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Abstract

Despite considerable progress in the understanding of fundamental particles and interactions and
the striking predictive power of the Standard Model in collider experiments, some key questions
in the understanding of Nature still remain unanswered. What is the origin of neutrino masses?
What is dark matter made of? Why is there an imbalance between baryons and anti-baryons in
the Universe? These questions call for new physics beyond the Standard Model. For decades,
the majority of the experimental effort has been directed to the search for new particles with
sizeable couplings to the Standard Model and masses at the TeV scale, motivated by some popular
extensions of the SM. However, recent theoretical and experimental developments have brought
new attention to the dark sectors, i.e. extensions of the Standard Model at scales below the
electroweak scale and which are weakly coupled to the visible sector. In some of these rich
dark sector models, it is possible to have dark photons decaying semi-visibly, meaning that the
final state contains both visible and invisible particles, making it possible to circumvent current
experimental constraints on the masses of the dark photons mA′ and mixing ε with the SM
photon. This project will focus on models containing multiple dark fermions, where the lighter of
these can be made stable through some additional symmetry that forbids the mixing with active
neutrinos, making it a viable dark matter candidate. This model can leave visible signatures
in ProtoDUNE detectors, located at CERN. Protons extracted from the CERN Super Proton
Synchrotron (SPS), with energies up to 400 GeV, can generate a flux of BSM particles that can
reach the ProtoDUNE detectors. These are liquid Argon Time Projection Chambers (LArTPCs)
constructed to test and consolidate the technologies of the DUNE Far Detector. Thanks to its
large volume and the high density of liquid argon, stable particles coming into the detector can
interact, leading to an excess of electron recoil.
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Introduction

By observing the Universe and the galaxies it contains, we can gain information about the matter
it is made of. What we find is that there are dark footprints, whose form we do not recognise,
etched by something beyond our current understanding and whose origin remains a mystery.
The cosmic microwave background, gravitational lensing, and large-scale structures, all show
that ordinary matter is insufficient to account for all the matter inferred from observations[1–3].
Some additional elusive dark matter (DM) is necessary to explain these phenomena.

As sure as we are that there is something we are missing that contributes to the total matter
in the universe from astronomical observations, we still have no idea what this dark matter is and
what is its origin. The Standard Model of particle physics (SM), the currently most successful
theory in describing fundamental particles and their interactions, lacks an explanation for DM.

Alongside dark matter, there are numerous pieces of evidence that show that the SM is
incomplete. Neutrino masses, the uneven distribution of matter and antimatter in the universe,
known as baryon asymmetry, and the precise value of the mass of Higgs bosons hint at some new
physics that is able to address these problems. However, determining the energy scale at which
this new physics might manifest remains an open question. Several prominent theories aiming to
extend the SM, including Type-I seesaw, WIMP dark matter, and the ’vanilla leptogenesis’ model
designed to explain baryon asymmetry, suggest the presence of high-energy new physics. New
physics at high energy is very important in solving the hierarchy problem, where supersymmetric
theories have been proposed to address this issue. From an experimental viewpoint, the will
to explore the energy frontier has led to searches in high-energy experiments, with the goal of
looking for a resonance that could indicate a new particle. However, the lack of experimental
evidence in this range has led to contemplating alternative avenues, in particular investigating
particles that have weaker interactions with the known particles. These particles can have lighter
masses and are referred to as "dark sectors" (DS).

Dark sectors provide new opportunities for theory, phenomenology and experiments. They
could be imagined as a world parallel to our own, that could contain many states - either fermions
or scalars. If the only interaction between the dark sectors and regular matter were through grav-
ity, it would be exceedingly challenging to detect these new particles in laboratory experiments.
Therefore some sort of portal interaction must be introduced, in order to allow us to have an
interaction other than gravitational between these states. These portals can take different forms
depending on the type and dimension of its operator. Dimension four portals are, in particular,
the vector portal, the scalar portal and the fermion portal. The first one is mediated by a new
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dark U(1)D gauge boson called dark photon, the second by an additional scalar that mixes with
the SM Higgs boson, while the latter is mediated by a heavy neutral lepton (HNL) interacting
with one of the left-handed SM doublets and the Higgs boson. There is an additional portal, the
pseudoscalar portal, mediated by an axion (or axion-like particle). This portal has dimension five
and is suppressed by the axion decay constant. The interest in dark sectors stems mainly from
the power they offer in explaining the aforementioned problems by evading experimental bounds,
and for the possibility of exploring many of these models in a short span of time as they can be
investigated in existing experimental facilities. This thesis will focus on one of these mediators,
the dark photon, that couples to the ordinary photon through kinetic mixing. Specifically, we
consider the semi-visible dark photon models presented in [4], where the lightest particle in the
dark sector can be regarded as a DM candidate. Expanding their discussion on searches for the
dark photon at BaBar and NA64, in this work we analyze whether ProtoDUNE is sensitive to
this model, following the idea in [5].

After a brief introduction to the standard model in Ch. 1 and an overview of DM in Ch. 2,
we present a more general and in-depth analysis of a rich dark sector including all renormalizable
portals in Ch. 3. Finally, we discuss the result of the current work in Ch. 4. We are particularly
interested in the region of the parameter space that is compatible with a dark photon explanation
of the anomalous muon magnetic moment (g − 2)µ. Models that allow for the dark photon to
decay semi-visibly are able to evade current constraints that exclude this region. Additionally, the
lightest of the dark sector particles can constitute a dark matter candidate, allowing constraints
coming from CMB and relic density. We see that ProtoDUNE can expand in some cases the
current sensitivities for the dark photon mixing ε and masses mA′ , partially covering the newly
open ∆aµ parameter space.
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Chapter 1

The Standard Model and Beyond

The Standard Model of particle physics is a highly successful theoretical framework that describes
particles’ behaviour and interactions 1.1. It encompasses the electroweak theory, formulated by
S. Weinberg [6] and A. Salam [7], building upon the model initially proposed by S.L. Glashow in
1961 [8]. Furthermore, it incorporates quantum chromodynamics [9–11], along with the Brout-
Englert-Higgs (BEH) mechanism [12, 13], which imparts masses to matter and interaction fields.
It has been extensively tested through various experiments over the past several decades, and its
predictions have been found to be in agreement with experimental results. With the discovery of
the Higgs boson at LHC [14, 15], the last missing experimental evidence of the Standard Model
has been put into place, further proving the Standard Model to be the most accurate and reliable
theory for describing the behaviour of the known subatomic particles and their interactions.

Figure 1.1: (Left) Best fit values of the Higgs boson couplings to the different
particles as a function of particle mass for the CMS data [16]. (Right) Cross sections
time branching fraction for the main Higgs production modes at the LHC (ggF,
VBF, VH and ttH+tH) in each relevant decay mode (γγ, WW, ZZ, ττ , bb). All

values are normalized to Standard Model predictions. Figure taken from [17]
.
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Despite all of its success in explaining a wide range of experimental results, some questions
remain unanswered and call for new physics Beyond the Standard Model, such as neutrino masses
and oscillation, the baryon asymmetry of the universe (BAU) and Dark Matter (DM). However,
it still constitutes the foundations upon which our quest for new physics must be built. For
this reason, we start the present work by briefly introducing the theoretical framework of the
Standard Model, focusing on the problem of Dark Matter.

1.1 The Standard Model of particle physics

The Standard Model is a renormalizable quantum field theory [18] described by the gauge group

GSM = SU(3)c × SU(2)L × U(1)Y , (1.1)

that describes the fundamental interactions, with the exception of gravity. GSM is a twelve-
dimensional Lie group, with twelve different generators, each corresponding to a particle me-
diating a SM interaction. The generators of SU(3) are the gluons responsible for the strong
interaction, while the generators of SU(2)L × U(1)Y mediate the electroweak interaction. The
theoretical formulation of the standard model relies on the same idea of Maxwell’s equation,
the principle of gauge invariance. Requiring that the Lagrangian is gauge invariant, forces us
to introduce covariant derivatives, which leads to interactions between the gauge fields and the
matter content of LSM .

In order to have a complete description of particle physics, we need two other ingredients: the
particle content and the scalar sector. Fermions in the standard model are divided into three
families or generations, as depicted in fig. 1.2. The three families all have the same quantum
numbers as the particle in each family corresponds to the same irreducible representation of the
gauge group. Table 1.1 summarizes the particle content and representations of all the fields of the
model. Finally, a scalar sector is required, where a scalar field, the Higgs boson [12] behaves as a
singlet under the SU(3) group, a doublet under SU(2) and has a hypercharge Y = 1/2. The Higgs
boson is fundamental in the SM in order to break the SU(2)L × U(1)Y symmetry into U(1)EM
and to give mass to the W± and Z bosons and to fermions [6, 7]. It was finally discovered in 2012,
almost 50 years after being first proposed, when ATLAS and CMS collaborations announced the
observation of a new boson with a mass of 125 GeV at 5 σ significance 1.3.

The standard model Lagrangian is constructed as follows:

LSM = Lgauge + Lkin + LHiggs + LY ukawa,

where Lkin contains the kinetic terms of the fermions, Lgauge the gauge interactions, LHiggs is the
Higgs interactions and potential, and LY ukawa the Yukawa couplings of the fermions.
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Figure 1.2: Particles in the standard model.

Figure 1.3: Distribution of the invariant mass of the two photons measured in
the ATLAS and CMS experiment. Figures from [14, 15].

Gauge terms

The gauge invariant kinetic terms for the gauge bosons are:

Lgauge = −1

4
Ga
µνG

µν
a − 1

4
W a
µνW

µν
a − 1

4
BµνB

µν ,

where F a
µν = ∂µF

a
ν − ∂νF

a
µ − gFf

abcFµ,bFν,c, gF being the gauge coupling constant and fabc the
structure constant of the particular gauge group defined by the commutator

[ta, tb] = ifabctc, (1.2)
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Generations GSM

I II III SU(3)c SU(2)L U(1)Y

Quarks

(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

3 2 1/6

uR cR tR 3 1 2/3
dR sR bR 3 1 -1/3

Leptons

(
e
νe

)
L

(
µ
νµ

)
L

(
τ
ντ

)
L

1 2 -1/2

eR µR τR 1 1 -1
Higgs H 1 2 1/2

Table 1.1: Quantum number for different representations of the gauge group for
the fermions and the Higgs boson. Families are sorted in mass order, the third
generation being the heavier one. The electric charge of the particle Q = T3 + Y ,

where T3 is the third component of the isospin and Y is the hypercharge.

where ti are the generators of the group. In an Abelian group, the structure constant vanishes
since all generators commute with each other. Therefore, the last term exclusively exists for
non-Abelian groups, introducing the 3-point and 4-point interactions among the gauge bosons.
On the other hand, the first two terms constitute the propagator of the gauge bosons.

Kinetic terms

The kinetic Lagrangian is responsible for the interactions between the gauge bosons and fermions
ψ:

Lkin,ψ =
∑

ψiγµDµψ,

where the sum runs over all chiral fermions of the model.
The covariant derivative is Dµ = ∂µ− igSGa

µλa− igW a
µσa− ig′Y Bµ, λ and σ being the generators

of respectively SU(3)C and SU(2)L, and Y the hypercharge of ψ. The SU(3)C , SU(2)L and
U(1)Y gauge coupling are respectively gS, g and g′.

Scalar terms

Let’s now briefly review the two last missing pieces in the picture. The Higgs field is a complex
scalar field and a doublet under SU(2)L, which can be represented as

H =
1√
2

(
G+

1 + iG+
2

h0 + iG0
3

)
=
eiGaτ

a

√
2

(
0

h

)
. (1.3)

The Higgs Lagrangian reads

LHiggs = (DµH)† (DµH)− V (H), with V (H) = µ2H†H + λ
(
H†H

)2
. (1.4)
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In particular, µ2 has mass dimension 2, and when it takes negative values H acquires a vacuum
expectation value (vev) and breaks the electroweak group SU(2)L × U(1)Y → U(1)EM . The

vev of the field is ⟨H⟩ =
(
0 v/

√
2
)T

, where v2 = −µ2/λ. At this point, the lagrangian can
be expanded around the true vacuum of the theory through the field redefinition Ga → Ga/v

and h → h + v. What arises is a mass term for the scalar field and its interactions with the
gauge bosons, stemming from the covariant derivative. In accordance with the Goldstone theorem
[19][20], which states that for each broken generator of the symmetry, there corresponds a massless
field known as the Goldstone boson, we observe that G1, G2, and G3 are indeed massless, whereas
h possess a mass term.

A very popular choice for fixing the gauge is the so-called unitary gauge, where the Goldstone
bosons do not appear in the lagrangian. This is realized through a rotation such that:

H =
1√
2

(
0

h

)
. (1.5)

The Goldstone bosons’ degrees of freedom are "eaten" by the gauge bosons, that become massive.
In conclusion, we get three massive and one massless vector bosons, defined as

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, Zµ = cWW

3
µ − sWBµ, Aµ = cWBµ + sWW

3
µ , (1.6)

where we have defined cW (sW ) = g(g′)/
√
g2 + g′2 and g = e/sW , g

′ = e/cW . The value of the
masses of the vector bosons are:

MW =
gv

2
≈ 80.387GeV,

MZ =
v

2

√
g2 + g′2 ≈ 91.188GeV,

MA = 0.

Yukawa terms

The EW sector is also responsible for the generation of fermion masses in the SM. All left-handed
fermions are doublet under SU(2)L, just like the Higgs. This allows us to write

LY ukawa = yeαβ(L
α
H)eβR + yuαβ(Q

α

LH̃)uβR + ydαβ(Q
α

LH)dβR + h.c., (1.7)

where we have defined H̃ ≡ iσ2H
∗. ye,u,dαβ are the Yukawa couplings. After SSB, these interaction

terms give the charged leptons and quarks a Dirac mass term of the form

mψψψ = mψ

(
ψLψR + ψRψL

)
, (1.8)
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with mψ = yψv/
√
2, where v is the vev of the scalar field, and ψL,R = PL,Rψ = 1±γ5

2
ψ.

The one just described is the Yukawa Lagrangian for the first family of fermions. The complete
Lagrangian is obtained by promoting yψ → Y ψ, a 3× 3 matrix. In the quark sector, the Yukawa
matrix is off-diagonal and the different generations mix. The Yukawa matrices can be diagonalized
by

Y ψ = Uψ
a Y

ψ
diagU

ψ†
R . (1.9)

The physical quark masses are found after rotating the up and down quarks through the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [21, 22]

UCKM = Uu†
L U

d
L. (1.10)

The CKM matrix has 4 free parameters: three angles and a complex phase that allows for CP
violation in the quark sector. It can be parametrized as

UCKM =

1 0 0

0 c23 −s23
0 s23 c23


 c13 0 −e−iδs13

0 1 0

eiδs13 0 c13


c12 −s12 0

s12 c12 0

0 0 1

 . (1.11)

The angles and the phase of the CKM matrix are found to be:

θ12 ≈ 13◦, θ23 ≈ 2◦, θ13 ≈ 0.2◦ (1.12)

and
δ ≈ 70◦. (1.13)

The CKM matrix is nearly diagonal, so the mixing between the quark and flavour mass eigenstates
is small.

This concludes our review of the Standard Model of particle physics. Over the years, the
SM has demonstrated its impressive accuracy, successfully aligning with experimental data from
numerous collider experiments. However, as we previously hinted, certain theoretical and exper-
imental inconsistencies require new physics beyond the standard model. In the following section,
we will delve into these matters, providing a concise explanation of why the SM falls short in
addressing these facts. Additionally, we will explore some ideas proposed to resolve these issues.

1.2 Open questions in the Standard Model

While the mass generation mechanism in the Standard Model is elegant in its simplicity, there
are certain aspects that raise questions and challenge its completeness. There is no theoretical
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explanation as to why the Yukawa couplings (and hence the masses) have those specific values.
Indeed, the SM has 19 free parameters in the Lagrangian, that must be determined through
experimental measurements. Although this may not be considered a fundamental flaw, the sheer
abundance of free parameters hints at a deeper underlying structure yet to be uncovered. This
conundrum is commonly referred to as the "flavour puzzle." The flavour puzzle becomes more
pronounced when we consider the existence of neutrino masses and the significant difference
between leptonic mixing and the one in the quark sector. This raises the second problem of the
mass generation in the SM, which is that it does not predict a mass term for neutrinos due to
the absence of νR.

It is already quite evident that the Standard Model is not sufficient to explain fully funda-
mental particles and their interactions. Furthermore, the SM is not the final theory, since it does
not explain gravity.

In this section, we will outline the main limitations of the Standard Model and examine the
areas where it fails to provide an explanation for observed phenomena. In particular, we will
focus on the issue of dark matter, which we will discuss in more detail later.

The hierarchy problem. The SM must be treated as an effective field theory (EFT) valid
up to the Planck mass MPl ≈ 1019GeV , where the effects of gravity are expected to not be
negligible anymore. If there is no physics all the way up the Planck scale, then the cutoff would
be Λ = MPl. This constitutes a problem when we consider quantum corrections to the Higgs
mass, m2

h = m2
bare + δm2

h, where δm2
h = y2tΛ

2/8π2. The presence of quantum corrections implies
that the Higgs mass receives contributions proportional to the cutoff scale, potentially leading
to a significant discrepancy between the observed Higgs mass and its bare value. This mismatch
necessitates an explanation and fine-tuning of parameters to maintain the observed Higgs mass
within the expected range. Supersymmetric theories have been proposed as potential solutions
to address these issues. However, the lack of compelling evidence in support of these theories
necessitates ongoing exploration and search for alternative solutions. A very comprehensive and
in-depth analysis on the hierarchy problem by C. Csáki et al, can be found in [23].

Neutrino masses. One of the most compelling experimental pieces of evidence revealing the
incompleteness of the Standard Model is the phenomenon of neutrino oscillation, first observed
in 1998 by the atmospheric neutrino experiment Super-Kamikande [24]. Neutrino oscillation im-
plies that neutrinos have a non-zero mass, in contradiction with the SM prediction of massless
neutrinos. This observation highlights the necessity for extensions to the SM that can account
for small neutrino masses and explain the phenomenon of neutrino oscillations.
Exploring the nature of neutrino mass gives rise to a multitude of questions, that any new physics
beyond the Standard Model (BSM) must address. Primarily, some mechanism is required to gen-
erate neutrino masses. Type I seesaw is a commonly cited example, which introduces new heavy
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degrees of freedom to explain the smallness of neutrino masses. Another fundamental question
regards the nature of neutrinos themselves — whether they are Dirac particles or Majorana par-
ticles. Ongoing experiments investigating neutrinoless double beta decay (0ν2β), first proposed
by W.H. Furry in 1939 to test the nature of neutrinos [25], are actively seeking answers to this
question [26–29].

Matter-Antimatter asymmetry. The baryon asymmetry of the Universe (BAU) we ob-
serve has no clear origin in the Early Universe, where matter and antimatter were created in equal
amounts. This asymmetry is commonly quantified using the parameter ηB = (nB−nB)/nγ, where
the difference between the number density of baryons and antibaryons is divided by the number
density of photons. Experimental measurements indicate that this parameter is extremely small,
approximately ηB ≈ 10−10, as measured by WMAP[30]. The ingredients required to generate
the observed baryon asymmetry are Sakharov’s conditions, namely: (i) baryon number viola-
tion; (ii) C-symmetry and CP-symmetry violation; (iii) departure from thermal equilibrium [31].
The SM alone does not possess sufficient sources of CP violation to account for the observed
baryon asymmetry. To address this issue, alternative scenarios have been proposed, such as EW
baryogenesis and leptogenesis [32]. Leptogenesis is particularly relevant to neutrino physics, as
it relies on CP violation in the lepton sector. In this scenario, CP violation in the decay of heavy
right-handed neutrinos generates a lepton asymmetry. This asymmetry is then converted into a
baryon asymmetry through non-perturbative processes known as sphaleron processes [33], which
violate the total B + L number.

Dark Matter. Numerous pieces of evidence support the existence of dark matter, which
constitutes approximately 25% of our universe, with dark energy comprising around 70% and
ordinary matter accounting for a mere 5%. The nature of dark matter remains one of the most
intriguing mysteries in our understanding of the universe. While Modified Newtonian Dynamics
(MOND) theories can explain certain local astrophysical observations, they struggle in providing
a consistent and comprehensive explanation for a broad range of cosmological phenomena and
observations [34]. Another hypothesis that has been considered is the presence of primordial
black holes as a potential explanation for dark matter [35]. However, the most widely accepted
and extensively studied hypothesis suggests that dark matter consists of particles. Dark matter
particles are expected to be electrically neutral to explain their elusiveness in detection. Addi-
tionally, they should possess long lifetimes to account for the substantial amount of dark matter
still present in the universe today.

