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ABSTRACT 

Every year thousands of icebergs are born out of glaciers in the Arctic zone and carried away by 

the currents and winds into the North Atlantic. These icebergs may touch the sea bottom in shallow 

waters and scratch the seabed, an incident called “ice-gouging”. Ice-gouging may endanger the 

integrity of the buried subsea pipelines and power cables because of subgouge soil displacement. 

In other words, the shear resistance of the soil causes the subgouge soil displacement to extend 

much deeper than the ice keel tip. This, in turn, may cause the displacement of the pipelines and 

cables buried deeper than the most possible gouge depth. Determining the best burial depth of the 

pipeline is a key design aspect and needs advanced continuum numerical modeling and costly 

centrifuge tests. Empirical equations suggested by design codes may be also used but they usually 

result in an over-conservative design. 

Iceberg management, i.e., iceberg towing and re-routing, is currently the most reliable approach 

to protect the subsea and offshore structures, where the approaching icebergs are hooked and towed 

in a safe direction. Iceberg management is costly and involves a range of marine fleets and 

advanced subsea survey tools to determine the iceberg draft, etc.  

The industry is constantly looking for cost-effective and quick alternatives to predict the iceberg 

draft and subgouge soil displacements. In this study, powerful machine learning (ML) algorithms 

were used as an alternative cost-effective approach to first screen the threatening icebergs by 

determining their drafts and then to predict the subgouge soil displacement to be fed into the 

structural integrity analysis.  

Developing a reliable solution to predict the iceberg draft and subgouge soil displacement requires 

a profound understanding of the problem's dominant parameters. Therefore, the present study 

started with dimensional analyses to identify the dimensionless groups of key parameters 
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governing the physics of the problem. Two comprehensive datasets were constructed using the 

monitored characteristics of the real icebergs for draft prediction and experimental studies for the 

subgouge soil displacements reported in the literature. Using the constructed database, 14 ML 

algorithms ranging from neural network-based (NN-based) to three-based methods were 

sequentially used to predict the iceberg draft and the subgouge soil displacement. The studies were 

conducted both in clay and sand seabed. By different combinations of the input parameters, several 

ML models were developed and assessed by performing sensitivity analysis, error analysis, 

discrepancy analysis, uncertainty analysis, and partial derivative sensitivity analysis to identify the 

superior ML models along with the most influential input parameters. The best ML model was 

able to predict the iceberg drafts alongside the subgouge soil features with the highest level of 

precision, correlation, and lowest degree of complexity. A set of ML-based explicit equations were 

also derived from the wide range of field and experimental measurements for the estimation of 

iceberg drafts, subgouge soil deformations, and ice keel reaction forces, which outperformed the 

existing empirical equations. The study resulted in developing a set of tools that can be used for 

both a cost-effective screening of the threatening icebergs and the prediction of the corresponding 

subgouge soil displacements. The outcome of the study can effectively contribute to a significant 

reduction of iceberg management costs and greenhouse gas (GHG) emissions through the 

mitigation of the marine spread operation. 

 

Keywords: Iceberg draft, Iceberg-seabed interaction process, Dimensionless analysis, Machine 

learning, Simulation, Subsea assets 
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1.1. Background 

Climate change is causing the polar ice caps and glaciers in the Arctic and subarctic waters to melt 

faster, leading to an increase in the number of icebergs that break off each year. These traveling 

icebergs are a potential threat and one of the governing design factors of subsea pipelines. If the 

iceberg draft is greater than the ocean's depth, the iceberg tip may scour the seabed which is called 

“Ice-gouing”. The ice-gouging may impair the serviceability and even the structural integrity of 

the buried pipelines by creating large subgouge soil displacements and consequently large pipeline 

deformations. Figure 1-1 schematically shows an iceberg scouring the seabed.  

 

Figure 1-1. Iceberg in the scouring and free-floating conditions 
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1.2. Motivation 

Iceberg management operations with significant downtime and expenses, such as iceberg towing 

and re-routing, are currently performed to protect the subsea and offshore infrastructures. The side 

scan sonar mounted on autonomous underwater vehicles (AUVs), and remote operating vehicles 

(ROVs) are presently used to support the iceberg management operation by measuring the 

iceberg's geometrical and physical properties. However, these operations are costly and time-

consuming because of needing vessels, experienced crew, expensive logistics, and advanced 

pieces of equipment. 

Despite the offshore structures such as ships, wind turbines, and floating or fixed platforms that 

can be directly attacked by icebergs, the threat that goes to the buried pipelines and power cables 

is much more complicated involving the ice-soil-structure interactions. During the ice-gouging, 

the subgouge soil displacement is largely extended down the seabed much deeper than the gouge 

depth. This may cause large deformations in the pipelines buried even below the gouge depth. 

Investigation of the subgouge soil deformation and the best trench depth to bury the pipelines and 

power cables have been a hot topic in the literature over the past few decades. 

On the other hand, long-running numerical finite element (FE) simulations and costly centrifuge 

testing programs are conducted to explore the subgouge soil displacement that, in turn, governs 

the structural response of the buried subsea pipelines and power cables. 

The industry is still demanding more cost-effective, reliable, and environmental-friendly solutions 

that can assess the iceberg draft and evaluate the iceberg-seabed interaction characteristics using 

the easily measurable exposed parameters, particularly in the initial steps of iceberg management 

projects and subsea structure designs. 
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The current study has tried to respond to this demand by using powerful Machin Learning (ML) 

algorithms both for the iceberg screening through the prediction of the iceberg drafts using the 

above-water visible parameters and also the prediction of the resultant subgouge soil 

displacements. In computer science, machine learning (ML) is a subfield of artificial intelligence 

(AI) that is largely described as the ability of a machine to imitate intelligent human manners. ML 

algorithms are applied to accomplish complicated tasks in a way that is identical to how humans 

solve problems. ML is utilized in different domains such as engineering, education, medicine, etc. 

Computer algorithms perform the entire data processing, interpretation, and analysis; hence, no 

human intervention exists for the modeling and simulation of data. An ML algorithm is able to 

learn from data and identify patterns and trends in problems. ML technology is a precise, reliable, 

cost-effective tool for solving various linear and nonlinear issues. 

The key objectives of the current research were as below which were addressed throughout the 

forthcoming chapters: 

 Determination of the parameters governing the iceberg draft and iceberg-seabed 

interaction process both in sand and clay. 

 Simulation of the iceberg draft and iceberg-seabed interaction outcome using ML 

algorithms as a cost-effective, quick, and precise alternative. 

 Simulation of maximum horizontal subgouge deformations using ML algorithms as a 

design factor of submarine structures against ice-gouging attacks. 

 Identifying the superior ML algorithms in the iceberg draft estimation and prediction of 

the subgouge soil displacements. 

 Combining the developed ML-based models to screen the threatening icebergs and 

predict the resultant subgouge soil displacements by those causing ice.  
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The stepwise flowchart of the objectives is depicted in Figure 1-2. 

 

 

Figure 1-2. Flowchart of the current methodology 

 

First, the above-water parameters of the potentially threatening icebergs are normalized as the 

dimensionless groups governing the iceberg draft prediction using the π-Buckingham theorem. 

These parameters may include iceberg mass, length, width, height, and shape factors. 

Subsequently, the ML algorithm is fed with these dimensionless groups of parameters to predict 

the iceberg draft. The predicted draft is compared with the water depth to determine whether an 
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ice-gouging happens. For the icebergs which scour the seabed, the parameters affecting the 

iceberg-seabed interaction process are normalized as the dimensionless groups of parameters 

governing the iceberg-seabed interaction process. Lastly, the horizontal and vertical subgouge soil 

displacement (dh & dv) along with the horizontal and vertical ice keel reaction forces (Fh & Fv) are 

predicted using the ML algorithms. This information can be used by design engineers to feed into 

the decoupled pipeline beam-spring models that are used in industry to obtain the structural pipe 

response to ice-induced soil displacements. 

 

1.3. Organization of the Thesis 

This is a paper-based dissertation that comprises three main parts (i.e., Part I, Part II, and Part III) 

accommodating 10 chapters that present 16 journal and 4 conference papers. Part I which 

accommodates Chapters 3 to 6 represents several ML algorithms and associated studies to predict 

the seabed response to the ice-gouging in sand and clay. Part II comprises Chapters 7 and 8 which 

are allocated to investigations performed on ML-based prediction of the iceberg drafts. Ultimately, 

the outcome of Part I and Part II are integrated into Part III as Chapter 9 to make a complete loop 

of screening the icebergs, identifying the threatening ice-gouges, and predicting the seabed 

response to it. Figure 1-3 depicts the sequence of study and their logical connection with chapters 

as well as the objectives. This flowchart with highlighted boxes has been used on the first page of 

each chapter to facilitate tracing the flow of the content topics. 
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Figure 1-3. The sequence of study and their logical connection with chapters as well as the 

objectives of chapters 
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published papers, which is an initiation of the modeling subgouge soil displacement in this 

research. The maximum horizontal subgouge soil deformations in the sand seabed were modeled 

using gene expression programming (GEP) and artificial neural network (ANN). Even though the 

performance of GEP was promising, solely the effect of gouge depth, the maximum vertical extent 

of subgouge deformation, the attack angle, the dilation index, and soil depth were used (Azimi and 

Shiri 2020a). Subsequently, the maximum horizontal subgouge soil displacements in the sandy 

seabed were also estimated by using the simplest ML algorithm, e.g., artificial neural network 

(ANN). The ANN algorithm could not give an explicit model and similar to the prior work, the 

effect of all governing parameters is not taken into account to compute the objective function 

(Azimi and Shiri 2021a). To overcome these limitations, the dimensionless groups of parameters 

governing the subgouge soil displacement in the sandy and clay seabed were identified in section 

3 of Chapter 3. The linear regression (LR), as the basic regression analysis, was applied to 

approximate the maximum subgouge soil displacements in both sandy and clay seabed (Azimi and 

Shiri 2020b). 

Chapter 4 includes two published journal articles in which, using the dimensionless groups of 

parameters governing the subgouge soil displacement introduced in the prior step, the group 

method of data handling (GMDH) was employed to estimate the horizontal and vertical subgouge 

soil deformations in the sand. This algorithm provided a set of explicit equations which 

outperforms the empirical and artificial neural network (ANN) models (Azimi et al. 2023a). The 

GMDH algorithm showed some limitations such as using a quadratic polynomial, limiting the 

inputs of each neuron to two, and limiting the inputs of each neuron to the use of the adjacent layer 

neurons. To overcome these challenges, the generalized structure group method of data handling 

(GS-GMDH) was applied in the prediction of horizontal and vertical subgouge soil displacements 
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in the clay seabed. The GS-GMDH-based explicit equation demonstrated an acceptable accuracy 

and a better performance in comparison with the previous empirical models (Azimi et al. 2022a). 

However, the need for a robust ML algorithm with lower computation time and the ability in 

providing a computational matrix to calculate the objective function encouraged the use of the 

extreme learning machine (ELM) algorithm in Chapter 5. Chapter 5 comprises four published 

journal articles. It is worth mentioning that a computational matrix is a useful tool since it is simple 

to apply and can be implemented by all programming languages. Thus, the ice keel reaction forces 

and subgouge soil displacement in the sandy and clay seabed were modeled through the ELM 

algorithms in this chapter (Azimi and Shiri 2021b; 2021c).  

Though ELM showed an acceptable outcome, the manual selection of optimized hidden layer 

neurons plays a crucial role in the simulation procedure. To overcome this drawback, the self-

adaptive evolutionary extreme learning machine (SaE-ELM) as a hybrid model of the ELM 

network and differential evolution (DE) algorithm was employed to model the subgouge soil 

characteristics in the sandy and clay seabed in this chapter. In the SaE-ELM algorithm, the number 

of neurons in the hidden layer is optimized by using the DE algorithm. During the training 

procedure, the control coefficients in the DE algorithm and the strategies for trial vector generation 

are determined through a self-adaptive mechanism. In other words, during the simulation process, 

the output weights are estimated utilizing the ELM network, whilst the input weights and biases 

of the hidden layer neurons are determined through the DE algorithm. The hybrid ML algorithm 

showed an acceptable ability to model the objective functions (Azimi and Shiri 2021d and Azimi 

et al. 2021). 

Until this stage of the research, only neural network-based (NN-based) algorithms had been used 

to simulate the subgouge soil parameters. Drawbacks include overfitting issues and higher 
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computation time that led to the use of other ML algorithms. Hence, it was decided to apply the 

tree-based ML algorithms for the prediction of the subgouge soil displacement in Chapter 6 which 

is presented in two published papers. In this chapter, the capability of several robust tree-based 

algorithms such as decision tree regression (DTR), random forest regression (RFR), gradient 

boosting regression (GBR), and extra tree regression (ETR) was examined. The obtained results 

revealed that the ETR model was the premium ML algorithm in terms of precision, correlation, 

discrepancy, complexity, and computation time to simulate the subgouge soil parameters in both 

clay and sandy seabed (Azimi et al. 2022b; 2022c; 2022d). 

After achieving all of the objectives in Part I and using the lessons learned, Part II was started by 

determining the dimensionless groups of parameters governing the iceberg draft prediction. These 

governing parameters and their sensitivity analysis are presented in Chapter 7. The basic 

regression-based model, e.g., LR, was then employed to derive a set of LR-based equations to 

surmise the iceberg drafts. Additionally, the best combination of dimensionless groups alongside 

the most influential inputs in the simulation of the iceberg draft was recognized. In other words, a 

comprehensive sensitivity analysis was conducted by three NN-based ML algorithms comprising 

ANN, ELM, and Sa-ELM. A Sa-ELM-based matrix was obtained to calculate the iceberg drafts in 

Chapter 7 (Azimi et al. 2023c). 

Chapter 8 contains four papers, in which the iceberg drafts were predicted utilizing GMDH and 

GS-GMDH algorithms. An explicit equation for the estimation of iceberg draft in practical 

applications was driven (Azimi et al, 2023d). Furthermore, to overcome the limitations of the 

applied NN-based ML algorithms and enhance the simulation performance, a set of non-NN-based 

algorithms including Support Vector Regression (SVR), K-Nearest Neighbors Regression (KNR), 

DTR, RFR, GBR, and ETR were utilized for the simulation of the iceberg drafts. A comparison 
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between ANN, DTR, and SVR models showed that the SVR algorithm was more robust to estimate 

the iceberg drafts in comparison with the ANN and DTR algorithms. However, the ETR algorithm 

showed excellent efficiency in dealing with the iceberg draft modeling, with the highest degree of 

accuracy, correlation, and simplicity. 

Ultimately, the outcomes of Part I and II were integrated into Part III by modeling the iceberg 

drafts and the resultant subgouge soil displacements using superior ML algorithms, e.g., RFR and 

ETR models. The results of this part were discussed in Chapter 9, which comprises two papers. In 

this chapter, the iceberg drafts and iceberg-seabed interaction parameters were predicted through 

the RFR and ETR algorithms. Chapter 10 concludes the key findings of the current research and 

provides several recommendations for future studies. 
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2.1. Overview 

This thesis is paper-based research and each chapter has its literature review; hence, a succinct 

literature review from chapters 3 to 9 was summarized in Chapter 2. 

