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A B S T R A C T   

In Finland, interest in continuous cover forestry (CCF) has increased rapidly in recent years. During those years 
CCF has been examined from various viewpoints but not from the perspective of forest inventories. This holds 
especially true for applications based on remote sensing. Conversely, airborne laser scanning (ALS) data have 
been widely used to predict forest characteristics such as size distribution and vertical forest structure, which are 
closely related to the forest information needs of CCF. 

In this study we used the area-based approach to predict a set of stand attributes from ALS data (5 pulses per 
m2) in a CCF forest management experiment in Katajamäki, eastern Finland. In addition to the CCF stands, the 
experiment included shelterwood stands and untreated stands. The predicted attributes included volume, 
biomass, basal area, number of stems, mean diameter, Lorey’s height, dominant height, standing dead wood 
volume, parameters of the theoretical stem diameter distribution model, understory height and number of un-
derstory stems. Our main aim was to test whether the same model could be used across different management 
systems. The accuracy of the attributes predicted for the CCF stands was compared with the predictions for the 
other management systems in the same experiment. We also compared and discussed our results in relation to the 
even-aged stand attribute predictions that were conducted by using separate operational forest data collected 
from sites surrounding Katajamäki. 

The results showed that forest data from the different management systems could be combined into a single 
model of a stand attribute, i.e., ALS metrics were found to be suitable for comparing different management 
systems in regard to differences in forest structure. The accuracy of the predicted attributes in the CCF plots was 
comparable to that of the other management alternatives in the experiment. The accuracy was also comparable 
to that of even-aged forests. 

The results of this study were promising; the stand attributes of CCF-managed forests could be predicted 
analogously to those of other management systems. This indicates that for the purposes of forest inventories there 
may not be a need to stratify forest lands by management system. It should be noted, however, that the study area 
was relatively small, that the forest stands were harvested in the 1980 s, and that the attributes may not have 
been completely exhaustive for CCF.   

1. Introduction 

Continuous cover forestry (CCF) has traditionally been practiced in 
many regions, i.e., Central Europe (Sterba 2004). There are several 
terms and variants associated with CCF management systems, such as (i) 
repeated high thinning combined with natural regeneration, (ii) use of 

gap felling with a naturally emerging understory providing new tree 
generation, and (iii) traditional selection felling, i.e., uneven-aged 
management, which has been used historically in Central Europe. 
There is also a long history of CCF-type management in Finland, where it 
has been applied in forests where a continuous tree cover is especially 
needed for preservation and protection of vulnerable species, 
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management of the landscape or maintenance of recreational or land-
scape values. However, this method became illegal in the late 1940 s due 
to the potential for forest degradation (Sarvas 1944, Leikola 1986a, b). 
In the subsequent 60-year period, even-aged rotation forestry was the 
dominant practice in Finnish forest management. It entailed even rota-
tion lengths with consecutively implemented harvestings, where forests 
were thinned from below and where regeneration occurred when the 
forests were clear-felled at the end of the rotation. In the past 20 years, 
however, interest in CCF has increased again for a variety of reasons. 

One reason for the increased interest in CCF is the need to implement 
forest management procedures that do not entail clear-felling. Accord-
ing to Valkeapää et al. (2009), only 5% of Finns accept clear-felling 
without any reservations. According to Kumela and Hänninen (2011), 
12% of forest owners want to use CCF in all their forests, 15% in some 
forests, 25% may try it, 28% want to know more about the method, and 
only 10% will never use it. Other reasons for the increased popularity of 
CCF management include its potential economic profitability (Tahvonen 
et al. 2010, Pukkala et al. 2010) and the fact that the relative importance 
of non-timber benefits of forests is increasingly acknowledged. Similar 
trends have also been found in other countries (e.g., Sweden; Axelsson 
and Angelstam 2011). Special attention has also been paid to the carbon 
sequestration function of forests where uneven-aged management and 
other forms of CCF have produced a slightly better carbon balance in the 
short term than even-aged plantation forest stands (Pukkala et al. 2010). 
This is due to the better assortment distribution of harvested timber in 
CCF than in even-aged forestry. Sawnwood-sized harvested timber in 
CCF improves the possibilities for the establishment of long-term carbon 
stores in wood products, for example. 

In Finland, CCF has been examined from a number of viewpoints. 
Early studies, such as Sarvas (1944), studied the effect of selective cut-
ting of logs in privately owned forests in southern Finland. A new era in 
CCF research started around the 1980–90 s with the establishment of 
new permanent-plot-based field experiments (Pukkala et al. 2011). 
These experiments included both a network of uneven-aged manage-
ment plots (ERIKA) (Saksa 2004) and separate experiments such as the 
one in Katajamäki, which is used in this article. These experiments 
provided results on a range of topics that included forest growth and 
yield (Lähde et al. 2002, Hynynen et al. 2019, Bianchi et al. 2020), 
ingrowth and early development of seedlings (Eerikäinen et al. 2007, 
Eerikäinen et al. 2014, Kuusinen et al. 2019), forest damage (Komonen 
et al. 2020, Valkonen et al. 2020), logistics (Sirén et al. 2015), wood 
quality (Pyörälä et al. 2022) and forest planning and the carbon balance 
(Shanin et al. 2016). Similar trends of increased CCF research can also be 
found in Sweden (Lundqvist 1993, 2017). 