In the following section, we will delve into the specific characteristics that dark matter particles
must possess. We will also review the current state of knowledge in this field, referring to
comprehensive reviews [36–38] that summarize crucial aspects, such as the evidence for dark
matter, potential candidates, and detection methods.
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Chapter 2

A Dark Universe

Dark matter, inferred from astrophysical observations and gravitational effects, poses one of the
most intriguing puzzles in current physics. Our efforts to understand its fundamental nature,
whether it is a particle, its interactions with standard model particles, and its cosmological
origin, have prompted extensive research. In this chapter, we provide an in-depth review of dark
matter, drawing upon previous reviews[36–38]. In Section 2.1, we summarize the existing evidence
supporting the existence of dark matter. We then delve into its astrophysical properties, including
its distribution within galaxies. In Section 2.2, we explore various dark matter candidates,
including some non-particle explanations such as primordial black holes and MACHOs (Massive
Compact Halo Objects). A detailed discussion of thermal dark matter follows in 2.2.1, where we
review the computations for the relic abundance and we motivate Weakly Interacting Massive
Particles. Finally, we conclude by reviewing current and ongoing searches for Weakly Interacting
Massive Particles (WIMPs) in 2.3.

2.1 Evidence and candidate for Dark Matter

Ninety years ago, Fritz Zwicky published a groundbreaking paper that showed that the galaxies
in the Coma Cluster were moving too fast to be bound together by the visible matter of its
galaxies [1]. He observed that the average density in the Coma Cluster would have to be at
least 400 times larger than that derived from the observation of luminous matter. If this should
be verified, he claimed, it would lead to the surprising result that dark matter exists in much
greater density than luminous matter. However, the very first persuasive evidence supporting the
existence of dark matter, only arrived in the 1970s, when Vera Rubin studied the rotation curves
of spiral galaxies [2].

From Newtonian gravity, we know that vc(r) =
√
GM/r, where vc is the circular velocity.

For distances that extend beyond the galactic disk, M should remain constant assuming that all
the mass is concentrated in the disk. Therefore, we would expect to see vc ∝ r−1/2. Instead,
observations reveal that the velocity flattens at large distances, as shown in 2.1, implying that
M(r) ∝ r. This suggests that there must be an additional "dark" component to the galaxy’s
matter distribution.
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Figure 2.1: Rotational curves of spiral galaxies as measured in the original paper
by V. Rubin et al in 1980 [39]. Most galaxies show a flattering in of the circular

velocity at large radial distances.

Since then, the presence of dark matter has been observed in several ways. Gravitational
lensing, namely the bending of light around massive objects, suggests the presence of unseen
matter. This effect has been observed in cases like the Bullet Cluster [3]. A spatial separation
is identified by comparing the mass distribution deduced from gravitational lensing with the
distribution of visible matter detected via X-rays, indicating a nearly collisionless dark matter
abundance.

Additionally, the cosmic microwave background (CMB) radiation, the afterglow of the Big
Bang, provides strong evidence for the existence of dark matter. The observed patterns in the
CMB radiation are consistent with the presence of large amounts of non-interacting matter. The
latest results were published by the Planck collaboration in 2018 [40], where it has been inferred
that the DM density today is

ΩDMh
2 = 0.120± 0.001, (2.1)

with ΩDM = ρDM/ρc the energy density of DM in units of the critical density ρc ≈ 10−26kg/m3,
and h = H0/(100kms

−1/Mpc) = 0.674± 0.005 the scaled Hubble expansion rate. This is around
five times larger than the density of baryons, defined as all other non-relativistic matter. The
density of baryons has also been measured through the relative abundances of light elements
during Big Bang Nucleosynthesis (BBN) [41], where DM plays no role, and provides further
evidence for the non-baryonic nature of DM. Many experiments have attempted to directly
detect dark matter particles but no definitive detection has yet been made. While there is clear
evidence for the existence of DM, its particle-physics identity still remains unknown. Over time,
a plethora of candidates for DM has emerged, and in the next section we will delve into some of
the most prominent contenders.
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2.1.1 Astrophysical distribution

We saw in the previous section, that in order to account for the observed rotational velocity,
M(r) ∝ r. This means that the DM mass density distribution is

ρ(r) ∝ M(r)

r3
∼ 1

r2
, (2.2)

where it was assumed that DM is distributed in a spherically symmetric halo around the centre
of the Galaxy. This is quite different from baryons, that being able to strongly interact amongst
themselves, dissipate energy and collapse into a disk. Since DM doesn’t interact, it forms spherical
halos. A very rough estimate done in [37] can give an idea of the size of the DM halo:

Rhalo ∼ 100kpc (2.3)

and average velocity of the DM in the halo, obtained using the virial theorem, of:

⟨v⟩ ∼
√
GMhalo

Rhalo

∼ 200km/s. (2.4)

From this rapid calculation, we can already deduce that DM exhibits non-relativistic behaviour,
a crucial characteristic with significant implications for predicting observational signatures. To
obtain a more accurate estimation of DM velocity, we can employ the Boltzmann equation and
the Jeans Theorem.

The Boltzmann equation describes the evolution of the phase-space density f(x, v) of DM in
the halo:

L[f ] = C[f ], (2.5)

where L is the Liouville operator and C is the collision operator. The most general form of L is

L[f ] = pα
∂f

∂xα
− Γαβγp

βpγ
∂f

∂pα
, (2.6)

that in the non-relativistic limit simplifies to

Lnr[f ] =
∂f

∂t
+ ẋ

∂f

∂x
+ v̇

∂f

∂v
. (2.7)

The operator C[f ] includes interactions between DM and other particles. Since a good approxi-
mation for dark matter is that it is collisionless, it is possible to simplify the Boltzmann equation
as follows:

Lnr[f ] =
∂f

∂t
+ ẋ

∂f

∂x
+ v̇

∂f

∂v
= 0. (2.8)
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Before introducing Jeans Theorem, we define as integral of motion I(x, v) a function of the
phase-space coordinates alone that is constant along an orbit, namely:

I[x(t1), v(t1)] = I[x(t2), v(t2)]. (2.9)

This implies that a function of the phase-space coordinates is an integral if and only if:

d

dt
I[x(t), v(t)] = 0 (2.10)

along any orbit. Jeans Theorem states that any steady-state solution of the collisionless Boltz-
mann equation depends on the phase-space coordinates only through integrals of motion in the
given potential, and any function of the integrals yields a steady-state solution of the collisionless
Boltzmann equation. The Hamiltonian is an integral of motion. In this case, Jeans Theorem
implies that the phase-space distribution is a function of the only energy E:

f(x, v) = f(E), E = Ψ− 1

2
v2, (2.11)

where Ψ is the gravitational potential.
For an isotropic halo in steady-state with f(E) ∝ eE, we have

ρ ∝
∫ ∞

0

dvv2f(v) =

∫ ∞

0

dvv2e
Ψ−v2/2
σ2 ∝ eΨ/σ

2

, (2.12)

with σ being the velocity dispersion. Using Poisson’s equation ∇2Ψ = −4πGρ, we can find the
radial dependence of the density distribution:

ρ(r) =
σ2

2πGr2
. (2.13)

The phase-space distribution for a spherical isotropic halo in steady-state can be modelled by:

ρ(r) ∝ 1/r2, f(v) ∝ e−v
2/σ2

, (2.14)

which is exactly what we found before by looking at the rotation curves of galaxies. However,
while this is a good approximation, it is not entirely accurate, as it leads to an infinitely massive
halo due to the proportionality of mass (M(r) ∝ r) at large distances. Moreover, the dynamics of
dark matter can be further influenced by galaxy mergers, rendering the steady-state assumption
inadequate. Consequently, numerical simulations are essential to more precisely model the density
distribution of dark matter halos. The Navarro-Frenk-White (NFW) profile or Einasto profile
appears to offer improved descriptions of the density distribution: their profiles approach zero
with increasing distance from the galaxy’s center, thus avoiding the issue of predicting infinitely
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Figure 2.2: The NFW [solid red], Einasto [dashed blue], and Burkert with rs
= 0.5 [green dotted] and 10 kpc [purple dot-dashed] profiles as a function of the

distance from the Galactic Centre. Figure from [44].

massive halos.
ρNFW (r) =

ρ0
r/rs(1 + r/rs)2

, (2.15)

with rs = 20kpc is the scale radius. The Einasto profile takes the form:

ρEin(r) = ρ0 exp

[
−2

γ

((
2

2s

)γ
− 1

)]
, (2.16)

where γ = 0.17. Both NFW and Einasto profiles are described as "cuspy" because of their steeper
inner slopes. The Burkert profile has a flatter slope:

ρBurk(r) =
ρ0

(1 + r/rs)(1 + (r/rs)2)
. (2.17)

N-body simulations provide evidence for substructure in the dark matter (DM) phase-space
distribution [42, 43]. These structures arise from minor mergers between the Milky Way and
other galaxies. When a DM subhalo falls into orbit around the Milky Way, tidal effects strip
DM (and possibly stars) along its path, creating "debris" that eventually becomes part of the
Milky Way’s halo. However, some of this debris may not have reached equilibrium at any given
time and can exhibit unique features that affect observations. Examples of substructure include
clumps, which lead to localized DM overdensities, and streams, where debris is left behind
along the orbits of infalling sub-halos.
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2.2 Overview of Dark Matter candidates

Although the nature of DM is still unknown, astrophysical and cosmological observations can
give us some clues about its identity and the characteristics that a DM candidate should have.

• Neutral. The possibility of DM being charged was first introduced in [45]. However, if
dark matter (DM) possesses an electric charge or is "milli-charged," meaning it has a small
electric charge, it could interact with the baryon-photon plasma during the cosmic recombi-
nation era. This interaction might influence the behaviour of DM density fluctuations. The
presence of charged DM could lead to effects such as radiation pressure and photon diffu-
sion, which could further modify the characteristic structure of the baryon acoustic peak. In
[46], the requirement that DM must be entirely decoupled from the baryon-photon plasma
during recombination leads to a maximum limit on the "milli-electric" charge of dark mat-
ter, expressed in units of the electron charge, of 3.5 × 10−7 for mDM > 1 GeV, and of
4.0× 10−7 for mDM < 1 GeV.

• Cold (non-relativistic). If DM was relativistic, it would tend to disperse structures like
galaxies. If it were the dominant component of the DM, the observed structures would look
significantly different, and the anisotropies in the cosmic microwave background (CMB)
would be more prominent. Consequently, hot dark matter can only account for a small
fraction of the total DM content. Under the assumption of the ΛCDM model, all dark
matter is considered to be cold.

• Stable or very long lived In the case of decaying DM, its lifetime must be long compared
to cosmological timescales [47].

• Consistent with BBN. Light elements were formed during BBN, and their primordial
abundance depends on the total energy density through the expansion rate, which puts a
constraint on the energy density in dark sector particles at the time of BBN [48].

• Collisionless Self-interacting dark matter is severely constrained, e.g. by observations of
merging clusters [49]. The relevant parameter in this case is the ratio of DM-DM cross
section and the DM mass, σDM−DM/mDM . This value has been bound to be smaller than
0.84 barn/GeV at 95% C.L.[50]. However, certain theories try to go beyond the collisionless
paradigm, as self-interactions could be useful to explain small-scale structure observations
that are in tension with collisionless cold DM predictions [51].

Finally, of course, it should account for the observed abundance and be compatible with exclusion
limits set by DM search experiments [52].

Certain model-independent statements can be made about the mass range of dark matter by
considering the formation of DM halos. The lower limit of allowed masses is determined by the
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Figure 2.3: Mass range of allowed DM candidates, from particles to primordial
black holes (figure by T. Lin in [38]).

number of particles that can be confined within a given cell of phase space, which, in turn, is
governed by the particle’s spin statistics. For instance, if DM is composed of ultra-light scalar
particles, Bose-Einstein statistics dictate that an unlimited number of particles can occupy the
same point in phase space. This implies that a classical field treatment can be applied and
the stability of the halo is set by the uncertainty principle ∆x∆p ∼ 1, where ∆p ∼ mχv and
∆x ∼ 2Rhalo. Dwarf galaxies set the tightest boundaries, with Rhalo ∼ 1 kpc and v ∼ 100km/s,
giving the lower bound:

mscalar ≳ 10−22 eV. (2.18)

Ultra-light scalar DM particles near the bottom of this bound are referred to as ‘fuzzy’ dark
matter [53].
In the case of fermions, the Pauli exclusion principle applies [54]. This means:

Mhalo = mfermV

∫
f(p)d3p ≲ mfermV

∫
d3p ∼ mfermR

3
halo(mfermv)

3. (2.19)

The inequality arises from the fact that each unit volume of phase space can have no more than
one fermionic particle, on average. Substituting in v the virial velocity gives:

mferm ≳ (G3MhaloR
3
halo)

−1/8 ≳ O(10)eV. (2.20)

The upper bounds come from gravitational lensing. The lack of lensing events excludes MACHOs
with masses between 1057−67 eV. In figure 2.3, a concise overview of potential candidates for dark
matter is presented. Before delving into the specifics of the particle nature of dark matter, let’s
first discuss the heaviest possible candidates for dark matter.
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Primordial black holes

Primordial black holes could have been formed in the early Universe, for instance in the era of
radiation domination due to the gravitational collapse of large curvature perturbations generated
during inflation. Constraints on PBHs as dark matter candidates come from CMB observations,
gravitational lensing and evaporation. For instance, in the early Universe, massive PBHs can
accrete matter, resulting in the emission of ionizing radiation that is strongly constrained by CMB
observations. PBHs with masses up to 10−17M⊙ evaporate enough that they are not sufficiently
dark, and are therefore not good DM candidates. Between 10−17M⊙ and 50 M⊙, gravitational
lensing constraints the fraction of DM that could be made of PBHs to 10%. There remains still
an open window for PBHs to make up for all the observed abundance of dark matter in the
region between 10−16M⊙ - 10−11M⊙ [55, 56].

MACHOs

MACHOs are massive astrophysical compact halo objects. For masses above the Planck mass,
DM could be a composite object, such as bound states or nuggets of lighter fundamental particles
[57]. Boson stars could also be a viable candidate in this mass range [58]. Another possibility is
that of Q-balls, non-topological solitons that carry a conserved charge which guarantees stability
[59].
Now, let’s shift our focus to the particle candidates for dark matter.

2.2.1 Thermal DM

The most largely explored and studied region of DM masses is the one going from keV to ∼ 100
TeV, which includes thermal candidates and WIMPs. With thermal DM we refer to DM that was
in thermal equilibrium with the rest of SM in the early Universe. This possibility is particularly
appealing as it implies some interaction between dark matter and the rest of the standard model
particles, leading to a variety of testable signatures. The keV mass scale "separates" thermally
produced dark matter from non-thermally produced bosonic DM. We saw already that fermion
DM candidate must have mass greater than O(keV ) to be consistent with observations of galaxies.
Additionally, dark matter that is thermally produced from the SM bath must have mass greater
then O(keV ) to be consistent with observations of large scale structure. On the opposite end
of the spectrum, dark matter particles with masses exceeding ∼ 100 TeV encounter significant
issues as unitarity would be violated [60]. In this range, a further distinction can be made:

• 10 GeV - 100 TeV : weakly interactive massive particles (WIMPs).

• keV - 10 GeV : this range corresponds to the so-called "light DM". Thermal candidates
here are typically embedded in dark sector models, which will be discussed later.
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Within these masses, other interesting scenarios are those of DM candidates that were never in
thermal equilibrium, such as sterile neutrinos, and freeze-in DM.

We now review the computations for the DM relic density. In the early Universe, when the
interaction χχ ↔ XX is in equilibrium, the DM particles are produced and annihilated at the
same rate. As the universe expands, the chances for a dark matter particle to encounter another
particle for annihilation decrease. Eventually, the forward reaction of annihilation becomes less
frequent until it shuts off completely. At this stage, the DM density remains unchanged, effec-
tively "frozen" in time. This process, known as "freeze-out," takes place when the annihilation
rate Γ becomes comparable to the Hubble rate H:

Γ = nχ⟨σv⟩ ∼ H, (2.21)

where nχ is the DM number density while ⟨σv⟩ is the velocity-averaged cross section. Cold DM
is non-relativistic at freeze-out, meaning nχ ∼ T 3/2e−mχ/T , T being the temperature of the DM
species.

In order to compute the DM number density today, we start from the Boltzmann equation
previously introduced:

L[f ] = C[f ], (2.22)

The Liouville operator can be written in the form

L[f ] = E
∂f

∂t
− ȧ

a
|p|2 ∂f

∂E
, (2.23)

where a is the scale factor that parametrizes the expansion of the Universe. The number density
of a given particle is related to its phase-space density f(E, t) through

n = g

∫
f(E, t)

d3p

(2π)3
, (2.24)

with g the number of spin degrees of freedom of the particle. If we integrate the Liouville operator
we find:

g

∫
L[f ]

d3p

(2π)3
=

1

a3
d

dt
(na3) =

dn

dt
+ 3Hn, (2.25)



Chapter 2. A Dark Universe 20

where H = ȧ/a is the expansion rate of the Universe.
The collision term for particle 1 in the interaction 1 + 2 ↔ 3 + 4 is [61]:

g1

∫
C[f ]

d3p1
(2π)3

=−
∑
spins

∫ [
f1f2(1 +±f3)(1 +±f4)|M12→34|2 − f3f4(1 +±f1)(1 +±f2)|M34→12|2

]
× (2π)4δ4(p1 + p2 − p3 − p4)dΠ1dΠ2dΠ3dΠ4,

(2.26)

where gi and fi are respectively the spin degrees of freedom and phase-space densities for the
particle i, Mx→y is the matrix element for the reaction x→ y. The terms (1±f) represent Pauli
blocking and Bose enhancement. The minus sign applies to fermions while the + sign to bosons,
meaning that it is easier (harder) for a boson (fermion) to transition to a state that already
contains a boson (fermion). The last line contains the delta function that forces the energy and
momentum conservation. The phase space integration factors are:

dΠi =
d3pi

(2π)32Ei
. (2.27)

Under some assumptions it is possible to simplify the form of 2.26:

1. T (or CP) invariance: this implies that |M12→34|2 = |M34→12|2.

2. Maxwell-Boltzmann statistics : the second simplification is to use the Maxwell-Boltzmann
statistics for all species instead of the Fermi-Dirac for fermions and Bose-Einstein for bosons.
In this case (1± f) ∼ 1.

3. Kinetic equilibrium: for all species in kinetic equilibrium fi(Ei) = e−
Ei−µi
T .

Using these approximations, we get:

dn

dt
+ 3Hn =

∫
(2π)4δ4(p1 + p2 − p3 − p4)dΠ1dΠ2dΠ3dΠ4|M|2(f3f4 − f1f2). (2.28)

Using the kinetic equilibrium approximation,

(f3f4 − f1f2) ∼
(
e
µ4−E4
T e

µ3−E3
T − e

µ1−E1
T e

µ2−E2
T

)
= e−

E1+E2
T

(
e
µ3+µ4
T − e

µ1+µ2
T

)
, (2.29)

where in the second equality we have used the conservation of energy. In the interaction χχ ↔
XX, we can assume X to have thermal distributions with zero chemical potential. SM particles
will usually have additional interactions than DM, so the assumption of equilibrium for the X’s
is almost always a good one. We can write f3 = exp(−E3/T ) and f4 = exp(−E4/T ). For
conservation of energy:

f3f4 = exp[−(E3 + E4)/T ] = exp[−(E1 + E2)/T ] = f eq1 f
eq
2 . (2.30)
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It follows that:
(f1f2 − f3f4) = (f1f2 − f eq1 f

eq
2 ). (2.31)

With all the relations just found, we can finally write:

dnχ
dt

+ 3Hnχ = −⟨σχχ→XXv⟩
[
n2
χ − (neqχ )

2
]
. (2.32)

It is useful to scale out this effect by defining Y ≡ n/s, with s the total entropy of the Universe.
We find:

dY

dt
= ⟨σv⟩s

(
Y 2
eq − Y 2

)
=⇒ dY

dx
=

s⟨σv⟩
xH(m)

(
Y 2
eq − Y 2

)
, (2.33)

where in the equation on the right we have defined x = m/T , m being the mass of the DM
candidate.
We have found an expression that describes the evolution of Y as the Universe cools. Y is the
DM number density, rescaled to remove the effects of the Universe’s expansion. This means that
changes in Y arise purely from interactions of the DM with states that are in thermal equilibrium
with the photon bath. The evolution of Y is governed by the velocity-averaged cross section:

⟨σv⟩ =
∫
σvdneq1 dn

eq
2∫

dneq1 dn
eq
2

=

∫
σveE1/T eE2/Td3p1d

3p2∫
eE1/T eE2/Td3p1d3p2

. (2.34)

By redefining the integration variables and using the Ki modified Bessel functions:

⟨σv⟩ = 1

9m4TK2
2(m/T )

∫ ∞

4m2

σ(s̃− 4m2)
√
s̃K1(

√
s̃/T )ds

non−rel−−−−→ b0 + 6b1x
−1+ ... (2.35)

with s̃ = 2m2 + 2E1E2 − 2p1p2. The case in which b0 dominates is called s-wave annihilation,
while when b1 dominates is called p-wave annihilation.
This leads to the final equation in terms of the variable ∆ = Y − Y eq:

∆′ = −Y ′eq − f(x)∆(2Y eq +∆), (2.36)

where ’ denotes d/dx and

f(x) =

√
πg∗
45

mMPl(b0 + 6b1/x)x
−2. (2.37)

Let’s now introduce the quantity xF ≡ m/TF , where TF is the temperature at the time of freeze-
out. Equation 2.36 can be solved analytically in the two extreme regions x ≪ xF and x ≫ xF ,
respectively long before freeze-out and long after freeze-out:

∆ = − Y eq′

2f(x)Y eq
for x≪ xF , (2.38)
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∆′ = −f(x)∆2 for x≪ xF . (2.39)

Integrating 2.39 between xF and ∞, and using ∆xF ≫ ∆∞, we can derive the value of ∆∞ and
find:

Y −1
∞ =

√
πg∗
45

mMPlx
−1
F (b0 + 3b1/xF ). (2.40)

The density of a generic relic χ today is given by ρχ = mχnχ = mχs0Y∞, where s0 ∼ 3×103 cm−3

is the entropy today. The relic density can finally be expressed in terms of the critical density

ΩXh
2 ≈ 1.07× 109GeV −1

MPl

xF√
g∗

1

b0 + 3b1/xF
, (2.41)

where b0 and b1 are expressed in GeV−2 and g∗ is that at the freeze-out temperature. The
freeze-out temperature xF can be estimated iteratively with [36]

xF = ln

[
c(c+ 2)

√
45

8

g

2π3

mMPl(b0 + 6b1/xF )

g
1/2
∗ x

1/2
F

]
, (2.42)

where c is a constant of O(1) determined by matching late-time and early-time solutions.
An estimate of 2.41 gives

Ωχh
2 ≈ 3× 10−27cm3s−1

⟨σv⟩ . (2.43)

In order to obtain the correct DM relic abundance:

⟨σv⟩ ≈ 10−26cm3s−1 ≈ 10−9GeV−2. (2.44)

Let us now check how this cross-section can give us some insights on the mass of a DM candidate.
We consider the case of an annihilation that occurs through s-channel with a mediator with mass
mV :

where the vector V has coupling gχ with the DM and gf with the fermions. In the non-
relativistic limit, the cross section for this process is

σ =

∫
dΩcm

| pf |
16π2E3

cm | v1 − v2 |
| M |2=

∫
dΩcm

1

| v1 − v2 |
| M |2
32π2s

, (2.45)

where Ωcm are centre of mass scattering angles, and s is the centre of mass energy. We have used
| pf |≈ Ecm/2 in the limit of massless fermions f . The thermally averaged cross section can be
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approximated to be

⟨σv⟩ ≃ | M |2
32πm2

χ

. (2.46)

In the case of Dirac fermion DM, a vector mediator and a single flavour for the fermion

| M |2≈ g2χg
2
f

32m4
χ

(s−m2
V )

2
(2.47)

in the non-relativistic limit.
We can now consider two cases:

• mV > mχ: in this case, the heavy mediator generates a four-fermion interaction with
amplitude gχgf/m2

V . We have

⟨σv⟩ ≃ 16παχαfm
2
χ

m4
V

. (2.48)

• mV < mχ: in this case,
⟨σv⟩ ≃ παχαf

m2
χ

. (2.49)

However, in this case, a new process is allowed, namely χχ→ V V . If mV ≪ mχ:

⟨σv⟩χχ→V V ≃ πα2
χ

m2
χ

. (2.50)

If αχ ≫ αf , the relic abundance may be primarily determined by the latter process.