 

2.1.1. Literature review 

2.1.1.1. Iceberg draft estimation 

The efficient iceberg management designs and the guaranteed operational integrity of the sea 

bottom-funded infrastructure against iceberg attacks in ice-prone areas demand the appropriate 

iceberg draft appraisal, which may lead to a potential decrease in operating expenses and 

downtime. Earlier investigations have tended to focus on modeling the iceberg draft by using the 

iceberg length or iceberg mass. For instance, Allaire (1972) analyzed the stability status of various 

icebergs regarding the sail features. They demonstrated that the minimum stable ratio of iceberg 

width to sail height for tabular, dry dock, and dome bergs were 6:1, 4:1, and 1.8:1, respectively. 

Similarly, Robe and Farmer (1976) measured the drafts of tabular, broken tabular, pinnacle, dry 

dock, and domed by the sonar technology. They correlated the iceberg draft with the iceberg height 

and proposed a regression model for the estimation of the iceberg draft.  

Bass (1980) analytically evaluated the stability of icebergs in different configurations. The study 

highlighted that the volume of the underwater section was almost seven times greater than the 

volume of the above-water section. In addition, Brooks (1980) analyzed the stability of theoretical 

icebergs and provided a hypothesis to estimate the iceberg draft. The investigation demonstrated 

that the draft of icebergs was smaller than the length of icebergs. In another study, Hotzel and 

Miller (1983) assessed the iceberg dimensions and supposed that the planimetric section of 

icebergs was circular, while the length of a berg was twice the circle radius. The iceberg draft was 
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estimated in terms of iceberg length by using the power-law method. Furthermore, the 

International Ice Patrol (IIP) has been annually monitoring the characteristics of traveling icebergs 

in the Atlantic and Arctic Oceans. In 1987, the IIP reported that the iceberg draft was surmised as 

3.95 times the height of a sail.  

Liang (2001) presented a model to determine the relationship between the dynamics and stability 

of icebergs using the size and shape of bergs. The author asserted that the draft and hydrostatic 

force distribution affected the iceberg's stability. Several investigations were performed by the 

Centre for Cold Ocean Resources Engineering (C-CORE) to study the shape, behavior, and 

dynamics of icebergs over the years. The above-water shape of bergs comprising the blocky, 

domed, dry dock, tabular, pinnacle, and wedge icebergs were reported regarding the standard 

categories. The iceberg dimensions were recorded using the scan sonar technology and marine 

sextant. The study showed that the iceberg draft was correlated with iceberg length (C-CORE, 

2001).  

In another study, Barker et al. (2004) evaluated the geometry of iceberg sails and keels. They 

estimated the cross-sectional areas of the berg at different water depth intervals from a particular 

waterline length. To approximate the iceberg draft, a set of models in terms of the iceberg length 

were suggested using the power curve and regression analysis. McKenna (2004) studied the spatial 

correlation between the above-water and below-water sections of the iceberg. The relationships 

between the length, width, height, and draft of icebergs were determined, and the three-

dimensional shape of icebergs was simulated. Dowdeswell and Bamber (2007) examined the keel 

depths of traveling icebergs in Antarctic waters. The authors estimated the depth of the keel 

through the ice thickness and surface elevation. The research concluded that a tiny minority of 

icebergs in the Antarctica and Greenland waters had drafts of greater than 650 m.  
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Moreover, Stuckey (2008) modeled the iceberg drift speed using the probabilistic approach. The 

author stated that the above-water dimension, below-water dimension, and shape factor of the 

icebergs impacted the environmental driving forces. McKenna and King (2009) simulated the 

deterioration mechanisms of various icebergs by considering the incremental changes in draft, 

mass, and shape of bergs. The study highlighted that the draft and length of icebergs were reduced 

by decreasing the iceberg mass. King (2012) modeled the iceberg's characteristics including the 

draft, length, and mass through the Monte Carlo simulation. The author outlined that the survey of 

iceberg drafts greater than 150 m was quite limited. In addition, Sacchetti et al. (2012) analyzed 

the features of different icebergs, such as wedged, domed, tabular, and pinnacle and ice scouring 

in the Northeast Atlantic Ocean. The investigation reported that the bimodal distribution of the 

scour depth was observed across the study area.  

Turnbull et al. (2015) forecasted the drift trajectory of the traveling icebergs in Northwest 

Greenland using the hindcast simulation. It was revealed that the trajectory of icebergs was 

sensitized to the iceberg drafts. King et al. (2016) performed a field investigation to calculate the 

iceberg rolling rate. The iceberg drafts were estimated utilizing a calving analysis, with a calculated 

standard deviation of draft variations from 19% to 34%. The iceberg drafts corresponded with the 

mass of the icebergs. In another investigation, Talimi et al. (2016) simulated the iceberg-structure 

interaction using computational fluid dynamics (CFD). The modeling results demonstrated that 

the iceberg was shifted upward by almost 10% of the iceberg draft. Turnbull et al. (2018) proposed 

a model for the drift estimation of moving icebergs on the Grand Banks of Newfoundland. This 

model approximated the draft of icebergs roughly 1.3 times more than the real values. 

McKenna et al. (2019) have recently simulated ice scouring on the Grand Banks of Canada using 

the Monte Carlo method. The iceberg draft alterations were utilized to lessen the size of draft 
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variations in this modeling. Most recently, Stuckey et al. (2021) simulated the three-dimensional 

iceberg shapes by adopting field measurements. The investigation demonstrated that the draft and 

mass of the iceberg were estimated in terms of the iceberg length by utilizing the power curve. 

Azimi et al. (2023a) determined the dimensionless groups of the parameters affecting the iceberg 

draft estimation for the first time. The Authors developed a set of linear regression (LR) models 

using the identified dimensionless groups and recognized the most influencing parameters 

affecting along with the premium LR models. They presented several LR-based models to 

approximate the iceberg drafts in daily engineering practices. The best LR model outperformed 

the previous empirical models. Next, Azimi et al. (2022b) simulated the iceberg drafts through the 

Generalized Structure of Group Method of Data Handling (GS-GMDH) algorithms. The 

comparison between the GS-GMDH model with the GMDH and artificial neural network (ANN) 

models demonstrated the superiority of the GS-GMDH model. An explicit GS-GMDH-based 

model was then presented to estimate the iceberg draft in real situations. Azimi et al. (2022c) 

performed a sensitivity analysis of parameters governing the iceberg draft through neural network-

based models. They applied three neural network-based machine learning algorithms: self-

adaptive extreme learning machine (Sa-ELM), extreme learning machine (ELM), and ANN. The 

study showed that the Sa-ELM algorithm had a reasonable performance in terms of accuracy, 

correlation, and complexity in estimating the iceberg drafts. The authors presented a Sa-ELM-

based matrix to calculate the iceberg drafts in practical applications. Azimi et al. (2022d) utilized 

the gradient boosting regression (GBR) algorithm to simulate the iceberg drafts. The premium 

GBR model and the most significant input parameters were identified by performing a sensitivity 

analysis. The comparison of the best GBR model’s performance with Support Vector Regression 

(SVR) and K-Nearest Neighbors Regression (KNR) algorithms demonstrated that the GBR 
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algorithm had the highest level of precision and correlation along with the lowest degree of 

complexity in predicting the iceberg drafts. 

 

2.1.1.2. Iceberg seabed interaction process 

Despite the offshore structures such as ships, wind turbines, and floating or fixed platforms that 

can be directly attacked by icebergs, the threat that goes to the buried pipelines and power cables 

is much more complicated involving the ice-soil-structure interactions. During the ice-gouging, 

the subgouge soil displacement is vastly extended down the seabed much deeper than the gouge 

depth. This may cause large deformations in the pipelines buried even below the gouge depth. 

Investigation of the subgouge soil deformation and the best trench depth to bury the pipelines and 

power cables have been a hot topic in the literature over the past few decades. 

Hefty field and experimental investigations, as well as time-consuming numerical simulations, are 

currently utilized to evaluate the ice-seabed interaction process (Comfort and Graham 1986; 

Machemehl and Jo 1989; Kioka et al. 2000); however, the industry is constantly looking for 

alternative approaches to predict the behavior of the subsea pipelines to lessen the collision risk of 

icebergs with the subsea assets. This means that the subgouge soil deformations and reaction forces 

are key design factors that should be less than the allowable values suggested by the current codes 

of practice. 

In the past three decades, many researchers have sought to study the parameters affecting the ice-

seabed interaction process. For instance, Paulin (1991) performed several experimental ice-

gouging tests in sand and clay seabed. The author showed that the vertical reaction forces were 

more influential for experimental models with a smaller angle of attack, and the horizontal reaction 

force was the dominant factor for a greater attack angle. Paulin (1992) also implemented some 
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laboratory tests for submerged and dry sand to quantify the reaction forces and deformations 

during the ice-scouring event. The author concluded that the ice scouring mechanism in submerged 

and dry circumstances was almost identical; however, the loads and reaction forces for the 

submerged sand were smaller than in the dry seabed condition. 

Lach (1996) investigated the ice scouring problem experimentally and numerically. The author 

performed centrifuge tests to determine the ice-clay interaction parameters. The study also showed 

that the scouring force was a function of undrained shear strength, keel geometry, and subgouge 

deformation. A series of the Pressure Ridge Ice Scour Experiment (PRISE) joint-industry tests 

were conducted by Woodworth-Lynes et al. (1996). The author demonstrated that the subgouge 

deformations could be estimated in terms of the soil depth, gouge depth, and gouge width. At the 

Center for Cold Ocean Resources Engineering (C-CORE), several centrifuge tests were conducted 

to measure the ice-induced deformations and reaction forces in both sand and clay seabed (C-

CORE 1995; C-CORE 1996). The experimental results showed that the magnitude of scour force 

increased with increasing the soil shear strength, scour width, and scour depth, while this parameter 

reduced when the keel attack angle increased. The investigations proved that the horizontal 

component of the reaction forces grew by increasing the width of the scouring, whereas the 

horizontal reaction forces reduced with the steeper attack angle. Hynes (1996) investigated the ice 

keel scour problem for a sandy seabed in a centrifuge study. The author reported the values of 

scour-induced reaction force, displacement, and pore pressure. They concluded that the relation 

between the scour loads and scour depths could be described linearly.  

Schoonbeek et al. (2006) measured the subgouge clay deformations through centrifuge tests. The 

authors presented an empirical equation in terms of gouge geometry and soil parameters to 

estimate the subgouge depth. Been et al. (2008) studied the mechanism of clay failure in ice 
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scouring problems. The authors concluded that greater deformations occurred in a clay mass with 

higher undrained shear strength, meaning that the scour depth was a function of the soil properties. 

Several Pipeline Ice Risk Assessment and Mitigation (PIRAM) tests in the sand condition were 

conducted by Yang (2009). The effects of gouge depth, frontal berm height, and gouge rate were 

assessed in this investigation. The author asserted that the gouge geometry and attack angle had a 

remarkable effect on the reaction forces. 

Liu et al. (2015) simulated the ice keel-seabed interaction employing a discrete element method 

(DEM), and the cohesive frictional model (CFM) was applied to model the freeze bonds between 

blocks of ice. The numerical results were validated by PIRAM tests, and the authors asserted that 

the numerical results improved by considering the water drag. Arnau Almirall (2017) conducted 

several 1g laboratory tests to perform the subgouge sand features in saturated and dry 

circumstances. The author studied the effect of velocity change, scour geometry, and soil 

conditions on the subgouge parameters. The study demonstrated that the ice-induced sand 

deformations in the 1g test are less than those resulting from the centrifuge tests. Shin et al. (2019) 

developed a three-dimensional model to simulate the ice-gouging phenomenon. The authors 

showed that the numerical model had a better performance by considering the geostatic stress and 

contact condition. Nematzadeh and Shiri (2020) modeled, using the modified Mohr-Coulomb 

(MMC) scheme, the ice-gouging problem in a sandy seabed. The authors concluded that the 

magnitude of subgouge sand displacements and reaction forces enhanced with the growing value 

of the unit weight and relative density. Hashemi and Shiri (2022) simulated the iceberg-seabed 

interaction in clay by incorporating the strain rate and strain-softening effects. The authors 

conducted a parametric study to assess the impact of different model parameters on the seabed 

response to iceberg intrusion. This study concluded that strain softening had a significant influence 
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on a larger amount of plastic shear strain below and in front of the iceberg tip. Hashemi et al. 

(2022) modeled the impact of the layered seabed, e.g., soft over stiff clay, in the ice-gouging 

problem. The keel reaction force was reduced by growing the attack angle in this study. 

Artificial intelligence (AI) and machine learning (ML) models have been limitedly used for the 

analysis of iceberg-seabed interaction. Kioka et al. (2003, 2004) used a Neural Network (NN) 

model for the simulation of the ice-gouging problem in the sand. The NN model was validated 

using a mechanical approach, and the author concluded that the NN results had a strong correlation 

with this mechanical approach. Azimi and Shiri (2020a) introduced the dimensionless parameters 

affecting the iceberg-seabed interaction in the sand by using Buckingham’s theory for the first 

time. The authors proposed some linear regression (LR) models to estimate the maximum 

subgouge soil displacements. Azimi and Shiri (2020b) simulated the horizontal subgouge soil 

displacements in the sand through Gene Expression Programming (GEP). The gouge depth and 

the dilation angle were found as the most significant input variables to predict the objective 

function. Azimi and Shiri (2021a) utilized the extreme learning machine (ELM) for modeling the 

iceberg-scoured parameters. The authors suggested a set of ELM-based formulas for estimating 

the subgouge deformations and reaction forces. The shear strength of the seabed soil and the gouge 

depth ratio was the most influential input to predict the reaction forces and the subgouge 

deformations, respectively. Azimi and Shiri (2021b) applied a multi-layer perceptron neural 

network (MLPNN) to simulate horizontal ice-intrusion displacements. The authors concluded that 

the soil depth and the bearing pressure had a remarkable impact on the estimation of the target 

parameter.  

Moreover, Azimi and Shiri (2021c) optimized the ELM model using the differential evolution 

(DE) algorithm to simulate the iceberg-seabed interaction mechanism in the sand. The study 
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highlighted that the berm height ratio, gouge depth ratio, and vertical component of the load had a 

significant effect on the simulation of the subgouge soil parameters. Azimi et al. (2021) applied a 

non-tuned machine learning algorithm to model the sub-gauge soil displacements in clay seabed 

along with the reaction forces. The authors concluded that the horizontal load factor and the gouge 

depth ratio were recognized as the most influential input parameters, and a set of equations was 

provided to estimate the sub-gauge soil features. Azimi and Shiri (2021d) assessed the iceberg-

seabed interaction process in clay mass through the ELM model. The soil depth was the most 

significant input factor governing the subgouge soil deformations. Azimi et al. (2022a) utilized an 

evolutionary design of the generalized group method of data handling (GS-GMDH) to model the 

iceberg-seabed interaction mechanism. The comparison of the best GS-GMDH model with the 

artificial neural network (ANN) and the GMDH algorithm showed the better performance of the 

GS-GMDH model. Azimi et al. (2022b) simulated the horizontal and vertical subgouge soil 

deformations in clay by using the Decision Tree Regression (DTR), Random Forest Regression 

(RFR), and Extra Tree Regression (ETR) models. The simulation results demonstrated that the 

ETR model possessed the highest degree of precision and correlation with the experimental values. 

