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ABSTRACT

Remote sensing (RS) techniques have been used for
mapping forest variables, such as stem volume (important
for forest management activities associated with timber
production), over large areas which can be updated more
frequently than with field inventory (FI) data. In this study,
wall-to-wall TanDEM-X synthetic aperture radar images
were used as auxiliary RS data for model-based prediction
of stand-level volumes for two models, trained using
volumes computed from FI (A) and airborne laser scanning
estimations (B), respectively. The models were validated
with harvester data available for independent stands. It was
observed that the performance of model B was slightly
better compared to model A based on adjusted R2 and root
mean squared error values. Therefore, it can be concluded
that a completely RS based approach for prediction and
mapping of stand volumes would be as promising as a
method based on FI data along with being cost- and
labour-efficient.

Index Terms— Airborne laser scanning, harvester data,
stand volume, synthetic aperture radar, TanDEM-X.

1. INTRODUCTION

The use of auxiliary remote sensing (RS) data has been
increasing over the past decades. RS data have been paired
with field reference datasets for estimating forest variables
such as, height, volume and aboveground biomass (AGB),
in, e.g., [1], [2], [3]–[10], [11]–[17]. Stand- and tree-level
volume estimates have been more extensively used by forest
owners for measuring merchantable timber and forest
products [18]. The collection of field inventory data is more
cost and labour intensive when compared to acquiring aerial
and spaceborne RS data, especially, in remote and
inaccessible terrains.

Airborne laser scanning (ALS) data have been
previously used for large scale mapping of AGB and
volume [19], [20], but, using a wall-to-wall satellite image
for large scale mapping of such forest variables would be
even more time efficient [21], [22]. The German synthetic
aperture radar (SAR) mission – TanDEM-X constitutes of a
pair of satellites (launched in 2007 and 2010) carrying
X-band SAR sensors, flying as an interferometer with global

coverage. Several studies have been conducted using
TanDEM-X for model-based inferences of forest AGB,
volume and tree heights, in, e.g., [18], [23]–[29]. The use of
TanDEM-X enables extraction of the vegetation height
using the interferometric phase height (ph) and coherence
[22]. The ph contains information about tree heights as well
as forest density, which can be correlated to AGB and
volume estimations [18], [22]. In some previous studies by
[18], [30], these interferometric variables have been used to
estimate forest volume at the stand level. Until now, manual
field inventory data have been used as reference data for
model-based estimations of volume, except for a handful of
studies [2]. Still, models entirely based on RS data have not
been implemented for large-scale mapping of forest
variables.

Therefore, the main objective of this study was to
use wall-to-wall TanDEM-X SAR data for modelling and
mapping of stand-level forest volume across the entire test
site and evaluating the performance of models A and B
trained with stand-level volumes estimated from forest
inventory data and volumes estimated based on ALS and
national forest inventory (NFI) data, respectively. Stand
volumes for independent forest stands within the same test
site, estimated from harvesters during felling activities, were
used for validating the models.

2. MATERIALS AND METHOD
2.1. Study area
The test site located in central Sweden, covers an area of
50,000 ha approximately (as shown in Fig 1a-b), majorly
dominated by Scots pine (Pinus sylvestris), Norway spruce
(Picea abies), Lodgepole pine (Pinus contorta) and other
deciduous tree species.



Figure 1. Represents the test site constituting the forest
stands used for training models A and B (marked with
‘green’) and forest stands used for validation of the models
available from the harvester data (marked with ‘red’).

Pine constituting around 50%, spruce around 44%
and deciduous and other tree species constituting about 6%
of the total species composition [2].

2.2. Field and Remote Sensing data
The field inventory data were acquired in 2019. Thirty
stands were inventoried within the test site (marked with
‘green’ in Fig 1b). The inventory was done with an average
of 8 circular plots (with 8m radius) distributed
systematically across the stands. The distance between the
plots and the number of plots varied for each stand
depending on the stand area. The field inventory data were
used as reference to select these 30 stands as training data
since the field inventory data constituted observations over
entire range of age-classes in the stands.

The ALS data were acquired in 2019 by a Leica
ALS80 sensor from a 3000 m flight height and having an
average point density of 1.5 points/m2 scanning over entire
Sweden. The mean volumes (in m3ha-1) for the same
individual 30 stands were extracted from the volumes
estimated using the ALS metrics and the corresponding NFI
plots over the scanned regions.

The TanDEM-X dataset was acquired on 14th
November 2015 for HH (horizontally transmitted and
horizontally received) polarization in strip-map mode. The
SAR data specifications have been mentioned in Table 1.

