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A B S T R A C T   

Habitat destruction and fragmentation are major factors in the destruction of genetic diversity and affect the 
movement behavior of the Roe deer population in the remaining habitats. Here, we study the population and 
landscape genetics of Capreolus capreolus (roe deer) in northern and northwestern Iran using twelve poly-
morphism microsatellite markers. From 111 total specimens, 63 had successful extraction (6 feces, 35 tissues, 9 
bones, and 13 antlers). We considered 30 microsatellite polymorphic loci, of which only 12 were amplified for 
our further analysis. For genetic diversity analysis, the Weir-Cockerham method was applied to measure the 
inbreeding coefficient (FIS) and fixation index (FST) for each locus as well as for each population. For landscape 
genetics, the susceptibility patterns of genetic variations were assessed using three hypotheses including isolation 
by distance (IBD), isolation by environment (IBE), isolation by resistance (IBR), and individual landscape genetic 
analysis. A habitat suitability map as an indicator of landscape resistance was constructed from several species 
distribution models (SDMs) algorithms including Generalized Boosting Models (GBM), Maximum Entropy 
(Maxent), Random Forest (RF), Generalized Linear Model (GLM), Multivariate Adaptive Regression Splines 
(MARS) and artificial neural networks (ANN) and an ensemble model. Our estimated FIs index showed that the 
Golestan, Arasbaran, and Guilan populations had the highest and lowest genetic diversity among roe deer 
populations. According to the Fst criterion, our results showed that Golestan and East Azarbaijan (Arasbaran) 
had the highest and Mazandaran had the lowest genetic distance patterns. Our results do not suggest that there is 
high genetic differentiation for roe deer in the region, with high levels of gene flow between study areas. We 
found that geographic distance has no significant relationship with genetic distance and that there is no sig-
nificant relationship between the ecological niche non-similarity matrix and the genetic distance matrix. The 
most influential factors affecting gene flow in roe deer were aspect and elevation variables. The analysis suggests 
that the landscape has no significant influence on the structuring of the studied population and shows little 
genetic differentiation.   

1. Introduction 

Roe deer (Capreolus capreolus), one of the 44 deer species in the 
world, is classified as Least Concern by the IUCN Red List due to its 

widespread distribution and increasing trend in the number of in-
dividuals (IUCN, 2019). Still, deer are reported as a protected species, 
according to the Iranian Ministry of Environment (DoE). The species is 
sensitive to habitat fragmentation (Chastagner et al., 2017). Because 
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deer are considered ecosystem engineers (Côté et al., 2004; Martin, 
2018), they can physically remodel ecosystems. A lack of species 
knowledge directly affects the conservation and management of pro-
tected species (Hepenstricka et al., 2012; Long et al., 2010). Based on 
recent studies, the range of roe deer in Iran consists of the Hyrcanian and 
Arasbaran forests and a small population in the western part of Iran. 

Habitat destruction, degradation, and fragmentation are major 
threats to biodiversity (Baur and Erhardt, 1995; Sala et al., 2000; Wilson 
et al., 2016). Fragmentation of natural and anthropogenic habitats can 
severely affect the genetic structure, reducing genetic diversity and 
viability of small and isolated animal populations (Wang et al., 2017). 
Previous studies have highlighted and focused on the identification of 
mutation rates in animals (Allio et al., 2017), naturally induced frag-
mentation (Sergio et al., 2018), and adverse consequences of biodiver-
sity loss and species extinction (Heilpern et al., 2018). 

Anthropogenic habitat fragmentation affects spatial patterns of 
species movement and functional connectivity, gene flow, patterns of 
spatial genetic variation, and population size in threatened and endan-
gered species (Taylor et al., 1993; Lande, 1998; Fahrig, 2003; Cushman, 
2006; Fahrig, 2007). Some studies have recognized that forest discon-
tinuity leads to declines in animal populations by reducing the amount 
of viable core habitat area and increasing edge effects (Reh and Seitz, 
1990; Gerlach and Musolf, 2000). This has also been explored in pre-
vious studies of how natural and anthropogenic chronic fragmentation 
can alter the behavior and practice of genome face and population ge-
netics of wild species (Keller and Largiader, 2003; Keller et al., 2004, 
2005). Landscape resistance and geographic distance are the two key 
factors that can negatively affect patterns of genetic diversity (Landguth 
et al., 2010; Cushman, 2006; Fahrig, 2007). , the low-fragmentation 
landscape has greater genetic diversity than the high-fragmentation 
landscape, but larger habitat areas can provide genetic refuge for 
threatened wild species (McRae et al., 2008). 

In short, landscape fragmentation can alter distribution and popu-
lation size, patterns of genetic diversity, and structure through gene flow 
mechanisms (Forge et al., 2003). Increased random genetic drift and 
inbreeding as well as reduced gene flow increase the genetic divergence 
between populations (Schlaepfer et al., 2018). In the short term, the loss 
of genetic diversity expands the level of homozygosity and the devel-
opment of deleterious recessive alleles that can reduce individual fitness 
through inbreeding depression (Charlesworth and Willis, 2009; 
Schlaepfer et al., 2018). In the long term, reduced genetic diversity can 
impair a population’s potential to adapt to changing environmental 
conditions (Manel and Holderegger, 2013). 

