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ABSTRACT 

This dissertation is the result of a six-months internship at G.D S.p.A. for the preparation 

of the thesis project. 

The final goal is to develop algorithms on the ROS2 framework that could be used to 

control an Autonomous Mobile Robot during the operations of detection and approach of a 

docking station with high precision, needed to operate a recharge of the AMR itself or some 

operation on the host machines. 

The automation of these operations ensures a substantial increase in safety and 

productivity within a warehouse or host machine lines since it permits to the AMR to work 

without requiring an operator for longer time or even to substitute the operator itself. 

The presented method uses both lidars and an onboard camera. The trajectory from the 

starting position to the approximate area of the docking station is computed using data obtained 

from the three lidars around the AMR body. 

The final approach is implemented by detecting an ARUCO code positioned on the dock 

assembly through a camera. 

A sequence of intermediate positions is defined according to the pose estimations, and 

then reached with a mix of standard navigation and a proportional position control in the very 

last part of the movement trajectory. 

The precision of the docking position turned out to have less than one centimeter error 

around the desired target, the orientation error is a fraction of a degree. The docking times vary 

based on how far the AMR is from the docking station, but the last phase of the procedure is 

always completed in around seventeen seconds. 

The solution is implementable and will be evaluated on the real platform in the coming 

months. 
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1 INTRODUCTION 

An Autonomous Mobile Robot, also abbreviated into AMR, is defined, as the name 

suggests, as a mobile robot that can navigate the environment, known or unknown, without the 

need for external control. AMRs are the direct evolution of Automated Guided Vehicles, AGV 

for short. While AGVs need a predetermined path to follow in order to function properly, AMRs 

do not need physical tracks nor software-defined travel paths. Henceforth, AGVs are simpler 

to build, but are less flexible, require greater supporting infrastructure and have a higher upfront 

cost. 

To navigate the environment an Autonomous Mobile Robot uses an array of sensors 

such as lidars, IMUs and 3D cameras. Then, a series of algorithms (that can vary from simple 

state machines to behavior trees, up to machine learning and deep neural networks), utilize the 

data provided by the sensors to localize the robot, compute travel paths, and react to unexpected 

obstacles or faults. 

This thesis revolves around a particular AMR, the industrial Mobile Robot, which 

differs from household appliances (like Roombas) both in sheer size and for the compliance 

with stricter safety standards dictated by the European regulation of heavy equipment.  

This AMR will be mostly used in two distinct roles. The first role is to move pallets 

through a warehouse in a forklift configuration. The use of Autonomous Vehicles for moving 

loads in a controlled environment has been expanded over the years in such a way that now an 

Autonomous Mobile Robot can also manage semi-controlled environments, such as a 

warehouse where workers are present and not constrained to move in set areas. This 

configuration may use a neural network to detect pallets through an image feed and depth 

perception to position the fork under the pallet. 

The second role is to execute ancillary tasks on a different machine using specialized 

tooling. While executing these operations, the robotic base will have stricter positional 

requirements dictated by the close interaction of previously mentioned tools with sensitive 

machinery. In this configuration, a 3D camera will also be equipped on the robot body. 

Both configurations are dictated by a trend in the industry where robots are used to 

substitute human operators in dangerous tasks such as transport of heavy loads, or tasks where 

errors in routine maintenance could present a liability to the production plant. 
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The main objective of this project is to develop the localization and navigation functions 

of the previously mentioned AMR with the scope of docking to a station where high precision 

positioning is needed, like a recharging station, which was implemented using ROS2. ROS2, 

or “Robot Operating System” is a framework which allows for the use of an ample set of 

software libraries and tools that are open-source and extendable by users and it is commonly 

referred as the state of the art for AMR development. 

The first part of the project is focused on fusing the signals from three lidars positioned 

around the robot body in order to create a single virtual sensor that can be utilized for 

simultaneous location and mapping (SLAM for short); and on configuration of the libraries 

necessary to robustly navigate a simulated (at the time) industrial environment. 

The aim of this part is to use the safety laser scanner, compulsory present to guarantee 

the safety of the operators present in the area, and not to mount another laser scanner just to 

navigate. 

After perfecting the navigation code, the second part of the project is set on developing 

a method for defining the positional relation between the robot and the docking station. The 

resulting function is based on the use of Aruco markers attached to the docking station. Aruco 

markers are univocal symbols easily detected by a computer vision algorithm, which, knowing 

the parameters of the optics and the size of the marker, can compute the relative position of the 

Aruco code with respect to the optical center of the camera.  

The result of this project is a function that navigates the AMR to a set point where an 

Aruco code is expected to be in the cameras field of view. The function then generates a 

quaternion coordinate between the camera and the marker, which is extended on one side from 

camera to robot base, and on the other from Aruco marker to the power connection. The robot 

moves one meter in front of the dock through standard navigation, then completes the approach 

by a PD positional control. 

Testing is implemented using the Gazebo, simulation software shipped in conjunction 

with ROS2. An approximative industrial environment was modeled inside Gazebo, then both 

the 3D models of a pallet (from an open-source collection) and a docking station with Aruco 

code attached were imported into the scene. Finally, the robot physical model complete with 

inertias was created through a ROS2 configuration file. 



16 

 

The project has been developed as a result of an internship in GD s.p.a. in Bologna, a 

subsidiary and founder company of the COESIA group. GD has the need to constantly move 

inventory to support the construction of its packaging machines and is expected to start using 

Autonomous Robots to support its more advanced production lines in the future. 
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2 STATE OF THE ART 

In this chapter, we will define the differences between Automated Guided Vehicles and 

Autonomous Mobile Robots. After having sketched a generalized picture of the two platforms, 

we will explore the state of the art for applications of AGVs in the logistic field, with an 

emphasis on methods used by market leaders. Finally, we will briefly touch on what smart 

applications are and their potential in an industrial setting. 

2.1 AGV vs AMR 

The difference between an Automated Guided Vehicle and an Autonomous Mobile 

Robot lies in, as the name suggests, the ability to move freely through space. 

AGVs often are used to move objects along a factory line or inside a controlled 

warehouse. This can be done either by towing a cart, in which case a way of connecting the 

moving base with the cart is needed, or by loading the object on top of the machine, in a bed 

that can be either fixed or equipped with a conveyor belt. 

On the other hand, Autonomous Mobile Robots do not need specific paths to be set, but 

instead can compute their own path after being given a reachable goal and an abstraction of the 

surrounding environment. An AMR will be able to move around obstacles that were not present 

at the time of the generation of its simulated environment, affording it additional flexibility and 

fault tolerance, while an AGV will have to stop and will not be able to compute alternative 

routes in the case where its set path becomes obstructed. 

2.2 AGV guidance systems 

While we will discuss AMR navigation in detail in the next chapter, we think it is 

important to also illustrate the different guidance systems used by AGVs.  

Wired Track: a wire is run a couple of centimeters under the factory floor and used to 

transmit a radio signal. The AGV detects the radio signal strength through a sensor mounted on 

its bottom, and then uses it to regulate steering, effectively following along just as it would with 

a steel track. [1] 
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Guide Tape: the tape can be of two kinds, magnetic or colored. The AGV is then fitted 

with either a magnetic or optical sensor and follows the line by counter-steering as the magnetic 

strength decreases or if the optical sensor loses line of sight with the colored tape. Tape has the 

advantage over conductive wire of being easy to move and reapply but is more affected by dirt 

and wear. [1] [2] 

Laser Target Navigation: in this case the path to follow is software-defined and the 

AGV locates itself in each layout by detecting reflective tape by a combination of rotating laser 

emitters and sensors. The sensor often only detects the angle of the markers, but sometimes it 

can also identify their distance. This allows the controller software to triangulate the position 

of the AGV by comparing it with the marker layout set in the software, and to steer it in order 

to keep it on the set path. [3] 

Laser emitters can be either pulsed or modulated. For maximum precision, pulsed 

emitters must interpolate the readings of reflection intensity to precisely compute the position 

of a marker’s center. 

Natural feature (Natural Targeting) navigation: navigation that does not need the 

retrofitting of the workspace. It is based on the use of range finding sensors, such as LIDARS, 

and Inertial Measurements Units, used to locate the AGV by comparing detected environmental 

features with the map defined in the software layout through a Monte-Carlo/ Markov algorithm. 

Once the absolute position of the machine is obtained, the AGV is steered along software set 

paths just as in Laser Target Navigation. [3] 

Vision Guidance: vision guided AGVs operate by using cameras to record features 

along the route, and then by replaying the route by using recorded features for navigation. This 

approach is made possible using an Evidence Grid based on probabilistic volumetric sensing. 

The sensing equipment used by vision guided AGVs consists in 3D stereo cameras, which, 

together with image information, also provide a volumetric and depth layer. [4] 
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2.3 Use of AGVs in logistics 

AGVs have seen extensive use both in the logistics and industrial field in the last four 

decades, they have been defined as “battery-powered driverless vehicles, centrally computer-

controlled and independently addressable, that are used for moving jobs between workstations 

on a factory floor” [5]. Many more definitions exist, but all revolve around an AGV being a 

vehicle that moves materials in 2D space without a human operator. During years of 

development, AGVs had time to diversify into a swathe of different models, each specialized 

for a different type of load. In this section we will illustrate four different AGVs: one specialized 

in moving pallets, one which is designed to move containers, one for roller carts and the last 

one specialized in towing.  

2.3.1 Underride AGV 

An underride AGV positions itself under a cart or material wagon and lifts it slightly, 

detaching the container from the floor. Alternatively, it locks the container through an 

attachment point and tows it to the destination. Naturally the second option is possible only in 

the case of a wheeled cart. This configuration presents some advantages both in dimensions and 

in maneuverability as the occupied volume depends almost exclusively on the dimensions of 

the container rather than the controlled platform. [6] 

 

Figure 1: An underride AGV used in Amazon warehouses. 
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2.3.2 Piggyback AGV 

Piggyback AGVs can load and unload without the need for maneuvering under the target 

load. Instead, they need the load to be at a predetermined height from which it will be transferred 

to the AGVs bed, which can be implemented either with rollers, for larger platforms that can 

carry pallets, or with a conveyor belt more suited for smaller containers. This type of loading 

procedure is faster and uses less space but needs specialized loading platforms able to interact 

with the AGV by synchronizing the moving surfaces. Piggyback AGVs for this reason are best 

suited for filling in the gaps between successive handling stations, for example from a pallet 

loader to a wrapping station. [1] 

 

2.3.3 Forklift AGV 

Forklift AGVs are separated into two distinct categories: specially designed and 

automated serial equipment. Specially designed forklift AGVs are created from the ground up 

with the only expected use of autonomous movement and control applied only through a 

software manager. On the other hand, automated serial equipment forklifts are human-

controlled machines that can be retrofitted or upgraded from the factory to be either both human 

and software controlled, or otherwise to lose the driver’s equipment in favor specialized 

hardware. [1] [7] 

Figure 2: Side-loading AGV with rollers 
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While the first category of forklift AGV is more sophisticated, with a smaller footprint 

and the possibility of autonomous charging operations, the latter has more support from an 

already present production line which can supply eventual replacement parts, thus making 

maintenance more streamlined. 

