
ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA

SCHOOL OF ENGINEERING

DEPARTMENT ELECTRICAL, ELECTRONIC AND INFORMATION

ENGINEERING

“GUGLIELMO MARCONI” (DEI)

MASTER’S DEGREE IN AUTOMATION ENGINEERING

GRADUATE THESIS

in

Autonomous and Mobile Robotics

DEVELOPMENT AND TESTING OF DOCKING

FUNCTIONS IN INDUSTRIAL SETTINGS FOR AN

AUTONOMOUS MOBILE ROBOT BASED ON ROS2

Academic Year 2022/2023

Session II

CANDIDATE: SUPERVISOR:

 Prof. Gianluca Palli

Filippo Guarda

 ASSISTANT SUPERVISORS:

 PhD. Emilio Tirelli

Ing. Gabriele Fabbri

Ing. Federico Orazio

1

2

3

4

Bologna, October 14th, 2023

During this eight-month internship at GD s.p.a. I had the possibility to be inserted in an

engaging and multifaceted working environment. Special thanks go to all the members of the

team I had the opportunity, and will gladly continue, to work with: Emilio Tirelli, Gabriele

Fabbri and Federico Orazio. Thank you for the continuous teachings and uninterrupted

encouragement in everything that concerned work, workplace, and beyond. I would like to

thank Professor Gianluca Palli as well, for the above and beyond availability and support

granted throughout the realization of this dissertation, especially in the most critical moments.

I would also like to thank my girlfriend, family, and friends: Anna Giorietto, Anna

Donati, Caterina Guarda, Emilio Guarda, Francesco Guarda, Annarita Angelini, Gaia Paruto,

Adileo Barone, Enrico Caracciolo. Thanks to all of you for sticking with me in a very

challenging period of my life.

Filippo Guarda

5

6

ABSTRACT

This dissertation is the result of a six-months internship at G.D S.p.A. for the preparation

of the thesis project.

The final goal is to develop algorithms on the ROS2 framework that could be used to

control an Autonomous Mobile Robot during the operations of detection and approach of a

docking station with high precision, needed to operate a recharge of the AMR itself or some

operation on the host machines.

The automation of these operations ensures a substantial increase in safety and

productivity within a warehouse or host machine lines since it permits to the AMR to work

without requiring an operator for longer time or even to substitute the operator itself.

The presented method uses both lidars and an onboard camera. The trajectory from the

starting position to the approximate area of the docking station is computed using data obtained

from the three lidars around the AMR body.

The final approach is implemented by detecting an ARUCO code positioned on the dock

assembly through a camera.

A sequence of intermediate positions is defined according to the pose estimations, and

then reached with a mix of standard navigation and a proportional position control in the very

last part of the movement trajectory.

The precision of the docking position turned out to have less than one centimeter error

around the desired target, the orientation error is a fraction of a degree. The docking times vary

based on how far the AMR is from the docking station, but the last phase of the procedure is

always completed in around seventeen seconds.

The solution is implementable and will be evaluated on the real platform in the coming

months.

7

8

TABLE OF CONTENTS

ABSTRACT .. 6

TABLE OF CONTENTS .. 8

TABLE OF FIGURES .. 10

TABLE OF ACRONYMS .. 12

1 INTRODUCTION ... 14

2 STATE OF THE ART ... 18

2.1 AGV vs AMR .. 18
2.2 AGV guidance systems ... 18
2.3 Use of AGVs in logistics ... 20

2.3.1 Underride AGV ... 20

2.3.2 Piggyback AGV .. 21

2.3.3 Forklift AGV ... 21

2.3.4 Towing AGV ... 22

2.4 Smart applications ... 23
2.4.1 Task allocation .. 23

2.4.2 Routing and navigation ... 23

2.4.3 Efficient deadlock avoidance .. 25

3 PROJECT SPECIFICATIONS ... 27

3.1 Development environment: ROS2 .. 27
3.1.1 Nodes ... 27

3.1.2 Message Topics, Services, and Actions... 28

3.1.3 Config and launch files .. 32

3.2 Simulation environment .. 33
3.2.1 Gazebo ... 33

3.2.2 AMR model ... 35

3.2.3 Rviz ... 35

4 METHODS DESCRIPTION ... 38

4.1 Set up ... 38
4.2 Sensor Fusion .. 39

4.2.1 Laser scan merging .. 39

4.2.2 3D camera cloud .. 49

4.3 Navigation ... 50
4.3.1 Installation ... 50

9

4.3.2 Configuration of NAV 2 .. 50

4.3.3 Local and Global map error ... 52

4.3.4 Neobotics controller .. 53

4.3.5 Neobotics localization ... 55

4.4 Near-target docking methods .. 59
4.5 Aruco approach ... 62

4.5.1 Ros2_Aruco ... 63

4.5.2 Docking_node ... 66

4.6 Planar controller .. 69
4.7 Complete approach and docking stack. ... 76
4.8 Approach and dock action ... 79

4.8.1 Initial navigation .. 80

4.8.2 Position feedback controller .. 81

5 RESULTS .. 83

5.1 Localization precision ... 83
5.1.1 Experimental Setup ... 83

5.1.2 Static Localization ... 84

5.1.3 Static Localization Precision Results .. 84

5.1.4 Dynamic Localization ... 85

5.1.5 Robustness Assessment ... 93

5.1.6 Discussion ... 94

5.2 Aruco and dock positioning precision ... 94
5.2.1 Experimental Setup ... 95

5.2.2 Data capture and visualization... 96

5.2.3 Aruco placement Accuracy ... 97

5.2.4 Aruco Accuracy Results .. 98

5.2.5 Dock placement Accuracy ... 99

5.2.6 Dock Accuracy Results ... 100

5.3 Docking action precision and time to complete .. 100
5.3.1 Docking Station ... 101

5.3.2 Alignment Accuracy .. 101

5.3.3 Approach and Docking Time .. 102

5.3.4 Discussion ... 104

6 CONCLUSIONS ... 106

BIBLIOGRAPHY ... 109

10

TABLE OF FIGURES

Figure 1: An underride AGV used in Amazon warehouses. ... 20
Figure 2: Side-loading AGV with rollers .. 21
Figure 3: Specially designed Agilox Forklift AGV .. 22
Figure 4: Dynamic routing example, courtesy of Agilox .. 24
Figure 5: ROS2 DDS protocol .. 29
Figure 6: ROS1 communication between nodes ... 29
Figure 7: ROS2 message structure .. 30
Figure 8: ROS2 service structure .. 31
Figure 9: ROS2 action structure .. 32
Figure 10: a view of the large warehouse environment with pallets and mannequin models 34
Figure 11: RVIZ visualization, we can see the camera input, robot model, inflation map and frames. 36
Figure 12: The workspace directory, in the src folder are listed all submodules used. 38
Figure 13: The topic graph of the lidar merger and pointcloud to laserscan pipeline,it is possible to see

the three lidars merged into one. ... 40
Figure 14: The detected points from the three separate laser scanners as seen in the pointcloud, with

color separation in blue, red and green. ... 41
Figure 15: Schema illustrating a possible instance of the parallax problem ... 45
Figure 16: Unified scanner topic, the detected points with parallax correction are visible in white. 47
Figure 17: Final lidar merger pipeline ... 48
Figure 18: Framos 430e depth camera .. 49
Figure 19: depth camera simulated inside azebo ... 49
Figure 20: Complete navigation stack ... 58
Figure 21: Mir charging station, notice the triangular indentation. ... 60
Figure 22: iRobot ir emitter apprach ... 61
Figure 23: The 3D sketch of a docking station equipped with an Aruco fiducial marker, later a cube was

used.. 62
Figure 24: Aruco node detecting the fiducial marker attached on the dock placeholder 63
Figure 25: Second configuration with a docking area placed on the ground, to change placement it was

only necessary to change the transform vector .. 68
Figure 26: Generated dock position, at this stage, we were considering wireless charging from a plate

placed on thop of the robot .. 68
Figure 27: Docking stack with aruco detection. .. 76
Figure 28: The complete approach and docking stack .. 78
Figure 29: Flow chart of the approach and docking procedure .. 79
Figure 30: Covariance measurements pipeline .. 84
Figure 31: box graph of nav2 aisle covariance using only the LIDAR data. .. 86
Figure 32: Aisle path on RVIZ .. 86
Figure 33:box graph of nav2 aisle covariance using both scan and pointcloud data. 87
Figure 34: box graph of nav2 aisle covariance using only the pointcloud data. 87
Figure 35: RVIZ visualization of wall path ... 88
Figure 36: Box graphs of covariance values during navigation trough the aisle with neobotics 88
Figure 37box graph of nav2 wall covariance using only the pointcloud data. 89
Figure 38: box graph of nav2 wall covariance using only the LIDAR data .. 89
Figure 39: localization covariance along the wall with nav2 or neobotics ... 90
Figure 40:box graph of nav2 aisle covariance using both scan and pointcloud data. 90
Figure 41:RVIZ visualization of the path inside the building ... 91
Figure 42box graph of nav2 building covariance using only the pointcloud data. 91
Figure 43: box graph of nav2 building covariance using only the LIDAR data. 92
Figure 44:box graph of nav2 aisle covariance using both scan and pointcloud data. 92
Figure 45: Box graphs of covariances of neobotics localization inside the building 93
Figure 46: Experimental setup for marker detection precision ... 95

https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731345
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731346
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731347
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731348
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731349
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731350
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731351
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731352
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731353
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731354
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731355
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731356
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731357
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731357
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731358
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731358
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731359
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731360
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731361
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731362
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731363
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731364
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731365
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731366
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731367
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731367
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731368
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731369
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731369
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731370
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731370
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731371
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731372
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731373
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731374
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731375
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731376
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731377
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731378
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731379
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731380
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731381
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731382
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731383
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731384
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731385
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731386
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731387
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731388
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731389
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731390

11

Figure 47: marker and dock variation measurement pipeline ... 96
Figure 48: Box graph of Aruco positioning precision with a moving robot. .. 97
Figure 49: Box graph of Aruco positioning precision with a stationary robot. 97
Figure 50: Box graphs of dock positioning precision with a stationary robot. 99
Figure 51: Box graphs of dock positioning precision with a moving robot. ... 99
Figure 52: Improved docking station model with added bottom lip ... 101
Figure 53: RVIZ visualization during approach and docking ... 102
Figure 54: starting points of approach time measurements. .. 103

https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731391
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731392
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731393
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731394
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731395
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731396
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731397
https://liveunibo-my.sharepoint.com/personal/filippo_guarda_studio_unibo_it/Documents/tesi/merge%20tesi%20GF%20FG.docx#_Toc146731398

12

TABLE OF ACRONYMS

AGV Automatic Guided Vehicle

AMCL Adaptive Monte Carlo Localization

AMR Autonomous Mobile Robot

ARUCO Augmented Reality University of Cordoba

DDS Data Distributed Services

EKF Extended Kalman Filter

IMU Inertial Measurement Unit

LIDAR Laser Imaging Detection and Ranging

NAV2 NAVigation 2

ROS2 Robot Operative System 2

RPY Roll Pitch and Yaw

SLAM Simultaneous Localization and Mapping

YAML YAML Ain’t Markup Language

XML eXtensible Markup Language

13

14

1 INTRODUCTION

An Autonomous Mobile Robot, also abbreviated into AMR, is defined, as the name

suggests, as a mobile robot that can navigate the environment, known or unknown, without the

need for external control. AMRs are the direct evolution of Automated Guided Vehicles, AGV

for short. While AGVs need a predetermined path to follow in order to function properly, AMRs

do not need physical tracks nor software-defined travel paths. Henceforth, AGVs are simpler

to build, but are less flexible, require greater supporting infrastructure and have a higher upfront

cost.

To navigate the environment an Autonomous Mobile Robot uses an array of sensors

such as lidars, IMUs and 3D cameras. Then, a series of algorithms (that can vary from simple

state machines to behavior trees, up to machine learning and deep neural networks), utilize the

data provided by the sensors to localize the robot, compute travel paths, and react to unexpected

obstacles or faults.

This thesis revolves around a particular AMR, the industrial Mobile Robot, which

differs from household appliances (like Roombas) both in sheer size and for the compliance

with stricter safety standards dictated by the European regulation of heavy equipment.

This AMR will be mostly used in two distinct roles. The first role is to move pallets

through a warehouse in a forklift configuration. The use of Autonomous Vehicles for moving

loads in a controlled environment has been expanded over the years in such a way that now an

Autonomous Mobile Robot can also manage semi-controlled environments, such as a

warehouse where workers are present and not constrained to move in set areas. This

configuration may use a neural network to detect pallets through an image feed and depth

perception to position the fork under the pallet.