Landscape genetics provides a research framework to study the in-
fluence of landscape and environmental traits on genetic structure, ge-
netic discontinuities, and gene flow (Balkenhol et al., 2016; Storfer, 
2007; Manel and Holderegger, 2013; Cushman et al., 2006). Research 
into DNA-based markers or sequences with known positions on a chro-
mosome for genetic diversity has a long history and is useful for quan-
tifying diversity in nuclear DNA (Zhang and Hewitt, 2003). Historically, 
microsatellite is an ancient term used to describe cryptically simple 
repeated short sequence motifs (no longer than six base pairs) and has 
been distributed in coding and non-coding regions of every mammalian 
genome studied to date (Metzgar et al., 2000) They can be highly 
polymorphic, especially when long and uninterrupted, and therefore 
represent useful genetic markers (Chistiakov et al., 2006; Buschiazzo 
and Gemmell, 2006; Guichoux et al., 2011; Bhargava and Fuentes, 
2010). 

There is currently little knowledge about the distribution of roe deer 
in highly fragmented landscapes (Debeffe et al. 2012; Benoit et al., 2020; 
Ducros et al., 2020). With this motivation, we assess the impact of 
anthropogenic and natural fragmentation on species-specific densities 
and spatial patterns of roe deer genetic diversity in Iran. We first analyze 
microsatellite loci to provide the genetic population structure of roe deer 
throughout their range in Iran. We then used an individual-based 
landscape genetics approach and ecological niche modeling (ENM) to 

test hypotheses about the effects of landscape attributes (i.e. isolation by 
distance (IBD), isolation by resistance (IBR), and isolation by environ-
ment (IBE) and niche divergence in gene flow. (i.e. population-level 
niche comparisons). 

2. Materials and methods 

2.1. Study area 

Our study area includes the relict forests of the temperate Hyrcania 
(18,000 km2) and the Arasbaran forests (1600 km2) in Iran (Fig. 1). The 
Hyrcanian forests extend from the Talysh Mountains in Azerbaijan 
Province in western to northeastern Iran (Soofi et al., 2018). The 
Hyrcanian Forests are a biodiversity hotspot and have recently been 
nominated as a World Heritage Site (Ahmadi et al., 2020). These forests 
are home to various native mammal species such as the Persian leopard 
(Panthera pardus tulliana), brown bear (Ursus arctos), gray wolf (Canis 
lupus), bezoar goat (Capra aegagrus), Caspian red deer (Cervus elaphus 
maral) and roe deer (Capreolus Capreolus) (Soofi et al., 2018; Shokri 
et al., 2021). 

Elevationranges from 0 to 2800 m. Although these forests are rich in 
biodiversity, they are under severe anthropogenic pressures, including 
cattle grazing and the expansion of road networks and farmland (Sofi 
et al., 2018). The forests consist mainly of oriental beech (Fagus ori-
entalis), oaks (Quercus castaneifolia and Quercus macranthera), sessile oak 
(Quercus petraea), hornbeam (Carpinus betulus), Caspian honey locust 
(Gleditsia caspica), ironwood (Parrotia persica) and velvet maple (Acer 
velutinum) (Sagheb-Talebi et al., 2014). The Arasbaran forests are 
located in northwestern Iran and are part of the Lesser Caucasus biodi-
versity hotspot (Sagheb-Talebi et al., 2014). 

2.2. Roe deer genetic sampling 

We opportunistically extracted DNA from deer feces, tissues, bones, 
and antlers throughout northern Iran (Fig. 1). Fecal sampling was placed 
in test tubes containing 96–99% ethanol and stored at − 4 ◦C (Khosravi 
et al., 2017). Tissue, bone, and antler samples were provided by the 
Iranian Ministry of Environment (DOE). From 111 total specimens, 63 
had a successful extraction (6 feces, 35 tissues, 9 bones, and 13 antlers). 
All geographic coordinates of the samples were recorded by the GPS 
(Geographic position system). 

2.3. DNA extraction and PCR protocols 

The samples (tissues, bones, and antlers) were successfully extracted 
using the phenol–chloroform extraction method (Chan et al., 2001). The 
Genomic DNA fecal samples were isolated using DNA Stool Mini-Kit 
(Yekta-Tajhiz Azma, Iran). For tissue samples, 50–100 mg were sepa-
rated and used directly for extraction. For bone and antler, the samples 
were powdered in liquid nitrogen and 200 mg of each sample was 
transferred to a sterilized vial for extraction we considered 30 micro-
satellite polymorphic loci, of which only 12 were amplified for our 
analysis. Specifically, we optimized the polymerase chain reaction 
(PCR) conditions for each primer separately through a total volume of 
15 µL over 10 ng/L DNA template, 25 mM MgCl2, 0.25 M forward and 
reverse primers, 40 mM dNTPs, and 5 units of Fermenta’s Taq 
polymerase. 