In general, the thermally-averaged cross section is bounded

⟨σv⟩≲
πmax(αχαf , α2

χ)

m2
χ

. (2.51)

By considering the cross section computed in 2.44, we can put an upper bound on the DM mass,
if we assume perturbative couplings. Taking αχ,f → 1 in 2.51:

mχ ≲ 50− 100TeV. (2.52)

Additionally, we can derive the Lee-Weinberg bound from 2.48 by requiring that the couplings
are the weak gauge couplings and that mV ∼ 100 GeV:

⟨σv⟩ ≈ α2
Wm

2
χ

m4
V

=⇒ mχ ≳ 10GeV. (2.53)

Finally, if we consider SM typical values for the weak couplings, gχ,f ∼ 0.1, 0.3, we find:

⟨σv⟩ ≈ α2
W

1TeV2 , with αw ≈ 0.03. (2.54)
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Assuming a weakly interacting DM particle with α ∼ 0.03 and mχ ∼ 100 GeV, we remarkably
obtain the correct abundance observed today, as measured by Planck [40]. This intriguing co-
incidence has become known as the "WIMP miracle", sparking extensive research and focus on
this potential DM candidate. However, it is essential to take a moment to reflect on whether
this alignment truly represents a miraculous occurrence or if there are underlying reasons that
contribute to this intriguing agreement. Indeed, the WIMP miracle more than a coincidence be-
tween two demonstrated phenomena is a coincidence between two model paradigms. For getting
the results in 2.44 we made some important assumptions. Let’s analyze each one of them more
carefully:

• No chemical potential : it was assumed that the annihilation rate of dark matter particles is
proportional to their equilibrium number density. However, it is possible that an asymme-
try exists between the number densities of dark matter particles and their corresponding
antiparticles - in this case, the relic density depends also on the asymmetry [62, 63].

• No resonances or threshold behaviour : in the presence of threshold behaviour or resonances
the cross section has a strong T -dependence. In our computations, it was assumed that σ
is approximately constant throughout freeze-out.

• Annihilation of DM DM → SM SM dominate: e.g. in co-scattering [64], DM annihilates
against a heavier state and inelastic DM scattering processes determine the relic abundance.

• Annihilation during the radiation-dominated era in standard cosmology : if a long-lived
massive particle exists in the early universe, it could lead to a matter-dominated era. In
such a scenario, if freeze-out occurs during this matter-dominated era, the annihilation
cross-section could potentially be much smaller. This is because the density of dark matter
is diluted following the decay of the massive particle. An example of this concept can be
found in [65]. It’s worth noting that this approach could also circumvent the necessity for
new light mediators in sub-GeV thermal dark matter candidates.

Another possibility is that DM was never in equilibrium to start with. In this case, it’s possible to
encounter some problems as the relic abundance would depend too much on the initial condition
(UV-dominated) and other assumptions at early times. However, it is possible to have a non-
thermal DM candidate that is not UV-dominated and potentially observable.
Freeze-in. Freeze-in [66] is a mechanism where rare interactions within the SM thermal bath
slowly build up an abundance of DM. An example could be the annihilation of SM particles, such
as e+e−, into DM particles. If the coupling is sufficiently small, DM never gets in equilibrium.
Another possibility is the freeze-in of DM through the decay of heavy particles. Since the heavy
particles can have relatively larger coupling with the SM, they could be produced in colliders and
decay with a long lifetime, giving an interesting observational handle of these types of freeze-in
models.
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Figure 2.4: Illustration of the resulting abundance from freeze-out of relativistic
particle, freeze-out of non-relativistic particle, and freeze-in. Figure from [38].

Figure 2.5: Schematic showing the possible dark matter detection channels. Fig-
ure from [67].

2.3 Looking for WIMPs

There are different ways to look for WIMP dark matter. In fig. 2.5 are summarized the possible
channels of detection for dark matter:

• Direct detection: dark matter particles can scatter off nuclei in the detector, that then
recoil with some energy ER. If the recoil energy is large enough, it may be possible to
detect the scattered particle and infer properties of dark matter [68].

• Indirect detection: dark matter can annihilate producing SM products that can be
detected.

• Collider searches: If dark matter is produced e.g. in a p-p interaction at the LHC, it can
escape detectors leading to missing energy signals.

Let’s dive deeper into each one of them and present current bounds on dark matter searches.
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2.3.1 Direct searches

If DM scatters off a nucleus with mass mN , the recoil energy is

ER =
q2

2mN

≃ 50keV
( mχ

100GeV

)2(100GeV
mN

)
, (2.55)

with q ∼ mχv, where we have taken v ∼ 10−3 as the non-relativistic speed of incoming DM.
Experiments such as LUX [69] and Xenon100 [70] use a Xenon target with mN ∼ 120 GeV and
have an energy threshold of a few keV, meaning that they are sensitive to masses for DM up to
10 GeV.

The kinetic energy of an incident DM particle with a mass of around a hundred GeV is ∼
10 keV, much smaller than the O(10) MeV nuclear binding energy of an atomic target. This
allows to only consider the scattering of DM off the nucleus as a whole, without considering the
scattering with its constituent.

The basic quantity of interest is the scattering rate of DM particles off nuclei. The differential
rate per unit detector mass is

dR

dER
=

nχ
mN

⟨v dσ

dER
⟩, nχ = ρχ/mχ. (2.56)

The quantity dσ/dER is the differential scattering cross section. Equation 2.56 can be expanded:

dR

dER
=

ρχ
mχmN

∫ vmax

vmin

d3vvf̃(v, t)
dσ

dER
, (2.57)

where f̃ is the DM velocity distribution in the lab frame, vmin is the minimum velocity needed to
cause a nucleus to scatter with energy ER and vmax is the escape velocity, which is bound from
measurements of the fastest stars in the Galaxy to be ∼500-600 km/s.

Let’s compute the differential cross section dσ/dER. We assume DM to be a spin-1/2 Dirac
fermion that interacts with quarks through a scalar or a vector boson ϕ with mass mϕ. Using
an effective operator approach, the scattering Lagrangian can be written as the four-fermion
interaction:

Leff = g(q2,mϕ)χΓχχQΓQQ. (2.58)

We have introduced the following quantities: g(q2,mϕ) is an effective coupling, Q represent the
quark field and Γχ,Q = {I, γ5, γµ, γµγ5, σµν , σµνγ5}. As an example, let’s consider

Leff = gϕχχQQ, (2.59)
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where g is independent of momentum transfer. The coupling of DM to nucleon fields n, p will
be given by the scattering amplitude:

M = fpχχpp+ fnχχnn. (2.60)

In many models, DM couples to n and p with the same strength, meaning fp ≈ fn. We can
rewrite in terms of the fields for the nuclei:

M = [Zfp + (A− Z)fn]χχNΓNN, (2.61)

where Z is the atomic number, A is the mass number, and ΓN a Lorentz-invariant 4 × 4 matrix.
Since the result can only depend on qµ and Pµ,

NΓNN = NNF̃1(q) +NγµNqµF̃2(q) +NγµNPµF̃3(q) +NσµνNqµPνF̃4(q), (2.62)

where F̃i(q) are the nuclear form factors. In the limit of small momentum transfer, DM does
not probe the size of the nucleus and the cross section is unaffected. As the momentum transfer
increases, the interactions become sensitive to the size of the nucleus and the cross section is
diminished. Using Dirac equation γµpµN(p) = mNN(p) and N(p′)γµp′µ = mNN(p′):

M = [Zfp + (A− Z)fn]χχNF (q), (2.63)

where F (q) is a linear combination of all the F̃i. By taking the non-relativistic limit, averaging
over the spins and sum we find

dσ

dER
=

2mN

πv2
[Zfp + (A− Z)fn]

2 F 2(q). (2.64)

We can note that for fp = fn, the average cross section dσ
dER

∝ A2. In this case DM couples
coherently to the entire nucleus and the strength of the scattering interaction increases with the
mass number of the nucleus. These effective interactions are called "spin-independent" since the
cross-section does not depend on the nuclear spin. Bear in mind that the one we just consider is
a simple example. Additional consideration can be made if, for example, the coupling gϕ ∝ 1/q2.
In this situation the differential cross section dσ/dER ∝ E−2

R , meaning that the scattering rate
is enhanced at small recoil energies.

Let’s go back to the scattering rate R. We have:

dR

dER
=

ρχ
mχmN

∫ vescape√
mNEth

2µ2

d3vvf̃(v, t)
dσ

dER
. (2.65)
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The DM particle properties are encoded in mχ and dσ/dER, while mN and Eth depends on the
detector.

Figure 2.6: Scattering rate for different materials for a WIMP with mass 100 GeV
[71].

In the Galactic rest frame, DM has no preferred direction. However, in the lab frame, the
DM velocities are oriented opposite to the motion of the Sun. Therefore, there is a wind of DM
in the Solar frame. In June, the Earth move towards this wind and an observer sees particles
with higher velocities than when the Earth moves away from it in December. This implies that
the DM flux will be larger in summer, resulting in an annual modulation. An additional effect
called gravitational focusing derives from the relative position of the Earth with respect to the
Sun: a DM particle travelling past the Sun is pulled closer to it by their mutual gravitational
interaction. When the Earth is behind the Sun, the result is an enhancement in the DM phase-
space distribution.

Figure 2.7: Schematic representation of annual modulation and gravitational
focusing. Figure from [72].
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A summary of current and projected is reported in fig. 2.8. Neutrinos are an irreducible
source of background. They can come from various sources, e.g. atmospheric, solar or supernovae
neutrinos, and their scattering mimics DM recoils.

Figure 2.8: Summary of current and projected bounds on DM-SM scattering
cross section σ. Figure from talk [73].

2.3.2 Indirect searches

Indirect detection searches [74] aim at identifying the products of DM annihilation occurring
within our Galaxy or even beyond. Although DM annihilation is significantly suppressed after
thermal freeze-out, it can still happen in the present epoch, in particular in regions of very high
DM density. The products of DM annihilation may vary depending on the theoretical model,
leading to direct production of photon pairs or other Standard Model states that subsequently
generate photons through secondary interactions. These gamma-rays then travel relatively undis-
turbed until they reach the Earth, where they are detected by satellites or ground-based tele-
scopes.

The flux of products is proportional to the number of annihilation per unit time and volume:

Φ ∝ ⟨σv⟩ ρ
2
DM

m2
DM

. (2.66)

Indirect searches for DM look for high energy cosmic rays produced from DM annihilation.
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Figure 2.9: (Left) Schematic representation of how CRs are produced from DM
annihilation. Figure from [75]. (Right) Photon energy spectrum for the γγ final
state without (blue) and with (red) virtual internal bremsstrahlung. The box spec-
trum (green) can be produced if the DM annihilates to a new state, that then

decays to photons. Figure from [76].

Photons from annihilation. Photons can be produced via:

• Direct annihilation via loops

• Final-state or intermediate state radiation

• Hadronization, e.g. χχ→ Xπ0 → Xγγ

Gamma rays freely propagate in the galaxy and can give information on both the initial energy
and the angular distribution. To calculate the spectrum and angular distribution of gamma rays
from dark matter annihilation per unit time within a solid angle, we integrate the annihilation
rate over the solid angle observed, and over the line-of-sight:

Φγ(Eγ,∆Ω) =
1

2

dNγ

dEγ

⟨σv⟩
4πm2

χ

∫
∆Ω

∫
l.o.s.

ρ2χ(l,Ω)dldΩ, (2.67)

where dNγ/dEγ is the spectrum of gamma rays produced per annihilation, which depends on the
DM particle’s mass and on the particles produced in the process. The quantity in the integral is
often referred to as J -factor and encapsulates the relevant astrophysical information. In the case
of a spherical dwarf galaxy of radius r, density ρ and located at a distance d≫ r, the J-factor is

J ≡
∫
∆Ω

∫
l.o.s.

ρ2χ(l,Ω)dldΩ ≃ 4πr3ρ2χ
3d2

. (2.68)

This simple example gives us some insights on which are the best targets for gamma-ray searches
of DM:

• High density of DM (J ∝ ρ2χ)

• Close (J ∝ d−2)
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• Extended over a large volume ((J ∝ V )

• Low or well-understood astrophysical background

The Galactic Center is one of the brightest source of DM annihilation. Also dwarf galaxies are
a good target, having smaller J-factor compared to the Galactic center but a better understood
astrophysical background. Other searches are focused on galaxy cluster, the halo of the Milky
Way and the isotropic gamma-ray background [77–79].
Current experiments looking for DM annihilation products are Fermi Gamma-Ray Space Tele-
scope [80] (in the energy range between 0.1 and 100 GeV), HESS[81], MAGIC [82], and in the
future CTA [83].

Antimatter from annihilation. In the case in which the annihilation products are positrons
and antiprotons, the signal can be more complicated. After production, charged cosmic rays
walk through the Milky Way magnetic field and interact with the backgrounds leading to energy
losses. To reduce backgrounds, one looks for specific features in the spectrum or for very low
backgrounds.
Positrons can be emitted directly or can originate as secondary particles, e.g. from pion and
kaon decays from high-energy cosmic rays interacting with gas. PAMELA and AMS-02 reported
an excess that could be due to DM [84, 85], even though it is also compatible with the expected
contribution for nearby pulsars.
Another excess of anti-protons was reported by AMS-02 at high energy. However, systematic un-
certainties due to antiproton production cross-section, solar modulation and cosmic-ray transport
are difficult to assess[86].

Neutrinos from annihilation. Neutrinos behave as photons as they travel freely. High-
energy neutrinos can be detected by IceCube [87] or, at lower energies, Super-Kamiokande [88].
The searches for neutrinos produced from DM annihilation are similar to those used for gamma
rays. Due to small interaction cross-sections, however, such constraints are usually much weaker
than those derived from gamma-ray or cosmic-ray searches. The advantage of looking for neu-
trinos resides in their capability of penetrating large quantities of matter: this would allow us to
detect dark matter annihilation in the core of the Sun or Earth[89].

2.3.3 Collider DM searches

Collider experiments have played a crucial role in testing the predictions of the Standard Model.
Furthermore, they offer a valuable avenue for investigating dark matter particles, providing es-
sential information and serving as a significant tool in the search for these elusive particles [91,
92].
Colliders can look for DM by inferring missing energy in the final states. Techniques like study-
ing monophoton or monojet events, carefully vetting other objects, accurately modelling back-
grounds, and analyzing the missing transverse energy (Emiss

T ) can be employed to probe the
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Figure 2.10: Dark-matter exclusion summary plot. Figure from [90].

presence of dark matter particles. LHC has already put strong constraints on DM interactions
by looking for these signatures [90].
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Chapter 3

Dark Sectors

The hunt for new physics Beyond the Standard Model has always focused primarily on searches
at higher energies. Over the last decades, there has been a growing interest in Dark Sectors[93–
96], a collection of particles that are not charged under any standard model gauge groups but
can interact with known matter through portals. While searches for new heavy particles at
the LHC continue, this possibility offers a new framework, that is easily accessible at current
experimental facilities and that provides extensive capabilities for constructing and developing
models, allowing for a wide range of possibilities to be explored. Dark sectors are particularly
interesting for their power to explain a wide range of current open questions in physics in a
fairly elegant and natural way. For example, dark matter, whose most relevant feature is the
lack of strong and electromagnetic interactions, can be easily embedded in a dark sector model,
producing the observed dark matter abundance through thermal freeze-in or freeze-out [97] [98].
Similarly, sterile neutrinos, amongst the most popular hypotheses for the origin of neutrino
masses, can be included in dark sector models [99][100]. The interactions of sterile neutrinos
or other more complex dark sectors could produce the Sakharov conditions [31] necessary to
produce a baryon asymmetry [101] [102]. Rich dark sectors models could in principle also be able
to explain some known discrepancies between theory and experiment, as explored in [103].

In this chapter, we will examine the three-portal model introduced by Ballett et al. in [99] as
a prime example of a dark sector model. This model encompasses all the renormalizable portals,
including the vector, fermion, and scalar portals. Our goal is to delve into the mathematical
framework of these portals and understand how to derive their phenomenological implications.

Standard Model Dark sectors

portal
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3.1 Portal interactions

Dark sectors typically include one or more mediators that interact with both SM and dark sector
particles, acting as a bridge (or, indeed, a portal) and ensuring the possibility of having indirect
interactions between the two sectors and hence a visible signal[104]. Lowest dimensional portals
include the vector portal, mediated by a dark gauge boson usually referred to as dark photon; the
scalar portal, mediated by a new scalar that mixes to the SM Higgs boson; the fermion portal,
mediated by a heavy neutral lepton (HNL) interacting with one of the left-handed SM doublets
and the Higgs boson. These three cases are all renormalizable and therefore unsuppressed by
any physics scale. The pseudoscalar portal, mediated by an axion (or axion-like particle), has
instead dimension five and is suppressed by the axion decay constant.

L ⊃



sinχ
2
BµνX

µν vector portal

λ(H†H)|Φ|2 scalar portal

yαν

(
Lα · H̃

)
N c neutrino portal

a
fa
Fµν ˜F µν axion portal

. (3.1)

3.1.1 Three Portal Model

In this section, we will present a dark sector model, which includes all renormalizable portals
[100]. This comprehensive framework allows us to conduct an in-depth analysis of each of the
aforementioned portals and their corresponding mathematical formalism. The particle content
shown the Table 3.1 and the lagrangian is given by:

L ⊃(DµΦ)
†(DµΦ)− V (Φ, H)− 1

4
XµνXµν +Ni/∂N + νDi /DνD

−
[
yαν
(
Lα · H̃

)
N c +

µ′

2
NN c + yNNν

c
DΦ + h.c.

]
,

(3.2)

where Dµ ≡ (∂µ − igXXµ), Xµν = ∂µXν − ∂νXµ, Lα ≡
(
νTα , l

T
α )

T is the SM leptonic doublet
of flavour α = e, µ, τ and H̃ ≡ iσ2H

∗ is the charge conjugate of the SM Higgs doublet. In the
neutral fermion sector, there are the Yukawa couplings yαν and yN responsible for the interaction
Lα − N and νD − N respectively, plus a Majorana mass term µ′ for N . The latter one violates
the lepton number assignment by two units. As it will be shown it plays an important role in
the generation of neutrino masses.
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SU(3)C SU(2)L U(1)Y U(1)X
N 1 1 0 0
νD 1 1 0 Q
Φ 1 1 0 Q

Table 3.1: The additional field content of our model. N and νD are left-handed
fermions, while Φ is a complex scalar.