The second role is to execute ancillary tasks on a different machine using specialized

tooling. While executing these operations, the robotic base will have stricter positional

requirements dictated by the close interaction of previously mentioned tools with sensitive

machinery. In this configuration, a 3D camera will also be equipped on the robot body.

Both configurations are dictated by a trend in the industry where robots are used to

substitute human operators in dangerous tasks such as transport of heavy loads, or tasks where

errors in routine maintenance could present a liability to the production plant.

15

The main objective of this project is to develop the localization and navigation functions

of the previously mentioned AMR with the scope of docking to a station where high precision

positioning is needed, like a recharging station, which was implemented using ROS2. ROS2,

or “Robot Operating System” is a framework which allows for the use of an ample set of

software libraries and tools that are open-source and extendable by users and it is commonly

referred as the state of the art for AMR development.

The first part of the project is focused on fusing the signals from three lidars positioned

around the robot body in order to create a single virtual sensor that can be utilized for

simultaneous location and mapping (SLAM for short); and on configuration of the libraries

necessary to robustly navigate a simulated (at the time) industrial environment.

The aim of this part is to use the safety laser scanner, compulsory present to guarantee

the safety of the operators present in the area, and not to mount another laser scanner just to

navigate.

After perfecting the navigation code, the second part of the project is set on developing

a method for defining the positional relation between the robot and the docking station. The

resulting function is based on the use of Aruco markers attached to the docking station. Aruco

markers are univocal symbols easily detected by a computer vision algorithm, which, knowing

the parameters of the optics and the size of the marker, can compute the relative position of the

Aruco code with respect to the optical center of the camera.

The result of this project is a function that navigates the AMR to a set point where an

Aruco code is expected to be in the cameras field of view. The function then generates a

quaternion coordinate between the camera and the marker, which is extended on one side from

camera to robot base, and on the other from Aruco marker to the power connection. The robot

moves one meter in front of the dock through standard navigation, then completes the approach

by a PD positional control.

Testing is implemented using the Gazebo, simulation software shipped in conjunction

with ROS2. An approximative industrial environment was modeled inside Gazebo, then both

the 3D models of a pallet (from an open-source collection) and a docking station with Aruco

code attached were imported into the scene. Finally, the robot physical model complete with

inertias was created through a ROS2 configuration file.

16

The project has been developed as a result of an internship in GD s.p.a. in Bologna, a

subsidiary and founder company of the COESIA group. GD has the need to constantly move

inventory to support the construction of its packaging machines and is expected to start using

Autonomous Robots to support its more advanced production lines in the future.

17

18

2 STATE OF THE ART

In this chapter, we will define the differences between Automated Guided Vehicles and

Autonomous Mobile Robots. After having sketched a generalized picture of the two platforms,

we will explore the state of the art for applications of AGVs in the logistic field, with an

emphasis on methods used by market leaders. Finally, we will briefly touch on what smart

applications are and their potential in an industrial setting.

2.1 AGV vs AMR

The difference between an Automated Guided Vehicle and an Autonomous Mobile

Robot lies in, as the name suggests, the ability to move freely through space.

AGVs often are used to move objects along a factory line or inside a controlled

warehouse. This can be done either by towing a cart, in which case a way of connecting the

moving base with the cart is needed, or by loading the object on top of the machine, in a bed

that can be either fixed or equipped with a conveyor belt.

On the other hand, Autonomous Mobile Robots do not need specific paths to be set, but

instead can compute their own path after being given a reachable goal and an abstraction of the

surrounding environment. An AMR will be able to move around obstacles that were not present

at the time of the generation of its simulated environment, affording it additional flexibility and

fault tolerance, while an AGV will have to stop and will not be able to compute alternative

routes in the case where its set path becomes obstructed.

2.2 AGV guidance systems

While we will discuss AMR navigation in detail in the next chapter, we think it is

important to also illustrate the different guidance systems used by AGVs.

Wired Track: a wire is run a couple of centimeters under the factory floor and used to

transmit a radio signal. The AGV detects the radio signal strength through a sensor mounted on

its bottom, and then uses it to regulate steering, effectively following along just as it would with

a steel track. [1]

19

Guide Tape: the tape can be of two kinds, magnetic or colored. The AGV is then fitted

with either a magnetic or optical sensor and follows the line by counter-steering as the magnetic

strength decreases or if the optical sensor loses line of sight with the colored tape. Tape has the

advantage over conductive wire of being easy to move and reapply but is more affected by dirt

and wear. [1] [2]

Laser Target Navigation: in this case the path to follow is software-defined and the

AGV locates itself in each layout by detecting reflective tape by a combination of rotating laser

emitters and sensors. The sensor often only detects the angle of the markers, but sometimes it

can also identify their distance. This allows the controller software to triangulate the position

of the AGV by comparing it with the marker layout set in the software, and to steer it in order

to keep it on the set path. [3]

Laser emitters can be either pulsed or modulated. For maximum precision, pulsed

emitters must interpolate the readings of reflection intensity to precisely compute the position

of a marker’s center.

Natural feature (Natural Targeting) navigation: navigation that does not need the

retrofitting of the workspace. It is based on the use of range finding sensors, such as LIDARS,

and Inertial Measurements Units, used to locate the AGV by comparing detected environmental

features with the map defined in the software layout through a Monte-Carlo/ Markov algorithm.

Once the absolute position of the machine is obtained, the AGV is steered along software set

paths just as in Laser Target Navigation. [3]

Vision Guidance: vision guided AGVs operate by using cameras to record features

along the route, and then by replaying the route by using recorded features for navigation. This

approach is made possible using an Evidence Grid based on probabilistic volumetric sensing.

The sensing equipment used by vision guided AGVs consists in 3D stereo cameras, which,

together with image information, also provide a volumetric and depth layer. [4]

20

2.3 Use of AGVs in logistics

AGVs have seen extensive use both in the logistics and industrial field in the last four

decades, they have been defined as “battery-powered driverless vehicles, centrally computer-

controlled and independently addressable, that are used for moving jobs between workstations

on a factory floor” [5]. Many more definitions exist, but all revolve around an AGV being a

vehicle that moves materials in 2D space without a human operator. During years of

development, AGVs had time to diversify into a swathe of different models, each specialized

for a different type of load. In this section we will illustrate four different AGVs: one specialized

in moving pallets, one which is designed to move containers, one for roller carts and the last

one specialized in towing.

2.3.1 Underride AGV

An underride AGV positions itself under a cart or material wagon and lifts it slightly,

detaching the container from the floor. Alternatively, it locks the container through an

attachment point and tows it to the destination. Naturally the second option is possible only in

the case of a wheeled cart. This configuration presents some advantages both in dimensions and

in maneuverability as the occupied volume depends almost exclusively on the dimensions of

the container rather than the controlled platform. [6]

Figure 1: An underride AGV used in Amazon warehouses.

21

2.3.2 Piggyback AGV

Piggyback AGVs can load and unload without the need for maneuvering under the target

load. Instead, they need the load to be at a predetermined height from which it will be transferred

to the AGVs bed, which can be implemented either with rollers, for larger platforms that can

carry pallets, or with a conveyor belt more suited for smaller containers. This type of loading

procedure is faster and uses less space but needs specialized loading platforms able to interact

with the AGV by synchronizing the moving surfaces. Piggyback AGVs for this reason are best

suited for filling in the gaps between successive handling stations, for example from a pallet

loader to a wrapping station. [1]

2.3.3 Forklift AGV

Forklift AGVs are separated into two distinct categories: specially designed and

automated serial equipment. Specially designed forklift AGVs are created from the ground up

with the only expected use of autonomous movement and control applied only through a

software manager. On the other hand, automated serial equipment forklifts are human-

controlled machines that can be retrofitted or upgraded from the factory to be either both human

and software controlled, or otherwise to lose the driver’s equipment in favor specialized

hardware. [1] [7]

Figure 2: Side-loading AGV with rollers

22

While the first category of forklift AGV is more sophisticated, with a smaller footprint

and the possibility of autonomous charging operations, the latter has more support from an

already present production line which can supply eventual replacement parts, thus making

maintenance more streamlined.

2.3.4 Towing AGV

Just like forklift AGVs, towing AGV can be either specially made for autonomous

movement or adapted from a model initially designed for a human driver. Towing AGVs

operated as the name suggests by towing a series of wheeled containers behind them. This

configuration paired with wired tracks was one of the first models of AGV created. [1]

Figure 3: Specially designed Agilox Forklift AGV [7]

23

2.4 Smart applications

With the evolution from AGVs to AMRs and the introduction of machinery that is more

capable, independent and has more computing power and sensors onboard, a whole swathe of

new functionalities can be implemented.

Among these functionalities are those that are called “smart applications” of logistics

and navigation software, which are based on the cooperative work of multiple robots. Agilox

systems is one of the companies which come into prominence in the field of AMR

manufacturers thanks to these functionalities, Agilox was also the company that inspired part

of this work. In this subsection we will briefly discuss some of them.

2.4.1 Task allocation

Task allocation consists in taking the weight off the user in assigning tasks to a specific

robot in the fleet. Instead, given an updatable list of tasks that need to be taken care of, task

allocation software will consider various parameters and machine states (such as AMR position,

battery charge status, equipped sensors and hardware) to determine the right robot for the job.

While this seems trivial for a small factory floor, in a logistics setting where thousands of jobs

must be completed everyday task allocation can massively increase productivity if the software

is correctly optimized, not to mention the man hours that can be redirected to less repetitive

mansions. [8] [9]

2.4.2 Routing and navigation

In a setting which is shared with human operators, it can happen that new obstacles are

introduced on the warehouse floor, disrupting the predetermined routes required by an AGV

and such preventing its functioning. In the case of an AMR, not only becomes possible to

circumvent obstacles that don’t completely obstruct the passageways, but it is also possible to

share data about obstacles positions to other AMRs part of the fleet. This allows for

recalculating a new route that not only the AMR which has detected the object will use, but also

other members of the fleet might use without needing to incur firsthand in the obstacle. [8]

24

Figure 4: Dynamic routing example, courtesy of Agilox [8]

25

2.4.3 Efficient deadlock avoidance

Having a fleet of AMRs navigating the typical logistics warehouse with long, narrow

corridors and tight turning angles might generate deadlocks in the path generation. For example,

two robots might be too wide to travel along an isle in opposed directions. In this case knowing

all AMRs positions, assigned tasks, and a complete map of the environment can help generating

new paths which avoid deadlock. [8]

While in an AGV setting, with fixed paths, this can result in a trade-off between most

efficient routes and routes that are deadlock-safe; an AMR can compute and recompute paths

at running time. By doing this it can chose the efficient routes in normal conditions while

switching to safe routes while a generated path from another AMR conflicts with its own.

26

27

3 PROJECT SPECIFICATIONS

3.1 Development environment: ROS2

The Robot Operating System 2 (ROS2) [10] is a powerful and versatile framework that

serves as the backbone of modern robotics development. A successor to ROS 1 [11], ROS 2

offers several key advantages for those in the robotics field. It provides a comprehensive

ecosystem of tools, libraries, and middleware that simplifies the development and deployment

of robotic systems. One of its most significant features is its enhanced flexibility, as ROS 2

supports various operating systems and real-time capabilities, making it adaptable to a wide

range of robotic platforms and applications. ROS 2 is backed by a collaborative and open-

source community, which enables robotics experts, researchers, and developers to share and

take advantage of each other's work, accelerating innovation in the field. With its focus on

robustness, security, and scalability, ROS 2 can play an important role in streamlining the

development of robots in the fields of manufacturing, healthcare, logistics, and more. Finally,

and most importantly for this thesis, ROS2 can be easily integrated with other libraries such as

OpenCV [12], which are quite common in robotic libraries.

3.1.1 Nodes

A node is a fundamental ROS2 element that serves a single, modular purpose in a robotic

system. [13] So, there will be one node for controlling wheel motors, one node for controlling

a laser rangefinder, and so on. Each node can send and receive data to other nodes via topics,

services, actions, or parameters, that are other ROS2 tools. ROS2 breaks complex systems down

into many modular nodes, indeed a full robotic system is comprised of many nodes working in

concert. In ROS2 a single executable can contain one or more nodes.

