Mitigation of nitrous oxide emissions in grazing systems through nitrification inhibitors: a meta-analysis

Johnny R. Soares[®] · Bruna R. Souza · André M. Mazzetto · Marcelo V. Galdos · Dave R. Chadwick · Eleanor E. Campbell · Deepak Jaiswal · Julianne C. Oliveira · Leonardo A. Monteiro · Murilo S. Vianna · Rubens A. C. Lamparelli · Gleyce K. D. A. Figueiredo · John J. Sheehan · Lee R. Lynd

Received: 2 February 2022 / Accepted: 9 December 2022 / Published online: 28 January 2023 © The Author(s) 2023

Abstract Grasslands are the largest contributor of nitrous oxide (N₂O) emissions in the agriculture sector due to livestock excreta and nitrogen fertilizers applied to the soil. Nitrification inhibitors (NIs) added to N input have reduced N₂O emissions, but can show a range of efficiencies depending on climate, soil, and management conditions. A meta-analysis study was conducted to investigate the factors that influence the efficiency of NIs added to fertilizer and excreta in reducing N₂O emissions, focused on grazing systems. Data from peer-reviewed studies comprising

J. R. Soares (⊠) · B. R. Souza · E. E. Campbell · J. C. Oliveira · L. A. Monteiro · M. S. Vianna · G. K. D. A. Figueiredo School of Agricultural Engineering (FEAGRI), University of Campinas (UNICAMP), Av. Cândido Rondon, 501, Campinas, SP 13083-875, Brazil e-mail: johnnyrsoares@gmail.com

J. R. Soares College of Agriculture, Federal University of Goias, Av. Esperança, Goiania, GO 74690-900, Brazil

A. M. Mazzetto AgResearch, 1365 Springs Road, Lincoln 7674, New Zealand

M. V. Galdos Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK

D. R. Chadwick School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK

2164 N₂O emission factors (EFs) of N inputs with and without NIs addition were compared. The N₂O EFs varied according to N source (0.0001–8.25%). Overall, NIs reduced the N₂O EF from N addition by 56.6% (51.1–61.5%), with no difference between NI types (Dicyandiamide—DCD; 3,4-Dimethylpyrazole phosphate—DMPP; and Nitrapyrin) or N source (urine, dung, slurry, and fertilizer). The NIs were more efficient in situations of high N₂O emissions compared with low; the reduction was 66.0% when EF>1.5% of N applied compared with 51.9% when

D. Jaiswal Environmental sciences and sustainable engineering Centre, Indian Institute of Technology Palakkad,

Kanjikkode, Kerala 678557, India

J. C. Oliveira

Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, Västerbotten 901 83, Sweden

R. A. C. Lamparelli Interdisciplinary Center of Energy Planning (NIPE), University of Campinas, Rua Cora Coralina, 330, Campinas, SP 13083-896, Brazil

J. J. Sheehan Department of Soil and Crop Sciences, Colorado State University, 307 University Ave., Fort Collins, CO 80523-1170, USA

L. R. Lynd Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755, USA

EF $\leq 0.5\%$. DCD was more efficient when applied at rates > 10 kg ha⁻¹. NIs were less efficient in urine with lower N content (≤ 7 g kg⁻¹). NI efficiency was negatively correlated with soil bulk density, and positively correlated with soil moisture and temperature. Better understanding and management of NIs can optimize N₂O mitigation in grazing systems, e.g., by mapping N₂O risk and applying NI at variable rate, contributing to improved livestock sustainability.

Keywords Air pollution · Greenhouse gases · Grassland · Pasture · Manure · Enhanced-efficiency fertilizers

Introduction

Livestock systems are responsible for a large proportion of global greenhouse gas (GHG) emissions, representing *ca.* 18% of all anthropogenic GHG emissions and *ca.* 80% of all emissions from the agricultural sector. Enteric methane (CH₄) from ruminants and nitrous oxide (N₂O) from fertilizer N inputs and excreta applied to or deposited on the soil are the main sources (Steinfeld et al. 2006; Gerber et al. 2013; IPCC 2014). The agriculture sector is the largest source of anthropogenic N₂O emissions, representing 60% (Syakila and Kroeze 2011), with grasslands contributing to 54% of agricultural emissions (Dangal et al. 2019). In addition, N₂O is the main compound causing ozone layer depletion (Ravishankara et al. 2009).

Nitrous oxide emissions from soil are highly variable in space and time because N₂O production and emission are influenced by several factors, including climatic conditions, soil properties, and N management (Mathieu et al. 2006; Chadwick et al. 2014), all of which control the complex biotic and abiotic reactions that produce N₂O (Hayatsu et al. 2008; Spott et al. 2011). A new refinement of guidelines for national GHG inventories was published recently with disaggregated N₂O emission factors (EFs) (IPCC 2019). For example, the default N_2O (EF) for synthetic fertilizer (EF1) has changed from 1.0% (0.3-3.0%) (IPCC 2006) to 0.5% (0.0-1.1%) of N applied in dry climates, and 1.6% (1.3-1.9%) in wet climates (IPCC 2019). For cattle urine and dung deposited on soil by grazing livestock (EF3_{PRP}), the N₂O EF has changed from 2% (0.7–6.0%) to 0.2% (0.0-0.6%) in dry and 0.6% in wet climates (0.0-2.6%).

In addition, specific studies have shown differences in N₂O emissions according to N management, e.g. smaller N₂O emissions from dung than urine in grazing systems (Krol et al. 2017; Chadwick et al. 2018); lower N₂O EF from sheep urine than cattle urine (López-Aizpún et al. 2020); lower N₂O EF from urea fertilizer than calcium ammonium nitrate in temperate climate (Harty et al. 2016; Cardenas et al. 2019), but the opposite in tropical conditions (Degaspari et al. 2020). Understanding the risk of N₂O emissions according to management and edaphoclimatic conditions can help to identify more regional and site-specific mitigation strategies.

There has been an interest in the use of synthetic nitrification inhibitors (NIs) to reduce both direct and indirect N₂O emissions (resulting from NO₃⁻ leaching) (Misselbrook et al. 2014; Aliyu et al. 2021). The NIs delay microbial oxidation of ammonia to nitrate in soil (Adhikari et al. 2021). Slowing down nitrification in soils without restricting N demand from plants can result in a strong reduction in N loss and an increase in nitrogen use efficiency (NUE) and crop yields (Snyder et al. 2009; Abalos et al. 2014; Li et al. 2017; Cai and Akiyama 2017; Aliyu et al. 2021). The most popular commercially available NIs are Dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and Nitrapyrin (Adhikari et al. 2021). The mode of action of these inhibitors is to block the ammonia monooxygenase (AMO) enzyme through chelating copper in the first step of nitrification (Subbarao et al. 2006; Trenkel 2010).

According to meta-analysis studies, using DCD and DMPP reduced N₂O emissions by 40–56% in arable systems (Gilsanz et al. 2016; Aliyu et al. 2021), and 45–50% in grasslands (Cai and Akiyama 2017; Chadwick et al. 2018; Li et al. 2021). Whilst no difference was found between the efficacy of DCD and DMPP in the study by Gilsanz et al. (2016), other studies have shown that DCD can be degraded faster in soil and be less efficient than DMPP (Weiske et al. 2001; Marsden et al. 2016). Marsden et al. (2016) showed similar mobility between DCD and DMPP in soil, and concluded that microbial degradation rates may have more influence on NI efficiency than sorption and desorption processes. The half-live of DCD depends on soil properties and temperature, ranging from 7 to 254 days (McGeough et al. 2016).

The efficacy of NIs can be influenced by several factors, including soil, climate, and management characteristics, resulting in a range of N₂O emission reductions of 19% up to 100% following N inputs to agricultural soils (Snyder et al. 2014; Chadwick et al. 2018). For example, DCD applied in urine patches had a greater efficiency in liquid form than zeolite-coated (Cai and Akiyama 2017). Also, DCD was more effective at reducing N₂O emissions when applied at a rate of 30 kg ha⁻¹ than 10 kg ha⁻¹ (Minet et al. 2018). DMPP reduced N₂O emissions from slurry, but not from ammonium nitrate (Menéndez et al. 2006). Nitrapyrin has been shown to reduce N₂O emissions from slurry by 59% but by 35% from urine (Ward et al. 2018).

Moreover, some studies have reported low efficiency of DMPP, DCD, and Nitrapyrin in reducing N_2O emissions in specific conditions, such as in the dry season or in situations where there was rapid inhibitor degradation (Mazzetto et al. 2015; Marsden et al. 2017; Ward et al. 2018; Pérez-Castillo et al. 2021). Therefore, it is necessary to clarify under what conditions the NIs are most efficient in reducing N₂O emissions in order to improve their effectiveness in grazing systems. The present study differs from previous meta-analysis of NIs in reducing N₂O emissions (Gilsanz et al. 2016; Han et al. 2017; Cai and Akiyama 2017; Aliyu et al. 2021; Li et al. 2021) as it focuses only on grazing systems, considers all N input sources (fertilizer and excreta), and concentrates on the most used NIs worldwide (DCD, DMPP, and Nitrapyrin). The aim of this study was to investigate, through a meta-analysis, the factors that may influence the efficiency of these predominant nitrification inhibitors (NI) in reducing direct N₂O emissions from N input (fertilizer and excreta) in grazing systems.

Material and methods

Data compilation

Original articles were searched on the Web of Science with the terms " N_2O ", "nitrification inhibitor", and "grazing", resulting in 167 articles from 1996 to 2022. In order to analyze the effects of climatic variables, only studies conducted in the field were included, with laboratory incubations and controlled condition experiments excluded.

