. Other representations
are often used, like for example roll, pitch and yaw, and rotation matrices.
Roll, pitch and yaw representation, despite requiring a minimal number of
parameters, suffers from severe singularities problems, like for example gim-
bal lock (happening when two of the three rotation axes are aligned). Rota-
tion matrices have instead nice analytical properties (a rotation composition
is reduced to a simple matrix multiplication) but are more redundant than
quaternions (living in R3×3).
To better understand the property of SO(3), the topological space of the ro-
tations can be visualized as a 3D sphere centered in the origin, where each
point inside and on it represents a different rotation. More precisely, by tak-
ing a sphere of radius π, every point can be seen as a rotation around the axes
connecting it with the sphere center, whose amplitude is defined by its dis-
tance from the origin. This visualization brings however the ambiguity of two
antipodal points representing the same rotation: these points must then be
virtually ”connected” and considered exactly as a unique point. This is basi-
cally the reason why SO(3) is a connected space, but not simply connected
(because every arc that connects two antipodal points is in fact a loop, but it
cannot be shrunk or deformed into a single point).

A.2 Lie algebra

Given the previous explanation, it’s then clear why SO(3) isn’t indeed an Eu-
clidean space. Fortunately, SO(3) has been proven to be a Lie-group, and so a
3-dimensional manifold. As every manifold, each point of SO(3) has a neigh-
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borhood that is homeomorphic (so a bijective and continuous map between
the two exits) to an open subset of the 3-dimensional Euclidean space. This
tangent space is called Lie algebra and, as far as concerns the SO(3) group, is
denoted so(3). By choosing to represent rotation with matrices (any rotation
representation can be easily converted into another) the so(3) coincides with
the space of the 3× 3 skew-symmetric matrices.
Since a linear space s (over a field F ) can be defined as a Lie algebra only if
a binary operation, called Lie bracket [·, ·], exists and has the following prop-
erty:

• Bilinearity:

[ax+ by, z] = a[x, z] + b[y, z]

[x, az + by] = a[x, z] + b[x, y]
, ∀x, y, z ∈ s, ∀a, b ∈ F. (A.1)

• Alternativity: [x, x] = 0, ∀x ∈ s.

• Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, x ∈ s.

The first and second conditions together implied also the anticommutativity
property that [x, y] = −[y, x], ∀x, y ∈ s.
As far as concerns the SO(3) group and its associated so(3), the above prop-
erties can all be verified defining, as done for every matrix group, the Lie
bracket as:

[R1, R2] = R1R2 −R2R1. (A.2)

whose result is, of course, a skew-symmetric matrix itself, guaranteeing also
the closeness of the operation.
This space of skew-symmetric matrices is homeomorphic to the Euclidean
vector space R3. This can be easily proven because every skew-symmetric
matrix can be associated with a vector v ∈ R3 as:

v∧ =

v1v2
v3

∧

=

 0 −v3 v2
v3 0 −v1
−v2 v2 0

 (A.3)

.
The mathematical relationship that maps elements from the Euclidean tan-
gent space to its associated subset in the manifold is called exponential map.
As far as concerns rotation, the map associating each element of the Lie al-
gebra to a rotation can be defined as:

exp(ϕ∧) = I +
sin(||ϕ||)
||ϕ||

ϕ∧ +
1− cos(||ϕ||)

||ϕ||2
(ϕ∧)

2
, exp : R3 → SO(3) (A.4)
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where ϕ∧ is the skew-symmetric matrix associated to the vector ϕ. The (A.4)
is basically equivalent to the standard Rodrigues’ formula. Also the oppo-
site logarithm map can be defined, associating a rotation matrix to a skew-
symmetric matrix (and so, by the (A.3), to a vector in R3):

lnR =
φ(R−RT )

2 sinφ
, φ = cos−1

(
tr(R)− 1

2

)
. (A.5)

The result of this logarithmic map is a skew-symmetric matrix that can be
directly related to a rotation, by noting that:

lnR = (vϕ)∧, (A.6)

where v and ϕ are the axis and the angle associated with the rotation. Of
course, for the reasons stated before, the exponential map is a bijection only
if rotations are restricted to have ||ϕ|| < π, while in every other case multiple
ϕ∧ would be mapped into the same rotation.

A.3 SE(3) group

A more general group whose existence is fundamental for a great variety of
tasks is the Euclidean group E(n): this group is composed of all the Euclidean
isometries happening in the Euclidean space (transformation preserving Eu-
clidean distance). By restricting it by eliminating all the reflections (that are
indeed Euclidean isometries), the special Euclidean group SE(n) is obtained,
whose elements are all the type of rigid motions happening in ann-dimensional
space.
Fortunately, E(n) is also a Lie-group and, moreover, it is a subgroup of the
affine group (all transformations that transform a line into another line). In
fact, every element of E(n) can be expressed in two different ways:

• A pair of elements R, r where R ∈ Rn×n is an orthogonal matrix and
t ∈ Rn.

• A single matrix T ∈ R(n+1×(n+1)), that is basically of the form:

T =

[
R t
0 1

]
(A.7)

where of course 0 ∈ R3 is a row vector and 1 is a scalar.

As far as concerning the SE(n) group, the same representations are valid, by
restricting the type of orthogonal matrices R to the ones having determinant
strictly equal to 1 (so by eliminating reflections).
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For what concerns the Lie algebra of SE(3), the group of rigid body motions
in the standard 3D space, the same reasoning applied for the SO(3) is valid.
This is due to the possibility of decoupling the rotational description to the
translational one, by adopting a similar mapping as in the (A.4) for the rota-
tion part and by taking into account that translations are already living in a
Euclidean space.
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