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Introduction

As software systems grow in size and complexity, it becomes difficult to pro-
gram them but also to understand their behaviour and decisions. [32] At all
stages of software development, a thorough understanding of the system is re-
quired. From the analysis and design phase, where capturing requirements and
using a common language for designers and domain experts. To the debugging
phase, in which developers identify and resolve system behaviour issues, to the
testing and validation phase to check if the system meets its requirements.

This is even more of an issue when we consider those systems such as agent
and multi-agent systems, which are able to behave autonomously to adapt to
unpredictable external changes. At the same time, they are very complex sys-
tems with a high level of abstraction, bringing in some architectural concepts
inspired by human reasoning. However, explaining, debugging, testing, and
validating the behaviour of these systems is still a challenge [20, 40]. These
tasks can be time- and resource-consuming if tools and methodologies are in-
sufficient.

A common and valuable approach in the field of Explainable AI to increase
efficiency in these phases is the use of explanations. [34, 1] In this con-
text, the thesis introduces a multi-level explainability framework specifically
for Belief-Desire-Intention (BDI) multi-agent systems to contribute to
the methodologies of agent-oriented software engineering. The BDI model is
one of the most well-known models of intelligent and cognitive agents, which
incorporates an internal mental state and simulates the way humans use rea-
soning to pursue their goals. [14]

However, the internal complexity of the decision-making process of BDI
agents poses challenges both in terms of the software development cycle and
end-user reliability. The primary contribution of this thesis is the exploration
and proposal of a comprehensive framework that constructs automated ex-
planations to address several challenges in a BDI multi-agent system. This
framework is designed to provide a multi-level explanation that serves multiple
purposes and accommodates different user groups.

The thesis is structured as follows.
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xiv INTRODUCTION

• Chapter 1 provides an overview of the context of the thesis and defines
the project proposal, its motivations and approaches.

• Chapter 2 presents the concepts behind the research. Three main topics
are discussed: the concept of agent and multi-agent systems, the defi-
nition of explainability and the state of the art in different areas, and
debugging, testing, and validation in BDI systems. The concepts of agent
programming language Jason are then presented.

• Chapter 4 described the design process of the framework and the identi-
fication of a multi-level explanation.

• Chapter 5 deals with the prototyping implementation of the tool for the
multi-level explanability framework.

• Chapter 6 describes the evaluation phase of the system. There is pre-
sented a case study showing how the implemented tool can be useful in
software engineering.

• Chapter 7 presents the final considerations and possible future develop-
ments.



Chapter 1

Motivations and Approach

1.1 Motivations

In this thesis, we focus mainly on agent and multi-agent systems, since with
their high level of abstraction, they exhibit a high degree of complexity. Agents,
by their nature, exhibit intelligent and autonomous behaviour by encapsulating
their own decision-making process. They can therefore make autonomous and
intelligent decisions reacting to external changes and can take independent
actions based on their internal state and goals. [63]

Due to their complexity, high abstraction, and autonomy, many times un-
derstanding system behaviour becomes difficult without appropriate and valid
supporting tools. Understanding the rationale behind their decision is impor-
tant and beneficial at various stages of software development. From the anal-
ysis and design phase, the capture of requirements and the use of a common
language and knowledge (particularly with the integration of domain-driven
design [58]), stakeholders and domain experts require familiarity with the sys-
tem. [17] During the debugging phase, developers identify and resolve issues
in the system’s behaviour. When dealing with complex systems, the ability to
explain why some behaviour does not work as expected or fails becomes es-
sential in order to diagnose and correct problems effectively. [60] In the testing
phase, the system is subjected to various scenarios and inputs to evaluate its
performance and correctness. [3, 55]

The importance of understanding system behaviour is underlined by the
growing importance of explainable AI (XAI). XAI has gained prominence
alongside the success of deep learning systems and the increasing adoption
of AI in various commercial applications. [64] This trend underlines the need
for systems that can be easily understood by non-technical users. The key idea
is to provide this level of understanding through (usually text-based) explana-
tions that can better convey the decision-making processes and enable people

1



2 CHAPTER 1. MOTIVATIONS AND APPROACH

to validate the motivation of choices taken by the system.
Motivated by the various use cases of the explanation and the different

classes of target users, it is necessary to deal with different levels of abstrac-
tion in the generated explanation since they target specific classes of users
with different requirements and objectives. This thesis introduces the idea of
multi-level explainability as a way to generate different explanations for the
same systems at different levels of detail. We introduce in the following sec-
tions the proposal and approaches adopted for the design of this explainability
framework.

1.2 A Multi-Level Explainability Framework

The main objective of this thesis is to propose tools that facilitate the anal-
ysis and exploration of the behaviour of multi-agent systems, offering expla-
nations from a multi-level perspective. The explanations aim to be presented
in a narrative or storytelling form that can describe, reveal, or justify different
aspects such as what are the chosen decisions, why something happens, how
the agent arrives at certain decisions, and more. The basic concept of expla-
nation in this work is based on a logging approach that captures events and
actions, allowing us to reconstruct the history of events and present it to the
user in a comprehensible way.

The proposed framework aims to address these challenges by providing
multi-level explanations to contribute to agent-oriented software engineer-
ing methodologies. At a low level, the explanation algorithm provides a de-
tailed understanding in terms of system code and internal agent reasoning.
This more technical level can assist developers in debugging and testing the
system. At the high level, the explanation will focus on providing in a user-
friendly and easy-to-understand manner without delving into intricate code
details. This level is most useful for end users and domain experts who may
not have in-depth knowledge of agent programming.

This adaptable tool is designed to meet the unique needs and perspectives
of different classes of users.

• For users, explanations should be presented at an appropriate level of
abstraction that allows users to understand the domain of the system
without overly technical system detail.

• For designers and stakeholders, to facilitate the process of acquiring
models and understanding the system. It allows stakeholders to explore
the system and formulate new requirements for effective collaboration
and alignment.



CHAPTER 1. MOTIVATIONS AND APPROACH 3

• For developers, including technical experts and engineers, who need
more detailed explanations to gain a complete view of the inner workings
of the system to support the debugging and testing processes.

1.2.1 Benefits of the Multi-Level Explainability Frame-
work

Our objective is to create a versatile explainability framework that accom-
modates a wide range of users, offering multi-level explanations tailored to
their specific needs and perspectives: [5]

• Debugging and diagnosis. As agents operate autonomously and make
decisions based on complex algorithms, explanations make it possible to
analyse their behaviour and inner workings and to understand how and
why agents make certain decisions or why something has failed. This
could speed up the process of finding an error and the cause of the
failure. [34]

• Validation and testing. The explanation of behaviour can also con-
tribute to the validation and testing phases of software engineering, as
the developer can use the explanation of behaviour to compare it with
the requirements of the system and check whether they are fulfilled and
correct. [55, 17, 26]

• Collaborating and communicating with domain experts. A clear
understanding of the system can facilitate collaboration and communica-
tion between stakeholders, such as developers, users, and domain experts.
By providing a common language and understanding of the behaviour,
developers and experts can work together more effectively and reduce
the gap between them. [17]

• Trust, transparency, and user bias. Explanations help build trust
and confidence in an agent system. This is extremely important in cases
where a small error can have significant or vital consequences and the
ability to explain its reasoning is indispensable (scenarios such as health-
care, autonomous guidance, military, finance, etc.). Especially when the
system is complicated, users tend to use it as a “black box” without
knowing how the system works or the reasoning that leads to the result.
In some cases, systems may be biased or unfair; one aim of explanation
is also to make the system more transparent. When users have access to
explanations, they can evaluate and validate how the data is used, how
the system performs actions, and whether the results are correct. [13, 46]
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• Teaching and learning. Explanations play a fundamental role in
teaching and learning. In educational settings, explanation can be used
as a tool to support teachers in the explanation of the principles and
reasoning processes of intelligent agents for a better understanding of
complex concepts by students.

1.3 Logging Execution Events

The process of recording execution events plays a key role in the devel-
opment of an automatic explanation tool. In agent programming paradigms,
various events within the agent system, such as beliefs, goals, intentions, ac-
tions, perceptions, and communication messages, are recorded as observations
during run-time. Using the logging approach as the basis of an explainability
tool allows the record of agent activities and interactions and access to the full
program history for later analysis and explanation.

In this work, the logging approach adopted is primarily implicit logging. In
traditional situations, where a lower-level paradigm prevails, explicit logging,
where developers manually insert logging statements at certain key points, be-
comes necessary to ensure meaningful observations. For example, in languages
such as Java, developers often need to add manual logging statements to gain
insight into the execution of the program. [34] In contrast, the agent paradigm
introduces a higher level of abstraction that allows the building of implicit
logging. The implicit logging approach involves automatically capturing and
building traces of agent behaviour without requiring explicit developer inter-
vention. This level of abstraction facilitates the tracking of significant events
based on their semantic meaning, providing a more abstract but insightful
perspective on system behaviour.

Logs recording execution behaviour are stored and then categorised, or-
ganised, and ordered in a systematic way to allow programmers to navigate
through the entire system history. It also establishes meaningful relationships
and connections that give coherence to the observed data.

Operating within a multi-level context of explainability, the information
recorded has the capacity to address the requirements of all levels. This is
due to the fact that the logging mechanism captures information at a low
level, including even the smallest details. Depending on the chosen level of
explanation, the tool is able to generate abstract explanations at higher levels,
building on the detailed log of information. Through the low-level log, we can
analyse the whole sequence of events, construct the causality behind the events
that occurred, and present a consistent and logical narrative at different levels.

The narrative presented can be more or less closely related to the agent
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code and is suitable for both developers and domain experts, allowing them to
gain a more or less detailed understanding of the system’s behaviour.

1.4 Narrative of the System Behaviour

Presenting explanations in an understandable and user-friendly way is
a fundamental requirement to ensure the effectiveness of an explanation sys-
tem. When developing an automated explanation generation mechanism, it is
important that the explanations are understandable and useful to users. Us-
ability and user-friendliness are key aspects that influence how well users can
understand and benefit from the explanations provided. To achieve this, in-
stead of providing explanations in a traditional technical format or presenting
directly with the raw format of the log, the approach is to present explainabil-
ity at a higher level, in the form of a narrative. There are similar works in the
literature [53, 55, 54] that present the explanation of behaviour in the form of
stories. The stories are created about the agents so that their behaviour can
be verified.

Our narrative-style explanation aims to describe how agents behave, cover-
ing the whole sequence of events, actions, and decisions that the agent makes.
The narrative explains how the agent pursues goals, why certain actions were
chosen, and the interactions between the agents and their environment from a
multi-agent perspective.

The narrative is expressed in first person to make it more expressive, as if
the agents themselves were narrating their experiences and thought processes.
The explanation is more vivid and accessible, allowing users to enter into the
agent’s reasoning as if in the first person.

The narrative is particularly effective in making the explanation accessible
to a wider audience. Developers, designers, and domain experts who may not
be intimately familiar with the technical intricacies of multi-agent systems can
easily understand concepts and motivations when presented in a familiar and
story-like narrative form.





Chapter 2

Background

The aim of this thesis is to implement tools that support the phases and
methodologies of agent-oriented software engineering. As described above, the
reference model is intelligent and cognitive agents based on the BDI model.
In particular, the reference framework on which the implementation of the
explainability tool is built is JaCaMo [36]. Before going into the details of
development and prototyping, in this chapter we will provide the necessary
background, focusing on agent-based systems, agent-oriented programming,
explainability, and JaCaMo framework. It also explores debugging, testing,
and validating BDI (Belief-Desire-Intention) agents to provide a comprehensive
foundation for subsequent chapters.

2.1 Agents and Multi-Agent Systems

Intelligent agents and multi-agent systems encompass a wide range of dis-
ciplines, each with unique characteristics that form a distinct and specialised
field. [62] Multi-agent systems can be seen as a specialised subclass of dis-
tributed and concurrent systems. What distinguishes multi-agent systems,
however, is the autonomy and self-interest of the individual agents. Unlike
classical distributed systems, where entities typically pursue a common goal,
intelligent agents in a multi-agent system have the ability to make indepen-
dent decisions to achieve their own goals and promote their own welfare. These
aspects are also closely related to the field of artificial intelligence (AI).