Azimi et al. (2022c) estimated the iceberg-seabed interaction characteristics in clay seabed through 

decision tree regression (DTR), random forest regression (RFR), and gradient boosting regression 

(GBR) algorithms. The authors stated that the ETR algorithm was able to predict the target 

parameters with a better performance. 
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Part I 

Prediction of Seabed Response to Ice-Gouging 
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3. Chapter 3 

 

Modeling Initiation and determination of dimensionless groups of parameters 

governing ice-gouging in sand & clay 

 

This chapter includes three sections as follows: 

Section 1: Ice-Seabed Interaction Analysis in Sand Using a Gene Expression Programming-

Based Approach 

Section 2: Modeling Subgouge Sand Deformations by Using Multi-Layer Perceptron Neural 

Network 

Section 3: Dimensionless Groups of Parameters Governing the Ice-Seabed Interaction Process 
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Section 1 

 

Ice-Seabed Interaction Analysis in Sand Using a Gene Expression 

Programming-Based Approach 
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Abstract 

Arctic subsea pipelines are usually buried for physical protection against ice-induced scours. 

Determination of the maximum horizontal deformations for guaranteed operational integrity and 

cost-effective design is probably the most challenging aspect of subsea pipelines in ice-prone 

areas. The large uncertainties associated with the design of an ice-protected subsea pipeline using 

the existing empirical equations, advanced experimental, and sophisticated numerical studies with 

significant time and cost impacts are usually preferred to ensure the sufficiency and cost-

effectiveness of the pipeline design against the ice attack. This has caused the industry to keep 

looking for more effective and less-costly solutions for modeling the ice impact on buried 

pipelines. In this study, a Gene Expression Programming (GEP) model representing the Artificial 

Intelligence (AI) approaches was used for the first time to simulate the subgouge soil deformation 

in the sand. A database was constructed using some of the published experimental studies 

identifying the key input parameters including soil depth, bearing pressure, the maximum vertical 

extent of subgouge deformation, attack angle, and dilation index. Subsequently, six GEP models 

were developed and validated by using a K-fold cross-validation method. The performance of the 

GEP method was compared with an Artificial Neural Network (ANN) model, and uncertainty 

analysis (UA) along with a partial derivative sensitivity analysis (PDSA) was conducted to assess 

the influence domain of the key parameters. The study showed that the evolutionary numerical 

methods could be used as an accurate and cost-effective alternative for modeling ice-induced 

subgouge deformations. 

Keywords: Ice-gouging; Subgouge sand deformation; Gene expression programming (GEP); 

Artificial neural network (ANN); K-fold cross-validation; Partial derivative sensitivity analysis 

(PDSA) 
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3.1.1. Introduction 

Arctic territories contain a huge amount of hydrocarbon deposits such as crude oil and natural 

gases that increased energy demand is the cause of exploration in the Arctic regions. Subsea 

pipelines are widely used to transfer hydrocarbon and other exploration and production-related 

contents between the onshore and offshore facilities (Emmerson and Lahn 2012; Alba 2015). 

Marine pipelines are threatened by the ice-gouging, and pressure ridges attack crossing the pipeline 

route in shallow waters. Subsea trenching and backfilling are commonly used to bury the pipeline 

for physical protection against the ice scour (see Figure 3-1). 

 

Figure 3-1. Schematic layout of the ice-scoured seabed 

 

Identifying the maximum deformations for safe and cost-effective protection of the pipeline is a 

challenging problem. Costly experimental and advanced numerical simulation is mandatory for 

accurate modeling of the subgouge soil deformation and consequently, the pipe response. Semi-
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empirical equations are often used in industry for a faster and less expensive assessment through 

a decoupled analysis by scarifying some level of accuracy. However, this approach also needs a 

costly free-field ice-gouging analysis and still imposes oversimplification expenses on the practice. 

The industry is still looking for alternative approaches to mitigate the computational and 

experimental efforts and improve the accuracy of simulation at the same time. 

In this study, the application of an evolutionary method, i.e., Gene Expression Programming 

(GEP), was investigated as an alternative approach for the assessment of the subgouge soil 

deformation in the sand. In contrast, artificial intelligence (AI) approaches and soft computing 

(SC) techniques such as Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference 

System (ANFIS), Support Vector Machine (SVM), Group Method of Data Handling (GMDH) and 

Gene Expression Programming (GEP) are extensively applied to model complex and nonlinear 

problems with a large number of influential parameters (Rajaee 2011; Guven, and Kisi 2013; 

Kaydani et al. 2014; Haghiabi 2016; Azimi et al. 2017; Ebtehaj et al. 2018; Najafzadeh et al. 2018a; 

Najafzadeh et al. 2018b; Shaghaghi et al. 2018; Yavari et al. 2018; Moradi et al. 2019). For 

instance, Kioka and Kubouchi (2003) estimated the characteristics of the ice scour problem by 

adopting the neural network (NN). The attack angle, the ice velocity, the mean grain size of 

sediment, and the sea-bottom slope were assumed as the input parameters, whereas parameters of 

scour curve were considered as the output of the model. Moreover, Kioka et al. (2004) combined 

a neural network (NN) approach with a mechanical model to estimate the ice-induced scour depth. 

A sensitivity analysis was performed and then the bottom shape of the ridge and the ice condition 

surrounding the ridge were introduced as the most important factors affecting during an ice 

scouring event. Therefore, these cost-effective and accurate tools have many privileges, such as 

high modeling accuracy and enhanced simulation speed. 
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In this study, the GEP method was adopted by using the data collected from the existing 

experimental studies. The GEP method has been successfully applied in the literature to model the 

suspended sediment and sediment scour (Azamathulla et al. 2013; Shabanlou et al. 2018). 

However, this eminent technique has never been applied for simulation of the subgouge soil 

deformation, and the current study is considered the first time application of its kind. The GEP is 

quite flexible and versatile compared to other evolutionary methods like a genetic algorithm (GA), 

and Genetic Programming (GP). Furthermore, chromosomes can be genetically manipulated easily 

since they are pretty small, compact, and linear (Ferreira 2001). Therefore, this facilitated the 

useful adoption of this methodology to assess the ice-gouging process. 

The commonly known key factors affecting the subgouge deformations in the sand were 

considered as the input parameters to define six GEP models. Additionally, the K-fold cross-

validation method was applied to train and test the GEP models. The GEP models were analyzed 

and the best model with the corresponding most influential input parameters was identified. 

Simultaneously, the horizontal subgouge sand deformation was modeled using the ANN, and the 

results were compared with the GEP. Ultimately, an uncertainty analysis (UA) and a Partial 

Derivative Sensitivity Analysis (PDSA) were conducted to scrutinize the model performance.  

The study resulted in highly promising outcomes; for instance, the GEP method had a reasonable 

accuracy in modeling ice-induced seabed soil deformations. In addition, the approach significantly 

reduced the analysis cost and study conducting time. Moreover, the PDSA analysis revealed 

invaluable insight into the effect of various parameters affecting the seabed response to the ice-

gouging phenomenon. Finally, compared to an empirical model, the evolutionary method was 

found to be an appropriate alternative for the assessment of ice-induced scour in the sandy seabed. 
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3.1.2. Published experimental studies 

The current GEP model was fed by the results of selected experimental studies published in the 

literature. Some of these experimental studies are shortly reviewed in this section to facilitate 

presenting the results obtained from the current investigation. For instance, Harrison (1973), Chari 

(1975), Green and Chari (1981), Prasad (1985), and Longva and Bakkejord (1990) investigated 

different aspects of the ice-gouging problem. 

Subsequently, a joint industry and government-sponsored research program entitled the Pressure 

Ridge Ice Scour Experiment (PRISE) was conducted at the Centre for Cold Ocean Resources 

Engineering (C-CORE 1995) to understand the requirement for the safe and cost-effective design 

of subsea pipelines against the ice scour. The study showed the importance of the “dead wedge” 

underneath the ice keel with respect to variation in scour loads and subscour soil displacements. 

Analysis of the results served to support Been's (1190) shear-dragging hypothesis. Hynes (1996) 

carried out a centrifuge ice-gouging study in the sand and observed a linear relationship between 

the scour loads and depth. The author showed that sand deformation affected simple direct shear 

due to the stress-strain behavior of soil. Eventually, it was suggested numerical studies should be 

performed to simulate the centrifuge ice-gouging modeling. Woodworth-Lynas et al. (1998) 

investigated the soil deformation caused by an ice keel scour event in a centrifuge study. The 

authors showed that the changes in horizontal load, vertical load, and pore pressure could be easily 

measured in the experimental model, which was arduous to be observed in the field study. Barker 

and Timco (2003) extended their experimental study on the ice scour processes to assess the seabed 

response and loads for a buoyant ice model at the Canadian Hydraulics Centre. The authors 

concluded that the size and shape of the ice block could influence the results of the study. Phillips 

et al. (2005) reviewed the pressure ridge ice scour experiment (PRISE) studies and the subgouge 
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deformations. It was concluded that the shear along the dead wedge under the ice keel was 

identified as the most significant factor of soil resistance. Yang (2009) conducted a centrifuge 

study to measure deformations of ice-scoured sand. It was shown that the maximum gouge force 

was a function of the gauge geometry and keel attack angle and value of the frontal berm height. 

Furthermore, Bruce et al. (2012) carried out a C-CORE-led Joint Industry Program (JIP) to study 

the failure mechanism, the confining pressure, and the strength limits of a seabed gouging ice ridge 

keel. The authors indicated that the keel strength was enhanced by increasing the confining 

pressure. Phillips and Barrett (2012) reviewed the Pipeline Ice Risk Assessment & Mitigation 

(PIRAM) JIP studies to assess the 3D mechanical behavior of pipelines in response to ice-gouging 

events. The authors applied a fully coupled pipeline, seabed, and ice interaction model for the 

calibration of a pipeline design method. Barrette and Sudom (2014) compiled the data and tests 

related to ice-soil-pipeline interaction studies. The authors suggested that the database should be 

analyzed and the parameters affecting the ice-gouging events could be investigated to determine 

some relationships between the parameters. Arnau and Ivanović (2019) carried out 1g floor tests 

on cohesion-less seabed scour due to the ice attack. Ultimately, drifting velocity on the scouring 

loads was identified as an important parameter. 

The studies reviewed in the literature attempt to provide a better understanding of parameters 

affecting the ice-soil-pipeline interaction in an ice-gouging event. Although some parameters, 

including deformations and loads, may be measured in the experimental investigations, all non-

linear parameters governing a design method cannot be observed. In addition, despite a large 

amount of published experimental studies resulting in some empirical design equations, many 

companies still prefer to go through costly experimental and numerical studies for specific design 

cases. The reason behind this is the significant amount of uncertainties associated with several 



41 
 

non-linear parameters governing the design outcome. In this study, the capability of an 

evolutionary artificial intelligence (AI) approach for an accurate and cost-effective assessment of 

the seabed response to ice scour was investigated as an alternative approach. Further details are 

provided in the coming sections. 

 

3.1.3. Horizontal subgouge soil deformation in sand 

Figure 3-2 shows samples of numerical subgouge sand deformations, the corresponding keel 

reaction forces, and their comparison with experimental studies for a one-meter gouge depth 

(Nematzadeh and Shiri 2019). 
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Figure 3-2. Samples of numerical and experimental subgouge sand deformations (Nematzadeh 

and Shiri 2019) 

 

The maximum horizontal deformation occurs right underneath the keel base. Moving down the 

seabed, the magnitude of horizontal soil deformation is reduced by a hyperbolic curve. The 

maximum horizontal subgouge soil deformation (dh0), was obtained using the empirical 

equations proposed by C-CORE (Yang 2009; C-CORE 2008; C-CORE 2009a; C-CORE 2009b): 

𝑑ℎ0 √(𝜎𝑏 𝑃𝑎⁄ ) 𝑉𝑒 = (0.54 tan𝛼⁄ )(1 − 0.2(𝐼𝑟 + 1))⁄  (3-1) 

where, 𝜎𝑏 is bearing pressure (MPa), Pa is atmospheric pressure (0.1 MPa), 𝛼 is the attack angle 

(degree), 𝑉𝑒 is the maximum vertical extent of subgouge deformation (m), and 𝐼𝑟 is dilation index 

given as: 

𝐼𝑟 = 𝑅𝐷 × (10 − ln(𝜎𝑏 × 1000)) − 1  (3-2) 

where RD is the relative density of sand. The bearing pressure was defined as: 

𝜎𝑏(𝑀𝑃𝑎) = 0.09𝐷𝑠
1.5  (3-3) 

where Ds is the gouge depth (m). The maximum vertical extent of subgouge deformation (𝑉𝑒) 

was determined based on the range of the dilation index as follows: 

𝑉𝑒 = [

min[(1 + 0.5𝐼𝑟)(𝐷𝑠 + 𝑊 5⁄ ), 1.3(𝐷𝑠 + 𝑊 5,5𝐷𝑠⁄ )]         𝑖𝑓            𝐼𝑟 < 2

min[(2.6 + 0.65(𝐼𝑟 − 4))(𝐷𝑠 + 𝑊 5⁄ ), 5𝐷𝑠]                     𝑖𝑓    2 < 𝐼𝑟 < 4

0                                                                                                    𝑖𝑓             𝐼𝑟 > 4

  

(3-4) 

where W is the gouge width (m). Equations (3-1) to (3-4) denote the horizontal subgouge 

deformation (𝑑ℎ0) is a function of  𝜎𝑏, 𝑃𝑎, 𝑉𝑒, 𝛼 and 𝐼𝑟: 

𝑑ℎ0 = 𝑓(𝜎𝑏 , 𝑃𝑎 , 𝑉𝑒, 𝛼, 𝐼𝑟)  (3-5) 

Assuming a constant atmospheric pressure during the tests, so Eq. (3-5) can be written as 

follows: 
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𝑑ℎ0 = 𝑓(𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝐼𝑟) (3-6) 

Therefore, incorporating the soil depth (y) effect, the target function of horizontal subgouge 

deformation (dhy) for the artificial intelligence approaches was defined as follows: 

𝑑ℎ𝑦 = 𝑓(𝜎𝑏, 𝑉𝑒, 𝛼, 𝐼𝑟 , 𝑦) (3-7) 

The input parameters given in Eq. (3-7) were combined to construct six different GEP models (see 

Figure 3-3) with a minimum number of four key parameters.  

 

Figure 3-3. Combination of the input parameters for different models 

 

Gaining a good insight into the best input combination (the superior GEP model) and the most 

important input parameters in an ice-induced scouring problem was one of the key objectives of 

the current study. To do this, GEP 1 was defined by using all input parameters (𝜎𝑏, 𝑉𝑒, 𝛼, 𝐼𝑟 , 𝑦) and 

then five GEP models were produced adopting a combination of the other four input parameters. 

For instance, the 𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝑦 parameters for GEP 2, the 𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝐼𝑟 parameters for GEP 3, the 

𝜎𝑏 , 𝛼, 𝐼𝑟 , 𝑦 parameters for GEP 4, the 𝑉𝑒, 𝛼, 𝐼𝑟 , 𝑦 parameters for GEP 5, and the 𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝐼𝑟 

parameters for GEP 6 were utilized. Next, a sensitivity analysis (SA) was performed by 

comparison of the results from the defined GEP models. An alternative combination of input 
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parameters could be also defined by using one, two, three, four (GEP 2 to GEP 6), and five input 

parameters (GEP 1). However, the sensitivity analysis (SA) for models consisting of four and five 

input parameters identified the best GEP model and the most influencing input parameters without 

needing other combinations of parameters. As a result, the model GEP 1 simulated the target 

function by using all of the input parameters and eliminating the effects of other parameters for 

GEP 2 to GEP 6 including σb, Ve, α, Ir, and y (Najafzadeh et al. 2018; Shaghaghi et al. 2019). The 

best GEP model owns the lowest error and the highest correlation. In contrast, the accuracy of the 

GEP model decreased remarkably by removing the most effective input parameter since the level 

of effectiveness for the eliminated parameter was significant. Therefore, the applied configuration 

of input parameters was able to properly perform the sensitivity analysis. 