We ran the PCR reactions for 35 cycles based on the following setup: 
Initial denaturation was performed at 94 ◦C for 1 min. We then tested 35 
cycles with different ranges including 94 ◦C (4 min), 57–60 ◦C (45 sec), 
and 72 ◦C (2 min). Finally, the extension step was performed at 72 ◦C (4 
min). After amplification of the desired sequences, the PCR products 
were run on a 4% Metaphor gel in a horizontal electrophoresis setup. 
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2.4. Genetic diversity analyses 

We calculated the mean number of alleles per loci, expected and 
observed heterozygosity, and the polymorphism information content 
(PIC) using GenAlEx software v.6.5 (Peakall et al., 2006). We also 
applied the Weir-Cockerham method to measure the inbreeding coeffi-
cient (FIS) and fixation index (FST) for each locus as well as for each 
population using the match test in GenAlEx. In addition, we calculated 
gene flow rates within and between roe deer populations using the 
Analysis of Molecular Variance (AMOVA) test in GENEPOP and ARLE-
QUIN v. 3.5 (Raymond, 1995; Excoffier and Lischer, 2010). 

2.5. Population differentiation analysis 

We used the STRUCTURE software v. 2.1 (Pritchard et al., 2000) to 
examine the genetic clusters of deer with K values from 1 to 10, 10 
replicates with 100,000 iterations of the Markov Chain Monte Carlo 
(MCMC) and a burn-in of 30,000 were listed. The number of clusters was 
estimated using K and Ln (Pr) (Pritchard et al., 2000). We compared our 
results with the R (version 4.1.0) package adegenet (Jombart, 2008). For 
each variable described in the drag surface construction, we calculated 
the effective distances between the 63 individuals using the gdistance 
package in R. We then ran a univariate linear mixed effects model using 
the maximum likelihood population effects method. 

2.6. Landscape genetic analysis 

For landscape genetics, the susceptibility patterns of genetic varia-
tions were assessed using three hypotheses: (1) isolation by distance, (2) 
isolation by environment, (3) isolation by resistance and individual 
landscape genetic analysis (Ashrafzadeh et al., 2018). We used the 
Mantel test to look for evidence of genetic distance between IBD, IBR, 
and IBE matrices. 

2.6.1. Isolation by environment 
To assess IBE, we conducted an analysis of environmental differen-

tiation between pairs of individuals using a set of 19 bioclimatic vari-
ables. These variables were obtained from the WorldClim database, 
which we downloaded at a resolution of 1 km (Fick et al., 2005; https: 
//www.worldclim.org). To define the accessible areas for each spe-
cies, circular buffers with a radius of 50 km were created around each 
occurrence point. We considered all available areas for the focal species 
and incorporated them as background niches (Ashrafzadeh et al., 2018). 
Subsequently, we extracted the 19 bioclimatic variables using the 
buffers as a mask layer (Ashrafzadeh et al., 2018). Furthermore, we 
performed a Principal Component Analysis (PCA) with varimax rota-
tion. Principal components (PCs) with eigenvalues >1 were selected, as 
they were deemed suitable for our objectives. Consequently, four PCs 
that met this criterion accounted for 95% of the total variance observed 
in the 19 bioclimatic variables. To quantify the environmental dissimi-
larity between each pair of points, we employed the Euclidean distance 

Fig. 1. The map shows the investigation area and the localities of the roe deer specimens (n = 66) in northern Iran, (red circles showed the occurrences of roe deer in 
the study area). 
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method, utilizing the ’dist’ function in R 3.2.2 (R Core Team, 2016). The 
relationship between the genetic distance matrix and the matrix of 
environmental dissimilarities was evaluated using the Mantel test in the 
’ZT’ software (Bonnet and Van de Peer, 2002). In order to investigate the 
influence of the ecological niche on genetic variations, we conducted a 
genetically-informed ecological niche analysis within the PCA frame-
work proposed by Broennimann et al. (2012). This approach allowed us 
to assess uncorrelated principal components. To elucidate niche segre-
gations, we compared the position of the Kernel density estimate of 
sample points (at a resolution of 100 m) against the accessible space for 
each entity within the brown bear groups (Broennimann et al., 2012). 
Additionally, for pairwise comparisons between existing groups, we 
computed a niche overlap index, hereafter referred to as Schoener’s D, 
using the density grids. To ensure that any observed pairwise differences 
in niche segregation were not due to chance, we performed niche sim-
ilarity and niche equivalency randomization tests (Warren, Glor & 
Turelli, 2008), as recommended by Ashrafzadeh et al. (2018). To 
determine the environmental space available across three roe deer 
subpopulations (in three provinces), we considered all pixels of the 19 
climatic variables within 50-kilometer buffers around each presence 
point. We used the ecospat package (Di Cola et al., 2017) to compare the 
roe deer niches in each population. The relationship between the genetic 
distance matrix and the matrix of Schoener’s D values was estimated 
using the Mantel test in the ’ZT’ software. 

2.6.2. Isolation by distance (IBD) 
We evaluated the IBD in GenAlex version 6.5 using the Mantel test 

(ESRI, Redlands, CA, USA). We also quantified the pairwise linear ge-
netic distances and the linear Euclidean distances in GenAlex and ArcGIS 
version 9.3 (ESRI, Redlands, USA), respectively. 