In addition to AI, the fields of economics and game theory contribute valu-
able insights to multi-agent systems by describing the interactions between
self-interested agents. These concepts are relevant in multi-agent systems be-
cause agents often have their own objectives, and their impact on each other
is significant. The overall behaviour of agents and their interactions can be
distinguished as competitive or cooperative.

7



8 CHAPTER 2. BACKGROUND

Furthermore, multi-agent systems have strong connections with social sci-
ence disciplines, and in particular the study of human behaviour and social
structures. In the design of multi-agent systems, there is an organisational
and social component that defines groups, roles, and shared missions, which
mirrors human society and structure.

The high complexity and abstraction of these agents make the technology
highly flexible and ready to tackle real-world challenges. The concepts are now
discussed in detail.

2.1.1 The Concept of Agent

An agent refers to an autonomous entity that can perceive and explore the
environment and act upon it to achieve specific goals. A definition of the agent
is given by Wooldridge in [62] who describes it as follows:

“An agent is a computer system that is situated in some environ-
ment and that is capable of autonomous action in this environ-
ment in order to meet its design objectives.”

Analysing the keywords in this definition, we can first focus on the term
“environment.” The environment provides the context in which the agent per-
ceives and acts. The environment can take different forms: physical in the
case of robots in the real world, or a software environment referring to a vir-
tual domain. Secondly, an agent is capable of “autonomous action”, which
emphasises its ability to make independent decisions and take actions accord-
ingly based on its own internal state and the information it perceives from the
environment. As depicted in Figure 2.1, agents receive sensory input from the
environment through their sensors and produce actions that affect the envi-
ronment as output through their effectors or actuators. Agents typically do
not possess full control over the environment, but rather have the ability to
influence it. This limited control is primarily due to the presence of other
agents sharing the same environment. Lastly, the definition mentions “design
objectives”. An agent is designed with specific goals or objectives in mind.
These objectives guide the agent’s actions and influence its behaviour.

For an agent to be considered intelligent, it should possess certain prop-
erties that enable it to act flexibly to achieve its design objectives. These
properties can be summarised as follows: [62, 63]

• Autonomy, agents are capable of making decisions independently with-
out the direct intervention of humans or others. They possess the abil-
ity to analyse their environment, evaluate available options, and au-
tonomously choose the most appropriate action to achieve their goals
and subgoals.
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Figure 2.1: Agent and environment [36]

• Proactiveness, agents are proactive, they actively engage in actions by
taking the initiative to satisfy their design objectives.

• Reactivity, agents often operate in dynamic and unpredictable envi-
ronments, where changes can occur frequently and rapidly. They need
to be responsive and adaptive to these changes. Reactivity implies that
agents can promptly and effectively perceive and react to events in their
environment.

• Social ability, agents possess social behaviours and the ability to in-
teract with other agents or possibly humans. They have the ability to
communicate, cooperate, and coordinate with other entities to achieve
common goals. Social ability enables agents to collaborate effectively in
multi-agent systems and be involved in complex social interactions.

These properties characterise the notion of “weak agency”, where agents
behave intelligently with “hard-coded goals” and exhibit these essential prop-
erties without conscientious behaviour.

To build a “strong agency”, in addition to possessing these properties,
they are modelled or implemented using cognitive concepts that are typically
associated with humans. These include mentalistic notions such as knowledge,
belief, intention, and obligation. An example of a model that provides practical
support for a strong agency is the BDI (Belief-Desire-Intention) agent model.
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2.1.2 The BDI Agent Model

The BDI (Belief-Desire-Intention) model is a popular abstraction to rep-
resent strong and intelligent agents. It is based on a cognitive model that
focuses on human-like capabilities described in a philosophical model of prac-
tical human reasoning [14]. The BDI model conceptualises agents as having
their own internal mental state which is expressed in terms of beliefs, desires,
and intentions as follows: [62, 11]

• Beliefs represent all the information the agent believes about the world,
including information that the agent senses from the environment and
information about itself. This information may be inaccurate.

• Desires represents all the goals and objectives that the agent is willing
(eventually) to achieve.

• Intentions represents the agent’s decision to perform a specific action
in order to achieve a particular goal. These are the activities that the
agent is currently performing, possibly according to a plan.

BDI Abstract Control Loop

The BDI model includes two key processes of practical reasoning: deliber-
ation and means-ends reasoning [62] described as follows:

• The deliberation process refers to deciding what goals to pursue from
a set of available options. The agent evaluates its beliefs and desires,
considers different possibilities, and selects the most appropriate goals
to focus on.

• The means-ends reasoning process involves how the agent can achieve
the selected goals. The agent develops a plan that outlines a sequence
of actions and then attempts to execute that plan to achieve the goals.

The cycle of a BDI agent is also represented by sense-plan-act cycle [43],
which in the sense phase, agents sense events from the environment through
their sensors and receive messages from other agents. In the plan phase, the
agent processes the information it has collected, updates its beliefs and goals,
and then plans new actions to achieve its objectives. Once the agent has
generated possible plans, it moves to the act phase. Here, the agent selects
the most appropriate intention and executes the steps of the plan.

The cycle continues as the agent continuously senses, plans, and acts,
adapting its behaviour according to its changing beliefs, desires, and inten-
tions.
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BDI Control Loop

The BDI reasoning cycle is quite abstract, as we follow the abstraction idea
of the model.

The Listing 2.1 represents the BDI control loop in pseudocode, which de-
scribes how a cognitive agent thinks and acts based on the Belief-Desire-
Intention architecture.

BDI-interpreter

initialize-state();

repeat

options := option-generator(event-queue);

selected-options := deliberate(options);

update-intentions(selected-options);

execute();

get-new-external-events();

drop-successful-attitudes();

drop-impossible-attitudes();

end repeat

Listing 2.1: BDI Control Loop in pseudocode. [52]

At the beginning of each cycle, the process starts with the option generation
phase. This phase produces a list of possible options. Next, the deliberation
phase selects a subset of options in accordance with the agent’s intentions. If
at this stage, there is an intention to execute an atomic action at the current
moment, the agent proceeds to execute it.

Subsequently, any external events that have occurred during the cycle are
added to the event queue. At the same time, any internal events that have
occurred are also added. In the final stages, the agent discards successful
desires and fulfilled intentions, as well as unrealized desires and intentions.

2.1.3 Multi-Agent Systems

A Multi-Agent System (MAS) refers to a structured ensemble of agents
working together to solve increasingly complex tasks within a shared environ-
ment. [9] At the individual level, each agent operates autonomously, pursuing
its own set of goals and tasks by making independent decisions about what
actions to take. However, as an ensemble, these agents typically coordinate
and cooperate to achieve the collective goal of the multi-agent system as a
unified organisation.

The analogy with the real world is quite straightforward: agents are like
people who can observe and perceive something in the environment and then
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Figure 2.2: A representation of multi-agent systems [8]

decide what to do in order to achieve their own goals and actions. As with
humans, the environment can also be seen as a set of resources and tools that
agents can share and use to perform their tasks. When it comes to multi-
agent systems, where there are multiple agents in the same environment that
can communicate, interact, and collaborate, this aspect is also taken from
human cooperation.

Above the environment, agents could belong to some organisations, anal-
ogous to human societies. The organisational level provides certain specifica-
tions that agents must follow and organisational objectives that individuals
work together to achieve.

Programming multi-agent systems can be challenging due to the complexity
of coordination and interaction among the agents, environment, and organisa-
tions. To simplify the development process and maintain consistency from the
design phase to the implementation phase, the use of first-class abstractions is
crucial.

One structured approach to programming multi-agent systems is called
Multi-Agent Oriented Programming (MAOP). MAOP involves three main di-
mensions, each of which plays a crucial role in defining the behaviour and
interactions within the system: [8]

• Agent dimension. This dimension includes the programming of in-
dividual agents and concepts for programming agents, including their
beliefs, goals, and actions that influence their decision-making.
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Figure 2.3: Overview of a JaCaMo multi-agent system, highlighting its three
dimensions [9, 8]

• Environment dimension. This dimension includes concepts for the
programming environment, including shared resources and means used
by agents to interact, work, and connect with the real world. The en-
vironment represents the shared space in which the agents operate, this
dimension provides context and influences agent behaviour based on the
state of the environment.

• Organisation dimension. This dimension focuses on concepts related
to how agents are structured, coordination aspects, and regulation of the
agents working together to achieve global organisational goals.

2.2 The JaCaMo Framework

JaCaMo is the most notable framework for MAOP. The name “JaCaMo”
stands for “Jason, CArtAgO, and Moise”, which are the three main compo-
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nents that constitute the framework. As depicted in the Figure 2.3, each of
these components represents a distinct dimension of multi-agent development
with its own set of programming abstractions, reference programming model,
and meta-model [36, 10].

• Jason represents the agent dimension. It is a platform for developing
cognitive agents following the BDI model with a logic-based language.
agents. [38]

• CArtAgO represents the environment dimension. It is a framework for
programming environment artefacts in multi-agent systems. It is based
on the A&A metamodel, where the environment is programmed as a
dynamic set of artefacts collected into workspaces. [18]

• Moise for programming the organisation dimension. It provides sup-
port for modelling the organisation, with its structure and management
infrastructure, and for organisation-based reasoning mechanisms at the
agent level. [47]

2.3 Explainability

In this section, we will look at the definition of explainability, what it
means for something to be explainable, its properties, and the different areas
of application in research.

2.3.1 Definition

We start by understanding what we mean by explainability and what it
entails in software engineering. Köhl et al. define that what makes a system
explainable is access to explanations. [44]

While the Oxford English Dictionary does not have specific definitions for
the terms “explainable” and “explainability”, it defines “explanation” as fol-
lows: [25]

(i) a statement, fact, or situation that tells you why something happened;
a reason given for something; and

(ii) a statement or piece of writing that tells you how something works or
makes something easier to understand

As defined by the Oxford English Dictionary, explanations are used to make
something clear and understandable.

In the context of “intelligent” or “knowledge-based” systems, Gregor and
Benbasat (1999)’ [31] define explanations as follows:
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“Explanations serve to clarify and make something understand-
able, or are a declaration of the meaning of words spoken, actions,
motives, etc., with a view to adjusting a misunderstanding or rec-
onciling different.”

This definition assumes that explanations can be initiated with two main
aims: (i) to provide information to clarify, justify, or convince; and (ii) to
receive information to resolve misunderstandings or disagreements.

When providing explanations to clarify or justify information, motivations
are often used. In fact, Achinstein (1983) [1] emphasises the concept of giving
the causes of things and explaining why they happen as fundamental aspects
of explanation.

Returning to the requirements for an explainable system, we have identified
in the literature several aspects that need to be explained about a system: its
reasoning processes, its internal logic, its model internals, its intention, its
behaviour, its decision, its performance, and its knowledge about the user or
the world. [19]

2.3.2 Explainable AI

Explainable AI (XAI) is a research field focused on developing AI systems
that provide transparent and understandable explanations for their behaviour
and decision-making processes. XAI aims to address the “black box” nature
of many AI models and algorithms, where it can be challenging to understand
how and why certain decisions are made.

According to the principles proposed in the European Requirements for
Trustworthy AI [21], explainability is a fundamental property of trustworthy
AI. Addressing the challenges of explainability and understandability is funda-
mental to meeting these requirements and ensuring the responsible and ethical
use of intelligent agents. These requirements emphasise the need to address
the challenges of explainability and understandability as fundamental steps
in meeting the criteria for the ethical and responsible deployment of intelli-
gent agents and to be trustable by humans. It defines “explainability” as the
ability to provide clear and understandable explanations of both the technical
processes of an AI system and the associated human decisions. Technical ex-
plainability enables human users to understand and comprehend the decisions
made by the system.