3.2 Scalar sector

3.2.1 Symmetry breaking

The scalar potential is

V (Φ, H) = −m2
Φ|Φ|2 + λΦ|Φ|4 −m2

HH
†H + λH(H

†H)2 + λ(H†H)|Φ|2. (3.3)

There are two possible parametrizations that can be used:

H =
1√
2

(
G+

1 + iG+
2

h+ iG0

)
Φ =

ϕ+ iGϕ√
2

(3.4)

and

H =
1√
2

(
eiη

+
g+

eiηhh0

)
Φ =

eiηφφ√
2
. (3.5)

In both the parametrizations, all the components of the scalar fields are real. Using 3.5, we can
minimize the potential and find the vacuum expectation values of the two scalar fields:

V (Φ, H) = −m
2
Φ

2
|φ|2 + λΦ|φ|4 −

m2
H

2
h2 +

λH
2
h4 +

λ

4
h2φ2. (3.6)

By imposing: ∂V
∂h

∣∣
⟨h⟩ = 0

∂V
∂φ

∣∣
⟨φ⟩ = 0

(3.7)

and doing some easy algebra, we obtain:

v2h =
λΦm

2
H − λm2

Φ/2

λHλΦ − λ2/4
, v2φ =

λHm
2
Φ − λm2

H/2

λHλΦ − λ2/4
. (3.8)

We can now expand around the true vacuum:

φ→ φ+ vφ, h→ h+ vh

ηφ → ηφ/vφ, ηh → ηh/vh,
(3.9)
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and find the potential:

V (Φ, H) =− m2
Φ

2
(φ2 + 2vφ+ v2φ) +

λΦ
4
(φ2 + 2vφ + v2φ)

4

− m2
H

2
(h2 + 2vhh+ v2h) +

λH
4
(h2 + 2vhh+ v2h)

2

+
λ

4
(h2 + 2vhh+ v2h)(φ

2 + 2vφφ+ v2φ)

+ VGoldstone + constants.

(3.10)

From 3.8 we find the value for the masses given by

m2
H = λHv

2
h +

λ

2
v2φ m2

Φ = λΦv
2
φ +

λ

2
v2h. (3.11)

We can finally substitute in eq.3.10:

V (Φ, H) =(λΦv
2
φ)φ

2 + (λHv
2
h)h

2 + (λvhvφ)hφ

+

(
λvh
2

)
hφ2 +

(
λvφ
2

)
h2φ+ (λΦvφ)φ

3 + (λHvh)h
3

+

(
λΦ
4

)
φ4 +

(
λH
4

)
h4 +

(
λ

4

)
h2φ2

+ VGoldstone + constants.

(3.12)

Scalar masses

To find the physical mass basis for the two scalar fields, we need to diagonalize our Lagrangian:

(
h φ

)( λHv2h λ
2
vhvφ

λ
2
vhvφ λΦv

2
φ

)(
h

φ

)
=
(
h′ φ′

)
R(θ)

(
λHv

2
h

λ
2
vhvφ

λ
2
vhvφ λΦv

2
φ

)
R(−θ)

(
h′

φ′

)
, (3.13)

where

R(−θ) =
(
cosθ sinθ

−sinθ cosθ

)
, tan2θ =

λvhvφ
λHv2h − λΦv2φ

(3.14)

sin2θ =
λvφvh√

(λΦv2φ − λHv2h)
2 + λ2v2hv

2
φ

, cos2θ =
λHv

2
h − λΦv

2
φ√

(λΦv2φ − λHv2h)
2 + λ2v2hv

2
φ

. (3.15)

The masses will be the eigenvalues of the matrix:

m2
φ′,h′

2
=
λΦv

2
φ + λHv

2
h

2
±

√
(λΦv2φ + λHv2h)

2 + λ2v2hv
2
φ

2
. (3.16)

φ′ will be the lightest state, while h′ is like the SM Higgs. Note that if we take the portal coupling
λ to zero, we recover a fully diagonal matrix and there’s no mixing.
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Gauge terms

Let’s now focus on the scalar kinetic terms. The covariant derivative is

Dµ ≡ ∂µ + igW⃗µ · τ⃗ + ig′Bµ
Y

2
+ igXQXXµ (3.17)

= ∂µ + i
g

2

(
W 3
µ

√
2W+

µ√
2W−

µ −W 3
µ

)
+ ig′Bµ

Y

2
+ igXQXXµ, (3.18)

where W±
µ ≡ (W 1

µ ±W 2
µ)/

√
2. From 3.4, we have Φ = (ϕ + iGϕ)/

√
2. Since Φ is a singlet of

SU(2)L and has zero charge under U(1)Y :

(DµΦ)
∗(DµΦ) =

1

2
(∂µ − igXXµQX)(ϕ− iGϕ)(∂

µ + igXXµQX)(ϕ+ iGϕ)

=
1

2
(∂µϕ− i∂µGϕ − igXQXXµϕ− gXQXXµGϕ)

(∂µϕ+ i∂µGϕ + igXQXX
µϕ− gXQXX

µGϕ)

=
1

2
(∂µϕ)(∂

µϕ) +
1

2
(∂µGϕ)(∂

µGϕ)

− gXQXXµ(ϕ∂
µGϕ + ∂µϕGϕ) +

g2X
2
Q2
XXµX

µ(ϕ2 +G2
ϕ).

(3.19)

For QX = 1, we find:

(DµΦ)
∗(DµΦ) =

1

2
(∂µϕ)(∂

µϕ) +
1

2
(∂µGϕ)(∂

µGϕ)

− gXXµ(ϕ∂
µGϕ + ∂µϕGϕ) +

g2X
2
XµX

µ(ϕ2 +G2
ϕ).

(3.20)

After spontaneous symmetry breaking we get two additional terms

g2XXµX
µ(2vφϕ+ v2φ), (3.21)

responsible for the ϕ−Xµ −Xµ interaction and for Xµ mass term.
For the Higgs boson kinetic term, ignoring charged Goldstone bosons and focusing only on

the neutral part of the lagrangian:

H =
1√
2

(
0

h+ iGh

)
, (3.22)

DµH = ∂µH +
ig

2

(
W 3
µ 0

0 −W 3
µ

)
H +

ig′

2
BµH. (3.23)
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In this case, after spontaneous symmetry breaking

|DµH|2 =1

2

[
∂µh∂

µh+ ∂µGh∂
µGh+

g(∂µhW 3
µGh − ∂µBµGh − ∂µGhW

3
µh− ∂µGhW

3
µvh)+

g′(Bµh∂
µGh +Bµvh∂

µGh)

g2

4
W 3
µW

µ3(G2
h + (h+ vh)

2) +
g′2

4
BµB

µ(G2
h + (h+ vh)

2)

gg′

2
W 3
µB

µ(G2
h + (h+ vh)

2)
]
.

(3.24)

3.3 Neutral Gauge Fields

3.3.1 Kinetic term

The kinetic term in the Lagrangian for the relevant gauge bosons is: Just considering the elec-
troweak and dark sectors, the kinetic terms for the gauge fields in the Lagrangian are

Lkin = −1

4
BµνB

µν − sinχ

2
BµνX

µν − 1

4
XµνX

µν − 1

4
W a
µνW

aµν . (3.25)

To be able to work with canonical propagators and Feynman rules, we will need diagonal kinetic
terms, and perform a field redefinition:X

µ

W
µ

B
µ

 =

1 0 sinχ

0 1 0

0 0 cosχ


X

µ

W µ

Bµ

 . (3.26)

Substituting in 3.25 we get

Lkin = −1

4
BµνB

µν − 1

4
W

a

µνW
a,µν − 1

4
XµνX

µν
. (3.27)

3.3.2 Mass term

The mass terms for the gauge fields come from the covariant derivatives that act on the Higgs
fields:

Lmass ⊃
1

2

[g2v2h
4
W 3
µW

µ3 − gg′v2h
2

W 3
µB

µ +
g′2v2h
4

BµB
µ + g2Xv

2
φXµX

µ
]
. (3.28)

From the SM we have the following relations:

MSM
Z ≡ vh

2

√
g2 + g′2, cW ≡ cos θW =

g√
g2 + g′2

, sW ≡ sin θW =
g′√

g2 + g′2
, (3.29)
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µ2 ≡ g2Xv
2
φ

(MSM
Z )2

=
M2

X

(MSM
Z )2

, e = gsW . (3.30)

Using the above definitions, and rewriting the fields in terms of the previously defined field Bµ,
W 3
µ and Xµ the mass term can be rewritten as

Lmass ⊃
(MSM

Z )2

2

(
Bµ W 3µ Xµ

)
s2W+µ2s2χ

c2χ
− sW cW

cχ
−µ2tχ

− sW cW
cχ

c2W 0

−µ2tχ 0 µ2


 Bµ

W 3µ

Xµ

 . (3.31)

To diagonalize the mass matrix, we can first perform the following rotations:

Ry(χ) ≡

cχ 0 −sχ
0 1 0

sχ 0 cχ

 Rz(θW ) ≡

cW −sW 0

sW cW 0

0 0 1

 . (3.32)

We define V ≡ Ry(χ)Rz(θW ) and compute

V †MV = (MSM
Z )2

0 0 0

0 1 sW tχ

0 sW tχ µ2/c2χ + s2W t
2
χ

 . (3.33)

The first diagonal entry corresponds to the mass of the photon, which is zero as expected. At
this point, we can perform a rotation in the YZ plan that finally diagonalizes the mass matrix:

Rx(β) ≡

1 0 0

0 cβ −sβ
0 sβ cβ

 , (3.34)

Rx(β)†V †MVRx(β) =

0 0 0

0 M2
Z 0

0 0 M2
A′

 , (3.35)

where
tan 2β =

2sW sχcχ
c2χ − s2W s

2
χ − µ2

, (3.36)

sin 2β =
2sW sχcχ√

(c2χ − s2W s
2
χ − µ2)2 + 4s2W s

2
χc

2
χ

, cos 2β =
c2χ − s2W s

2
χ − µ2√

(c2χ − s2W s
2
χ − µ2)2 + 4s2W s

2
χc

2
χ

. (3.37)
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The physical masses of the neutral gauge bosons are

m2
A = 0,

M2
Z = (MSM

Z )2
(s2W + c2W c

2
χ + µ2

2c2χ
+

√
(s2W + c2W c

2
χ + µ2)2 − 4c2χµ

2

2c2χ

)
= (MSM

Z )2
(
1 + sW tχtβ

)
,

M2
A′ = (MSM

Z )2
(s2W + c2W c

2
χ + µ2

2c2χ
−

√
(s2W + c2W c

2
χ + µ2)2 − 4c2χµ

2

2c2χ

)
= (MSM

Z )2
(
1− sW tχ

tβ

)
.

(3.38)

Finally, putting it all together, we have the transformation to go from the off-diagonal flavour
basis to the physical basis: Bµ

W 3µ

Xµ

 =

1/ cosχ 0 0

0 1 0

− tanχ 0 1

Rx(χ)Ry(θW )Rz(β)

A
µ

Zµ

A′µ

 . (3.39)

From the Standard Model we have:

ASMµ = cWBµ + sWW
3
µ ZSM

µ = −sWBµ + cWW
3
µ (3.40)

and we can write 
Aµ = ASMµ + cW sχXµ

Zµ = cβZ
SM
µ + sβcχXµ

A′
µ = cβcχXµ − sβZ

SM
µ

. (3.41)

Other useful relations are:
ASMµ = Aµ − cβcW tχA

′
µ − sβcW tχZµ

ZSM
µ = (cβ + sβsW tχ)Zµ − (sβ − cβsW tχ)A

′
µ

Xµ =
sβ
cχ
Zµ +

cβ
cχ
A′
µ

. (3.42)

These relations are particularly useful if we take the Standard Model lagrangian:

−LSMint ⊃ eASMµ JµEM +
g

2cW
ZSM
µ JµNC . (3.43)
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Then in the new theory, we have

−Lint ⊃eASMµ JµEM +
g

2cW
ZSM
µ JµNC + gXXµJ

µ
X

=eASMµ JµEM

Zµ

[
(cβ + sβsW tχ)

g

2cW
JµNC − sβcW tχeJ

µ
EM +

sβ
cχ
gXJ

µ
X

]
A′
µ

[
−(sβ − cβsW tχ)

g

2cW
JµNC − cβcW tχeJ

µ
EM +

cβ
cχ
gXJ

µ
X

]
,

(3.44)

where we have used 3.42. Note that the coupling χ is the mixing between SM hypercharge and
X. For very light X, however, the mixing with the Standard Model Z is very small (X has small
couplings to the SM neutral current), and we end up with large couplings only with the EM
current. In this case, one usually defines:

ε ≡ cW e. (3.45)

3.3.3 Couplings to charged fermions

We want to compute the coupling between the dark photon and the matter fields. From the
covariant derivative:

ψi /Dψ = ψ

[
i/∂ − g′

Y

2
− gQ3

L
/W 3 −QXgX /X

]
ψ, (3.46)

where ψ = Q,L, eR, uR, dR. Using the relations found in the previous sections and exploiting the
fact that Qe = Y/2 + Q3

L, we can combine the left- and right-handed fields to write the vector
couplings

−LI ⊃ ψγµ {Aµ (eQe)

+Zµ

[
e

4sW cW

(
cβ
(
4c2WQe − YL − YR

)
− sβsW tχ (YL + YR)

)
+ gXQX

sβ
cχ

]
+A′

µ

[
e

4sW cW

(
−sβ

(
4c2WQe − YL − YR

)
− cβsW tχ (YL + YR)

)
+ gXQX

cβ
cχ

]}
ψ

(3.47)

and axial coupling

−LI ⊃ −ψγµγ5
{
Zµ

[
e

4sW cW
(YL − YR) (cβ + tχsβsW )

]
+A′

µ

[
e

4sW cW
(YL − YR) (−sβ + tχsβsW )

]}
ψ

. (3.48)
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We can reorganize the above expressions and write the couplings to Z and A′ in the following
way:

LI ⊃ −ψfγµ
{(
cfV + cfAγ

5
)
Zµ +

(
dfV + dfAγ

5
)
A′
µ

}
ψf . (3.49)

electron ceV = g
2cW

[
cβ
(
−1

2
+ 2s2W

)
+ 3

2
sβsW tχ

]
ceA = g

2cW

[
− cβ+sβsW tχ

2

]
Zµ up cuV = g

2cW

[
cβ
(
1
2
− 4

3
s2W
)
− 5

6
sβsW tχ

]
cuA = g

2cW

[
cβ+sβsW tχ

2

]
down cdV = g

2cW

[
cβ
(
−1

2
+ 2

3
s2W
)
+ 1

6
sβsW tχ

]
cdA = g

2cW

[
− cβ+sβsW tχ

2

]

electron deV = g
2cW

[
−sβ

(
−1

2
+ 2s2W

)
+ 3

2
cβsW tχ

]
deA = g

2cW

[
−−sβ+cβsW tχ

2

]
A′
µ up duV = g

2cW

[
−sβ

(
1
2
− 4

3
s2W
)
− 5

6
cβsW tχ

]
duA = g

2cW

[
−sβ+cβsW tχ

2

]
down ddV = g

2cW

[
−sβ

(
−1

2
+ 2

3
s2W
)
+ 1

6
cβsW tχ

]
ddA = g

2cW

[
−−sβ+cβsW tχ

2

]
Table 3.2: Fermion neutral couplings

3.3.4 Couplings to neutral fermions

The Lagrangian for the active neutrinos is:

Lα ⊃
∑

α=e,µ,τ

[
να

(
i/∂ +

g′

2
/B − g

2
/W 3

)
PLνα + να

(
g√
2
/W+

)
PLeα

]
, (3.50)

with να =
∑

i=1,2,3 Uαiνi.

We also need to consider the interaction lagrangian for the new heavy neutral lepton flavours:

L′ ⊃ νD
(
i/∂ −QXgX

)
PLνD +N

(
i/∂
)
PLN, (3.51)

so that the interaction Lagrangian for the neutrinos can be written as follow:

L ⊃ −
∑

α=e,µ,τ

[
ναγ

µ
(
cαZµ + dαA′

µ

)
PLνα

]
+
[
νDγ

µ
(
cDZµ + dDA′

µ

)
PLνD

]
(3.52a)

= −
5∑

i,j=1

[
νiγ

µ
(
cijZµ + dijA′

µ

)
PLνj

]
(3.52b)

= −
∑

α,β=e,µ,τ

[
ναγ

µ
(
U∗
iαUjβc

ijZµ + U∗
iαUjβd

ijA′
µ

)
PLνβ

]
+ νDterms. (3.52c)

We can make some additional manipulations and rewrite the above couplings in the following
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Zµ
cij = g

2cW
[U∗

αiUαj (cβ + sW tχsβ)] + U∗
DiUDjgXQX

sβ
cχ

cα = g
2cW

(cβ + sβsW tχ) cD = gXQX
sβ
cχ

A′
µ

dij = g
2cW

[U∗
αiUαj (−sβ + sW tχcβ)] + U∗

DiUDjgXQX
cβ
cχ

dα = g
2cW

(−sβ + sW tχcβ) dD = gXQX
cβ
cχ

Table 3.3: Neutrino neutral couplings

way:

cij =
g

2cW
[U∗

αiUαj (cβ + sW tχsβ)] + U∗
DiUDjgXQX

sβ
cχ

=
cβcWM

2
Z

MWvH
U∗
αiUαj +

sβcWMZMA′

MWvϕ
U∗
DiUDj

=
MZ

2

(
CijPL − C∗

ijPR
)
,

(3.53)

where
Cij =

cω
vH
U∗
αiUαj −

sω
vϕ
U∗
DiUDj (3.54)

and we have defined:
cω ≡ cβcWMZ

MW

, sω ≡ −sβcWMA′

MW

. (3.55)

Note that cω ̸= cW and c2ω + s2ω = 1. We can do the same thing for the coupling to the A′:

dij = dij =
g

2cW
[U∗

αiUαj (−sβ + sW tχcβ)] + U∗
DiUDjgXQX

cβ
cχ

= −sβcWM
2
A′

MWvH
U∗
αiUαj +

cβcWMZMA′

MWvϕ
U∗
DiUDj

= −MZ

2

(
DijPL −D∗

ijPR
)
,

(3.56)

where
Dij =

sω
vH
U∗
αiUαj +

cω
vϕ
U∗
DiUDj. (3.57)

3.4 Neutrino scalar interactions

The Lagrangian of the model also contains a term that takes into account the interaction between
neutrinos and the scalar fields:

−Lνscalar =
yαν√
2
nuαN

Ch+
yN√
2
NnuCDϕ+ h.c. (3.58)
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Considering the Majorana nature of the neutrino fields, we can write

−Lνscalar = νi

(
(∆h)ij PR + (∆h)

∗
ij PL

)
νjh+ νi

(
(∆ϕ)ij PR + (∆ϕ)

∗
ij PL

)
νjϕ, (3.59)

where

(∆h)ij =
yαν
2
√
2

(
U∗
αiU

∗
Nj + U∗

αjU
∗
Ni

)
(∆ϕ)ij =

yαN
2
√
2

(
U∗
NiU

∗
Dj + U∗

NjU
∗
Di

)
.

(3.60)

In the presence of scalar mixing (λ ̸= 0 in the scalar potential), we must also rotate the scalar
sector to obtain the physical fields. This was done in section 3.2.1, were we found

h = cθh
′ + sθϕ

′ (3.61)

ϕ = −sθh′ + cθϕ
′ (3.62)

tan(2θ) =
λvhvφ

λHv2h − λΦv2φ
. (3.63)

The final lagrangian will read:

Lνscalar =− νi

[(
(∆h)ij PR + (∆h)

∗
ij PL

)
cθ −

(
(∆ϕ)ij PR + (∆ϕ)

∗
ij PL

)
sθ

]
νjh

′

− νi

[(
(∆h)ij PR + (∆h)

∗
ij PL

)
sθ +

(
(∆ϕ)ij PR + (∆ϕ)

∗
ij PL

)
cθ

]
νjϕ

′.
(3.64)

3.5 Neutrino masses

The mass terms of the Lagrangian for the neutrino masses are the following:

−Lνmass = yαν (Lα · H̃)NC +
µ′

2
NNC + yNNν

C
DΦ + h.c.

=
yαν√
2

(
να lα

)(vH
0

)
NC +

µ′

2
NNC + yNNν

C
Dvϕ + h.c.

(3.65)

We define:

mD =

[
yαν√
2
vH

]T
Λ =

[
yN√
2
vϕ

]T
.