 

 

2.3.4 Towing AGV 

Just like forklift AGVs, towing AGV can be either specially made for autonomous 

movement or adapted from a model initially designed for a human driver. Towing AGVs 

operated as the name suggests by towing a series of wheeled containers behind them. This 

configuration paired with wired tracks was one of the first models of AGV created. [1] 

 

Figure 3: Specially designed Agilox Forklift AGV [7] 
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2.4 Smart applications 

With the evolution from AGVs to AMRs and the introduction of machinery that is more 

capable, independent and has more computing power and sensors onboard, a whole swathe of 

new functionalities can be implemented.  

Among these functionalities are those that are called “smart applications” of logistics 

and navigation software, which are based on the cooperative work of multiple robots. Agilox 

systems is one of the companies which come into prominence in the field of AMR 

manufacturers thanks to these functionalities, Agilox was also the company that inspired part 

of this work. In this subsection we will briefly discuss some of them.  

2.4.1 Task allocation 

Task allocation consists in taking the weight off the user in assigning tasks to a specific 

robot in the fleet. Instead, given an updatable list of tasks that need to be taken care of, task 

allocation software will consider various parameters and machine states (such as AMR position, 

battery charge status, equipped sensors and hardware) to determine the right robot for the job. 

While this seems trivial for a small factory floor, in a logistics setting where thousands of jobs 

must be completed everyday task allocation can massively increase productivity if the software 

is correctly optimized, not to mention the man hours that can be redirected to less repetitive 

mansions. [8] [9] 

2.4.2 Routing and navigation 

In a setting which is shared with human operators, it can happen that new obstacles are 

introduced on the warehouse floor, disrupting the predetermined routes required by an AGV 

and such preventing its functioning. In the case of an AMR, not only becomes possible to 

circumvent obstacles that don’t completely obstruct the passageways, but it is also possible to 

share data about obstacles positions to other AMRs part of the fleet. This allows for 

recalculating a new route that not only the AMR which has detected the object will use, but also 

other members of the fleet might use without needing to incur firsthand in the obstacle.  [8] 
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Figure 4: Dynamic routing example, courtesy of Agilox [8] 
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2.4.3 Efficient deadlock avoidance 

Having a fleet of AMRs navigating the typical logistics warehouse with long, narrow 

corridors and tight turning angles might generate deadlocks in the path generation. For example, 

two robots might be too wide to travel along an isle in opposed directions. In this case knowing 

all AMRs positions, assigned tasks, and a complete map of the environment can help generating 

new paths which avoid deadlock. [8] 

While in an AGV setting, with fixed paths, this can result in a trade-off between most 

efficient routes and routes that are deadlock-safe; an AMR can compute and recompute paths 

at running time. By doing this it can chose the efficient routes in normal conditions while 

switching to safe routes while a generated path from another AMR conflicts with its own. 
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3 PROJECT SPECIFICATIONS 

3.1 Development environment: ROS2 

The Robot Operating System 2 (ROS2) [10] is a powerful and versatile framework that 

serves as the backbone of modern robotics development. A successor to ROS 1 [11], ROS 2 

offers several key advantages for those in the robotics field. It provides a comprehensive 

ecosystem of tools, libraries, and middleware that simplifies the development and deployment 

of robotic systems. One of its most significant features is its enhanced flexibility, as ROS 2 

supports various operating systems and real-time capabilities, making it adaptable to a wide 

range of robotic platforms and applications. ROS 2 is backed by a collaborative and open-

source community, which enables robotics experts, researchers, and developers to share and 

take advantage of each other's work, accelerating innovation in the field. With its focus on 

robustness, security, and scalability, ROS 2 can play an important role in streamlining the 

development of robots in the fields of manufacturing, healthcare, logistics, and more. Finally, 

and most importantly for this thesis, ROS2 can be easily integrated with other libraries such as 

OpenCV [12], which are quite common in robotic libraries. 

3.1.1 Nodes 

A node is a fundamental ROS2 element that serves a single, modular purpose in a robotic 

system. [13] So, there will be one node for controlling wheel motors, one node for controlling 

a laser rangefinder, and so on. Each node can send and receive data to other nodes via topics, 

services, actions, or parameters, that are other ROS2 tools. ROS2 breaks complex systems down 

into many modular nodes, indeed a full robotic system is comprised of many nodes working in 

concert. In ROS2 a single executable can contain one or more nodes. 
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3.1.2 Message Topics, Services, and Actions 

At the base of ROS2, there is the communication layer, based on the Data Distribution 

Service (DDS) standard. DDS is a standardized communication protocol that allows for data 

exchange in distributed systems. [14] This is one of the greatest jumps forward with respect to 

ROS1, where all the communication was managed by a central node: the ROS core. In ROS2, 

the DDS defines a method of communication between different languages API (such as rclpy 

and rclcpp). [15] This shift from a core-based model to an API model allowed robust, reliable, 

and real-time communication. 
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Figure 6: ROS1 communication between nodes 

Figure 5: ROS2 DDS protocol 



30 

 

Topics are then established trough the DDS protocol, they act as unidirectional pipes 

trough which data is moved between nodes. [16] While nodes can either publish or subscribe 

to a topic, they can publish on or be subscribed to multiple topics at a time. This means that 

topics can be used not only to communicate one-to-one but also one-t- many or many-to-one.  

Nodes and Topics together define a ROS graph, which is a network of interconnected 

computing modules processing data at the same time. [17] 

This communication can happen trough three different kind of interfaces: messages, 

services, or actions.  

Messages are the most basic concept used for communication between different parts of 

a robotic system, they contain data and represent typed information that the nodes exchange 

trough the ROS graph. [16] Messages are defined trough a plain-text format called “Message 

definition language” (.msg) these message definitions specify the type and structure of the data 

contained within the message. Each message type is composed of one or more fields containing 

both data type and name. A node will publish a message of defined type on a specific topic, 

which will be accessed and read by the subscriber node; this is the “default” kind of data 

transmission in ROS. Messages come pre-defined with some specific libraries or can be user-

defined trough the message definition language for custom uses.  

 

Figure 7: ROS2 message structure 
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Services present to nodes a mechanism to request and receive a specific, singular remote 

operation from another node in a request-response kind of communication. Just like messages, 

services must be defined trough a “service definition language” (.srv) which specifies both the 

structure and type of request and response messages. The request message defines the data that 

the client node sends to the server node, while the response message defines the data that the 

server node sends to the client. Services in ROS2 are typically synchronous and blocking, so 

the client blocks and waits a response from the server before proceeding with its task. [18] 

 

Actions provide a more advanced form of communication between nodes compared to 

services and messages, allowing for asynchronous interactions between nodes. Actions are very 

useful for tasks that require feedback or progress and the ability to cancel or preempt an ongoing 

operation. As messages and services actions are defines trough an “action definition language” 

(.action) which specifies the type and structure of the content of an action message. An action 

message is split between a request and a response, like services, with an additional field 

reserved for feedback. [19] 

Actions are of two types: simple actions and Goal-Status actions. Simple actions have a 

single goal, and the feedback is continuously updated as the action progresses, while Goal-

Status actions allow the client to send multiple goals at once and receive feedback and results 

for each goal.  

Figure 8: ROS2 service structure 
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A node can be both an action server and an action client. An action server specifies 

which action are supported by it and what callbacks execute when a goal is called from a client. 

An action client sends a goal messages to the action server and receives both feedback and 

results. Action goals contain information about the task to be executed as specified in the .action 

file. During execution of the action, the action client can continue its task without waiting for 

the server response, this allows for asynchronous execution. During execution action goals can 

be both preempted and cancelled by the action client. 

3.1.3 Config and launch files 

In ROS2 two types of files are available that make the process of launching nodes easier: 

configuration and launch files. 

Launch files (.py/.xml) are files that specify the launch sequence of a collection of 

nodes, using specified settings and times. This simplifies the process of launching nodes and 

components by providing a standardized process of running nodes to execute a specific task. 

Launch files also make for a more streamlined robot startup procedure. [20] 

 

Figure 9: ROS2 action structure 
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Configuration files (.yaml) are files written in markup language that specify parameters 

and settings of the node that are going to be launched [21], [22] this is a way to manage code 

without having to recompile the source code every time some parameters need to be modified. 

YAML, (which stands for “YAML ain’t a markup language”) is a file extension similar to. Json 

or .xml but much more human readable. The configuration file containing the desired 

parameters is defined in the launch file, which is responsible to substitute the default values 

with the desired ones at the node launch.  

3.2 Simulation environment 

Since the development and testing of the docking functions of an AMR was the focus 

of this thesis, it became critical to define a safe and cost-effective way to evaluate the robotic 

behavior. Fortunately, with the ROS2 package come both the Gazebo and Rviz library, which 

are used respectively to simulate a physical machine and to visualize the ongoing processes and 

data.  

3.2.1 Gazebo 

Gazebo is a powerful and versatile open-source simulation software platform that has 

become a key element in the fields of robotics, autonomous systems, and artificial intelligence 

research. Gazebo provides a rich, 3D simulation environment for modeling, testing, and 

validating robotic systems in complex scenarios. [22] 

Among the several benefits of using a simulation environment to test the developed code 

instead of a real machine, some of the most important are [22]: 

Safety and Risk Mitigation: Testing docking functions in a simulated environment 

allowed us to identify and correct potential issues, such as collisions or navigation errors, 

without putting physical assets or personnel at risk. 

Accessibility and Availability: Like in our case, access to a physical environment for 

testing may be limited or restricted, whereas a Gazebo simulation can be set up and conducted 

at any time, providing flexibility and availability for testing at various stages of development. 

Rapid Prototyping: In a simulated environment, we could rapidly prototype and iterate 

on docking algorithms and behaviors without waiting for physical hardware modifications 

(adding a camera was a minute operation, instead of months) or adjustments, accelerating the 

development cycle. 
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Variability and Reproducibility: Gazebo simulations can replicate a wide range of 

scenarios, this way we could test complex behavior in a large environment and use a smaller 

one for benchmarking the navigation precision and docking speed. 

Data Collection and Analysis: Gazebo provides tools for collecting detailed data and 

metrics during simulations. Which was of paramount importance to gather metrics on how well 

or badly the AMR was behaving while using one function or another. 

One last benefit of Gazebo is the possibility to define environments and models from an 

editor internal to the platform, while also being able to import models as meshes from the 

internet, during testing this was extremely useful as we could quickly generate a warehouse-

like testing ground and populate it with models of people and pallet to check the goodness of 

the obstacle avoidance functions. Later, as previously mentioned, a smaller map with a docking 

station was created to further test function metrics with more precision and repeatability. 