The following pieces of information were extracted from each paper and entered into a database: cited reference, agricultural system (pasture, mixed, etc.), the dominant species of pasture plant, country, season, water input in the period (mm), average air temperature (°C), average water-filled pore space (WFPS—%), N rate (kg ha⁻¹), N source (urea, ammonium sulfate, calcium ammonium nitrate, slurry, dung, urine), N content (g kg⁻¹), average soil organic carbon (%) (0-10 cm depth), soil texture (% of clay, 0-10 cm depth), average soil temperature (0-10 cm depth, °C), bulk density (0-10 cm depth, g cm^{-3}), soil pH (0–10 cm depth), nitrification inhibitor type (Dicyandiamide—DCD; 3,4-Dimethylpyrazole phosphate—DMPP; and Nitrapyrin), NI application rate (kg ha⁻¹), NI mode of application (oral in drinking water, applied separately and mixed with the N source), treatments, number of replicates, N₂O emission (kg ha⁻¹), N₂O emission factor (%) per treatment (mean and standard deviation), days of N2O measurements, and reduction (%) in N_2O EF due to addition of the nitrification inhibitor. Data not specifically in text or tables was extracted from figures using Web-PlotDigitizer (Rohatgi 2019).

Data organization

Synthetic fertilizers were combined into one category (urea, ammonium nitrate, ammonium sulfate, ammonium sulfate nitrate, and calcium ammonium nitrate) and the N content was not evaluated for this source due to already distinct values. Sheep urine, cattle urine, and synthetic products designed to replicate them were combined into one category. Treatments in which synthetic fertilizers and excreta were combined were excluded. Slurry includes fresh and stored liquid dairy effluent and pig slurry. When not reported, the N_2O EF (% of N applied) was calculated using data on N₂O-N emissions from treatments (N input), discounting background N₂O-N emissions (no N input), and being related to N rate applied. Average air temperature, soil temperature, and WFPS (0-10 cm depth) for the reporting period were used, or calculated from minimum and maximum values when not reported.

A data frame was created to conduct the metaanalysis. Studies without background emissions were excluded. The mean and standard deviation (SD) of N_2O EFs from treatments with and without (control) nitrification inhibitors were separated from other treatments (no N addition). When a study did not report the SD, the average SD from all studies was considered (Cai and Akiyama 2017). In total, 61 studies were analyzed, with 269 comparisons (control and NIs treatment pairs) from 2164 observations (Table 1). To avoid duplication, we did not include the data from Bell et al. (2015) and Cardenas et al. (2016) repeated in Chadwick et al. (2018). In the only two situations from the 2164 N₂O-EF observations where negative values were reported, values were converted to positive values by adding to all the data the minor value (0.03)+0.0001 according to van der Weerden et al. (2020).

Meta-analysis

Nitrous oxide EFs from treatments where the inhibitors were used were compared with no inhibitors using the natural log transformation response ratio (RR) (Viechtbauer 2010), following the equation (Eq. 1):

$$RR = ln\frac{m1i}{m2i} \tag{1}$$

where RR denotes the natural log of the response ratio, which we defined as the effect size, and m1i and m2i are the mean values for the experimental group (containing nitrification inhibitors) and control group, respectively.

The effect sizes for each grouping were calculated from mean N₂O EF, SD, and number of replicates via the weighted random effects model, using the functions escale (measure = ROM) and rma (method = REML) of the 'metafor' package (Viechtbauer 2010). A heterogeneity test (Qt) was conducted via restricted maximum likelihood estimator. The 95% confidence interval (CI) was generated. The categorical moderator of each grouping was included in the model via 'mods' argument in the rma function. Comparisons between groups were made using ANOVA (p < 0.05). The RR was backtransformed and results were expressed as a percentage (%) of change from control (N treatments without NIs). Publication bias was checked by Egger's regression test using funnel and regtest functions of the metafor package (Viechtbauer 2010). A multivariate meta-analysis linear model (mixedeffects) was conducted to assess the influence of environmental factors on the effect size and their non-independence using the function rma.mv of metafor package (Viechtbauer 2010). Meta-analysis was conducted in R software version 4.0.5 (R core team 2021). Graphics were made in SigmaPlot, version 12.5 (Systat Software 2006).

The efficiency of NIs was evaluated according to classes that may influence it. The following categories (groupings) were analyzed: N₂O emission factor (≤0.5, 0.5–1.0, 1.0–1.5,>1.5% of N applied); N source (urine, fertilizer, slurry and dung); NI type (DCD, DMPP, Nitrapyrin); mode of application of NI (separately applied, mixed with the N source, oral intake via drinking water); slurry N rate application ($\leq 100, > 100$ kg ha⁻¹); slurry N content ($\leq 4, >4$ g kg⁻¹), urine N rate $(\leq 500, 500-1000, > 1000 \text{ kg ha}^{-1})$, urine N content ($\leq 7, > 7$ g kg⁻¹); soil temperature (≤ 10 , 10-15, > 15 °C), soil organic carbon (≤ 4 , 4-8, > 8%), soil bulk density ($\le 1, > 1$ g dm⁻³), WFPS ($\leq 50, 50-75, >75\%$). Categories were not divided into classes if the number of data was lower than three comparisons, from only one study, or with small variation in N₂O EF.

Results

Reduction in N₂O emission factor

The N₂O EF for N sources ranged from 0.0001 to 8.25% of N applied (Fig. 1). Dung resulted in a tenfold smaller N₂O EF than other N sources. The median and quartiles (1st and 3rd) of N₂O EFs were: 0.62% (0.21%, 1.31%); 0.42% (0.10%, 1.10%); 0.56% (0.18%, 1.11%); and 0.05% (0.03%, 0.12%) of N applied for urine, fertilizer, slurry, and dung, respectively (Fig. 1).

The average duration of N₂O measurements in the studies was 174 days (20–365), with no difference (p < 0.05) in NI efficiency in reducing N₂O-EF between short period (≤ 90 days, n=129), with 54% (45.2–61.4%) of reduction, and long period (90–365 days, n=140), showing 58.9% (51.4–65.1%) of reduction. Overall, the NIs reduced N₂O EF by 56.6%, with a 95% confidence interval of 51.1–61.5%, from all N sources (Fig. 2). The

 Table 1
 Management of N and nitrification inhibitors (NI) applied in grazing systems from the data analyzed

Reference	Country/ Region	N source ^a	N content (g $kg^{-1})^b$	N rate (kg ha ⁻¹)	NI type ^c	NI mode of application	NI rate (kg ha ⁻¹)	N ₂ O-N EF (% of N applied) ^d
Ball et al. (2012)	New Zea- land	Urine	NA	1000	DCD	Separately	10	0.73–4.66
Balvert et al. (2017)	New Zea- land	Urine	NA	600	DCD	Mixed	10	0.02–0.09
Baral et al. (2014)	Denmark	Urine	NA	608	DCD	Mixed	10	0.002-0.03
Barneze et al. (2015)	United King- dom	Urine	7.98	450	DCD	Mixed	10	0.42-0.66
Bell et al. (2015)	Scotland	Urine	NA	420–480	DCD	Mixed	10	0.06–1.07
Bell et al. (2016)	United King- dom	AN	NA	320	DCD	Separately	26	0.60–1.34
Cameron et al. (2014)	New Zea- land	Dung, Urine	NA	700, 100	DCD	Separately	10	0.05–1.94
Card- enas et al. (2016)	United King- dom	Urine	NA	405–435	DCD	Mixed	10	0.11–2.96
Chadwick et al. (2018)	United King- dom	Urine	NA	338–568	DCD	Mixed	6.5	0.01-1.64
Dai et al. (2013)	New Zea- land	Urine, Urea	NA	50, 300, 600	DCD	Separately	10	0.18–1.12
de Klein et al. (2011)	New Zea- land	Urine	6.1, 10	1000	DCD	Separately	20, 30	0.41–1.38
de Klein et al. (2014)	Australia	Dung, Urine	NA	616–1001	DCD	Separately	10	0.05–3.7
Di and Cameron (2008)	New Zea- land	Urea	NA	200	DCD	Separately	10	0.006–0.01
Di et al. (2010)	New Zea- land	Urine	NA	1000	DCD	Separately	10	0.3–3.0
Di et al. (2007)	New Zea- land	Urine	NA	1000	DCD	Separately	10	0.02–2.0
Dittert et al. (2001)	New Zea- land	Slurry	NA	63.9	DMPP	Separately	2	0.7–1.3
Escuer- Gatius et al. (2020)	Estonia	Slurry	26.5	7950	DMPP	Mixed	3	0.02–0.15
Friedl et al. (2017)	Australia	Urea	NA	36.8	DMPP	Mixed	0.2	0.07–0.41
Hoogen- doorn et al. (2008)	New Zea- land	Urine	9.0	369	DCD	Mixed	20	0.001-0.21
Giltrap et al. (2010)	New Zea- land	Urine	NA	600	DCD	Mixed	7	0.13-0.43