28

3.1.2 Message Topics, Services, and Actions

At the base of ROS2, there is the communication layer, based on the Data Distribution

Service (DDS) standard. DDS is a standardized communication protocol that allows for data

exchange in distributed systems. [14] This is one of the greatest jumps forward with respect to

ROS1, where all the communication was managed by a central node: the ROS core. In ROS2,

the DDS defines a method of communication between different languages API (such as rclpy

and rclcpp). [15] This shift from a core-based model to an API model allowed robust, reliable,

and real-time communication.

29

Figure 6: ROS1 communication between nodes

Figure 5: ROS2 DDS protocol

30

Topics are then established trough the DDS protocol, they act as unidirectional pipes

trough which data is moved between nodes. [16] While nodes can either publish or subscribe

to a topic, they can publish on or be subscribed to multiple topics at a time. This means that

topics can be used not only to communicate one-to-one but also one-t- many or many-to-one.

Nodes and Topics together define a ROS graph, which is a network of interconnected

computing modules processing data at the same time. [17]

This communication can happen trough three different kind of interfaces: messages,

services, or actions.

Messages are the most basic concept used for communication between different parts of

a robotic system, they contain data and represent typed information that the nodes exchange

trough the ROS graph. [16] Messages are defined trough a plain-text format called “Message

definition language” (.msg) these message definitions specify the type and structure of the data

contained within the message. Each message type is composed of one or more fields containing

both data type and name. A node will publish a message of defined type on a specific topic,

which will be accessed and read by the subscriber node; this is the “default” kind of data

transmission in ROS. Messages come pre-defined with some specific libraries or can be user-

defined trough the message definition language for custom uses.

Figure 7: ROS2 message structure

31

Services present to nodes a mechanism to request and receive a specific, singular remote

operation from another node in a request-response kind of communication. Just like messages,

services must be defined trough a “service definition language” (.srv) which specifies both the

structure and type of request and response messages. The request message defines the data that

the client node sends to the server node, while the response message defines the data that the

server node sends to the client. Services in ROS2 are typically synchronous and blocking, so

the client blocks and waits a response from the server before proceeding with its task. [18]

Actions provide a more advanced form of communication between nodes compared to

services and messages, allowing for asynchronous interactions between nodes. Actions are very

useful for tasks that require feedback or progress and the ability to cancel or preempt an ongoing

operation. As messages and services actions are defines trough an “action definition language”

(.action) which specifies the type and structure of the content of an action message. An action

message is split between a request and a response, like services, with an additional field

reserved for feedback. [19]

Actions are of two types: simple actions and Goal-Status actions. Simple actions have a

single goal, and the feedback is continuously updated as the action progresses, while Goal-

Status actions allow the client to send multiple goals at once and receive feedback and results

for each goal.

Figure 8: ROS2 service structure

32

A node can be both an action server and an action client. An action server specifies

which action are supported by it and what callbacks execute when a goal is called from a client.

An action client sends a goal messages to the action server and receives both feedback and

results. Action goals contain information about the task to be executed as specified in the .action

file. During execution of the action, the action client can continue its task without waiting for

the server response, this allows for asynchronous execution. During execution action goals can

be both preempted and cancelled by the action client.

3.1.3 Config and launch files

In ROS2 two types of files are available that make the process of launching nodes easier:

configuration and launch files.

Launch files (.py/.xml) are files that specify the launch sequence of a collection of

nodes, using specified settings and times. This simplifies the process of launching nodes and

components by providing a standardized process of running nodes to execute a specific task.

Launch files also make for a more streamlined robot startup procedure. [20]

Figure 9: ROS2 action structure

33

Configuration files (.yaml) are files written in markup language that specify parameters

and settings of the node that are going to be launched [21], [22] this is a way to manage code

without having to recompile the source code every time some parameters need to be modified.

YAML, (which stands for “YAML ain’t a markup language”) is a file extension similar to. Json

or .xml but much more human readable. The configuration file containing the desired

parameters is defined in the launch file, which is responsible to substitute the default values

with the desired ones at the node launch.

3.2 Simulation environment

Since the development and testing of the docking functions of an AMR was the focus

of this thesis, it became critical to define a safe and cost-effective way to evaluate the robotic

behavior. Fortunately, with the ROS2 package come both the Gazebo and Rviz library, which

are used respectively to simulate a physical machine and to visualize the ongoing processes and

data.

3.2.1 Gazebo

Gazebo is a powerful and versatile open-source simulation software platform that has

become a key element in the fields of robotics, autonomous systems, and artificial intelligence

research. Gazebo provides a rich, 3D simulation environment for modeling, testing, and

validating robotic systems in complex scenarios. [22]

Among the several benefits of using a simulation environment to test the developed code

instead of a real machine, some of the most important are [22]:

Safety and Risk Mitigation: Testing docking functions in a simulated environment

allowed us to identify and correct potential issues, such as collisions or navigation errors,

without putting physical assets or personnel at risk.

Accessibility and Availability: Like in our case, access to a physical environment for

testing may be limited or restricted, whereas a Gazebo simulation can be set up and conducted

at any time, providing flexibility and availability for testing at various stages of development.

Rapid Prototyping: In a simulated environment, we could rapidly prototype and iterate

on docking algorithms and behaviors without waiting for physical hardware modifications

(adding a camera was a minute operation, instead of months) or adjustments, accelerating the

development cycle.

34

Variability and Reproducibility: Gazebo simulations can replicate a wide range of

scenarios, this way we could test complex behavior in a large environment and use a smaller

one for benchmarking the navigation precision and docking speed.

Data Collection and Analysis: Gazebo provides tools for collecting detailed data and

metrics during simulations. Which was of paramount importance to gather metrics on how well

or badly the AMR was behaving while using one function or another.

One last benefit of Gazebo is the possibility to define environments and models from an

editor internal to the platform, while also being able to import models as meshes from the

internet, during testing this was extremely useful as we could quickly generate a warehouse-

like testing ground and populate it with models of people and pallet to check the goodness of

the obstacle avoidance functions. Later, as previously mentioned, a smaller map with a docking

station was created to further test function metrics with more precision and repeatability.

Figure 10: a view of the large warehouse environment with pallets and mannequin models

35

3.2.2 AMR model

Beside static models like the docking station and pallets, the Gazebo simulation can be

also populated with moving objects which are connected to the ROS stack. This allows for

generating a robot composed of several rigid or moving links able to simulate the real machine.

The robot is described in the Unified Robot Description Format (.urdf) used to define the

physical structure, kinematics, and various properties of a robot or robotic system. URDF is

used as a standardized and concise way to represent the geometric, kinematic, and dynamic

aspects of a robot. Here's a breakdown of its key components and functions:

Robot Structure: URDF describes the physical structure of the robot, including its links

and joints. Links represent rigid bodies or components of the robot, while joints define how

these links are connected and can move with respect to each other. [23]

Geometry: The specification of the geometric properties of robot components, such as

meshes, collision geometries, and visual representations. This geometric information is crucial

for visualization and collision detection.

Inertial Properties: URDF includes parameters for defining the inertial properties of

links, such as mass, center of mass, and inertia matrices. These properties are essential for

simulating the dynamics and motion of the AMR. [24] [25]

Sensors: the URDF file can be extended to include sensor descriptions, such as cameras,

LiDAR, and IMU (Inertial Measurement Unit) sensors, along with “real” parameters and

imperfections such as field of view, optical center, range, and noise. This information is

essential for simulating sensor data and sensor-based perception in robot simulations. [26]

3.2.3 Rviz

RViz, short for "ROS Visualization," is a visualization software tool used by ROS2.

[27] It provides a rich and interactive 3D visualization environment, allowing users to better

understand the state, behavior, and perception of the robotic system that is being monitored.

36

RViz is a versatile and highly configurable platform that serves multiple crucial

functions. First and foremost, it enables real-time visualization of robot sensor data, such as

point clouds, laser scans, and camera images, providing a means of assessing the robot's

perception of its surroundings. Moreover, RViz allows users to visualize the robot's internal

state, including joint configurations, trajectories, and odometry information, increasing the

understanding of its kinematics and dynamics; thus, making debugging of the robotic platform

easier. [28]

Its interactive tools enable users to set goals, plan paths, and even teleoperate robots

within the visual interface, making it an essential tool for robot testing. RViz's extensibility

helps developers to tailor the visualization environment to specific robotic platforms and

applications, enhancing its adaptability across various chassis and use cases, from industrial

automation to autonomous vehicles and robotics research.

During the duration of this thesis, RVIZ was essential to interact with the robotic base,

check for malfunctions of the docking process and visually check the progress of given tasks at

times where the command line output was not enough verbose to understand what was

happening.

Figure 11: RVIZ visualization, we can see the camera input, robot model, inflation map and frames.

37

38

4 METHODS DESCRIPTION

In this chapter we discuss the methods used to complete all the passages that were

necessary to finalize a complete docking function. While most steps of the project had been

considered at the start of development, some others surfaced only because of the work

progression.

4.1 Set up

The first passage of the project was to install the Ubuntu 22.04 operating system along

with the ROS 2 framework. After the installation, a directory was created to be used as the

workspace, with this initial structure:

Figure 12: The workspace directory, in the src folder are listed all

submodules used.

39

In the workspace folder [29] are contained the main three subdirectories:

• In the install directory all the files that are necessary for the various libraries to function

are contained, this includes binaries and automatically generated header files required

by some of the code written in C++.

• In the build directory all the files generated by the build process are contained, this

includes build reports and error lists.

• The src directory contains all the source code.

Src is effectively the working folder of the project, since all the code that is written is

contained in this folder, which then gets separated into different independent directories. Each

directory is completely self-sufficient and contains its own build files. This allows for copying

one of the directories where a specific function is programmed into a different workspace,

running the build program $ colcon build in the second folder and having ROS manage the

dependencies during the build process.

4.2 Sensor Fusion

After building the NAV 2 library and creating both the simulations of the AMR and the

Gazebo environment, we encountered the first problem: the localization library could not accept

more than one scanner input at a time, this approach collided with the desired configuration of

the AMR sensor suite, as three different LIDARs were expected around the robot body. Aside

from that, the presence of a 3D camera allowed for different approaches to near-target

navigation and to further increase the localization capabilities. The option to utilize this data

stream was later considered and evaluated.

4.2.1 Laser scan merging

During the configuration of the NAV 2 library, setting more than one source of scanner

data in the section of the .config file relative to localization resulted in a series of errors, as it is

visible from this .config file snippet, it is possible to set up only one source for that sensor type.

40

amcl:

 ros__parameters:

 scan_topic: scan

 pointcloud_topic: cloud

It was later understood that NAV 2 has not been set up to read only one scanner topic at

the time, this is due to the scanners publishing not a three dimensional array of coordinates, but

instead a two dimensional array of distances, point from which these distances are computed is

not included in the message structure, this means that setting more than a scanner source with

different origins would result in errors during the localization process. Since working without

NAV 2 meant having to rewrite both the navigation and localization functions, along with the

full suite of controllers, drivers, and simulation packages, it became clear that it was necessary

to find some expedient to circumnavigate this issue while maintaining functionality.

We started researching different options to fuse together the scan topics, one of these

options was a library written for ROS 1 [30] [31]. While this solution had been proven to work,

it was not compatible with the ROS 2 framework. Fortunately, after additional exploration a

remarkably similar candidate, compatible with ROS 2, was found. This library, called “lidar

merger” [32], works by generating a virtual lidar, with an origin that can be defined at will. The

lidar merger function listens to the desired scan topics, all of which have a position and

orientation preset in the lidar merger configuration file.

ros2_laser_scan_merger:

 ros__parameters:

 pointCloudTopic: "/cloud"

 pointCloutFrameId: "lidar_frame"

Figure 13: The topic graph of the lidar merger and pointcloud to laserscan pipeline, it is

possible to see the three lidars merged into one.

41

 use_sim_time: True

 scanTopic1: "/scan_right"

 laser1XOff: 0.5

 laser1YOff: -0.5

 laser1ZOff: 0.0

 laser1Alpha: -180.0

 laser1AngleMin: 1.0

 laser1AngleMax: 265.0

 laser1R: 255

 laser1G: 0

 laser1B: 0

 show1: True

In this configuration file it is possible to see how the position and field of view of each

LIDAR (the back left one in this case) are defined in the adapter node. Initially it was not

possible to correctly run the node as it outputted and exotic error message. Fortunately, after a

lot of debugging and contacting the developer behind the laser scan merger repository, it was

possible to find out that the error depended on the type of some of the variables relative to the

point cloud color array encoding, after changing the type from int to uint8_t, the code started

working correctly [33].