 

Figure 10: a view of the large warehouse environment with pallets and mannequin models 
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3.2.2 AMR model 

Beside static models like the docking station and pallets, the Gazebo simulation can be 

also populated with moving objects which are connected to the ROS stack. This allows for 

generating a robot composed of several rigid or moving links able to simulate the real machine. 

The robot is described in the Unified Robot Description Format (.urdf) used to define the 

physical structure, kinematics, and various properties of a robot or robotic system. URDF is 

used as a standardized and concise way to represent the geometric, kinematic, and dynamic 

aspects of a robot. Here's a breakdown of its key components and functions: 

Robot Structure: URDF describes the physical structure of the robot, including its links 

and joints. Links represent rigid bodies or components of the robot, while joints define how 

these links are connected and can move with respect to each other. [23] 

Geometry: The specification of the geometric properties of robot components, such as 

meshes, collision geometries, and visual representations. This geometric information is crucial 

for visualization and collision detection. 

Inertial Properties: URDF includes parameters for defining the inertial properties of 

links, such as mass, center of mass, and inertia matrices. These properties are essential for 

simulating the dynamics and motion of the AMR. [24] [25] 

Sensors: the URDF file can be extended to include sensor descriptions, such as cameras, 

LiDAR, and IMU (Inertial Measurement Unit) sensors, along with “real” parameters and 

imperfections such as field of view, optical center, range, and noise. This information is 

essential for simulating sensor data and sensor-based perception in robot simulations. [26] 

3.2.3 Rviz 

RViz, short for "ROS Visualization," is a visualization software tool used by ROS2. 

[27] It provides a rich and interactive 3D visualization environment, allowing users to better 

understand the state, behavior, and perception of the robotic system that is being monitored. 



36 

 

RViz is a versatile and highly configurable platform that serves multiple crucial 

functions. First and foremost, it enables real-time visualization of robot sensor data, such as 

point clouds, laser scans, and camera images, providing a means of assessing the robot's 

perception of its surroundings. Moreover, RViz allows users to visualize the robot's internal 

state, including joint configurations, trajectories, and odometry information, increasing the 

understanding of its kinematics and dynamics; thus, making debugging of the robotic platform 

easier. [28] 

Its interactive tools enable users to set goals, plan paths, and even teleoperate robots 

within the visual interface, making it an essential tool for robot testing. RViz's extensibility 

helps developers to tailor the visualization environment to specific robotic platforms and 

applications, enhancing its adaptability across various chassis and use cases, from industrial 

automation to autonomous vehicles and robotics research. 

During the duration of this thesis, RVIZ was essential to interact with the robotic base, 

check for malfunctions of the docking process and visually check the progress of given tasks at 

times where the command line output was not enough verbose to understand what was 

happening. 

  

Figure 11: RVIZ visualization, we can see the camera input, robot model, inflation map and frames. 
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4 METHODS DESCRIPTION 

In this chapter we discuss the methods used to complete all the passages that were 

necessary to finalize a complete docking function. While most steps of the project had been 

considered at the start of development, some others surfaced only because of the work 

progression. 

4.1 Set up 

The first passage of the project was to install the Ubuntu 22.04 operating system along 

with the ROS 2 framework. After the installation, a directory was created to be used as the 

workspace, with this initial structure:  

Figure 12: The workspace directory, in the src folder are listed all 

submodules used. 
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In the workspace folder [29] are contained the main three subdirectories: 

• In the install directory all the files that are necessary for the various libraries to function 

are contained, this includes binaries and automatically generated header files required 

by some of the code written in C++. 

• In the build directory all the files generated by the build process are contained, this 

includes build reports and error lists. 

• The src directory contains all the source code. 

Src is effectively the working folder of the project, since all the code that is written is 

contained in this folder, which then gets separated into different independent directories. Each 

directory is completely self-sufficient and contains its own build files. This allows for copying 

one of the directories where a specific function is programmed into a different workspace, 

running the build program $ colcon build in the second folder and having ROS manage the 

dependencies during the build process. 

4.2 Sensor Fusion 

After building the NAV 2 library and creating both the simulations of the AMR and the 

Gazebo environment, we encountered the first problem: the localization library could not accept 

more than one scanner input at a time, this approach collided with the desired configuration of 

the AMR sensor suite, as three different LIDARs were expected around the robot body. Aside 

from that, the presence of a 3D camera allowed for different approaches to near-target 

navigation and to further increase the localization capabilities. The option to utilize this data 

stream was later considered and evaluated. 

4.2.1 Laser scan merging 

During the configuration of the NAV 2 library, setting more than one source of scanner 

data in the section of the .config file relative to localization resulted in a series of errors, as it is 

visible from this .config file snippet, it is possible to set up only one source for that sensor type. 
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amcl: 

  ros__parameters: 

    scan_topic: scan  

    pointcloud_topic: cloud  

It was later understood that NAV 2 has not been set up to read only one scanner topic at 

the time, this is due to the scanners publishing not a three dimensional array of coordinates, but 

instead a two dimensional array of distances, point from which these distances are computed is 

not included in the message structure, this means that setting more than a scanner source with 

different origins would result in errors during the localization process. Since working without 

NAV 2 meant having to rewrite both the navigation and localization functions, along with the 

full suite of controllers, drivers, and simulation packages, it became clear that it was necessary 

to find some expedient to circumnavigate this issue while maintaining functionality.  

 

We started researching different options to fuse together the scan topics, one of these 

options was a library written for ROS 1 [30] [31]. While this solution had been proven to work, 

it was not compatible with the ROS 2 framework. Fortunately, after additional exploration a 

remarkably similar candidate, compatible with ROS 2, was found. This library, called “lidar 

merger” [32], works by generating a virtual lidar, with an origin that can be defined at will. The 

lidar merger function listens to the desired scan topics, all of which have a position and 

orientation preset in the lidar merger configuration file.  

ros2_laser_scan_merger: 

  ros__parameters: 

    pointCloudTopic: "/cloud" 

    pointCloutFrameId: "lidar_frame" 

Figure 13: The topic graph of the lidar merger and pointcloud to laserscan pipeline, it is 

possible to see the three lidars merged into one. 
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    use_sim_time: True 

    scanTopic1: "/scan_right" 

    laser1XOff: 0.5 

    laser1YOff: -0.5 

    laser1ZOff: 0.0 

    laser1Alpha: -180.0 

    laser1AngleMin: 1.0 

    laser1AngleMax: 265.0 

    laser1R: 255 

    laser1G: 0 

    laser1B: 0 

    show1: True 

In this configuration file it is possible to see how the position and field of view of each 

LIDAR (the back left one in this case) are defined in the adapter node. Initially it was not 

possible to correctly run the node as it outputted and exotic error message. Fortunately, after a 

lot of debugging and contacting the developer behind the laser scan merger repository, it was 

possible to find out that the error depended on the type of some of the variables relative to the 

point cloud color array encoding, after changing the type from int to uint8_t, the code started 

working correctly [33]. 

Figure 14: The detected points from the three separate laser scanners as seen in the pointcloud, with color separation in 

blue, red and green. 



42 

 

this->get_parameter_or<uint8_t>("laser1R",laser1R_, 0); 

        this->get_parameter_or<uint8_t>("laser1G",laser1G_, 0); 

        this->get_parameter_or<uint8_t>("laser1B",laser1B_, 0); 

 

std::string topic1_, topic2_, topic3_, cloudTopic_, cloudFrameId_; 

    bool show1_, show2_, show3_; 

    float laser1XOff_, laser1YOff_, laser1ZOff_, laser1Alpha_, laser1AngleMin_, laser1AngleMax_; 

    uint8_t laser1R_, laser1G_, laser1B_; 

The software reads the received distance arrays, computes a trigonometric function to 

compute the distance of the collision point detected by scanner A with respect to the desired 

virtual LIDAR position and populates a three-dimensional array (cloud topic) with the 

computed coordinates.  

void update_point_cloud(){ 

    // RCLCPP_INFO(this->get_logger(), "Hello basic"); 

    refresh_params(); 

    //pcl::PointCloud<pcl::PointXYZRGB> cloud_; 

    pcl::PointCloud<pcl::PointXYZ> cloud_; 

    std::vector<std::array<float,2>> scan_data; 

    int count = 0; 

    float min_theta = 0; 

    float max_theta = 0; 

    if(show1_){ 

        for (float i = laser1_->angle_min; i <= laser1_->angle_max; i += laser1_->angle_increment){ 

             

            pcl::PointXYZ pt; 

            float temp_x = laser1_->ranges[count] * std::cos(i) + laser1XOff_; 

            float temp_y = laser1_->ranges[count] * std::sin(i) + laser1YOff_; 

            pt.x = temp_x * std::cos(laser1Alpha_ * M_PI / 180) - temp_y * std::sin(laser1Alpha_ * M_PI / 

180); 

            pt.y = temp_x * std::sin(laser1Alpha_ * M_PI / 180) + temp_y * std::cos(laser1Alpha_ * M_PI / 

180); 

            pt.z = laser1ZOff_; 
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            if (i < (laser1AngleMin_ * M_PI / 180)){ 

 //do nothing 

            }else if(i > (laser1AngleMax_ * M_PI / 180)){ 

 //do nothing 

            }else{ 

                cloud_.points.push_back(pt); 

                float r_ = GET_R(pt.x, pt.y); 

                float theta_ = GET_THETA(pt.x, pt.y); 

                std::array<float,2> res_; 

                res_[1] = r_; 

                res_[0] = theta_; 

                scan_data.push_back(res_); 

                if(theta_ < min_theta){ 

                    min_theta = theta_; 

                } 

                if(theta_ > max_theta){ 

                    max_theta = theta_; 

                } 

            } 

            count++; 

        } 

    } 

The following functions are used to compute the distance from center of the scanner to 

the detected points (GET_R), find the angle of the detected point with respect to the mounting 

angle of the LIDAR (GET_THETA + interpolate): 

float GET_R(float x, float y){ 

    return sqrt(x*x + y*y); 

} 

float GET_THETA(float x, float y){ 

    float temp_res; 

    if((x!=0)){ 

        temp_res = atan(y/x); 
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    }else{ 

        if(y>=0){ 

            temp_res = M_PI / 2; 

        }else{ 

            temp_res = -M_PI / 2; 

        } 

    } 

    if(temp_res > 0){ 

        if(y < 0 ){ 

            temp_res -= M_PI; 

        } 

    }else if(temp_res <0){ 

        if(x < 0){ 

            temp_res += M_PI; 

        } 

    } 

    // RCLCPP_INFO(this->get_logger(), "x: '%f', y: '%f', a: '%f'", x, y, temp_res); 

    return temp_res; 

} 

float interpolate(float angle_1, float angle_2, float magnitude_1, float magnitude_2, float 

current_angle){ 

    return (magnitude_1 + current_angle * ((magnitude_2 - magnitude_1)/(angle_2 - angle_1))); 

} 
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In the case where more than one collision point is detected for the same virtual scanner 

angle, only the closest point is considered. This can happen when the robot is close to an uneven 

surface like a corner, in this case while the scanner A sees at the virtual angle 90 degrees a 

collision at distance 50cm, scanner B sees at the same angle a collision at distance 100cm; this 

problem is due to parallax errors. 