2.3.3 Explainable BDI Agents

BDI (Belief-Desire-Intention) agents are a popular framework for designing
intelligent agents that exhibit goal-directed behaviour. Explainable BDI agents
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focus on improving the transparency and understandability of their decision-
making processes.

The BDI model is advantageous for generating explanations because it re-
lies on concepts that closely resemble those used by humans to explain their
actions. [61] These explanations can follow human intuitions, as the agent’s
behaviour is attributed to the beliefs, desires, and intentions present in the
system at a given time. In essence, the BDI-based agent programming ap-
proach follows declarative logic programming based on a folk-psychological
model of reasoning.

Explainable BDI agents provide explanations for their beliefs, desires, and
intentions, helping users understand why certain actions were chosen or deci-
sions were made. Here is how this process generally unfolds:

• context, the agent operates within a specific context, which is shaped by
a set of beliefs held by the system, its current goals, and potential events
from the environment;

• plan selection, given this context, the agent identifies a subset of plans
from its repository, selected on the basis of their potential to achieve the
current goals;

• intentions, the instantiation of these selected plans represents the inten-
tions of the system, they outline the specific courses of action that the
agent intends to pursue in order to achieve its goals.

By making the agent’s internal state and reasoning more accessible, these
explanations facilitate collaboration, user trust, and effective use of the sys-
tem. [15, 33] Techniques used in the development of explainable BDI agents
include argumentation-based explanations, goal-based explanations, and plan-
based explanations. These techniques allow users to understand the agent’s
decision-making process, what the agent’s beliefs and desires are, and how the
agent evaluates the choice of action to be performed.

In the work presented in [24], the authors introduce an approach to ex-
plaining the BDI-based agents through dialogues. They propose a formalised
explanatory dialogue that helps identify and explain why a BDI system acts
in a certain way. The paper focuses on a scenario where two participants have
different views about a BDI program, where one is the program executor with
the correct trace and the other is a human or system trying to understand the
executor’s behaviour. Identifying a disagreement serves as an explanation to
highlight errors in the latter’s assumptions or reasoning. These disagreements
could involve variations in plans, priorities, inputs, or initial beliefs.

The work proposed in the thesis operates in a similar way. But instead of
offering a dialogue, our idea is to generate a narrative of the story of the agents’
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behaviour. The user can navigate through this narrative and understand all
the reasons that led to a certain decision. The narrative focuses on the agent’s
beliefs, desires, and intentions in order to provide a reasonable explanation of
the decisions and actions made and the reasons for that choice.

2.4 BDI Agent Debugging, Testing and Vali-

dation

In the software engineering process, debugging, testing, and validation are
crucial parts of the software development cycle. Debugging, testing, and
validating agents and multi-agent systems is not easy because of their non-
deterministic behaviour and the need to manage the environment and organi-
sation, which could be dynamic and complex.

However, given the nature of BDI agents, characterised by their ability
to reason based on observations and objectives, it is possible to implement
mechanisms that support the software engineering process.

2.4.1 Debugging in BDI Agents

Debugging, in the context of software development, is a critical process
aimed at identifying, locating, and correcting defects or unexpected behaviour
in a computer program. [35] It involves a systematic and often iterative ap-
proach to finding and solving problems. Without a good debugging tool, it
is difficult and time-consuming for developers to determine the cause of the
error and fix it. Various approaches to debugging agent-oriented systems have
been studied in the literature. Some of these are discussed in the following
paragraph.

Why? Questions One of the approaches first proposed for the Alice frame-
work, and then in Java, and AgentSpeak, is to use the Whyline approach [41]
with a series of ‘Why? Questions’, also known as question-based debugging.
The idea is to allow programmers to ask, at each step of the execution trace,
“why did this happen?” or “why did <something else> not happen?” [60].
Programmers can then identify the cause of the error step by step.

However, one limitation of this approach is that it is not user-friendly. The
debugging process requires the user to ask a series of questions and understand
each step of the answer in order to identify the cause of the error.

Algorithmic Debugging The idea of algorithmic debugging is to analyse
the behaviour of the program and compare it with the expected behaviour. In
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general, the approach creates an internal representation of the system and, by
asking the user some questions or using a formal specification, identifies the
location of the bug in the source code.

The algorithmic debugging approach presented in [2] for BDI agents builds
a debugging tree of plans to describe the structure of the system. The idea is
to check the plan of an unachieved goal or sub-goal, assuming that if a goal
is achieved, then there are no bugs in that goal or its sub-goal. The program
presents the tree to the user, and at each goal and sub-goal, asks the developer
to check whether the goal has been achieved or not.

This form of debugging represents the behaviour of the system in terms
of high-level concepts of goals and plans through the tree view. At the same
time, debugging requires the user to have knowledge of the system in order
to identify the cause of errors. Another limitation is that it may not be able
to identify all types of errors, in fact, some errors may be caused by external
factors such as changes in the environment.

Omniscient Debugging Omniscient debugging is another approach to de-
bugging that differs from the traditional approach. It consists of recording the
entire trace of the program and then allowing the user to navigate the history
both forward and backward without re-executing the program [49]. This is
useful in multi-agent systems because, due to their non-deterministic nature,
the program will not always have the same output when the same program is
run.

The Omniscient debugging introduced in [42] for the GOAL programming
language records the program in a log. Due to the huge amount of information
that is generated, it is not possible to record all states of the system, so in the
presented work only the changed state of the agents for each cycle is stored. It
has also integrated a mechanism for associating the location of the source code
to facilitate the debugging process. Therefore, it constructs the trace of the
run and presents an interface for visualising the traces through a space-time
view with the possibility of sorting and filtering the trace.

Tracing Tool The Tracing Tool proposed in [12] for analysing intelligent
agent systems, logs observations about agent behaviour and provides expla-
nations in the form of relational graphs. It uses the agent’s concepts, such
as beliefs, goals, intentions, actions, events, messages, and relations between
them, to create a concept graph for comprehending agent software. Develop-
ers can explore the graph, understand the systems, and explain why an agent
performed some unexpected behaviour. [45]
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Design Artefacts Another approach for debugging multi-agent systems is
to look at the design artefacts. Diagrams such as class, sequence, or interaction
diagrams support developers in comprehending the system’s behaviour. The
methodology proposed in [50] consists of analysing the interaction between
agents by building a Petri net graph. It builds a Petri Net for monitoring the
interaction between agents.

2.4.2 Testing and Validation BDI Agents

In the domain of the software development life cycle, testing is an important
phase to ensure that the system behaves as expected. The correctness and
robustness of these agents need to be assessed to ensure their effectiveness and
reliability. This section presents some methodologies for testing BDI agents.

The work presented by Rodriguez et al. in [53, 55, 54], uses the concept of
a user story, as a description of the system from the user’s perspective. In [53]
they extend this concept to system stories where, in this case, the perspective
turns to the system. They present an agile approach to capturing system
requirements, for each requirement, they identify a classical user story, map it
to a system stories and define its acceptance criteria. During the development
phase, they map the system stories to agent concepts to verify that all expected
behaviours are met and for system traceability.

In the following research [55], they present an approach to testing whether
the requirements specified in user and system stories are fulfilled. To do this,
they developed an approach that validates whether the acceptance criteria are
met by comparing them with the trace of the agent’s execution. They also
developed a fault model to classify the cause of failure.

The work presented in [54] introduces a novel approach to testing the be-
havioural requirements of agent systems in a Behaviour Driven Development
(BDD) and Test Driven Design approach, in line with agile software develop-
ment practices. They transition from user stories to system and agent stories,
which represent the requirements from the agent’s perspective. They extend
the user and system story to capture goals, plans, perceptions and beliefs, with
their own story with the aim of verifying their behaviour with the requirements.

In these very related works, they exploit user/system-stories to arrive at
agent-related stories. The story they produce is very similar to our concept of
storytelling which we would like to develop in our thesis research. The devel-
oped approach contributes to testing by applying the BDD approach. Another
research in this context, presented in [17], introduced an agile testing method-
ology for multi-agent systems based on BDD, called BEAST Methodology, and
a supporting tool BEAST Tool. The aim is to automatically generate JUnit
test case skeletons from the specifications of BDD scenarios.
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Another related work in [26] presents a goal-oriented approach, which con-
siders the goal as the smallest unit in the multi-agent system to check the
correctness of an agent. They proposed a new concept called ‘test goal’ to
implement automatic tests for a single goal.

Regarding the testing, the work presented by Cleber et al. in [4] facili-
tates the testing and continuous integration in JaCaMo multi-agent systems.
The research focuses on an approach for developers to write tests for Jason
agents, from unit testing, and single-agent testing, to multi-agent testing with
JaCaMo. In order to write tests for the agent in Jason, the proposed method
involves the creation of plans for testing the agent’s behaviour and then using
assertions to verify its correctness. Additionally, the approach allows for the
inclusion of multi-agents in the test file for the verification of functionality in
a multi-agent context.
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Reference Technology

The study conducted in this thesis focuses on the development of a multi-
level explainability tool for multi-agent BDI systems. In particular, the tech-
nology taken as a reference is the JaCaMo framework and we focus specifically
on the agent programming language Jason.

Since in this thesis, it was important to analyse the internal operation of
Jason in order to extend it to include the logging part of the log track, in
this chapter we present its general architecture and analysis of the operational
semantics.

3.1 Jason

Jason is a Java-based interpreter for the extended version of AgentSpeak,
proposed by Jomi F. Hübner, Rafael H. Bordini and colleagues in 2007 [38].
AgentSpeak(L), a theoretical foundation behind Jason, is a high-level program-
ming language based on logic. It is specifically designed to model the mental
attitudes and behaviours of agents within a Belief-Desire-Intention (BDI) ar-
chitecture. This architecture, as stated before, is built upon the concepts of
beliefs, desires, and intentions and serves as a cognitive framework through
which agents’ reason, decide, and interact with their environment.

An agent is represented by an entity composed of a set of beliefs, which en-
capsulate the agent’s current state and knowledge about the environment and
form the agent’s belief base; a set of goals, which correspond to the objectives
of the agent; and a set of plans, which define the ways to achieve goals.

In addition to interpreting the original AgentSpeak language, the Jason
framework offers various powerful features that elevate its capabilities in the
development of cognitive agents and multi-agent systems. Some of these no-
table features include [11, 38]:

21
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• Extensive language extensions. The language extensions in Jason
encompass meta events, declarative goal annotations, higher-order vari-
ables, treating plans as terms, imperative-style commands in plan bodies,
and various other additions. These extensions give developers the flexi-
bility to adapt agent behaviour to specific application requirements.

• Agent communication. While the BDI model is based on the philo-
sophical literature on practical reasoning, the AgentSpeak language de-
fines the internal structure of decision-making and the creation of goals or
sub-goals and the execution of plans to achieve those goals or sub-goals.
Agent communication in a multi-agent system is based on speech act
theory. [6, 56] A speech act is also an action, with the difference that the
domain of a speech act is typically limited to the mental state(s) of the
receiver(s). A speech act could change the beliefs, desires, or intentions
of the agent.

• Handling of plan failure. Just as human-like is full of infeasible plans
that require the discovery of alternatives, in an ever-changing environ-
ment, not all plans in Jason are guaranteed success. The framework
supports agents in dealing with failed plans by adapting and looking at
other plans to fulfil their intentions.

• Support for MAS. Jason can be fully integrated with CArtAgO for
developing environments and Moise for developing organisations.

• Support for distributed execution. Jason facilitates distributed
execution of the multi-agent system over a network with the integration
of SACI, JADE or other distribution infrastructures.

3.1.1 Jason Semantics

The Jason agent programming language is an extension of AgentSpeak,
which is based on the BDI architecture. An agent’s architecture in Jason
consists of several important components that define its behaviour, categorised
into beliefs, goals, and plans. The belief base is a critical component where an
agent stores its knowledge, the agent’s goals represent the objectives that the
agent wants to achieve and plans outline the path for achieving the agent’s
goals.