Figure 14: The detected points from the three separate laser scanners as seen in the pointcloud, with color separation in

blue, red and green.

42

this->get_parameter_or<uint8_t>("laser1R",laser1R_, 0);

 this->get_parameter_or<uint8_t>("laser1G",laser1G_, 0);

 this->get_parameter_or<uint8_t>("laser1B",laser1B_, 0);

std::string topic1_, topic2_, topic3_, cloudTopic_, cloudFrameId_;

 bool show1_, show2_, show3_;

 float laser1XOff_, laser1YOff_, laser1ZOff_, laser1Alpha_, laser1AngleMin_, laser1AngleMax_;

 uint8_t laser1R_, laser1G_, laser1B_;

The software reads the received distance arrays, computes a trigonometric function to

compute the distance of the collision point detected by scanner A with respect to the desired

virtual LIDAR position and populates a three-dimensional array (cloud topic) with the

computed coordinates.

void update_point_cloud(){

 // RCLCPP_INFO(this->get_logger(), "Hello basic");

 refresh_params();

 //pcl::PointCloud<pcl::PointXYZRGB> cloud_;

 pcl::PointCloud<pcl::PointXYZ> cloud_;

 std::vector<std::array<float,2>> scan_data;

 int count = 0;

 float min_theta = 0;

 float max_theta = 0;

 if(show1_){

 for (float i = laser1_->angle_min; i <= laser1_->angle_max; i += laser1_->angle_increment){

 pcl::PointXYZ pt;

 float temp_x = laser1_->ranges[count] * std::cos(i) + laser1XOff_;

 float temp_y = laser1_->ranges[count] * std::sin(i) + laser1YOff_;

 pt.x = temp_x * std::cos(laser1Alpha_ * M_PI / 180) - temp_y * std::sin(laser1Alpha_ * M_PI /

180);

 pt.y = temp_x * std::sin(laser1Alpha_ * M_PI / 180) + temp_y * std::cos(laser1Alpha_ * M_PI /

180);

 pt.z = laser1ZOff_;

43

 if (i < (laser1AngleMin_ * M_PI / 180)){

 //do nothing

 }else if(i > (laser1AngleMax_ * M_PI / 180)){

 //do nothing

 }else{

 cloud_.points.push_back(pt);

 float r_ = GET_R(pt.x, pt.y);

 float theta_ = GET_THETA(pt.x, pt.y);

 std::array<float,2> res_;

 res_[1] = r_;

 res_[0] = theta_;

 scan_data.push_back(res_);

 if(theta_ < min_theta){

 min_theta = theta_;

 }

 if(theta_ > max_theta){

 max_theta = theta_;

 }

 }

 count++;

 }

 }

The following functions are used to compute the distance from center of the scanner to

the detected points (GET_R), find the angle of the detected point with respect to the mounting

angle of the LIDAR (GET_THETA + interpolate):

float GET_R(float x, float y){

 return sqrt(x*x + y*y);

}

float GET_THETA(float x, float y){

 float temp_res;

 if((x!=0)){

 temp_res = atan(y/x);

44

 }else{

 if(y>=0){

 temp_res = M_PI / 2;

 }else{

 temp_res = -M_PI / 2;

 }

 }

 if(temp_res > 0){

 if(y < 0){

 temp_res -= M_PI;

 }

 }else if(temp_res <0){

 if(x < 0){

 temp_res += M_PI;

 }

 }

 // RCLCPP_INFO(this->get_logger(), "x: '%f', y: '%f', a: '%f'", x, y, temp_res);

 return temp_res;

}

float interpolate(float angle_1, float angle_2, float magnitude_1, float magnitude_2, float

current_angle){

 return (magnitude_1 + current_angle * ((magnitude_2 - magnitude_1)/(angle_2 - angle_1)));

}

45

In the case where more than one collision point is detected for the same virtual scanner

angle, only the closest point is considered. This can happen when the robot is close to an uneven

surface like a corner, in this case while the scanner A sees at the virtual angle 90 degrees a

collision at distance 50cm, scanner B sees at the same angle a collision at distance 100cm; this

problem is due to parallax errors.

The output of the previous snippets of code is sent as cloud type message topic to the

node pointcloud_to_laserscan. Using the cloud topic published by the lidar_merger as a

“collector file” the pointcloud_to_laserscanner node then computes back a two-dimensional

array which contains the distances of the obstacles detected by the three lidar scanners from the

virtual LIDAR at all selected angle fractions and subsequently publishes a message on the topic

connected with the generated virtual scanner. As we can see in the next piece of code, all points

that are visible in the pointcloud but would not be in the distance and height range of the virtual

scanner specifications are rejected:

// Iterate through pointcloud

Figure 15: Schema illustrating a possible instance of the parallax problem

46

 for (sensor_msgs::PointCloud2ConstIterator<float> iter_x(*cloud_msg, "x"),

 iter_y(*cloud_msg, "y"), iter_z(*cloud_msg, "z");

 iter_x != iter_x.end(); ++iter_x, ++iter_y, ++iter_z)

 {

 if (std::isnan(*iter_x) || std::isnan(*iter_y) || std::isnan(*iter_z)) {

 RCLCPP_DEBUG(

 this->get_logger(),

 "rejected for nan in point(%f, %f, %f)\n",

 *iter_x, *iter_y, *iter_z);

 continue;

 }

 if (*iter_z > max_height_ || *iter_z < min_height_) {

 RCLCPP_DEBUG(

 this->get_logger(),

 "rejected for height %f not in range (%f, %f)\n",

 *iter_z, min_height_, max_height_);

 continue;

 }

 double range = hypot(*iter_x, *iter_y);

 if (range < range_min_) {

 RCLCPP_DEBUG(

 this->get_logger(),

 "rejected for range %f below minimum value %f. Point: (%f, %f, %f)",

 range, range_min_, *iter_x, *iter_y, *iter_z);

 continue;

 }

 if (range > range_max_) {

 RCLCPP_DEBUG(

 this->get_logger(),

 "rejected for range %f above maximum value %f. Point: (%f, %f, %f)",

 range, range_max_, *iter_x, *iter_y, *iter_z);

 continue;

 }

47

 double angle = atan2(*iter_y, *iter_x);

 if (angle < scan_msg->angle_min || angle > scan_msg->angle_max) {

 RCLCPP_DEBUG(

 this->get_logger(),

 "rejected for angle %f not in range (%f, %f)\n",

 angle, scan_msg->angle_min, scan_msg->angle_max);

 continue;

 }

 // overwrite range at laserscan ray if new range is smaller

 int index = (angle - scan_msg->angle_min) / scan_msg->angle_increment;

 if (range < scan_msg->ranges[index]) {

 scan_msg->ranges[index] = range;

 }

 }

Figure 16: Unified scanner topic, the detected points with parallax correction are visible in white.

48

Figure 17: Final lidar merger pipeline

49

4.2.2 3D camera cloud

During development, the possibility of extending the obstacle detection through an IR

emitter stereo depth sensor was considered. The 3D camera works by projecting a lattice of

points in the infra-red band, from there, the depth of placement of each point is detected by

determining the position in the frame of both IR cameras positioned at the sides of the sensor.

This depth of field data is then sent to ROS 2 both as a point cloud in a tree dimensional array

and trough an image augmented with depth defined as a six-dimensional tensor [34] (both point

in space and color of pixel expressed in the RGB channels); the color value is obtained through

a third sensor positioned in the center, near the emitter.

Figure 18: Framos 430e depth camera [38]

Figure 19: depth camera simulated inside azebo

50

The cloud topic message can be used by NAV 2 to extend the obstacle detection from a

single plane to the three-dimensional space by projecting a voxel layer in the simulation.

Although this might help avoid collisions with hanging obstacles, the computation overhead

and the added complexity were considered not worth implementing. Moreover, in order to

compute the robot navigation path, the voxel layer gets compressed in the same plane as the

one generated by the LIDAR data contained in the scan topic, making it redundant for all type

of obstacles other than the hanging ones.

4.3 Navigation

In this section we discuss the process of configuring a working localization and

navigation stack. The starting points was to install and test Nav2 (Navigation 2). [35] Despite

being well documented and tested by open-source developers, the process has been affected by

a couple of sensible setbacks. The first one was dependent on some changes to the newest ROS

2 version main, while the second one stemmed from the configuration of the AMR. Both have

been addressed in their subsection.

4.3.1 Installation

The installation process of NAV 2 is easily explained in the library documentation, [35]

it works in a slightly different way from standard ROS 2 packages as it can be installed directly

on the operating system without the need for copying the navigation stack folder in the project

workspace and building from there, this is done using the commands:

$ sudo apt install ros-humble-navigation

$ sudo apt install ros-humble-nav2-bringup

After installing the package, it will be possible to run any of the available scripts directly

from a ROS 2 directory.

4.3.2 Configuration of NAV 2

As with other ROS2 libraries, NAV2 is configured through a YAML file, here we

discuss the most important parameters that define the behavior of the localization stack. [36]

51

amcl:

 ros__parameters:

 use_sim_time: True

 alpha1: 0.2

 alpha2: 0.2

 alpha3: 0.2

 alpha4: 0.2

 alpha5: 0.2

 base_frame_id: "base_footprint"

 beam_skip_distance: 0.5

 beam_skip_error_threshold: 0.9

 beam_skip_threshold: 0.3

 do_beamskip: false

 global_frame_id: "map"

 lambda_short: 0.1

 laser_likelihood_max_dist: 2.0

 laser_max_range: 20.0

 laser_min_range: 0.75

 laser_model_type: "likelihood_field"

 max_beams: 60

 max_particles: 2000

 min_particles: 500

 odom_frame_id: "odom"

 pf_err: 0.05

 pf_z: 0.99

 recovery_alpha_fast: 0.0

 recovery_alpha_slow: 0.0

 resample_interval: 1

 robot_model_type: "nav2_amcl::OmniMotionModel"

 save_pose_rate: 0.5

 sigma_hit: 0.2

 tf_broadcast: true

 transform_tolerance: 1.0

 update_min_a: 0.2

52

 update_min_d: 0.25

 z_hit: 0.5

 z_max: 0.05

 z_rand: 0.5

 z_short: 0.05

 scan_topic: scan

 pointcloud_topic: cloud

 set_initial_pose: True # default: {x: 0.0, y: 0.0, z: 0.0, yaw: 0.0}

To localize, NAV2 uses adaptive Monte-Carlo localization, here we define the most

important parameters that were initially set:

Alpha values: expected noise levels in odometry position and rotation estimates.

Laser values: define the type of sensor used by the robot, in this case the virtual sensor

at the center of the AMR.

Max and mean particles: the starting and final number of particles on which is built

the probability distribution function of the robot position. Each particle is a prediction of the

robots next position, the number of particles decreases as much as the probability of one

position over the other possible ones increases.

Robot model type: defines the type of robot chassis/controller, the available

configurations are differential, omnidirectional (our case) and steering.

Z values: weights of the model which sum must equal 1.

Scan and cloud topic: the topic over which the data used for checking the particles

precision is collected.

4.3.3 Local and Global map error

NAV 2 localization and navigation both are dependent on a local and global map, both

created from detected obstacles. In the first case the local map is generated as 10 meters by 10

meters grid containing all the points coming from the laser scanner in real time. Instead, the

global map is generated with both points coming from a map that can be manually set trough a

bitmap (or generated through a SLAM algorithm such as cartographer) and the points that are

detected trough the local map and “remembered” in the same position even when the robot

leaves that area.

53

NAV 2 localization works with a Monte-Carlo algorithm, by matching the local map

with the global at randomized points and selecting the ones that better approximate the actual

position at successive steps. Instead, the navigation stack uses the global map to generate

movement paths and the local map to avoid collisions with unexpected obstacles.

The problems with both maps arose after the configuration of the library, during testing

inside the Gazebo simulation. We noticed that, even if the robot correctly simulated lidar rays,

the laser merger was working and creating a functional virtual lidar, and Rviz projected the

detected obstacle points, it was impossible to visualize both local and global map.

After intensive search and a lot of changes in the configuration file, it was found that

the problem did not depend on the NAV 2 library but instead on the DDS middleware: in the

ROS Humble version we were using a problem exist where the default DDS vendor (Fast DDS)

is incompatible with the NAV 2 message update frequency. [37] [38] Substituting Cyclone

DDS to Fast solved the problem, this was done using the commands:

$ sudo apt install ros-humble-rmw-cyclonedds-cpp

$ ~/.bashrc export RMW_IMPLEMENTATION=rmw_cyclonedds_cpp

After changing the DDS vendor, local and global map started showing, and testing could

proceed.