Although CCF has been studied in Finland extensively, it has not yet 
been studied from the forest inventory viewpoint. Comprehensive so-
lutions for a CCF inventory based on airborne laser scanning (ALS) have 
also been lacking internationally (Köhl and Baldauf 2011). It is clear that 
forest attributes, such as volume and biomass, are also of major interest 
in a CCF inventory. For CCF management planning, however, it is 
necessary to know the number, size and species distribution of the small- 
sized understory trees that grow under the dominant tree canopy, for the 
management relies heavily on the cohorts of non-dominant trees. The 
National Forest Inventory results show that though the understory is 
very common in Finnish forests, that does not mean that CCF manage-
ment is predominant; in fact, <10,000 ha are classified as uneven-aged 
managed (Korhonen et al. 2021). 

ALS data have been used in numerous studies that focused on key 
characteristics of CCF. For instance, data have been used to describe the 
vertical structure of forests from an ecological point of view, for the 
detection of canopy gaps, and for the prediction of canopy coverage 
(Vepakomma et al. 2008, Korhonen et al. 2011, Dalagnol et al. 2021). In 
addition, methods have been developed to quantify the vertical forest 
structure for biodiversity or other assessments (Zimble et al. 2003, 
Maltamo et al. 2005, Hill and Broughton 2009, Morsdorf et al. 2010, 
Hamraz et al. 2017, Crespo-Peremarch et al., 2018), to characterize 

forest fuels (Riano et al. 2003, Maltamo et al. 2020), to classify canopy 
layers (Martinuzzi et al. 2009, Miura and Jones 2010, Wilkes et al. 2016, 
Adnan et al. 2019), and to find regeneration patterns (Bollandsås et al. 
2008). However, most of these studies have not been conducted in CCF- 
managed forest areas. In some studies the study area has comprised 
uneven-aged forests (Bollandsås and Næsset 2007, Bollandsås et al. 
2008, Spriggs et al. 2015, Stefanidou et al. 2020, Leclère et al. 2022). In 
most of these studies, the stem diameter distribution has been consid-
ered. For example, Valbuena et al. (2013) reported that the Gini coef-
ficient based on tree diameters could be used to separate uneven-sized 
from even-sized forests. However, these studies do not compare the er-
rors associated with the inventory outputs across CCF systems with other 
forest management systems. Instead, the study areas appear to be 
continuously managed with the uneven-aged forestry approach. 

In the current study, our aim was to test whether the same ALS-based 
forest attribute models could be used across different management 
systems. We predicted the stand attributes of a prior CCF forest man-
agement experiment by applying the area-based approach (ABA) with 
ALS data. The experiment also included shelterwood stands and un-
treated stands. The predicted stand characteristics were timber volume, 
biomass, basal area, number of stems, mean diameter, Lorey’s height, 
dominant height, standing dead wood volume, parameters of the theo-
retical stem diameter distribution model, understory height, and num-
ber of understory stems. The accuracies of the predicted attributes were 
compared across management systems within the same experiment. By 
applying separate data, we also compared and discussed our results in 
relation to the attributes predicted for even-aged stands. 

2. Material and methods 

2.1. Study area and field measurements 

The study area is an experimental area for forest management that 
was established in 1985. Located in Katajamäki, Rautavaara, Finland (N 
63◦71′, E 28◦ 32′) the forests within the experimental area represent 
coniferous-dominated boreal forests. The area is dominated by Norway 
spruce (Picea abies (L.) Karst, proportion with respect to the total vol-
ume: 61.3%) with an admixture of Scots pine (Pinus sylvestris L., 27.2%) 
and birch (Betula spp. 11.5%). The experiment included forest stands 
with seven different treatments (Leikola 1986a, b):  

i) Shelterwood dominated by Norway spruce;  
ii) Shelterwood dominated by Scots pine;  

iii) Shelterwood dominated by Norway spruce, Scots pine and birch;  
iv) Uneven-aged management;  
v) Selective cutting;  

vi) Small-scale clearcutting, and  
vii) Untreated (no management). 

In this study, treatments i–iii were merged to form shelterwood 
stands, iv–vi were CCF stands, and vii represented untreated stands. In 
this report, the management systems or treatments examined are 
referred to as 1) shelterwood, 2) CCF, and 3) untreated stands. All 
treatments were repeated four times (Fig. 1). 

We established new circular plots (15 m radius) in the experimental 
stands in summer 2021. In each of the CCF and shelterwood stands, one 
plot was established, but in one of the CCF stands and all of the untreated 
stands, two plots were established. The plots were accurately positioned 
by means of a global navigation satellite system (GNSS) with an external 
antenna elevated to 5 m, and the positions were post-corrected after-
wards by means of a differential GNSS algorithm and reference posi-
tions. The measurements taken included the diameter at breast height 
(DBH) and the height of each tree with a DBH > 5 cm. We also registered 
the tree species and the existence of an understory (density of trees with 
DBH < 5 cm). We then calculated the tree volume (V, m3 ha− 1) and the 
above-ground biomass (AGB, Mg ha− 1) by using the tree diameter and 
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tree height measurements (Laasasenaho 1982, Repola 2008, 2009). The 
tree size distribution was characterized by employing the Weibull 
function, where the model parameters are estimated through a 
maximum likelihood approach based on the measured DBH. This anal-
ysis utilized a two-parameter form of the Weibull function, encom-
passing the scale (b) and shape (c) parameters. The stand attributes 
derived from the field-measured characteristics are reported in Table 1. 