2.6.3. Isolation by resistance (IBR) 
Species distribution modeling (SDM) was applied to assess the 

impact of landscape resistance on genetic isolation (i.e. IBR). A habitat 
suitability map as an indicator of landscape resistance was constructed 
from several SDM algorithms including: Generalized Boosting Models 
(GBM), Maximum Entropy (Maxent), Random Forest (RF), Generalized 
Linear Model (GLM), Multivariate Adaptive Regression Splines (MARS) 
and artificial neural networks (ANN) and an ensemble model using the 
biomod2 package in R (R Core Team, 2016). To avoid multicollinearity 
between predictor variables, we excluded variables if they were greater 
than the limit of |r| were > 0.7 using Pearson’s correlation coefficient 
test (Dormann et al., 2013; Mahmoodi et al., 2022) (Table 1). To eval-
uate the performance of the models, the true skill statistics (TSS) and the 
receiver operating characteristic (ROC), and the area under the curve 
(AUC) were used (Mahmoodi et al., 2023; Ahmadi et al., 2023). Finally, 
individual models were weighted based on their AUC values based on 
the weighted-average technique to perform the ensemble model 
(Shadloo et al., 2021). 

Different scenarios were employed to determine the variables that 
might be affected by the potential gene flow of roe deer. Species 

distribution modeling based on three different approaches was applied 
to produce habitat resistance layers. Firstly, the values were subtracted 
from 101, and the habitat suitability was classified from 1 to 101 (Hirzel 
et al., 2006; Wang et al., 2009; Richards-Zawacki, 2009, Wang and 
Summers, 2010). Then, the habitat suitability map was categorized into 
four equal categories, including category I: HS < 25; Cat II: 50 > HS ≥
25; CatIII: 75 > HS ≥ 50; Cat III: 100 > HS ≥ 75. Next, a resistance value 
was assigned to each habitat suitability class: Cat I: 1000, Cat II: 100, Cat 
III: 10, and Cat III: 1 (Wang et al., 2009). A threshold-based approach 
was selected for the sensitivity and specificity test outputs drawn from 
the ensemble model, which was derived from the third applied 
approach. According to the selected threshold, the suitability map was 
classified into two categories of suitable and unsuitable areas, each of 
which was assigned resistance values of 1 and 1000, respectively (Wang 
et al., 2009). 

To generate a resistance model for the slope variable, 18 scenarios 
were considered (Epps et al., 2007). Three cut-off points (10%, 20%, and 
30%) were used based on the response curves of the variables. For each 
cut-off point, six grids were produced, and each cell implied the range of 
different values of resistance for each cell in the slope layer (Epps et al., 
2007). For example, the resistance level of 1 for a cell without slopes >
0, the cells’ resistance levels (ranging from strong to weak) were 
weighed as 0.1, 0.3, 0.5, 0.7, 0.01, and 0.05, respectively. 

The next scenario was based on land use, it has been shown that roe 
deer in the Hyrcanian forest avoid areas where anthropogenic activities 
are high and tend to occur in dense forest areas (Soofi et al., 2018). We 
reclassified land use layer into two classes: forested areas and non- 
forested areas in ArcGIS. We then assigned the resistance value of 1 to 
the forested areas and the resistance value of 1000 to non-forested areas. 
In addition, we used normalized vegetation index (NDVI) in the analysis. 
We obtained this index using MODIS satellite images with a resolution of 
1 km. Initially, we multiplied NDVI values to 100 and were categorized 
into two resistance classes: resistance of 1000 (with a value of 0) and 
resistance of 1 (with values of 0 to 100). Then we categorized NDVI layer 
into four classes (i.e., 0–25, 25–50, 50–75 and > 75), on which resis-
tance values of 1, 10, 100, and 1000 were assigned, respectively. 

The resistance model was obtained based on elevation variable, for 
which we assumed that altitude could be an indicator of higher diversity 
and richness of roe deer and that at the moderate elevation, the resis-
tance level might be lower. We further expected that any deviation from 
that optimal elevation can lead to an increase in the resistance value. 
Hence, we used an inverse Gaussian function (Eq. (1)) to reclassify the 
digital elevation model (DEM) layer (Castilho et al., 2011). To do so, we 
applied 4 different values of maximum resistance (Rmax: 2, 10, 100, and 
500), 5 optimal altitudes (Eopt: 200, 800, 1200, 1500, 1800- and 2000- 
meters elevation ranges), and 3 standard deviation values (ESD: 100, 
200, 300). Finally, we computed 94 models based on the elevation 
variable described in Eq. (1) as 

R = Rmax+ 1 − Rmax*e
− (Elev.− Eopt)2

2*E2
SD (1)  

where R indicates resistance, Rmax: maximum resistance Eopt: optimum 
elevations ESD:standard deviations. 

To assess the potential impact of the aspect variable on roe deer gene 
flow, we reformed the heat load index, so that to find the optimum 
geographical aspect in ArcGIS (McCune and Keon, 2002). The heat load 
index proposed by McCune and Keon (2002) suggests that the coldest 
and the warmest points are located in northeastern (45◦) with value 
0 and the southwestern (225◦) with value 1, respectively.The plain areas 
with − 1 cell value were classified as Rmax/2 in the original unclassified 
file (Castilho et al., 2011). We generated geographical aspect categories 
of 45◦from 0 to 315 (X = 0.5, 1, 2, 4, and 10), based on our heat load 
index, with optimal aspects (θopt) of 0, 45, 90, 135, 180, 225, 270, and 
315. The Rmax value was selected in a similar manner as we did for 
elevation-based resistance model. Overall, we produced 160 models 

Table 1 
Environmental variables participating in habitat modeling.  