(3.66)
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With the above definitions, we can rewrite 3.65 as

Lνmass = −1

2

(
ναNνD

)03×3 mT
D 0

mD µ′ ΛT

0 Λ 0,


 να

NC

νD

 . (3.67)

The mass matrix thus obtained can be diagonalised by block, in order to find the physical value
of the masses

M̂ =
(
UT
α UT

N UT
D

)03×3 mT
D 0

mD µ′ ΛT

0 Λ 0


UαUN
UD

 = UTMU. (3.68)

In order to have an idea of the order of magnitude of the masses, we can consider just one
generation of active neutrinos in order to simplify the computations:

M ′ = (Ry
α)
T MRy

α =

0 0 0

0 µ′
√
m2
D + Λ2

0
√
m2
D + Λ2 0

 , (3.69)

where

Ry
α =

 cα 0 sα

0 1 0

−sα 0 cα

 tanα =
mD

Λ
. (3.70)

A last rotation is necessary to diagonalize the mass matrix completely, namely:

M̂ = (Rx
δ )
T MRx

δ =

0 0 0

0 c2δµ
′ + 2sδcδ

√
m2
D + Λ2 0

0 0 s2δµ
′ − 2sδcδ

√
m2
D + Λ2

 , (3.71)

where

Rx
δ =

1 0 0

0 cδ sδ

0 −sδ cδ

 tanα =
2
√
m2
D + Λ2

µ′ . (3.72)
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We have thus found that the masses are:

m1 =0

m2 =c
2
δµ

′ + 2sδcδ

√
m2
D + Λ2

=
µ′

2

(
1 +

µ′√
µ′2 + 4m2

D + 4Λ2

)
+ 2

m2
D + Λ2√

µ′2 + 4m2
D + 4Λ2

m3 =s
2
δµ

′ − 2sδcδ

√
m2
D + Λ2

=
µ′

2

(
1− µ′√

µ′2 + 4m2
D + 4Λ2

)
− 2

m2
D + Λ2√

µ′2 + 4m2
D + 4Λ2

.

(3.73)

Active neutrinos are massless at tree-level. This is due to an accidental cancellation between two
seesaw contributions to the light neutrino masses and is evident in equation (5) of [105]. In our
case, having only one generation for each new HNF, it is trivial to see that the active neutrino
mass matrix will be zero. However, the same holds given that the new HNFs have the same
number of generations.

Another way to see this is to integrate out N by taking µ′ → ∞. We are then left with the
effective terms:

1

ΛNP
(LH̃)(ΦνCD) →

mDΛ

µ′ νL

1

ΛNP
(νCDφ

∗)(νDφ
∗) → Λ2

µ′ ν
C
DνD

1

ΛNP
(LCH̃∗)(H̃†L) → m2

D

µ′ ν
C
L νL.

(3.74)

The resulting mass matrix is:

Lνmass =
1

2

(
να νD

)( m2
D/µ

′ mDΛ/µ
′

mDΛ/µ
′ Λ2/µ′

)(
νCα

νCD

)
+ h.c. (3.75)

This matrix has determinant zero, meaning that the lightest neutrinos must be massless. We
explore how light neutrinos could acquire a mass term in this particular model in Appendix A.
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Chapter 4

ProtoDUNE searches for Semi-Visible
Dark Photon

Among the different portals that can mediate an interaction between the Dark Sectors and the
Standard Model particles, the vector portal is the one where the interaction takes place because
of the kinetic mixing between one dark and one visible Abelian gauge boson.

Depending on the kinematics of the process, the dark photon can undergo two types of
decays: one into Standard Model particles, leading to observable signatures, and the other into
dark sector particles, resulting in invisible ones. In the former case, one looks for resonance in
the invariant mass distribution of the decay products, while in the latter techniques like missing
momentum, missing energy, and missing mass are used in order to identify a possible massive
dark photon decaying into invisible final states. Another intriguing possibility arises when the
dark photon undergoes semi-visible decay. This means that the final state will comprise both
visible and invisible states, allowing us to evade constraints coming from fully visible or invisible
dark photon searches. As we will discuss, this opens up new regions in the parameter space that
are of significant interest from a theoretical standpoint.

In this final chapter, we present the results of the thesis work. Building upon the findings
from [4], we consider the proposal presented by P. Coloma et al. in [5] to explore the potential
of using ProtoDUNE for investigating rich dark sector models. Specifically, we focus on the
semi-visible dark photon as considered by A. Abdullahi et al. in [4].

In section 4.1 we will discuss the theoretical motivation that drives such models. Moving
forward to section 4.2, a detailed presentation of the model employed in this study will be
provided. This includes an extensive examination of the implications resulting from variations in
the particle composition within the dark sector. In 4.3 we will review current constraints on the
dark photon masses mA′ and mixing ε. In 4.4 we will introduce ProtoDUNE and explain how
we can use it to search for this specific model. Lastly, in section 4.5 we will present and discuss
the obtained research outcomes.
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4.1 Theoretical motivation

As we saw in the previous chapter, unless explicitly forbidden, the dark gauge boson mixes with
the SM hypercharge [106]. The naive one-loop expectation for the kinetic mixing ε is around
10−3 - 10−2 [107]. Many experimental efforts have focused on dark photons decaying either
visibly or invisibly. In these scenarios, a huge part of the parameter space for the dark photon
mixing ε and masses mA′ has already been excluded, hinting at smaller dark couplings or higher-
order origin for ε. However, the regions of parameter space characterized by such kinetic mixing
values are specifically interesting in solving the anomalous magnetic moment of the muon ∆aµ

[108, 109]. Dirac equation predicts fermion magnetic moments g to be precisely two. However,
as has been measured in experiments, loop contributions lead to a departure from this precise
value. Usually, the value aµ = (g − 2)/2 is used in this context to refer to the departure from
tree-level prediction. Loop corrections to the electron magnetic moment are consistent with the
experimental measurement of this quantity; however, in the case of the muon anomalous magnetic
moment, there is a discrepancy between the SM predictions and the experimental measurement.
The latest results published by Fermilab in August 2023, show a departure of 5.1σ from the SM
computation [110]. We will discuss more in detail about the anomalous muon magnetic moment
in 4.3.

A dark photon can contribute at one loop to aµ = (g − 2)µ/2 with a positive sign, fixing
the observed discrepancy. This is possible for light mediator, with mA′ ≲ 3 GeV and kinetic
mixing in the range ε ∼ 10−3 - 10−2 [111]. While this explanation has been fully excluded for
DP decaying in fully visible or invisible states, it still remains a viable possibility in the case of
a dark photon decaying semi-visibly, as first shown in the minimal model in [112].
The model considered in [4] includes a dark sector containing multiple fermions, that can either
be interpreted as a dark matter model (when the lightest candidate is stable) or seesaw neutrino
mass models (when the fermions mix with the SM neutrinos). In this thesis, we focus on the stable
case, where the coannihilation of the lighter fermions with heavier ones will be predominant. The
minimal inelastic DM mediated by a DP proposed in [112], leaves very little parameter space open
for ∆aµ explanation. Therefore, next-to-minimal models are considered, which have the potential
to expand the accessible parameter space considerably, particularly within the specified region
of interest. Building upon the groundwork laid in [4], this study aims to extend the analysis
by scrutinizing each of the benchmark points (BPs) considered there. The primary objective
is to determine whether ProtoDUNE can enhance the existing sensitivities for the model under
examination, following the work presented in [5].
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4.2 Semi-visible Dark Photon

The Lagrangian of the model is given by

L = LSM − ϵ

2cW
FµνX

µν − 1

4
XµνX

µν + gDXµJ µ
D +

m2
X

2
XµX

µ, (4.1)

where Xµν is the field strength tensor of the dark photon and J µ
D is the dark current containing

new degrees of freedom. In this particular model, we assume a Stückelberg mass for the dark
photon, leaving unspecified the origin of its mass. After we canonically normalize the gauge
kinetic term, we obtain a dark photon with mass mA′ ≃ mX that couples to both the dark sector
and the SM electromagnetic (EM) and weak neutral current (NC)

Lint ⊃A′
µ

(
gDJ µ

D − eεJ µ
EM − εtW

m2
A′

m2
Z

g

2cW
J µ
NC

)
+

Zµ

( g

2cW
J µ
NC + gDtW εJ µ

D

)
+O(ε2),

(4.2)

where tW = tan(θW ), θW being the SM weak mixing angle.
In order to render the dark photon semi-visible, it must decay predominantly into dark

particles, that then decay into lighter states producing missing energy and SM states, e.g.
ψi → ψi−1e

+e−. Our focus will be on a dark sector that includes only fermions:

J µ
D ≡

n∑
i,j=1

Vijψiγ
µψj, (4.3)

where Vij are the model-dependent coupling vertices.
This model offers two interesting phenomenological possibilities: if the Heavy Neutral Fermions

(HNFs) mix with SM neutrinos, they are often referred to as Heavy Neutral Leptons (HNLs) de-
noted by N4, N5, etc. A comprehensive recent review is given in [113]. Alternatively, when
the lightest HNF is stable, this could constitute a potential dark matter candidate. The heavier
states, ψi=2,...,n, are expected to decay in cascades down to the lightest HNF, emitting two charged
particles at each step. This idea is linked to the inelastic Dark Matter model, first presented in
[114] to reconcile the DAMA and the CDMS experiments.

In this specific benchmark scenario, the dark photon is heavier than all HNFs, which permits
only three-body decays. Furthermore, all decays involving 3 HNFs are prohibited to avoid con-
straints on invisible decays. In the upcoming sections, we will delve into the study of the model’s
fermionic content, starting with the simplest case featuring two Majorana fermions, and then
extending up to 4 HNFs.
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4.2.1 Two Heavy Neutral Fermions (HNFs)

We start by considering only two Majorana HNFs χL and χR with charges respectively QL and
QR. The Lagrangian for this model is

Lχ = χLi
(
/∂ − igDQL /A

′)χL + χcRi
(
/∂ + igDQR /A

′)χcR
− 1

2

[(
χcL χR

)( µL mD

mD µR

)(
χL

χcR

)
+ h.c.

]
.

(4.4)

To diagonalize the symmetric mass matrix, diag(m1,m2) = UTMU , where U = R(θ)diag(eiφ, 1),
and R(θ) represents the rotation matrix with tan 2θ = mD/∆µ. We introduced ∆µ = (µR−µL)/2
and additionally define µ = (µR + µL)/2, which will be used later. CP is conserved when
φ = 0, π/2

In terms of Majorana mass eigenstates, the dark current is given by

J µ
D =

QA −QV cos 2θ

2
ψ2γ

µγ5ψ2 +
QA +QV cos 2θ

2
ψ1γ

µγ5ψ1

+ i sinφQV sin 2θψ2γ
µψ1 + cosφQV sin 2θψ2γ

µγ5ψ1

, (4.5)

where QV ≡ (QL +QR)/2 and QA ≡ (QL −QR)/2. Gauge anomaly cancellation fixes QA = 0.
For ∆µ → 0, tan 2θ is maximal and the dark photon couples only off-diagonally to the

mass eigenstates. The on-diagonal couplings can be made small through a C symmetry. The C
operator Uc acts on Weyl fermions as:

UcχLU
−1
c = ηcψ

c
R, UcχRU

−1
c = ηcψ

c
L. (4.6)

We can define the eigenbasis for the C operator as:

χ+ =
χL + χcR√

2
, χ− = eiφ

χL − χcR√
2

. (4.7)

Given that C(A′
µ) = −1, the C parity of the fermions can be fixed as C(χ±) = ±1. In this basis,

the Lagrangian can be rewritten as:

Lχ = χ+i/∂χ+ + χ−i/∂χ− + gDA
′
µ

[
QA

2
(χ+γ

µγ5χ+ + χ−γ
µγ5χ−) + iQV χ+γ

µχ−

]
−
[
1

2

(
χc− χc+

)(mD − µ i∆µ

i∆µ mD + µ

)(
χ−

χ+

)
+ h.c.

]
.

(4.8)

This basis is identified with the physical basis when ∆µ→ 0.
In the C-symmetric limit, χ± behaves like the components of a pseudo-Dirac particle with a

mass gap of 2µ.
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Inelastic dark matter (iDM). In the C-symmetric limit and with an anomaly-free charge
assignment, we find exactly the iDM model [114]. In this case, the dark current would simply
be, taking QV = 1 and φ = π/2:

J µ
iDM = iψ2γ

µψ1 + h.c. (4.9)

This specific model faces challenges due to constraints imposed by invisible dark photon limits,
as even small losses in the detector acceptance contribute to the invisible dark photon branching
ratio. To avoid these limits, alternative approaches can be considered, involving additional
unstable fermions accompanying the dark photon production. This can be achieved by either
producing ψ2 particles in pairs or by exploring models with three or more HNFs. Additionally,
the dark photon’s couplings are adjusted so that the dark photon predominantly interacts with
the heavier and short-lived states. We will now analyze the case of three and four HNFs.

4.2.2 Three HNFs

Starting from the two HNFs model, we add to the particle content an additional fully sterile
Weyl fermion ηL. In the interaction basis, we will have the Majorana fermions χL, χR and ηL.
The model Lagrangian then reads:

L3−HNFs = Lχ + ηLi/∂ηL −
[
µ′
L

2
ηcLηL + ΛLηcLχL + ΛRηcLχ

c
R + h.c.

]
. (4.10)

The mixing term between η and χ causes the breaking of the U(1)D symmetry.
In this particular model, ηL is completely neutral, which allows it to couple to the SM lepton

doublets via the Yukawa coupling LH̃ηcL. This coupling term is crucial in generating the masses
of light neutrinos and would enable the lightest HNF to decay into SM neutrinos. However,
to ensure the stability of the dark matter candidate, it is necessary to forbid these coupling
terms. This is achieved by imposing a dark parity Z2 under which all dark sector fermions are
charged. By introducing this dark parity, we prevent the interaction terms that would otherwise
allow ηL to couple to SM lepton doublets, ensuring that the lightest HNF remains a viable dark
matter candidate. The dark parity can also be linked to the conservation of the lepton number
if L(ηL) = 1, forbidding the neutrino Yukawa coupling in the model.

We use the left-handed dark fermion basis introduced in 4.7, and set the Majorana phase to
be such that CP is conserved and the mass terms are positive when MX > µ. The DS fermion
mass matrix is

−L3−HNFs =
1

2

(ηcL χc− χc+

) µ′
L ∆Λ Λ

∆Λ MX − µ ∆µ

Λ ∆µ MX + µ


ηLχ−

χ+

+ h.c.

 , (4.11)
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with Λ = (ΛR+ΛL)/
√
2 and ∆Λ = (ΛR−ΛR)/

√
2. By imposing C-symmetry in the χ sector, we

can recover the limit where ∆µ = ∆Λ = 0. In doing so, we encounter a situation analogous to the
case of two HNFs, but with a difference: now χ+ can mix with the fully sterile state. Indeed, as
C(ηL) = 1, C-conservation implies that only C-even fermions can mix with ηL. Consequently, the
particle spectrum can consist of one Dirac fermion and one Majorana fermion or three Majorana
states.

The C-odd state, denoted as χ− ≡ ψ2, decouples, while η and χ+ mix with each other. In
the mass basis, we find:

ψ1 = cαη + sαχ+, m1 = µ′
L −M

sin2 α

cos 2α
, (4.12)

ψ2 = χ−, m2 =MX − µ, (4.13)

ψ3 = −sαη + cαχ+, m3 = µ′
L +M

cos2 α

cos 2α
, (4.13)

where tan 2α = 2Λ/M and M = MX + µ − µ′
L. In the limit tan 2α ≪ 1, ψ2 and ψ3 form

a pseudo-Dirac pair. In the other limit, tan2α ≫ 1, we have three Majorana fermions. The
splitting in this case will be given by m3 −m1 ∼ M + 2Λ2/M and m3 −m2 ∼ Λ2/M + 2µ. In
the C-symmetric case, the current will be fully off-diagonal:

J µ
3−HNF ⊃ sαψ2γ

µψ1 + cαψ2γ
µψ3 + h.c. (4.14)

As we anticipated above, two phenomenological models can arise from having three HNFs: mixed
inelastic dark matter (mixed-iDM) and three Majorana fermions.

Mixed-iDM. If we take the limit of small α, ψ2 and ψ3 form a pseudo-Dirac pair, while ψ1

remains a Majorana particle. When ψ1 is a dark matter particle, its relic abundance is set only
through the coannihilation with the lightest pseudo-Dirac partner. The self-annihilation of dark
matter is forbidden by the C-symmetry, and not constrained by CMB limits. The dark current
will be

J µ
mixed−iDM = sαΨ2γ

µψ1 + cαΨ2γ
µΨ2 + h.c. (4.15)

The important parameter, in this case, is the mass splitting between the Majorana fermion and
its interaction partner ∆21. The mass splitting between the fermions constituting the pseudo-
Dirac pair, expressed in terms of tan 2θ and ∆21, is ∆32 = 1

4
∆21

1+∆21
tan2 2α, which is small for

tan2 2α ≪ 1. In this limit ∆32 ∝ α2, and if we take α → 0 we recover the exact Dirac case. The
decay of ψ3 → ψ2 + .. are suppressed by ∆5

32, so it is possible to safely neglect those.
Three Majorana fermions. By relaxing the condition α ≪ 1 and the C symmetry in

the dark sector, we have three hierarchical Majorana HNFs. In this case the decay of ψ3 → ψ2

is enhanced, while the on-diagonal terms are suppressed. This case can provide both a viable
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inelastic DM candidate or a heavy neutral lepton interpretation, as has been analyzed in [103].
Depending on the mass hierarchy in this case, it would be possible for the heavier HNFs to decay
in lighter states, for example into 3 ψ1. The benchmarks chosen for the analysis are such that
this possibility is forbidden as it would dominate and contribute to the invisible branching ratio
of the dark photon.

4.2.3 Four HNFs

By adding another fermion, it is possible to go to the two Dirac fermions limit. In this scenario,
we have two families of HNFs: one fully sterile, η, and the other charged under the dark gauge
symmetry, χ. In this case, the Lagrangian is

L4−HNF =Lχ + ηi/∂η −Mηηη

−
[
µ′
R

2
ηRη

c
R + Λ′

RηRχ
c
R +

µ′
L

2
ηcLηL + ΛLηcLχL + ΛRηcLχ

c
R + h.c.

]
.

(4.16)

In the C-symmetric limit, ΛR = Λ′
L and ΛL = Λ′

R. The mass matrix in the C eigenbasis is

−L4−HNF ⊃ 1

2

(
ηc− ηc+ χc− χc−

)

Mη − µ′ 0 Λ− 0

0 Mη + µ′ 0 Λ+

Λ− 0 MX − µ 0

0 Λ+ 0 MX + µ



η−

η+

χ−

χ+

+ h.c.,

(4.17)
where Λ± ≡ (Λ′

L+ΛR)/2± (Λ′
R+ΛL)/2. As before, the C-even and C-odd sectors decouple. We

introduce the rotations defined by the mixing angles tan 2β± = 2Λ±/∆±, with ∆± = ±(MX −
Mη) + µ− µ′. The mass basis will read:

ψ1 = cβ−η− + sβ−χ−, m1 =Mη − µ′ +∆−
sin2 β−
cos 2β−

,

ψ2 = cβ+η+ + sβ+χ+, m2 =Mη + µ′ −∆+
sin2 β+
cos 2β+

,

ψ3 = −sβ−η− + cβ−χ−, m3 =MX − µ−∆−
sin2 β−
cos 2β−

,

ψ4 = −sβ+η+ + cβ+χ+, m4 =MX − µ+∆+
sin2 β−
cos 2β−

.

(4.18)

In the limit µ, µ′Λ ≪MX ,Mη, the spectrum is composed of two pseudo-Dirac particles, split by
the U(1)D-breaking terms. If we take the U(1)D to be broken by one unit, such that µ = µ′ = 0

and ∆− = ∆+ = ∆, the Dirac pairs are split by:

∆43 ∼ ∆21 ∼ ∆
(
β2
+ − β2

−
)
, (4.19)
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which is small for small mixing angles and vanishes for β− = β+. In this last case, we recover
the exact two Dirac fermions. In terms of mass eigenstates, the dark current is

J µ
X = cβ+cβ−ψ4γ

µψ3 + sβ+cβ−ψ4γ
µψ1 + sβ−cβ+ψ3γ

µψ2 + sβ+sβ−ψ2γ
µψ1 + h.c. (4.20)

Only interactions amongst C-odd and C-even states are allowed. The heaviest pseudo-Dirac pair
couples most strongly to the dark photon. The dominant decays are ψ4,3 → ψ1,2.
The model allows for the possibility of recovering the inelastic dark matter case, the Inelastic
Dirac Dark Matter (i2DM) [115]. In the exact Dirac limit, we only have two particles in the
spectrum: a light, mostly neutral Dirac fermion Ψ1, which is the dark matter candidate, and Ψ2,
that works as a coannihilator. The idea for the inelastic Dirac dark matter stems from the need
to create a different paradigm to the simple iDM scenario, which is already strongly constrained.
As discussed in [115], this leads to different cosmology and new phenomenology that can help us
test this model in current and future experiments:

J µ
i2DM = s2βΨ1γ

µΨ1 + sβcβ(Ψ2Ψ1 + h.c.) + c2βΨ2Ψ2. (4.21)

This model is different from the mixed-iDM in that the off-diagonal interaction is suppressed
with respect to the self-annihilation of the heavier Dirac fermion. The branching ratios of the
dark photon to the lighter fermions will be hierarchical, following a proportion of (1:β2:β4) for
(Ψ2Ψ2, Ψ2Ψ1, Ψ1Ψ1)

4.2.4 Mixing with light neutrinos

As we anticipated before, in general, in the presence of a fully sterile state, the Lagrangian should
also contain the Yukawa couplings with both the SM leptonic doublet and the DS, which after
symmetry breaking will lead to the mixing between neutrinos and HNFs (in this scenario they
are usually referred to as HNLs).