As the Katajamäki experiment did not include even-aged stands, 
additional sample plot data from an operational forest management 
inventory conducted in a nearby 60 × 50 km area (center point N 63◦46′ 
E 28◦13′) were added to the data set (Fig. 1). These even-aged plots were 
measured by the Finnish Forest Centre in summer 2019. A total of 90 
plots, evenly distributed, were selected from the following development 
classes: (i) a young thinning stand, (ii) an advanced thinning stand, and 
(iii) a mature stand. The field data were collected from circular plots 
with a radius of either 9.00 or 12.62 m, depending on the developmental 
stage of the forest. We chose 90 plots to provide areal coverage that 
corresponded to the Katajamäki experiment data. The height of one 
sample tree per tree species was recorded at each plot and a calibrated 
height model (Eerikäinen, 2009) was used thereafter to predict the 
height of the remaining tallied trees. Trees in the understory and dead 
trees were not measured in even-aged plots, but otherwise the mea-
surements were similar to those collected for the Katajamäki experiment 
plots. Since the plot size was considerably smaller, however, the diam-
eter distribution models were not fitted to the even-aged data. The tree 
species’ proportions (of the total volume) in the even-aged data were 

Scots pine 38.5%, Norway spruce 38.4%, and birch 23.1%. The stand 
attributes of this dataset are shown in Table 1. The even-aged plot data 
and the ALS data are openly available at https://www.metsaan.fi/kartta 
palvelut (in Finnish) and at https://tiedostopalvelu.maanmittauslaitos. 
fi/tp/kartta, respectively. 

2.2. ALS data 

The ALS data were collected between 7 June and 9 July 2019 by 
means of a Leica ALS 80HP scanner at an altitude of 1700 m above 
ground level, which resulted in a nominal pulse density of 5 points per 
m2 and a footprint diameter of 40 cm. The same data covered both field 
data sets. The ALS echoes were classified into ground and vegetation hits 
through the approach presented by Axelsson (2000). The ground echoes 
were used to create a digital terrain model (DTM). The orthometric 
heights of the ALS echoes were converted to above-ground heights by 
subtracting the DTM from the echo heights. The processing of ALS data 
was carried out by means of the LAStools software (rapidlasso GmbH), 
and ABA metrics were computed for each plot without a height 
threshold by using three categories of echoes: first of many + only echoes 
(f), intermediate echoes (m), and last-of-many + only echoes (l). The 
metrics included average (avg) and maximum (max) heights, standard 
deviations (std) of the heights, averages of squared heights (qav), height 
percentiles p5, p10, p20, …, p90, p95, and p99, canopy density per-
centiles b5, b10, b20, …, b90, and b95, canopy cover indices calculated 
from first echoes (cov) and all echoes (dns), and vertical complexity 

Fig. 1. Map of the Katajamäki experiment area and the even-aged plots used in the comparison of stand attribute predictions under different forest management 
systems. CCF denotes continuous-cover forestry. 

M. Maltamo et al.                                                                                                                                                                                                                              

https://www.metsaan.fi/karttapalvelut
https://www.metsaan.fi/karttapalvelut
https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta
https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta


Forest Ecology and Management 546 (2023) 121312

4

indices (see van Ewijk et al. 2011) vc1, …,vc4 with 1, 2, 3, and 4 m bin 
sizes, respectively. Finally, the average (int_avg) and standard deviation 
(int_std) values associated with the intensities were calculated, and a 
data transformation of the natural logarithm (ln) type was performed on 
each ALS metric. This was applied to all modelling steps. 

2.3. Methods 

To guide the modelling of stand attributes and the choice of ALS 
metrics, the relationship between the ALS metrics and the forest struc-
ture was first analyzed by comparing the ALS echo distributions with 
the tree height distributions across different treatments and echo cate-
gories. This included a comparison of the echo category proportions 
between the different treatments. In this analysis, even-aged plot data 
were classified by development classes. 

Second, to identify the ALS variable with the most robust statistical 
correlation to the stand volume, regression models were separately 
fitted with the data from each treatment. The variables to be examined 
were selected out of a list of all model candidates. The models were 
validated with the relative root mean square error (RMSE) (equation 1). 
In the Katajamäki data set, models were constructed separately for the 
CCF, shelterwood, and untreated stand categories. Even-aged stands 
were not classified by stand development stages, which is also the cur-
rent practice in Finnish forestry (Maltamo et al. 2021). The Katajamäki 
experimental plots were also used jointly, but the even-aged stands were 
not combined with the Katajamäki data set at this stage due to the 
different plot sizes. An ALS metric that was selected for the best inde-
pendent variable for a certain category was also tested in the other 
categories. For the even-aged stands, RMSE% values were reported for 
groups of three plots, which corresponded to the approximate plot size 
in the Katajamäki experiment. These groups were formed according to 
ascending volume values in the development classes. The same pro-
cedure was followed in steps three and four, below. 

In the third step, regression models with three independent ALS 
variables were constructed for volume, basal area, number of stems, 
mean diameter, Lorey’s height, dominant height, standing dead wood 
volume, parameters b and c of the Weibull distribution, understory 
height, and number of understory stems, by using the data from the 
Katajamäki experiment. The variables to be examined were selected out 
of a list of all model candidates with 3 predictors by searching the lowest 
RMSE value. Models were constructed for the whole Katajamäki data set 
due to the small size of the different strata. Consequently, treatments 
were represented by treatment-specific dummy variables as such, and 
interactions with all predictor variables (ALS variable* treatment 
dummy) were also considered. Accuracy was also analyzed by treat-
ment. In even-aged plots, corresponding models were constructed for 
volume, mean diameter, and dominant height. 