Variable Unit Source 

Altitude Meter https://earthexplorer.usgs. 
gov/ 

Slope Percentage https://earthexplorer.usgs. 
gov/ 

Aspect Category DEM 
Max Temperature of Warmest Month 

(BIO5) 

◦C × 10 Fick and Hijmans, 2017 

Annual Precipitation (BIO12) Millimeter Fick and Hijmans, 2017 
Land cover Meter IFRWO*, 2010 
Distance to river Meter IFRWO*, 2010 
Distance to road Meter IFRWO*, 2010 
Distance to village Meter IFRWO*, 2010  
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using equation (2) (Castilho et al., 2011) expressed as follows: 

R =

[
1 − cos

(
θ − θopt

)

2

]x

Rmax (2)  

where, R indicates resistance, Rmax is maximum resistance, and 
θ denotes the optimal aspect.

2.7. The optimal model with a single variable 

We examined the univariable resistance model by comparing pair-
wise genetic and cost differences. To quantify the least-cost path be-
tween each pair and generate pairwise matrices, we used the 
PATHMATRIX tool v. 1.1 used in ArcGIS (Ray, 2005). We also created a 
grid map with five landscape variables with a cell size of 30 m (Zhu 
et al., 2010). We also calculated the pairwise genetic distances in Gen-
Alex. In addition, to determine the relationship between matrices, we 
applied Mantel and partial Mantel tests in the ZT software (Bonnet and 
Van de Peer, 2002). Finally, standoff isolation was used to control for the 
standoff effect alone in the partial Mantel test (Castilho et al., 2011). 

3. Results 

3.1. Microsatellite loci characteristics 

The results show that the allele size (range: 75 to 280) of roe deer in 
the majority of the microsatellite loci examined was consistent with the 
previous literature (Table 2). 

Data for SSR loci polymorphism showed that CSSM41, MCM505 and 
CSSM39 exhibited the highest diversity and CSSM41, BM302 remained 
the lowest diversity in the population. However, BMC1009 showed a 
monomorphic pattern across the populations studied and was therefore 
excluded from further analysis. Our Shannon Index result also indicated 
that the majority of the loci examined were suitable for assessing roe 
deer genetic diversity (Table 3). 

3.2. Intra-and-inter population genetic diversity 

Our estimated FIs index showed that the Golestan, Arasbaran, and 
Guilan populations had the highest and lowest genetic diversity among 
roe deer populations. According to the Fst criteria, our results showed 
that Golestan and East Azarbaijan (Arasbaran) had the highest and 
Mazandaran the lowest genetic distance patterns (Fig. 2). 

Our cluster analysis revealed a graphical pattern of genetic diversity 
within and between populations of roe deer (Fig. 3). 

Our microsatellite loci analysis has unequivocally deciphered the 
genetic diversity, suggesting that a potential genetic linkage appears to 
be occurring within roe deer populations. It also shows genetic distance 
and allelic differentiation between populations. 

3.3. SSR-based cluster analysis 

Our SSR-based cluster analysis revealed high genetic relatedness and 
gene flow in the study areas (i.e., Golestan, Mazandaran, Gilan, and 
Arasbaran). Furthermore, our PCA analysis showed a strong genetic 
correlation between the roe deer populations in the study areas (Fig. 4). 
The first and second PCs were justified by ~81.09% and ~18.91% of the 
variance between the studied populations, respectively. However, we 
did not find a significant genetic distance between the populations, but 
the genetic distance between the roe deer population in Gilan (western 
Hyrcanian forests) and the population in East Azerbaijan (Arasbaran 
forests) was high (Fig. 4). Fig. 4 shows that genetic mixing between 
populations is high. 

3.4. SSR-based structure analysis 

Our results further showed that ~0.75% of roe deer genotyping and 
historical biological background was associated with the population it-
self, while 25% of the population appeared to have migrated from other 
populations. The highest migratory rate was observed between Golestan 
and Mazandaran populations. Most violations have been linked to the 

Table 2 
Characteristics of microsatellite loci and molecular descriptive statistics in the studied population.  

Locus Size allele na* ne* I* Obs_Het Exp_Het* Nei** Ave_Het PIC 

NVHRT48 75–99  3.00  2.33  0.92  0.32  0.58  0.57  0.57  0.49 
CSSM41 110–118  4.00  2.98  1.20  0.39  0.67  0.66  0.66  0.61 
BM1818 240–248  2.00  2.00  0.69  0.17  0.50  0.50  0.50  0.37 
OarfcB304 150–200  3.00  2.85  1.07  0.26  0.65  0.65  0.65  0.57 
BM757 180–204  4.00  3.14  1.25  0.21  0.69  0.68  0.68  0.63 
ROe06 102–114  3.00  2.89  1.08  0.19  0.66  0.65  0.65  0.58 
BMC1009 280–280  1.00  1.00  0.00  0.00  0.00  0.00  0.00  
MCM505 112–188  4.00  2.97  1.14  0.16  0.67  0.66  0.66  0.59 
CSSM22 188–208  3.00  2.92  1.08  0.14  0.66  0.66  0.66  0.58 
BM302 142–148  2.00  2.00  0.69  0.08  0.50  0.50  0.50  0.37 
CSSM39 160–168  4.00  2.61  1.07  0.14  0.62  0.62  0.62  0.56 
MAF70 122–128  2.00  1.99  0.69  0.11  0.50  0.50  0.50  0.37 
Mean   2.92  2.47  0.91  0.18  0.56  0.55  0.55  
St. Dev   1.00  0.63  0.35  0.11  0.19  0.19  0.19  