Reference	Country/ Region	N source ^a	N content (g $kg^{-1})^b$	N rate (kg ha ⁻¹)	NI type ^c	NI mode of application	NI rate (kg ha ⁻¹)	N ₂ O-N EF (% of N applied) ^d
Kelly et al. (2008)	Australia	Urine	NA	1000	DCD	Separately	10	0.30–0.57
Kim et al. (2014)	New Zea- land	Dung, Urine	NA	700, 770	DCD	Separately	10, 20, 60	0.004-4.1
Krol et al. (2017)	Ireland	Urea	NA	40	DCD	Mixed	1.4	0.02–0.25
Ledgard et al. (2014)	New Zea- land	Dung, Urine	NA, 7.0	691, 1124	DCD	Separately	10	0.01–0.81
Li et al. (2014)	New Zea- land	Slurry	0.9–5.5	100	DCD	Mixed	10	0.01–0.07
Li et al. (2015)	New Zea- land	Slurry	1.6–5.0	53–110	DCD	Mixed	10	0.01–1.87
Luo et al. (2015)	New Zea- land	Urine	7.0	700	DCD	Mixed, Oral	10, 30, 60	0.07–0.21
Luo et al. (2016)	New Zea- land	Urine	7.0	700	DCD	Mixed, Oral	10, 30, 60	0.11-0.23
Macadam et al. (2003)	Spain	CAN, Slurry	NA	80–125	DCD, DMPP	Mixed	1, 25	0.07–5.17
Marsden et al. (2017)	United King- dom	Urine	14.5	725	DMPP	Separately	1	0.63–0.70
Mazzetto et al. (2015)	Brazil	Urine	NA	360	DCD	Separately	10	0.04–0.40
Menéndez et al. (2006)	Spain	ASN, Urine	NA, 4.3	97, 194	DMPP	Mixed, Separately	1	1.41-6.60
Menéndez et al. (2009)	Spain	Slurry	NA	114	DMPP	Mixed	1	0.38–0.64
Merino et al. (2002)	Spain	CAN, Slurry	NA, 4.3	80, 170	DCD	Separately	25	0.004–0.53
Merino et al. (2005)	Spain	Slurry	18.3, 20.4	97, 135	DMPP	Mixed	1	0.30-8.25
Minet et al. (2016)	Ireland	Slurry	NA	96	DCD	Mixed	18	0.1–0.83
Minet et al. (2018)	Ireland	Urine	4.4–7.2	565–959	DCD	Mixed, Oral	10, 30	0.13–1.59
Misselbrook et al. (2014)	England	AN, Urea, Urine, Slurry	2.7–12.5	106–624	DCD	Mixed, Separately	15	0.0001-1.15
Monaghan et al. (2013)	New Zea- land	Urine	6.0	399, 528	DCD	Separately	10	0.40-1.38
O'connor et al. (2016)	Ireland	Urine	6.1	451	DCD	Oral	1	0.14–2.68

Table 1 (continued)

Table 1 (continued)

Reference	Country/ Region	N source ^a	N content (g $kg^{-1})^b$	N rate (kg ha ⁻¹)	NI type ^c	NI mode of application	NI rate (kg ha ⁻¹)	N_2 O-N EF (% of N applied) ^d
Pérez-Cas- tillo et al. (2021)	Costa Rica	Slurry	0.39	132	Nitrapyrin	Mixed	0.5	1.60–1.69
Qiu et al. (2010)	New Zea- land	Urine	NA	1000	DCD	Separately	10	0.41-1.27
Robinson et al. (2014)	New Zea- land	Urine	7.1	700	DCD	Separately	10	0.08–0.31
Selbie et al. (2014)	Ireland	Urine	5.0, 10.0	500, 1000	DCD	Separately	30	0.04–0.17
Simon et al. (2018)	Brazil	Dung, Urine	NA	516-2560	DCD	Mixed, Separately	8	0.04–0.45
Simon et al. (2020)	Brazil	Urine	9.3	1040	DCD	Mixed	10	0.24–1.33
Smith et al. (2008)	New Zea- land	Urine	5.8	387	DCD	Separately	10	0.65–1.42
Suter et al. (2016)	Australia	Urea	NA	240	DMPP	Mixed	1	0.04–0.16
Thomas et al. (2017)	Canada	Urine	NA	360, 500	DCD, Nitrapyrin	Mixed	2, 10	0.03-0.21
Thorman et al. (2020)	United King- dom	Slurry	2.2	1000	DCD	Separately	10	- 0.03-1.31
Treweek et al. (2016)	New Zea- land	Urine	7.0	700	DCD	Separately	20	0.7–2.1
Vallejo et al. (2005)	Spain	Slurry	4.1	200	DCD	Mixed	10	0.5–2.95
Velthof et al. (1996)	Netherland	AS	NA	80	DCD	Mixed	20	0.1–0.2
Vistoso et al. (2012)	Chile	Urea	NA	40	DCD	Mixed	10	0.021-0.076
Ward et al. (2018)	Australia	Dung, Slurry, Urine	NA	308-1000	Nitrapyrin	Mixed	1	0.0001-0.47
van der Weerden et al. (2016)	New Zea- land	Slurry, Urea	NA	28–65	DCD	Separately	1, 10	0.03–0.94
Zaman and Blen- nerhassett (2010)	New Zea- land	Urine	8.0	600	DCD	Separately	5, 7, 10	0.33–1.71
Zaman and Nguyen (2012)	New Zea- land	Urine	6.8	600	DCD	Separately	10	0.3–2.3
Zaman et al. (2013)	New Zea- land	Urine	NA	600	DCD	Separately	7, 10	0.19–1.08
Zaman et al. (2008)	New Zea- land	Urea	NA	150	DCD	Mixed	10	0.5–1.1

Table 1 (continued)

Reference	Country/ Region	N source ^a	N content (g $kg^{-1})^b$	N rate (kg ha ⁻¹)	NI type ^c	NI mode of application	NI rate (kg ha ⁻¹)	N ₂ O-N EF (% of N applied) ^d
Zaman et al.	New Zea-	Urine	NA	600	DCD	Mixed	10	0.13-1.87
(2009)	land							

^aAN, Ammonium nitrate; AS, Ammonium sulfate; ASN, Ammonium sulfate nitrate; CAN, Calcium ammonium nitrate ^bNA, not applicable/available

^cDCD, Dicyandiamide; DMPP, 3,4-Dimethylpyrazole phosphate

^dEF, Emission factor

Fig. 1 Boxplot of N_2O emission factors from N input in global grazing systems extracted from the literature. (n) represents numbers of comparisons (control and NIs treatment pairs). Median values are shown in the bars

Fig. 2 Change in N₂O emission factor by the addition of nitrification inhibitors to N inputs in grazing systems, according to emission factor (EF) (**a**) and N source (**b**). Mean and 95% confidence intervals are shown. Numbers of comparisons (control and NIs treatment pairs) are indicated in brackets. Significant differences are indicated at p < 0.05 (*); 0.01 (***) and 0.001 (***)

reduction in N_2O -EF due to NIs addition ranged from 1.7 to 81.5% (10th and 90th percentiles).

Efficiency of NIs in reducing N_2O

N source and N_2O emission factor

The reduction promoted by NIs was similar between the N sources (Fig. 2b), decreasing N₂O emissions by 54.4% (CI: 47.1–60.6%), 64.4% (48.0–75.6%), 63.8% (51.1–73.3%), and 46.9% (17.7–65.8%) for urine, fertilizer, slurry, and dung, respectively (Fig. 2).

The NIs were more efficient (p < 0.05) in situations of high N₂O emissions, with inhibitors reducing N₂O EFs by 66.0% (54.8–74.5%) when the EF was > 1.5% of N applied, compared with 51.9% (42.8–59.6%) of reduction when the EF $\leq 0.5\%$ (Fig. 2a). The reduction was 58.3% (45.5–68.1%) in N₂O-EF of 0.5–1.0%

 Table 2
 Influence of environmental moderators in effect size

 in multivariate meta-analysis linear model

Moderator	Parameter	<i>p</i> -value	
N ₂ O emission factor	- 0.2383	< 0.0001	
Soil temperature	- 0.0163	0.0359	
Soil bulk density	0.7631	< 0.0001	
Soil organic carbon	0.0206	0.0919	
Water-filled pore space	- 0.0163	< 0.0001	

and was 55.8% (39.5–67.8%) in N₂O-EF of 1.0–1.5% (Fig. 2a) The N₂O-EF had a negative linear influence on effect size; as the N₂O-EF increased, the reduction effect decreased, increasing the NI efficiency (Table 2).

NI type, mode of application and rate

Nitrapyrin, DCD, and DMPP showed similar efficiencies of reduction at their respective rate applications, reducing N₂O EF by 48.5% (20.7-66.6%), 57.4% (51.6-62.6%), and 53.8% (22.0-72.6%) across all N sources, respectively (Fig. 3a). The DCD was more efficient (p < 0.05) when applied at a higher rate, with a reduction in N₂O emissions of 69.2% (60.1-76.2%) at a rate > 10 kg ha⁻¹, and 53% (45.7–59.3%) when applied at a rate < 10 kg ha⁻¹ (Fig. 3b). The 10th and 90th percentiles of DCD efficiency were 9.8 and 81.5% reduction, respectively. The mode of application of NIs (mixed, separately or oral) resulted in similar (p < 0.05) efficiencies of N₂O reduction (Fig. 3). The reductions in N₂O-EF promoted by NIs were 58.5% (50.6–65.2%), 54.1% (45.5–61.2%), and 67.0% (31.0-84.2%) for mixed, separately, and oral application, respectively (Fig. 3b).