Finally, in the fourth step, joint regression models were constructed 
for volume, mean diameter, and dominant height by using both data 
sets. To ensure equal weighting in the two data sets, the regression 
models were fitted with weighted least squares by using 33/90 as the 
weighting in even-aged plots. Again, treatments were represented by 
treatment-specific dummy variables as such, and interactions with all 
predictor variables (ALS variable* treatment dummy) were also 
considered. Accuracy was also analyzed by treatment. 

In all models, we applied a t-test for the significance of all predictor 
variables in the models. All predictor variables were required to be 
significant at the level p = 0.05. In all cases, the accuracy of the con-
structed models was evaluated in terms of the root mean square error 
(RMSE): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(yi − ŷi)
2

n

√

where n is the number of plots, yi is the observed attribute for plot i, 
and ŷi is the predicted attribute for plot i. 

In the third and the fourth step models, the mean deviation (md) was 
also calculated for different treatment strata as follows: 

meandeviation =
∑n

i=1

(yi − ŷi)

n 

Subsequently, RMSE% and md% were calculated by dividing the 
RMSE or md by the observed attribute mean and then multiplying the 
result by 100. 

Since our aim was to compare management systems, not the general 
level of accuracy, the results were not cross-validated. 

3. Results 

3.1. ALS echo and tree height distributions 

The tree height distributions showed bimodal forms in the CCF and 
shelterwood stands (Figs. 2–4). However, the proportion of tall trees in 
the shelterwood stand was rather small. This was also evident in the 
stand characteristics of this treatment (Table 1). For untreated stands, 
the height distribution was wide and showed considerable heterogene-
ity. For even-aged stands, the height distribution was unimodal for 
young thinning and advanced thinning stands (with slight bimodality 
evident in the latter), but showed clear bimodality in mature stands, 
which indicates that understory regeneration was present. 

The ALS height distributions were unimodal for the first, last, and 
intermediate echoes for the CCF and untreated stands (Figs. 2–4). In all 
cases, these distributions also included peaks for ground echoes. For the 
shelterwood stands, the distributions showed a descending trend. Thus 
the correspondence between tree height distributions and ALS height 
distributions varied across management experiments. The closest cor-
respondence was found in the untreated stands, whereas the bimodal 
form of the CCF height distribution was not evident in the ALS heights. 
In the shelterwood stands, the correspondence was the closest for 

Table 1 
The stand attributes considered in the comparison of management alternatives. 
For each management approach compared, the mean value and the standard 
deviation value (in brackets) of each stand attribute is shown.  

Attribute Unit CCF Shelterwood Untreated Even- 
aged 

Volume, Vol m3⋅ha− 1 187.7 
(51.8) 

102.9 (27.6) 231.4 
(51.8) 

179.4 
(90.6) 

Standing dead 
wood 
volume, Vold 

m3⋅ha− 1 4.1 
(2.6) 

1.0 (1.7) 21.9 
(16.4)  

Above-ground 
biomass, 
AGB 

Mg⋅ha− 1 107.3 
(24.4) 

55.1 (13.9) 125.3 
(23.6) 

97.9 
(44.5) 

Basal area, G m2⋅ha− 1 25.0 
(4.8) 

14.6 (4.3) 28.7 (4.7) 22.3 
(7.1) 

Number of 
stems, N 

N ha− 1 870.6 
(267.0) 

870.0 
(622.7) 

822.3 
(222.8) 

1251.7 
(581.5) 

Mean 
diameter, 
MeanDBH 

cm 17.5 
(2.1) 

12.1 (1.3) 19.1 (2.6) 19.3 
(6.2) 

Lorey’s height, 
HLorey 

m 17.5 
(2.6) 

17.7 (4.4) 19.1 (2.8) 16.0 
(4.4) 

Dominant 
height, HDom 

m 19.8 
(2.4) 

17.7 (1.5) 22.0 (1.7) 18.8 
(4.5) 

Understory 
number of 
stems 

N ha− 1 489.0 
(299.3) 

1043.0 
(516.2) 

198.7 
(424.8)  

Understory 
height 

m 1.9 
(1.0) 

2.3 (0.5) 0.5 (0.9)  

Weibull b  19.8 
(2.4) 

13.5 (1.4) 21.7 (2.9)  

Weibull c  2.3 
(0.4) 

1.5 (0.3) 2.1 (0.2)  

Number of 
plots  

13 12 8 90  
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intermediate echoes. 
In even-aged stands, the shape of the first and the last echo height 

distributions followed the tree heights most closely (Figs. 2–4). This was 
the case in the unimodal young thinning stands, the advanced thinning 
stands (with very slight bimodality), and the bimodal mature stands 
characterized by the first echo ALS data. Exceptionally, though, the last 
echo data did not describe the bimodality of the tree heights in the 
mature stands. Another close correspondence was seen in the interme-
diate category, though there was more variation in the ALS height 
distributions. 

As regards the proportions of the ALS height categories (Table 2), the 
proportions of the first and the last echoes were usually close to each 
other. The largest proportion of intermediate echoes occurred in the 
mature stands and the smallest in the young and shelterwood stands. 