Na = No. of Different Alleles; Ne = No. of Effective Alleles = 1/(Sum pi^2); I = Shannon’s Information Index = − 1* Sum (pi * Ln (pi)); Obs-Het = Observed Het-
erozygosity = No. of Hets/N; Exp-Het = Expected Heterozygosity = 1 − Sum pi^2; F = Fixation Index = (He − Ho)/He = 1 − (Ho/He); Where pi is the frequency of the 
allele for the population & Sum pi^2 is the sum of the squared population allele frequencies. *P < 0.05; **P < 0.01; ***P < 0.001. No test was done for the loci with less 
than five alleles because the number of permutation configurations is too low to carry out a test at a 5% level. Nei = measure of the average genetic diversity per locus, 
HS; Ave_Het = Average He across the populations; PIC = Polymorphic Information Content. 

Table 3 
Summary of indicators of polymorphism of SSR loci in the studied population.  

Locus AlleleNo Obs-Het Exp-Het FST RST Nm 

NVHRT48  4.00  0.32  0.58  0.38  0.38  0.25 
CSSM41  5.00  0.39  0.67  0.59  0.25  0.56 
BM1818  3.00  0.17  0.50  0.69  0.01  3.05 
OarFcB304  4.00  0.26  0.65  0.79  0.03  0.58 
BM757  5.00  0.21  0.69  0.75  − 0.01  3.76 
Roe06  4.00  0.19  0.66  0.84  0.09  3.30 
BMC1009  2.00  0.00  0.00  –  –  – 
MCM505  5.00  0.58  0.67  0.80  0.13  3.33 
CSSM22  4.00  0.14  0.66  0.90  0.15  1.13 
BM302  3.00  0.08  0.51  0.88  − 0.04  2.54 
CSSM39  5.00  0.14  0.62  0.71  − 0.06  17.54 
MAF70  3.00  0.11  0.50  0.79  − 0.01  0.59 
Mean  3.92  0.18  0.56  0.57  0.06  0.05 

Fst = (Ht − Mean He)/Ht, Nm = [(1/Fst) − 1]/4; Obs-Het: observed heterozy-
gosity; Exp-Het: expected heterozygosity; Rst: Genetic, differentiation by step-
wise mutation. 
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Fig. 2. Illustrates the genetic differentiation within and amongst populations. B – displays the extent of genetic differentiation between populations by FST fixa-
tion index). 
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Mazandaran population. We found a high level of allelic similarity in the 
populations studied. Only 25% of the genotype per sample population 
was shared with other populations and 75% were possibly related to the 
individuals in each population. The maximum numerical value of the K 
statistic (K = 4) indicates the best standard criterion for classifying the 
population studied. The Bayesian clustering approach identified four 
distinct genetic clusters in which only genetic mixing between in-
dividuals was high, indicating strong gene flow between individuals 
(Fig. 5). 

The genetic cluster assignments in different groups showed that each 
population studied retains proportional allelic admixture and associa-
tions with other populations (Fig. 6). Taken together, these results 
indicate that the level of genetic association of individuals between 
populations was relatively high. 

3.5. Isolation by distance, environment and resistance 

Our results showed that genetic differentiation and geographic dis-
tance correlation were not significant across the study area (p = 0.122, 
p > 0.05), while isolation by environmental results (p = 0.17, p > 0.05) 
suggested that these Mantel tests based on environmental differences 
were not significantly associated with genetic differentiation between 
individuals. 

3.6. Niche comparisons at the population level 

The population-level ecological niche differentiation test showed 
that (PCA 79.61% axis = 1.79%) was the highest trend in the climate 
variable (Fig. 7). We found the highest Schoener’s D value (D = 0.07) for 
MazandaranGolesan, a moderate value for MazandaranArasbaran (D =

0.17), and a very low value for GolestanArasbaran (Fig. 8). Niche 
equivalence analyses showed that the Golestan and Mazandaran pop-
ulations did not differ significantly (p = 0.9, p > 0.05). Likewise, we 
found no significant (p = 1, P > 0.05) ecological niche difference for 
Golestan and Arasbaaran populations and for the Arasbaran- 
Mazandaran populations (p = 0.04, p < 0.05). However, our niche 
similarity analysis between these three clustered populations reveals a 
significant (P < 0.05) similarity pattern. Niche similarity analyses 
showed that Golestan-Arasbaran populations did not differ significantly 
(p = 0.7, p > 0.05) and Arasbaran-Mazandaran and Mazandaran- 
Golestan populations (p = 0.009, p < 0.05). (Fig. 9). Isolation by envi-
ronmental analysis revealed that there was no significant association 
between genetic distance and niche overlap index between populations, 
and that separation based on ecological niches does not affect genetic 
patterns. The results of the univariate analysis indicated that none of the 
environmental variables were significantly related to genetic distance in 
the presence of the IBD control factor. 