The HNLs are unstable and the lightest particle in the spectrum cannot constitute dark
matter. For example, considering the 3-HNF model, the Lagrangian would contain the additional
term

L = L3−HNF −
∑

α=e,µ,τ

(
yαLαH̃η

c
L + h.c.

)
. (4.22)

The mixing of active SM neutrinos and HNLs is constrained to be small by direct laboratory
searches. The main consequence of having this mixing is that it could be a mechanism for light
neutrino mass generation. Indeed, a GeV-scale seesaw mechanism has been extensively studied
in the literature ([93, 116]. In Appendix A it has been explored as an example of how the three
portal model presented in [100] can give rise to neutrino masses at loop level.
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The breaking of the lepton number plays an important role in the generation of neutrino
masses. In the dark sector, the charge assignment is arbitrary and depending on specific choices,
lepton number can be broken by different terms, e.g. for L(χL) = L(χcR) = 0 and L(χR) =

L(χcL) = 1, it will be broken by ΛL,R, MX and µL,R. Light neutrino masses need to depend on
all the U(1)L-breaking parameters. One could also give charge assignment such that the Yukawa
term itself is small, thus explaining naturally its smallness. For negligible µ′

L and ΛL,R ≪ MX ,
we have that m1 ≃ Λ2/M , m2 ≃ m3 =M and light neutrino masses will be:

mν ≃
y2v2H
Λ2

M. (4.23)

The case with four HNFs allows us to add two Yukawa interactions to the SM:

L = L4−HNF −
∑

α=e,µ,τ

(
yαLαH̃ηR + y′αLαH̃η

c
L + h.c.

)
. (4.24)

As before, the Yukawa can be suppressed by not charging η. If L(ηL) = L(ηR) = 1, Mη is
allowed while L-conservation implies y′α to be very small. An interesting case is the one in which
L(χL) = L(χR) = 1, which is compatible with the C-symmetry discussed before. In this case,
the lightest neutrino mass is zero as it is protected by the accidental lepton number symmetry.

4.3 Current experimental constraints

We now provide a brief summary of the constraints on the mass of the dark photon mA′ and the
mixing parameter ε based on reference [117]. Specifically, our focus lies on masses above 1 MeV,
which are relevant for our analysis in the range 10 MeV < mA′ < 10 GeV and 10−4 < ε < 0.1. A
more comprehensive analysis of some of these constraints within the context of the model studied
in this thesis can be found in reference [4]. However, here we present a broader discussion, later
touching upon model-independent limits.

The main production mechanisms of the dark photon are:

• Bremmstrahlung : the incoming electron scatters off the target nuclei (Z), goes off-shell and
can thus emit the dark photon via e−Z → e−ZA′.

• Annihilation: an elector-positron pair annihilates into an ordinary photon and a dark
photon: e−e+ → γA′.

• Meson decays : a pseudoscalar meson φ can decay, producing a dark photon and an ordinary
photon: φ → A′γ. For a vector meson, V an off-shell dark photon can be produced which
subsequently decays into SM or dark sectors particles: V → A′∗(→ l+l−/χχ).
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• Drell-Yan: a quark-antiquark pair annihilates into the dark photon, which then decays into
a lepton pair (or hadrons): qq → A′(→ l+l−, h+h−).

Detection of A′ is usually through its decay products. Depending on whether they are visible or
invisible, different searches are carried out as will be discussed in the next sections.

Constraints on decays to visible final states

There are two main types of experiments that have contributed to establishing the current limits
on the visible massive dark photon in the region where its mass is greater than 1 MeV. These
experiments are conducted at colliders and fixed-target or beam dump facilities. In both experi-
ments, the idea is to look for resonances over a smooth background. In collider experiments, the
decay vertex is prompt or slightly displaced from the beam interaction point. In contrast, beam
dump experiments look for highly displaced vertices. Additionally, the former is most sensitive
to region of the parameter space with higher masses and mixing (ε > 10−3, mA′ ∼ O(10 GeV) ),
while the latter can probe regions with lower masses and mixing.

• Experiments at colliders. These look for resonances in the invariant mass distribution
of e+e− and µ+µ− pairs. The dark photon can be produced in different ways: meson decay
(e.g. π0 → γA′, NA48/2 [118]), Bremsstrahlung (e−Z → e−ZA′, A1 [119]), annihilation
(e+e− → γA′, BaBar [72]). In the case of a proton-proton (pp) collider, the dark photon
can be produced via the γ - A′ mixing in all the processes where an off-shell photon γ∗

with mass m(γ∗) is produced: meson decays (e.g. vector mesons), Bremsstrahlung, and
Drell-Yan production [120].

• Beam-dump experiments. Electrons or proton beams are collided against a fixed target
or dump in order to produce secondary particles. In this case, the dark photon can be
produced by either Bremsstrahlung, mesons decay or QCD processes (the latter only in the
case of proton beams). The products of the collisions are mostly absorbed in the dump
and the dark photon is searched for as a displaced vertex with two opposite charged tracks
in the decay volume of the experiment.

Searches for visible dark photons in collider/fixed target experiments are mainly carried out
at BaBar [72], A1 [119], KLOE[121], CMS[122], NA48/2[118], while beam dump searches are
done at ν-Cal[123] and CHARM[124]. Additional bounds can also come from supernovae[125].
Many additional experiments have been proposed to search for visibly decaying dark photons, as
discussed in [117].

Constraints on decays to invisible final states

These dark photons are considered "invisible" as they do not leave a detectable signal in the par-
ticle detectors. In this context, experimental techniques such as measuring missing momentum,
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missing energy, and missing mass are employed to look for potential massive dark photons. Ex-
periments using the missing-mass method aim to detect and measure visible final-state particles,
seeking events with energy and momentum imbalances. Avoiding backgrounds from processes
generating neutrinos is crucial, as they can mimic signals. Precisely determining the initial state
is essential, achieved using accelerator information or measuring the initial state’s energy and
momentum directly. To reduce backgrounds and enhance sensitivity, the detectors must be her-
metic with extensive tracking and calorimetric systems to minimize losses. The main challenge
is increasing luminosity while maintaining excellent background suppression, primarily arising
from photo-nuclear effects in the calorimeters. The most stringent limits come from BaBar and
NA64 experiments at CERN:

• NA64 - this experiment looks for A′ → invisible states. The dark photon is produced via
Bremsstrahlung in the process e−Z → e−ZA′, where the 100 GeV electron beam collides
against an active ECAL target [126].

• Belle II - in this case the dark photon is produced via e+e− → A′, and the A′ subsequently
decay into invisible states [127].

• KLEVER - this experiment could search for dark photons in invisible final states in the
KL → π0νν rare decays [128].

• PADME - a 550 MeV positron beam collides on a diamond target. The search for invisible
dark photon uses the missing momentum technique at the Beam Test Facility (BTF) at
Laboratori Nazionali di Frascati (INFN) [129].

Model-independent limits

As anticipated before, the semi-visible dark photon model circumvents the visible and invisi-
ble limits we just discussed. The dominant branching ratio of the dark photon is into HNFs,
which subsequently decay producing both visible and invisible final states. This implies that the
branching ratio cannot be reconstructed as a visible resonance due to missing energy, and neither
missing energy techniques can be applied due to the visible products. Thus, it becomes crucial
to examine the present model-independent constraints on the masses and mixing of the dark
photon. These constraints remain unaffected regardless of whether the dark photon’s branching
ratio results in visible or invisible phenomena.

Visible resonance searches. In the model discussed here, the dark photon can still decay
into visible final states, such as A′ → e+e−. However, the branching ratios for visible states are
smaller than those into dark sectors, being on the order of ε2α/αD.

For independent constraints on kinetic mixing, irrespective of the branching ratios of A′,
we can consider processes that are sensitive to the exchange of virtual dark photons. These
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Figure 4.1: Model independent limits (grey colours) for the kinetic mixing ε of the
dark photon alongside limits on the invisible dark photon (navy colours). Picture

from [4].

constraints do not heavily rely on the specific branching ratios and can be considered model-
independent, assuming no fine-tuning is present from other new-physics contributions to these
observables.

Deep-inelastic scattering. The presence of a dark photon can influence the deep-inelastic
scattering (DIS) involving charged leptons interacting with nuclei via t-channel exchange. As
a result, the extracted values of Parton Distribution Functions (PDFs), which describe the mo-
mentum distributions of quarks and gluons within the nucleon, can be affected.

Electroweak precision observables. Among the EWPO modified by the kinetic mixing,
the most important is M2

Z ∼ M2
Z0 − ε2MA′ , and the corresponding shift in the mass of the W

boson.

Electron (g − 2). Dirac’s theory predicts that the magnetic moment of the electron should
be exactly an integer value of two. However, experimental measurements [130] have revealed a
departure from this prediction, which is referred to as the electron anomalous magnetic moment.
Corrections at 1-loop using QED to the electron’s magnetic dipole moment can make up for this
deviation [131], giving the correct measured value.
Precision measurements of the electron’s anomalous magnetic moment offer model-independent
constraints on the parameter ε associated with the exchange of virtual dark photons. The dark
photon’s contribution introduces a negative sign and tends to reduce the magnetic moment’s
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value. By comparing these experimental results with high-precision Standard Model (SM) pre-
dictions, we can derive constraints on new physics. In general, these constraints exclude the ∆aµ

explanation for dark photon masses below mA′ ∼ 30 MeV.

Muon (g − 2). The muon magnetic moment can be calculated similarly to the electron
magnetic moment. However, it has been found that experiments deviate from the Standard
Model prediction [132] by 3.7σ[133], suggesting that new physics might be at play. Experiment
E989 at FNAL [134] has reported aFNALµ = 116 592 040 (54) ×10−11. Combining with results with
Brookhaven National Laboratory (BNL) measurements aBNLµ = 116 592 920 (63) ×10−11, provides
the experimental average: acombµ = 116 592 061 (41) ×10−11. The Standard model prediction,
obtained by combining QED, electroweak, and hadronic contributions, gives: adispµ =116 591 810
(43) ×10−11 [132], leading to a tension between experiments and theory reaches 4.2σ. A strong
ongoing effort is aiming at reducing uncertainties in the hadronic contributions, but there’s no
indication that these corrections alone can reconcile the discrepancy. The latest results published
by Fermilab last August [135] bring the new world average for the measurement of (g − 2)µ to
acombµ = 116 592 059 (22) ×10−11, which deviates around 5.1σ compared to the SM prediction.
This discrepancy is however expected to lower once the Muon g − 2 Theory Initiative provides
updated results.

A remark must be made about the anomalous muon magnetic moment. A lattice computation
carried out by the BMW collaboration [136] has revealed a significant 2.1 σ deviation from the
value reported in [132]. With the incorporation of the BMW findings, the disparity between
theoretical predictions and experimental data diminishes to an average of 1.5 σ. The intricate
nature of the muon magnetic moment continues to hold numerous unanswered questions, leaving
its "anomalous" nature still uncertain. Despite this ambiguity, the focus of our study shifts
towards investigating a Beyond the Standard Model explanation as a means to account for the
observed discrepancy.

4.4 ProtoDUNE Searches for Dark Sectors particles

Constructed as part of the Deep Underground Neutrino Experiment (DUNE) project, Proto-
DUNE consists of two prototype detectors designed to test and validate the technologies and
design that will be applied to the construction of the DUNE Far Detector [137, 138].

ProtoDUNE is located at CERN Neutrino Platform. Secondary particles produced in the
interaction between protons extracted from the CERN Super Proton Synchrotron (SPS) and
targets in the CERN North Area targets, can reach the detectors. The proton collisions in
the primary target may generate a flux of BSM particles that could leave a visible signal in the
ProtoDUNE detectors, as suggested in [5]. The detectors are two kiloton-scale liquid Argon Time
Projection Chambers (LArTPCs). The advantage of LArTPCs resides in their excellent imaging
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capabilities: when a particle passes through the liquid argon, it ionizes the atoms, creating
electron-ion pairs. An electric field then drifts the electrons towards a readout plane, where their
positions are recorded in three dimensions. This allows to reconstruct the path and energy of
the interacting particle. Additionally, the time synchronization with the beam can significantly
reduce possible background sources, e.g. cosmic rays.

Figure 4.2: ProtoDUNE photo from [139]

A second advantage of this proposal is the possibility to explore wider regions of the phase
space compared to other neutrino experiments, due to the highly energetic proton beam (∼400
GeV). This allows to abundantly produce light short-lived mesons (π0, η, η′, ..) and heavier
short-lived mesons such as D, Ds, B, and Υ. This beam configuration does not allow to study
longer lived mesons, such as charged kaons and pions, as they are deviated by a set of magnets
located after the primary target. ProtoDUNE can be used to study both unstable and stable
weakly interacting particles produced in this manner. In this work, we focus only on stable
particles, which as we will see can be considered a dark matter candidate.

4.4.1 Experimental Setup

The two large DUNE Far Detector prototypes (NP02 and NP04) are located at the CERN Neu-
trino platform. The first ProtoDUNE detector, ProtoDUNE-SP (NP04), began taking data in
2018. With ∼750 tonnes of LAr, ProtoDUNE is the largest LArTPC ever operated. The second
ProtoDUNE detector, ProtoDUNE-DP (NP02), started operations in 2019.
In order to generate the secondary beam within CERN’s North Area, the high-energy proton
beam, extracted from the SPS accelerator, is directed towards a thin (50cm) Beryllium target
(T2). Secondary particles are then selected using magnetic spectrometers and transported to
various experimental areas. The ProtoDUNE detectors are aligned with the secondary H2/H4
beamlines, and thus with the primary target T2.

Annually, approximately 3.5 × 1018 protons on target (PoT) are dumped against T2. The
incoming angle of the proton beam is defined via a set of magnets, such that it can vary from
0 to 10 mrad. The remaining protons are redirected towards a 3.2-meter expanse of iron, which
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Figure 4.3: Sketch of ProtoDUNE experiment

acts as a dump (TAX). Positioned 15 meters below the surface for radiation containment, the T2
target is surrounded by an array of magnets, collimators, and additional beamline components.

This setup allows the production of a flux of BSM particles, capable of reaching the detectors.
We only consider the first detector that they encounter, NP02, with fiducial volume Vdet=6m
× 7m × 6m, positioned at a distance of L =610 meters from T2. The background arising
from standard model neutrinos is reduced by the presence of magnets, that redirect any residual
protons and charged particles. Cosmic rays could still represent a potential source of interference,
but the implementation of precise timing cuts has the potential to diminish this background noise
as well.

4.4.2 ProtoDUNE dark photon searches

We will now delve into how the various models introduced in 4.2 can be investigated in Proto-
DUNE. The goal is to study the sensitivity of ProtoDUNE to dark photon mixing ε and masses
mA′ , complementing the work of [4]. We will first examine the different channels for dark photon
production and its decay. The dark sectors HNFs originating from the dark photon decay will
then reach the ProtoDUNE detectors, where they can interact with e.g. electrons.

The number of events in the detector can be written as [5]

Nevents = ϵdetNPoTNtrg⟨σ⟩Φχ, (4.25)
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where Ntrg is the number of targets in the fiducial volume of the detector. One can get the fluxes
Φχ by integrating the values in the right panel of 4.4. We get:

Nevents = ϵdetNPoTNtrg⟨σ⟩BR(M → ψiψj + ...)I × PS
(
m2
χ

m2
M

)
, (4.26)

with

⟨σ⟩ = 1

Φ

∫ ∞

0

dEψi

∫ Ee,max

Ee,min

dEe
dσ

dEe

(
Eψi
) dΦ
dEψi

. (4.27)

I is simply the number obtained by integrating the plots in 4.4 and PS is the phase space
suppression for massive final states, given by[140]

PS(x) =
2

3π

∫ 1

4x

dz

√
1− 4x

z

1− z

z2
(
12x3 + 6x2(3z − 2) + x(5z − 2)(z − 1) + z(z − 1)2

)
(4.28)

for the vector meson and by

PS(x, y) =
(1 + 2x)

√
1− 4x

(1 + 2y)
√
1− 4y

(4.29)

for the pseudoscalar. In this case in 4.26 the phase space will be PS
(
m2
χ

m2
M
, m

2
e

m2
M

)
, where me is the

mass of the electron. From 4.26 it is possible to extrapolate ProtoDUNE sensitivities, as shown
in the right panel in figure 4.4.

4.4.3 HNFs production

When the protons from SPS hit the T2 target, the proton collisions create unstable mesons that
can produce dark photons as they decay.

π0 η ρ ω ϕ J/ψ Υ

4.03 0.46 0.54 0.53 0.019 4.4 · 10−5 2.3 · 10−8

Table 4.1: Production yield (normalized per PoT) for each of the parent particles
considered in this work. [5]

We will focus on two classes of production processes: 1) secondary meson decay and 2)
vector meson mixing. In proton fixed target experiments, it could also be produced in Drell-Yan
processes [140–142], but we will not discuss this particular class of production mechanism. This
leaves the ground for further analysis.

Pseudoscalar meson decay

For low mass vectors, the dominant production mode is via radiative decay of pseudoscalar
mesons φ = π0, η [104]. For masses of the dark photon smaller than the mass of the parent
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Figure 4.4: Expected fluxes and sensitivity to stable, weakly interacting particles
in ProtoDUNE [5]. (Left) Flux of stable particles that would enter the fiducial
volume of ProtoDUNE as a function of the energy of the stable particle. The fluxes
have been computed for mχ = 50 GeV. (Right) Model-independent sensitivities,
assuming no background and perfect detection efficiency, computed from eq. 4.26.
The region above each line would lead to a number of events above 2.44 in 5 years

of data taking.

meson, the DP is produced on-shell and subsequently decays into HNFs. This requires satisfying
the condition mA′ < mπ0,η. The branching ratio for this process is

BR(φ→ γA′ → γψiψj) = BR(φ→ γA′)×BR(A′ → ψiψj), (4.30)

where

BR(φ→ γA′) = 2ε2
(
1− m2

A′

m2
φ

)3

. (4.31)

In the limit αD ≪ ε2αQED, we can take BR(A′ → ψiψj) ≈ 1.
When mA′ ≪ mi + mj or mA′ ≳ mφ, the on-shell approximation is not applicable and the

HNFs are produced through a tree-body decay [142]. In appendix D, we explore this point in
more detail.

Vector meson mixing

For masses of the dark photon close to the mass of the vector meson, resonant production via
mixing becomes relevant [143]. In this case, the dark photon is produced off-shell and subse-
quently decays into DS particles. The channel considered will be V → A′∗ → ψiψj.
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The branching ratio is

BR(V → ψiψj)

BR(V → e+e−)
=
∑
i,j

(
VijgDε

e

)2
m4
V

(m2
V −m2

A′)2 +m2
A′Γ2

A′
Iij(mi,mj,mV ), (4.32)

where Iij is the phase-space suppression due to massive final states:

Iij(mi,mj,mV ) =

(
1− δ2ij

m2
V

)(
1 +

m2
ij

2m2
V

)√(
1−

δ2ij
m2
V

)(
1−

m2
ij

m2
V

)
, (4.33)

with δij = mi−mj and mij = mi+mj. Details on the computation can be found in Appendix D
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Figure 4.5: Branching ratio for the production of HNFs for different parent mesons
for BP4a (top left), BP4b (top right), BP4c (bottom left) and BP5 (bottom right).

In 4.5 we plot the branching ratio for the different channels, taking the BP4a-c/5 in 4.2 and
ε ∼ 10−3. As discussed above, the HNFs are produced through the decay of pseudoscalar or
vector mesons. In the case of pseudoscalar decay, we consider on-shell production of the dark
photon, which subsequently decays into dark currents. On the other hand, for vector meson
decay, the dark photon is produced off-shell to ensure the mixing between the dark photon and
the vector meson. This process is kinematically allowed for mi +mj < mV .
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We can make some comments on the shape of the curves in 4.5. In BP4b, the channel
A′ → ψ2ψ3 is forbidden. In fact, in order to kinematically allow this channel, we must have:

mZ′ > m2 +m3 =⇒ r <
1

(∆21 + 1)(∆32 + 2)
≈ 0.116,

where r = m1/mA′ and ∆ij = (mi−mj)/mj. We can observe that BP4a and BP4b are identical in
the values of the different parameters, with the exception of the values of r. The above condition
is indeed realized in BP4a, allowing an additional decay channel for the dark photon into dark
current, leading to a longer lifetime for the dark photon ΓA′ . The change in the value of the
decay width of the dark photon has an impact on the decay channel of the vector mesons. In
equation 4.32, ΓA′ appears in the denominator of the branching ratio. When the mass of the dark
photon is comparable with the mass of the vector meson, mA′ ∼ mV , there will be a resonant
production of the dark photon and the shape of this resonance will be dictated solely by the value
of ΓA′ . Therefore, a higher value of the decay width will suppress the resonance, while a smaller
value will result in a peak. For BP5, the resonance is particularly suppressed. This is reasonable
in light of the fact that many more decay channels are allowed in the case of this benchmark,
implying a larger dark photon width.