 

3.1.4. Construction of database  

The studies published by C-CORE (1995), Hynes (1996), and Yang (2009) are amongst the most 

important experimental studies related to ice-induced sand scouring problems in which input 

parameters (𝜎𝑏, 𝑉𝑒 , 𝛼, 𝐼𝑟 , 𝑦) and the target parameter (dhy) can be expressly adopted to feed the 

developed GEP models. The key results of the experimental studies conducted by C-CORE (1995) 

(eight test results in the sand with different relative densities), Hynes (1996) (seven centrifuge tests 

in clean dry silica sand), and Yang (2009) (seven centrifuge ice-gouging test in AlWhite Silica 

sand) were used to construct a database for validation of the artificial intelligence numerical 

models. Using these experimental studies, the attack angle (𝛼), the scour depth (𝐷𝑠), the scour 

width (𝑊), the g-level, the relative density (RD), and the horizontal subgouge deformation (dhy) 

at different depths (y) were extracted and summarized in Table 3-1 to Table 3-3 
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Table 3-1. Characteristics of applied experimental parameters (1995) 

Test ID dhy (m) y (m)   (degree) Ds 

(m) 

W (m) g-level RD % 

 

 

 

PRISE01B

-Drive 2 

2.4 0 15 2 15 150 0.374 

1.65 0.75 15 2 15 150 0.374 

1.05 1.5 15 2 15 150 0.374 

0.68 2.25 15 2 15 150 0.374 

0.38 3 15 2 15 150 0.374 

0.08 3.75 15 2 15 150 0.374 

0 4.5 15 2 15 150 0.374 

 

 

 

 

PRISE01C

-Drive 1 

0.75 0.000 30 1 15 75 0.370 

0.58 0.375 30 1 15 75 0.370 

0.45 0.750 30 1 15 75 0.370 

0.35 1.125 30 1 15 75 0.370 

0.25 1.500 30 1 15 75 0.370 

0.2 1.875 30 1 15 75 0.370 

0.16 2.250 30 1 15 75 0.370 

0.11 2.625 30 1 15 75 0.370 

0.05 3.000 30 1 15 75 0.370 

0.04 3.375 30 1 15 75 0.370 

0.01 3.750 30 1 15 75 0.370 

0 4.125 30 1 15 75 0.370 

 

 

 

 

 

 

 

PRISE01C

- 

Drive 2 

0.71 0.000 30 1 15 75 0.370 

0.59 0.375 30 1 15 75 0.370 

0.54 0.750 30 1 15 75 0.370 

0.49 1.125 30 1 15 75 0.370 

0.41 1.500 30 1 15 75 0.370 

0.32 1.875 30 1 15 75 0.370 

0.27 2.250 30 1 15 75 0.370 

0.24 2.625 30 1 15 75 0.370 

0.19 3.000 30 1 15 75 0.370 

0.15 3.375 30 1 15 75 0.370 

0.13 3.750 30 1 15 75 0.370 

0.09 4.125 30 1 15 75 0.370 

0.05 4.500 30 1 15 75 0.370 

0.02 4.875 30 1 15 75 0.370 

0 5.250 30 1 15 75 0.370 

 

 

PRISE09 

Drive 1 

3.45 0.000 15 1 15 150 0.574 

2.4 0.750 15 1 15 150 0.574 

1.65 1.500 15 1 15 150 0.574 

1.2 2.250 15 1 15 150 0.574 

0.9 3.000 15 1 15 150 0.574 

0.45 3.750 15 1 15 150 0.574 

0.15 4.500 15 1 15 150 0.574 

3.53 0.000 15 2 15 150 0.574 
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PRISE09- 

Drive 2 

2.04 0.750 15 2 15 150 0.574 

1.32 1.500 15 2 15 150 0.574 

0.66 2.250 15 2 15 150 0.574 

0.36 3.000 15 2 15 150 0.574 

 

Table 3-2. Characteristics of applied experimental parameters Hynes (1996) 

Test ID dhy (m) y (m)   (degree) Ds (m) W (m) g-level RD % 

 

 

 

 

Scour B 

0.42 0.750 15 1.70 15 150 0.3 

0.35 1.500 15 1.70 15 150 0.3 

0.18 3.000 15 1.70 15 150 0.3 

0.00 4.500 15 1.70 15 150 0.3 

0.00 6.000 15 1.70 15 150 0.3 

0.00 7.500 15 1.70 15 150 0.3 

0.00 9.000 15 1.70 15 150 0.3 

0.00 10.50 15 1.70 15 150 0.3 

0.00 12.00 15 1.70 15 150 0.3 

0.00 13.50 15 1.70 15 150 0.3 

 

 

 

 

 

Scour C 

0.50 0.150 30 0.98 15 75 0.3 

0.38 1.130 30 0.98 15 75 0.3 

0.30 1.500 30 0.98 15 75 0.3 

0.17 2.250 30 0.98 15 75 0.3 

0.06 3.000 30 0.98 15 75 0.3 

0.00 3.750 30 0.98 15 75 0.3 

0.00 4.500 30 0.98 15 75 0.3 

0.00 5.250 30 0.98 15 75 0.3 

0.00 6.000 30 0.98 15 75 0.3 

0.00 6.150 30 0.98 15 75 0.3 

 

 

 

 

Scour D 

0.49 0.750 15 1.10 15 75 0.3 

0.44 1.130 15 1.10 15 75 0.3 

0.31 1.500 15 1.10 15 75 0.3 

0.21 2.250 15 1.10 15 75 0.3 

0.14 3.000 15 1.10 15 75 0.3 

0.09 3.750 15 1.10 15 75 0.3 

0.04 4.500 15 1.10 15 75 0.3 

0.00 5.250 15 1.10 15 75 0.3 

0.00 6.000 15 1.10 15 75 0.3 

0.00 6.750 15 1.10 15 75 0.3 

 

 

 

0.62 0.750 15 1.20 15 150 0.7 

0.35 1.500 15 1.20 15 150 0.7 

0.12 3.000 15 1.20 15 150 0.7 

0.12 4.500 15 1.20 15 150 0.7 

0.00 6.000 15 1.20 15 150 0.7 

0.00 7.500 15 1.20 15 150 0.7 
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Scour E 

0.00 9.000 15 1.20 15 150 0.7 

0.00 10.50 15 1.20 15 150 0.7 

0.00 12.00 15 1.20 15 150 0.7 

0.00 13.50 15 1.20 15 150 0.7 

 

 

 

 

Scour F 

0.95 0.750 15 2.14 15 150 0.7 

0.60 1.500 15 2.14 15 150 0.7 

0.20 3.000 15 2.14 15 150 0.7 

0.00 4.500 15 2.14 15 150 0.7 

0.00 6.000 15 2.14 15 150 0.7 

0.00 7.500 15 2.14 15 150 0.7 

0.00 9.000 15 2.14 15 150 0.7 

0.00 10.50 15 2.14 15 150 0.7 

0.00 12.00 15 2.14 15 150 0.7 

0.00 13.50 15 2.14 15 150 0.7 

 

Table 3-3. Characteristics of applied experimental parameters Yang (2009) 

Test ID dhy (m) y (m)  ° Ds 

(m) 

W (m) g-level RD % 

 

 

 

P02 

0.262 0.0001 30 1.30 10.0 55.6 0.936 

0.140 0.0061 30 1.30 10.0 55.6 0.936 

0.094 0.017 30 1.30 10.0 55.6 0.936 

0.074 0.022 30 1.30 10.0 55.6 0.936 

0.048 0.033 30 1.30 10.0 55.6 0.936 

0.027 0.044 30 1.30 10.0 55.6 0.936 

0.006 0.054 30 1.30 10.0 55.6 0.936 

 

 

P03 

0.065 0 30 1.40 10.0 55.6 0.515 

0.046 0.011 30 1.40 10.0 55.6 0.515 

0.017 0.022 30 1.40 10.0 55.6 0.515 

0.006 0.028 30 1.40 10.0 55.6 0.515 

 

 

P05 

0.048 0 30 0.18 2.20 12.2 0.58 

0.010 0.009 30 0.18 2.20 12.2 0.58 

0.008 0.019 30 0.18 2.20 12.2 0.58 

0.005 0.029 30 0.18 2.20 12.2 0.58 

0.003 0.039 30 0.18 2.20 12.2 0.58 

 

 

 

P06 

0.026 0 30 2.30 14.4 80 0.508 

0.014 0.006 30 2.30 14.4 80 0.508 

0.008 0.017 30 2.30 14.4 80 0.508 

0.007 0.022 30 2.30 14.4 80 0.508 

0.004 0.033 30 2.30 14.4 80 0.508 

0.003 0.044 30 2.30 14.4 80 0.508 

0 0.054 30 2.30 14.4 80 0.508 

 0.024 0 30 2.40 14.4 80 0.390 

0.018 0.009 30 2.40 14.4 80 0.390 

0.018 0.017 30 2.40 14.4 80 0.390 
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P07 

0.015 0.025 30 2.40 14.4 80 0.390 

0.009 0.033 30 2.40 14.4 80 0.390 

0.007 0.041 30 2.40 14.4 80 0.390 

 

 

P08 

0.026 0 30 0.19 2.20 12.2 0.681 

0.013 0.008 30 0.19 2.20 12.2 0.681 

0.007 0.015 30 0.19 2.20 12.2 0.681 

0.006 0.023 30 0.19 2.20 12.2 0.681 

0.003 0.031 30 0.19 2.20 12.2 0.681 

0.002 0.038 30 0.19 2.20 12.2 0.681 

0.001 0.046 30 0.19 2.20 12.2 0.681 

 

 

 

 

 

P09 

0.024 0 15 1.20 16.0 80 0.386 

0.018 0.008 15 1.20 16.0 80 0.386 

0.010 0.015 15 1.20 16.0 80 0.386 

0.005 0.022 15 1.20 16.0 80 0.386 

0.003 0.030 15 1.20 16.0 80 0.386 

0.002 0.037 15 1.20 16.0 80 0.386 

0.001 0.045 15 1.20 16.0 80 0.386 

0.001 0.053 15 1.20 16.0 80 0.386 

0.001 0.062 15 1.20 16.0 80 0.386 

6.5E-05 0.069 15 1.20 16.0 80 0.386 

1.9E-05 0.077 15 1.20 16.0 80 0.386 

 

Hynes (1996) used loose and dense sands but did not mention the values of RD. Using an existing 

classification study (e.g., Mitchell and Soga 2005), relative densities of 0.3 and 0.7 were adopted 

for loose and dense sands of Hynes (1996). 

Care should be taken in using the laboratory test data for testing the AI models. The idealized test 

conditions may affect the reliability of model prediction to some extent. To overcome this 

limitation, the majority of the data in the current study were selected from centrifuge studies which 

is one of the most reliable technics for model testing in geotechnical engineering. The centrifugal 

acceleration simulates gravity and allows for correspondence of stress fields between the model 

and full-scale resulting in an accurate model prediction within a bandwidth of less than 1.0 times 

the normalized loads (C-CORE 1995; C-CORE 2009b). This provided a relaxation to build up the 

current database and feed the artificial intelligence models in the current study. Also, some of the 

key parameters such as gouge depth are usually determined by field-specific statistical and 
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probabilistic analysis prior to any ice-gouging analysis, which is considered as a sufficiently 

reliable method in industrial practice. 

 

3.1.5. Goodness of fit 

In order to evaluate the GEP results, correlation coefficient (R), Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), Scatter Index (SI), and BIAS index were used as key statistical indices 

given by following a set of equations: 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2
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𝑀𝐴𝐸 =
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𝑛
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𝑛
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𝐵𝐼𝐴𝑆 =
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1
 

(3-12) 

where 𝑂𝑖 is the observed horizontal deformation, 𝑃𝑖 is the simulated horizontal deformation, �̅� is 

the average of observed horizontal deformations, and n is the number of observed horizontal 

deformations. The closeness of the RMSE, MAE, and SI indices to zero signifies the high accuracy 

of the numerical model. Moreover, the closeness of the correlation coefficient (R) to one means a 

high correlation of the numerical model. The best model has the lowest BIAS index than other 

models. 

 

3.1.6. Developing Artificial Intelligence numerical models 
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In this section, the adopted artificial intelligence approaches, including Gene Expression 

Programming (GEP) and Artificial Neural Networks (ANN), are discussed. The GEP is considered 

an evolutionary model, whereas the ANN is classified as a classical learning algorithm. In the 

current study, a based-GEP model was adopted by using JEdit open-source software (JEdit. 2011). 

 

3.1.6.1. Gene Expression Programming (GEP) 

The Genetic Algorithm (GA), introduced by Holland in the 1960s, is based on the biological 

evolution principles to find a solution for computer systems. In GA, the solution is encoded in 

binary strings between 0 and 1 (Holland 1992). Moreover, the genetic programming (GP) method 

was presented by Cramer (Cramer 1985) and developed by Koza (1992). The GP produces 

computer programs in order to solve a problem by adopting the theory of natural selection 

developed by Darwinians (Gandomi et al. 2013). In the GP solutions, the computer programs are 

expressed as tree structures and then represented in a functional programming language. Thus, the 

solution procedure in the GA and GP approaches is the most important difference between these 

evolutionary methods. In contrast, Gene Expression Programming (GEP) is a strong evolutionary 

artificial intelligence approach, as an extension to the conventional Genetic Programming that was 

introduced by (Ferreira 2001). Similar to the GA and GP, the GEP owns populations and 

individuals that utilize individuals in a specific population and then chooses the best individuals 

regarding their fitness of them. The genomes in the GEP are coded as chromosomes with a constant 

length and represent how the chromosomes function, whilst the genes named phenotypes are 

presented in the forms of expression trees (ETs) (Ferreira 2001). The GEP model has its own 

function set, terminal set, fitness function, control parameters, and termination condition and the 

GEP does not borrow from other algorithms. Indeed, the main difference between the GA, GP, 
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and GEP models is their individuals. The GA individuals are linear strings with a fixed length, 

whilst the GP individuals are nonlinear entities with different shapes and sizes. The GEP 

individuals are encoded as linear strings with a fixed length that are expressed as nonlinear entities 

of various shapes and sizes (Ferreira 2001). In other words, as an evolutionary model, the GEP 

owns all the advantages of the GA and GP methods and overcomes the drawbacks of these 

algorithms. The GEP is a “phenotype/genotype” evolved system in which both phenotype and 

genotype are separately performed, while the GP is just a replicator (Ferreira 2001). Furthermore, 

simple genetic diversity is a key benefit of the GEP model, meaning that the model uses different 

genetic operators at various chromosome levels. The GEP have generally five important 

components including (I) function set (II) terminal set (III) fitness function (IV) control parameters 

(V) termination condition (Ferreira 2001). Furthermore, the GEP model is able to simulate 

complex problems by using small population sizes. An example GEP solution is illustrated in 

Figure 3-4. 
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Figure 3-4. Example GEP solution 

 

Therefore, the GEP model was adopted for modeling the subgouge soil deformations as a robust 

evolutionary system. In the current study, the GEP simulation was commenced with a random 

initial population in the model. The population included some chromosomes with constant length, 

where each chromosome may own some genes that have a coding region as the head and a non-

coding region as the tail (Ferreira 2001). The organization presented by the genes produced valid 

programs. Each chromosome in the initial population was evaluated by means of a fitness function 

that was chosen considering the fitness value by employing the “roulette wheel selection” method 

(Ferreira 2001). The roulette wheel selection is considered a genetic operator in evolutionary 

algorithms for choosing potentially best solutions (Blickle and Thiele 1996). 
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This resulted in the fitter chromosomes having a high chance of producing the next generation. 