For the comparison of the Golestan and Mazandaran populations, the 
hypothesis of niche equivalence was rejected (p = 0.9, p > 0.05); 
Fig. 9f), Golestan-Arasbaaran populations (p = 1, P > 0.05); Fig. 9c and 
Arasbaran-Mazandaran populations (p = 0.04, p < 0.05); Fig. 9d. 
However, our niche similarity analysis between these three clustered 
populations reveals a significant (P < 0.05) similarity pattern. Niche 
similarity analysis showed that the Golestan-Arasbaran populations 
were not significantly different (p = 0.7, p > 0.05); Fig. 9l) as well as for 
Arasbaran-Mazandaran and Mazandaran-Golestan populations (p =
0.009, p < 0.05); Fig. 9g, h). 

Fig. 3. Diagram of phylogenetic networks between samples using R-based adegenet package.  
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3.7. Binary habitat suitability 

The binary map showed that 14% of the study area was optimal 
(Fig. 10). Optimum centers are more commonly found at lower eleva-
tions and low-lying areas. The results also showed that the RF method 
performs best among other methods. Overall, this method was the one 
that provided the most robust solutions. The most important and 
effective variables in determining wildlife suitable habitat, which 
accounted for most of the model construction, were elevation and land 
cover, which were very similar effects. The Maximum Temperature of 
the Warmest Month also had a greater impact on roe deer distribution. 
Land cover and Maximum Temperature of the Warmest Month turned 
out to be the most important factors influencing the distribution of roe 
deer in the study area (Table 4). 

3.8. Isolation by resistance 

We found no significant relationship between the matrix of least cost 
path and the matrix of genetic distance between pairs of sampled in-
dividuals (P > 0.05, for all scenarios). This suggests that habitat suit-
ability, slope, land cover, and NDVI do not significantly affect gene flow. 
We found evidence that elevation (range: 1000–1800 m) and north 
aspect explained variants for optimal gene flow, while landscape vari-
ables showed no significant impact on habitat suitability (Table 5). 

4. Discussion 

4.1. Population genetic diversity and structure 

One of the main goals of this study was to investigate the genetic 
diversity of the roe deer populations in the study area. Analyzes of ge-
netic patterns based on F statistics and Bayesian clustering showed that 
high gene flow between populations formed a genetically homogeneous 
group. We found relatively low to moderate genetic diversity and also 
flat genetic patterning in the remaining roe deer populations. Our results 
also showed that roe deer populations exhibit moderate genetic varia-
tion. The genetic diversity of roe deer in this area is lower than in other 
regions where the species occurs, including Europe (Markov et al., 2016; 
Matosiuk et al., 2014; Amiri et al., 2021). Amiri et al. (2021) assessed 
the genetic diversity and phylogeography of roe deer populations in 
Iran, with the results showing that roe deer have low genetic diversity. 
Genetic variation plays a crucial role in enabling populations to adapt to 
environmental change and persist over time (Frankel, 1974). Studies 
have shown that populations with higher genetic variation are more 
likely to survive ecological or evolutionary changes (Quattro & Vri-
jenhoek, 1989; Leberg and Smith, 1993). Furthermore, even minor 
changes in genetic variation can have a significant impact on population 
fitness (Frankham, 1995). 

4.2. Landscape genetics approach 

In the present study, different IBR scenarios were applied to identify 
and measure the relationship between roe deer genetic structure and 
landscape patterns. Our results showed that elevation and aspect affect 

Fig. 4. PCA analysis for the species studied based on the adegenet package in R software Environment for each population.  
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the gene flow of roe deer in northern and northwestern Iran. Areas of 
medium elevation and dense forest cover increase gene flow in the study 
area. The deer are assigned to the forest type in the middle elevation and 
avoid the forests of the lower elevation in the study area. Deer prefer 
mature forests in winter and this has been confirmed for other deer 
species such as white-tailed deer, mule deer, and mouse deer. 

On the other hand, the results showed that virgin forest use increases 
with increasing snow depth and that snow is an important factor in 
habitat selection by roe deer and its presence decreases at high eleva-
tions and more mature forests are used (Mysterud et al., 1999; Nilsen 
et al., 2004; Hewison et al., 2001; Bonnot et al., 2013). Elevation and 
climate variables (such as precipitation and temperature) play impor-
tant roles in determining feeding times and food access restrictions for 
deer. In winter, deer approach roads and water sources at low eleva-
tions. In winter, species are more likely to be seen by hunters due to less 
vegetation (Telfer, 1967). 

Results showed that the removal of water sources had little effect on 
deer presence. Mahmoodi’s et al. (2020) results showed that water is not 
a limiting variable for this species in Iran as water is easily accessible and 
usable. Deer usually choose their habitat near water sources and rivers. 
Because this species prefers to feed on fresh plants and tree buds 
(Jasińska et al., 2021). Roe deer swim around the river in the study area 
and this behavior is consistently observed, although rivers or lakes, even 
at high mobility, impede gene flow for other mammalian species (Mla-
denoff et al., 1995). Hepenstrick et al. (2012) showed that rivers have 
only a moderate impact on gene flow in roe deer. The results of Coulon 
et al. (2004) showed that while rivers separate urban areas and high-
ways for deer populations, they do not present impenetrable barriers 
and allow individuals to cross them. 