The Jason programming language is rooted in logic-based principles, and
its syntax is inspired by Prolog. Let’s examine an example of the “hello world”
program, which is presented in Listing 3.1.

In this illustrative example, we show the basic components of the BDI
architecture and how they are represented in Jason. The agent has a belief



CHAPTER 3. REFERENCE TECHNOLOGY 23

happy(bob). // B

!say(hello). // D

+!say(X) : happy(bob) // I

<- .print(X).

Listing 3.1: BDI and Jason Hello World example [27]

that indicates a property, specifically the notion of being happy is attributed
to bob. A desire or goal is represented with the construct !say(hello). In
this case, this goal serves as the agent’s initial goal, indicating to say hello. A
goal becomes an intention when it matches a plan. The example shows that if
the agent expresses a desire to say something (denoted as X) and bob is happy,
then the agent will commit to executing the plan. This represents an intention
that the agent has decided to work towards and is committed to. The action
of this plan is to print the value of X.

In the following sections, we will look at these different components and
the language constructs in more detail.

Beliefs

The first component to explore is the agent’s beliefs. Beliefs represent the
agent’s understanding and perception of the world. In the Jason framework,
beliefs are managed through the agent’s belief base, a repository that contains
the agent’s current set of beliefs. Beliefs are represented by literals:

functor(term_1, ..., term_n)[annot_1, ..., annot_m]

Beliefs have significant semantic meaning and are accompanied by annota-
tions providing detailed information about a belief. One important annotation
is the source annotation, which is used to indicate the source of the informa-
tion from which the belief comes. Specifically, there are three different types
of information sources for agents:

• perceptual information refers to the property of the environment
(called a percept) that results from the agent’s sensing of its environ-
ment and contributes to the formation of the agent’s beliefs;

• communication: agent communication with other agents, this source
includes the name of the agent who sent a communication message;

• mental notes: represents information that an agent records for its own
future reference,used to facilitate the execution of plans at a later stage.
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Within the agent’s belief base, beliefs are stored together with their anno-
tations. When a new belief is added, the process involves checking whether
the belief already exists in the base. If it is not present, the belief is added.
However, if a belief with identical content but a different source annotation
already exists, only the new source information is appended to the existing
belief.

Similarly, the procedure for removing a belief from a specific source follows
a similar logic. If multiple sources within the belief base share the same belief,
removing a source simply involves removing the corresponding source infor-
mation from the belief. The agent continues to hold the belief based on other
sources. The belief is only truly removed when no source remains associated
with it.

Goals

Goals encapsulate the desired properties of the states of the world that the
agent wants to achieve. Note that in Jason the term goal is used to refer to
the agent’s desire in the BDI definition. There are two types of goals:

• achievement goal: represents the objective, the state of the world
that the agent wants to achieve. In this case, it is denoted by the “!”
operator.

• test goal: is used to check and retrieve the information contained in a
specific belief of the agent. It is denoted by the “?” operator.

We can define initial goals to indicate that this is a goal to be achieved
with the exclamation mark:

!initial_goal.

The adoption of a new goal by an agent leads to the execution of plans, a
sequence of actions that the agent will commit to execute in order to achieve
that goal.

Plans

A plan is a foundational construct used to define a sequence of actions
that an agent should execute in order to achieve a particular goal. A plan is
composed of three distinct parts:

triggering_event : context <- body
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Triggering Event Events represent changes, in terms of addition or dele-
tion, in beliefs and goals. These allow us to express six different types of
triggering events:

1. Belief addition

2. Belief deletion

3. Achievement-goal addition

4. Achievement-goal deletion

5. Test-goal addition

6. Test-goal deletion

Context Context plays a fundamental role in determining the applicability
of a plan. When an agent is trying to achieve a goal, he may have different
ways of doing so. The context of a plan is used to check the current situation,
and the agent tries to determine which plan has the best chance of success by
considering the current set of beliefs of the agent.

Body The body of a plan encapsulates the course of actions or steps that
the agent will execute if the conditions of the plan are met and the plan is
selected. The conditions are: (i) the event that has occurred matches the
triggering event of the plan, and (ii) the context of the plan is true according
to the agent’s beliefs.

An action is represented by a formulæ, which can include various elements,
such as:

• actions, operations that the agent can perform in order to reach its
goals;

• achievement goals, another goal to achieve, which will create another
goal to achieve (and then involve other plans) before continuing with the
next actions;

• test goals, used to retrieve specific information from the agent’s beliefs;

• mental notes, to create new information (involving the creation of a
new belief) that the agent wants to remember for future reference;

• internal actions, executing Jason ’s standard internal actions;

• expressions, evaluating relational expressions or arithmetic expressions.
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3.1.2 Jason Reasoning Cycle

The Jason reasoning cycle captures the fundamental process through
which an agent reasons and interacts with its environment. It involves a con-
tinuous loop of perceiving the environment, reasoning about actions to achieve
goals, and executing actions that may affect changes in the environment. The
Jason reasoning cycle, depicted in Figure 3.1, consists of 10 main steps, each
of which contributes to the agent’s decision-making and behaviour. These
steps are described below:

Step 1 - Perceiving the Environment. The reasoning cycle starts with per-
ceiving the environment in order to update the agent’s beliefs. This task
is executed by the perceive method in the Jason implementation. By
invoking this method, the agent retrieves a list of percepts, symbolically
represented as literals. This step captures everything currently percepti-
ble in the environment and can include both newly perceived information
and previously acquired percepts.

Step 2 - Updating the Belief Base. After perception, the agent updates
its belief base based on the perceptions it has acquired from the en-
vironment. This process, executed via the belief update function (buf
method), involves adding new percepts to the belief base that were not
previously present and removing percepts that are no longer observable.
With the execution of this function, each change in the belief base gen-
erates an event characterised as an external event.

Step 3 - Receiving Communication from Other Agents. In the context
of a multi-agent system, communication with other agents is fundamen-
tal. In this step, the agent receives messages from other agents. The
checkMailmethod for this step checks the agent’s ‘mailbox’ for incoming
messages. The process then continues with a message selection function,
which is responsible for prioritising and selecting messages for further
processing.

Step 4 - Selecting ‘Socially Acceptable’ Messages. Before the messages
are processed, they pass through the social acceptance function (SocAcc
method). This function can be customised and determines whether in-
coming messages can be accepted by the agent or not. The default
implementation accepts all messages from all agents.

Step 5 - Selecting an Event. BDI agents operate by continuously handling
events. These events represent either perceived changes in the environ-
ment or changes in the agent’s own goals. Moving forward, this stage
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Figure 3.1: The Jason reasoning cycle [11]
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involves the activation of an event selection function, responsible for pri-
oritising and selecting events for subsequent processing. The default
implementation selects the first event in the list.

Step 6 - Retrieving all Relevant Plans. Once the event has been chosen,
the next step is to identify an appropriate plan to deal with the selected
event. The process begins with an examination of the agent’s plan library
with the aim of identifying all plans that have a triggering event that
can be unified with the selected event. This exploration ends with the
retrieval of a set of relevant plans, ready for the next step.

Step 7 - Determining the Applicable Plans. Although we may have iden-
tified plans that are relevant to the chosen event, not all of these plans
are immediately suitable for the agent’s chosen course of action. Hence,
a process of plan selection ensues to determine the plans that are cur-
rently applicable. The agent aims to select plans that have a probability
of success given the scope of the agent’s knowledge and current beliefs.
To achieve this, the context of each relevant plan is evaluated by check-
ing whether the context of each plan is consistent with its current belief
base. This step ends with a list of applicable plans as alternative ways
of dealing with the selected event.

Step 8 - Selecting One Applicable Plan. This step involves the selection
of one of the alternative plans, which contains a course of action, followed
by a commitment to execute the chosen plan. The selection of the plan
is done by the option selection function (SO). The commitment implies
the agent’s intention to pursue the prescribed course of action outlined
in the selected plan. The chosen plan is called intended means and will
be included in the agent’s set of intentions.

Step 9 - Selecting an Intention for Further Execution. With an intended
means established through the previous steps, the reasoning cycle moves
on to considering which intention to prioritise for further execution. In
most scenarios, an agent’s set of intentions will contain multiple inten-
tions, each reflecting a different focus of attention. Similar to earlier
stages, the choice of which intention to pursue is guided by a selection
function. Specifically, this selection function is referred to as the inten-
tion selection function (SI). This function selects which intention should
be prioritised for continued execution, allowing the agent to maintain fo-
cus and move forward with purpose.

Step 10 - Executing One Step of an Intention. Based on the previous
step of selecting a specific intention, the next step involves the execu-
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tion of a single action related to that intention. The first formula in the
body of the plan is executed and once completed, the formula is deleted
from the body of the plan. Then the updated intention is moved back
to the set of intentions.





Chapter 4

A Multi-Level Explainability
Framework

A common research path in the literature about explainability and BDI
agents is the use of logs and traces as a foundation for understanding agent
behaviour in support of agent-oriented software engineering. The key point is
that the literature typically focuses on a single level of tracing, and for a single
agent, our research introduces a novel approach by proposing multiple levels
of abstraction in logging and explainability generation. The idea of proposing
tools for multi-level explanation is motivated by the different contexts of use
for different user groups.

This chapter delves into the fundamental concepts behind this innovative
framework. It will discuss the main components of the tool, the multi-level
concept and the levels covered. Subsequently, it will present the narrative
identification phase for the two levels and the mapping between them.

4.1 Main Components of the Explainability Tool

The main challenge of this project is to investigate the behaviour of the
agent and identify a narrative for different types of users. Because depending
on the user, the explanation could be different. If the user is a developer, the
explainability is more related to the code. If it is the end user, we don’t pay
attention to all the details of the individual agents, it could just be related to
the BDI level or something at a higher level.

Figure 4.1 depicts the main components of the multi-level tool that we want
to build in this project. Our approach is to include a logging component for
each agent and system component. This means that we produce a log for
each agent in the system, and this is essential because each agent has its own
reasoning cycle with its own time to operate on. In addition, when we consid-
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Figure 4.1: Overview of the main components of the framework

ered distributed scenarios, agents could even be executed on separate nodes,
further emphasising the need for individual logs. This logging component cap-
tures events related to a lower level of the reasoning cycle during execution.
These captured events are then stored in file-based formats, preserving them
for later analysis and processing.

However, logging every detail of every agent and artefact is not feasible due
to the enormous number of events generated per second. Therefore, we need to
select the most relevant events to log, ensuring their usefulness for explanation
purposes. Important event logs are related to reasoning events such as belief
updates, goal and plan applicability, agent perceptions, speech-act messages,
etc.

A model component then includes the explanation algorithm, which reads
the log and generates an explanation and narrative of the system’s behaviour
at multiple levels. This explanation is presented to the user through a web ap-
plication. Different classes of users such as developers, designers, or end users,
can access the application and explore the generated narrative at different
levels for understanding and analysis.

4.2 Multiple Levels of Abstraction

In the context of understanding BDI agents and their use for testing and
validating the system or for other use cases, multiple levels of abstraction
are essential. We refer to this approach as “multi-level” explainability, as its
purpose is to provide insights from the developer’s perspective to the user’s
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Figure 4.2: Multiple levels of abstraction in the agent dimension

perspective. These levels adapt to different uses and user profiles, providing a
comprehensive understanding of agent behaviour.

The concept is illustrated in Figure 4.2, where different levels of abstraction
are depicted. This multi-level approach operates at different levels of granu-
larity ranging from a fine-grained, low-level perspective closely related to the
underlying code to high levels of abstraction that encapsulate the BDI model
or address the user perspective. The primary levels of abstraction identified
in this work are:

• Jason level. At the low level, we have the Jason level. This level
records every event of the agent and observes every detail of the be-
haviour. It follows the reasoning cycle of the system and produces a
complete, unfiltered, raw understanding of the system. Developers who
want to enter the details of the code and see what and why something
happened can navigate through this level and analyse the provided nar-
rative.