After the selection phase, the chromosomes were modified and reproduced using genetic operators, 

including mutation, transportation, inversion, and recombination. The mutation is the most 

important genetic operator that can occur anywhere in a specific chromosome and significantly 

reshape the expression trees (ETs) (Ferreira 2001). Other genetic operators do not have this 

capability. A trial and error procedure was employed to suggest the optimized mutation rate value. 

An initial value of 0.01 was considered and then increased to 0.02. Finally, the mutation rate was 

set to 0.014 and resulted in the best performance of the GEP. Regarding fitness by using the 

roulette wheel selection, individuals are chosen and then copied into a new generation. Figure 3-5 

illustrates the GEP modeling flowchart, where five main steps were taken to model the horizontal 

subgouge deformations (dhy). 

 

Figure 3-5. GEP flowchart to determine the subgouge soil deformation 
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Throughout the four main steps, first, a fitness function was determined to modify and reproduce 

the population. The fitness fi related to the ith program was considered as follows: 

𝑓𝑖 = ∑ (Ϻ − |𝐶(𝑖,𝑗) − 𝑇𝑗|)
𝑐𝑡

𝑗=1
 

(3-13) 

where, Ϻ is the selection range, C (i, j) is the ith chromosome value for the jth fitness case, and Tj 

is the observed value for the jth fitness case (Ferreira 2001). The precision becomes zero; when the 

accuracy 
)( ),( jji TC 

 is 0.01. As a result, the fi was obtained equal to the minimum value of itself 

(fi=fmin=(Ct. Ϻ). Therefore, finding the optimum result was one of the benefits of applying the 

fitness function (Ferreira 2001). 

Second, the function set and terminal set was selected to produce the chromosomes. The terminal 

set is an independent variable, which was a function of all input parameters. Regarding Eq. (3-7), 

the “terminal set” consisted of the 𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝐼𝑟 , 𝑦 as input parameters. It is worth mentioning that 

there is no specific method to determine the function set. Therefore, the function sets such as “+, 

-, , /, √, Ln, Exp” were employed using a trial and error approach. In other words, the accuracy 

of various function sets was evaluated and then the optimal one was selected. For instance, the 

values of correlation coefficient (R) and scatter index (SI) for the “+, -, , /, √, Ln, Exp” function 

sets were respectively obtained to be 0.907 and 0.746. The results from the calculated statistical 

indices for the applied function sets are arranged in Table 3-4. 

 

Table 3-4. Results from the calculated statistical indices for the applied function sets 

Function sets R RMSE MAE SI BIAS 

+, -,* , / 0.853 0.358 0.257 0.940 0.003 

+, -,* , / , √ 0.847 0.382 0.271 0.966 0.002 
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+, -,* , / , √, Ln 0.893 0.297 0.212 0.825 -0.074 

+, -, , /, √, Exp 0.907 0.271 0.186 0.746 0.067 

+, -, , /, √, Ln, Exp 0.929 0.253 0.147 0.673 -0.002 

+, -, , /, √, Ln, Exp, Sin 0.911 0.261 0.170 0.741 0.003 

 

Third, the chromosome architecture, including head length and the number of genes was 

determined by assuming an initial value of one and two for the genes and head, respectively. Next, 

the number of genes and the head length were respectively increased to 8 and 10 and finally, the 

best results were obtained when the number of genes and head length were equal to 5 and 7, and 

increasing the number of these parameters was found to have no considerable effect on the 

modeling results. Thus, the number of optimal genes and the head length were considered equal to 

5 and 7 for the numerical model. Fourth, the GEP model owns four linking functions of “Division”, 

“Subtraction”, “Multiplication”, and “Addition”. Regarding the results of the linking functions, 

the Addition was identified as the superior linking function. In summary, the modeling was 

conducted by setting the genetic operators given in Table 3-5. 

 

Table 3-5. Genetic operators applied in the study 

  Parameters Setting 

P1 Number of generations 200000 

P2 Number of chromosomes 80 

P3 Number of genes 5 

P4 Head size 7 

P5 Linking function Addition 
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P6 Mutation rate 0.014 

P7 Inversion rate 0.1 

P8 One-point recombination rate 0.3 

P9 Two-point recombination rate 0.3 

P10 Gene recombination rate 0.1 

P11 Gene transportation rate 0.1 

P15 Function set +, -, , /, √, Ln, Exp 

 

In this table, the number of generations, the number of chromosomes, the number of genes, the 

head size, the linking function, the mutation rate, and the function set were determined by trial and 

error, whilst the other GEP model parameters including the inversion rate, the one point 

recombination rate, the two-point recombination rate, gene recombination rate, and gene 

transportation rate were adjusted as the proposed initial values of GEP tutorial (Azimi et al. 2017; 

Shabanlou et al. 2018; Ferreira 2001; Karbasi and Azamathulla 2016). 

 

3.1.6.2. Artificial Neural Network (ANN) 

Owing to the flexibility of multilayer perceptron (MLP) models to simulate complex problems 

(Haykin 1994), Artificial Neural Network (ANN) is considered one of the most common neural 

network (NN) techniques. Each MLP model has some layers, including an input layer, at least a 

hidden layer, and an output layer. Neurons are in the perceptron layers with a number equal to the 

input and output variables of the problem, meaning that the number of neurons in the input layer 

equals five input parameters including 𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝐼𝑟 , 𝑦, whereas one neuron in the output layer is 

considered the target parameter (dhy). There are no specific rules and regulations to set the number 
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of neurons in the hidden layer. Therefore, a trial and error method is applied to select the number 

of neurons in the hidden layer (Bilhan et al. 2010). In the current study, the number of neurons in 

the hidden layer is initially assumed equal to one and the precision of the ANN model is evaluated 

by increasing the number to 10. The most optimal number of the hidden layer neurons is selected 

equal to 5 since the accuracy of the ANN model is insignificantly changed. The number of neurons 

in the antecedent layer is collected using summed weighted neurons in hidden and output layers 

and transferred to the next layer by employing an activation function. To choose the optimized 

activation function, three functions including “linear”, “sigmoid”, and “hyperbolic tangent” were 

used to simulate the subgouge deformations. Subsequently, the performance of these activation 

functions in terms of accuracy was compared together. Lastly, the sigmoid was selected to estimate 

the deformations. Additionally, the sigmoid activation function has been used in different fields 

because of its acceptable performance (Smith 1993; Basterretxea et al. 2002; Valipour et al. 2013; 

Makarynskyy 2004). The applied activation functions were set as follows: 

𝑙𝑖𝑛𝑒𝑎𝑟(𝑥) = 𝑥 (3-14) 

σ(𝑥) =
1

1 + 𝑒−𝑥
 

(3-15) 

tan(𝑥) =
2

1 + 𝑒−2𝑥
− 1 

(3-16) 

The values of weighted outputs were summed by means of the MLP throughout a procedure called 

“model training”. The Levenberg-Marquardt (LM) algorithm was applied to train the MLP neural 

network, where the biases and weights were calculated using the back-propagation algorithm. 

 

3.1.6.3. K-fold Cross-Validation 
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In this study, the K-fold cross-validation approach was applied to train and test the GEP models 

(see Figure 3.6). All observations were spilt into five sub-samples (K=5) with an equal size of 22. 

This resulted in a total number of 110 observations (5 × 22 = 110). First, one sub-sample was 

randomly selected to test the GEP models and then four remaining sub-samples were utilized to 

train the GEP models. 

 

Figure 3-6. Schematic layout of the adopted 5-fold cross-validation method 

 

Subsequently, the procedure was iterated five times for other sub-samples to ensure each sub-

sample has been used at least once for training and testing of the GEP models. Eventually, the 

results of the five cross-validations were averaged as a single estimation for the GEP models 

(James et al. 2013; Azimi et al. 2021). 

 

3.1.7. Results and discussion 

3.1.7.1. Evaluation of GEP models 

The computed statistical indices of GEP 1 to GEP 6 models were compared and illustrated in 

Figure 3-7. GEP 1 resulted in the highest accuracy (the lowest error) with a BIAS value of -0.049. 
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GEP 1 simulated the horizontal deformations of sand using all input parameters (𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝐼𝑟 , 𝑦) 

(see Figure 3-3). The magnitude of calculated RMSE, MAE, and SI indices were 0.232, 0.127, and 

0.638, respectively. 

 

 

 

 

Figure 3-7.. The key statistical indices for GEP 1 to GEP 6 

 

GEP 2 was a function of the 𝜎𝑏 , 𝑉𝑒, 𝛼, 𝑦 parameters, in which the effect of the dilation index (Ir) 

was eliminated in the simulation of the target function (dhy). The scatter index (SI) and RMSE 

values for GEP 2 were estimated at 0.831 and 0.302, respectively. For the artificial intelligence 
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model, the MAE and BIAS indices were respectively estimated to be 0.193 and 0.002. The attack 

angle (𝛼) was the eliminated parameter in GEP 3, where the model comprised the input 

parameters 𝜎𝑏 , 𝑉𝑒, 𝐼𝑟 , 𝑦. The MAE, RMSE, and SI values for GEP 3 were reckoned to be 0.168, 

0.281, and 0.772, respectively, with a BIAS index of 0.019. In GEP 4, the key input parameters 

included 𝜎𝑏 , 𝛼, 𝐼𝑟 , 𝑦, meaning that the maximum vertical extent of subgouge deformation (𝑉𝑒) was 

ignored in the estimation of the subgouge deformations. Regarding the results obtained from GEP 

4, some regular fluctuations were observed by eliminating the 𝑉𝑒 parameter during the simulation 

of small subgouge deformations. In this case, the scatter index, and RMSE values were 0.660 and 

0.240, respectively, with a computed MAE and BIAS indices of 0.145 and -0.002.  

The GEP 5 was a function of the 𝑉𝑒 , 𝛼, 𝐼𝑟 , 𝑦 input parameters and the bearing pressure (𝜎𝑏) was 

the eliminated parameter. The BIAS, RMSE, and MAE values for GEP 5 were respectively equal 

to 0.063, 0.265, and 0.186, with a scatter index of 0.727. Regarding GEP 3 and GEP 5, there were 

some similar fluctuations in the simulated subgouge deformations. Furthermore, the calculated 

statistical indices were approximately the same for GEP 3 and GEP 5 models. The GEP 6 had the 

highest error and lowest accuracy, where the obtained SI, MAE, and BIAS values were 1.183, 0.216, 

and 0.002, respectively, with the RMSE index of 0.431. The R index for GEP 2, GEP 3, and GEP 

4 was estimated to be 0.881, 0.905, and 0.927, respectively. Moreover, the correlation coefficient 

for GEP 5 and GEP 6 was about 0.915 and 0.737, respectively 

The subgouge deformations measured by C-CORE (1995) varied in a range of 3.53m (upper limit 

of the dataset) to 0.0 (lower limit of the dataset), whereas these values for Hynes (1996) and Yang 

(2009) datasets ranged from 0.95m to zero and 0.262m to zero, respectively. This means that the 

upper limit of data reported by C-CORE (1995) has shown a meaningful difference with Hynes's 

(1996) and Yang's (2009) values, signifying that these three datasets are pretty heterogeneous. 
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Even though the numerical model attempted to estimate the target function with its highest 

performance in a wide range of experimental values, some discrepancies occurred at the peak 

points. In other words, the GEP models underestimated these peak points. 

For GEP 6, the effect of soil depth (y) was eliminated, and only the parameters 𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝐼𝑟 were 

kept to model the target function, denoting that GEP 6 has four input parameters to estimate the 

horizontal ice-induced deformations. Thus, the soil depth was a significant parameter in simulating 

the horizontal subgouge sand deformations. The results of observed and simulated target function 

distribution in GEP 1 to GEP 6 versus the experiment numbers are shown in Figure 3-8. 

 

 

 

Figure 3-8. Comparison of the observed dhy with the simulated results of GEP 1 to GEP 6 
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Some oscillatory patterns were observed in GEP 3, GEP 5, and GEP 6. The sensitivity analysis 

showed that the accuracy of simulations was decreased by eliminating the soil depth (y), as the 

most significant input parameter. This resulted in a more severe fluctuation in the results of the 

GEP 6. In GEP 3 and GEP 5, these fluctuations were observed only in small subgouge 

deformations. Also, having a similar simulation condition in all GEP models, the level of 

effectiveness for each input parameter affected the results obtained from the GEP models. For 

instance, the significance of the eliminated inputs (𝛼 and 𝜎𝑏) for GEP 3 and GEP 5 was not as 

much as the importance of the soil depth (y) removed from GEP 6. This means that some models 

had better performance (GEP 1 and GEP 4 models), while others had some fluctuations during the 

simulation procedure (GEP 3, GEP 5, and GEP 6). Furthermore, the scatter plots for GEP 1 to 

GEP 6 were depicted in Figure 3-9. Based on the numerical modeling, GEP 1 has the highest rate 

of correlation with a correlation coefficient (R) of 0.945. 
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Figure 3-9. Scatter plots for GEP 1 to GEP 6 models 

 

The error distribution of GEP 1 to GEP 6 models is shown in Figure 3-10 in which the effects of 

removing each input parameter on the error distribution of the GEP models were examined. For 

instance, about 5% of the results from GEP 1 had an error of less than 4%, while 11% of the 

estimated horizontal subgouge deformations by the model had an error between 10% and 20%. In 

contrast, the error distribution for GEP 2 showed that roughly 10% of the modeled deformations 

had an error of less than 8% though nearly 18% of results from the model had an error of less than 

16%. Besides, virtually 18% of results from GEP 2 had an error of less than 16%, whereas this 

value for GEP 1 was about 15%. Furthermore, approximately 17% of results from GEP 3 produced 

an error of less than 12%, indicating that the elimination of the attack angle (𝛼) resulted in 

decreasing accuracy of the model. For GEP 4 in which the effect of 𝑉𝑒 was removed, the error 

distribution indicates that about 22% of results from having an error of less than 24%, whilst this 

value for GEP 1 was nearly 20%. Likewise, almost 26% of subgouge deformations estimated by 

GEP 5 had an error of less than 24% with a corresponding value of about 20% for GEP 1. In 

addition, roughly 19% of estimated sand deformations using GEP 6 had an error of less than 24%, 

and this value for GEP 1 was about 20%. 
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Figure 3-10. Error distribution diagram for GEP models 

 

To further evaluate the GEP models, the discrepancy ratio (DR) of the models was defined as 

follows and presented in Figure 3-11: 

𝐷𝑅 =
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(3-17) 

In general, the magnitude of DR approaching the unity denoted the higher performance of the 

model. Although the maximum and minimum discrepancy ratios are not shown in Figure 3-11, 

almost all calculated DR near the unity can be seen from the figure otherwise, the figure is not able 

to illustrate the behavior of the DR around the unity. The average discrepancy ratio (DRave) for 
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GEP 1 was estimated at 9.094, while the value for GEP 2 and GEP 3 was approximately 21.186 

and 30.865, respectively. Moreover, the computed value of DRave for GEP 4 is 4.714 with the 

corresponding value of 47.763 for the GEP 5 model. Besides, the average discrepancy ratio for 

GEP 6 was 3.019. 