Fig. 3 Change in N₂O emission factor by the addition of nitrification inhibitors (NI) to N inputs in grazing systems, according to NI type (Dicyandiamide-DCD; 3,4-Dimethylpyrazole phosphate-DMPP; and Nitrapyrin) (a), mode of application and DCD application rate (**b**). Mean and 95% confidence intervals are shown. Numbers of comparisons (control and NIs treatment pairs) are indicated in brackets. Significant differences are indicated at p < 0.05 (*); 0.01 (**); and 0.001 (***)

N content and application rate

The N application rate and N content were not assessed for dung and fertilizer due to small variations in the data. However, the effects of N application rate and N content were evaluated for urine and slurry (Fig. 4). The difference (p < 0.05) was

only significant for the N content of urine; the NIs were more efficient for urine with higher N content. The reduction in N₂O EF was 46.2% (34.1–56.2%) for urine with N content \leq 7 mg kg⁻¹, and 64.4% (53.0–73.1%) for urine with N content > 7 mg kg⁻¹ (Fig. 4b). According to urine-N rate, the reductions were 59.7% (49.2–68.1%), 52.6% (46.5–58.0%), and

Fig. 4 Change in N₂O emission factor by the addition of nitrification inhibitors to N inputs in grazing systems, according to slurry (a) and urine (b) application rates and N contents. Mean and 95% confidence intervals are shown. Numbers of comparisons (control and NIs treatment pairs) are indicated in brackets. Significant differences are indicated at p < 0.05 (*); 0.01 (***); and 0.001 (***)

Fig. 5 Change in N₂O emission factor by the addition of nitrification inhibitors to N inputs in grazing systems, according to waterfilled pore spare (WFPS) and soil temperature (a), soil organic carbon (SOC) and bulk density (BD) (b). Mean and 95% confidence intervals are shown. Numbers of comparisons (control and NIs treatment pairs) are indicated in brackets. Significant differences are indicated at p < 0.05 (*); 0.01 (**); and 0.001 (***)

48.2% (19.8–66.6%), for N rates of ≤ 500, 500–1000, and > 1000 kg ha⁻¹, respectively (Fig. 5b). The NI efficiency in urine ranged from 15 to 74% of reduction (10th and 90th percentiles). In the slurry application, the NIs reduced N₂O-EF by 53.6% (2.0–78.1%), and 70.5% (44.5–84.3%), for N rates of ≤ 100, and > 100 kg ha⁻¹, respectively (Fig. 5a). The reduction was 67.7% (38.2–83.1%) for slurry N content of ≤4 g kg⁻¹, and 67.6% (11.1–88.2%) for N content > 4 g kg⁻¹ (Fig. 5).

Environmental conditions

The NIs were more effective (p < 0.05) in soil with intermediate moisture than in dry conditions, with a reduction in N₂O EF of 54.6% (45.7-62.1%) at a WFPS of 50-75%, but 31% (7.3-48.6%) when the WFPS was $\leq 50\%$ (Fig. 5b). In WFPS > 75\%, the reduction was 48.7% (28.8-63.0%). Grouping BD, SOC, and soil temperature had no effect (p < 0.05) on the efficiency of NIs to reduce N₂O emissions. The reductions were 51.8% (42.0–60.0%), 47.5% (33.1-58.8%), with soil BD ≤ 1 , and and >1 g cm⁻³, respectively. Considering SOC, the NIs reduced N₂O-EF by 60.9% (51.7-68.3%), 51.7% (39.6-61.4%), and 52.3% (27.7-68.6%), for SOC ≤ 4 , 4-8, > 8%, respectively. With respect to soil temperature, the reductions were 64.9% (53.9–73.3%), 62.9% (51.4-71.7%), 56.25% (39.9-68.2%), for ≤ 10 , 10-15, and >15 °C, respectively (Fig. 5a).

The environmental variables have a linear influence on effect size, where soil temperature showed a negative coefficient, which means that increasing soil temperature decreased the response ratio (increasing the efficiency of NIs in reducing N_2O emissions); while increasing BD decreased the efficiency of NIs (Table 2). According to the multivariate linear model, increasing WFPS increased the efficiency of NIs, which was similar to results of grouping. The SOC influence was not significant in the model (Table 2).

Discussion

N₂O emission factors for dung and fertilizer were lower than default IPCC values

The median N_2O emission factors found were close to 0.5% of N applied for fertilizer, urine, and slurry; and 0.05% for dung. The EF for fertilizer and dung were lower than the default value from the new IPCC refinement (IPCC 2019), 1.6% and 0.6% in the wet climate, respectively. However, for urine and slurry, the EF were similar, around 0.6% (wet climate). The smaller N₂O EF from dung than urine is in line with the literature and is attributed to the higher proportion of N in the organic form (Misselbrook et al. 2014). Therefore, in addition to the new IPCC refinement (IPCC 2019), other disaggregated values or developing a country-specific EF (IPCC 2019) may better estimate the N₂O emissions for national inventories, especially for fertilizer and dung, and site-specific conditions.

NIs reduced N₂O emissions in diverse conditions

The reduction of N₂O emissions through NIs added to the N source was on average 56.6%, which is slightly higher than previously reported in meta-analysis studies. Recently, Aliyu et al. (2021) reported a 56% reduction, and Li et al. (2021) observed a 45% of reduction. Cai and Akiyama (2017) calculated an average reduction of 52%, and Gilsanz et al. (2016) showed an average reduction of around 40%. The studies had different focuses related to NIs. Li et al. (2021) evaluated DCD and DMPP in grassland, Cai and Akiyama (2017) studied DCD in urine patches, while Gilsanz et al. (2016) and Aliyu et al. (2021) evaluated the NIs in cropland systems. The present study evaluated DCD, DMPP, and Nitrapyrin for all N sources applied in global grazing systems. To our knowledge, the present study is the first meta-analysis of NIs specifically in grazing systems, exploring all N sources (fertilizer and excreta) and the most widely used NIs.

Contrasting results of NIs efficiencies have been observed in grazing systems. For example, in metaanalysis studies, Gilsanz et al. (2016) reported that DCD was not efficient in reducing N₂O emissions when added to ammonium nitrate in sandy soils, probable due to low emissions in those soil types; on the other hand, Thorman et al. (2020) showed that DCD decreased N₂O emissions to zero when mixed with slurry. In Thorman et al. (2020), slurry was broadcast-applied in spring, where the high NI efficiency may have occurred due to longer NI stability in low temperatures (7 °C). In the present study, the NIs reduced N_2O emissions between 2 and 83% (10th and 90th percentiles), but on average the NIs were efficient in all conditions evaluated, showing a significant reduction in N_2O emissions in all comparisons (Figs. 2–5); with the lowest average efficiency of 31% of reduction and the highest of 70%.

NIs were more efficient when N_2O emission factors were high

The efficiency of NIs in reducing N₂O EFs varied according to the categories analyzed. The inhibitors were more efficient in situations of high emissions (EF>1.5%) where they reduced N_2O emissions by 66%, than in situations with low emissions $(EF \le 0.5\%)$ where the average reduction was 52%. The NIs efficiency according to the magnitude of N₂O emissions in grazing systems was not explored in previous meta-analysis studies. However, the higher efficiency of NIs found in some situations was attributed to possible high N₂O emission, such as increasing soil temperature, reported in a recent meta-analysis (Li et al. 2021). It is likely that the lower efficiency of NIs in low EF occurred due to other pathways of N₂O production that were not inhibited by the NIs, e.g. codenitrification (Spott et al. 2011). Cardenas et al. (2016) showed a reduction in N_2O emissions of 58% from NI added to cattle urine in summer when EF was 3%, but no reduction was observed when EF was 0.1% of N applied in autumn. The authors suggested that in summer, nitrification was the main pathway of N₂O emissions, and then DCD was efficient, while in autumn the microbial activity was low, resulting in small N₂O emissions and a lack of efficiency of NI. In this way, mapping the risk of N₂O emissions in grazing systems, such as identifying the hot spots and moments (Misselbrook et al. 2016; Roten et al. 2017; Lush et al. 2018), and applying the NI at variable rate and time, can be a strategic management to optimize N₂O mitigation.

NI efficiency was not affected by NI type or mode of application

In this study, there was no difference in the average NI efficiency according to N source, NI type, and mode of NI application. These results support the meta-analysis of Gilsanz et al. (2016) that reported

no difference between DCD and DMPP. However, in a recent meta-analysis, Li et al. (2021) reported higher efficiency of DCD compared to DMPP, with a reduction of 48 and 33%, respectively. Despite this difference being from aggregated data, there are many more studies with DCD than DMPP (Fig. 3), so to better explore DMPP efficiency and compare it with DCD, more studies are necessary (Gilsanz et al. 2016).

In relation to mode of application, Cai and Akiyama (2017) showed in their meta-analysis study that DCD was more efficient when applied in liquid form than when coated with zeolite. The study of Cai and Akiyama (2017) focused on urine patches, in which DCD in liquid form was probably better mixed with urine, resulting in higher performance than when applied coated with zeolite. On the other hand, the present study involved different N sources (fertilizer, urine, dung, and slurry), and the mode of application resulted in similar efficiency, which suggests that inhibitors were efficiently mixed with the N source, resulting in co-location of inhibitor and $\mathrm{NH_4^+}$ in the soil, and reduced $\mathrm{N_2O}$ emissions independently of the mode of application (separate, mixed, or oral). This result demonstrated that NIs could be applied in different ways to N sources, resulting in similar efficacy of N2O reduction, which can help farmers to plan the best option for management in the field.

NIs were more efficient in urine with high N content

Nitrogen application rate and N content were evaluated for each N source separately, where the difference in NI efficiency was only influenced by N content in urine. The NIs were more efficient in urine with high N content (>7 g kg⁻¹) than in lower N content urine. Marsden et al. (2016) showed higher mobility and degradation of NIs in soil when urine was applied; then, the urine with lower N content has a higher C/N ratio, which may increase NIs degradation and movement in soil, resulting in lower efficiency compared with urine containing more N. Higher N manure application rates can also increase N_2O emissions (Han et al. 2017), and can result in higher efficiency of NI to reduce them, as shown here. On the other hand, a higher urine N content may indicate lower NUE, which is undesirable and can be improved, e.g., by changing the animal diet with more minerals (Singh et al. 2009). In addition, how the urine was stored can be relevant to the composition, despite no difference being observed between urine non-freeze-dried and freeze-dried (Charteris et al. 2021).