• BDI level. Moving up a level, we encounter the BDI level. Here the
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focus shifts to the beliefs, desires, and intentions of the conceptual ab-
straction of the agents. It is like zooming in to see the main behaviour
of the system. At this level, we are observing actions from a higher
perspective, highlighting the cognitive processes and behaviour of the
agents.

These abstraction levels are designed to be flexible, allowing different users
to access explanations from different perspectives. Each level of explanation
already contains all the information useful for understanding that abstraction.
The levels are therefore self-contained respect to other levels, which means that
the user already has all the explanations, properties, and tools for which we
can verify the behaviour at that level with that abstraction. So if, for example,
the user is at the Jason level, thanks to its clear semantic operation, he knows
how the agent works and its reasoning cycle and, therefore he can understand
how and why events are produced with that abstraction. When he goes to
the BDI level, he is not interested in knowing the details of the Jason level
because levels are closed, but more in the cognitive aspects with the BDI
abstraction.

Users can simply change the level of abstraction according to their needs.
Consider a scenario in which a user, while examining the BDI level, perceives
a lack of clarity. In such cases, he can smoothly move to the Jason level
and delve into the complex state of the agent to gain a deeper understanding.
Conversely, a developer who examines the Jason level may find it difficult
to understand a complex system due to the large volume of low-level events.
In this case, the developer can easily switch to the BDI level, which provides
a simplified and abstract overview of the system’s behaviour. This dynamic
adaptability and simplicity in switching between fine and higher levels ensure
that the tool is able to address a wide range of users and scenarios.

The multi-level explainability framework can be extended to a higher level
to incorporate the knowledge and domain-specific insights. This vision pro-
vides a comprehensive understanding related to the system’s high-level be-
haviour and requirements that involve end-users and domain experts.

Events at higher levels of abstraction are composed of a set of events at
lower levels. This modular process involves maintaining the most relevant
events while presenting them in a more abstract and higher-level way according
to the abstraction. This perspective allows users to obtain a higher and more
conceptual view of essential aspects of the agent’s behaviour without being
filled with excessive detail.

The discussion now focuses only on the agent dimension. Nevertheless, it is
very useful to extend the tool with other orthogonal dimensions, including en-
vironments and organization dimensions [10], as depicted in Figure 4.3. When
dealing with multiple agents in a complex system, the concept of narratives
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Figure 4.3: Multiple dimensions and levels of explainability in a multi-agent
system

can be extended beyond individual agents to include multiple agents working
together with organisational concepts such as norms and social structures.

This multi-level idea is very innovative because by going into a broader
vision with the addition of the organisation dimension, the explanation of the
organisation can also be extended to several levels. A low level could be the
explanation at Moise level, as it can easily integrate with Jason, while at a
higher level, it could provide a knowledge level explanation based for example
on missions and norms.

4.3 Jason Level

This section will discuss the main events identified at the Jason level for
the building of the narrative. The events identified follow Jason’s reasoning
cycle and are presented under two macro concepts: belief and goal.
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4.3.1 Belief

A belief represents everything the agent knows about the environment and
itself. In Jason, beliefs are stored in the agent’s belief base. The two main
operations related to beliefs are addition and deletion. An important piece of
information associated with beliefs is the source annotation, which specifies the
origin of the belief. An agent may believe the same belief but from different
sources. We therefore distinguish the events we have identified related to the
belief in:

• Belief Added: This event indicates the addition of a new belief to the
belief base.

• Belief From Src Added: This event occurs when the belief is already
present in the belief base, and a new source annotation is added. Each
origin annotation provides context on the origin of the belief.

• Belief From Src Removed: This event signifies the elimination of
a particular source from a belief. However, it is important to clarify
that the belief itself may still be maintained by the agent through other
sources.

• Belief Removed: This event indicates the total elimination of a belief
from the agent’s belief base. It occurs when all the sources of a particular
belief have been removed, indicating that the agent no longer holds that
belief.

Other events that may cause changes in the belief base include:

• New Percept: This event occurs when the agent senses a new percep-
tion from the environment, which updates its belief about the current
state of the environment.

• New Speech Act Message: This event relates to communication be-
tween agents. Only when the agent receives a tell message from another
agent, it is updated in the agent’s belief base, becoming a belief of the
agent.

4.3.2 Goal

In the Jason framework, goals represent the desired states that an agent
aims to achieve. These goals are categorised into different states based on their
current status and the agent’s commitment to achieving them.
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The goal states are depicted in Figure 4.4. Each goal can be in one of these
states: pending, executing, waiting, suspended, resumed, or finished. The
initial state of a goal is pending, denoting that at this moment it is essentially
a desire of the agent. If an applicable plan is discovered, the goal becomes
an intention and the agent is fully committed to pursuing it, the state then
moves to executing. From this point, it can cause events that put the desire on
hold, with the state of waiting, and which can then be resumed and executed
again.

From the states pending, executing, and waiting, the goal may also enter
the suspended state, indicating that the agent has deliberately suspended its
intention to pursue the goal. This is called by an internal action. The goal is
no longer intended. The goal, however, may be resumed from this state and
return to waiting.

Finally a goal, from the executing state, may conclude its lifecycle by mov-
ing into one of the three terminal states: dropped - by special internal action,
achieved - successfully completed or failed - if there is no plan or by internal
action.

By examining this diagram, we can effectively map events related to goals.
The log’s events are identified based on these states:

• Goal Created A goal is created when the goal is added to the event
queue, the initial state is pending.

• Plan Selected This event occurs when a plan is chosen for a particular
goal. It occurs once the goal has been created and the agent selects a
plan to fulfil it. This corresponds to the agent’s commitment to the goal,
moving its state to “executing.”

• Goal Suspended When a goal is suspended, it transitions back to be-
ing a mere desire, reverting from an intention. This event mirrors the
suspension of intention.

• Goal Removed The event represents the removal of a goal. Goals are
removed when they are finished and can assume these possible states:
achieved, dropped or failed.

As discussed before with the goals state, when the agent commits to the
goal, the goal becomes an intention. Therefore, the intention is created and
moves to the running state. From this state, the intention could move to two
other states: suspended or waiting. These states help us to define the concept
of intention along with its associated events:
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• Intention Created. This event signifies the creation of an intention.
It occurs when an agent is committed to pursuing a specific goal and
selects a plan to achieve it.

• Intention Waiting. This event is triggered when an intention is put
on hold, typically due to external factors or dependencies that need to
be fulfilled before proceeding with the intention.

• Intention Suspended. When an intention is intentionally suspended
by the agent, this event is recorded. It implies that the agent has decided
to temporarily defer pursuing the goal associated with the intention.

• Intention Removed the intention is removed, it is equivalent to Goal
Removed.

4.3.3 Other Jason Level Concepts

Apart from belief and goal events, there are other significant events in the
Jason framework that contribute to the detailed representation of the agent’s
behaviour:

• Reasoning Cycle Started This event marks the beginning of a new
reasoning cycle for the agent.

• Plan Events These kinds of events refer to a change in the agent’s plan
library. It includes:

– Plan Added This event occurs when a new plan is added to the
agent’s plan library.

– Plan Removed When a plan is removed from the agent plan li-
brary, this event is triggered.

• Action Events. Recall that there are six different types of formulæ
that can appear in a plan body: internal or external actions, achievement
goals, test goals, mental notes, or expressions.

– Internal Action Finished. This event is triggered when an exe-
cution of an internal action is completed. Internal actions are part
of the predefined set of actions that agents can perform.

– External Action Triggered. When an external action is initiated
or triggered by the agent’s reasoning cycle, this event is recorded.
It marks the start of executing the external action.
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– External Action Finished. This event occurs when the external
action is completed.

– Executed Deed. Other actions (achievement/test goals, mental
notes, or expressions) are represented by a generic “executed deed”
event that includes information about the type of deed that was
executed.

• Signal Messages The semantics of signals are that the receiver will have
the event added to its event queue. Signals are similar to perceptions
but do not get added directly to the belief base. There are two types of
signals:

– Agent Signal: signal sent from other agents.

– Artefact Signal: signal send from the environment artefact.

• Speech Act Messages. In a multi-agent system, agent communication
is an important aspect. To comprehensively capture these interactions,
the recording of speech act events is essential. This category includes
the following events:

– Mailbox Messages. This event is triggered when a new message
arrives in the agent’s mailbox. It presents all unprocessed messages
that have arrived in the mailbox.

– Selected Message. Associated with the reasoning cycle’s mes-
sage selection function, this event represents the agent’s choice of a
specific message for further processing.

– New Speech Act Message. When a message is selected, this
event is triggered and generates a new speech act message for the
agent. The message can be of different types: tell, achieve, or signal.

– Send Message. This event is generated when the agent sends a
message to another agent.

4.4 BDI Level

This section will present events related to the BDI level. The identification
of events at this level focuses on the cognitive aspects of the agent following
the BDI abstraction: belief, desire and intention.
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4.4.1 Belief

At the BDI level, we identified three main events concerning possible op-
erations related to a belief: addition, removal and update.

• New Belief. The addition of a new belief means that the agent believes
that this information is true. The belief information can come from
perception, from himself to note down information, or from messages.

• Belief Removed. The removal of a belief indicates that the agent no
longer believes that specific information.

• Belief Updated. The update of a belief consists of a modification of
the information associated with the previous belief.

4.4.2 Desire

In the BDI architecture, desires represent the agent’s motivations or ob-
jectives. These desires go through different states and transitions that can be
captured by several main events. The lifecycle of desires at the BDI level is
illustrated in Figure 4.5.
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The main events that can be identified in the desire lifecycle are the fol-
lowing:

• New Desire. It occurs when the agent identifies a new objective to be
achieved. This event can be triggered in several scenarios:

– initial desire

– new desire created from another agent by an achieved message

– new desire created from an intention

– new desire formed with the addition of a belief

– told by someone

– agent receives a signal creating a desire

– agent perception created a new desire

• Desire committed. When an agent commits to pursuing a particular
desire by selecting a plan to achieve it, this event takes place. It signifies
that the agent is actively committing to the pursuit of the desire.

• Desire satisfied When a desire is successfully achieved, it enters the
state of satisfaction. This event indicates that the agent has successfully
accomplished the desired objective.

• Desire dropped. If a desire cannot be realised for various reasons, such
as a lack of adequate plans or other constraints, this event is triggered.
As can be seen from the lifecycle, this event can occur either after the
desire has been committed or after it has been created.

4.4.3 Intention

The lifecycle and the states of the intention are presented in Figure 4.6. It
can be seen that there is a perfect correspondence between the lifecycle of the
intention and the last states of the desire’s lifecycle, it coincides exactly with
the states when the desire is committed and becomes an intention. Specifically,
the events identified for intention at the BDI level are:

• Intention Created. When the agent commits to a desire, an intention
is created.

• Execute action. This event occurs when the agent finds the means to
achieve the intention and execute the action.
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• Intention satisfied. When the entire sequence of actions to satisfy the
desire has been completed, the intention ends in the satisfied state.

• Intention failed. This event occurs if the agent realises that the means
are not feasible or decides to give up the intention.

4.5 Mapping BDI Level and Jason Level

Once we have identified events of both levels, we need to establish a rule
that enables the connection of events in Jason to the corresponding BDI knowl-
edge concepts. Given the events at the Jason level and knowing their oper-
ation semantics, we can devise some patterns of events that can be mapped
and connected to a new event at a higher level of abstraction. An illustrative
example of this event mapping is presented in Figure 4.7. For instance, a De-
sire Committed event at the BDI level, in which the desire is chosen and the
agent commits to it, is grounded by Select Plan, Plan Selected, and Intention
Created events at the Jason level. While a Belief Updated event at the BDI
level is associated with the events Belief Added and Belief Removed at the
Jason level. It is important to note that these events may not necessarily
occur sequentially, there can be interleaving events, such as between the group
of events to commit to the desire, the agent may receive new perceptions from
the environment or messages from other agents.