The output of the previous snippets of code is sent as cloud type message topic to the 

node pointcloud_to_laserscan. Using the cloud topic published by the lidar_merger as a 

“collector file” the pointcloud_to_laserscanner node then computes back a two-dimensional 

array which contains the distances of the obstacles detected by the three lidar scanners from the 

virtual LIDAR at all selected angle fractions and subsequently publishes a message on the topic 

connected with the generated virtual scanner. As we can see in the next piece of code, all points 

that are visible in the pointcloud but would not be in the distance and height range of the virtual 

scanner specifications are rejected: 

// Iterate through pointcloud 

Figure 15: Schema illustrating a possible instance of the parallax problem 



46 

 

  for (sensor_msgs::PointCloud2ConstIterator<float> iter_x(*cloud_msg, "x"), 

    iter_y(*cloud_msg, "y"), iter_z(*cloud_msg, "z"); 

    iter_x != iter_x.end(); ++iter_x, ++iter_y, ++iter_z) 

  { 

    if (std::isnan(*iter_x) || std::isnan(*iter_y) || std::isnan(*iter_z)) { 

      RCLCPP_DEBUG( 

        this->get_logger(), 

        "rejected for nan in point(%f, %f, %f)\n", 

        *iter_x, *iter_y, *iter_z); 

      continue; 

    } 

 

    if (*iter_z > max_height_ || *iter_z < min_height_) { 

      RCLCPP_DEBUG( 

        this->get_logger(), 

        "rejected for height %f not in range (%f, %f)\n", 

        *iter_z, min_height_, max_height_); 

      continue; 

    } 

 

    double range = hypot(*iter_x, *iter_y); 

    if (range < range_min_) { 

      RCLCPP_DEBUG( 

        this->get_logger(), 

        "rejected for range %f below minimum value %f. Point: (%f, %f, %f)", 

        range, range_min_, *iter_x, *iter_y, *iter_z); 

      continue; 

    } 

    if (range > range_max_) { 

      RCLCPP_DEBUG( 

        this->get_logger(), 

        "rejected for range %f above maximum value %f. Point: (%f, %f, %f)", 

        range, range_max_, *iter_x, *iter_y, *iter_z); 

      continue; 

    } 
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    double angle = atan2(*iter_y, *iter_x); 

    if (angle < scan_msg->angle_min || angle > scan_msg->angle_max) { 

      RCLCPP_DEBUG( 

        this->get_logger(), 

        "rejected for angle %f not in range (%f, %f)\n", 

        angle, scan_msg->angle_min, scan_msg->angle_max); 

      continue; 

    } 

 

    // overwrite range at laserscan ray if new range is smaller 

    int index = (angle - scan_msg->angle_min) / scan_msg->angle_increment; 

    if (range < scan_msg->ranges[index]) { 

      scan_msg->ranges[index] = range; 

    } 

  } 

Figure 16: Unified scanner topic, the detected points with parallax correction are visible in white. 
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Figure 17: Final lidar merger pipeline 
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4.2.2 3D camera cloud 

During development, the possibility of extending the obstacle detection through an IR 

emitter stereo depth sensor was considered. The 3D camera works by projecting a lattice of 

points in the infra-red band, from there, the depth of placement of each point is detected by 

determining the position in the frame of both IR cameras positioned at the sides of the sensor. 

This depth of field data is then sent to ROS 2 both as a point cloud in a tree dimensional array 

and trough an image augmented with depth defined as a six-dimensional tensor [34] (both point 

in space and color of pixel expressed in the RGB channels); the color value is obtained through 

a third sensor positioned in the center, near the emitter.  

Figure 18: Framos 430e depth camera [38] 

Figure 19: depth camera simulated inside azebo 
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The cloud topic message can be used by NAV 2 to extend the obstacle detection from a 

single plane to the three-dimensional space by projecting a voxel layer in the simulation. 

Although this might help avoid collisions with hanging obstacles, the computation overhead 

and the added complexity were considered not worth implementing. Moreover, in order to 

compute the robot navigation path, the voxel layer gets compressed in the same plane as the 

one generated by the LIDAR data contained in the scan topic, making it redundant for all type 

of obstacles other than the hanging ones. 

4.3 Navigation 

In this section we discuss the process of configuring a working localization and 

navigation stack. The starting points was to install and test Nav2 (Navigation 2). [35] Despite 

being well documented and tested by open-source developers, the process has been affected by 

a couple of sensible setbacks. The first one was dependent on some changes to the newest ROS 

2 version main, while the second one stemmed from the configuration of the AMR. Both have 

been addressed in their subsection.  

4.3.1 Installation 

The installation process of NAV 2 is easily explained in the library documentation, [35] 

it works in a slightly different way from standard ROS 2 packages as it can be installed directly 

on the operating system without the need for copying the navigation stack folder in the project 

workspace and building from there, this is done using the commands: 

$ sudo apt install ros-humble-navigation 

$ sudo apt install ros-humble-nav2-bringup 

After installing the package, it will be possible to run any of the available scripts directly 

from a ROS 2 directory. 

4.3.2 Configuration of NAV 2 

As with other ROS2 libraries, NAV2 is configured through a YAML file, here we 

discuss the most important parameters that define the behavior of the localization stack. [36] 
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amcl: 

  ros__parameters: 

    use_sim_time: True 

    alpha1: 0.2 

    alpha2: 0.2 

    alpha3: 0.2 

    alpha4: 0.2 

    alpha5: 0.2 

    base_frame_id: "base_footprint" 

    beam_skip_distance: 0.5 

    beam_skip_error_threshold: 0.9 

    beam_skip_threshold: 0.3 

    do_beamskip: false 

    global_frame_id: "map" 

    lambda_short: 0.1 

    laser_likelihood_max_dist: 2.0 

    laser_max_range: 20.0 

    laser_min_range: 0.75 

    laser_model_type: "likelihood_field" 

    max_beams: 60 

    max_particles: 2000 

    min_particles: 500 

    odom_frame_id: "odom" 

    pf_err: 0.05 

    pf_z: 0.99 

    recovery_alpha_fast: 0.0 

    recovery_alpha_slow: 0.0 

    resample_interval: 1 

    robot_model_type: "nav2_amcl::OmniMotionModel" 

    save_pose_rate: 0.5 

    sigma_hit: 0.2 

    tf_broadcast: true 

    transform_tolerance: 1.0 

    update_min_a: 0.2 
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    update_min_d: 0.25 

    z_hit: 0.5 

    z_max: 0.05 

    z_rand: 0.5 

    z_short: 0.05 

    scan_topic: scan  

    pointcloud_topic: cloud 

    set_initial_pose: True    # default: {x: 0.0, y: 0.0, z: 0.0, yaw: 0.0} 

To localize, NAV2 uses adaptive Monte-Carlo localization, here we define the most 

important parameters that were initially set:  

Alpha values: expected noise levels in odometry position and rotation estimates. 

Laser values: define the type of sensor used by the robot, in this case the virtual sensor 

at the center of the AMR. 

Max and mean particles: the starting and final number of particles on which is built 

the probability distribution function of the robot position. Each particle is a prediction of the 

robots next position, the number of particles decreases as much as the probability of one 

position over the other possible ones increases. 

Robot model type: defines the type of robot chassis/controller, the available 

configurations are differential, omnidirectional (our case) and steering.  

Z values:  weights of the model which sum must equal 1.  

Scan and cloud topic: the topic over which the data used for checking the particles 

precision is collected.  

4.3.3 Local and Global map error 

NAV 2 localization and navigation both are dependent on a local and global map, both 

created from detected obstacles. In the first case the local map is generated as 10 meters by 10 

meters grid containing all the points coming from the laser scanner in real time. Instead, the 

global map is generated with both points coming from a map that can be manually set trough a 

bitmap (or generated through a SLAM algorithm such as cartographer) and the points that are 

detected trough the local map and “remembered” in the same position even when the robot 

leaves that area.  
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NAV 2 localization works with a Monte-Carlo algorithm, by matching the local map 

with the global at randomized points and selecting the ones that better approximate the actual 

position at successive steps. Instead, the navigation stack uses the global map to generate 

movement paths and the local map to avoid collisions with unexpected obstacles. 

The problems with both maps arose after the configuration of the library, during testing 

inside the Gazebo simulation. We noticed that, even if the robot correctly simulated lidar rays, 

the laser merger was working and creating a functional virtual lidar, and Rviz projected the 

detected obstacle points, it was impossible to visualize both local and global map.  

After intensive search and a lot of changes in the configuration file, it was found that 

the problem did not depend on the NAV 2 library but instead on the DDS middleware: in the 

ROS Humble version we were using a problem exist where the default DDS vendor (Fast DDS) 

is incompatible with the NAV 2 message update frequency. [37] [38] Substituting Cyclone 

DDS to Fast solved the problem, this was done using the commands:  

$ sudo apt install ros-humble-rmw-cyclonedds-cpp 

$ ~/.bashrc export RMW_IMPLEMENTATION=rmw_cyclonedds_cpp 

After changing the DDS vendor, local and global map started showing, and testing could 

proceed. 

4.3.4 Neobotics controller 

The second problem encountered was relative to the robot controller. At the start of the 

project a robot specification was defined for omnidirectional wheels, but the motion of the 

AMR had to follow a differential “pure pursuit” path planning (while maintaining 

omnidirectional capabilities) that was not possible to implement with the available NAV 2 

controllers. This research for a controller that made available differential control on 

omnidirectional wheels led to the Neobotics code stack. 