Increasing DCD rate increased its efficiency

The efficiency of DCD can be improved by increasing the application rate, with higher efficiency when applied at rates $> 10 \text{ kg ha}^{-1}$ than at lower doses. This result contrasts with the previous meta-analysis studies reported no difference in NI efficiency in reducing N₂O emissions according to their application rate in grassland (Cai and Akiyama 2017; Li et al. 2021). Despite no significant effect, in the study of Li et al. (2021) increasing NI rates (DCD and DMPP) had a tendency (p=0.07) to increases their efficiencies in reducing N₂O emissions. It is likely that the greater amount of data of DCD rates in the present study than in the previous meta-analysis allowed a better comparison of effect of DCD dosage in reducing N2O emission, where a recommendation to apply DCD at a rate higher than 10 kg ha⁻¹ can improve its efficiency. However, because nitrification inhibitors can increase NH₃ volatilization losses (Lam et al. 2017), combining them with a urease inhibitor like NBPT (N-(nbutyl) thiophosphoric triamide) may be a better strategy for reducing N2O and NH3 losses from urea and urine (Zaman and Blennerhassett 2010; Soares et al. 2012). On the other hand, the DCD can maintain soil pH and ammonium content from urea hydrolysis at high values in soil for longer than the persistency of NBPT, increasing NH₃ losses and offsetting the benefits of NBPT (Soares et al. 2012).

The DCD is commonly applied at a rate of 2-10% of N application, or at 10 kg ha⁻¹ in grassland (Trenkel 2010). Increasing DCD rates can also increase the cost of N fertilization and the risk of entry into the food chain (Marsden et al. 2015). The NIs increased price of fertilizer by 30–60%, but their use also increases the profitability of agriculture activity, as it can result in higher NUE, crop yield, and C credits due to CO_{2eq} mitigated (IFA 2022). The use of enhanced-efficiency fertilizers, including NIs, has been increased worldwide, corresponding to an annual consumption of 14 Mt of N (Cantarella et al. 2018). However, the presence of NI in food products can be considered problematic for public perceptions and the industry market (Hoekstra et al. 2020). For example, in New Zealand, the DCD was voluntarily suspended in 2013, due to DCD residues found in milk (MPI 2013). Despite the Codex Alimentarius Commission (FAO-WHO) having not established acceptable residual levels of NIs in food, some regions, such as Europe and New Zealand, have adopted default values (Adhikari et al. 2021). Nevertheless, more studies are necessary to clarify the effect of DCD on animal and human health.

NIs were more efficient in intermediate soil moisture, high soil temperature, and low soil bulk density

Within the constraints of the climate and soil conditions evaluated in the studies in this analysis, the NIs were less efficient in dry conditions (WFPS < 50%) compared to intermediate soil moisture levels (WFPS: 50-75%). Soil moisture was not explored in other meta-analysis of NI efficiency in reducing N₂O emission in grassland, but individual studies reported lower efficiency of nitrapyrin (Pokharel and Chang 2021) and DCD in dry conditions (Mazzetto et al. 2015). Moreover, the lower efficiency of NIs in drier conditions can be an indirect effect of low N2O emissions from N sources (O'Neill et al. 2021); as we showed here, the NIs were less efficient in situations of N₂O-EF < 0.5%. In general, the highest production of N₂O emissions in soil is expected to occur in WFPS between 50 and 75%, which reflects the more favorable condition for both nitrification and denitrification processes (Del Grosso et al. 2002; Liu et al. 2007).

The efficiency of NIs in reducing N_2O emissions was not affected by grouping soil C, temperature, or bulk density. However, in the multivariate model, the soil temperature had a negative influence on effect size, increasing the NI efficiency as temperature increased. The opposite was observed with soil BD. Similar results were reported in meta-analysis studies with soil temperature (Li et al. 2021) and with BD (Gilsanz et al. 2016), attributing them to possible higher N₂O emissions in high temperatures and in soils with less clay content. In fact, the present study showed the higher efficiency of NIs in situations of higher N₂O-EF (Fig. 2). Interestingly, the NIs were not affected by increasing temperature and clay content as reported in a laboratory study (McGeough et al. 2016). It is likely that the field N_2O emissions evaluated here occurred in a period when NIs were still efficient, avoiding loss of efficiency due to degradation.

Conclusions

This meta-analysis showed that NIs were able to reduce direct N₂O emissions from N inputs to grazing systems by 50–60%. The present study clarifies important aspects related to NIs efficacy. It is apparent that specific sets of environmental, soil, and N source conditions can influence NI efficiency, suggesting that site-specific recommendations could be used. For example, the NIs were more efficient in situations of high N₂O emissions; at intermediate soil moisture; in urine with high N content; and DCD was more efficient at a rate > 10 kg ha⁻¹. In addition, we showed some conditions where no difference in NI efficiency was observed, which can be useful for guidance to farmers, such as the mode of application of NIs (separately, mixed and oral); NI type (DCD, DMPP, and Nitrapyrin), N input (excreta and fertilizer), and soil organic carbon. Soil bulk density showed a negative correlation with NI efficiency, while soil temperature and moisture showed a positive correlation. Better understanding and management of NIs in grazing systems, e.g., mapping the risk of N₂O emissions and applying NI at a variable rate, can optimize N₂O mitigation, especially when emissions are high, and improve the sustainability of livestock products, a critical issue in the sector.

Acknowledgements This work was supported by the Sao Paulo Research Foundation—FAPESP [Grant Numbers: 2014/26767-9, 2016/08741-8, 2019/15819-1, 2019/14333-8, 2018/10432-9, 2016/08742-4, 2017/06037-4, 2017/08970-0, 2018/11052-5]. DRC was supported via the BBSCR (Newton) funded NUCLEUS project [Grant number BB/N013201/1].

Author contributions Conceptualization, data curation, formal analysis, methodology, writing-original draft preparation, writing-reviewing and editing: Johnny R. Soares, Bruna R. Souza, André M. Mazzetto, Marcelo V. Galdos, Dave R. Chadwick. Validation, visualization, writing-reviewing and editing: Eleanor E. Campbell, Deepak Jaiswal, Julianne de C. Oliveira, Leonardo A. Monteiro, Murilo S. Vianna. Funding acquisition, project administration, resources, supervision, writing-reviewing and editing: Rubens A. C. Lamparelli, Gleyce K. D. A. Figueiredo, John J. Sheehan, Lee R. Lynd.

Data availability All data analyzed during this study are included in this published article.

Declaration

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Abalos D, Jeffery S, Sanz-Cobena A, Guardia G, Vallejo A (2014) Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric Ecosyst Environ 189:136–144. https:// doi.org/10.1016/j.agee.2014.03.036
- Adhikari KP, Chibuike G, Saggar S, Simon PL, Luo J, de Klein CAM (2021) Management and implications of using nitrification inhibitors to reduce nitrous oxide emissions from urine patches on grazed pasture soils— A review. Sci Total Environ 791:148099. https://doi. org/10.1016/j.scitotenv.2021.148099
- Aliyu G, Luo J, Di HJ, Liu D, Yuan J, Chen Z, He T, Ding W (2021) Yield-scaled nitrous oxide emissions from nitrogen-fertilized croplands in China: a meta-analysis of contrasting mitigation scenarios. Pedosphere 31(2):231–242. https://doi.org/10.1016/S1002-0160(20)60074-1
- Ball BC, Cameron KC, Di HJ, Moore S (2012) Effects of trampling of a wet dairy pasture soil on soil porosity and on mitigation of nitrous oxide emissions by a nitrification inhibitor, dicyandiamide. Soil Use Manag 28(2):194– 201. https://doi.org/10.1111/j.1475-2743.2012.00389.x
- Balvert SF, Luo J, Schipper LA (2017) Do glucosinolate hydrolysis products reduce nitrous oxide emissions from urine affected soil? Sci Total Environ 603–604:370–380. https://doi.org/10.1016/j.scitotenv.2017.06.089
- Baral KR, Thomsen AG, Olesen JE, Petersen SO (2014) Controls of nitrous oxide emission after simulated cattle urine deposition. Agric Ecosyst Environ 188:103– 110. https://doi.org/10.1016/j.agee.2014.02.029