 

 

 

Figure 3-11. Discrepancy ratio (DR) for GEP models 
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Regarding the conducted sensitivity analysis, GEP 1 was identified as the most accurate GEP 

model to surmise the horizontal deformations of sand. The model estimated the deformations using 

all input parameters including the bearing pressure (𝜎𝑏), the maximum vertical extent of subgouge 

deformation (𝑉𝑒), the attack angle (𝛼), the dilation index (𝐼𝑟), and soil depth (y). Additionally, 

GEP 4 as a function of 𝜎𝑏 , 𝛼, 𝐼𝑟 , 𝑦 was the second accurate model, and GEP 5 was detected as the 

third accurate GEP model. Among all GEP models, GEP 3 had fourth place in terms of accuracy. 

Moreover, GEP 2 was considered as fifth most accurate GEP model which estimates the target 

function using 𝑉𝑒, 𝛼, 𝐼𝑟 , 𝑦 input parameters. Ultimately, GEP 6 had the lowest correlation with 

experimental values. The sensitivity analysis indicated that the soil depth (y) and the dilation index 

(𝐼𝑟) are the most significant input parameters, meaning that the elimination of the y and 𝐼𝑟 resulted 

in declining the performance of the GEP model. In addition, the attack angle (𝛼) was identified as 

the third important input parameter even though the bearing pressure (𝜎𝑏) had the fourth place in 

terms of its impact on the modeling of deformations. Finally, the maximum vertical extent of 

subgouge deformation (𝑉𝑒) was detected as an input parameter with the lowest influence. 

 

3.1.7.2. Uncertainty Analysis (UA) 

An Uncertainty Analysis (UA) was conducted to evaluate the GEP model's performance by 

quantification of the uncertainties in the input variables. This methodology has been successfully 

applied in the literature to describe the error estimated by the GEP models, for example (Karbasi 

and Azamathulla et al. 2016; Azimi et al. 2021) performed UA for their GEP models. In the current 

study, the estimated error by the GEP models (𝑒𝑗) was computed as the difference between the 
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estimated (𝑃𝑗) and observed (𝑂𝑗) subgouge soil deformations (𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗). The mean value of 

the estimated error (�̅�) and the standard deviation (𝑆𝑒) were calculated as follows: 

�̅� = ∑ 𝑒𝑗
𝑛

𝑗=1
 

(3-18) 

𝑆𝑒 = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(3-19) 

The negative sign of �̅� signifies the underestimated performance of the GEP model, whereas the 

positive sign indicates the overestimated performance of the numerical model. Using the �̅� and 𝑆𝑒 

parameters, the confidence bound was defined around an estimated error by adopting the “Wilson 

score approach” without the continuity correction. The Wilson score interval, developed by Wilson 

(1927), is an improvement over the normal distribution interval in which an asymmetric normal 

distribution is used to improve the confidence interval bound (Wallis 2013). This method is applied 

in the uncertainty analysis of the developed GEP models. A ±1.96Se resulted in a 95% confidence 

bound, which is represented by a “95% prediction error interval” (95%PEI). Table 3-6 shows the 

parameters of the UA of GEP models, where the "width of uncertainty bound" is shown by WUB. 

 

Table 3-6. Uncertainty analysis parameters for GEP models 

Model �̅� 𝑆𝑒 WUB 95% PEI 

GEP 1 0.049 0.228 ±0.044 0.005 to 0.092 

GEP 2 -0.003 0.304 ±0.058 -0.060 to 0.055 

GEP 3 -0.019 0.282 ±0.054 -0.072 to 0.035 

GEP 4 0.002 0.241 ±0.046 -0.044 to 0.047 

GEP 5 -0.063 0.258 ±0.049 -0.112 to -0.014 
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GEP 6 -0.002 0.433 ±0.083 -0.085 to 0.080 

 

Regarding the UA, the 95%PEI for GEP 1 was between 0.005 and 0.092. Also, the width of the 

uncertainty bound (WUB) for GEP 1 was equal to -0.044. Among all GEP models, GEP 1 had the 

lowest standard deviation of the estimated error with a corresponding value of 0.228. Moreover, 

WUB for GEP 2, GEP 3, and GEP 4 was calculated as -0.058, -0.054, and -0.046. For GEP 5, the 

𝑆𝑒 and WUB values were estimated at 0.258 and -0.049, respectively. Furthermore, the 95%PEI 

for GEP 6 model was between -0.085 and 0.080. Moreover, the mean value of the estimated error 

(�̅�) for GEP 1 and GEP 4 had a positive sign, whereas the parameter for GEP 2, GEP 3, GEP 5, 

and GEP 6 had a negative sign. Although GEP 4 model estimated the target function (dhy) with an 

overestimated performance, others including GEP 2, GEP 3, GEP 5, and GEP 6 had an 

underestimated performance. Finally, the superior model (GEP 1) showed an overestimated 

performance with reasonable accuracy in order to simulate the ice-induced subgouge 

deformations. 

 

3.1.7.3. Comparison of the superior model (GEP 1) with ANN  

The results from the superior model (GEP 1) were compared with a classical artificial intelligence 

(AI) approach so-called Artificial Neural Network (ANN). The ANN can model nonlinear and 

complex problems like subgouge deformation issues with acceptable accuracy and computational 

time. Besides, ANN does not need knowledge of input and output parameters. Therefore, to assess 

the performance of the evolutionary system (GEP) and a traditional AI approach, the results from 

GEP 1 and ANN models were compared. Table 3-7 shows the calculated statistical indices for 

GEP 1 (the superior model) against the ANN model. 
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Table 3-7. Statistical indices for GEP 1 and ANN models 

Model R RMSE SI BIAS MAE 

GEP 1 0.945 0.232 0.638 -0.049 0.127 

ANN 0.899 0.280 0.769 0.014 0.220 

 

The estimated correlation coefficient (R), RMSE, and scatter index (SI) for the ANN model were 

respectively estimated as 0.945, 0.232, and 0.638. The MAE and BIAS indices for ANN were 

approximated to be 0.127 and -0.049. The results showed that GEP 1 had a better performance in 

modeling the subgouge sand deformation compared to ANN. The distribution of observed and 

simulated target function by GEP 1 and ANN versus the number of experiments is depicted in 

Figure 3-12. 

 

Figure 3-12. Comparison GEP 1 with ANN 
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The results showed that the GEP model had a better performance for most ice-induced subgouge 

deformations, whereas both artificial intelligence approaches (GEP and ANN) for large subgouge 

deformation values had a similar pattern. Although the GEP models underestimated the subgouge 

deformations at some peak points, the ANN model had an overestimated performance at such 

values. There were some peak points at which the values of simulated deformations had 

discrepancies with observed values because of the remarkable difference between the upper limit 

of adopted datasets. 

 

3.1.7.4. Superior GEP model 

Regarding the conducted sensitivity analysis and uncertainty analysis, GEP 1 in terms of accuracy 

and correlation was detected as the superior GEP model. This model simulated the horizontal 

subgouge sand deformations (𝒅𝒉𝒚) by means of all input parameters including 𝜎𝑏 , 𝑉𝑒, 𝛼, 𝐼𝑟 , 𝑦. 

Therefore, to estimate the 𝒅𝒉𝒚 using GEP 1 as the best model, a GEP-based produced equation is 

presented as follows: 

𝑑ℎ𝑦 = 1/(1 + 𝑒𝑥𝑝(−((((𝜎𝑏 − 𝑦) − 𝑦) + 9.339) + ((𝛼 − 9.448) × 𝐿𝑛(𝜎𝑏))))) +  1/(1

+ 𝑒𝑥p(−((7.008 + ((7.008 − 𝑦) − 𝐼𝑟)) + ((𝛼 − 6.984) × 𝐿𝑛(𝜎𝑏)))))

+ 𝑠𝑞𝑟𝑡(𝑒𝑥𝑝(−((𝑉𝑒 + (𝑦 − 𝑒𝑥𝑝(((𝑒𝑥𝑝(−((𝐼𝑟 − 2.659)^2)))

× 𝐼𝑟))))^2))) + 𝑒𝑥𝑝(−((𝑠𝑞𝑟𝑡(𝑦) + (𝑉𝑒 − 𝑒𝑥𝑝((𝑒𝑥𝑝(−((−0.476

+ 1.501^2)) + Ir))))^2))𝑒𝑥𝑝(−(((𝐼𝑟 − ((𝑒𝑥𝑝(−((𝑦 − 4.186)^2))

+ 𝑉𝑒) + 𝑉𝑒)) + 7.923)^2)) 

(3-20) 

 

3.1.7.5. Partial Derivate Sensitivity Analysis (PDSA) 
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A Partial Derivate Sensitivity Analysis (PDSA) was carried out to further assess the effects of 

input parameters 𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝐼𝑟 and y as dependent parameters on the target function (dhy as an 

independent parameter). The PDSA enabled identifying how the dependent parameters affect the 

independent ones. The partial derivative of the independent parameter relative to the input 

parameters 𝜕(𝑑ℎ𝑦) (𝜕𝑥𝑖)⁄  was employed to evaluate the sensitivity of GEP 1 

to 𝑥𝑖(𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝐼𝑟 and 𝑦). A positive PDSA signifies an increasing effect on the dhy, while a 

negative PDSA indicates a decreasing influence on the subgouge sand deformations. Figure 3-13 

shows the PDSA results of the GEP 1 model, where most of the PDSA results for the soil depth 

parameter (y) are negative, meaning that the subgouge deformation decrements with increasing the 

soil depth (y).  
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Figure 3-13. PDSA results for GEP 1 

 

Moreover, almost all PDSA results for bearing pressure parameter (𝜎𝑏) were positive, denoting 

that the dhy grows when the 𝜎𝑏 increases. However, the overwhelming majority of the results from 

the PDSA for 𝑉𝑒 and 𝛼 parameters had a negative sign. For the Ir input parameter, all PDSA results 

were positive. In other words, the subgouge soil deformations were increased with increasing the 

dilation index. 

 

3.1.7.6. Comparison with C-CORE (2009a) 
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In this section, the results of GEP 1 are compared with the equation proposed by C-CORE (2009a) 

(Eq. 3-1), the comparison is arranged in Table 1-8. Regarding the table, the values of the scatter 

index and correlation coefficient for the C-CORE’s (2009a) model were respectively estimated to 

be 10.581 and 0.638. Moreover, the MAE, BIAS, and RMSE statistical indices for Eq. (3-1) were 

computed to be 3.121, 3.121, and 3.781, respectively. Thus, GEP 1 model simulated the horizontal 

ice-induced sand deformations with higher accuracy and correlation compared to the proposed 

model by C-CORE (2009a). 

 

Table 3-8. Comparison between results of GEP 1 with the C-CORE (2009a) model 

Model R RMSE SI BIAS MAE 

GEP 1 0.945 0.232 0.638 -0.049 0.127 

C-CORE (2009a) 0.146 3.781 10.581 3.121 3.121 

 

A comprehensive numerical study based on artificial intelligence (AI) modeling was carried out 

for the first time so as to model ice-induced subgouge deformations. To end this, two AI 

approaches including an evolutionary method (GEP), and a classical learning algorithm (ANN) 

applied to introduce the best combination of the input parameters as the superior AI model. 

Furthermore, the most influencing parameters on subgouge deformations were detected by 

sensitizing the input parameters. Ultimately, an Uncertainty Analysis (UA) was done in order to 

identify the performance of the best model, and as well as a Partial Derivative Sensitivity Analysis 

(PDSA) was conducted to assess the impact of the input parameters. 

 

3.1.8. Conclusion 
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The ice-induced subgouge sand deformation was estimated using two artificial intelligence 

approaches, including Gene Expression Programming (GEP) as an evolutionary approach and 

Artificial Neural Network (ANN) as a classical learning machine. Firstly, the main governing 

parameters were identified and then six GEP models were developed. In addition, the K-fold cross-

validation (K=5) method was applied for the training and testing of the numerical models. 

Subsequently, the GEP models were analyzed, and then the best GEP model with the most 

effective input parameters was introduced. Moreover, an Uncertainty Analysis (UA) was 

conducted to evaluate the performance of the GEP models. Then, the results of the best GEP model 

were compared with the ANN technique. Finally, a Partial Derivative Sensitivity Analysis (PDSA) 

was carried out. The key results of the study are as follows: 

 The GEP could simulate the subgouge soil deformations with a good level of accuracy. 

For instance, the computed values of R, RMSE, and BIAS for the best GEP model were 

0.945, 0.232, and -0.049, respectively. Moreover, about 15% of the results from the best 

GEP model had an error of less than 16% and an average discrepancy (DRave) ratio of 

9.094. 

 The superior model (GEP 1) estimated the subgouge sand deformations using a 

combination of all input parameters including the bearing pressure (𝜎𝑏), the maximum 

vertical extent of subgouge deformation (𝑉𝑒), the attack angle (𝛼), the dilation index (𝐼𝑟), 

and soil depth (𝑦). 

 Regarding the performed sensitivity analysis, the soil depth (y), the dilation index (𝐼𝑟), 

the attack angle (α), the bearing pressure (𝜎𝑏), and the maximum vertical extent of 

subgouge deformation (𝑉𝑒) were respectively prioritized as the most significant input 
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parameters to estimate the horizontal subgouge sand deformations by using the GEP 

model. 

 The GEP models showed a better performance in comparison with the conventional ANN 

approach. The results obtained from the GEP were remarkably precise when compared 

with experimental test measurements. 

 Uncertainty analysis (UA) indicated that GEP 1 had an overestimated performance in 

order to simulate the subgouge sand deformations. 

 According to the PDSA, the target function (dhy) decreased with increasing the soil depth 

(y), whilst the subgouge sand deformations grew with increasing the dilation index (Ir). 

The results obtained in this study can not only facilitate proposing new analytical or empirical 

solutions for the prediction of the subgouge soil deformation but also be beneficial to the planning 

of costly experimental studies and numerical simulations and mitigate the expenses of future 

investigations. In the future, the study can be further extended to the clay seabed along with the 

presence of a buried pipeline and examine other AI techniques such as optimization algorithms 

and machine learning. 
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Section 2 

 

Modeling Subgouge Sand Deformations by Using Multi-Layer Perceptron 

Neural Network 
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Abstract 

In the Arctic shallow waters, marine pipelines are threatened by traveling icebergs where the 

seabed may be gouged by these moving masses during warmer months. Estimation of the subgouge 

soil response is considered a serious design factor for the subsea infrastructures since minimizing 

the required burial depth for physical protection is quite crucial for the project budget. In this paper, 

the capability of the Multi-Layer Perceptron Neural Network (MLPNN) is utilized to simulate ice-

induced sand deformations. By conducting a sensitivity analysis, the best MLPNN models and the 

most significant input parameters are identified.  