Instead, to explain the bumps that appear in the graphs, it is necessary to analyze which decay
channels are allowed as the dark photon mass varies. Using r = m1/mA′ , ∆21 = (m2 −m1)/m1

and ∆32 = (m3 −m2)/m2 is possible to find a relation between mA′ and mV starting from the
condition mi +mj ≤ mv:

m1 +m2 < mV =⇒ mA′ <
mV

r(∆21 + 2)
,

m2 +m3 < mV =⇒ mA′ <
mV

r(∆21 + 1)(∆32 + 2)
.

For BP4a, this means that the second channel is forbidden for mA′ ∼ mV , while the first one is
for mA′ ∼ 2mV .
For BP4b, this means that the second channel is forbidden for mA′ ∼ 0.7mV , while the first one
is for mA′ ∼ 1.4mV .
For BP4c, this means that the second channel is forbidden for mA′ ∼ 1.3mV , while the first one
is for mA′ ∼ 2.3mV .
In the case of BP5, since also the channels {ψ1ψ1, ψ2ψ2, ψ3ψ3, ψ1ψ3} are allowed, more than
two bumps appear. This is compatible with the results shown in Figure 4.5, explaining why the
branching ratio for the vector mesons suddenly diminishes for specific values of mZ′ .

In the case of the pseudoscalar, the branching ratio does not depend on the BP considered.
This is evident from eq. 4.31, where only the value of mA′ enters. The total branching ratio of the
pseudoscalar is BR(π0, η → γψiψj) = BR(π0, η → γA′)×BR(A′ → ψiψj), where BR(A′ → ψiψj)

is approximately always 1.
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4.4.4 HNFs detection

At this point we have a flux of dark sector particles produced by parent mesons that can reach
the detector. In these computations, we have assumed that all HNFs decay promptly into the
lightest, stable particle and that only the DM candidate reaches the detector. However, it’s worth
noticing that, depending on the specific BPs being considered, the lifetimes of the heaviest HNFs
could be extended, potentially allowing them to reach the detector without decaying. To analyze
more precisely this aspect, a more comprehensive Monte Carlo simulation could be conducted.
Note that even if the heaviest HNFs were to reach the detector without decaying, they would
still be capable of interacting and leaving a visible signature.
We will work under the assumption that only the ψ1 particles arrive at the detector, interacting
with the electrons through the exchange of a dark photon. The cross section for ψi+e+ → ψj+e

−

is [144]:
dσ

dEe
= 4πε2αQEDαDV

2
ij

2E2
ψi
me + g(Ee)/2

(E2
ψi
−m2

i )(m
2
A′ + 2meEe − 2m2

e)
2
, (4.34)

where

g(Ee) = 2Eψi
(
m2
i −m2

j + 2me(me − Ee)
)
−m2

iEe − (2me − Ee)
(
m2
j − 2me(me − Ee)− 2mimj

)
,

with Vij the value of the dark photon coupling vertices to HNFs, mi the mass of the i-th HNF,
Ee the electron recoil energy and Eψi the energy of the incoming HNF. The full computation can
be found in Appendix E. Considering, in particular, the case of Eψi ≫ mj−mi, the cross section
is given by:

dσ

dEe
= 4πε2αQEDαDV

2
ij

2meE
2
ψi
− f(Ee)(Ee −me)

(E2
ψi
−m2

i )(m
2
A′ + 2meEe − 2m2

e)
2

(4.35)

with f(Ee) = 2meEψi − meEe + m2
i + 2m2

e. The differential cross section will be integrated
between the minimal and maximal energy for electron recoils, where Ee,min will be the detection
threshold for electron recoils at ProtoDUNE, estimated to be (conservatively) 30 MeV. Ee,max is
the maximal achievable recoil, depending on the kinematic of the process.

Kinematic features. The maximum mass that the up-scattered particle ψj can have is
√
s−me, where

√
s is the center-of-mass energy s = m2

e + 2Eψime +m2
ψi

. This means that:

mψj ≤
√
m2
e + 2Eψime +m2

ψi
−me. (4.36)

This translates into a constraint on the minumum value that Eψi can have to allow the process:

Eψi ≥
m2
j −m2

i + 2mjme

2me

. (4.37)



Chapter 4. ProtoDUNE searches for Semi-Visible Dark Photon 67

The maximum achievable recoil energy is:

Emax
e =

(s+m2
e −m2

j)(Eψi +me) + λ1/2(s,m2
e,m

2
j)pi

2s
, (4.38)

with pi =
√
E2
ψi
−m2

i and λ(x, y, z) = (x− y − z)2 − 4yz.
The relevant quantity in our computations is the average cross section ⟨σ⟩, expressed as:

⟨σ⟩ = 1

Φ

∫ ∞

0

dEψi

∫ Ee,max

Ee,min

dEe
dσ

dEe

(
Eψi
) dΦ
dEψi

, (4.39)

where Ee,min is the minimum observable recoil energy (taken to be 30 MeV), and Ee,max depends
on the kinematics. The value Φ is the flux of incoming particles whose trajectories intersect the
detector, as displayed in 4.4. The result obtained for the average cross section for BP4a and a
mass of the dark photon of 100 MeV is shown in 4.6.
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Figure 4.6: Inelastic electron scattering cross section for different values of the
energy of the incoming stable particle.

We are then left to compute:

⟨σ⟩ = 1

Φ

∫ ∞

0

dEψ1σ(Eψ1)
dΦ

dEψ1

. (4.40)

To compute the total flux, we need to consider the information provided in Figure 4.4. The flux
can be approximated by discretizing the integral.

Φ =
∑
i

(
dΦ

dEψ1

)
i

∆Eψ1BR(V → ψiψj).
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In a similar fashion, we also discretize the integral in 4.40:

⟨σ⟩ =
∑

i σi

(
dΦ
dEψ1

)
i
∆Eψ1BR(V → ψiψj)∑

i

(
dΦ
dEψ1

)
i
∆Eψ1BR(V → ψiψj)

.

Since both the integral and the branching ratios are constants, they can be factored out of
the summation. Thus, the final expression can be simplified as follows:

⟨σ⟩ =
∑

i σi

(
dΦ
dEψ1

)
i∑

i

(
dΦ
dEψ1

)
i

. (4.41)

4.5 Results

In this section, we show the results from the recasting of ProtoDUNE sensitivities in [5] to the
semi-visible dark photon model presented in this thesis. A rough estimate of the kinetic mixing
can be done considering the cross section in E. We have:

σ ∼ ε210−38cm2 (4.42)

σ ×BR(π0 → γψiψj)

10−38cm2
∼ε2BR(π0 → γA′)×BR(A′ → ψiψj)

∼2ε4
(
1− m2

A′

m02
π

)3

BR(π0 → γγ).

(4.43)

If we take the sensitivities in Figure4.4 and the BR(π0 → γγ) = 99%, we can be sensitive to
values of ε ∼ 10−2, in the absence of background.

A summary of the values considered for this BP is given here:
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BP model r ∆21 ∆32 αD
V11 V21 V22 V31 V32 V33 Comments/10−2

1a iDM 1/3 0.5 - 0.5 0 1 0 - - - -
1b iDM 1/3 0.4 - 0.1 0 1 0 - - - -
2a mixed-iDM 1/3 0.3 - 0.5 0 sαcα c2α - - - α = 8◦

2b mixed-iDM 1/3 0.3 - 0.5 0 sαcα c2α - - - α = 4◦

3a i2DM 1/3 0.4 - 0.5 s2β sβcβ c2β - - - β = 8.6◦

3b i2DM 1/3 0.4 - 0.5 s2β sβcβ c2β - - - β = 4.6◦

3c i2DM 1/3 0.4 - 0.5 s2β sβcβ c2β - - - β = 2.3◦

3d i2DM 1/3 0.4 - 0.5 s2β sβcβ c2β - - - β = 1.1◦

4a 3HNFs 0.11 2.44 0.54 0.3 0 3.9 0 0 99 0 -
4b 3HNFs 0.16 2.44 0.54 0.3 0 3.9 0 0 99 0 -
4c 3HNFs 0.15 0.85 0.77 0.3 0 0.10 0 0 99 0 -
5 3HNFs 0.16 0.573 0.586 0.3 0.40 7.8 8.3 2.8 98 69 -

Table 4.2: Summary of the benchmark points considered in [4]. In particular,
r = m1/mA′ and ∆ij = (mi −mj)/mj . Vij are the dark photon coupling vertices.

4.5.1 Inelastic Dark Matter
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Figure 4.7: The kinetic mixing ε as a function of the mass mA′ for BP1a (left),
BP1b (right), corresponding to the inelastic Dark Matter model. Assuming the
lightest HNF to be a dark matter candidate, the relic density is displayed in black.
Sensitivities from ProtoDUNE are shown in orange. The grey areas are constraints

on the semi-visible dark photon model from [4].

BP1a/b - The results of the iDM benchmark are depicted in Figure 4.7. The preferred region
for the explanation of the ∆aµ is already covered by searches at NA64 with signatures of the
type S2, as discussed in [4]. Searches at ProtoDUNE are able to cover only a small part of the
parameter space that has not already been excluded by other searches.

BP1a and BP1b differs only for the values of ∆21 = (m2 − m1)/m1 and αD. Varying ∆21

has an impact on the lifetime of ψ2, but this is beyond the reach of our computations. However,
also the branching ratio of the mesons in HNFs and the scattering cross sections depend on these
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two parameters. An increase in the value of αD translates into a bigger branching ratio and
cross sections since both are ∝ αD. This implies an enhanced sensitivity to the kinetic mixing ε,
which is indeed what we observe in 4.7. In particular, both in the case of iDM and 3HNFs, we
have Majorana fermions, with the implications that this has on the Feynman rules as discussed
in Appendix C. As anticipated, the semi-visible dark photon model relaxes constraints coming
from BaBar and NA64, opening up the part of the parameter space that could account for the
anomalous muon magnetic moment. In particular, in BP1a, this region would also be able to
account for the DM relic density. In figures 8 and 9 in [4] it has additionally been explored
the parameter space of αD/mA′ and ∆21/mA′ to check whether it was possible to accommodate
the constraints coming from experiments and the relic density, fixing the value of ε to that
necessary to explain ∆aµ. CMB limits, in this case, are not applicable since DM self-annihilation
is forbidden by the C-symmetry.

4.5.2 Mixed iDM
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Figure 4.8: Same as 4.7 but for BP2a (left), BP2b (right), corresponding to the
mixed-iDM model. The two BP differs only for the value of the angle α.

BP2a/b - The mixed-iDM benchmark results are illustrated in Figure 4.8. In this scenario,
there is only a small window open for the explanation of the anomalous muon magnetic moment.
In contrast to the case of inelastic dark matter, one of the two hidden neutral fermions (HNFs) in
this scenario is a Dirac fermion, while the other is a Majorana fermion. Additionally, the channel
A′ → ψ2ψ2 becomes accessible with a mixing of V22 ∼ 10−2 for small values of the angle, while
the channel A′ → ψ1ψ2 is subdominant. The difference between BP2a and BP2b resides solely
in the value of α, that enters in our computations only through V12 (V22 ∼ 10−2 for α = 4◦, 8◦).
For those values of the angle, V12 ∝ α. In BP2b we therefore expect a reduced sensitivity in the
value of ε, as observed in 4.8. No new region of the parameter space is covered by searches for
this model at ProtoDUNE as the sensitivities found are already excluded by other dark photon
searches.
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For this specific model, DM relic density and the explanation of ∆aµ can be simultaneously
achieved for masses mA′ ∼ 0.9− 1.2 GeV in BP2a, while in BP2b ψ1 would be overabundant in
the region of parameter space that explain ∆aµ.

4.5.3 Inelastic Dirac Dark Matter
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Figure 4.9: Same as 4.7 but for BP3a (top left), BP3b (top right), BP3c (bottom
left) and BP3d (bottom right), corresponding to the inelastic Dirac dark matter

model. The three plots differ only for the value of β.

BP3a-d - The results of i2DM are shown in figure 4.9. This BP is similar to the case of
mixed-iDM, with the exception that now both HNFs are Dirac and that the dark photon can
also decay in ψ1ψ1. This channel is however very suppressed as V11 = s2β, where β takes very small
values, meaning s2β → 0. As in the previous case, we expect the sensitivity to diminish as the
angle β gets smaller. For this model, searches at ProtoDUNE do not seem to yield any positive
results, as the sensitivities found here are already excluded by other dark photon searches.

For what concerns a DM explanation in the inelastic Dirac dark matter scenario, we see that
in BP3a the whole region for the explanation of ∆aµ can give the correct DM relic density. In
BP3c and BP3d, ψ1 would be overabundant in the entire region of parameter space that explain
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∆aµ. In figure 13 of [4], also bounds from CMB are shown as in this benchmark self-annihilation
of ψ1 are allowed, even if suppressed. What is observed is that the regions of parameter space
where ψ1 is underabundant and compatible with other constraints are excluded by CMB bounds.

4.5.4 Three Majorana HNFs
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Figure 4.10: Same as 4.7 but for BP4a (top left), BP4b (top right), BP4c (bottom
left) and BP5 (bottom right), corresponding to the 3 Majorana HNFs model.

BP4a-c - In figure 4.10 we show the expected sensitivity of ProtoDUNE compared to previous
limits in the literature for the semi-visible dark photon as a function of the kinetic mixing ε with
respect to the mass of the dark photon mA′ . In both BP4a and BP4b, the expected sensitivity
would allow us to test part of the parameter space for the explanation of ∆aµ. The best result
would be obtained for BP4a, where it expands the sensitivity reached by NA64-proj., covering
masses for the dark photon between 5 × 10−1 - 1 GeV. In BP4b only a very small part of the
parameter space is opened by searches at ProtoDUNE. For BP4c the analysis doesn’t reveal
any new sector of the parameter space. The drop in sensitivity stems from a diminished value
of |V21|2. In BP4a, this value stands at 3.9 × 10−2, whereas in BP4c, it’s reduced further to
0.10× 10−2. This leads to a substantial ratio of 4× 10−1 between εa and εc, as can be observed
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in the plot. In BP4b the spike corresponds to the resonance in the vector meson decay that we
discussed before. Due to the peculiar model considered, we expect that most ψ2 produced in the
up-scattering will promptly decay, leaving a unique signature in the detector with an excess of
electron recoil.
BP5 - This benchmark differs from the previous one for a stronger hierarchy between the HNFs
masses. In this case, all possible decay channels are available. While in BP4 only off-diagonal
couplings were allowed, namely:

A′ → (N2 → N1e
+e−)(N3 → ((N2 → N1e

+e−)e+e−)

A′ → (N2 → N1e
+e−)N1,

(4.44)

in this benchmark all couplings are possible. This results in an enhancement of both the branching
ratio and the cross-section, leading to improved sensitivities in the parameter space and covering
almost the entire region for the ∆aµ explanation up to mA′ ∼ 2 GeV.

This model is usually more studied in the context of neutrino mass generation, for example
in [103], since coannihilations are strongly suppressed.

4.6 Outlook

In the preceding section, we presented the outcomes of our analysis concerning the semi-visible
dark photon model at ProtoDUNE. As elucidated in [4], this model extends the parameter
space available for explaining the (g − 2)µ anomaly through the existence of a dark photon.
Our findings corroborate that ProtoDUNE searches can effectively probe previously unexplored
regions within the dark photon’s mass mA′ and mixing parameter space ε. This is especially
pertinent when considering scenarios involving three distinct Majorana HNFs, characterized by
hierarchical masses, in contrast to pseudo-Dirac pairs with negligible mass differences, as observed
in the mixed-iDM scenario.

In BP1, the simplest case of Inelastic Dark Matter, we observed that ProtoDUNE can com-
plement the projected investigations by NA64 for the semi-visible dark photon, as discussed in
[4], represented by the dotted line labelled N2 in 4.7. The presence of two distinct Majorana
states significantly enhances both the cross section and branching ratio, resulting in heightened
sensitivities at ProtoDUNE. In the cases of BP2 and BP3, corresponding to mixed-iDM and
Inelastic Dirac dark matter, respectively, ProtoDUNE’s sensitivity is markedly lower. In these
instances, ProtoDUNE does not yield additional positive results, as the parameter space covered
by these searches has already been excluded by other experiments.

Notably, in BP4/5, involving the presence of three Majorana fermions, ProtoDUNE demon-
strates the capability to extend the parameter space further, encompassing regions previously
unexplored by any other experiment. Particularly promising results are obtained for BP4a and
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BP5. The distinction between BP4a and BP4b lies primarily in the value of the parameter
r = m1/mA′ , with a value of 0.11 in BP4a and 0.16 in BP4b. This has implications for the
possible decay channels of the dark photon; in BP4b, the decay into A′ → ψ2ψ3 is kinematically
prohibited, leading to a reduction in the branching ratio of parent mesons and the decay width
of the dark photon. Moreover, this has a specific impact on the resonance’s shape, as discussed
in 4.4.3, resulting in a prominent spike in the curve.

In BP4c, the coupling constant V21 is ten times smaller, resulting in reduced sensitivity. Fi-
nally, in BP5, all possible couplings between the HNFs are permitted, leading to an increased
cross section and branching ratio, thereby offering the opportunity to explore previously un-
charted portions of the parameter space.

ProtoDUNE serves as an ideal experimental platform for investigating the semi-visible dark
photon model, effectively extending the parameter space ε/mA′ in certain scenarios while com-
plementing other searches for this model. This makes it an intriguing venue for the exploration
of new theoretical models. Furthermore, ProtoDUNE’s operational status at CERN, without
interference with other ongoing experiments in the North Area, underscores its potential as an
important resource for future searches.
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Conclusions

Dark sector dark matter is particularly interesting as it constitutes a different paradigm to the
most common searches and studies of WIMP dark matter. The presence of light dark matter in
the MeV range necessitates the existence of a new mediator that interacts both with ordinary
matter and dark matter. This mediator can be a new fermion (neutrino portal), a new scalar
(Higgs portal), or a new gauge boson (vector portal). In this thesis we have studied the case
of a dark photon that decays semi-visibly, as presented in [4] and derived the sensitivity of
ProtoDUNE to this model. Thanks to a symmetry that distinguishes DS fields from SM fields,
the lightest dark sector particle appearing in the model considered here can be made stable,
constituting a reasonable DM candidate. In the absence of this symmetry, the HNFs can mix
with SM neutrinos and are identified as HNLs. Although ProtoDUNE is in principle capable of
conducting searches for both HNFs and stable particles, our focus in this thesis has been directed
solely towards the latter. Long-lived particles can be produced by SM neutrinos and decay in
the detector volume, leaving visible signatures. Stable particles, on the other hand, reach the
detector without decaying, interacting with the liquid Argon inside ProtoDUNE and leading to
excess electron recoil. Although long-lived particles can also be searched for in this manner, we
simplified our discussion to the case where only stable particles reach the detectors. It is worth
noting that in our model, the stable particle can up-scatter to a heavier dark sector particle,
which can subsequently decay within the detector volume. While this aspect wasn’t thoroughly
investigated in this particular study, it could prove useful when considering background analyses.

We have considered different models where the fermionic content in the dark sector was
systematically increased, from two to four HNFs, always reducing the phenomenological model
to, at most, three distinguishable states. In particular, we were interested in checking whether
ProtoDUNE could cover the newly-open parameter space in the case of a semi-visible dark
photon, in the region ε ∼ 10−3 - 10−2 and mA′ ∼ 0.3 - 1.3 GeV. Dark photons in this mass range
and with this kinetic mixing could in principle be able to explain the discrepancy between the
measured anomalous magnetic moment of the muon and the SM predictions, ∆aµ. In the case
of iDM and mixed-iDM, the lightest particle could also constitute a DM candidate. In the case
of the i2DM, however, CMB constraints exclude the ∆aµ region. ProtoDUNE could be able to
improve significantly current sensitivities in the case of the 3HNFs, in particular for BP4a and
BP5, as can be seen in Fig. 4.10. In the case of BP4a, ProtoDUNE’s investigations encompass
a noteworthy portion of the parameter space, ranging from ε ∼ 5 × 10−3 for mA′ ∼ 500 MeV,
extending up to ε ∼ 2× 10−2 for mA′ ∼ 1 GeV, which holds significance for explaining the ∆aµ
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anomaly through the dark photon 1-loop correction. For BP5, ProtoDUNE’s sensitivities span
from ε ∼ 10−2 for mA′ ∼ 1.5 GeV to ε ∼ 2 × 10−2 for mA′ ∼ 2 GeV, effectively encompassing
nearly the entire parameter region that could provide a dark photon-based explanation for the
∆aµ discrepancy.

This study exclusively relies on analytical computations to assess ProtoDUNE’s sensitivities.
However, it might be of interest to delve into a more comprehensive investigation of shower
development using a dedicated Monte Carlo (MC) simulator tailored to this setup. Additionally,
a background analysis could shed light on whether the model’s sensitivities remain robust or are
influenced under more realistic conditions.

This simplified study, nonetheless, offers additional proof that the semi-visible dark photon
model is indeed within the scope of current experimental capabilities. In a relatively short
span of time, it could be possible to understand whether an explanation for the anomalous
muon magnetic moment through a dark photon is possible, showing that richer dark sectors are
preferred by nature.
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Appendix A

Self-energy computations for neutrino
masses

A.1 Loop corrections to neutrino masses

In this section, we compute the correction at one-loop to neutrino masses.
We work with the on-shell renormalization scheme. This is ensured by requiring that the off-
diagonal elements in the self-energy be diagonal when the external particles are on their mass
shell, and that the residue of the renormalized propagator are equal to one.