To conclude, both the tree height and the ALS height distribution and 
their mutual correspondence differed across the forests. This led us to 
look for an ALS-based independent variable that would perform best in 
terms of modelling the stand volume under the different management 
categories. 

3.2. Single-independent-variable models for predicting the stand volume 

In this step we constructed optimal regression models with one in-
dependent ALS variable for volume in both the Katajamäki data set and 

the even-aged data set (Table 3). The results showed that the best in-
dependent variable in the Katajamäki data set was the average height of 
the first echo (or its transformation) in three cases out of four. This 
variable also performed fairly well in even-aged stands. In untreated 
stands, a density metric of intermediate echoes was found to be the best 
performing independent variable, though it performed poorly in the 
other categories. The same was true for the best metrics in even-aged 
stands, i.e., the standard deviations associated with intermediate 
echoes. Overall, the accuracy of the stand volume predictions varied 
considerably across the different categories. In the CCF plots, the RMSE 
% value was the lowest. 

3.3. Three-independent-variable models for the essential stand variables 

The decision to construct models with three independent variables 
was based on the observation in step two that certain ALS metrics 
appeared to be most effective for specific management systems. The 
models were constructed for a set of essential stand attributes (Table 4). 
The results of the single-independent-variable models were not utilized 
as such, so that the selected metrics changed (Appendix). 

In general, the R2 values of the models were fairly high (Appendix). 
Due to the nonlinear relationship, there was a need to transform the 
dependent variable for the number of stems in the Katajamäki data set 
and the volume in the even-aged data set. One notable result was the 

Fig. 2. Relationship between airborne laser scanning (ALS) first echo distributions (blue dashed line) and tree height distributions (red solid line) across the different 
treatments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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large proportion of metrics based on intermediate echoes. In the case of 
the volume model, two out of three independent variables were the 
densities of intermediate echoes, and all variables were intermediate echo 
type metrics for the mean height. The role of intensity-based indepen-
dent variables came out emphatically in the case of the model for un-
derstory height. It is also worth noting that the selected independent 
variables were the same for the Weibull parameter b and the mean 
diameter, which is logical, for those attributes are very closely related to 
each other. Although the variation between the different treatments was 
high, the dummy variables that were indicative of these differences were 
significant in the models for dominant height and the number of stems 
only. However, some of the other dummy variables were close to being 
significant. Thus, it seemed that a combination of three independent 
variables was capable of accurately describing the differences irre-
spective of the management types. This was also emphasized by the fact 
that various metrics, such as the squared average of last echoes (l_qav), 
had a more linear relationship with the stand attributes than the basic 
ALS height metrics did (Fig. 5). 

The accuracies of the models constructed are presented for both the 
modelling data sets and those for the different strata in Table 4. In this 

assessment, the three even-aged plots were again combined. Both the 
RMSE and the mean deviation values were rather low for most of the 
attributes. In the comparison of the management types, untreated stands 
exhibited the lowest values for most of the attributes. An exception was 
the number of stems, where the shelterwood stands had a very low value 
(6.94%). As expected, the most difficult attributes to characterize were 
the standing dead wood volume and the understory attributes, where the 
accuracy varied considerably between the categories. For these attri-
butes, the mean deviations were also the largest. While the amount of 
deadwood was predicted rather accurately for the untreated stands, this 
was not the case for the shelterwood stands. Then again, the understory 
was predicted well for the shelterwood stands. For CCF, the accuracy 
was moderate in regard to all three attributes. In comparison with the 
even-aged stands, the accuracy associated with the CCF stands was 
greater for the volume predictions but lower for the mean diameter 
prediction. In general, the differences between the CCF and the even- 
aged plots were small. 

The size (DBH) distributions of the stands were characterized by 
applying the two-parameter form of the Weibull function. This required 
that the underlying population of diameters not be multimodal. A visual 

Fig. 3. Relationship between airborne laser scanning (ALS) intermediate echo distributions (blue dashed line) and tree height distributions (red solid line) across the 
different treatments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

M. Maltamo et al.                                                                                                                                                                                                                              



Forest Ecology and Management 546 (2023) 121312

7

check showed that most of the stands had a unimodal or descending 
diameter distribution. An example from the CCF category, a right- 
skewed distribution, is presented in Fig. 6. The Weibull fits of esti-
mated and predicted distributions were fairly close to each other, and 
the description of the underlying tree population by Weibull could be 
considered adequate. 

3.4. Joint models for selected stand attributes 

The final modelling step was to construct joint models for the vol-
ume, the dominant height, and the mean diameter by using the data sets 

from Katajamäki and from the even-aged stands simultaneously. The 
models constructed are presented in the Appendix, and their associated 
accuracies are shown in Table 5. 

The model for the volume included only first echo metrics, whereas 
the previous separate models included two intermediate echo metrics. 
The volume model was also the only model where a dummy variable 
with regard to the CCF stands was found to be statistically significant. 
Correspondingly, the dominant height model was the only model where 
the interaction ALS metric * dummy was found to be statistically sig-
nificant. This was the case for metric l_h90 in the untreated and the CCF 
stands. In general, the RMSE% values increased slightly in comparison 
with the separate models. For the volume, the RMSE% value for CCF was 
considerably smaller but was greater for the shelterwood and untreated 
stands. The changes were the most notable for the mean diameter and 
the smallest for the dominant height. This suggests that the combining 
data sets of the different management types were the most challenging 
in cases where the management approach strongly affected the value of 
the variable of interest. 