4.3.4 Neobotics controller

The second problem encountered was relative to the robot controller. At the start of the

project a robot specification was defined for omnidirectional wheels, but the motion of the

AMR had to follow a differential “pure pursuit” path planning (while maintaining

omnidirectional capabilities) that was not possible to implement with the available NAV 2

controllers. This research for a controller that made available differential control on

omnidirectional wheels led to the Neobotics code stack.

Neobotics is a private company specialized in omnidirectional robot for logistics and

has adapted the NAV libraries for that particular use case. [39]

controller_server:

 ros__parameters:

 # controller server parameters (see Controller Server for more info)

54

 controller_plugins: ["FollowPath"]

 controller_frequency: 100.0

 failure_tolerance: 0.3

 odom_topic: "odom"

 controller_plugin_types: ["neo_local_planner::NeoLocalPlanner"]

 …

 FollowPath:

 plugin: "neo_local_planner::NeoLocalPlanner"

 acc_lim_x : 0.50

 acc_lim_y : 0.50

 acc_lim_theta : 0.8

 max_vel_x : 1.2

 min_vel_x : -0.5

 max_vel_y : 0.5

 min_vel_y : -0.5

 max_rot_vel : 1.0

 min_rot_vel : -1.0

 max_trans_vel : 1.2

 min_trans_vel : -0.5

 # lower limits for localization precision to accept goal reached

 yaw_goal_tolerance : 0.005

 xy_goal_tolerance : 0.01

 # not strictly a time but a set of distances based on robot speed

 goal_tune_time : 2.0

 lookahead_time : 0.4

 lookahead_dist : 1.0

 start_yaw_error : 0.5

 # gains for the pure pursuit algorithm

 pos_x_gain : 10.0

 pos_y_gain : 10.0

 static_yaw_gain : 15.0

 cost_x_gain : 0.1

 cost_y_gain : 0.1

55

 cost_y_lookahead_dist : 0.0

 cost_y_lookahead_time : 0.3

 cost_yaw_gain : 2.0

 low_pass_gain : 0.1

 max_cost : 0.95

 # defines lower limit for curve radius at speed

 max_curve_vel : 0.3

 max_goal_dist : 0.2

 # only used for steering robots

 max_backup_dist : 0.0

 min_stop_dist : 0.6

 # our controller acts just as a differential drive, but has the possibility to switch to holonomic near

target

 differential_drive : false

4.3.5 Neobotics localization

While configuring the Neobotics controller, we found that Neobotics also released a

localization package also based on AMCL but with update optimization using the Gauss-

Newton iterations. [41] We found we could obtain much better localization precision using this

module, so it was added to the stack along with the controller submodule. The following are

the relative configuration parameters used:

neo_localization2_node:

 ros__parameters:

 base_frame: "base_footprint"

 odom_frame: "odom"

 # exponential low pass gain for localization update (0 to 1)

 # (higher gain means odometry is less used / relied on)

 update_gain: 0.5

 # time based confidence gain when in 2D / 1D mode

 confidence_gain: 0.01

 # how many particles (samples) to spread (per update)

56

 sample_rate: 10

 # localization update rate [ms]

 loc_update_time: 100

 # map tile update rate [1/s]

 map_update_rate: 0.5

 # map tile size in pixels

 map_size: 1000

 # how often to downscale (half) the original map

 map_downscale: 0

 # how many 3x3 gaussian smoothing iterations are applied to the map

 num_smooth: 5

 # minimum score for valid localization (otherwise 0D mode)

 # higher values make it go into 0D mode earlier

 min_score: 0.2

 # odometry error in x and y [m/m] [1]

 # how fast to increase particle spread when in 1D / 0D mode

 odometry_std_xy: 0.01

 # odometry error in yaw angle [rad/rad] [1]

 # how fast to increase particle spread when in 0D mode

 odometry_std_yaw: 0.01

 # minimum particle spread in x and y [m]

 min_sample_std_xy: 0.025

 # minimum particle spread in yaw angle [rad]

 min_sample_std_yaw: 0.025

 # initial/maximum particle spread in x and y [m]

 max_sample_std_xy: 0.5

 # initial/maximum particle spread in yaw angle [rad]

 max_sample_std_yaw: 0.5

 # threshold for 1D / 2D decision making (minimum average second order gradient)

 # if worst gradient direction is below this value we go into 1D mode

 # if both gradient directions are below we may go into 0D mode, depending on disable_threshold

 # higher values will make it go into 1D / 0D mode earlier

 constrain_threshold: 0.1

 # threshold for 1D / 2D decision making (with or without orientation)

 # higher values will make it go into 1D mode earlier

57

 constrain_threshold_yaw: 0.2

 # minimum number of points per update

 min_points: 20

 # solver update gain, lower gain = more stability / slower convergence

 solver_gain: 0.1

 # solver update damping, higher damping = more stability / slower convergence

 solver_damping: 1000.0

 # number of gauss-newton iterations per sample per scan

 solver_iterations: 20

 # maximum wait for getting transforms [s]

 transform_timeout: 0.2

 # if to broadcast map frame

 broadcast_tf: true

 # Scan topic

 scan_topic: scan

 # Initial Pose topic

 initialpose: initialpose

 # Map Tile topic

 map_tile: map_tile

 # Map Pose topic

 map_pose: map_pose

 # particle_cloud topic

 particle_cloud: cloud

 # amcl_pose topic

 amcl_pose: amcl_pose

58

Figure 20: Complete navigation stack

59

4.4 Near-target docking methods

The problem behind docking a rechargeable vehicle is not new and has seen many

applications in different fields. There are several ways that have been explored in order to

autonomously connect two bodies for power transmission, in this chapter we will only take into

consideration ones where a moving platform approaches a stationary target without the need

for any kind of adjustment done by the latter or any uncontrolled collision used as alignment

factor (such as mechanical guides).

The most utilized techniques can be grouped into four separate approaches: geometry

detection, reflective markers, emitter detection and optical detection.

Geometry detection: in this case the automated vehicle (or robot) comes equipped with

lidars through which it can see a particular geometric feature on the docking station’s body.

From this feature it can define a precise orientation and distance and then it computes the correct

placement of dock connections. An example of this technique can be seen for the Mir Robot

charging station. Despite being a simple approach, it lacks precision and flexibility, as the

geometric feature must be univocal and could be “hallucinated” by the localization software in

other places inside the working environment. [23]

60

Reflective markers: while still using lidars, this approach involves using retro-

reflective tape strips used as landmarks by the navigation software equipped by the AGV. The

onboard sensors measure both the angle of the reflective surface with respect to the lidar and

the intensity of returned light. Since these markers are placed on rigid locations like walls or

columns and reflect at a wide angle of incidence, they can be trusted for a more precise long

and short-range positioning, especially when present in substantial numbers. Still, the position

of the strips must be inputted in the software manually or mapped and, especially in the case of

a big environment like a warehouse, this can be a tedious and time-consuming process, also

prone to user error. [24] [25]

Figure 21: Mir charging station, notice the triangular indentation.

61

Emitter detection: this approach is based on detection of low-power infrared emitters

placed on the charging station. When in need to dock, the robot starts rotating to seek the

emitter’s light; after detecting both emitted beams, the robot can then center itself in a direction

perpendicular to the charging station by controlling its position until the two emitted beams

have the same intensity. Once the robot is perpendicular to the dock, it proceeds forward until

a preset intensity corresponding to the goal is reached. While being cost effective and quite

precise, this approach entails adding additional emitters to the docking station, and specialized

sensors on the robot body. Even not considering the added cost and lack of flexibility given by

not being able to reuse already present sensors, this approach is not feasible also because it is

regulated by a patent filed by the iRobot company. [26]

Optical detection: Optical detection methods use cameras to detect some

predetermined and easily recognizable features through computer vision to define a particular

space orientation. For this to work the cameras must be properly calibrated to rely accurately

on real world coordinates.

Figure 22: iRobot ir emitter apprach

62

The camera will be able to define a coordinate of the target by a previously set of

features, for this to be feasible, it is necessary to use clearly visible and dimensionally sound

markers, such as Aruco markers.

4.5 Aruco approach

Aruco [46] [47] is a binary square fiducial marker that can be used for camera pose

estimation. It is composed of a wide black border and an inner binary matrix that determines its

identifier. The black border facilitates its fast detection in the image, and the binary codification

allows its identification and the application of error detection and correction techniques. The

Aruco module in OpenCV includes the detection of Aruco markers and tools to employ them

for pose estimation and camera calibration. In our Particular Case Aruco has been used for pose

estimation purposes, through a ROS 2 library that applies OpenCV to generate a six-

dimensional position and orientation frame. [48] This frame is then converted by a custom

algorithm into a quaternion to be easier to work with as a NAV 2 parameter, and a secondary

frame is created with a predefined offset dependent on the Aruco recognition code.

Figure 23: The 3D sketch of a docking station equipped with an Aruco fiducial marker,

later a cube was used.

63

4.5.1 Ros2_Aruco

In order to define a position and orientation pair from a univocal Aruco code we used a

plugin based on the OpenCV library capable of detecting the fiducial markers from a ROS-

enabled camera. The Ros2_Aruco [49] library generates a position vector message of the type:

std_msgs/Header header

int64[] marker_ids

geometry_msgs/Pose[] poses

To detect markers from the AMR camera, the ros2_aruco node subscribes to the

image_topic published by the simulated AMR. Usually, it would be necessary to calibrate the

camera in the real case to correctly identify the camera parameters, but being it defined a priori

based on preferred settings, we can skip this step as it would not improve the positional

precision of detected fiducial markers. It is fair to note that the ros2_aruco node offers the

possibility to calibrate cameras directly from its library using a simple checkerboard pattern

attached to a rigid surface.

Figure 24: Aruco node detecting the fiducial marker attached on the dock placeholder.

64

The following piece of code is the one responsible for retrieving image data from the

camera and publishing the detected markers positions on a specified topic, as we can see

openCV is used to detect corners of the marker and then a set of transformations is applied to

recover the deformation of the detected square:

def image_callback(self, img_msg):

 if self.info_msg is None:

 self.get_logger().warn("No camera info has been received!")

 return

 cv_image = self.bridge.imgmsg_to_cv2(img_msg,

 desired_encoding='mono8')

 markers = ArucoMarkers()

 pose_array = PoseArray()

 if self.camera_frame is None:

 markers.header.frame_id = self.info_msg.header.frame_id

 pose_array.header.frame_id = self.info_msg.header.frame_id

 else:

 markers.header.frame_id = self.camera_frame

 pose_array.header.frame_id = self.camera_frame

 markers.header.stamp = img_msg.header.stamp

 pose_array.header.stamp = img_msg.header.stamp

 corners, marker_ids, rejected = cv2.aruco.detectMarkers(cv_image,

 self.aruco_dictionary,

 parameters=self.aruco_parameters)

 if marker_ids is not None:

 if cv2.__version__ > '4.0.0':

 rvecs, tvecs, _ = cv2.aruco.estimatePoseSingleMarkers(corners,

 self.marker_size, self.intrinsic_mat,

65

 self.distortion)

 else:

 rvecs, tvecs = cv2.aruco.estimatePoseSingleMarkers(corners,

 self.marker_size, self.intrinsic_mat,

 self.distortion)

 for i, marker_id in enumerate(marker_ids):

 pose = Pose()

 pose.position.x = tvecs[i][0][0]

 pose.position.y = tvecs[i][0][1]

 pose.position.z = tvecs[i][0][2]

 rot_matrix = np.eye(4)

 rot_matrix[0:3, 0:3] = cv2.Rodrigues(np.array(rvecs[i][0]))[0]

 quat = transformations.quaternion_from_matrix(rot_matrix)

 pose.orientation.x = quat[0]

 pose.orientation.y = quat[1]

 pose.orientation.z = quat[2]

 pose.orientation.w = quat[3]

 pose_array.poses.append(pose)

 markers.poses.append(pose)

 markers.marker_ids.append(marker_id[0])

 self.poses_pub.publish(pose_array)

 self.markers_pub.publish(markers)

66

4.5.2 Docking_node

After obtaining the position of the Aruco code, the docking node translates the

orientation part of the vector from a quaternion into roll, pitch and yaw angles. After obtaining

the RPY coordinates it then computes a predefined transformation between the Aruco

coordinates and the actual docking position. Having obtained the transformation, the orientation

is translated back into a quaternion and published as docking coordinates. Transferring the

rotation coordinates from a quaternion to Euler angles and then back is done to manage changes

to the code faster and with less errors.