Table 1. TanDEM-X SAR data specifications.
Polariz-a
tion

Pixel resolution Multilook
factor

SLC* Resampled

HH 2.5(slant)×3.3
(azimuth) m2

10×10 m2 5×5

*SLC – single look complex.

The pre-processing was done as explained in [22]
and similar image variables were derived, namely
backscatter, ph and corrected coherence (c_coh). The
complex interferogram was obtained as

γ
~

=
𝐸[𝑠

1
𝑠

2
*]

𝐸[ 𝑠
1| |2]𝐸[|𝑠

2
*|

2
]

(1)

where, is the complex correlation co-efficient, E[.] is theγ
~

expectation value, * is the complex conjugate and s1 and s2
are the Hermitian product of the two complex SAR images
[18], [31].

A minimum cost flow function was used for
unwrapping the phase followed by a phase-to-height

sensitivity raster to obtain the height from the
interferometric phase information [22].

The validation dataset consisted of 151 stands with
volumes estimated from the harvester data (marked with
‘red’ in Fig 1b) acquired between 2019 and 2022. The
average stand-level volume for the entire test site is 172.5
m3ha-1 based on the harvester data accounting for only
matured trees in stands. These 151 stands were checked and
categorised into thinned (28) and clear-felled (123) stands.
The thinned stands were discarded from the dataset to avoid
representing over-estimated stand-volumes for such stands.

2.3. Volume estimation models
All the parameters derived from the TanDEM-X data were
tested for statistical significance as model co-efficients of
the explanatory variables for both model A and B. The final
regression models A and B, represented in Eq. 2,

𝑣𝑜𝑙 =  β
0

+ β
1
𝑝ℎ0.5 + ε (2)

where, ‘vol’ represents the response variable (stand volume
in this case), β0 and β1 are the model coefficients and ɛ is the
random error.

The ph values ranged between [-5, 28]. Models A
and B were compared based on adjusted co-efficient of
determination (adj-R2) and root mean squared error (RMSE)
values with
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where y is the reference values, is the predicted values,𝑦
^

and n is the number of stands in the validation dataset.

3. RESULTS, DISCUSSION AND CONCLUSIONS

The results show that for both models A and B, expected
value of stand volumes had dependency on the ph with a
power of 0.5, as represented in Table 2. The power value of
0.5 for ph was a slight deviation compared to previous
studies, e.g., [18], [22], [28]. The corresponding model
coefficients of ph and c_coh were statistically significant in
the models but c_coh did not contribute in improving the
model prediction accuracy, as observed similar to [22], and
was therefore, not included in the models. Also, both
models A and B were formulated with intercepts
non-significantly different from 0. The statistical summary
of model validation has been presented in Table 3. The
predictions of model B were slightly more accurate based on
the adj-R2 and RMSE values when compared to that of
Model A. From Fig 2, there is no distinct difference
between models A and B in the trend of the two plots
representing the relation between the predicted stand
volumes against the observed stand volumes. The predicted
values in the lower range of volume were over-estimated in
both cases. The overestimation of these stands with low



stand volumes might be due to that thinning activities were
carried out which could not be filtered out during the
categorising of the validation dataset or might be due to
measurement errors in the harvester volumes. The
relationship between the predicted and the observed
volumes are almost linear for stand volumes ranging
between 150 m3ha-1 and 400 m3ha-1 . Stand volume maps for
the entire test site were predicted for both the models, as
presented in Fig 3.

The approach based on laser scanning estimates
(method B) appeared as accurate and promising as the field
inventory based approach (method A) for mature stands.
Therefore, this study indicates that dedicated field
inventories intended to train models to estimate forest
volume wall-to-wall based on TanDEM-X could be
eliminated and replaced by estimates from low-resolution
LiDAR and NFI data. This reduces costs and makes forest
planning and decision making more efficient without
compromising the accuracy of the stand volume estimates.
The approach needs to be tested further in other sites and the
temporal robustness of the model parameters needs to be
further analysed.

Table 2. Summary of model parameters.
Model Intercept ph0.5

A -82.37• 113.2***

B -62.30• 104.3***

•= p>0.05 and ***=p≤0.001.

Table 3. Summary of statistics of volume prediction model
validation.
Model adj-R2 RMSE (m3ha-1) n

A 0.58 46.5 (22.3%) 123

B 0.60 44.6 (21.4%) 123

Figure 2. Scatterplots of observed volume vs predicted
volume for: (a) model A and (b) model B.

Figure 3. Wall-to-wall prediction maps of volume: (a) model
A and (b) model B.
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