4. Discussion 

This study examined the prediction of a set of stand attributes under 
different forest management systems by applying the ABA approach to 
ALS data. Our experiment in Katajamäki included CCF, shelterwood, 
and untreated stands. The experiment had been initiated in the 1980’s 
and, as even-aged stands were missing, we used some operational forest 

Fig. 4. Relationship between airborne laser scanning (ALS) last echo distributions (blue dashed lines) and tree height distributions (red solid line) across the different 
treatments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Proportions of different echo categories, first (f), last (l) and intermediate (m), in 
the different treatments comprising continuous cover forestry (CCF), shelter-
wood stands, untreated stands, and three even-aged stands divided into young 
thinning, advanced thinning, and mature stand development classes.   

f l m     

CCF  0.44  0.44  0.12 
Shelterwood  0.47  0.47  0.06 
Untreated  0.44  0.43  0.13     

Young thinning  0.46  0.46  0.08 
Advanced thinning  0.44  0.44  0.12 
Mature  0.41  0.41  0.18  
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inventory plots located near Katajamäki for our analyses. These addi-
tional plots included only part of the measurements made on the Kata-
jamäki plots, and thus our only comparisons between the Katajamäki 
stands and the even-aged stands pertained to stand volume, dominant 
height, and mean diameter. In the performance assessment, the differ-
ences in plot size between the even-aged and the Katajamäki plots were 
controlled for. It should be noted, however, that the comparison be-
tween even-aged stands and those under other management systems was 
based on different plot types measured for different purposes. 

In general, the results indicated that stand attributes under different 
management systems can be successfully predicted by using joint models 
that are indifferent to treatment. Although the tree height and the ALS 
echo height distributions differed between the management systems and 
the one-independent-variable models showed a number of best inde-
pendent variables, the three-independent-variable models accounted for 
these differences. Dummy variables or interactions that showed 
treatment-level differences were statistically significant in a few cases 
only. Most notably, the models often included ALS metrics that 
described average and squared average height. In general, this was also 
the case for metrics of the intermediate echo type. This may be partly due 
to sensor development over the years; the portion of intermediate echoes 
is currently larger than it was with the early-generation sensors. Due to 
missing values, however, these metrics may still prove problematic in 
operational wall-to-wall applications. 

The accuracy figures associated with the models showed rather low 
RMSE% values. For example, the RMSE% values associated with the 
number of stems ranged from 7 to 22%, whereas values of over 30% had 
often been obtained in earlier studies (Maltamo et al. 2009, Packalén 
and Maltamo 2007). This is partly due to the small geographical varia-
tion of our data and the large field plots. Still, our values also showed 
good predictability of stand attributes in all the management systems 
considered in this study. The RMSE% values in our study are comparable 
to those obtained at the stand level by Suvanto et al. (2005) in even-aged 

forests, though the variation across treatments was considerable in our 
study (Table 1). 

Surprisingly, the diameter distributions obtained in the Katajamäki 
experiment did not show multimodal forms. Consequently, it was 
possible to predict the parameters of the Weibull function with RMSE% 
values < 10%. This result differed from those of the Bollandsås and 
Næsset study (2007), where bimodal diameter distributions in forests of 
the CCF type were characterized by percentile-based distribution models 
predicted by ALS metrics. Due to the small sample plot sizes, diameter 
distribution in even-aged stands was not considered in our study. 

In the case of standing deadwood, our results were fairly accurate, 
particularly in untreated stands. The RMSE% value of 26% was 
considerably lower than the 78.8% value presented by Pesonen et al. 
(2008) for their study area in the Koli National Park. Corresponding 
figures for managed areas have also been considerably higher (Keränen 
et al. 2015). In general, our study further confirms the good predict-
ability of standing deadwood by ALS metrics in forest areas with high 
volumes of deadwood. 

In CCF and shelterwood forests, attributes of the understory are the 
focus of special interest. Our results were fairly good in the CCF plots 
and especially good in the shelterwood plots. The predictability of stand 
attributes in CCF differed from that found in Bollandsås et al. (2008), 
who concentrated on the prediction of understory regeneration. How-
ever, their research design was different from ours, so that no direct 
comparison can be made. Our estimates can also be compared with those 
presented Maltamo et al. (2005), where similar accuracies were ob-
tained for these stand characteristics in untreated forest areas. 

To date, there are few studies in which ALS data have been used in 
forest management experiments. Even in these few studies, the focus has 
been on the management of the forest, not on the inventory (Sumnall 
et al. 2017). One reason for this is that many experiments tend to be 
located in large areas analogous to the ERIKA plot network in Finland, 
for instance. Such large areas cannot be covered by a single ALS 

Table 3 
Selected airborne laser scanning (ALS) metrics for volume prediction in the different treatments according to the root mean squared error (RMSE%) values obtained. 
The lowest RMSE values for each treatment are shown in bold. All selected independent variables were also tested in other categories. ln denotes the natural logarithm 
transformation of the variable, f denotes the first echo, and m denotes the intermediate echo. For more information on the abbreviations for the ALS metrics, see section 
2.2.   