- Barneze AS, Minet EP, Cerri CC, Misselbrook T (2015) The effect of nitrification inhibitors on nitrous oxide emissions from cattle urine depositions to grassland under summer conditions in the UK. Chemosphere 119:122– 129. https://doi.org/10.1016/j.chemosphere.2014.06.002
- Bell MJ, Cloy JM, Topp CFE, Ball BC, Bagnall A, Rees RM, Chadwick DR (2016) Quantifying N₂O emissions from intensive grassland production: the role of synthetic fertilizer type, application rate, timing and nitrification inhibitors. J Agric Sci 154(5):812–827. https://doi.org/ 10.1017/S0021859615000945
- Bell MJ, Rees RM, Cloy JM, Topp CFE, Bagnall A, Chadwick DR (2015) Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: effects of soil and climatic conditions and a nitrification inhibitor. Sci Total Environ 508:343–353. https://doi.org/10.1016/j. scitotenv.2014.12.008
- Cai Y, Akiyama H (2017) Effects of inhibitors and biochar on nitrous oxide emissions, nitrate leaching, and plant nitrogen uptake from urine patches of grazing animals on grasslands: a meta-analysis. Soil Sci Plant Nutr 63(4):405–414. https://doi.org/10.1080/00380768. 2017.1367627
- Cameron KC, Di HJ, Moir JL (2014) Dicyandiamide (DCD) effect on nitrous oxide emissions, nitrate leaching and pasture yield in Canterbury, New Zealand. N Z J Agric Res 57(4):251–270. https://doi.org/10.1080/00288233. 2013.797914
- Cantarella H, Otto R, Soares JR, de Silva AGB (2018) Agronomic efficiency of NBPT as a urease inhibitor: a review. J Adv Res 13:19–27. https://doi.org/10.1016/j.jare.2018. 05.008
- Cardenas LM, Bhogal A, Chadwick DR, McGeough K, Misselbrook T, Rees RM, Thorman RE, Watson CJ, Williams JR, Smith KA, Calvet S (2019) Nitrogen use efficiency and nitrous oxide emissions from five UK fertilised grasslands. Sci Total Environ 661:696–710. https://doi.org/10.1016/j.scitotenv.2019.01.082
- Cardenas LM, Misselbrook TM, Hodgson C, Donovan N, Gilhespy S, Smith KA, Dhanoa MS, Chadwick D (2016) Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from a UK grassland soil. Agric Ecosyst Environ 235:229–241. https://doi.org/10.1016/j.agee. 2016.10.025
- Chadwick DR, Cardenas L, Misselbrook TH, Smith KA, Rees RM, Watson CJ, McGeough KL, Williams JR, Cloy JM, Thorman RE, Dhanoa MS (2014) Optimizing chamber methods for measuring nitrous oxide emissions from plot-based agricultural experiments. Eur J Soil Sci 65(2):295–307. https://doi.org/10.1111/ejss.12117
- Chadwick DR, Cardenas LM, Dhanoa MS, Donovan N, Misselbrook T, Williams JR, Thorman RE, McGeough KL, Watson CJ, Bell M, Anthony SG, Rees RM (2018) The contribution of cattle urine and dung to nitrous oxide emissions: quantification of country specific emission factors and implications for national inventories. Sci Total Environ 635:607–617. https://doi.org/10.1016/j. scitotenv.2018.04.152
- Charteris AF, Marsden KA, Evans JR, Barrat HA, Loick N, Jones DL, Chadwick DR, Cárdenas LM (2021)

Optimising storage conditions and processing of sheep urine for nitrogen cycle and gaseous emission measurements from urine patches. Sci Rep 11(1):12116. https:// doi.org/10.1038/s41598-021-91498-4

- Dai Y, Di HJ, Cameron KC, He J-Z (2013) Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N₂O emissions in a grazed pasture soil. Sci Total Environ 465:125–135. https://doi.org/10.1016/j.scitotenv.2012.08.091
- Dangal SRS, Tian H, Xu R, Chang J, Canadell JG, Ciais P, Pan S, Yang J, Zhang B (2019) Global nitrous oxide emissions from pasturelands and rangelands: magnitude, spatiotemporal patterns, and attribution. Glob Biogeochem Cycles 33(2):200–222. https://doi.org/10.1029/2018G B006091
- de Klein CAM, Cameron KC, Di HJ, Rys G, Monaghan RM, Sherlock RR (2011) Repeated annual use of the nitrification inhibitor dicyandiamide (DCD) does not alter its effectiveness in reducing N₂O emissions from cow urine. Anim Feed Sci Technol 166–167:480–491. https://doi. org/10.1016/j.anifeedsci.2011.04.076
- de Klein C, Letica SA, Macfie PI (2014) Evaluating the effects of dicyandiamide (DCD) on nitrogen cycling and dry matter production in a 3-year trial on a dairy pasture in South Otago, New Zealand. N Z J Agric Res 57(4):316– 331. https://doi.org/10.1080/00288233.2014.941508
- Degaspari IAM, Soares JR, Montezano ZF, Del Grosso SJ, Vitti AC, Rossetto R, Cantarella H (2020) Nitrogen sources and application rates affect emissions of N₂O and NH₃ in sugarcane. Nutr Cycl Agroecosyst. https://doi. org/10.1007/s10705-019-10045-w
- Del Grosso S, Ojima D, Parton W, Mosier A, Peterson G, Schimel D (2002) Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model. Environ Pollut 116(Supplement 1):S75–S83. https://doi.org/ 10.1016/S0269-7491(01)00260-3
- Di HJ, Cameron KC (2008) Sources of nitrous oxide from 15N-labelled animal urine and urea fertiliser with and without a nitrification inhibitor, dicyandiamide (DCD). Soil Res 46(1):76–82. https://doi.org/10.1071/SR07093
- Di HJ, Cameron KC, Sherlock RR (2007) Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions. Soil Use Manag 23(1):1–9. https://doi.org/10.1111/j.1475-2743.2006.00057.x
- Di HJ, Cameron KC, Sherlock RR, Shen J-P, He J-Z, Winefield CS (2010) Nitrous oxide emissions from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia-oxidizing bacteria and archaea. J Soils Sediments 10(5):943–954. https://doi.org/10.1007/s11368-009-0174-x
- Dittert K, Bol R, King R, Chadwick D, Hatch D (2001) Use of a novel nitrification inhibitor to reduce nitrous oxide emission from 15N-labelled dairy slurry injected into soil. Rapid Commun Mass Spectrom 15(15):1291–1296. https://doi.org/10.1002/rcm.335
- Escuer-Gatius J, Shanskiy M, Mander Ü, Kauer K, Astover A, Vahter H, Soosaar K (2020) Intensive rain hampers the effectiveness of nitrification inhibition in controlling N₂O

emissions from dairy slurry-fertilized soils. Agriculture 10(11):497. https://doi.org/10.3390/agriculture10110497

- Friedl J, Scheer C, Rowlings DW, Mumford MT, Grace PR (2017) The nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) reduces N₂ emissions from intensively managed pastures in subtropical Australia. Soil Biol Biochem 108:55–64. https://doi.org/10.1016/j.soilb io.2017.01.016
- Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations, Rome
- Gilsanz C, Báez D, Misselbrook TH, Dhanoa MS, Cárdenas LM (2016) Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP. Agric Ecosyst Environ 216:1–8. https://doi.org/10. 1016/j.agee.2015.09.030
- Giltrap DL, Singh J, Saggar S, Zaman M (2010) A preliminary study to model the effects of a nitrification inhibitor on nitrous oxide emissions from urine-amended pasture. Agric Ecosyst Environ 136(3–4):310–317. https://doi. org/10.1016/j.agee.2009.08.007
- Han Z, Walter MT, Drinkwater LE (2017) N₂O emissions from grain cropping systems: a meta-analysis of the impacts of fertilizer-based and ecologically-based nutrient management strategies. Nutr Cycl Agroecosyst 107(3):335–355. https://doi.org/10.1007/s10705-017-9836-z
- Harty MA, Forrestal PJ, Watson CJ, McGeough KL, Carolan R, Elliot C, Krol D, Laughlin RJ, Richards KG, Lanigan GJ (2016) Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations. Sci Total Environ 563–564:576–586. https://doi.org/10.1016/j.scitotenv. 2016.04.120
- Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54(1):33–45. https://doi.org/10.1111/j. 1747-0765.2007.00195.x
- Hoekstra NJ, Schulte RPO, Forrestal PJ, Hennessy D, Krol DJ, Lanigan GJ, Müller C, Shalloo L, Wall DP, Richards KG (2020) Scenarios to limit environmental nitrogen losses from dairy expansion. Sci Total Environ 707:134606. https://doi.org/10.1016/j.scitotenv.2019.134606
- Hoogendoorn CJ, de Klein CAM, Rutherford AJ, Letica S, Devantier BP (2008) The effect of increasing rates of nitrogen fertiliser and a nitrification inhibitor on nitrous oxide emissions from urine patches on sheep grazed hill country pasture. Aust J Exp Agric 48(2):147–151. https://doi.org/10.1071/EA07238
- IFA (2022) Reducing emissions from fertilizer use report. https://www.fertilizer.org/public/resources/publication_ detail.aspx?SEQN=6202&PUBKEY=4B4097C4-D192-48C1-A3F0-EC1B4D0EA5FD. Accessed 26 Sep 2022
- IPCC (2014) Climate change 2014: Mitigation of climate change. Contribution of working group iii to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