Neobotics is a private company specialized in omnidirectional robot for logistics and 

has adapted the NAV libraries for that particular use case. [39] 

controller_server: 

  ros__parameters: 

    # controller server parameters (see Controller Server for more info) 
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    controller_plugins: ["FollowPath"] 

    controller_frequency: 100.0 

    failure_tolerance: 0.3 

    odom_topic: "odom" 

    controller_plugin_types: ["neo_local_planner::NeoLocalPlanner"] 

     ___________________ 

 … 

     ___________________ 

    FollowPath: 

      plugin: "neo_local_planner::NeoLocalPlanner" 

      acc_lim_x : 0.50 

      acc_lim_y : 0.50 

      acc_lim_theta : 0.8 

      max_vel_x : 1.2 

      min_vel_x : -0.5 

      max_vel_y : 0.5 

      min_vel_y : -0.5 

      max_rot_vel : 1.0 

      min_rot_vel : -1.0 

      max_trans_vel : 1.2 

      min_trans_vel : -0.5 

      # lower limits for localization precision to accept goal reached 

      yaw_goal_tolerance : 0.005 

      xy_goal_tolerance : 0.01 

      # not strictly a time but a set of distances based on robot speed 

      goal_tune_time : 2.0 

      lookahead_time : 0.4 

      lookahead_dist : 1.0 

      start_yaw_error : 0.5 

      # gains for the pure pursuit algorithm 

      pos_x_gain : 10.0 

      pos_y_gain : 10.0 

      static_yaw_gain : 15.0 

      cost_x_gain : 0.1 

      cost_y_gain : 0.1 
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      cost_y_lookahead_dist : 0.0 

      cost_y_lookahead_time : 0.3 

      cost_yaw_gain : 2.0 

      low_pass_gain : 0.1 

      max_cost : 0.95 

      # defines lower limit for curve radius at speed 

      max_curve_vel : 0.3 

      max_goal_dist : 0.2 

      # only used for steering robots 

      max_backup_dist : 0.0 

      min_stop_dist : 0.6 

      # our controller acts just as a differential drive, but has the possibility to switch to holonomic near 

target 

      differential_drive : false 

 

4.3.5 Neobotics localization 

While configuring the Neobotics controller, we found that Neobotics also released a 

localization package also based on AMCL but with update optimization using the Gauss-

Newton iterations. [41] We found we could obtain much better localization precision using this 

module, so it was added to the stack along with the controller submodule. The following are 

the relative configuration parameters used: 

neo_localization2_node: 

  ros__parameters: 

    base_frame: "base_footprint" 

    odom_frame: "odom" 

    # exponential low pass gain for localization update (0 to 1) 

    #   (higher gain means odometry is less used / relied on) 

    update_gain: 0.5 

    # time based confidence gain when in 2D / 1D mode 

    confidence_gain: 0.01 

    # how many particles (samples) to spread (per update) 
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    sample_rate: 10 

    # localization update rate [ms] 

    loc_update_time: 100 

    # map tile update rate [1/s] 

    map_update_rate: 0.5 

    # map tile size in pixels 

    map_size: 1000 

    # how often to downscale (half) the original map 

    map_downscale: 0 

    # how many 3x3 gaussian smoothing iterations are applied to the map 

    num_smooth: 5 

    # minimum score for valid localization (otherwise 0D mode) 

    #    higher values make it go into 0D mode earlier 

    min_score: 0.2 

    # odometry error in x and y [m/m] [1] 

    #    how fast to increase particle spread when in 1D / 0D mode 

    odometry_std_xy: 0.01 

    # odometry error in yaw angle [rad/rad] [1] 

    #  how fast to increase particle spread when in 0D mode 

    odometry_std_yaw: 0.01 

    # minimum particle spread in x and y [m] 

    min_sample_std_xy: 0.025 

    # minimum particle spread in yaw angle [rad] 

    min_sample_std_yaw: 0.025 

    # initial/maximum particle spread in x and y [m] 

    max_sample_std_xy: 0.5 

    # initial/maximum particle spread in yaw angle [rad] 

    max_sample_std_yaw: 0.5 

    # threshold for 1D / 2D decision making (minimum average second order gradient) 

    # if worst gradient direction is below this value we go into 1D mode 

    # if both gradient directions are below we may go into 0D mode, depending on disable_threshold 

    # higher values will make it go into 1D / 0D mode earlier 

    constrain_threshold: 0.1 

    # threshold for 1D / 2D decision making (with or without orientation) 

    #   higher values will make it go into 1D mode earlier 
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    constrain_threshold_yaw: 0.2 

    # minimum number of points per update 

    min_points: 20 

    # solver update gain, lower gain = more stability / slower convergence 

    solver_gain: 0.1 

    # solver update damping, higher damping = more stability / slower convergence 

    solver_damping: 1000.0 

    # number of gauss-newton iterations per sample per scan 

    solver_iterations: 20 

    # maximum wait for getting transforms [s] 

    transform_timeout: 0.2 

    # if to broadcast map frame 

    broadcast_tf: true 

    # Scan topic 

    scan_topic: scan 

    # Initial Pose topic 

    initialpose: initialpose 

 

    # Map Tile topic 

    map_tile: map_tile 

 

    # Map Pose topic 

    map_pose: map_pose 

 

    # particle_cloud topic 

    particle_cloud: cloud 

 

    # amcl_pose topic 

    amcl_pose: amcl_pose 
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Figure 20: Complete navigation stack 



59 

 

4.4 Near-target docking methods  

The problem behind docking a rechargeable vehicle is not new and has seen many 

applications in different fields. There are several ways that have been explored in order to 

autonomously connect two bodies for power transmission, in this chapter we will only take into 

consideration ones where a moving platform approaches a stationary target without the need 

for any kind of adjustment done by the latter or any uncontrolled collision used as alignment 

factor (such as mechanical guides). 

The most utilized techniques can be grouped into four separate approaches: geometry 

detection, reflective markers, emitter detection and optical detection. 

Geometry detection: in this case the automated vehicle (or robot) comes equipped with 

lidars through which it can see a particular geometric feature on the docking station’s body. 

From this feature it can define a precise orientation and distance and then it computes the correct 

placement of dock connections. An example of this technique can be seen for the Mir Robot 

charging station. Despite being a simple approach, it lacks precision and flexibility, as the 

geometric feature must be univocal and could be “hallucinated” by the localization software in 

other places inside the working environment. [23] 
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Reflective markers: while still using lidars, this approach involves using retro-

reflective tape strips used as landmarks by the navigation software equipped by the AGV. The 

onboard sensors measure both the angle of the reflective surface with respect to the lidar and 

the intensity of returned light. Since these markers are placed on rigid locations like walls or 

columns and reflect at a wide angle of incidence, they can be trusted for a more precise long 

and short-range positioning, especially when present in substantial numbers. Still, the position 

of the strips must be inputted in the software manually or mapped and, especially in the case of 

a big environment like a warehouse, this can be a tedious and time-consuming process, also 

prone to user error. [24] [25] 

Figure 21: Mir charging station, notice the triangular indentation. 
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Emitter detection: this approach is based on detection of low-power infrared emitters 

placed on the charging station. When in need to dock, the robot starts rotating to seek the 

emitter’s light; after detecting both emitted beams, the robot can then center itself in a direction 

perpendicular to the charging station by controlling its position until the two emitted beams 

have the same intensity. Once the robot is perpendicular to the dock, it proceeds forward until 

a preset intensity corresponding to the goal is reached. While being cost effective and quite 

precise, this approach entails adding additional emitters to the docking station, and specialized 

sensors on the robot body. Even not considering the added cost and lack of flexibility given by 

not being able to reuse already present sensors, this approach is not feasible also because it is 

regulated by a patent filed by the iRobot company. [26] 

Optical detection: Optical detection methods use cameras to detect some 

predetermined and easily recognizable features through computer vision to define a particular 

space orientation. For this to work the cameras must be properly calibrated to rely accurately 

on real world coordinates.  

Figure 22: iRobot ir emitter apprach 
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The camera will be able to define a coordinate of the target by a previously set of 

features, for this to be feasible, it is necessary to use clearly visible and dimensionally sound 

markers, such as Aruco markers. 

 

4.5 Aruco approach 

Aruco [46] [47] is a binary square fiducial marker that can be used for camera pose 

estimation. It is composed of a wide black border and an inner binary matrix that determines its 

identifier. The black border facilitates its fast detection in the image, and the binary codification 

allows its identification and the application of error detection and correction techniques. The 

Aruco module in OpenCV includes the detection of Aruco markers and tools to employ them 

for pose estimation and camera calibration. In our Particular Case Aruco has been used for pose 

estimation purposes, through a ROS 2 library that applies OpenCV to generate a six-

dimensional position and orientation frame. [48] This frame is then converted by a custom 

algorithm into a quaternion to be easier to work with as a NAV 2 parameter, and a secondary 

frame is created with a predefined offset dependent on the Aruco recognition code.  

Figure 23: The 3D sketch of a docking station equipped with an Aruco fiducial marker, 

later a cube was used. 
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4.5.1 Ros2_Aruco 

In order to define a position and orientation pair from a univocal Aruco code we used a 

plugin based on the OpenCV library capable of detecting the fiducial markers from a ROS-

enabled camera. The Ros2_Aruco [49] library generates a position vector message of the type:  

std_msgs/Header header 

 

int64[] marker_ids 

geometry_msgs/Pose[] poses 

To detect markers from the AMR camera, the ros2_aruco node subscribes to the 

image_topic published by the simulated AMR. Usually, it would be necessary to calibrate the 

camera in the real case to correctly identify the camera parameters, but being it defined a priori 

based on preferred settings, we can skip this step as it would not improve the positional 

precision of detected fiducial markers. It is fair to note that the ros2_aruco node offers the 

possibility to calibrate cameras directly from its library using a simple checkerboard pattern 

attached to a rigid surface. 

Figure 24: Aruco node detecting the fiducial marker attached on the dock placeholder. 
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The following piece of code is the one responsible for retrieving image data from the 

camera and publishing the detected markers positions on a specified topic, as we can see 

openCV is used to detect corners of the marker and then a set of transformations is applied to 

recover the deformation of the detected square: 

def image_callback(self, img_msg): 

 

        if self.info_msg is None: 

            self.get_logger().warn("No camera info has been received!") 

            return 

 

        cv_image = self.bridge.imgmsg_to_cv2(img_msg, 

                                             desired_encoding='mono8') 

        markers = ArucoMarkers() 

        pose_array = PoseArray() 

        if self.camera_frame is None: 

            markers.header.frame_id = self.info_msg.header.frame_id 

            pose_array.header.frame_id = self.info_msg.header.frame_id 

        else: 

            markers.header.frame_id = self.camera_frame 

            pose_array.header.frame_id = self.camera_frame 

             

             

        markers.header.stamp = img_msg.header.stamp 

        pose_array.header.stamp = img_msg.header.stamp 

 

        corners, marker_ids, rejected = cv2.aruco.detectMarkers(cv_image, 

                                                                self.aruco_dictionary, 

                                                                parameters=self.aruco_parameters) 

        if marker_ids is not None: 

 

            if cv2.__version__ > '4.0.0': 

                rvecs, tvecs, _ = cv2.aruco.estimatePoseSingleMarkers(corners, 

                                                                      self.marker_size, self.intrinsic_mat, 
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                                                                      self.distortion) 

            else: 

                rvecs, tvecs = cv2.aruco.estimatePoseSingleMarkers(corners, 

                                                                   self.marker_size, self.intrinsic_mat, 

                                                                   self.distortion) 

            for i, marker_id in enumerate(marker_ids): 

                pose = Pose() 

                pose.position.x = tvecs[i][0][0] 

                pose.position.y = tvecs[i][0][1] 

                pose.position.z = tvecs[i][0][2] 