Katajamäki 
experiment, 
all plots 

Katajamäki experiment, 
CCF 

Katajamäki experiment, 
Shelterwood 

Katajamäki experiment, 
Untreated 

Even-aged plot 
data 

Best independent 
variable 

f_avg f_avg ln_f_avg ln_m_b50 m_std 

f_avg 11.59 6.91 15.02 10.33 17.55 
ln_f_avg 14.16 7.31 14.57 9.76 21.30 
ln_m_b50 34.01 24.98 21.51 6.88 41.86 
m_std 39.90 13.78 25.51 18.10 17.45  

Table 4 
The relative root-mean-square error (RMSE%) and the relative mean deviation [md%] (in brackets) associated with the stand attribute models constructed separately 
for the Katajamäki and the even-aged data sets. In the Katajamäki data set, the RMSE% is also presented for the different treatments.   

Katajamäki, all plots Katajamäki, CCF Katajamäki, Shelterwood Katajamäki, Untreated Even-aged plots 

Volume  8.48 8.91 (2.6) 12.61 (4.4) 6.11 (1.2)  12.95 
Above-ground biomass  8.23 8.38 (1.8) 11.65 (-0.6) 5.45 (-2.2)  
Basal area  8.56 8.38 (-0.5) 10.60 (-0.5) 7.01 (0.9)  
Number of stems  15.67 17.07 (3.3) 6.94 (1.5) 22.18 (-5.9)  
Mean diameter  8.32 7.38 (0.1) 9.31 (-1.8) 8.47 (2.5)  6.6 
Lorey’s height  9.39 10.46 (0.9) 9.34 (-0.5)  7.73 (-0.5)  

Dominant height  2.59 2.83 (0.1) 2.81 (-0.1) 1.89 (0.1)  2.19 
Deadwood volume  47.72 52.47 (7.7) 262.37 (-35.3) 26.13 (0.0)  
Weibull b  8.16 7.45 (-0.6) 8.90 (2.3) 8.22 (2.0)  
Weibull c  9.08 8.45 (1.2) 12.24 (-2.3) 6.48 (-0.2)  
Understory height  30.96 34.14 (7.1) 15.25 (0.8) 107.7 (-34.7)  
Understory number of stems  39.76  53.38 (-1.0) 19.42 (1.6) 141.0 (-46.3)   
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campaign. In this regard, sensor effects can have a strong influence on 
the results. The other extreme is experiments carried out in very small 
areas with little variability, such as our Katajamäki experiment. A recent 
comparable study was presented by Cosenza et al. (2022), who reported 
on a silvicultural experiment that applied laser scanning data collected 
by means of an uncrewed aerial vehicle (UAV). The data, collected to 
test fertilization and weed control, included 24 plots, each 252 m2, in 
Florida, United States. In their study they successfully tested plant area 
metrics based on UAV laser scanning data with a very high point density 
(275 points per m2) against traditional ABA metrics. Although UAV data 
was an option for our study as well, we regarded such data as an unre-
alistic option, for our aim was to discuss results obtained for larger areas. 

The promising results presented in this study were related to joint 
modelling of stand attributes for different forest management types. We 
conclude that for changing the forest management practices, ALS-based 

forest inventory models may be used without stratifying the area into 
different management types. Despite our largely promising results, more 
research is required to overcome the limitations posed by the size of our 
study area and the tree species considered. Further studies should also 
give closer consideration to the number, size, and species distribution of 
the small-sized understory trees that grow under the dominant tree 
canopy. And besides the area-based approach, single-tree detection of 
ALS data should also be examined. 
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Methodology. L. Korhonen: Software, Supervision, Validation. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Part of field data is available on request, part is open data from 
Finnish Forestry Center. Remote sensing data is open data by National 
Land Survey of Finland.  

Appendix 

The models constructed for the stand attributes in the different data sets. The attributes considered are described in Table 1 and the area-based 
approach (ABA) metrics applied are shown in Section 2.2. The t-values of the predictor variables are given in parentheses after each coefficient. In 
addition to the models, the residual variance and r-square (R2) values are presented. εi denotes residual error in plot i. Dummy variables include the 
continuous-cover forestry (CCF) and untreated treatments. 

Katajamäki experiment data 

Volume = -1361.66 (-5.2) + 2.42 (18.5) l_qav + 415.84 (5.6) ln_m_b70 - 6.02 (-5.9) m_b60 + εi 

var(εi) = 15.15^2, R2 = 0.95 

AGB = 284.77 (5.9) + 79.39 (6.1) ln_f_b20 - 138.78 (-6.6) ln_f_b40 + 46.41 (5.7) ln_l_avg + εi 

var(εi) = 8.14^2, R2 = 0.95 

Vold = 44.43 (3.2) - 13.27 (-7.4) f_h10 + 6.48 (10.5) f_h20 - 49.01 (-3.1) m_vc2 + 4.62 (2.2) untreated + εi 

Fig. 6. An example of the predicted Weibull distribution in a stand managed by continuous-cover forestry (CCF). The Weibull parameters estimated by using 
observed tree diameter at breast height (DBH) are b = 2.5 and c = 16.5. The corresponding predictions are b = 2.29 and c = 16.31. 

Table 5 
The root mean squared error (RMSE%) and the relative mean deviation [md%] 
(in brackets) values associated with the stand attribute models constructed by 
applying the joint models for the Katajamäki and the even-aged datasets. In the 
Katajamäki data set, RMSE% is also presented for the different treatments. CCF 
denotes continuous cover forestry.   