- IPCC (2019) 2019 Refinement to the 2006 IPCC Guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies Hayama, Japan
- IPCC (2006) Guidelines for National Greenhouse Gas Inventories. IGES, Japan
- Kelly KB, Phillips FA, Baigent R (2008) Impact of dicyandiamide application on nitrous oxide emissions from urine patches in northern Victoria. Australia Aust J Exp Agric 48(2):156–159. https://doi.org/10.1071/EA07251
- Kim D-G, Giltrap DL, Saggar S, Hanly JA (2014) Field studies assessing the effect of dicyandiamide (DCD) on N transformations, pasture yields, N₂O emissions and N-leaching in the Manawatu region. N Z J Agric Res 57(4):271– 293. https://doi.org/10.1080/00288233.2013.855244
- Krol DJ, Minet E, Forrestal PJ, Lanigan GJ, Mathieu O, Richards KG (2017) The interactive effects of various nitrogen fertiliser formulations applied to urine patches on nitrous oxide emissions in grassland. Ir J Agric Food Res 56(1):54–64. https://doi.org/10.1515/ijafr-2017-0006
- Lam SK, Suter H, Mosier AR, Chen D (2017) Using nitrification inhibitors to mitigate agricultural N₂O emission: a double-edged sword? Glob Change Biol 23(2):485–489. https://doi.org/10.1111/gcb.13338
- Ledgard SF, Luo J, Sprosen MS, Wyatt JB, Balvert SF, Lindsey SB (2014) Effects of the nitrification inhibitor dicyandiamide (DCD) on pasture production, nitrous oxide emissions and nitrate leaching in Waikato, New Zealand. N Z J Agric Res 57(4):294–315. https://doi.org/10.1080/ 00288233.2014.928642
- Li J, Luo J, Shi Y, Lindsey S, Houlbrooke D, Ledgard S (2015) Nitrous oxide emissions from dairy farm effluent applied to a New Zealand pasture soil. Soil Use Manag 31(2):279–289. https://doi.org/10.1111/sum.12187
- Li J, Shi Y, Luo J, Zaman M, Houlbrooke D, Ding W, Ledgard S, Ghani A (2014) Use of nitrogen process inhibitors for reducing gaseous nitrogen losses from land-applied farm effluents. Biol Fertil Soils 50(1):133–145. https://doi.org/ 10.1007/s00374-013-0842-2
- Li T, Zhang W, Yin J, Chadwick D, Norse D, Lu Y, Liu X, Chen X, Zhang F, Powlson D, Dou Z (2017) Enhancedefficiency fertilizers are not a panacea for resolving the nitrogen problem. Glob Change Biol. https://doi.org/10. 1111/gcb.13918
- Li W, Wang Y, Xu Q, Cao G, Guo X, Zhou H, Du Y (2021) Global analysis of nitrification inhibitors on grasslands nitrous oxide emission rates. Biochem Syst Ecol 97:104289. https://doi.org/10.1016/j.bse.2021.104289
- Liu XJ, Mosier AR, Halvorson AD, Reule CA, Zhang FS (2007) Dinitrogen and N_2O emissions in arable soils: effect of tillage, N source and soil moisture. Soil Biol Biochem 39(9):2362–2370. https://doi.org/10.1016/j. soilbio.2007.04.008
- López-Aizpún M, Horrocks CA, Charteris AF, Marsden KA, Ciganda VS, Evans JR, Chadwick DR, Cárdenas LM (2020) Meta-analysis of global livestock urine-derived nitrous oxide emissions from agricultural soils. Glob Change Biol 26(4):2002–2013. https://doi.org/10.1111/ gcb.15012
- Luo J, Ledgard S, Wise B, Lindsey S (2016) Effect of dicyandiamide (DCD) on nitrous oxide emissions from cow urine deposited on a pasture soil, as influenced by DCD

application method and rate. Anim Prod Sci 56(3):350-354. https://doi.org/10.1071/AN15500

- Luo J, Ledgard S, Wise B, Welten B, Lindsey S, Judge A, Sprosen M (2015) Effect of dicyandiamide (DCD) delivery method, application rate, and season on pasture urine patch nitrous oxide emissions. Biol Fertil Soils 51(4):453–464. https://doi.org/10.1007/ s00374-015-0993-4
- Lush L, Wilson RP, Holton MD, Hopkins P, Marsden KA, Chadwick DR, King AJ (2018) Classification of sheep urination events using accelerometers to aid improved measurements of livestock contributions to nitrous oxide emissions. Comput Electron Agric 150:170–177. https:// doi.org/10.1016/j.compag.2018.04.018
- Macadam XMB, del Prado A, Merino P, Estavillo JM, Pinto M, González-Murua C (2003) Dicyandiamide and 3,4-dimethyl pyrazole phosphate decrease N₂O emissions from grassland but dicyandiamide produces deleterious effects in clover. J Plant Physiol 160(12):1517–1523. https://doi. org/10.1078/0176-1617-01006
- Marsden KA, Jones DL, Chadwick DR (2017) DMPP is ineffective at mitigating N₂O emissions from sheep urine patches in a UK grassland under summer conditions. Agric Ecosyst Environ 246:1–11. https://doi.org/10.1016/j.agee.2017.05.017
- Marsden KA, Marín-Martínez AJ, Vallejo A, Hill PW, Jones DL, Chadwick DR (2016) The mobility of nitrification inhibitors under simulated ruminant urine deposition and rainfall: a comparison between DCD and DMPP. Biol Fertil Soils 52(4):491–503. https://doi.org/10.1007/s00374-016-1092-x
- Marsden KA, Scowen M, Hill PW, Jones DL, Chadwick DR (2015) Plant acquisition and metabolism of the synthetic nitrification inhibitor dicyandiamide and naturally-occurring guanidine from agricultural soils. Plant Soil 395(1):201–214. https://doi.org/10.1007/ s11104-015-2549-7
- Mathieu O, Lévêque J, Hénault C, Milloux M-J, Bizouard F, Andreux F (2006) Emissions and spatial variability of N₂O, N₂ and nitrous oxide mole fraction at the field scale, revealed with 15N isotopic techniques. Soil Biol Biochem 38(5):941–951. https://doi.org/10.1016/j.soilb io.2005.08.010
- Mazzetto AM, Barneze AS, Feigl BJ, Van Groenigen JW, Oenema O, De Klein CAM, Cerri CC (2015) Use of the nitrification inhibitor dicyandiamide (DCD) does not mitigate N₂O emission from bovine urine patches under Oxisol in Northwest Brazil. Nutr Cycl Agroecosyst 101(1):83–92. https://doi.org/10.1007/s10705-014-9663-4
- McGeough KL, Watson CJ, Müller C, Laughlin RJ, Chadwick DR (2016) Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils. Soil Biol Biochem 94:222–232. https://doi.org/10.1016/j.soilbio.2015.11.017
- Menéndez S, Merino P, Pinto M, González-Murua C, Estavillo JM (2006) 3,4-dimethylpyrazol phosphate effect on nitrous oxide, nitric oxide, ammonia, and carbon dioxide emissions from grasslands. J Environ Qual 35(4):973– 981. https://doi.org/10.2134/jeq2005.0320
- Menéndez S, Merino P, Pinto M, González-Murua C, Estavillo JM (2009) Effect of N-(-butyl) thiophosphoric triamide

and 3,4 dimethylpyrazole phosphate on gaseous emissions from grasslands under different soil water contents. J Environ Qual 38(1):27. https://doi.org/10.2134/jeq20 08.0034

- Merino P, Estavillo JM, Graciolli LA, Pinto M, Lacuesta M, Muñoz-Rueda A, Gonzalez-Murua C (2002) Mitigation of N₂O emissions from grassland by nitrification inhibitor and Actilith F2 applied with fertilizer and cattle slurry. Soil Use Manag 18(2):135–141. https://doi.org/ 10.1111/j.1475-2743.2002.tb00231.x
- Merino P, Menéndez S, Pinto M, González-Murua C, Estavillo JM (2005) 3, 4-Dimethylpyrazole phosphate reduces nitrous oxide emissions from grassland after slurry application. Soil Use Manag 21(1):53–57. https://doi.org/10. 1111/j.1475-2743.2005.tb00106.x
- Minet EP, Jahangir MMR, Krol DJ, Rochford N, Fenton O, Rooney D, Lanigan G, Forrestal PJ, Breslin C, Richards KG (2016) Amendment of cattle slurry with the nitrification inhibitor dicyandiamide during storage: a new effective and practical N₂O mitigation measure for landspreading. Agric Ecosyst Environ 215:68–75. https://doi. org/10.1016/j.agee.2015.09.014
- Minet EP, Ledgard SF, Grant J, Murphy JB, Krol DJ, Lanigan GJ, Luo J, Richards KG (2018) Feeding dicyandiamide (DCD) to cattle: an effective method to reduce N₂O emissions from urine patches in a heavy-textured soil under temperate climatic conditions. Sci Total Environ 615:1319–1331. https://doi.org/10.1016/j.scitotenv.2017. 09.313
- Misselbrook T, Fleming H, Camp V, Umstatter C, Duthie C-A, Nicoll L, Waterhouse T (2016) Automated monitoring of urination events from grazing cattle. Agric Ecosyst Environ 230:191–198. https://doi.org/10. 1016/j.agee.2016.06.006
- Misselbrook TH, Cardenas LM, Camp V, Thorman RE, Williams JR, Rollett AJ, Chambers BJ (2014) An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environ Res Lett 9(11):115006. https://doi.org/10.1088/1748-9326/9/11/ 115006
- Monaghan RM, Smith LC, de Klein CAM (2013) The effectiveness of the nitrification inhibitor dicyandiamide (DCD) in reducing nitrate leaching and nitrous oxide emissions from a grazed winter forage crop in southern New Zealand. Agric Ecosyst Environ 175:29–38. https://doi.org/10.1016/j.agee.2013.04.019
- MPI (2013) DCD suspension supported | MPI Ministry for Primary Industries. A New Zealand Government Department. https://www.mpi.govt.nz/news-andresources/media-releases/dcd-suspension-supported/. Accessed 2 Jul 2020
- O'connor PJ, Minogue D, Lewis E, Lynch MB, Hennessy D (2016) Applying urine collected from non-lactating dairy cows dosed with dicyandiamide to lysimeters and grass plots: effects on nitrous oxide emissions, nitrate leaching and herbage production. J Agric Sci 154(4):674–688. https://doi.org/10.1017/S002185961 5000660
- O'Neill M, Saggar S, Richards KG, Luo J, Singh BP, Mehra P, Forrestal PJ (2021) Nitrous oxide emission factors in conventionally and naturally simulated cattle urine

patches. Nutr Cycl Agroecosyst 121(2-3):129-147. https://doi.org/10.1007/s10705-021-10162-5