To provide a more detailed overview of this mapping process, in this section,
we explain and show the connections between the two levels.
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4.5.1 Belief Events

The mapping of belief events between the BDI level and the Jason level
is presented in table 4.1.

For belief events, a New Belief event refers to the addition of a belief in
the agent’s belief base. However, because it is possible to have multiple beliefs
with the same information but from different sources at the Jason level, we
only consider the first belief added to the belief base as a new belief event at
the BDI level. This new belief event can be triggered also by a new perception
or a new speech act message, specifically for “tell” messages.

In fact, as illustrated in the table, the BDI’s New Belief event can corre-
spond to different events at the Jason level, contingent on the source of the
information. At the BDI level, the reason behind the event changes depending
on the source of the information. Specifically, if the source is the agent itself,
the reason for the event is “because I noted it in my mind for future reference”.
However, if the source is a percept indicating an environmental property from
an entity like an artefact c1, the reason transforms to “I perceived it from c1”.
On the other hand, if the source does not correspond to either of these but
matches the name of another agent, it is aligned with a New Speech Act
Message type event and a subsequent Belief Added event at the Jason
level. This implies that someone, like Alice in this example, communicated
the information to the agent as a tell message, leading the agent to believe it.
In this scenario, the narrative is presented as “I believe b because Alice told
me”.

For the removal of a belief, the Belief Removed takes place when all
sources of that belief have been eliminated from the agent’s belief base. It is
associated with the same Belief Removed event at the Jason level. Recall
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BDI Level Jason Level

New Belief Belief Added

“I believe b because I noted it in my
mind for future reference”

“Added belief b”

New Percept

“I believe b because I perceived it
from c1”

“New percept from c1 : b”

Belief Added

“Added belief b”

New Speech Act Message

“I believe b because Alice told me” “New speech act message from Al-
ice: b”

Belief Added

“Added belief b”

Belief Removed Belief Removed

“I no longer believe in b” “Removed belief b”

Belief Updated Belief Removed

“I update the belief b(1) to b(2)” “Removed belief b(1)”

Belief Added

“Added belief b(2)”

Table 4.1: Correspondence of Belief Events in BDI and Jason level
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that the Belief Removed event in Jason implies that all beliefs with the same
information are removed, whatever the source of the belief. In this case, the
narrative is represented with “I no longer believe in b”.

And finally, we have the update of a belief, Belief Updated. This involves
deleting a belief and adding the same belief, with an updated value. This is
why the event is mapped to two consecutive events: Belief Removed and
Belief Added at the Jason level. The narrative in this case is simply: “I
updated the belief from b(1) to b(2)”.

4.5.2 Desire events

The mapping of desire events is illustrated in table 4.2. In particular, the
New Desire event at the BDI level corresponds directly to the New Goal
Created event at the Jason level. The narrative of this event is expressed
as “I have a new desire g”. The reason for the desire varies according to its
source, whether it is an initial desire or a desire derived from another desire,
belief, perception, or message, as previously discussed.

The Desire Committed event at the BDI level finds its equivalent in a
group of events at the Jason level. This includes the Select Plan Event,
which encapsulates the selection context and information about the chosen
plan, the Plan Selected event which indicates the effective selection of the
plan and execution of the goal, and the Intention Created event which marks
the creation of an intention. The narration of this set of events conveys the
commitment of the desire in a concise manner: “I committed to desire g, and
it became a new intention g/1”. Intentions are represented using the notation:
[desireName/intentionId].

Lastly, the removal of the intention (Intention Removed) and goal (Goal
Removed) is associated with the final state of the desire according to the
result. When the intention is finished and the goal is achieved, it corresponds
to a Desire Satisfied event, narrated as “I have satisfied my desire g because
its intention g/1 has finished”. Conversely, if the intention and goal result in
failure state, it aligns with a Desire Dropped event, narrated as “I gave up
desire g because its intention g/1 failed”.

4.5.3 Intention events

The mapping of intention events between the BDI level and the Jason
level is illustrated in table 4.3.

The correspondence between intention events in these two levels is similar.
When an intention is created, indicated by the Intention Created event
at Jason level, it aligns with a Desire Committed event at BDI level, as
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BDI Level Jason Level

New Desire New Goal Created

“I have a new desire g because it is
an initial desire”

“Goal g created, state: pending”

“I have a new desire g2 because it
is a desire created from g”

“Goal g2 created, state: pending”

Desire Committed SelectPlanEvent

“I committed to desire g, and it be-
came a new intention g/1”

“Plan options for g are [...]
The plan selected for g is
g : (count(X) & (X < 3))

<- a1; !g2; a3.”

PlanSelected

“Plan g selected, state: executing”

Intention Created

“Intention 1 g created, state: run-
ning”

Desire satisfied Intention Removed

“I have satisfied my desire g because
its intention g/1 finished”

“Intention 1 removed, state: unde-
fined”

Goal Removed

“Goal g removed because the goal is
achieved”

Desire dropped Intention Removed

“I gave up desire g because its in-
tention g/1 failed”

“Intention 1 removed, state: unde-
fined”

Goal Removed

“Goal g removed because the goal is
failed”

Table 4.2: Correspondence of Desire Events in BDI and Jason level
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BDI Level Jason Level

Desire Committed SelectPlanEvent

“I committed to desire g, and it be-
came a new intention g/1”

“Plan options for g are [...]
The plan selected for g is
g : (count(X) & (X < 3))

<- a1; !g2; a3.”

PlanSelected

“Plan g selected, state: executing”

Intention Created

“Intention 1 g created, state: run-
ning”

Executed action Intention Created

“I’m executed action a1 because of
intention g/1”

“Intention 1 g created, state: run-
ning, current step: a1

External Action Finished / In-
ternal Action Finished / Exe-
cute Deed

“External action / Internal Action /
Deed a1 executed”

Table 4.3: Correspondence of Intention Events in BDI and Jason level
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discussed with desire events. This alignment is reinforced by the narrative,
which not only communicates the commitment of the desire but also includes
relevant information about the intention itself.

Subsequently, when the agent proceeds to execute the actions following
the plans of the intention, the Executed action event at the BDI level is
connected with Intention Created and a Execute Deed, External Action
Finished or Internal Action Finished event at Jason level. In this way,
the information of intention can be added to the motivation of the action
performed, so the narration presents as “I’m executing action a1 because of
intention g/1”.

4.6 Formalized Mapping for Prototype Devel-

opment

In the previous sections, we delved into the theoretical foundations of our
multilevel explainability framework. We introduced the core concepts, identi-
fied and explored various levels of abstraction, defined relevant events at each
level, and presented a mapping between the Jason and BDI levels. This iden-
tification framed the conceptual elements necessary for the development of our
prototype.

Although our current focus has been on the Jason language, which is a
BDI-based technology, we propose that the identification of abstraction levels
through explainability can have broader visions. These levels can be adapted
to systems that are not necessarily designed as BDI systems. Specifically, we
argue that provided a mapping from the lower level, it would be beneficial
to describe any intelligent systems using the BDI framework since it would
be easier for humans to understand the mentalistic explanation of a system
that behaves rationally given its desires and current beliefs i.e. following the
so-called intentional stance [23].

With these formalized mappings and connections of different levels of ab-
straction, we are now ready for the practical implementation of the multi-level
explainability tool, as presented in the next chapter.





Chapter 5

Prototype Implementation

As described in section 4.1, the tool presented with this thesis consists of
two main components: the logging component1 to be integrated with the
multi-agent system to track its behaviour, and the explanation component2,
a web application to visualise the multi-level system narrative. This chapter
deals with the prototyping and implementation phases of both components.

5.1 Logging Component

The prototyping and implementation of the Logging component involve
extending the Jason language with new functionalities to enable the logging
and tracing of events within the system’s behaviour. As previously discussed
in section 3.1, since Jason is developed in Java, these customisations and ex-
tensions can be achieved through the development of libraries and components
using the Java language and the object-oriented paradigm.

The following sections will describe how the Jason interpreter is extended
and customised for developing the logging functionality and how the overall
architecture of the logging component is structured.

5.1.1 Architecture

The customised components of the Jason interpreter are depicted in Fig-
ure 5.1. In particular, the Agent class and the Agent Architecture are extended
and improved to support the logging functionality through the creation of the
LoggerAg and LoggerArch classes, respectively.

1Logging component: https://github.com/yan-elena/agent-logging
2Explanation component: https://github.com/yan-elena/agent-explanation, a de-

ployed application can be accessed directly via this link: https://yan-elena.github.io/
agent-explanation/
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Figure 5.1: Customising the Jason interpreter

The Agent class serves as a crucial part of the interpreter, responsible for
various functions such as belief revision and selection functions used in the
reasoning cycle. It contains essential elements, including the BeliefBase,
PlanLibrary, user-defined selection and trust functions for messages, belief
update and revision functions, and a Circumstance that contains information
about pending events, intentions, and other relevant structures.

To enable logging for agents, the Agent class is extended by the LoggerAg
class. This extension involves overriding methods to introduce logging func-
tionality with the agent’s behaviour. Additionally, the LoggerAg class imple-
ments various listener interfaces that enable the agent to listen for specific
events. These interfaces include:

• GoalListener: This interface provides methods to listen for events re-
lated to goals. These events contain state changes such as pending, ex-
ecuting, suspended, resumed, waiting, achieved, dropped, failed, and fin-
ished.

• CircumstanceListener: This interface enables the agent to listen for
events related to its circumstance. Events include eventAdded and changes
in intention states, such as added, dropped, suspended, waiting, resumed,
and executing.
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Figure 5.2: Overall architecture of the logging component

• PlanLibraryListener: This interface allows the agent to monitor changes
to the PlanLibrary, particularly when plans are added or removed from
it.

On the other side, the LoggerArch class extends Jason ’s AgArch, which
serves as the foundation of the agent’s architecture, dictating how the agent
interacts with the external world, specifically with the environment and other
agents. The agent architecture encapsulates the functionality of the agent’s
sensory perception, action execution, and communication mechanisms. These
roles are realised through the perceive method for handling sensor input, the
act method for managing actuator actions, and methods for handling message
reception and communication. The LoggerArch class, in conjunction with
LoggerAg, is associated with agents that require logging functionality, in the
multi-agent system configuration file.

Within this customization, each of these methods designated for monitoring
relevant events incorporates calls to methods of EventLogger class. These in-
vocations are used to manage and store events, ensuring their proper recording
in the log.

The overall architecture of the logger component is presented in Figure 5.2.
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Specifically, the central element of this structure is the EventLogger, which
orchestrates the management of logs from all agents in the system. This com-
ponent has an interface includes methods that are dedicated to publishing the
events associated with a specific agent and subsequently saving the log to a
file. To ensure the consistency of this architecture, the EventLogger is de-
signed as a singleton, guaranteeing the existence of a single instance for the
entire system.

The workings of the EventLogger class exploit a map-based data structure,
which houses the event history of all agents. The individual log of a given
agent is represented by the Agent History component. The interface of this
component provides methods for including events and storing the log. It uses
the Java Logging API to implement the logging mechanism, using two auxiliary
classes to simplify the process: LogFormatter, responsible for formatting the
log, and JsonFileHandler, able to persist the log in a JSON file.

Events are encapsulated by the corresponding Event interface, which pro-
vides a uniform structure to represent different types of events. Every Jason
level event outlined in section 4.3 is instantiated as a class that implements
the Event interface, adapting its structure to the specific characteristics of the
event type.

5.1.2 Events Prototype

Events are unified under a common interface, which can be implemented by
specific classes tailored to different event types. This design choice is motivated
by the need for specialised properties and components to handle the diverse
range of events.