 

                rot_matrix = np.eye(4) 

                rot_matrix[0:3, 0:3] = cv2.Rodrigues(np.array(rvecs[i][0]))[0] 

                quat = transformations.quaternion_from_matrix(rot_matrix) 

 

                pose.orientation.x = quat[0] 

                pose.orientation.y = quat[1] 

                pose.orientation.z = quat[2] 

                pose.orientation.w = quat[3] 

 

                pose_array.poses.append(pose) 

                markers.poses.append(pose) 

                markers.marker_ids.append(marker_id[0]) 

 

            self.poses_pub.publish(pose_array) 

            self.markers_pub.publish(markers) 
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4.5.2 Docking_node 

After obtaining the position of the Aruco code, the docking node translates the 

orientation part of the vector from a quaternion into roll, pitch and yaw angles. After obtaining 

the RPY coordinates it then computes a predefined transformation between the Aruco 

coordinates and the actual docking position. Having obtained the transformation, the orientation 

is translated back into a quaternion and published as docking coordinates. Transferring the 

rotation coordinates from a quaternion to Euler angles and then back is done to manage changes 

to the code faster and with less errors. 

def marker_callback(self, marker_msg): 

 

    self.marker_msg = marker_msg 

    self.marker_poses = self.marker_msg.poses 

    self.marker_ids = self.marker_msg.marker_ids 

     

    docks = ArucoMarkers() 

    docks_array  = PoseArray() 

 

    docks.header.frame_id = self.camera_frame 

    docks_array.header.frame_id = self.camera_frame 

    if self.marker_ids is not None: 

        for i, marker_id in enumerate(self.marker_ids): 

            pose = Pose() 

            mark = self.markers_transforms 

            pose.position.x = self.marker_poses[i].position.x + mark[7*marker_id] 

            pose.position.y = self.marker_poses[i].position.y + mark[7*marker_id + 1] 

            pose.position.z = self.marker_poses[i].position.z + mark[7*marker_id + 2]             

            quaternion1 = np.array((0,0,0,0), dtype=np.float64) 

            quaternion1[0] = self.marker_poses[i].orientation.x 

            quaternion1[1] = self.marker_poses[i].orientation.y 

            quaternion1[2] = self.marker_poses[i].orientation.z 

            quaternion1[3] = self.marker_poses[i].orientation.w 

            quaternion0 = mark[7*marker_id+3 : 7*marker_id+7] 
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            final_orientation = transformations.quaternion_multiply(quaternion1, quaternion0) 

            pose.orientation.x = final_orientation[0] 

            pose.orientation.y = final_orientation[1] 

            pose.orientation.z = final_orientation[2] 

            pose.orientation.w = final_orientation[3] 

             

            docks_array.poses.append(pose) 

            docks.poses.append(pose) 

            docks.marker_ids.append(marker_id) 

 

        # self.get_logger().info("aruco node %d" %(docks.marker_ids[0])) 

        self.dock_poses_pub.publish(docks_array) 

        self.docks_pub.publish(docks) 
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Figure 26: Generated dock position, at this stage, we were considering wireless charging  

from a plate placed on thop of the robot 

Figure 25: Second configuration with a docking area placed on the ground, 

to change placement it was only necessary to change the transform vector 



69 

 

4.6 Planar controller 

In this section the action responsible for steering the robot omnidirectionally to a set 

position is shown. This action is based on a modified pure pursuit controller [50] and uses a 

proportional derivative control to determine the velocities sent to the robot wheels. The action 

does not consider possible obstacles, this is done on purpose, since the standard navigation 

stack considers the docking station itself as an obstacle, generates an inflation map from the 

detected points and prevents the robot from reaching the contact point if the latter is in the 

restricted area. In fact, with both the Neobotics and Nav2 stack, the robot stops moving and 

goes into error mode as soon as part of the collision area enters the inflation map. 

The following is the piece of code implementing the planar controller: 

class PlanarController(): 

    def __init__(self, linear_k, angular_k, linear_max, angular_max): 

        self.linear_k = linear_k 

        self.angular_k = angular_k 

        self.linear_max = linear_max 

        self.angular_max = angular_max 

 

    def clip(self, val, min_, max_): 

        return min_ if val < min_ else max_ if val > max_ else val 

 

    def compute_error(self, curr_robot_pose,  curr_goal_pose): 

 

        robot_quat_exp = [curr_robot_pose.pose.orientation.w, curr_robot_pose.pose.orientation.x, 

                        curr_robot_pose.pose.orientation.y, curr_robot_pose.pose.orientation.z] 

        robot_euler = quat2euler(robot_quat_exp) 

 

        goal_quat_exp = [curr_goal_pose.orientation.w, curr_goal_pose.orientation.x, 

                        curr_goal_pose.orientation.y,  curr_goal_pose.orientation.z] 

        goal_euler = quat2euler(goal_quat_exp) 

 

        robot_roll, robot_pitch, robot_yaw = robot_euler[0], robot_euler[1], robot_euler[2] 

        goal_roll, goal_pitch, goal_yaw = goal_euler[0], goal_euler[1], goal_euler[2] 
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        err_local = [- curr_goal_pose.position.x , 

                   -  curr_goal_pose.position., 

                    robot_yaw - goal_yaw] 

         

         

         

        dist_x_error = err_local[0] 

        dist_y_error = err_local[1] 

        rot_error =  err_local[2] 

        return dist_x_error, dist_y_error, rot_error 

 

    def compute_velocities(self, curr_robot_pose,  curr_goal_pose, rot_to_goal_satisfied, 

dist_x_to_goal_satisfied, dist_y_to_goal_satisfied): 

        robot_quat_exp = [curr_robot_pose.pose.orientation.w, curr_robot_pose.pose.orientation.x, 

                        curr_robot_pose.pose.orientation.y, curr_robot_pose.pose.orientation.z] 

        robot_euler = quat2euler(robot_quat_exp) 

        goal_quat_exp = [curr_goal_pose.orientation.w, curr_goal_pose.orientation.x, 

                        curr_goal_pose.orientation.y,  curr_goal_pose.orientation.z] 

        goal_euler = quat2euler(goal_quat_exp) 

 

        robot_roll, robot_pitch, robot_yaw = robot_euler[0], robot_euler[1], robot_euler[2] 

        goal_roll, goal_pitch, goal_yaw = goal_euler[0], goal_euler[1], goal_euler[2] 

 

        err_local = [- curr_goal_pose.position.z, 

                    - curr_goal_pose.position.x, 

                    goal_yaw - robot_yaw] 

 

        k1 = self.linear_k 

        k2 = self.angular_k 

        max_v = self.linear_max 

        max_w = self.angular_max 

 

         

        if not (dist_x_to_goal_satisfied) and rot_to_goal_satisfied: 
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            v_x_in = k1 * err_local[0] 

        else: 

            v_x_in = 0.0 

 

        if not (dist_y_to_goal_satisfied) and rot_to_goal_satisfied: 

            v_y_in = k1 * err_local[1] 

        else: 

            v_y_in = 0.0 

         

        if not rot_to_goal_satisfied: 

            w_in = k2 * err_local[2] 

        else: 

            w_in = 0.0 

 

        v_x_in = self.clip(v_x_in, -max_v, max_v) 

        v_y_in = self.clip(v_y_in, -max_v, max_v) 

        w_in = self.clip(w_in, -max_w, max_w) 

 

        return v_x_in, v_y_in, w_in 

The planar controller is contained in a class for easier implementation and use trough 

an action server, the class contains two main functions which depend on parameters which can 

be defined trough a configuration file just like other ROS2 libraries: 

The compute error function outputs the difference between the z axis orientation of the 

robot and the orientation of the marker, it also generates two x and y errors based on the position 

of the Aruco marker relative to the camera. This is done by obtaining a transformation from the 

map to the base frame of the AMR (base_footprint in our case) and then comparing the obtained 

coordinates and quaternion with the Pose message received from the /dock_poses topic, this 

function is used to check if the AMR has reached the target. 

The compute_velocities function takes computes again the errors, in this way it can 

work without the need to call the error function, then uses the computed errors multiplied by a 

gain parameter (defined in the configuration file) to define the velocities to send to the cmd_vel 

node.  
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The planar controller is called by the planar move action server, which is started by calling an 

action from the command line with the name of the desired topic containing the dock poses. 

The following code represents the most important part of the planar move action server:  

def execute_callback(self, goal_handle: ServerGoalHandle): 

 

        # self.subscription.destroy() 

 

        topic_name = goal_handle.request.topic_name 

 

        # Subscribe to the specified topic 

        self.subscription = self.create_subscription( 

            PoseArray,   

            topic_name, 

            self.message_callback, 

            1 

        ) 

         

        # goal_pose = goal_handle.request.goal_pose 

        goal_pose = self.goal_pose 

         

        # goal_time = goal_handle.request.time 

        self.get_logger().info("Received a goal from client") 

        # self.get_logger().info(str(goal_pose.orientation)) 

 

        dist_to_goal_satisfied = False 

        rot_to_goal_satisfied = False 

        dist_x_to_goal_satisfied = False 

        dist_y_to_goal_satisfied = False 

        rate = self.create_rate(10) 

 

        feedback_msg = PlanarMove.Feedback() 

        result = PlanarMove.Result() 
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        while not (dist_to_goal_satisfied and rot_to_goal_satisfied) and rclpy.ok(): 

 

            # goal_pose = goal_handle.request.goal_pose 

            # goal_pose = self.goal_pose 

 

            self.get_logger().info("Processing goal") 

 

            curr_robot_pose = self.helpers.get_curr_robot_pose( 

                now=self.get_clock().now(), 

                logger=self.get_logger(), base_frame=self.base_frame) 

            self.get_logger().info(str(curr_robot_pose)) 

 

            curr_dist_to_goal = self.helpers.pose_euclidean_dist( 

                curr_robot_pose.pose, goal_pose) 

 

            if dist_x_to_goal_satisfied and dist_y_to_goal_satisfied: 

                dist_to_goal_satisfied = True 

 

            dist_x_error, dist_y_error, rot_error = self.controller.compute_error( 

                curr_robot_pose, goal_pose) 

             

            self.get_logger().info(str(rot_error)) 

 

            if not goal_handle.is_active: 

                self.get_logger().info('Goal aborted') 

                return PlanarMove.Result() 

 

            if goal_handle.is_cancel_requested: 

                goal_handle.canceled() 

                self.get_logger().info('Goal canceled') 

                return PlanarMove.Result() 