 

Keywords: Ice-seabed interaction; sandy seabed; Multi-Layer Perceptron Neural Network 

(MLPNN); Simulation; Sensitivity analysis.
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3.1.9. Introduction 

The Arctic area contains a huge amount of hydrocarbon deposits such as crude oil and natural 

gases that increased energy demand is the cause of exploration in the Arctic regions. Subsea 

pipelines are widely used to transfer hydrocarbon and other exploration and production-related 

contents between the onshore and offshore facilities (Alba 2015). Marine pipelines are threatened 

by the ice-gouging, and pressure ridges attack crossing the pipeline route in the Arctic shallow 

waters. Subsea trenching and backfilling are commonly used to bury the pipeline for physical 

protection against the ice scour. The schematic layout of an ice-seabed interaction process is 

illustrated in Figure 3-14. As shown, a hyperbolic curve is produced just beneath the ice keel 

bottom where the maximum soil displacement occurs at the soil surface. 

 

Figure 3-14. Schematic layout of an ice-seabed interaction process 

 

Identifying the maximum deformations for safe and cost-effective protection of the pipeline is a 

challenging problem. Costly experimental and long-running numerical simulation is mandatory 

for accurate modeling of the subgouge soil deformation and consequently, the pipe response. For 

instance, a joint industry and government-sponsored research program entitled the Pressure Ridge 
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Ice Scour Experiment (PRISE) was conducted at the Centre for Cold Ocean Resources Engineering 

(C-CORE) to understand the requirement for the safe and cost-effective design of subsea pipelines 

against the ice scour. The study showed the importance of the “dead wedge” underneath the ice 

keel with respect to variation in scour loads and subscour soil displacements (C-CORE 1995). 

Hynes (1996) carried out a centrifuge ice-gouging study in the sand and observed a linear 

relationship between the scour loads and depth. The author showed that sand deformation affected 

simple direct shear due to the stress-strain behavior of soil. Eventually, it was suggested that 

numerical studies should be performed to simulate the centrifuge ice-gouging modeling. Yang 

(2009) conducted a centrifuge study to measure deformations of ice-scoured sand. It was shown 

that the maximum gouge force was a function of the gauge geometry and keel attack angle and 

value of the frontal berm height. Arnau and Ivanović (2019) carried out 1g floor tests on cohesion-

less seabed scour due to the ice attack. Ultimately, drifting velocity on the scouring loads was 

identified as an important parameter. Nematzadeh and Shiri (2019a) developed a CEL model for 

free-field ice-gouging analysis in sand using ABAQUS/Explicit. The authors incorporated the non-

linear strain rate and softening effects through a user-defined subroutine. The study resulted in an 

improved prediction of the subgouge soil deformation and the keel reaction forces obtained from 

published experimental studies. Additionally, Nematzadeh and Shiri (2019b) simulated the ice-

seabed interaction process using a self-correcting soil model in order to update the shear strength 

parameters during the pre-peak hardening and the post-peak softening of the sand. The authors 

showed that the subgouge soil deformation might be overestimated by the conventional decoupled 

approaches. Additionally, Nematzadeh and Shiri (2020) modeled the effect of the non-linear 

stress-strain behavior of dense sand in an ice-gouging problem by using a modified Mohr-Coulomb 

(MMC) model. The authors concluded that the size of side berms and the frontal mound were 
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affected by the magnitude of the attack angle, where greater subgouge deformations and reaction 

forces were observed for models with shallower attack angles. 

The industry is still looking for alternative approaches to mitigate the computational and 

experimental efforts and improve the accuracy of simulation at the same time. In recent years, 

artificial intelligence (AI) approaches have been successfully utilized to model the ice-seabed 

interaction process since these methods are accurate, quick, and inexpensive. For example, Kioka 

et al. (2003) and Kioka et al. (2004) modeled an ice-gouging problem using the Neural-Network 

(NN) approach. The NN showed a high level of accuracy and the authors asserted that this 

approach could be replaced with the nonlinear multiple-regression methods. Azimi and Shiri 

(2020a) introduced the parameters governing the ice-seabed interaction process in both clay and 

sandy conditions. They proposed a set of linear regression (LR) models to estimate the maximum 

subgouge soil displacements. The authors also concluded that the shear strength parameters of soil 

and the ratio of gouge depth to gouge width were the most influencing variables. Azimi and Shiri 

(2020b) simulated the horizontal subgouge deformations in the sand by the gene expression 

programming (GEP) model. The authors defined six GEP models and then the best GEP model 

was introduced by conducting a sensitivity analysis. The study showed that the soil depth was 

considered as the most significant input parameter. Azimi and Shiri (2021) simulated the subgouge 

sand parameters through robust machine learning (ML). The authors presented a set of matrices in 

order to estimate the ice-induced sand characteristics. 

Although the literature shows that a few research has attempted to model the ice-seabed interaction 

mechanism by means of AI advancement, there is no study to simulate this problem using the 

Multi-Layer Perceptron Neural Network (MLPNN). To fill this knowledge gap, the subgouge sand 
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deformations are simulated by using the MLPNN algorithm in the current study for the first time. 

More details will be presented in the upcoming sections. 

 

3.1.10. Methodology 

3.1.10.1. Horizontal subgouge sand deformation 

The maximum horizontal deformation occurs right underneath the keel base. Moving down the 

seabed, the magnitude of horizontal soil deformation is reduced by a hyperbolic curve. The 

maximum horizontal subgouge soil deformation (dh0), was obtained using the empirical equations 

proposed by C-CORE (C-CORE 2009): 

𝑑ℎ0 √(𝜎𝑏 𝑃𝑎⁄ ) 𝑉𝑒 = (0.54 tan𝛼⁄ )(1 − 0.2(𝐼𝑟 + 1))⁄  (3-21) 

 

where, 𝜎𝑏 is bearing pressure (MPa), Pa is atmospheric pressure (0.1 MPa), 𝛼 is the attack angle 

(degree), 𝑉𝑒 is the maximum vertical extent of subgouge deformation (m), and 𝐼𝑟 is dilation index 

given as: 

𝐼𝑟 = 𝑅𝐷 × (10 − ln(𝜎𝑏 × 1000)) − 1  (3-22) 

 

where RD is the relative density of sand. The bearing pressure was defined as: 

𝜎𝑏(𝑀𝑃𝑎) = 0.09𝐷𝑠
1.5  (3-23 

where Ds is the gouge depth (m). The maximum vertical extent of subgouge deformation (𝑉𝑒) was 

determined based on the range of the dilation index as follows: 

𝑉𝑒 = [

min[(1 + 0.5𝐼𝑟)(𝐷𝑠 + 𝑊 5⁄ ), 1.3(𝐷𝑠 + 𝑊 5,5𝐷𝑠⁄ )]                  𝑖𝑓  𝐼𝑟 < 2

min[(2.6 + 0.65(𝐼𝑟 − 4))(𝐷𝑠 + 𝑊 5⁄ ), 5𝐷𝑠]                       𝑖𝑓 2 < 𝐼𝑟 < 4

0                                                                                               𝑖𝑓   𝐼𝑟 > 4

  

(3-24) 
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where W is the gouge width (m). Equations (3-1) to (3-4) denote the horizontal subgouge 

deformation (𝑑ℎ0) is a function of  𝜎𝑏, 𝑃𝑎, 𝑉𝑒, 𝛼 and 𝐼𝑟: 

𝑑ℎ0 = 𝑓(𝜎𝑏 , 𝑃𝑎 , 𝑉𝑒, 𝛼, 𝐼𝑟)  (3-25) 

 

Assuming a constant atmospheric pressure during the tests, so Eq. (4-5) can be written as follows: 

𝑑ℎ0 = 𝑓(𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝐼𝑟) (3-26) 

 

Therefore, incorporating the soil depth (y) effect, the target function of horizontal subgouge 

deformation (dhy) for the artificial intelligence approaches was defined as follows: 

𝑑ℎ𝑦 = 𝑓(𝜎𝑏, 𝑉𝑒, 𝛼, 𝐼𝑟 , 𝑦) (3-27) 

The input parameters given in Eq. (3-27) were combined to construct six different MLPNN models 

with a minimum number of four key parameters. Figure 3-15 portrays the input combination to 

develop the MLPNN models. 

 

Figure 3-15. Input combination to develop the MLPNN models 

 

3.1.10.2. Construction of database 

The studies published by C-CORE (1995), Hynes (1996), and Yang (2009) are amongst the most 

important experimental studies related to ice-induced sand scouring problems in which input 
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parameters (𝜎𝑏, 𝑉𝑒 , 𝛼, 𝐼𝑟 , 𝑦) and the target parameter (dhy) can be expressly adopted to feed the 

developed MLPNN models. The key results of the experimental studies conducted by C-CORE 

(1995) (eight test results in the sand with different relative densities), Hynes (1996) (seven 

centrifuge tests in clean dry silica sand), and Yang (2009) (seven centrifuge ice-gouging test in 

AlWhite Silica sand) were used to construct a database for validation of the artificial intelligence 

numerical models. Using these experimental studies, the attack angle (𝛼), the scour depth (𝐷𝑠), 

the scour width (𝑊), the g-level, the relative density (RD), and the horizontal subgouge 

deformation (dhy) at different depths (y) were extracted. Hynes (1996) used loose and dense sands 

but did not mention the values of RD. Using an existing classification study (e.g., Mitchell and 

Soga 2005), relative densities of 0.3 and 0.7 were adopted for loose and dense sands of Hynes 

(1996). Care should be taken in using the laboratory test data for testing the AI models. The 

idealized test conditions may affect the reliability of model prediction to some extent. To overcome 

this limitation, the majority of the data in the current study were selected from centrifuge studies 

which is one of the most reliable technics for model testing in geotechnical engineering. The 

centrifugal acceleration simulates gravity and allows for correspondence of stress fields between 

the model and full-scale resulting in an accurate model prediction within a bandwidth of less than 

1.0 times the normalized loads (C-CORE 1995; C-CORE 2009). This provided a relaxation to 

build up the current database and feed the artificial intelligence models in the current study. 

Furthermore, some of the key parameters such as gouge depth are usually determined by field-

specific statistical and probabilistic analysis prior to any ice-gouging analysis, which is considered 

as a sufficiently reliable method in industrial practice. It is worth noting that 70% of the established 

dataset was applied to training the MLPNN models, whereas 30% of the rest was utilized to test 

these models. 
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3.1.10.3. Goodness of fit 

In order to evaluate the MLPNN results, correlation coefficient (R), root mean square error 

(RMSE), mean absolute error (MAE), Nash-Sutcliff efficiency coefficient (NSC), and Akaike 

Information Criteria (AIC) were applied as below: 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
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𝑖=1

2
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1

𝑛
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𝑛

𝑖=1

2

) + 2𝑘 

(3-32) 

here, Oi, Pi, �̅�, �̅�, and n are the observed ice-induced seabed parameters, the simulated values, the 

average observed values, the average simulated values, and the number of experimental 

measurements, respectively. Moreover, the k is the number of hidden layer neurons used in the 

MLPNN network. The closeness of the correlation coefficient (R) and the Nash-Sutcliff efficiency 

coefficient (NSC) to one signified that the MLPNN model owned the highest correlation with the 

observed values, whilst the closeness of the RMSE and MAE criteria to zero meant that the 

particular model had the lowest level of error. To overcome this drawback, the Akaike Information 

Criteria (AIC) was employed. The less complex MLPNN model had the lowest value of the AIC 

index, hence, the superior MLPNN model owned the lowest value of the AIC index and error 
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(RMSE and MAE) and the highest level of correlation (R and NSC) with the experimental 

measurements. 

 

3.1.10.4. Multi-layer perceptron neural network (MLPNN) 

Owing to the flexibility of Multi-layer perceptron neural network (MLPNN) to simulate complex 

problems (Haykin 1994), the MLPNN is considered one of the most common feedforward neural 

networks (FFNN). Each MLPNN model has a set of layers comprising an input layer, at least a 

hidden layer, and an output layer (see Figure 3-16). 

 

Figure 3-16. Multi-layer perceptron neural network (MLPNN) 
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Neurons are in the perceptron layers with a number equal to the input and output variables of the 

problem, meaning that the number of neurons in the input layer equals five input parameters 

including 𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝐼𝑟 , 𝑦, whereas one neuron in the output layer is considered the target parameter 

(dhy). There are no specific rules and regulations to set the number of neurons in the hidden layer. 

Therefore, a trial and error method is applied to select the number of neurons in the hidden layer 

(Bilhan et al. 2010). In the current study, the number of neurons in the hidden layer is initially 

assumed equal to one and the precision of the MLPNN model is evaluated by increasing the 

number to 10. The most optimal number of the hidden layer neurons is selected equal to 6 since 

the accuracy of the MLPNN model is insignificantly changed. In Figure 3-17, a variation of the 

number of neurons in the hidden layer against the mean absolute error (MAE) index is exhibited. 

The number of neurons in the antecedent layer is collected using summed weighted neurons in 

hidden and output layers and transferred to the next layer by employing an activation function. To 

choose the optimized activation function, three functions including “linear”, “sigmoid”, and 

“hyperbolic tangent” were used to simulate the subgouge deformations. Subsequently, the 

performance of these activation functions in terms of accuracy was compared together. Lastly, the 

sigmoid activation function was selected to estimate the deformations. Additionally, the sigmoid 

activation function has been used in different fields because of its acceptable performance (Smith 

1993). The values of weighted outputs were summed by means of the MLP throughout a procedure 

called “model training”. The Levenberg-Marquardt (LM) algorithm was applied to train the MLP 

neural network, where the biases and weights were calculated using the back-propagation 

algorithm. 
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Figure 3-17. Variation of the number of neurons in the hidden layer against mean absolute error 

(MAE) index 

 

3.1.11. Results and discussion 

Gaining a good insight into the best input combination (the superior MLPNN model) and the most 

important input parameters in an ice-induced scouring problem was one of the key objectives of 

the current study. It is worth noting that the results of MLPNN models in the test mode are 

evaluated in the current study. Figure 3-18 showes the key statistical indices for MLPNN 1 to 

MLPNN 6 models. To do this, MLPNN 1 was defined by using all input parameters comprising 

𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝐼𝑟 and 𝑦 where the AIC, RMSE, and NSC values were respectively computed to be 4.727, 

0.344, and 0.785. Subsequently, five MLPNN models including MLPNN 2 to MLPNN 6 were 

produced adopting a combination of the other four inputs. For instance, the 𝜎𝑏 , 𝑉𝑒 , 𝛼, 𝑦 parameters 

were utilized to developed MLPNN 2, meaning that the influence of the dilation index parameter 

(𝐼𝑟) was ignored. The values of root mean square error and Akaike information criteria for the 

MLPNN 2 model were equal to 0.879 and 18.150, respectively. The ice keel attack angle (𝛼) was 

an eliminated factor to simulate the target parameter by means of the MLPNN 3 model, with a 

Nash-Sutcliff efficiency coefficient (NSC) of 0.387. Using the 𝜎𝑏 , 𝛼, 𝐼𝑟 , 𝑦 input parameters, the 
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subgouge sand deformations were predicted by the MLPNN 4 model. It means that the maximum 

vertical extent of subgouge deformation (𝑉𝑒) was removed to model the ice-induced through 

MLPNN 4. The AIC, NSC, and RMSE indices for the MLPNN 4 model were respectively surmised 

at 9.753, 0.566, and 0.489. Though the 𝑉𝑒, 𝛼, 𝐼𝑟 , 𝑦 inputs were utilized to prognosticate the 

subgouge sand displacements using MLPNN 5, the bearing pressure (𝜎𝑏) was a removed 

parameter. For the MLPNN 5 model, the RMSE and AIC criteria were approximated as 0.622 and 

13.200. To simulate the subgouge sand displacements by MLPNN 6, the 𝜎𝑏 , 𝑉𝑒, 𝛼, 𝐼𝑟 input factors 

were applied. In other words, the soil depth parameter (y) was a disregarded input to model the 

target values where the AIC, RMSE, and NSC statistical indices were 15.088, 0.710, and 0.086.  