- Pérez-Castillo AG, Arrieta-Méndez J, Elizondo-Salazar JA, Monge-Muñoz M, Zaman M, Sanz-Cobena A (2021) Using the nitrification inhibitor nitrapyrin in dairy farm effluents does not improve yield-scaled nitrous oxide and ammonia emissions but reduces methane flux. Front Sustain Food Syst 5:620846
- Pokharel P, Chang SX (2021) Biochar decreases the efficacy of the nitrification inhibitor nitrapyrin in mitigating nitrous oxide emissions at different soil moisture levels. J Environ Manage 295:113080. https://doi.org/10.1016/j.jenvm an.2021.113080
- Qiu W, Di HJ, Cameron KC, Hu C (2010) Nitrous oxide emissions from animal urine as affected by season and a nitrification inhibitor dicyandiamide. J Soils Sediments 10(7):1229–1235. https://doi.org/10.1007/ s11368-010-0242-2
- R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. URL https://www.R-project.org/
- Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N₂O): the dominant ozone-depleting substance emitted in the twenty-first century. Science 326(5949):123–125. https://doi.org/10.1126/science. 1176985
- Robinson A, Di HJ, Cameron KC, Podolyan A, He J (2014) The effect of soil pH and dicyandiamide (DCD) on N₂O emissions and ammonia oxidiser abundance in a stimulated grazed pasture soil. J Soils Sediments 14(8):1434– 1444. https://doi.org/10.1007/s11368-014-0888-2
- Rohatgi A (2019) WebPlotDigitizer Extract data from plots, images, and maps. https://automeris.io/WebPlotDig itizer/. Accessed 25 Jun 2020
- Roten RL, Fourie J, Owens JL, Trethewey JAK, Ekanayake DC, Werner A, Irie K, Hagedorn M, Cameron KC (2017) Urine patch detection using LiDAR technology to improve nitrogen use efficiency in grazed pastures. Comput Electron Agric 135:128–133. https://doi.org/10. 1016/j.compag.2017.02.006
- Selbie DR, Cameron KC, Di HJ, Moir JL, Lanigan GJ, Richards KG (2014) The effect of urinary nitrogen loading rate and a nitrification inhibitor on nitrous oxide emissions from a temperate grassland soil. J Agric Sci 152(S1):159–171. https://doi.org/10.1017/S002185961 4000136
- Simon PL, Dieckow J, de Klein CAM, Zanatta JA, van der Weerden TJ, Ramalho B, Bayer C (2018) Nitrous oxide emission factors from cattle urine and dung, and dicyandiamide (DCD) as a mitigation strategy in subtropical pastures. Agric Ecosyst Environ 267:74–82. https://doi. org/10.1016/j.agee.2018.08.013
- Simon PL, Dieckow J, Zanatta JA, Ramalho B, Ribeiro RH, van der Weerden T, de Klein CAM (2020) Does Brachiaria humidicola and dicyandiamide reduce nitrous oxide and ammonia emissions from cattle urine patches in the subtropics? Sci Total Environ 720:137692. https://doi. org/10.1016/j.scitotenv.2020.137692
- Singh J, Saggar S, Bolan NS (2009) Influence of dicyandiamide on nitrogen transformation and losses in

cow-urine-amended soil cores from grazed pasture. Anim Prod Sci 49(3):253. https://doi.org/10.1071/EA082 00

- Smith LC, de Klein CAM, Monaghan RM, Catto WD (2008) The effectiveness of dicyandiamide in reducing nitrous oxide emissions from a cattle-grazed, winter forage crop in Southland, New Zealand. Aust J Exp Agric 48(2):160– 164. https://doi.org/10.1071/EA07262
- Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ 133(3–4):247–266. https://doi.org/10. 1016/j.agee.2009.04.021
- Snyder CS, Davidson EA, Smith P, Venterea RT (2014) Agriculture: sustainable crop and animal production to help mitigate nitrous oxide emissions. Curr Opin Environ Sustain 9:46–54
- Soares JR, Cantarella H, de Menegale MLC (2012) Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biol Biochem 52:82– 89. https://doi.org/10.1016/j.soilbio.2012.04.019
- Spott O, Russow R, Stange CF (2011) Formation of hybrid N_2O and hybrid N_2 due to codenitrification: first review of a barely considered process of microbially mediated N-nitrosation. Soil Biol Biochem 43(10):1995–2011. https://doi.org/10.1016/j.soilbio.2011.06.014
- Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock's long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations, Rome, Italy
- Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006) Scope and Strategies for regulation of nitrification in agricultural systems—challenges and opportunities. Crit Rev Plant Sci 25(4):303–335. https://doi.org/10. 1080/07352680600794232
- Suter HC, Sultana H, Davies R, Walker C, Chen D (2016) Influence of enhanced efficiency fertilisation techniques on nitrous oxide emissions and productivity response from urea in a temperate Australian ryegrass pasture. Soil Res 54(5):523–532. https://doi.org/10.1071/SR15317
- Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1(1):17–26. https:// doi.org/10.3763/ghgmm.2010.0007
- Systat Software (2006) Systat Software. 2006. SSI. Sigmaplot for Windows, version 12.5. Systat Software, San Jose, CA
- Thomas BW, Gao X, Beck R, Hao X (2017) Are distinct nitrous oxide emission factors required for cattle urine and dung deposited on pasture in western Canada? Environ Sci Pollut Res 24(33):26142–26147. https://doi.org/ 10.1007/s11356-017-0392-5
- Thorman RE, Nicholson FA, Topp CFE, Bell MJ, Cardenas LM, Chadwick DR, Cloy JM, Misselbrook TH, Rees RM, Watson CJ, Williams JR (2020) Towards Country-specific nitrous oxide emission factors for manures applied to arable and grassland soils in the UK. Front Sustain Food Syst 4:62. https://doi.org/10.3389/fsufs. 2020.00062
- Trenkel ME (2010) Slow- and controlled-release and stabilized fertilizers: an option for enhancing nutrient use efficiency

in agriculture, 2nd ed. International fertilizer industry association (IFA), Paris

- Treweek G, Di H, Cameron K, Podolyan A (2016) Effectiveness of the nitrification inhibitor dicyandiamide and biochar to reduce nitrous oxide emissions. N Z J Agric Res 59(2):165–173. https://doi.org/10.1080/00288233.2016. 1161651
- Vallejo A, García-Torres L, Díez JA, Arce A, López-Fernández S (2005) Comparison of N losses (NO⁻₃, N₂O, NO) from surface applied, injected or amended (DCD) pig slurry of an irrigated soil in a Mediterranean climate. Plant Soil 272(1):313–325. https://doi.org/10.1007/ s11104-004-5754-3
- van der Weerden TJ, Luo J, Di HJ, Podolyan A, Phillips RL, Saggar S, de Klein CAM, Cox N, Ettema P, Rys G (2016) Nitrous oxide emissions from urea fertiliser and effluent with and without inhibitors applied to pasture. Agric Ecosyst Environ 219:58–70. https://doi.org/10. 1016/j.agee.2015.12.006
- van der Weerden TJ, Noble AN, Luo J, de Klein CAM, Saggar S, Giltrap D, Gibbs J, Rys G (2020) Meta-analysis of New Zealand's nitrous oxide emission factors for ruminant excreta supports disaggregation based on excreta form, livestock type and slope class. Sci Total Environ 732:139235. https://doi.org/10.1016/j.scitotenv.2020. 139235
- Velthof GL, Oenema O, Postma R, Van Beusichem ML (1996) Effects of type and amount of applied nitrogen fertilizer on nitrous oxide fluxes from intensively managed grassland. Nutr Cycl Agroecosyst 46(3):257–267. https://doi. org/10.1007/BF00420561
- Viechtbauer W (2010) Conducting Meta-Analyses in R with the metafor Package. J Stat Softw 36(1):1–48. https://doi. org/10.18637/jss.v036.i03
- Vistoso E, Alfaro M, Saggar S, Salazar F (2012) Effect of nitrogen inhibitors on nitrous oxide emissions and pasture growth after an autumn application in volcanic soil. Chil J Agric Res 72(1):133–139. https://doi.org/10.4067/ S0718-58392012000100021
- Ward GN, Kelly KB, Hollier JW (2018) Greenhouse gas emissions from dung, urine and dairy pond sludge applied to pasture. 1. Nitrous oxide emissions. Anim Prod Sci 58(6):1087–1093. https://doi.org/10.1071/AN15595

- Weiske A, Benckiser G, Herbert T, Ottow J (2001) Influence of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol Fertil Soils 34(2):109–117
- Zaman M, Blennerhassett JD (2010) Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system. Agric Ecosyst Environ 136(3– 4):236–246. https://doi.org/10.1016/j.agee.2009.07.010
- Zaman M, Nguyen ML (2012) How application timings of urease and nitrification inhibitors affect N losses from urine patches in pastoral system. Agric Ecosyst Environ 156:37–48. https://doi.org/10.1016/j.agee.2012.04.025
- Zaman M, Nguyen ML, Blennerhassett JD, Quin BF (2008) Reducing NH₃, N₂O and NO₃–N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers. Biol Fertil Soils 44(5):693–705. https://doi.org/10.1007/ s00374-007-0252-4
- Zaman M, Saggar S, Blennerhassett JD, Singh J (2009) Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biol Biochem 41(6):1270–1280. https://doi.org/10.1016/j. soilbio.2009.03.011
- Zaman M, Zaman S, Nguyen ML, Smith TJ, Nawaz S (2013) The effect of urease and nitrification inhibitors on ammonia and nitrous oxide emissions from simulated urine patches in pastoral system: a two-year study. Sci Total Environ 465:97–106. https://doi.org/10.1016/j.scitotenv. 2013.01.014

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.