             

            if abs(rot_error) < self.rotation_error_tolerance: 

                self.get_logger().info( 

                    "Corrected the heading") 
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                rot_to_goal_satisfied = True 

 

            if rot_to_goal_satisfied and abs(dist_y_error) < self.dist_error_tolerance: 

                self.get_logger().info( 

                    "We are at y goal now, adjusting to correct heading") 

                dist_y_to_goal_satisfied = True 

 

            if rot_to_goal_satisfied and abs(dist_x_error) < self.dist_error_tolerance: 

                self.get_logger().info( 

                    "We are at x goal now, adjusting to correct heading") 

                dist_x_to_goal_satisfied = True 

 

            feedback_msg.distance = curr_dist_to_goal 

            goal_handle.publish_feedback(feedback_msg) 

 

            if (dist_to_goal_satisfied and rot_to_goal_satisfied): 

                goal_handle.succeed() 

                result.target_reached = True 

                self.get_logger().info("Navigation was a success") 

                # destroy subscription for next exec callback 

 

            v_x_in, v_y_in, w_in = self.controller.compute_velocities( 

                curr_robot_pose, goal_pose, rot_to_goal_satisfied, dist_x_to_goal_satisfied, 

dist_y_to_goal_satisfied) 

 

            # Publish required velocity commands 

            computed_velocity = Twist() 

            computed_velocity.linear.x = v_x_in 

            computed_velocity.linear.y = v_y_in 

            computed_velocity.angular.z = w_in 

            self.pub.publish(computed_velocity) 

            rate.sleep() 

 

        return result 
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    def message_callback(self, pose_msg): 

 

        self.pose_msg = pose_msg 

        # we later will be able to choose between multiple detections by iterating the poses array 

        self.goal_pose = self.pose_msg.poses[0] 

 

        # self.get_logger().info(str(self.goal_pose)) 

The execute callback function is called every time an action is requested by the action 

server. When activated, the callback function generates a subscription to the PoseArray topic 

specified in the action request. The message callback function is responsible for unpacking the 

first detected pose contained in the poses array and making it available for the execute callback 

function. When this happens, the execute callback enters a loop which end only when the goal 

is reached or when the action is aborted. 

Inside the loop, the target reached condition is periodically checked. While the condition 

is not satisfied, the execute callback keeps updating speeds sent to the cmd_vel with the values 

obtained from calling the planar controller compute velocities function.  
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4.7 Complete approach and docking stack. 

As we have seen in the previous sections, during this thesis we worked on two different 

separate movement functions.  

The first one is based on automatic Monte Carlo localization: it localizes itself in the 

environment by comparing the data it receives with the data it should see at a variable number 

of plausible candidate positions. The AMR uses the resulting coordinate to plan a path from the 

current position to the desired one, the computed path takes into account obstacles using an 

inflation map and is capable of updating the path if additional obstacles are detected.  

Figure 27: Docking stack with Aruco detection. 
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The second movement function instead of considering the position of the robot relative 

to the map, computes the difference between the current robot position and the desired target, 

using OpenCV to detect a marker that has a known distance from the contact point between 

AMR and docking station. This is mandatory for a two fold reason: it permits us to detach from 

the standard navigation stack, which as previously said would prevent us from reaching points 

close to potential obstacles, and also gives us a fairly precise method of near-object localization 

that would be difficult to implement precisely with lidars. 

Both the movement functions send updates to the cmd_vel node, which is responsible 

of relaying the actuator speeds (in our case wheel rotation both around z and x axis) to the AMR 

drivers.  
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Figure 28: The complete approach and docking stack 
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4.8 Approach and dock action 

In this section, we will describe in detail the complete function that allows for navigation 

from a random point in space up to the completion of docking has been created as a set of 

successive actions. Firstly, the robot navigates to a goal that has been set through the action 

message, then it checks for the Aruco marker in the field of view of the camera. If the fiducial 

marker is detected, the function generates a separate goal in the global map to which the robot 

moves, again using standard navigation. Finally, the robot checks again for the Aruco marker 

and moves forward using a feedback position control comparing the position of the center of 

the robot with the goal in the 2D map.  

 

Figure 29: Flow chart of the approach and 

 docking procedure 
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4.8.1 Initial navigation 

Navigation is started sending the action message: 

$ ros2 action send_goal -f /amr_actions amr_actions/action/Approach "goal_pose: {header: 

{frame_id: map}, pose: {position: {x: 0.0, y: 0.0, z: 0.0}, orientation:{x: 0.0, y: 0.0, z: 0, w: 1.0000000}}}" 

 

To piece together approach and docking, a state machine was used, which states are 

defined as follows: 

class ApproachState(Enum): 

    READ_POSE = 0 

    GO_TO_POSE = 1 

    WAIT_REACH_POSE = 2 

    GO_TO_DOCK = 3 

    TARGET_REACHED = 4 

 

After receiving the action message, the AMR navigation stack guides the robot to the 

specified location by following the generated path through the Neobotics controller. This 

location is expected to be in the right spot and orientation where an Aruco code is visible in the 

camera field of view. 

if self.state == 1:     #GO TO 1st TARGET POSE 

                self.navigator.goToPose(self.goal_pose) 

                self.state = 2 

 

if self.state == 2:     #WAIT TO REACH TARGET POSE 

                self.yaw_error = np.abs(self.currentAngle - self.TargetAngle) 

                self.x_error = np.abs(self.currentPose[0] - self.target_offset[0]) 

                self.y_error = np.abs(self.currentPose[1] - self.target_offset[1]) 
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                if self.navigator.isNavComplete() or (self.x_error < self.diff_x and self.y_error < self.diff_y and 

self.yaw_error < self.diff_yaw): 

                    self.navigator.cancelNav() 

                    self.yaw_error = np.abs(self.currentAngle - self.TargetAngle) 

                    self.x_error = np.abs(self.currentPose[0] - self.target_offset[0]) 

                    self.y_error = np.abs(self.currentPose[1] - self.target_offset[1]) 

                    self.get_logger().info("Orientation and 1st offset position reached! \nErrors: {:.3f} {:.3f} 

{:.3f}".format(self.x_error, self.y_error, self.yaw_error)) 

                    self.get_logger().info("Actual X: {:.3f}\nActual Y: {:.3f}\nActual Angle: 

{:.3f}".format(self.currentPose[0], self.currentPose[1], self.currentAngle)) 

                    time.sleep(5)   #Sleep to let stabilize pose estimation 

                    self.get_logger().info("Waiting for new Pose Estimation...") 

                    self.target_received = False 

                    self.state = 3 

4.8.2 Position feedback controller 

The function then switches the control of the speed and orientation of the robot from the 

NAV 2 stack to a position feedback controller which increased or decreased forward speeds 

and angles depending on the positional error between the offset goal and the center of the robot 

until reaching a small enough limit. The action is called from the action client and waits for a 

response from the docking action. 

if self.state == 3:     DOCKING 

                self.dockingClient.send_goal(“/dock_poses”) 

                self.state = 4 

if self.state == 4:     TARGET REACHED 

 if self.dockingClient.reached = True: 

                self.dockingClient.send_goal(“/dock_poses”) 

 goal_manager.finished = True 

When the docking action is completed, the approach and docking action server returns 

a completed task. 
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5 RESULTS 

In this chapter we will analyze the results obtained during the project. While not strictly 

connected with the final desired docking action, the intermediate steps were important to ensure 

the functionality of the AMR.  

5.1 Localization precision 

This section presents the results of the precision of localization for the autonomous robot 

in various scenarios. The experiments were conducted to evaluate the performance of the 

localization system under different conditions and to define its accuracy and robustness. 

5.1.1 Experimental Setup 

The experiments were conducted in the same simulated environment as the laser merged 

tests. In this case, while still being equipped with three different lasers, we considered the robot 

to only have a single scanner placed at the center of the chassis, using the previously defined 

merging methods. 

On top of that an IMU (Inertial Measurement Unit), and a camera were simulated. The 

localization algorithm used for this study was based on an Extended Kalman Filter (EKF) [51] 

that fused data from IMU and Odom sensor to better estimate the robot's odometry (position 

and orientation) in real-time and sent it to two different localization stacks: the one provided 

from nav2, and the one developed by Neobotics. In addition, the nav2 stack was tested for its 

response to the use of only the /cloud, /scan or both topics together. This was done to  if there 

was a difference using data piped trough the pointcloud_to_laserscan node. To measure the 

localization precision, the computed covariance contained in the amcl_pose topic was used.  

The position covariance estimates the precision of the localization during the automatic 

Monte Carlo localization, and as such is a good tool to acquire the localization precision in a 

simulation. The required value of x, y and z orientation covariances are recorded together with 

the contents of the amcl_pose messages using the ros2 bag [52] function, which generates a 

database with .db3 extension. Working with a database was not a good option for us, so we 

opted to convert all data to a text .csv file which made it easier to work with both using excel 

or a python script. This conversion was applied using another Ros package: ros2bag_convert 

[51] which automatically generates a .csv file from the database ingested.  
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Finally, from the .csv file, a python script was used to generate a box graph of the 

recorded covariances. 

 

5.1.2 Static Localization 

In the first set of experiments, the robot was placed at the center of the benchmark map, 

in a position from which only a moderate amount of features from the map was visible, the 

position covariances measured were recorded in a ros2 bag of the amcl_poses and then, as 

before, passed through the visualizer.py file which parses recorded data and plots the box graphs 

relative to the variance and covariance of x and y axes, plus the z orientation. 

 

5.1.3 Static Localization Precision Results 

In these experiments, the robot's estimated pose closely matched the ground truth values, 

with average errors in the order of fraction of a centimeter for position and degrees for 

orientation. These results demonstrate the high precision of static localization. 

Figure 30: Covariance measurements pipeline 
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5.1.4 Dynamic Localization 

Dynamic localization tests were conducted to assess the system's performance while the 

robot was in motion. The robot followed predefined trajectories along different routes that 

simulated the operation in three different environments: a corridor, a wall, and a feature rich 

mazelike building. While in motion, the registered covariance was measured and stored in a 

bag file. The following are the results for the localization precision in motion using: 

A) The nav2 stack using only the data coming from the simulated laser scan topic 

(parallax effect removed) 

B) The nav2 stack using only the data coming from the pointcloud where all three scan 

points are contained  

C) The nav2 stack using data coming from both the /cloud and /scan topics 

D) The Neobotics stack 

All four instances were measured in the three different scenarios and graphed in a box 

plot.  