The results showed that artificial barriers such as roads do not make 
a significant genetic difference between roe deer populations. Roads are 
considered a barrier to gene flow for small species (Keller et al., 2004), 

Fig. 5. The most likely number of genetically distinct clusters within roe deer populations in the north and northwestern Iran is estimated based on Delta K (Evanno, 
Regnaut & Goudet, 2005). 

Fig. 6. Each vertical bar represents one individual roe deer. Colors indicate the most likely genetic cluster assignments in different groups identified by STRUCTURE 
software (red = Golestan; yellow = Arasbaran, green = Mazandaran; and blue = Gilan). Inferred ancestry of individuals: Inferred clusters = Y; Individual (Pop) = X. 
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but large and highly mobile species are less affected (Kuehn et al., 2007). 
Although there are important tourist routes in the study area, they must 
not cause genetic differentiation of the population and must not affect 
the exchange and movement of roe deer. However, the negative impact 
of roads on the distribution of mammals has been reported (Roach et al., 
2001; Jedrzejewski et al., 2004; Epps et al., 2005; Waller and Servheen, 
2005; and Riley et al., 2006). Deer can exhibit resilient behavior and 
even adapt to human-induced disturbances (Hewison et al., 2001; 
Bonnot et al., 2013; Jeppesen, 1987). But the potential of roads to create 

genetic infrastructure should be considered when planning future roads 
(Jiang et al., 2009; Bonnot, 2013). 

The minor effects of land cover and man-made phenomena may be 
the result of multiple non-interacting processes. It has weak genetic 
differentiation in the same country appearance. Given the species dis-
tribution in the study area, we believe that landscape heterogeneity is 
not sufficient to influence gene flow. Deer can also move to different 
habitats. In this study, the land cover map was divided into two parts 
(forested areas and non-forested areas) and the resistance map was 
created. According to the Mantel tests, the correlation between genetic 
distance and the least cost path matrix was not significant. When the 
study area is large, habitat type has less impact on genetic diversity 
patterns and does not pose a barrier to gene flow (Burkart et al., 2016). 
Despite being forested areas, the relationship between roe deer (Coulon 
et al., 2004) and white-tailed deer (Long et al., 2005) in our study area 
according to the partial fur test by land cover map classification 
(forested areas & non-forested areas) does not count as an obstacle for 
gene flow in the considered deer. 

Several scenarios were defined to create the habitat suitability map 
landform resistance model. The results showed that habitat suitability is 
not a barrier to gene flow in roe deer. This may be because most areas of 
the study area are suitable for roe deer. Consequently, there is no rela-
tionship between the genetic distance matrix and the least-cost path 
matrix. The results of Balkenhol et al. (2009) also showed that the 
relationship between genetic diversity and habitat suitability is less clear 
at the landscape level. They showed that deer in moderately suitable 
habitats differed from deer in low and highly suitable habitats. 

The results of the niche similarity test show that there is no signifi-
cant association between population divergence and ecological niche 
similarity and therefore evolutionary separation events through allo-
patric adaptation may not have occurred for Arasbaran-Gilan pop-
ulations and not for Golestan and Mazandaran. Ecological niche models 
showed that roe deer niches, genetic clusters with different geographic 

Fig. 7. Results of population-level niche differentiation of Iranian roe deer 
groups based on the PCA-env method (Broennimann et al., 2012). 

Fig. 8. Results of the population-level niche overlap analysis showed low values of niche overlap between Arasbaran- Golestan (Schoener’s D = 0.07; Fig. 8a), 
Arasbaran-Mazandaran (Schoener’s D = 0.39; Fig. 8b) and Golestan – Mazandaran (Schoener’s D = 0.17; Fig. 8c. 
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distributions, showed a slight overlap. According to the IBD hypothesis, 
geographic distance does not affect genetic differentiation and the 
relationship between a geographic distance matrix and a genetic dis-
tance matrix was not significant. which is common in migratory species 
such as roe deer (Khosravi et al., 2017). The results of Kierepka et al. 
(2016) showed that geographic distance is an important and influential 
factor in gene flow in roe deer. 

5. Conclusion 

This study examined for the first time the effect of several land traits 
on roe deer gene flow, and the results showed that despite the relatively 
large extent of the study area, no significant population structure with 

high dispersibility of roe deer was found. It is possible that the genetic 
specificity is not related to the current connection or isolation of the 
study areas, but to some processes that took place many years ago. Our 
results show that despite the small genetic differences between the 
populations, future strategies need to be implemented to keep this 
population under optimal conditions. Our study also suggests how 
knowledge at the individual level can be used to determine the impact of 
land fragmentation on migratory (herbivorous) mammalian species. We 
observed relatively low to moderate genetic diversity and slightly 
differentiated genetic structure in the roe deer population. 

Fig. 9. Result of niche similarity analysis between three clustered populations.  
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