As depicted in Figure 5.3, the image provides a comprehensive overview of
all event types at the Jason level. These events are systematically classified
into several distinct fields, each of which has a unique purpose:

1. reasoning cycle event,

2. percepts events,

3. belief events,

4. signal events,

5. goal events,

6. intention events,

7. plan events,
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Figure 5.3: Overview of all events
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Figure 5.4: Class diagram of belief events

8. action events, and

9. speech act message events.

In the subsequent parts, we will provide a detailed description of the design
prototype for the relevant categories.

Belief Events

In the Figure 5.4 is illustrated the class diagram of belief events. A belief
is encapsulated by the BeliefInfo class, which contains relevant information
about the literal, functor, operator, type, terms, and sources of the belief.

Belief events are generated with the eventAdded method of the
CircumstanceListener interface. These events include different scenarios de-
pending on the source and operation of the belief, as described in section 4.3.1.
In particular, there are: BeliefAdded, triggered when a new belief is added
to the agent’s belief base, BeliefFromSrcAdded, in the case of an addition of
a new source in an existing belief, BeliefRemoved, if all sources of a belief are
removed, and BeliefFromSrcRemoved, when a specific source is removed from
an existing belief.
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Figure 5.5: Class diagram of goal events

Goal Events

The class diagram depicted in Figure 5.5 illustrates the structure of the goal
events. A goal is represented by the object GoalInfo, encapsulating essential
details such as its functor and associated intention.

The GoalEvent is an abstract class that contains the common property
of a goal event, it could be extended by a specific goal’s events. The class
encompasses information about the goal, its current state (pending, execut-
ing, suspended, or finished) and the reason behind its state transition. The
ReasonInfo is a structure with a functor and a list of terms.

Goal events are triggered by the GoalListener interface, and following the
discussion in section 4.3.2 we have these classes, each representing a specific
type of goal event:

• GoalCreated. This event is recorded when a goalStarted method from
the GoalListener interface is called. This event signifies the creation of
a goal. At this stage, the goal is in a pending state, awaiting execution.
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• PlanSelected. This event is recorded when the goalExecutingmethod
is triggered. This event marks the transition of a goal from pending state
to executing state. The goal is selected, committed by the agent, and
becomes a new intention.

• GoalSuspended. This event is added when the goalSuspended method
is triggered. This event denotes the suspension of a goal, moving it to
the suspended state.

• GoalRemoved. Two distinct methods led to the generation of this event:
goalFinished and goalFailed, both indicating that the goal has reached
a finished state. This class also contains information about the result of
the goal, which can be categorised as dropped, achieved or failed.

Intention Events

As illustrated in Figure 5.6, the structure of intention events is similar to
goal events. An intention is represented by the class IntentionInfo. It encap-
sulates the essential attributes, such as the id, states and relevant information
about the selected applicable plan, which are found in IntendedMeansInfo.
The plan’s course of action serves as the intended means by which the agent
intends to achieve its goal.

The IntentionEvent class contains complete information about the inten-
tion and the reason associated with its happening. These events are generated
through interactions with the CircumstanceListener interface. Four distinct
types of intention events are identified, as discussed in section 4.3.2:

• IntentionCreated This event is generated when a new intention is in-
troduced, triggered by the intentionAdded method of the
CircumstanceListener. It represents the creation of a new intention.

• IntentionWaiting Triggered by the intentionWaiting method of the
CircumstanceListener, this event denotes the scenario where an inten-
tion is in a waiting state. Additionally, it captures the reason behind the
intention’s transition to the waiting state.

• IntentionSuspended Resulting from the intentionSuspended method,
this event indicates that an intention has been suspended. Like the
IntentionWaiting event, it also documents the rationale behind the
suspension.

• IntentionRemoved Recorded when an intention is dropped, this event
denotes the conclusion of an intention’s lifecycle. Following this event,
the intention’s state becomes undefined.



CHAPTER 5. PROTOTYPE IMPLEMENTATION 59

Figure 5.6: Class diagram of intention events
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5.2 Explanation Component

The explanation component is responsible for presenting the explanation of
the multi-agent system in a comprehensible and user-friendly manner to users.

To fulfil this objective, we chose to create a web application for its ease
of use and accessibility. A web application provides an interface for users
to interact with and understand the intricate reasoning and behaviour of the
multi-agent system. Through this web application, users can navigate expla-
nations, view event narratives, and comprehend the agents’ decision-making
process.

Figure 5.7: Web Application - Initial page for uploading log files

As illustrated in Figure 5.7, the web application provides an initial page
for users to upload the log files generated by the logging component. Given
these log files, the application will be able to generate a complete multi-level
explanation.

Once the log file has been uploaded, the web application provides users with
a comprehensive overview of all agents present in the multi-agent system, as
shown in Figure 5.8. On this page, users have the option of selecting the agent
to explore and the possibility of delving into different narrative perspectives,
including the complete narrative, the belief narrative, the desire narrative, or
the intentions narrative.
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Figure 5.8: Web application - overview of all agents in the multi-agent system

Figure 5.9: Web application - explanation page with Jason level

If the user chooses to explore a complete narrative for a specific agent, the
web application provides an in-depth view of all event narratives at Jason
level, as exemplified in Figure 5.9. For each event, the narrative is elaborated,
detailing the sequence of actions, decisions, and their reasons. The type of
event is clearly indicated, together with its timestamp. In addition, some
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Figure 5.10: Web application - explanation page with the BDI level

events are accompanied by additional contextual information, which enhances
the user’s understanding of the meaning and implications of the event.

The web application provides an interface that allows users to refine the
exploration according to their preferences. On this page, users can apply a
filter to events and choose the narrative level they wish to explore.

The Figure 5.10 illustrates the sequence of narrative at a BDI level. This
BDI-level narrative presentation offers a higher-level perspective, focusing on
concepts related to beliefs, desires, and intentions. The BDI level narratives
are realised with a first-person approach, which gives the explanation a more
personal and immersive quality.

The filter component is a fundamental tool that allows users to selectively
focus on events of interest to them. This component not only allows users
to filter events according to their type (belief, intention, desire, etc.), but
also allows them to focus on events associated with specific behaviours or the
entire lifecycle of a particular desire. The Figure 5.11 shows an example of
practical use of the filter. In this case, the application is configured to present
a comprehensive narrative, including all events related to the desire g1. This
powerful feature explains the g1 lifecycle, tracing its path from the beginning
as a new desire, through its commitment and transformation into an intention,
the execution of associated actions, and finally its realisation or failure. This
functionality offers a valuable way to fully understand the lifecycle of a specific
event, along with the intentions and actions associated with it.
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Figure 5.11: Web application - filtering and g1 desire lifecycle explanation





Chapter 6

Evaluation

For the evaluation part, we move to evaluating the effectiveness of the tool
by taking the example of domestic robots from the Jason distribution. The
narrative produced for the example in the two explanation levels shows how
the tool can be used for debugging or understanding the system.

6.1 Domestic Robot Application

Consider the following “domestic robot” example1, which comes with Ja-
son ’s distribution. [11]

“A domestic robot has the goal of serving beer to its owner. Its
mission is quite simple, it just receives some beer requests from the
owner, goes to the fridge, takes out a bottle of beer, and brings it
back to the owner. However, the robot should also be concerned
with the beer stock (and eventually order more beer using the su-
permarket’s home delivery service) and some rules hard-wired
into the robot by the Department of Health (in this example this
rule defines the limit of daily beer consumption).” [11]

The example is composed of three agents: the robot, the owner, and the
supermarket.

6.1.1 Configuration of the Tool

To use the implemented tool, the following dependency of the logging com-
ponent must be included in the project’s gradle file.

1https://github.com/yan-elena/domestic-robot-example
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dependencies {

implementation 'io.github.yan-elena:agent-logging:0.1.0'
}

Listing 6.1: Domestic robot example: configuration for the logging component
dependency in the project gradle file

Then, we proceed to configure the customised agentArchClass and agentClass
to enable the logging component for the interested agents. The configuration
of the domestic robot example is as follows:

MAS domestic_robot {

environment: example.HouseEnv(gui)

agents:

robot

agentArchClass log.LoggerArch

agentClass log.LoggerAg;

owner

agentArchClass log.LoggerArch

agentClass log.LoggerAg;

supermarket

agentArchClass log.LoggerArch

agentClass log.LoggerAg;

aslSourcePath: "src/agt";

}

Listing 6.2: Domestic robot example: configuration for the domestic robot
MAS application

6.1.2 Running the System with the Logging Tool

When the application is launched, events are recorded as they occur in the
system. Two log files are produced. The first one contains a low-level narrative
very closely related to the code, an extract of the log of the robot agent can
be seen in Listing 6.3.

//...

[1693582280618] ReasoningCycleStarted: New reasoning cycle started: 2

[1693582280627] MailBoxMessages: Messages in mailbox:

achieve message from owner: has(owner,beer)
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[1693582280635] SelectedMessage: Selected Message: has(owner,beer)

[1693582280641] NewSpeechActMessage: New speech act message [achieve] from

owner: has(owner,beer)

[1693582280655] GoalCreated: Goal has created

[1693582280713] SelectPlanEvent: Plan options for has are:

has(owner,beer) : (available(beer,fridge) & not (too_much(beer))) <-

!at(robot,fridge); open(fridge); get(beer); close(fridge);

!at(robot,owner); hand_in(beer); ?has(owner,beer); .date(YY,MM,DD);

.time(HH,NN,SS); +consumed(YY,MM,DD,HH,NN,SS,beer).

The plan selected for has is has(owner,beer) : (available(beer,fridge) &

not (too_much(beer))) <- !at(robot,fridge); open(fridge); get(beer);

close(fridge); !at(robot,owner); hand_in(beer); ?has(owner,beer);

.date(YY,MM,DD); .time(HH,NN,SS); +consumed(YY,MM,DD,HH,NN,SS,beer).

[1693582280717] PlanSelected: Plan has selected, state: executing

[1693582280721] IntentionCreated: Intention 3 has created, state: undefined

current step: !at(robot,fridge); open(fridge); get(beer); close(fridge);

!at(robot,owner); hand_in(beer); ?has(owner,beer); .date(YY,MM,DD);

.time(HH,NN,SS); +consumed(YY,MM,DD,HH,NN,SS,beer)

[1693582280724] GoalCreated: Goal at (sub-goal of has) created

[1693582280729] ExecutedDeed: Deed at(robot,fridge) of type achieve

executed - from file:src/agt/robot.asl:20

//...

Listing 6.3: Domestic robot example: extract of the .log file generated for the
robot agent

The second log generated is of the .json type, this log file will be used to
load into the web application for multi-level explainability. An extract of this
log for the robot agent is represented in Listing 6.4.

[

//...

{

"timestamp": 1693582280618,

"message": {

"type": "ReasoningCycleStarted",

"event": {

"cycleNumber": 2

},

"log": "New reasoning cycle started: 2"

}

},

{

"timestamp": 1693582280627,

"message": {

"type": "MailBoxMessages",

"event": {

"messages": [
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{

"id": "mid1",

"type": "achieve",

"sender": "owner",

"receiver": "robot",

"message": "has(owner,beer)"

}

]

},

"log": "Messages in mailbox: \n\tachieve message from owner:

has(owner,beer)"

}

},

{

"timestamp": 1693582280635,

"message": {

"type": "SelectedMessage",

"event": {

"selected": {

"id": "mid1",

"type": "achieve",

"sender": "owner",

"receiver": "robot",

"message": "has(owner,beer)"

}

},

"log": "Selected Message: has(owner,beer)"

}

},

{

"timestamp": 1693582280641,

"message": {

"type": "NewSpeechActMessage",

"event": {

"message": {

"id": "mid1",

"type": "achieve",

"sender": "owner",

"receiver": "robot",

"message": "has(owner,beer)"

}

},

"log": "New speech act message [achieve] from owner: has(owner,beer)"

}

},

{

"timestamp": 1693582280655,

"message": {

"type": "GoalCreated",
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"event": {

"goalInfo": {

"goalFunctor": "has",

"intention": {

"value": null

}

},

"goalStates": "pending",

"reasonInfo": {

"value": null

}

},

"log": "Goal has created"

}

},

//...