Katajamäki CCF Shelterwood Untreated Even- 
aged 

Volume 11.23 (0.4) 6.91 
(0.8) 

19.42 (0.1) 10.48 
(-1.0) 

13.15 
(0.4) 

Dominant 
height 

4.00 (0.0) 2.78 
(0.0) 

5.56 (-0.2) 3.07 (-0.2) 2.79 
(0.0) 

Mean 
Diameter 

13.95 (0.1) 14.8 
(2.6) 

17.69(-2.1) 8.41(-0.6) 8.08 
(-0.1)  
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var(εi) = 3.78^2.14, R2 = 0.91 

sqrt(N) = 38.18 (4.9) - 4.65 (-6.0) l_avg + 0.85 (4.8) l_dns - 5.93 (-4.3) ln_f_b05 + εi 

var(εi) = 2.46^2, R2 = 0.84 

G = 28.15 (3.9) + 1.06 (7.0) f_h60 + 0.26 (3.1) l_dns - 6.93 (-3.6) ln_m_b40 + εi 

var(εi) = 2.02^2, R2 = 0.93 

HDom = 5.35 (6.2) - 1.13 (-2.8) f_max + 1.50 (3.7) l_max + 0.48 (15.0) l_h90 + 0.58 (2.1) untreated + εi 

var(εi) = 0.55^2, R2 = 0.96 

HLorey = -237.26 (-4.9) + 49.76 (4.8) ln_m_b80 - 13.61 (-3.1) ln_m_h05 + 24.48 (7.6) ln_m_h50 + εi 

var(εi) = 1.8^2, R2 = 0.74 

meanDBH = 39.66 (5.8) + 1.28 (12.6) l_h90 - 30.06 (-6.2) l_vc0 - 8.04 (-3.8) ln_m_max + εi 

var(εi) = 1.41^2, R2 = 0.86 

Weibull c = -49.63 (-6.1) - 0.056 (-11.3) f_b70 - 0.11 (-6.9) f_h80 + 6.17 (6.9) ln_f_int std + εi 

var(εi) = 0.19^2, R2 = 0.83 

Weibullb = 45.48 (6.0) + 1.48 (13.0) l_h90 - 33.71 (-6.3) l_vc0 - 9.48 (-4.0) ln_m_max + εi 

var(εi) = 1.56^2, R2 = 0.87 

Understoryheight = 193.93 (4.9) - 0.47 (-7.7) f_h30 - 13.63 (-5.0) ln_l_int avg - 5.85 (-3.3) ln_l_int std + εi 

var(εi) = 0.57^2, R2 = 0.74 

Understory N = 633.54 (2.7) + 45.36 (6.9) f_b10 + 802.34 (9.2) f_h10 + 2531.28 (4.2) ln_l_vc0 + εi 

var(εi) = 263.12^2, R2 = 0.78. 
Even-aged stands 

sqrt(Vol) = -12.06 (-9.3) + 2.74 (10.1) ln_qav + 0.0013 (6.0) m_int std + 0.21 (5.8) m_h60 + εi 

var(εi) = 1.1^2, R2 = 0.90 

HDom = -21.89 (-4.7) + 7.08 (5.7) ln_l_b80 + 1.02 (46.9) f_h90 - 6.59 (-3.6) vc1 + εi 

var(εi) = 0.79^2, R2 = 0.97 

meanDBH = -26.55 (-8.8) + 5.78 (9.1) ln_l_b70 + 1.25 (20.9) f_max + 2.38 (3.7) l_b10 + εi 

var(εi) = 2.01^2, R2 = 0.90. 
Joint models. 
sqrt (.Vol) = -51.44 (-5.7) + 1.20 (25.3) f_avg + 12.21 (6.2) ln_f_b90 - 0.25 (-7.3) f_h20 + 0.51 (2.1) ccf + εi 
var(εi) = 0.72^2, R2 = 0.89 

HDom = − 59.78 ( − 4.4) + 14.37 (4.8) ln l b90 + 0.74 (13.5) l h90
+0.36 (9.3) m h95 ± 0.05 ( − 2.1) untreated*l h90

− 0.055 ( − 2.4) ccf *l h90 + εi 

var(εi) = 0.65^2, R2 = 0.94 

meanDBH = -26.6 (-7.5) + 0.17 (6.2) f_b80 + 0.0023 (12.4) m_int std + 1.17 (17.2) l_h90 + εi 

var(εi) = 1.74^2, R2 = 0.80. 
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Pyörälä, J., Piispanen, R., Valkonen, S., Lundqvist, S.-O., 2022. Tracheid dimensions of 
Norway spruce in uneven-aged stands. Can. J. For. Res. 52 (3), 346–356. 

Repola, J., 2008. Biomass equations for birch in Finland. Silva Fenn 42, 605–624. htt 
ps://doi.org/10.14214/sf.236. 

Repola, J., 2009. Biomass equations for Scots pine and Norway spruce in Finland. Silva 
Fenn 43, 625–647. https://doi.org/10.14214/sf.184. 
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management of uneven-aged Norway spruce stands. For. Ecol. Manag. 260, 
106–115. 

Valbuena, R., Packalen, P., Mehtätalo, L., García-Abril, A., Maltamo, M., 2013. 
Characterizing Forest Structural Types and Shelterwood Dynamics from Lorenz- 
based Indicators Predicted by Airborne Laser Scanning. Can. J. For. Res. 43 (11), 
1063–1074. 
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