Assuming Majorana neutrino fields, we can write the self-energy tensor in the most general
form:

Σij(/q) = /qPLΣ
L
ij(q

2) + /qPRΣ
R
ij(q

2) + PLΣ
M
ij (q

2) + PRΣ
M∗
ij (q2), (A.1)

and due to the Majorana nature:

ΣL
ij(q

2) = ΣR∗
ij (q

2), ΣM
ij (q

2) = ΣM
ji (q

2)

The neutrino mass at one-loop is then given by:

mone−loop
ij = Re

[
ΣM
ij (0)

]
, i, j < 4 (A.2)

A.1.1 Self-energy

We compute explicitly the self-energy corrections. We ignore the kinetic and scalar mixing effects,
as these can be shown to only give small corrections given the current experimental bounds. The
contributions from the scalar fields s = h, φ, the Goldstones G = Gh, Gφ and the vector fields
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V = Z,A′ are:

−iΣs
ij(p

2) = (−i)2 (∆sPR +∆∗
sPL)ik×∫

ddk

(2π)d
i
(
/p+ /k +mk

)
(p+ k)2 −m2

k

i

k2 −m2
s

(∆sPR +∆∗
sPL)kj

−iΣG
ij(p

2) = (−i)2 (∆GPR +∆∗
GPL)ik×∫

ddk

(2π)d
i
(
/p+ /k +mk

)
(p+ k)2 −m2

k

i

k2 − ξVm2
V

(∆GPR +∆∗
GPL)kj

−iΣV
ij(p

2) = −(−i)2γµ
(
CV PR − CT

V PL
)
ik
×∫

ddk

(2π)d
i
(
/p+ /k +mk

)
(p+ k)2 −m2

k

iPµν
k2 −m2

V

γν
(
CV PR − CT

V PL
)
kj

(A.3)

[feynman]
In the latter self-energy, we have defined the vector boson propagator numerator, that can be
rewritten as:

γµPµνγ
ν =γµ

[
gµν − (1− ξV )

kµkν
k2 − ξVm2

V

]
γν

=d− (1− ξV )
k2 −m2

k

k2 − ξVm2
V

− m2
k

m2
V

(k2 − ξVm
2
V )− (k2 −m2

k)

(k2 − ξVm2
V )

This allows us to write the relevant part of the self-energy as functions of the scalar two-point
loop function:

B0(l,m
2
a,m

2
c) = µ2ϵ

∫
ddk

(2π)k
1

(k2 −m2
a)((l + k)2 −m2

c)
(A.4)

Using this, we can rewrite:

Σs
ij(0)PR = − π2

(2π)4
µd−4

[
(∆s)ikmkB0(0,m

2
k,m

2
s)(∆s)kj

]
PR

ΣG
ij(0)PR = − π2

(2π)4
µd−4

[
(∆G)ikmkB0(0,m

2
k, ξVm

2
V )(∆G)kj

]
PR

Σs
ij(0)PR = − π2

(2π)4
µd−4

[
(CV )ikmkB0(m

2
k,m

2
V , ξVm

2
V )(C

∗
V )kj

]
PR

(A.5)

where the rearrangement of the boson propagator allowed us to write f(m2
k,m

2
V , ξVm

2
V ) as:

f(m2
k,m

2
V , ξVm

2
V ) =dB0(0,m

2
k,m

2
s)− (1− ξV )B0(0,m

2
k, ξVm

2
V )+

m2
k

m2
V

B0(0,m
2
k, ξVm

2
V )−

m2
k

m2
V

B0(0,m
2
k,m

2
s)
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Finally, the scalar loop function can be computed giving:

B0(0,m
2
a,m

2
c) =

1

ϵ
− γE + ln4π −

∫ 1

0

dxln
m2
a − x(m2

a −m2
b)

µ2

=
1

ϵ
− γE + ln4π − m2

a

m2
a −m2

b

[
ln
m2
a

µ2
− 1

]
+

m2
a

m2
a −m2

b

[
ln
m2
b

µ2
− 1

] (A.6)

For light neutrinos i, j = 1, 2, 3 the final result is:

ΣijPR =
π2

(2π)4
Cm̂

[
dB0(0, m̂

2,m2
V ) +

m̂2

m2
V

(
B0(0, m̂

2,m2
s)−B0(0, m̂

2,m2
V )
)]
CTPR (A.7)

After some algebra, we get:

mij =
1

4π2

5∑
k=4

[
CikCjk

m3
k

m2
Z

F (m2
k,m

2
Z ,m

2
h) +DikDjk

m3
k

m2
Z

F (m2
k,m

2
Z ,m

2
φ)

]
(A.8)

where
F (a, b, c) ≡ 3ln(a/b)

a/b− 1
+
ln(a/c)

a/c− 1
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Appendix B

HNFs three-body decay

If the mass of the dark photon is bigger than the mass of any of the HNFs, only three-body
decays are allowed.

We consider the following process:

ψj(p) → ψi(k1) + l+(k2) + l−(k3)

Where ψj and ψi are the HNFs in the theory under consideration, and l+ and l− are the Standard
Model leptons. We want to compute the total width for this decay. All particles in the final state
are massive. For this process to be kinematically allowed, we must have that mj > mi + 2ml.

We only consider processes mediated by the dark photon A’. The coupling of the dark photon
with the dark sector current is given by gDVijγµ. For Dirac HNFs, the full amplitude reads:

iM = u(k1)VijgDγ
µu(p)

u(k3)eεγµv(k2)

(p− k1)2 −m2
A′

(B.1)

Squaring the amplitude gives the following expression:

|M|2 =(gDeε)
2

m4
A′

|Vij|2 [u(k1)γµu(p)] [u(k3)γµv(k2)]

[u(p)γνu(k1)] [v(k2)γνu(k3)]

(B.2)

Performing the sum over spin, averaging over initial states and using the identities for the traces
of gamma matrices we find:

1

2

∑
|M|2 =1

2

(gDeε)
2

m4
A′

|Vij|2Tr
[
( /k1 +mi)γ

µ(/p+mj)γ
ν
]
Tr [( /k3 +ml)γµ( /k2 −ml)γν ]

=
1

2

(gDeε)
2

m4
A′

|Vij|2
[
( /k1 +mi)γ

µ(/p+mj)γ
ν
]
(Tr [ /k3γµ /k2γν ]−m2

l Tr [γµγν ])

=
1

2

(gDeε)
2

m4
A′

|Vij|216(pµkν1 − p.k1g
µν + pνkµ1 +mimjg

µν)(k2µk3ν − k2.k3gµν + k2νk3µ −m2
l gµν)

=16
(gDeε)

2

m4
A′

|Vij|2(p.k2k1.k3 + p.k3k1.k2 + p.k1m
2
l −mimjk2.k3 − 2mimjm

2
l )

(B.3)
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For parametrizing the phase space, we use the Dalitz variables defined as m2
ij = k2ij where

kij = ki + kj. We find:

m2
12 = (k1 + k2)2 = (p− k3)2

m2
23 = (k2 + k3)2 = (p− k1)2

m2
13 = (k1 + k3)2 = (p− k2)2

(B.4)

We can also notice that m2
12 +m2

23 +m2
13 = m2

i +2m2
l . Using these identities, we can rewrite the

scalar products appearing in the squared amplitude as:

p.k2 =
1

2
(m2

12 +m2
23 −m2

i −m2
l )

k1.k3 =
1

2
(m2

5 +m2
l −m2

12 −m2
23)

p.k3 =
1

2
(m2

j +m2
l −m2

12)

k1.k2 =
1

2
(m2

12 −m2
i −m2

l )

p.k1 =
1

2
(m2

j +m2
i −m2

23)

k2.k3 =
1

2
(m2

23 − 2m2
l )

(B.5)

The phase space can be parameterized using the Dalitz variables (ref. PDG kinematics):

dΓ =
1

(2π)3
1

32m3
i

(
1

2

∑
|M|2

)
dm2

12dm
2
23 (B.6)

For a given value of m12, the range of m23 is determined by its values when k2 is parallel or
anti-parallel to k3:

(m2
23)max = (E∗

2 + E∗
3)

2 −
(√

E∗2
2 −m2

l −
√
E∗2

3 −m2
l

)2

(m2
23)min = (E∗

2 + E∗
3)

2 −
(√

E∗2
2 −m2

l +
√
E∗2

3 −m2
l

)2
(B.7)

where now E∗
2 = (m2

12 −m2
i +m2

l )/2m12 and E∗
3 = (m2

j −m2
12 −m2

µ)/2m12. Doing some algebra
and defining the values as did for the ν4 decay, we get:

Γ =
1

768π3

(gDeε)
2

m4
A′

|Vij|2m5
jI (xi, xl) (B.8)
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with:

I
(
xi, xl

)
= 6

∫ (1−xl)2

(xi+xl)2
ds12

∫ (s23)max

(s23)min

ds23

[
s23(1− x2i )

2 − 2(xi + x2l )
2

− (s12 + s23)
2 + s12(2x

2
tot − s12)

] (B.9)

where x2tot = 1 + x2i + 2x2l , s12 = x212, s23 = x223 and xi = mi/mj.
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Appendix C

Majorana Feynman rules

Constructing Feynman rules for Majorana fermions necessitates additional considerations due to
the inherent self-conjugacy of these particles. Ambiguities can arise in the directions of momen-
tum flows and the relative signs of various graphs contributing to a given amplitude. Therefore,
careful attention is essential to accurately account for these unique features in the rule con-
struction process. In this Appendix we briefly review how to do that, following references [145]
[146].

Let’s first introduce the charge conjugation matrix, satisfying the following properties:

(i) C† = C−1

(ii) CT = −C
(iii) C−1ΓiC = ηiΓ

T
i

(C.1)

where Γi = 1, iγ5, γµγ5, γµ, σµν = 1
2
i[γµ, γν ] and ηi = +1 for Γi = 1, iγ5, γµγ5, while ηi = −1 for

Γi = γµ, σµν .
A Majorana field satisfy the following condition:

ψM = ψcM ≡ Cψ
T

M , (C.2)

where ψ ≡ ψ†γ0. In general, the u and v spinors for either Dirac or Majorana fermions are
related via:

u(k, s) = CvT (k, s) v(k, s) = CuT (k, s), (C.3)

where s = ±1/2 labels spin.
Following the convention used in [145][146], we define λ, ψ, and ϕ to be respectively a Ma-

jorana fermion, a Dirac fermion and a vector boson (either spin 0 or 1) fields. The interaction
Lagrangian will be of the form:

Lint =
1

2
λa
(
i/∂ −Ma

)
λa + ψa

(
i/∂ −ma

)
ψa

+
1

2
giabcλaΓiλbϕc +

1

2
gi∗abcλbΓiλaϕ

∗
c + kiabcλaΓiψbϕ

∗
c + ki∗abcψbΓiλaϕc

(C.4)
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Using C.1 and the definition of a Majorana field, we find that giabc = ηig
i
bac. We want to find

the Feynman diagrams for the Lagrangian given above. All external fermions are denoted by a
straight solid line and an arrow. While for Dirac fermions the direction of the arrow indicates
the flow of the lepton number, for Majorana fermion we will have to choose a convention for the
direction.

Each external fermion line is associated with a u or v spinor. For Dirac fermions, the nota-
tion u(p)[u(p)] is used for an incoming [outgoing] particle state, while v(p)[v(p)] is used for an
incoming [outgoing] antiparticle state. For Majorana fermions, being particle and antiparticle
indistinguishable, this rule appear ambiguous. The correct procedure involves first choosing a
direction for the arrow on a given Majorana fermion line, although this choice is arbitrary. Sub-
sequently, an incoming Majorana fermion line is termed a particle line when the arrow points
in an incoming direction (i.e., into the Feynman diagram). Conversely, if the arrow points in an
outgoing direction, the line is referred to as an antiparticle line. Similarly, an outgoing Majorana
fermion line is considered a particle line when the arrow points in an outgoing direction, and it
is regarded as an antiparticle line when the arrow points in an incoming direction.

For Dirac fields, the sum over spins gives:∑
s

us(p)us(p) = /p+M∑
s

vs(p)vs(p) = /p−M
(C.5)

For Majorana fermios, other combinations of the u and v spinors arise.∑
s

us(p)vsT (p) =
(
/p+M

)
CT

∑
s

usT (p)vs(p) = C−1
(
/p−M

)
∑
s

vsT (p)us(p) = C−1
(
/p+M

)
∑
s

vs(p)usT (p) =
(
/p−M

)
CT

(C.6)

The Feynman rules can be read off the Lagrangian, following what is done in [146], obtaining
the rules in C.1.

Note that the factor 1/2 appearing in the Lagrangian, is not present in the Feynman rules.
Let’s delve into this point further to understand the reason behind this. A Majorana fermion
field can be expanded as:

λi ∼
∑
si

bsii u
si
i + (bsii )

† vsii , λj ∼
∑
sj

u
sj
j

(
b
sj
j

)†
+ v

sj
j b

sj
j (C.7)
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Figure C.1: Majorana feynman rules for the scalar (vector) field with a pair of
Majorana fermions as computed in [146]

where we have omitted integrals, momenta, and factor of π. The si are the spin of the particles.
In order to compute the transition ϕ+ λb → λa, we have to evaluate the matrix element:

⟨0 | ba,s2λa
1

2
giabcΓjλbb

†
b,s1

| 0⟩. (C.8)

Inserting C.7, we obtain:
1

2
[giabcuaΓjub − gjbacvbΓjva]. (C.9)

where the minus sign comes from the fact that {bi, bj} = 0. Using the relations defined previously,
we find that the two terms in C.9 are equal and therefore:

gjabcuaΓjub. (C.10)

In [147], they were able to simplify the rules for the two-Majorana-boson vertices, reducing the
number of diagrams from six to two and avoiding using the charge-conjugation matrix. In [145] a
similar but more general algorithmic approach for constructing the Feynman rules is presented,
applicable to any fermion-number-violating interactions. [here you should insert some images for
both references]

Let’s consider the model of the semi-visible dark photon analyzed in this thesis. We consider
the simplest example of inelastic Dark Matter presented in 4.5.1. The interaction Lagrangian for
that model is:

Lint−iDM ⊃ gDA
′
µ(V12ψ1ψ2 + V21ψ2ψ1). (C.11)

Using the general Feynman rules depicted in [147] in the appendix, this should simply result in
the diagram:
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Figure C.2: Majorana Feynman rule for the A′ → ψ1ψ2 vertex in the inelastic
Dark Matter model
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Appendix D

Dark Matter production at ProtoDUNE

Production from pseudoscalars mesons decay

The HNFs in our model can be produced from the dark photon through the process:

π0, η → γA′(∗) → γψiψj

where the A’ can either be on-shell or off-shell, depending on its mass. If mA′ < mπ0,η, A’ can
be produced on-shell and then decay to dark matter. The branching ratio for this process will
then simply be:

BR(π0, η → γψiψj) = BR(π0, η → γγ)× 2ε2

(
1− m2

A′

m2
π0η

)3

×BR(A′ → ψiψj). (D.1)

For αD ≫ ε2αQED, the branching ratio of the dark photon BR(A′ → ψiψj) ≈ 1.
If mA′ > mπ0,η, the dark photon cannot be produced on-shell and the HNFs are produced

through a three-body decay. In this case this expression for the branching ratio is more compli-
cated and is given by [142]:

BR(π0, η → γψiψj) =
1

Γπ0,η

ε2αD
2mπ0,η

∫
dΦπ0,η→γA′dΦA′→ψiψj

ds

2π
⟨| Mπ0,η→γψiψj

|2⟩ (D.2)

where s is the centre-of-mass energy, Γπ0,η is the total π0, η decay width and ⟨| Mπ0,η→γψiψj
|2⟩

is the three-body decay amplitude. Following Appendix A.3-4 in [142], we have that the matrix
element for this process is:

Mπ0,η→γψiψj
= εgD

e2

4π2

1

fπ0,η

ϵ
(γ)
λ ϵλµαβpαqβ

−i(gµν − qµqν/m
2
A′)

s−m2
A′ + imA′ΓA′

(v(k2)γµu(k1)), (D.3)

where fπ0,η is the pion decay constant, namely the coefficient in front of the kinetic term for the
pseudoscalar in the low-energy effective action. The momentum of the photon is p, while the
momenta of the HNFs are k1 and k2 and q = k1 + k2. Squaring the amplitude and summing over
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spin, we get:

⟨| Mπ0,η→γψiψj
|2⟩ = 4ε2α2

QEDαD

πf 2
π0,η[(s−m2

A′)2 +m2
A′Γ2

A′ ]

[(
s+m2

i +m2
j

) (
m2
π0,eta − s

)2 − 8s(p · k1)(p · k2)
]

(D.4)
In the on-shell limit, we can use the narrow with approximation:

1

(s−m2
A′)2 +m2

A′Γ2
A′

→ π

mA′ΓA′
δ(s−m2

A′). (D.5)

By integrating over the phase space and making the above substitution in the matrix element,
we recover the expression in 4.31:

Γπ0,η→γψiψj
= Γπ0,η→γA′ ×BR(A′ → ψiψj). (D.6)

In this work for the pseudoscalar meson decay, we only consider the on-shell regime. Indeed, for
higher masses of the dark photon, production through vector meson mixing dominates.

Production from vector meson mixing

According to the vector meson dominance model (VMD)[148], the photon couples to hadronic
states through mixing with intermediate QCD vector mesons. Following the convention in which
the SM photon (Aµ) and vector mesons (V µ) mass-mix, the corresponding effective Lagrangian
is given by [149]:

−L ⊂ (em2
V /gV )A

µVµ (D.7)

where gV is the vector meson-pion interaction strength. When a dark photon mixes with the
standard model photon, we obtain an effective mass-mixing between the dark photon and the
vector meson:

−L ⊂ (εem2
V /gV )A

′µVµ (D.8)

In order to compute the decay width of the vector mesons into HNFs, we consider the Proca
propagator for a massive vector field, which subsequently decays into ψiψj. The final result
yields:

Γ(V → ψiψj) =
1

4π

∑
i,j

(
VijgDeεm

2
V

gV

)2
m5
V

(m2
V −m2

A′)2 +m2
A′Γ2

A′
Iij(mi,mj,mV ), (D.9)

where Iij(mi,mj,mV ) is the phase space suppression term, given by:

Iij(mi,mj,mV ) =

(
1− ∆2

ij

m2
V

)(
1 +

m2
ij

2m2
V

)√(
1−

∆2
ij

m2
V

)(
1−

m2
ij

m2
V

)
, (D.10)
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The branching ratio for the process V → A′∗ → ψiψj, will then be:

BR(V → ψiψj)

BR(V → e+e−)
=
∑
i,j

(
VijgDε

e

)2
m4
V

(m2
V −m2

A′)2 +m2
A′Γ2

A′
Iij(mi,mj,mV ). (D.11)
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Appendix E

Inelastic DM scattering cross section

The lightest HNFs produced from the dark photon decay as discussed in the previous section,
enter the detector and scatter off of target particles in the detector. The scattering process is
ψiT → ψjT , where i, j = 1, 2(3) depends on the couplings allowed in the model under consider-
ation. In this work, we assumed that only ψ1 reaches the detector. However, here we maintain
a more general discussion considering the most general scattering written before.

The matrix element for the process ψi(p1)T (p2) → ψj(k1)T (k2) is:

M =
εegDVij
(t−m2

A′)
[u(k2)γµu(p2)][u(k1)γ

µu(p1)]. (E.1)

The squared, spin-average matrix will then be:

⟨| M |2⟩ = 128π2V 2
ijε

2αQEDαD

(t−m2
A′)2

[
(k1 · k2)(p1 · p2) + (k2 · p1)(p2 · k1)

−mimj(k2 · p2)−m2
T (p1 · k1) + 2mimjm

2
T

] (E.2)

The differential scattering cross section in the centre-of-mass frame is:

dσ

dΩ
=

1

2π

dσ

dcosθ
=

⟨| M |2⟩
64π2s

| k⃗ |
| p⃗ | (E.3)

where p⃗ and k⃗ are the initial/final state momenta, given by[150]:

| p⃗ |2= (s−m2
T −m2

i )
2 − 4m2

Tm
2
i

4s
, (E.4)

| p⃗ |2= (s−m2
T −m2

j)
2 − 4m2

Tm
2
j

4s
, (E.5)
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. In the laboratory frame, with a stationary target T, we have:

p1 = (Eψi , p⃗1)

p2 = (mT , 0)

k1 = (Eψj , k⃗1)

k2 = (ET , k⃗2)

(E.6)

From these values of the momenta:

s = (p1 + p2)
2 = m2

i +m2
T + 2mTEχi , (E.7)

(k1 · p1) = −1

2
(2m2

T −m2
i −m2

j − 2mTET ), (E.8)

To obtain the differential recoil distribution:

dcosθ =
mT

| p⃗ || k⃗ |
dET (E.9)

Substituting in E.3,
dσ

dET
=
mT ⟨| M |2⟩
32πs | p⃗ |2 (E.10)

For the scattering against electrons considered here, it sufficed to substitute the value of the mass
of the electrons me in mT .
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