We start with the measurements in the aisle: 
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Figure 32: Aisle path on RVIZ 

Figure 31: box graph of nav2 aisle covariance using only the LIDAR data. 
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Figure 34: box graph of nav2 aisle covariance using only the pointcloud data. Figure 33:box graph of nav2 aisle covariance using both scan and pointcloud data. 
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Then we proceed with the measurements taken while moving along a wall: 

Figure 36: Box graphs of covariance values during navigation trough the aisle with neobotics 

Figure 35: RVIZ visualization of wall path 
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Figure 38: box graph of nav2 wall covariance using only the LIDAR data 

Figure 37box graph of nav2 wall  covariance using only the pointcloud data. 
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Figure 39: localization covariance along the wall with nav2 or neobotics 

Figure 40:box graph of nav2 aisle covariance using both scan and pointcloud data. 
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Finally, we consider the measurements taken inside the “building”, a placeholder for a 

feature rich environment: 

Figure 41:RVIZ visualization of the path inside the building 

Figure 42box graph of nav2 building covariance using only the pointcloud data. 
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Figure 43: box graph of nav2 building covariance using only the LIDAR data. 

Figure 44:box graph of nav2 aisle covariance using both scan and pointcloud data. 
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5.1.5 Robustness Assessment 

To further evaluate the performance of the localization system, experiments were 

conducted in challenging scenarios, including mesh obstacles and obstructed views. The system 

demonstrated robustness by consistently providing accurate localization estimates in these 

scenarios, albeit with slightly increased uncertainty. 

 

Figure 45: Box graphs of covariances of neobotics localization inside the building 
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5.1.6 Discussion 

These results indicate that the localization system maintains a high level of precision 

even when the robot is in motion, but more importantly that the use of the virtualized scanner 

instead of the point cloud (or even both of them together) is not comparable in precision with 

respect to the Neobotics stack, which has shown to be more reliable and precise in all of the 

scenarios presented. We noticed the greatest uncertainty in positioning was recorded while 

navigating near the wall in the direction parallel to it, this is due to the absence of features from 

which the localization stack can calculate the positioning probability using AMCL. 

The least precision difference between the Neobotics localization stack and the nav2 

was recorded while navigating along the wall using both scan and pointcloud source of data for 

the nav 2 localization. In that case, the Neobotics localization was three times more precise, 

dropping from 1.5 meters squared on the x axis (worst offender among the four parameters) to 

0.5 m^2, than the nav2 library. In the worst case, which was recorded by also navigating along 

the wall but using only data from the virtual lidar source for the nav2 library, dropping from 23 

m^2 to 0.5 m^2 on the x axis, the difference in precision with respect to the Neobotics library 

was almost fifty times higher. On average, Neobotics was ten times more precise in localizing 

the robot than the Nav2 library using both scan and pointcloud source, and 30 times more 

precise than the Nav2 library using only the virtual lidar data. 

There was not much difference in precision between the only scan topic case and only 

the pointcloud case, while precision increased while using both. We theorize that the simple 

fact of having more data, even if redundant, helped the Nav2 localization algorithm. 

5.2 Aruco and dock positioning precision 

This section presents the results of using the Aruco codes as positioning tool, with frame 

coordinates recorded in the simulation. The dock placement precision was also evaluated. 
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5.2.1 Experimental Setup 

Much in the same way to what was done for measuring the precision of the localization 

stack (approach stack) a benchmark environment was implemented with the addition of a dock 

in a fixed position with respect to the AMR, such that the Aruco marker would be visible in the 

camera field of view. Firstly, the AMR was kept still to measure the precision of positioning of 

the markers in a stationary condition, then the AMR was moved in a straight line away from 

the marker at a slight angle with the dock, to keep the marker still in view but measure the 

reaction to a different angle of visualization.  

Other than that, while measuring the precision of the maker detection, the generated 

dock frame position, the one to which the robot was meant to navigate to, was measured. This 

was done to check how imprecisions in the marker detection would detect target frame 

positioning. 

 

Figure 46: Experimental setup for marker detection precision 
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5.2.2 Data capture and visualization 

To capture necessary data for measurements the ROS2 bag function was used, and the 

ingested data was transferred from a .db3 database to a .csv file for ease of use. In this case 

though, being the data easy enough to process by hand and not in large number, instead of using 

a python script the box graphs were generated by manually adapting the .csv file to use with 

excel and from there using the insert graph functionality after converting the quaternion to a z 

orientation. 

 

Figure 47: marker and dock variation measurement pipeline 
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5.2.3 Aruco placement Accuracy 

 

Figure 48: Box graph of Aruco positioning precision with a moving robot. 

Figure 49: Box graph of Aruco positioning precision with a stationary robot. 
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5.2.4 Aruco Accuracy Results 

The accuracy of placement of the marker is extremely high in the static case, naturally 

this is in part due to the ideal condition of the simulated benchmark, but it shows nonetheless 

the robustness of the method. While moving we can see the lateral precision drop, especially as 

the robot moves at an angle and gets further away from the marker, with less pixels available 

to compute the correct orientation and placement. In this case, the greatest dispersion of marker 

localization coordinates was of ± 0.3 cm on the x axis.  
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5.2.5 Dock placement Accuracy 

 

Figure 50: Box graphs of dock positioning precision with a stationary robot. 

Figure 51: Box graphs of dock positioning precision with a moving robot. 
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5.2.6 Dock Accuracy Results 

As much as with the marker, we see optimal accuracy in the static case, and variable 

accuracy with the robot in motion, this is worsened by the fact the placement of the dock with 

a fixed position with respect to the marker acts as a lever of sort, making positioning errors of 

the markers worse as the desired displacement from connection point and marker is increased.  

This means that the marker has to be positioned as close as possible to the connection point to 

reduce drifts.  

 

5.3 Docking action precision and time to complete 

This section presents the results of the final docking function of the robot, which is a 

critical component of its autonomous navigation and interaction capabilities. The experiments 

aimed to evaluate the precision of the docking process in terms of alignment accuracy and the 

time required to successfully complete the docking operation. Also in this case, the worst 

recorded spread of connection point coordinates was ± 0.4cm along the x axis and ± 0.03° of 

orientation around the z axis. 
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5.3.1 Docking Station 

The docking station as usual was equipped with a fiducial marker for visual recognition 

and alignment. The robot's task was to autonomously navigate to the proximity align itself with 

the docking station. A lip was added on the bottom of the dock to simulate a connection point, 

and check whether it could interfere with the approach of the robot. 

 

 

5.3.2 Alignment Accuracy 

The primary measure of precision was the alignment accuracy achieved during the 

docking process. To evaluate this, the robot was tasked with approaching the docking station 

from different starting positions and orientations. The alignment accuracy was quantified by 

measuring the final position and orientation error relative to the desired docking position. 

In general, the total accuracy was mostly dependent on the docking part of the action, 

with results depending on the distance the dock target was set with respect to the Aruco marker, 

we managed to get a precision of ± 1cm with x and y axis position, and ± 0.3 degrees of 

orientation around the z axis. 

Figure 52: Improved docking station model with added bottom lip 
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5.3.3 Approach and Docking Time 

The time required for the robot to complete the docking operation was another critical 

metric of performance. The approach time was measured from the start of movement up until 

reaching the final position with the camera pointed toward the marker. The docking time was 

measured from the moment the robot started moving towards the docking station until it 

successfully exited the action.  

Since the docking action always happened at the same distance from the docking station, 

the recorded time were mostly the same at around 17 seconds. The only case where the action 

slowed down slightly was due to the shadow from the robot interfering with the marker 

precision and generating some fluttering in the detection placement. 

The approach times naturally varied based on distance and variation of the path, times 

were measured from a set of starting positions, naturally in the optimal conditions of a 

simulation times from the same position were almost identical, here are the results:  

  

Figure 53: RVIZ visualization during approach and docking 
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Table 1: Approach times from different starting positions 

Position Arrow number Path distance (m) Time (s) 

Front right 1 1 15 

Front near 2 3 20 

Far right 3 9 34 

Building center 4 12.5 40 

Building far left 5 25 55 

 

 

 

Figure 54: starting points of approach time measurements. 
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5.3.4 Discussion 

The results of the final docking function experiments demonstrate the robot's precision 

and efficiency in aligning itself with the docking station. The achieved alignment accuracy, 

with minimal final position and orientation errors, will ensure a secure and reliable connection 

with the docking station. 

Furthermore, the efficient docking time of approximately 17 seconds confirms the 

practicality and effectiveness of the robot's docking algorithm in real-world applications, such 

as autonomous recharging. 

These results underscore the successful development and implementation of the robot's 

final docking function, enhancing its autonomy and usability in various industrial and logistics 

scenarios. 
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6 CONCLUSIONS 

When the thesis started, the final goal of the project was defining and testing technique 

to safely navigate and dock an AMR in a warehouse environment using lidars and a camera in 

the shortest possible time. 

The objective has been achieved by combining a mix of long-range navigation based on 

adaptive Monte Carlo localization (AMCL) and short-range navigation based on Aruco marker 

positioning. In the proposed algorithm, firstly the robot base receives an action goal from the 

user on the approximate location of a docking station, the action is started and calls for the 

Neobotics neo-nav2 library to navigate to the set location.  

Once the position is reached, the action switches to the custom docking action we 

developed. The docking action takes the target dock frame generated by the amr_docking node 

we discussed in chapter 4, section 5 which is responsible for localizing the docking station 

contact point based on the detected Aruco marker.  

The docking action steers the AMR to the precise location of the contact point (which can be 

configured as a transformation with respect to the fiducial marker) using a planar controller 

with proportional action.  

The developed function can complete the docking procedure with times that are variable 

based on the distance of the robot from the desired position, but in general the final procedure 

which brings the AMR from an approximate position in view of the marker to the connection 

point lasts around 17 seconds, with very small variations based on lighting conditions. The 

precision of the procedure is of 1 cm for the x and y axis of movement and of 0.3 degrees of 

rotation around the z axis positioned at the center of the robot. 

 It is necessary to underline that, currently, the developed Auotonomous Mobile Forklift 

is still in testing phase, and as such the docking procedure cannot be tested yet in a real scenario. 

However, considering that in simulations the method is very reliable, accurate and fast, it is 

possible to assume that with the proper changes to the configuration files, and a correct 

calibration of the camera sensor, it could be possible to test it effectively soon on the physical 

robot.  
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Future additions to the function would probably be to develop another service to put 

between the approach and docking phase which checks the dock poses topic in order to assess 

if any marker is visible to the camera, and eventually to revert to navigation if not.  

Another upgrade to the docking action could be to change the planar controller from a 

proportional control to a proportional-integral-derivative one, to improve the speed and 

precision of the robot by sending smoother velocity curves to the cmd_vel node. 

In conclusion, it can be stated that the original objective of the thesis has been achieved 

and the proposed docking function, along with the supporting nodes for marker detection and 

sensor fusion, ensures a safe and precise movement up to the docking connection with minimal 

resources required in term of docking station remodeling. Moreover, the introduction of 

autonomous docking for an AMR fleet ensures longer uptimes, less man hours needed and an 

improvement to efficiency in a logistics and industrial environment. 
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