def marker_callback(self, marker_msg):

 self.marker_msg = marker_msg

 self.marker_poses = self.marker_msg.poses

 self.marker_ids = self.marker_msg.marker_ids

 docks = ArucoMarkers()

 docks_array = PoseArray()

 docks.header.frame_id = self.camera_frame

 docks_array.header.frame_id = self.camera_frame

 if self.marker_ids is not None:

 for i, marker_id in enumerate(self.marker_ids):

 pose = Pose()

 mark = self.markers_transforms

 pose.position.x = self.marker_poses[i].position.x + mark[7*marker_id]

 pose.position.y = self.marker_poses[i].position.y + mark[7*marker_id + 1]

 pose.position.z = self.marker_poses[i].position.z + mark[7*marker_id + 2]

 quaternion1 = np.array((0,0,0,0), dtype=np.float64)

 quaternion1[0] = self.marker_poses[i].orientation.x

 quaternion1[1] = self.marker_poses[i].orientation.y

 quaternion1[2] = self.marker_poses[i].orientation.z

 quaternion1[3] = self.marker_poses[i].orientation.w

 quaternion0 = mark[7*marker_id+3 : 7*marker_id+7]

67

 final_orientation = transformations.quaternion_multiply(quaternion1, quaternion0)

 pose.orientation.x = final_orientation[0]

 pose.orientation.y = final_orientation[1]

 pose.orientation.z = final_orientation[2]

 pose.orientation.w = final_orientation[3]

 docks_array.poses.append(pose)

 docks.poses.append(pose)

 docks.marker_ids.append(marker_id)

 # self.get_logger().info("aruco node %d" %(docks.marker_ids[0]))

 self.dock_poses_pub.publish(docks_array)

 self.docks_pub.publish(docks)

68

Figure 26: Generated dock position, at this stage, we were considering wireless charging

from a plate placed on thop of the robot

Figure 25: Second configuration with a docking area placed on the ground,

to change placement it was only necessary to change the transform vector

69

4.6 Planar controller

In this section the action responsible for steering the robot omnidirectionally to a set

position is shown. This action is based on a modified pure pursuit controller [50] and uses a

proportional derivative control to determine the velocities sent to the robot wheels. The action

does not consider possible obstacles, this is done on purpose, since the standard navigation

stack considers the docking station itself as an obstacle, generates an inflation map from the

detected points and prevents the robot from reaching the contact point if the latter is in the

restricted area. In fact, with both the Neobotics and Nav2 stack, the robot stops moving and

goes into error mode as soon as part of the collision area enters the inflation map.

The following is the piece of code implementing the planar controller:

class PlanarController():

 def __init__(self, linear_k, angular_k, linear_max, angular_max):

 self.linear_k = linear_k

 self.angular_k = angular_k

 self.linear_max = linear_max

 self.angular_max = angular_max

 def clip(self, val, min_, max_):

 return min_ if val < min_ else max_ if val > max_ else val

 def compute_error(self, curr_robot_pose, curr_goal_pose):

 robot_quat_exp = [curr_robot_pose.pose.orientation.w, curr_robot_pose.pose.orientation.x,

 curr_robot_pose.pose.orientation.y, curr_robot_pose.pose.orientation.z]

 robot_euler = quat2euler(robot_quat_exp)

 goal_quat_exp = [curr_goal_pose.orientation.w, curr_goal_pose.orientation.x,

 curr_goal_pose.orientation.y, curr_goal_pose.orientation.z]

 goal_euler = quat2euler(goal_quat_exp)

 robot_roll, robot_pitch, robot_yaw = robot_euler[0], robot_euler[1], robot_euler[2]

 goal_roll, goal_pitch, goal_yaw = goal_euler[0], goal_euler[1], goal_euler[2]

70

 err_local = [- curr_goal_pose.position.x ,

 - curr_goal_pose.position.,

 robot_yaw - goal_yaw]

 dist_x_error = err_local[0]

 dist_y_error = err_local[1]

 rot_error = err_local[2]

 return dist_x_error, dist_y_error, rot_error

 def compute_velocities(self, curr_robot_pose, curr_goal_pose, rot_to_goal_satisfied,

dist_x_to_goal_satisfied, dist_y_to_goal_satisfied):

 robot_quat_exp = [curr_robot_pose.pose.orientation.w, curr_robot_pose.pose.orientation.x,

 curr_robot_pose.pose.orientation.y, curr_robot_pose.pose.orientation.z]

 robot_euler = quat2euler(robot_quat_exp)

 goal_quat_exp = [curr_goal_pose.orientation.w, curr_goal_pose.orientation.x,

 curr_goal_pose.orientation.y, curr_goal_pose.orientation.z]

 goal_euler = quat2euler(goal_quat_exp)

 robot_roll, robot_pitch, robot_yaw = robot_euler[0], robot_euler[1], robot_euler[2]

 goal_roll, goal_pitch, goal_yaw = goal_euler[0], goal_euler[1], goal_euler[2]

 err_local = [- curr_goal_pose.position.z,

 - curr_goal_pose.position.x,

 goal_yaw - robot_yaw]

 k1 = self.linear_k

 k2 = self.angular_k

 max_v = self.linear_max

 max_w = self.angular_max

 if not (dist_x_to_goal_satisfied) and rot_to_goal_satisfied:

71

 v_x_in = k1 * err_local[0]

 else:

 v_x_in = 0.0

 if not (dist_y_to_goal_satisfied) and rot_to_goal_satisfied:

 v_y_in = k1 * err_local[1]

 else:

 v_y_in = 0.0

 if not rot_to_goal_satisfied:

 w_in = k2 * err_local[2]

 else:

 w_in = 0.0

 v_x_in = self.clip(v_x_in, -max_v, max_v)

 v_y_in = self.clip(v_y_in, -max_v, max_v)

 w_in = self.clip(w_in, -max_w, max_w)

 return v_x_in, v_y_in, w_in

The planar controller is contained in a class for easier implementation and use trough

an action server, the class contains two main functions which depend on parameters which can

be defined trough a configuration file just like other ROS2 libraries:

The compute error function outputs the difference between the z axis orientation of the

robot and the orientation of the marker, it also generates two x and y errors based on the position

of the Aruco marker relative to the camera. This is done by obtaining a transformation from the

map to the base frame of the AMR (base_footprint in our case) and then comparing the obtained

coordinates and quaternion with the Pose message received from the /dock_poses topic, this

function is used to check if the AMR has reached the target.

The compute_velocities function takes computes again the errors, in this way it can

work without the need to call the error function, then uses the computed errors multiplied by a

gain parameter (defined in the configuration file) to define the velocities to send to the cmd_vel

node.

72

The planar controller is called by the planar move action server, which is started by calling an

action from the command line with the name of the desired topic containing the dock poses.

The following code represents the most important part of the planar move action server:

def execute_callback(self, goal_handle: ServerGoalHandle):

 # self.subscription.destroy()

 topic_name = goal_handle.request.topic_name

 # Subscribe to the specified topic

 self.subscription = self.create_subscription(

 PoseArray,

 topic_name,

 self.message_callback,

 1

)

 # goal_pose = goal_handle.request.goal_pose

 goal_pose = self.goal_pose

 # goal_time = goal_handle.request.time

 self.get_logger().info("Received a goal from client")

 # self.get_logger().info(str(goal_pose.orientation))

 dist_to_goal_satisfied = False

 rot_to_goal_satisfied = False

 dist_x_to_goal_satisfied = False

 dist_y_to_goal_satisfied = False

 rate = self.create_rate(10)

 feedback_msg = PlanarMove.Feedback()

 result = PlanarMove.Result()

73

 while not (dist_to_goal_satisfied and rot_to_goal_satisfied) and rclpy.ok():

 # goal_pose = goal_handle.request.goal_pose

 # goal_pose = self.goal_pose

 self.get_logger().info("Processing goal")

 curr_robot_pose = self.helpers.get_curr_robot_pose(

 now=self.get_clock().now(),

 logger=self.get_logger(), base_frame=self.base_frame)

 self.get_logger().info(str(curr_robot_pose))

 curr_dist_to_goal = self.helpers.pose_euclidean_dist(

 curr_robot_pose.pose, goal_pose)

 if dist_x_to_goal_satisfied and dist_y_to_goal_satisfied:

 dist_to_goal_satisfied = True

 dist_x_error, dist_y_error, rot_error = self.controller.compute_error(

 curr_robot_pose, goal_pose)

 self.get_logger().info(str(rot_error))

 if not goal_handle.is_active:

 self.get_logger().info('Goal aborted')

 return PlanarMove.Result()

 if goal_handle.is_cancel_requested:

 goal_handle.canceled()

 self.get_logger().info('Goal canceled')

 return PlanarMove.Result()

 if abs(rot_error) < self.rotation_error_tolerance:

 self.get_logger().info(

 "Corrected the heading")

74

 rot_to_goal_satisfied = True

 if rot_to_goal_satisfied and abs(dist_y_error) < self.dist_error_tolerance:

 self.get_logger().info(

 "We are at y goal now, adjusting to correct heading")

 dist_y_to_goal_satisfied = True

 if rot_to_goal_satisfied and abs(dist_x_error) < self.dist_error_tolerance:

 self.get_logger().info(

 "We are at x goal now, adjusting to correct heading")

 dist_x_to_goal_satisfied = True

 feedback_msg.distance = curr_dist_to_goal

 goal_handle.publish_feedback(feedback_msg)

 if (dist_to_goal_satisfied and rot_to_goal_satisfied):

 goal_handle.succeed()

 result.target_reached = True

 self.get_logger().info("Navigation was a success")

 # destroy subscription for next exec callback

 v_x_in, v_y_in, w_in = self.controller.compute_velocities(

 curr_robot_pose, goal_pose, rot_to_goal_satisfied, dist_x_to_goal_satisfied,

dist_y_to_goal_satisfied)

 # Publish required velocity commands

 computed_velocity = Twist()

 computed_velocity.linear.x = v_x_in

 computed_velocity.linear.y = v_y_in

 computed_velocity.angular.z = w_in

 self.pub.publish(computed_velocity)

 rate.sleep()

 return result

75

 def message_callback(self, pose_msg):

 self.pose_msg = pose_msg

 # we later will be able to choose between multiple detections by iterating the poses array

 self.goal_pose = self.pose_msg.poses[0]

 # self.get_logger().info(str(self.goal_pose))

The execute callback function is called every time an action is requested by the action

server. When activated, the callback function generates a subscription to the PoseArray topic

specified in the action request. The message callback function is responsible for unpacking the

first detected pose contained in the poses array and making it available for the execute callback

function. When this happens, the execute callback enters a loop which end only when the goal

is reached or when the action is aborted.

Inside the loop, the target reached condition is periodically checked. While the condition

is not satisfied, the execute callback keeps updating speeds sent to the cmd_vel with the values

obtained from calling the planar controller compute velocities function.

76

4.7 Complete approach and docking stack.

As we have seen in the previous sections, during this thesis we worked on two different

separate movement functions.

The first one is based on automatic Monte Carlo localization: it localizes itself in the

environment by comparing the data it receives with the data it should see at a variable number

of plausible candidate positions. The AMR uses the resulting coordinate to plan a path from the

current position to the desired one, the computed path takes into account obstacles using an

inflation map and is capable of updating the path if additional obstacles are detected.

Figure 27: Docking stack with Aruco detection.

77

The second movement function instead of considering the position of the robot relative

to the map, computes the difference between the current robot position and the desired target,

using OpenCV to detect a marker that has a known distance from the contact point between

AMR and docking station. This is mandatory for a two fold reason: it permits us to detach from

the standard navigation stack, which as previously said would prevent us from reaching points

close to potential obstacles, and also gives us a fairly precise method of near-object localization

that would be difficult to implement precisely with lidars.

Both the movement functions send updates to the cmd_vel node, which is responsible

of relaying the actuator speeds (in our case wheel rotation both around z and x axis) to the AMR

drivers.

78

Figure 28: The complete approach and docking stack

79

4.8 Approach and dock action

In this section, we will describe in detail the complete function that allows for navigation

from a random point in space up to the completion of docking has been created as a set of

successive actions. Firstly, the robot navigates to a goal that has been set through the action

message, then it checks for the Aruco marker in the field of view of the camera. If the fiducial

marker is detected, the function generates a separate goal in the global map to which the robot

moves, again using standard navigation. Finally, the robot checks again for the Aruco marker

and moves forward using a feedback position control comparing the position of the center of

the robot with the goal in the 2D map.

