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Lakes and Lake Drainage in Permafrost Data and Study Sites

* Lakes are ubiquitous in high-latitude ecosystems I.EOT;JSSY I;eglons
* Influence on an array of key biogeophysical . 23 M kr?mzes

processes and ecosystem characteristics
e Lakes can be highly dynamic (thermokarst lake cycle)
* Recent decline in lake area observed across
permafrost ecosystems
* Prediction of lake persistence for anticipating future

* Lake area changes: 1999-2014

 Lake dataset from Nitze et al, 2018

e Various types of lake formation, climate and
ground conditions
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carbon-climate feedbacks from arctic ecosystems
needed

* Only few studies have systematically analyzed
drivers of lake drainage

Lake Properties | o . |

» Lake area, perimeter iy 7 RN T Fostern Sibera)
* Lake shape (roundness, eccentricity) 3 @ e

* Distance to other lake or drainage S
What are the main drivers of partial and complete " EE Em EE
lake drainage? Subdivided into three Drainage Classes Fig. 2: Study site of lake drainage analysis, adapted after Nitze et al,
Can we correctly predict/recreate lake drainage? 1. Stable lake: <25 % area loss, e

How will the projected climate change impact 2. Drained partial: 25-75 % & >1 ha area loss

spatial patterns of lake drainage? 3. Drained complete: >75 % & >1 ha area loss

Fig. 1: Oblique photos of drained lakes
in western —and northern Alaska.

Lake Data Classification External Datasets Key Methods

Permafrost Data Processing
 CCl Ground temperatures v3 (Obu, 2019) e Lake classification
 Thermokarst landscapes (Olefeldt, 2016) e Data assimilation
* |PA Permafrost Map: extent, ground-ice * Feature engineering
Climate/Weather Drainage Prediction
e ERAS5-Land (mean + trend) (CCCS, 2021) XGBoost + Random Forest
Geomorphology 1. Observation period (1999-2014)
* Arctic DEM — elevation (range), slope, e 2. Prediction on climate projections
* Distance to drainage Feature Importances

O stable Lake 93.72 % Climate Projections (drainage projection) e Shapley values (XAl)

Drained partial (25-75%) | | 6.28 % e CMIP6 climate ensemble - SSP585 scenario * Random Forest Feature Importances
Q Drained complete (>75%) | | 1.67 % e mean air temperatures, total precipitation
\Ij:fi;;i;;’)ztlijaelt(ci)isr;cirgit;litliair; i(:]ct:::(aengfinage classification for the period 1999-2014. Drained lakes highlighted for better

Feature Importances Drainage Modeling and Prediction
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Fig 7: Shapley values (median +- 25th and 75th percentile) of ground temperatures for complete drainage. Ground

0.00 001 002 003 004 005 0.06 :
Random Forest Feature Importance () <0.01 Expected Dralnage Temperatures contribute strongest to lake drainage from -8 to -3 °C.
Fig 4: Random Forest Feature Importances (RF-Fl) for - 0.01-<0.02 0.04-<0.08 (1 0.16-<0.32
the complete dataset. 0.02-<0.04 0.08-<0.16 () >=0.32 Fig 8: Expected versus observed drainage on
the NE Seward Peninsula, Alaska. Drained lakes

Fig 5: Shapley values for (1999-2022) in bold dashed line.

. Fig 6: Expected Drainage (xDrain) values (predicted probability values of partial + complete
complete drainage class

drainage in all four study regions.

Drainage Events cannot be accurately predicted: BUT likelihood can:
eXpected Drainage (xDrain)

Shapley values create Fl for each individual
lake, RF-FI only for entire dataset
Lake geometry and geomorphology are most Spatial patterns detected correctly
important (local scale) XGBoost performs better than Random Forest _ = .l

. Observed Dr_amage (1999-2022) Q<°'°1 Expected Drainage
Climate + ground temperatures somewhat O e notraied SR o
important, but more dynamic (regional scale)

| o Challenges
Drainage Projection for the 21st Centu ry  Existing data may not cover local geomorphological detail and complexity

2020 2030 2040 2050 2060 2070 2080 2090 * Data homogenization and extraction is challenging

Lake drainage becomes more likely * Lake dataset only trend (not annual) = adding annual data for temporal
in the future * Big data-driven analysis = physics informed Al

Northward shift: today’s “stable” * Future climate scenarios are potentially breaking the model

cold regions likely affected most
Unclear if unprecedented future can

Take Away and Outlook

be predicted on today’s data * Extensive compilation and analysis of lake drainage, provides insight into
o . - o future patterns of landscape change
Fig 9: Projected change in expected drainage in western Siberia
(T1) under ssp585 climate change scenario usind CMIP6 ° Scahng towa rd pan-arc“c analys|s poss|b|e
climate projections with 2010 decade as baseline. Imputed
mean air temperature total precipitation and linear regression [ |ntegrat|on Of further |Oca| |nf0rmat|on m|ght be beneflClaI

of ground temperatures.
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