]

Listing 6.4: Domestic robot example: extract of the .json file generated for
the robot agent

6.2 Narrative of the Domestic Robot Applica-

tion

Figure 6.1: Domestic robot example: an overview of all agents of the applica-
tion



70 CHAPTER 6. EVALUATION

Once the log files have been uploaded to the web application, the user can
select the agent with which he wants to view the narration. (Figure 6.1)

Through narration, it is possible to reconstruct the whole history of the
agents, which helps in explaining and understanding the behaviour of the sys-
tem. Let us now visualise the narrative at the BDI level for each agent in the
example application.

6.2.1 Owner

The Jason code for the owner agent in this example is as follows.

/* Initial goals */

!get(beer). // initial goal: get a beer

!check_bored. // initial goal: verify whether I am getting bored

+!get(beer) : true

<- .send(robot, achieve, has(owner,beer)).

+has(owner,beer) : true

<- !drink(beer).

-has(owner,beer) : true

<- !get(beer).

// while I have beer, sip

+!drink(beer) : has(owner,beer)

<- sip(beer);

!drink(beer).

+!drink(beer) : not has(owner,beer)

<- true.

+!check_bored : true

<- .random(X); .wait(X*5000+2000); // i get bored at random times

.send(robot, askOne, time(_), R); // when bored, I ask the

robot about the time

.print(R);

!check_bored.

+msg(M)[source(Ag)] : true

<- .print("Message from ",Ag,": ",M);

-msg(M).

Listing 6.5: Domestic robot example: owner agent code



CHAPTER 6. EVALUATION 71

Figure 6.2: Domestic robot example: owner agent initial desires

The code represented may not be immediate for users who are not experts
in the language. Looking at the narrative at the BDI level (see Figure 6.2), we
first notice that the owner agent has two initial desires: get(beer) to request
beer and check bored, to check whether the owner is getting bored.

We can view the narrative of the desire get(beer) by filtering the related
events in the search bar, as illustrated in Figure 6.3. At this point, we see
that the desire get(beer) is committed, and it becomes a new intention. The
plan consists of sending the robot a message to achieve the goal has(owner,
beer). The desire concludes with satisfaction. The desire narrative is very
clear and concise, including all the stages of the desire life cycle and all the
elements needed for understanding.

Once the robot has achieved the goal has(owner, beer), the owner per-
ceives it and believes in has(owner,beer), as depicted in Figure 6.4. This
belief generates an event in which the owner starts drinking beer with the de-
sire drink(beer). To drink the beer, the owner takes sips, with the creation
of more desires, until the beer is finished.
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Figure 6.3: Domestic robot example: owner agent get(beer) desire lifecycle
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Figure 6.4: Domestic robot example: owner agent has(owner,beer) desire
lifecycle
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6.2.2 Robot

/* Initial beliefs and rules */

// initially, I believe that there is some beer in the fridge

available(beer,fridge).

// my owner should not consume more than 10 beers a day :-)

limit(beer,10).

too_much(B) :-

.date(YY,MM,DD) &

.count(consumed(YY,MM,DD,_,_,_,B),QtdB) &

limit(B,Limit) &

QtdB > Limit.

/* Plans */

+!has(owner,beer)

: available(beer,fridge) & not too_much(beer)

<- !at(robot,fridge);

open(fridge);

get(beer);

close(fridge);

!at(robot,owner);

hand_in(beer);

?has(owner,beer);

// remember that another beer has been consumed

.date(YY,MM,DD); .time(HH,NN,SS);

+consumed(YY,MM,DD,HH,NN,SS,beer).

+!has(owner,beer)

: not available(beer,fridge)

<- .send(supermarket, achieve, order(beer,5));

!at(robot,fridge). // go to fridge and wait there.

+!has(owner,beer)

: too_much(beer) & limit(beer,L)

<- .concat("The Department of Health does not allow me to give

you more than ", L,

" beers a day! I am very sorry about that!",M);

.send(owner,tell,msg(M)).
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-!has(_,_)

: true

<- .current_intention(I);

.print("Failed to achieve goal '!has(_,_)'. Current intention

is: ",I).

+!at(robot,P) : at(robot,P) <- true.

+!at(robot,P) : not at(robot,P)

<- move_towards(P);

!at(robot,P).

// when the supermarket makes a delivery, try the 'has' goal again

+delivered(beer,_Qtd,_OrderId)[source(supermarket)]

: true

<- +available(beer,fridge);

!has(owner,beer).

// when the fridge is opened, the beer stock is perceived

// and thus the available belief is updated

+stock(beer,0)

: available(beer,fridge)

<- -available(beer,fridge).

+stock(beer,N)

: N > 0 & not available(beer,fridge)

<- -+available(beer,fridge).

+?time(T) : true

<- time.check(T).

Listing 6.6: Domestic robot example: robot agent code

The robot code in this example is the most complex. A more compact
representation of the robot’s narrative can be visualised by selecting only events
relating to desires, as depicted in the Figure 6.5.

As can be seen from the narration in the figure, the robot’s desire to
has(owner, beer) is requested by the owner via an achieved message. The
robot finds a plan and commits to it. At this point, the robot performs a series
of actions defined by the plan, leading to the creation of new sub-desires and
intentions.
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Figure 6.5: Domestic robot example: narrative based on the robot agent’s
desires
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6.2.3 Supermarket

last_order_id(1). // initial belief

// plan to achieve the goal "order" for agent Ag

+!order(Product,Qtd)[source(Ag)] : true

<- ?last_order_id(N);

OrderId = N + 1;

-+last_order_id(OrderId);

deliver(Product,Qtd);

.send(Ag, tell, delivered(Product,Qtd,OrderId)).

Listing 6.7: Domestic robot example: supermarket agent code

The code (see Listing 6.7) and the narrative (see Figure 6.6) for the super-
market agent are quite simple.

Initially, the supermarket agent has an initial conviction indicating the
number of the last order. The agent only performs actions when someone
places an order. At this point, a new desire order(beer, 5) is created with the
specification of the type and quantity of the product. The actions of the inten-
tion consist of updating the belief on the order number to last order id(2),
delivering the product with the action deliver and notifying the agent of the
successful delivery with a tell message.
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Figure 6.6: Domestic robot example: supermarket agent narrative
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6.3 Debugging with the Explanation Tool

The implemented tool serves as an important tool to support the debugging
phase for developers. Thanks to the multi-level explanation, it is possible to
switch from one level to another depending on the level of detail required.

Let us see an example of its use for debugging. Let us take this piece of
code from the file robot.asl as an example and suppose that the programmer
forgot to deliver the beer to the owner (hand in(beer)) as displayed below in
the Listing 6.8.

+!has(owner,beer)

: available(beer,fridge) & not too_much(beer)

<- !at(robot,fridge);

open(fridge);

get(beer);

close(fridge);

!at(robot,owner);

//hand_in(beer);

?has(owner,beer);

.date(YY,MM,DD); .time(HH,NN,SS);

+consumed(YY,MM,DD,HH,NN,SS,beer).

Listing 6.8: Domestic robot example: robot agent code with a bug

The developer can observe that the owner asked the robot for a beer with
the get(beer) message, but then it was not delivered and he did not drink it.
The developer asks why the owner did not get the beer.

The developer at this point goes on to examine the robot’s narrative after
it has received the desire to take the beer (see Figure 6.7). He noted that the
request to have beer was correctly delivered to the robot, the robot actually
has this desire and commits to it. The first step in which the robot moves
towards the fridge is done correctly, and the developer sees that it gradually
creates sub-desires to move forward and that they are all fulfilled.

When the robot arrives in front of the fridge, he opens the fridge, takes the
beer, closes the fridge, and moves towards the owner (see Figure 6.8).
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Figure 6.7: Debugging robot agent: narrative of the desire has(owner, beer)

Figure 6.8: Debugging robot agent:narrative of the desire has(owner, beer)
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The developer sees that all these steps have been performed correctly and
are satisfied, but the next event shows that the robot gave up the desire
has(owner, beer) because its intention failed, as illustrated in Figure 6.9.

Figure 6.9: Debugging robot agent: desire has(owner, beer) dropped

In order to debug and find the reason of the failure, the developer decides
to go into a lower level of detail. Moving on to the Jason level, the developer
can observe that the error consists of test goal, in fact, it is shown that the
execution of test goal has(owner, beer) on line 26 of the robot code failed.

Figure 6.10: Debugging robot agent: test goal has(owner, beer) failed

Once the cause of the error has been identified, it is easier to continue with
the correction of that error. In fact, the developer realises that the owner did
not get the beer because it was not delivered to his hands. So there is a missing
action for the robot to take, which is hand in(beer), before checking whether
the owner has the beer in his hands.





Chapter 7

Conclusion and Future Work

Software is becoming more and more opaque due to its increasing com-
plexity and autonomy. Sometimes even domain experts and system engineers
struggle to understand certain aspects of a system. [44, 32]

This thesis introduces the concept of “multi-level explainability”, developed
on the basis of multi-agent BDI systems. In particular, our aim is to develop
a tool that supports various phases of agent-oriented software engineering for
various stakeholders: domain experts, designers, or developers. We took cog-
nitive agents based on the BDI (Belief-Desire-Intention) model as the reference
technology because they use high-level concepts closer to human reasoning and
are sometimes so complex that without a valid tool as support, it becomes dif-
ficult to understand their code and behaviour.

The research that led to this thesis was to implement a tool to provide
an explanation for the behaviour of multi-agent BDI systems. In most of the
works already developed in the literature, the focus is mainly on the explana-
tion of a single agent that produces a single explanation for a single purpose.
Our research introduces a different approach by presenting an explainability
framework for agents and multi-agent systems that deals with multiple levels
of abstraction that can be used with different purposes by different classes of
users. The multi-level explanations facilitate communication between stake-
holders and developers, as the high-level explanations can be understood by
both technical and non-technical people. It also supports the debugging, test-
ing, and validation phases for developers.

We experimented with the automatic generation of explanations starting
from a BDI-based technology, and we propose that the levels of abstraction at
which an explanation can be given are general and can be applied to systems
that have not necessarily been designed as BDI systems.

The implemented tool is very easy to use, to generate the logs, the user
only needs to specify the dependency and indicate which agents they want to
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log. After execution, the user can upload the logs to the web application, and
you can browse the whole multi-agent system narrative. The user is able to
change the level of detail in the narrative and filter the events according to
his needs. In the evaluation phase of the thesis, an example was shown of
how this tool works well in various contexts, both for comprehension and for
system debugging.

7.1 Future Works

In the current state, the implemented explainability tool can be used as a
basis for comprehending multi-agent systems. However, we present below some
valuable suggestions and possible directions for research to further improve the
framework.

The first main direction of advancement involves expanding the dimension
of the framework to incorporate environmental and organisational consider-
ations, as cited in section 4.2. This expansion will involve the integration of
dedicated logging components tailored to environmental artefacts and organ-
isational specifications. The information gathered by these components could
then be presented within the explanation component, enhancing the overall
comprehensibility of the system and offering a complete view of the system.

In addition to expanding the dimensions regarding multi-agent systems,
it would be interesting to consider expanding the explanability level as well.
One useful direction is to add a user level to explain behaviour related to the
system’s domain. The explanations could include higher level domain-related
aspects, facilitating the work of domain experts and improving comprehensi-
bility for end users as well.

Another direction that needs to be improved in order to achieve a more
robust framework is the integration of cause-effect relationships to sequences
of events. [39] The complexity lies in identifying the relationships between
the various events, linking them and creating causal chains. This is feasible
because we use the BDI model as an abstraction since it is a logical language,
and knowing its semantics, it is possible to formulate and link the causes
of events. This feature further improves the debugging process by obtaining
chains of explanations of why certain actions occur and allowing the root cause
to be traced in a robust manner.
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