Figure 29: Flow chart of the approach and

 docking procedure

80

4.8.1 Initial navigation

Navigation is started sending the action message:

$ ros2 action send_goal -f /amr_actions amr_actions/action/Approach "goal_pose: {header:

{frame_id: map}, pose: {position: {x: 0.0, y: 0.0, z: 0.0}, orientation:{x: 0.0, y: 0.0, z: 0, w: 1.0000000}}}"

To piece together approach and docking, a state machine was used, which states are

defined as follows:

class ApproachState(Enum):

 READ_POSE = 0

 GO_TO_POSE = 1

 WAIT_REACH_POSE = 2

 GO_TO_DOCK = 3

 TARGET_REACHED = 4

After receiving the action message, the AMR navigation stack guides the robot to the

specified location by following the generated path through the Neobotics controller. This

location is expected to be in the right spot and orientation where an Aruco code is visible in the

camera field of view.

if self.state == 1: #GO TO 1st TARGET POSE

 self.navigator.goToPose(self.goal_pose)

 self.state = 2

if self.state == 2: #WAIT TO REACH TARGET POSE

 self.yaw_error = np.abs(self.currentAngle - self.TargetAngle)

 self.x_error = np.abs(self.currentPose[0] - self.target_offset[0])

 self.y_error = np.abs(self.currentPose[1] - self.target_offset[1])

81

 if self.navigator.isNavComplete() or (self.x_error < self.diff_x and self.y_error < self.diff_y and

self.yaw_error < self.diff_yaw):

 self.navigator.cancelNav()

 self.yaw_error = np.abs(self.currentAngle - self.TargetAngle)

 self.x_error = np.abs(self.currentPose[0] - self.target_offset[0])

 self.y_error = np.abs(self.currentPose[1] - self.target_offset[1])

 self.get_logger().info("Orientation and 1st offset position reached! \nErrors: {:.3f} {:.3f}

{:.3f}".format(self.x_error, self.y_error, self.yaw_error))

 self.get_logger().info("Actual X: {:.3f}\nActual Y: {:.3f}\nActual Angle:

{:.3f}".format(self.currentPose[0], self.currentPose[1], self.currentAngle))

 time.sleep(5) #Sleep to let stabilize pose estimation

 self.get_logger().info("Waiting for new Pose Estimation...")

 self.target_received = False

 self.state = 3

4.8.2 Position feedback controller

The function then switches the control of the speed and orientation of the robot from the

NAV 2 stack to a position feedback controller which increased or decreased forward speeds

and angles depending on the positional error between the offset goal and the center of the robot

until reaching a small enough limit. The action is called from the action client and waits for a

response from the docking action.

if self.state == 3: DOCKING

 self.dockingClient.send_goal(“/dock_poses”)

 self.state = 4

if self.state == 4: TARGET REACHED

 if self.dockingClient.reached = True:

 self.dockingClient.send_goal(“/dock_poses”)

 goal_manager.finished = True

When the docking action is completed, the approach and docking action server returns

a completed task.

82

83

5 RESULTS

In this chapter we will analyze the results obtained during the project. While not strictly

connected with the final desired docking action, the intermediate steps were important to ensure

the functionality of the AMR.

5.1 Localization precision

This section presents the results of the precision of localization for the autonomous robot

in various scenarios. The experiments were conducted to evaluate the performance of the

localization system under different conditions and to define its accuracy and robustness.

5.1.1 Experimental Setup

The experiments were conducted in the same simulated environment as the laser merged

tests. In this case, while still being equipped with three different lasers, we considered the robot

to only have a single scanner placed at the center of the chassis, using the previously defined

merging methods.

On top of that an IMU (Inertial Measurement Unit), and a camera were simulated. The

localization algorithm used for this study was based on an Extended Kalman Filter (EKF) [51]

that fused data from IMU and Odom sensor to better estimate the robot's odometry (position

and orientation) in real-time and sent it to two different localization stacks: the one provided

from nav2, and the one developed by Neobotics. In addition, the nav2 stack was tested for its

response to the use of only the /cloud, /scan or both topics together. This was done to if there

was a difference using data piped trough the pointcloud_to_laserscan node. To measure the

localization precision, the computed covariance contained in the amcl_pose topic was used.

The position covariance estimates the precision of the localization during the automatic

Monte Carlo localization, and as such is a good tool to acquire the localization precision in a

simulation. The required value of x, y and z orientation covariances are recorded together with

the contents of the amcl_pose messages using the ros2 bag [52] function, which generates a

database with .db3 extension. Working with a database was not a good option for us, so we

opted to convert all data to a text .csv file which made it easier to work with both using excel

or a python script. This conversion was applied using another Ros package: ros2bag_convert

[51] which automatically generates a .csv file from the database ingested.

84

Finally, from the .csv file, a python script was used to generate a box graph of the

recorded covariances.

5.1.2 Static Localization

In the first set of experiments, the robot was placed at the center of the benchmark map,

in a position from which only a moderate amount of features from the map was visible, the

position covariances measured were recorded in a ros2 bag of the amcl_poses and then, as

before, passed through the visualizer.py file which parses recorded data and plots the box graphs

relative to the variance and covariance of x and y axes, plus the z orientation.

5.1.3 Static Localization Precision Results

In these experiments, the robot's estimated pose closely matched the ground truth values,

with average errors in the order of fraction of a centimeter for position and degrees for

orientation. These results demonstrate the high precision of static localization.

Figure 30: Covariance measurements pipeline

85

5.1.4 Dynamic Localization

Dynamic localization tests were conducted to assess the system's performance while the

robot was in motion. The robot followed predefined trajectories along different routes that

simulated the operation in three different environments: a corridor, a wall, and a feature rich

mazelike building. While in motion, the registered covariance was measured and stored in a

bag file. The following are the results for the localization precision in motion using:

A) The nav2 stack using only the data coming from the simulated laser scan topic

(parallax effect removed)

B) The nav2 stack using only the data coming from the pointcloud where all three scan

points are contained

C) The nav2 stack using data coming from both the /cloud and /scan topics

D) The Neobotics stack

All four instances were measured in the three different scenarios and graphed in a box

plot.

We start with the measurements in the aisle:

86

Figure 32: Aisle path on RVIZ

Figure 31: box graph of nav2 aisle covariance using only the LIDAR data.

87

Figure 34: box graph of nav2 aisle covariance using only the pointcloud data. Figure 33:box graph of nav2 aisle covariance using both scan and pointcloud data.

88

Then we proceed with the measurements taken while moving along a wall:

Figure 36: Box graphs of covariance values during navigation trough the aisle with neobotics

Figure 35: RVIZ visualization of wall path

89

Figure 38: box graph of nav2 wall covariance using only the LIDAR data

Figure 37box graph of nav2 wall covariance using only the pointcloud data.

90

Figure 39: localization covariance along the wall with nav2 or neobotics

Figure 40:box graph of nav2 aisle covariance using both scan and pointcloud data.

91

Finally, we consider the measurements taken inside the “building”, a placeholder for a

feature rich environment:

Figure 41:RVIZ visualization of the path inside the building

Figure 42box graph of nav2 building covariance using only the pointcloud data.

92

Figure 43: box graph of nav2 building covariance using only the LIDAR data.

Figure 44:box graph of nav2 aisle covariance using both scan and pointcloud data.

93

5.1.5 Robustness Assessment

To further evaluate the performance of the localization system, experiments were

conducted in challenging scenarios, including mesh obstacles and obstructed views. The system

demonstrated robustness by consistently providing accurate localization estimates in these

scenarios, albeit with slightly increased uncertainty.

Figure 45: Box graphs of covariances of neobotics localization inside the building

94

5.1.6 Discussion

These results indicate that the localization system maintains a high level of precision

even when the robot is in motion, but more importantly that the use of the virtualized scanner

instead of the point cloud (or even both of them together) is not comparable in precision with

respect to the Neobotics stack, which has shown to be more reliable and precise in all of the

scenarios presented. We noticed the greatest uncertainty in positioning was recorded while

navigating near the wall in the direction parallel to it, this is due to the absence of features from

which the localization stack can calculate the positioning probability using AMCL.

The least precision difference between the Neobotics localization stack and the nav2

was recorded while navigating along the wall using both scan and pointcloud source of data for

the nav 2 localization. In that case, the Neobotics localization was three times more precise,

dropping from 1.5 meters squared on the x axis (worst offender among the four parameters) to

0.5 m^2, than the nav2 library. In the worst case, which was recorded by also navigating along

the wall but using only data from the virtual lidar source for the nav2 library, dropping from 23

m^2 to 0.5 m^2 on the x axis, the difference in precision with respect to the Neobotics library

was almost fifty times higher. On average, Neobotics was ten times more precise in localizing

the robot than the Nav2 library using both scan and pointcloud source, and 30 times more

precise than the Nav2 library using only the virtual lidar data.

There was not much difference in precision between the only scan topic case and only

the pointcloud case, while precision increased while using both. We theorize that the simple

fact of having more data, even if redundant, helped the Nav2 localization algorithm.

5.2 Aruco and dock positioning precision

This section presents the results of using the Aruco codes as positioning tool, with frame

coordinates recorded in the simulation. The dock placement precision was also evaluated.

95

5.2.1 Experimental Setup

Much in the same way to what was done for measuring the precision of the localization

stack (approach stack) a benchmark environment was implemented with the addition of a dock

in a fixed position with respect to the AMR, such that the Aruco marker would be visible in the

camera field of view. Firstly, the AMR was kept still to measure the precision of positioning of

the markers in a stationary condition, then the AMR was moved in a straight line away from

the marker at a slight angle with the dock, to keep the marker still in view but measure the

reaction to a different angle of visualization.

Other than that, while measuring the precision of the maker detection, the generated

dock frame position, the one to which the robot was meant to navigate to, was measured. This

was done to check how imprecisions in the marker detection would detect target frame

positioning.

Figure 46: Experimental setup for marker detection precision

96

5.2.2 Data capture and visualization

To capture necessary data for measurements the ROS2 bag function was used, and the

ingested data was transferred from a .db3 database to a .csv file for ease of use. In this case

though, being the data easy enough to process by hand and not in large number, instead of using

a python script the box graphs were generated by manually adapting the .csv file to use with

excel and from there using the insert graph functionality after converting the quaternion to a z

orientation.

Figure 47: marker and dock variation measurement pipeline

97

5.2.3 Aruco placement Accuracy

Figure 48: Box graph of Aruco positioning precision with a moving robot.

Figure 49: Box graph of Aruco positioning precision with a stationary robot.

98

5.2.4 Aruco Accuracy Results

The accuracy of placement of the marker is extremely high in the static case, naturally

this is in part due to the ideal condition of the simulated benchmark, but it shows nonetheless

the robustness of the method. While moving we can see the lateral precision drop, especially as

the robot moves at an angle and gets further away from the marker, with less pixels available

to compute the correct orientation and placement. In this case, the greatest dispersion of marker

localization coordinates was of ± 0.3 cm on the x axis.

99

5.2.5 Dock placement Accuracy

Figure 50: Box graphs of dock positioning precision with a stationary robot.

Figure 51: Box graphs of dock positioning precision with a moving robot.

100

5.2.6 Dock Accuracy Results

As much as with the marker, we see optimal accuracy in the static case, and variable

accuracy with the robot in motion, this is worsened by the fact the placement of the dock with

a fixed position with respect to the marker acts as a lever of sort, making positioning errors of

the markers worse as the desired displacement from connection point and marker is increased.

This means that the marker has to be positioned as close as possible to the connection point to

reduce drifts.

5.3 Docking action precision and time to complete

This section presents the results of the final docking function of the robot, which is a

critical component of its autonomous navigation and interaction capabilities. The experiments

aimed to evaluate the precision of the docking process in terms of alignment accuracy and the

time required to successfully complete the docking operation. Also in this case, the worst

recorded spread of connection point coordinates was ± 0.4cm along the x axis and ± 0.03° of

orientation around the z axis.

101

5.3.1 Docking Station

The docking station as usual was equipped with a fiducial marker for visual recognition

and alignment. The robot's task was to autonomously navigate to the proximity align itself with

the docking station. A lip was added on the bottom of the dock to simulate a connection point,

and check whether it could interfere with the approach of the robot.

5.3.2 Alignment Accuracy

The primary measure of precision was the alignment accuracy achieved during the

docking process. To evaluate this, the robot was tasked with approaching the docking station

from different starting positions and orientations. The alignment accuracy was quantified by

measuring the final position and orientation error relative to the desired docking position.

In general, the total accuracy was mostly dependent on the docking part of the action,

with results depending on the distance the dock target was set with respect to the Aruco marker,

we managed to get a precision of ± 1cm with x and y axis position, and ± 0.3 degrees of

orientation around the z axis.

Figure 52: Improved docking station model with added bottom lip

102

5.3.3 Approach and Docking Time

The time required for the robot to complete the docking operation was another critical

metric of performance. The approach time was measured from the start of movement up until

reaching the final position with the camera pointed toward the marker. The docking time was

measured from the moment the robot started moving towards the docking station until it

successfully exited the action.

Since the docking action always happened at the same distance from the docking station,

the recorded time were mostly the same at around 17 seconds. The only case where the action

slowed down slightly was due to the shadow from the robot interfering with the marker

precision and generating some fluttering in the detection placement.

The approach times naturally varied based on distance and variation of the path, times

were measured from a set of starting positions, naturally in the optimal conditions of a

simulation times from the same position were almost identical, here are the results:

Figure 53: RVIZ visualization during approach and docking

103

Table 1: Approach times from different starting positions

Position Arrow number Path distance (m) Time (s)

Front right 1 1 15

Front near 2 3 20

Far right 3 9 34

Building center 4 12.5 40

Building far left 5 25 55

Figure 54: starting points of approach time measurements.

104

5.3.4 Discussion

The results of the final docking function experiments demonstrate the robot's precision

and efficiency in aligning itself with the docking station. The achieved alignment accuracy,

with minimal final position and orientation errors, will ensure a secure and reliable connection

with the docking station.

Furthermore, the efficient docking time of approximately 17 seconds confirms the

practicality and effectiveness of the robot's docking algorithm in real-world applications, such

as autonomous recharging.

These results underscore the successful development and implementation of the robot's

final docking function, enhancing its autonomy and usability in various industrial and logistics

scenarios.

105

106

6 CONCLUSIONS

When the thesis started, the final goal of the project was defining and testing technique

to safely navigate and dock an AMR in a warehouse environment using lidars and a camera in

the shortest possible time.

The objective has been achieved by combining a mix of long-range navigation based on

adaptive Monte Carlo localization (AMCL) and short-range navigation based on Aruco marker

positioning. In the proposed algorithm, firstly the robot base receives an action goal from the

user on the approximate location of a docking station, the action is started and calls for the

Neobotics neo-nav2 library to navigate to the set location.

Once the position is reached, the action switches to the custom docking action we

developed. The docking action takes the target dock frame generated by the amr_docking node

we discussed in chapter 4, section 5 which is responsible for localizing the docking station

contact point based on the detected Aruco marker.

The docking action steers the AMR to the precise location of the contact point (which can be

configured as a transformation with respect to the fiducial marker) using a planar controller

with proportional action.

The developed function can complete the docking procedure with times that are variable

based on the distance of the robot from the desired position, but in general the final procedure

which brings the AMR from an approximate position in view of the marker to the connection

point lasts around 17 seconds, with very small variations based on lighting conditions. The

precision of the procedure is of 1 cm for the x and y axis of movement and of 0.3 degrees of

rotation around the z axis positioned at the center of the robot.

 It is necessary to underline that, currently, the developed Auotonomous Mobile Forklift

is still in testing phase, and as such the docking procedure cannot be tested yet in a real scenario.

However, considering that in simulations the method is very reliable, accurate and fast, it is

possible to assume that with the proper changes to the configuration files, and a correct

calibration of the camera sensor, it could be possible to test it effectively soon on the physical

robot.

107

Future additions to the function would probably be to develop another service to put

between the approach and docking phase which checks the dock poses topic in order to assess

if any marker is visible to the camera, and eventually to revert to navigation if not.

Another upgrade to the docking action could be to change the planar controller from a

proportional control to a proportional-integral-derivative one, to improve the speed and

precision of the robot by sending smoother velocity curves to the cmd_vel node.

In conclusion, it can be stated that the original objective of the thesis has been achieved

and the proposed docking function, along with the supporting nodes for marker detection and

sensor fusion, ensures a safe and precise movement up to the docking connection with minimal

resources required in term of docking station remodeling. Moreover, the introduction of

autonomous docking for an AMR fleet ensures longer uptimes, less man hours needed and an

improvement to efficiency in a logistics and industrial environment.

108

109

BIBLIOGRAPHY

[1] U. G., Automated Guided Vehicle systems, Springer, 2015.

[2] IMA, "Imamagnet," IMA, [Online]. Available: https://imamagnets.com/en/blog/agv-magnetic-

tape-and-its-advantages/.

[3] R. Rayner, "bluebotics," Bluebotics, [Online]. Available: https://bluebotics.com/agv-

navigation-methods-virtual-path-following/.

[4] Bastian Solutions, "Bastian Solutions," [Online]. Available:

https://www.bastiansolutions.com/solutions/technology/automated-guided-vehicles/vision-

guided-vehicles/.

[5] T. Ganesharajah, N. Hall and C. Sriskandarajah, "Design and operational issues in AGV-served

manufacturing systems," Annals of Operations Research, vol. 109, no. 154, p. 76, 1998.

[6] C. Feledy and M. S. Luttenberger, A State of the Art Map of the AGVS Technology, Lund: Lund

University, 2017.

[7] Agilox, "One," [Online]. Available: https://www.agilox.net/en/product/agilox-one/.

[8] Agilox, "Agilox Sofware," [Online]. Available: https://www.agilox.net/en/software/.

[9] J. David and T. Rognvaldsson, "Multi-Robot Routing Problem with Min–Max Objective,"

MDPI, 2021.

[10] ROS2, "ROS2 home," [Online]. Available: https://docs.ros.org/en/humble/index.html.

[11] ROS, "ROS-Robot Operating System," [Online]. Available: https://www.ros.org/.

[12] OpenCV, "OpenCV," [Online]. Available: https://opencv.org/.

[13] ROS2, "Understanding Nodes," [Online]. Available:

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-

Nodes/Understanding-ROS2-Nodes.html.

[14] CycloneDDS, "CycloneDDS," [Online]. Available: https://cyclonedds.io/.

[15] The Robotics Back-End, "ROS1 vs ROS2, Practical Overview For ROS Developers," [Online].

Available: https://roboticsbackend.com/ros1-vs-ros2-practical-overview/.

[16] ROS2, "Topics," [Online]. Available: https://docs.ros.org/en/humble/Concepts/Basic/About-

Topics.html?highlight=topics.

[17] ROS2, "Basic Concepts," [Online]. Available:

https://docs.ros.org/en/humble/Concepts/Basic.html?highlight=graph.

[18] ROS2, "Services," [Online]. Available: https://docs.ros.org/en/humble/Concepts/Basic/About-

Services.html.

[19] ROS2, "Actions," [Online]. Available: https://docs.ros.org/en/humble/Concepts/Basic/About-

Actions.html.

[20] ROS2, "Launch," [Online]. Available: https://docs.ros.org/en/humble/Concepts/Basic/About-

Launch.html.

[21] ROS 2, "Parameters," [Online]. Available:

https://docs.ros.org/en/humble/Concepts/Basic/About-Parameters.html.

[22] Open Robotics, "Gazebo Features," [Online]. Available: https://gazebosim.org/features.

[23] ROS2, "Building a visual robot from scratch," [Online]. Available:

https://docs.ros.org/en/humble/Tutorials/Intermediate/URDF/Building-a-Visual-Robot-

Model-with-URDF-from-Scratch.html.

[24] ROS2, "Building a movable robot model," [Online]. Available:

https://docs.ros.org/en/humble/Tutorials/Intermediate/URDF/Building-a-Movable-Robot-

110

Model-with-URDF.html.

[25] ROS2, "Adding Physical and collision properties," [Online]. Available:

https://docs.ros.org/en/humble/Tutorials/Intermediate/URDF/Adding-Physical-and-Collision-

Properties-to-a-URDF-Model.html.

[26] NAV 2, "Simulating Sensors using gazebo," [Online]. Available:

https://navigation.ros.org/setup_guides/sensors/setup_sensors.html?highlight=sensors#simula

ting-sensors-using-gazebo.

[27] Rviz, "Rviz package summary," [Online]. Available: http://wiki.ros.org/rviz.

[28] Nav 2, "Environmental Representation, Costmaps and Layers," [Online]. Available:

https://navigation.ros.org/concepts/index.html.

[29] Ros 2, "Creating a Workspace," [Online]. Available:

https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Creating-A-

Workspace/Creating-A-Workspace.html.

[30] A. Gupta, "Merging data from multiple Lidars in ROS," [Online]. Available:

https://medium.com/@amritgupta1999/merging-data-from-multiple-lidar-s-in-ros-

e890fb60cbbf.

[31] C. Igor, "pc_convert_concat_lidar_scan," [Online]. Available: https://github.com/crescent-

igor/pc_convert_concat_LIDAR_scan/blob/master/concat_convert_pc_laserscan.cpp.

[32] M. Jonathan, "ros2_laser_scan_merger," [Online]. Available:

https://github.com/mich1342/ros2_laser_scan_merger.

[33] F. Guarda and M. Jonathan, "error: call of overloaded ‘PointXYZRGB(int&, int&, int&)’ is

ambiguous," [Online]. Available:

https://github.com/mich1342/ros2_laser_scan_merger/issues/1.

[34] ROS, "sensor_msgs/PointCloud2 Message," [Online]. Available:

https://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointCloud2.html.

[35] S. Macenski, F. Martin, R. White and J. G. Clavero, "The marathon 2: a navigation system," in

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS, 2020.

[36] Nav 2, "Getting started," [Online]. Available:

https://navigation.ros.org/getting_started/index.html.

[37] Nav 2, "configuration guide," [Online]. Available:

https://navigation.ros.org/configuration/index.html.

[38] A. Aposhian, "Fast-DDS Service Reliability sometimes hangs lifecycle manager," [Online].

Available: https://github.com/ros-planning/navigation2/issues/3033.

[39] Y. Goumaz, "Fix random Nav2 failure with Fast DDS," [Online]. Available:

https://github.com/cyberbotics/webots_ros2/pull/672.

[40] Neobotix, "neobotix navigation," [Online]. Available:

https://github.com/neobotix/navigation2.

[41] neobotics, "neo_localization," https://neobotix-docs.de/ros/packages/neo_localization.html.

[42] S. V. e. al, "Automatic precision docking for autonomous mobile robot in hospital logistics -

case-study: battery charging," in Conf. Ser.: Mater. Sci. Eng., 2021.

[43] A. Federman, "Using laser reflectivity for navigation markers," jan 2022. [Online]. Available:

https://discourse.ros.org/t/using-laser-reflectivity-for-navigation-markers/23854.

[44] R. Cassinis, F. Tamparini, P. Bartolini and R. Fedrigotti, "Docking and charging system for

autonomous mobile robots," Research Gate, pp. 1-6, 2005.

[45] P. R. Mass, A. D. Cohen, J. Lynch and C. Vu, "Method of docking an autonomous robot".

Europe Patent EP2273336A2, 21 01 2004.

[46] F. &. M.-S. R. &. M.-C. R. Romero-Ramirez, "Speeded Up Detection of Squared Fiducial

Markers," Image and Vision Computing, p. 76, 2018.

[47] S. &. M.-S. R. &. M.-C. F. &. M.-C. R. Garrido-Jurado, "Generation of fiducial marker

111

dictionaries using Mixed Integer Linear Programming.," Pattern Recognition, p. 71, 2015.

[48] OpenCV, "Detection of Aruco Markers," no.

https://docs.opencv.org/4.5.2/d5/dae/tutorial_aruco_detection.html.

[49] JMU-robotics, "Ros2_Aruco," no. https://github.com/JMU-ROBOTICS-VIVA/ros2_aruco.

[50] R. C. Coulter, "Implementation of the Pure Pursuit Path 'hcking Algorithm," Carnegie Mellon

, p. 15, 1991.

[51] T. Moore and D. Stouch, "A Generalized Extended Kalman Filter Implementation for the Robot

Operating System," pp. 335-348, 2016.

[52] ROS 2, "Ros2 bag," [Online]. Available: https://github.com/ros2/rosbag2.

[53] fishros, "ros2bag_convert," [Online]. Available: https://github.com/fishros/ros2bag_convert.

[54] Framos, "INDUSTRIAL 3D DEPTH CAMERA," [Online]. Available:

https://www.framos.com/en/products-solutions/3d-depth-sensing/d400e-depth-camera.