The results of error analysis (MAE) for the MLPNN models are depicted in Figure 3-19. Regarding 

the error analysis, the overwhelming majority of the deformations simulated by MLPNN 1 (nearly 

82%) had an error of less than 5%, rather a tiny minority of the predicted displacements (roughly 

3%) by this MLPNN model possessed an error of between 5% and 10%. The conducted error 

analysis showed that almost 18% of the results obtained from MLPNN 2 had an error of greater 

than 10%. Even though approximately 18% of the subgouge sand deformations modeled by 

MLPNN 3 possessed an error of greater than 10%, this value for MLPNN 5 was surmised as 12%. 

The result of error analysis for MLPNN 5 and MLPNN 6 was similar, signifying that about 61% 

of the ice-induced displacements simulated by these MLPNN models showed an error of less than 

5%. 
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Figure 3-18. The key statistical indices for MLPNN 1 to MLPNN 6 
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Figure 3-19. Results of error analysis (MAE) for MLPNN models 
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Figure 3-20 illustrates the scatter plots for the MLPNN models. According to the simulation 

results, the highest level of correlation was obtained for MLPNN 1, with a correlation coefficient 

of 0.879, whilst MLPNN 6 demonstrated the lowest level of correlation among the MLPNN model 

(R=0.447). Moreover, the correlation coefficient value for MLPNN 2, MLPNN 3, MLPNN 4, and 

MLPNN 5 were respectively computed to be 0.661, 0.671, and 0.805, 0.577.  

A sensitivity analysis (SA) was conducted by comparison of the results from the developed 

MLPNN models. As a result, the MLPNN 1 model simulated the target function by using all of 

the input parameters and eliminating the effects of other parameters for MLPNN 2 to MLPNN 6 

including σb, Ve, α, Ir, and y, respectively. The superior MLPNN model (MLPNN 1) had the lowest 

error and complexity along with the highest correlation. By contrast, the accuracy of the MLPNN 

model decreased remarkably by removing the input parameters since the level of effectiveness for 

the eliminated parameter was significant. After the MLPNN 1 model, MLPNN 4 was recognized 

as the second-best model so as to predict the subgouge sand deformations. Furthermore, MLPNN 

3, MLPNN 2, and MLPNN 5 were respectively ranked as the third-best, fourth-best, and fifth-best 

MLPNN models in estimating the target values. It is worth mentioning that MLPNN 6 had the 

worst performance among the MLPNN models. 

On the other hand, the performed sensitivity analysis indicated that the soil depth parameter (y) 

was detected as the most influencing input factor for the simulation of the subgouge sand 

displacements by the MLPNN algorithm as the performance of the MLPNN model was reduced 

considerably by removing this input parameter. The bearing pressure (𝜎𝑏), dilation index (Ir), and 

keel attack angle (α) were respectively identified as the second-important, third-important, and 

fourth-important input variables. Based on the simulation results, the maximum vertical extent of 
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subgouge deformation (Ve) had the lowest level of effectiveness to model the subgouge 

displacements in the sand. 

 

Figure 3-20. Scatter plots for MLPNN 1 to MLPNN 6 
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As shown, MLPNN 1 was introduced as the superior MLPNN model to simulate the subgouge 

sand deformations. The profiles of horizontal subgouge deformation simulated by MLPNN 1 (best 

model) are presented in Figure 3-21. Regarding the simulation results, MLPNN 1 demonstrated 

the best performance to predict the ice-induced sand displacements, signifying that MLPNN 1 

possessed the highest level of precision and correlation along with the lowest level of complexity. 

As shown, the maximum value of deformations simulated just beneath the iceberg keel and the 

magnitude of this parameter decreased in greater depth by a hyperbolic curve. Even though the 

applied datasets (C-CORE 1995, Hynes 1996, and Yang 2009) were quite heterogeneous, the 

MLPNN 1 managed to simulate the subgouge sand deformations with its highest performance. In 

other words, MLPNN 1 at dealing with modeling the small deformations had some discrepancies 

(Yang’s model), whereas this model demonstrated a substantial correlation in large displacements 

(C-CORE and Hynes’s models). 
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Figure 3-21. Horizontal subgouge deformation profiles simulated by MLPNN 1 
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analysis proved that the soil depth (y) and the bearing pressure (𝜎𝑏) were regarded as the most 

effective input factors. 

 

3.1.12. Conclusion 

In this study, the subgouge sand deformations were simulated by using the multilayer perceptron 

neural network (MLPNN) for the first. Initially, the parameters affecting the ice-induced sand 

displacements were identified, and then by using these factors governing, six MLPNN models 

ranging from MLPNN 1 to MLPNN 6 were defined. Subsequently, using the published literature, 

a comprehensive dataset was constructed. It is worth mentioning that 70% of the data were applied 

to train the MLPNN models and 30% of the remaining was used to test these AI models. After 

that, the optimized number of neurons in the hidden layer was opted as six, while the sigmoid was 

selected as the best activation function for the MLPNN algorithm. By performing a set of analyses, 

the most important results are summarized as follows: 

 The MLPNN 1 model a function of all input parameters managed to simulate the 

subgouge sand deformations with the highest level of accuracy and correlation along with 

the lowest level of complexity. 

 The R, RMSE, and AIC statistical indices for MLPNN 1 were respectively calculated to 

be 0.897, 0.334, and 4.727. 

 Error analysis demonstrated that almost 82% of the ice-induced predicted by MLPNN 1 

deformations had an error of less than 5%. 

 The performed sensitivity analysis indicated that the soil depth (y), bearing pressure (𝜎𝑏), 

and dilation index (Ir) were detected as the most influencing input factors, rather the 
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effect of the maximum vertical extent of subgouge deformation (Ve) was quite 

insignificant to model the subgouge sand displacements. 

 Regarding the simulation results, the MLPNN model was able to simulate the large 

deformations with better performance, whereas some discrepancies were observed in 

dealing with the small subgouge deformations. 

The presented results in the current investigation can facilitate proposing quick and cost-effective 

solutions for the simulation of the subgouge sand displacements. Furthermore, these outcomes 

may be beneficial to the planning of costly experimental studies and time-consuming numerical 

simulations and mitigate the expenditures of future works. 
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Section 3 

 

Dimensionless Groups of Parameters Governing the Ice-Seabed Interaction 

Process 
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Abstract 

Prediction of subgouge soil deformation during an ice-gouging event is a challenging design factor 

in Arctic subsea pipelines. An accurate assessment of ice keel-seabed interaction requires 

expensive model testing and large deformation finite element analysis. Proposing reliable 

analytical/empirical solutions needs a deep understanding of the key parameters governing the 

problem. In this study, dimensional analysis of subgouge soil deformations was conducted and 

eight dimensionless groups of parameters were identified to facilitate proposing potential new 

solutions. A comprehensive dataset was established for horizontal and vertical subgouge 

deformations in both sand and clay seabed. Using the identified dimensionless groups, linear 

regression (LR) models were developed to estimate the horizontal and vertical deformation. 

Moreover, a sensitivity analysis (SA), as well as an uncertainty analysis (UA), were carried out to 

identify the superior LR models and the most influential parameter group. A high range of 

correlation coefficient (R), Nash-Sutcliff efficiency coefficient (NSC), and variance accounted for 

(VAF) along with a low range of errors was achieved for the best LR model. The results of the 

superior LR models were also compared with the existing empirical equations. The study showed 

that the shear strength parameters of the seabed soil and the ratio of gouge depth to gouge width 

are the governing dimensionless parameters to model the horizontal and vertical subgouge soil 

deformations. 

 

Keywords: Dimensional analysis, Linear regression (LR), Pipeline, Sensitivity analysis (SA), 

Subgouge soil deformations, Uncertainty analysis (UA) 
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3.1.15. Introduction 

Over the last decades, oil and gas development projects have been extended toward the Arctic 

offshore territories. The overwhelming majority of the extracted hydrocarbon deposits are 

transferred through subsea pipelines from offshore to onshore (Emmerson and Lahn 2012; Alba 

2015). In shallow waters, marine pipelines and other facilities like communication cables and 

wellheads are threatened by traveling icebergs that may gouge the seabed and attack the subsea 

pipelines and structures (Lanan et al. 2011; Kenny and Jukes 2017). The ice-gouging process 

causes the subgouge soil to deform and displace the buried pipeline (see Figure 3-22). The 

maximum horizontal deformation occurs right underneath the keel base (Lach 1996; Nematzadeh 

and Shiri 2020). 
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Figure 3-22. A schematic layout of deformations of subgouge soil and buried subsea pipeline 

during an ice-gouging event 

 

In contrast, the determination of the maximum displacement of pipelines and the resultant safe 

burial depth is a challenging issue that can simply play with the project budget redlines. The current 

state of practice for the assessment of the ice’s impact on buried pipelines combines the simplicity 

of the beam-spring approach for modeling the pipeline with the accuracy of the continuum 

approach for modeling the free field ice-gouging process. Therefore, the free field ice-gouging 

analysis is the key part of the practical pipeline design against ice impact. By contrast, the 

identification of the parameters affecting maximum ice-induced soil deformations has crucial 

importance in ice keel-seabed interaction (Nobahar et al. 2007a; Nobahar et al. 2007b; Kenny et 

al. 2004). 

There are numerous experimental (Paulin 1991; Paulin 1992; C-CORE 1995; Hynes 1996; C-

CORE 1996; Yang 2009; Schoonbeek et al. 2006; Been et al. 2008), numerical (Nematzadeh and 

Shiri 2020; Kenny et al. 2004; Nobahar 2003; Konuk 2009; Moore et al. 2011), and analytical 

(Chari and Allen 1974; Chari 1975; Chari 1980; Nessim and Jordaan 1985; Comfort and Graham 

1986; Prasad and Chari 1986) studies in the literature that have investigated various aspects of the 

ice-gouging problem. However, there is still no published work (to the authors’ knowledge) about 

the dimensionless group of parameters governing the mechanics of the problem, which is a key 

knowledge gap that tried to be filled through the objectives of the current study. 

Creating a database for the analysis of parameters is quite challenging due to the different 

approaches and setups in published studies and having limited access to the data. A screening study 

was first conducted to select the appropriate studies giving access to a sufficient amount of data. 
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The experimental studies published by Paulin (1991), Paulin (1992), C-CORE (1995), Hynes 

(1996), C-CORE (1996), and Yang (2009) were used for analyzing the sandy seabed. For clay 

seabed, the test results published by C-CORE (1995), Lach (1996), C-CORE (1996), Schoonbeek 

(2006), and Been (2008) were used. Paulin (1991 and 1992) conducted experimental investigations 

to measure ice-scouring characteristics including surface deformations, subscour displacements, 

pressure, and reaction forces. The authors used both sand and clay seabed in different conditions 

of saturation and submergence and concluded that soil deformation is increased by decreasing the 

relative density of soils. Also, the studies showed that measured loads and forces by the submerged 

models were less than the dry tests, whereas other values were similar in both the dry and 

submerged circumstances. Hynes (1996) carried out a series of pressure ridge ice scour 

experiments (PRISE) to measure horizontal and vertical loads, gouge-induced pore pressures and 

stresses, and keel-soil interface pressures for a sandy seabed. The results of the study proved the 

existence of the shear dragging theory, as well as a linear relationship between scour loads and the, 

scour depth. Yang (2009) investigated subscour deformations on a sandy seabed through a series 

of testing programs called pipeline-ice risk assessment and mitigation (PIRAM). Besides assessing 

the pressure and reaction forces, the authors adopted particle image velocimetry (PIV) to measure 

the subgouge deformations and frontal berms. The study indicated that the maximum horizontal 

subscour deformations were formed just beneath the ice keel and reduced with the soil depth. Lach 

(1996) and Schoonbeek (2006) conducted several ice-gouging centrifuge tests in clay to assess the 

subgouge soil deformations and reaction forces. The deformations were visualized by means of 

the image processing technique, whilst vertical and horizontal loads were measured using load 

cells. The authors provided an empirical relationship in which the gouge-induced horizontal 

deformation was a function of soil properties and the keel geometry. Been et al. (2008) carried out 
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an experimental study to measure the subgouge forces and deformations in clay. The presence of 

a pipe, stratified sediments, backfill features, and geometry of the trench was ignored by the 

authors to provide an idealized subscour model. The authors suggested further studies for an in-

depth assessment of the parameters affecting subgouge deformations. The results published within 

the aforementioned studies were combined for the creation of a comprehensive dataset and to 

perform the dimensional analysis. The study facilitated proposing potential new solutions for 

modeling the ice-gouging process. 

 

3.1.16. Methodology 

The Buckingham-π theorem was used for dimensional analysis of the subgouge soil deformation 

problem for the first time in the literature. Figure 3-23 shows the flowchart of the dimensional 

analysis and determining the dimensionless group of parameters in the current study. 

 

Figure 3-23. Flowchart of the dimensional analysis 
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Linear regression (LR) models were developed for both sand (nine LR models) and clay (eight LR 

models) seabed. Through a sensitivity analysis (SA) and an uncertainty analysis (UA), the 

premium LR models for estimating the maximum horizontal and vertical deformations were 

introduced and the most important dimensionless parameter groups were also ascertained. 

 

3.1.17. Dimensional analysis  

To perform a robust and comprehensive dimensional analysis of subgouge soil deformations, some 

simplifying suppositions were made as follows to facilitate the implementation of the model in 

practice: 

 Subgouge soil deformations are large (several pipe diameters) so Coulomb's law is able to 

express the function between shear stress and normal stress. Therefore, the parameters 𝑐 

(cohesion of clay) and 𝜑 (internal friction angle of sand) can describe the soil behavior 

(Schuring and Emori 1965; Bekker 1956, Janosi 1961) during an ice-gouging event,  

 The maximum subgouge deformation is formed just under the ice keel in the gouge (C-

CORE 1995; Bekker 1956), 

 Cohesionless soil (sand or gravel) is assumed in drained conditions owing to quick water 

drainage during an ice-gouging event (Alba 2015), Cohesive soil (clay and silt) is 

assumed in undrained conditions owing to gradual water drainage during an ice-gouging 

event (Alba 2015), 

 The contact surface between the ice and the seabed is rough enough since a layer of the 

soil has adhered to the keel (Schuring and Emori 1965), 

 Temperature is constant during an ice scouring problem. 
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Regarding the C-CORE (2009a; 2009b), subgouge sand deformation (𝑑(𝑠𝑎𝑛𝑑)) is as a function of 

the gouge depth (Ds), atmospheric pressure (Pa), the relative density of sand (DR), the gouge width 

(W), and attack angle (𝛼) as follows: 

𝑑(𝑠𝑎𝑛𝑑) = 𝑓1(𝐷𝑠, 𝑃𝑎 , 𝐷𝑅,𝑊, 𝛼) (3-33) 

However, it should be noted that Eq. (3-33) can be written for any type of soil including sand and 

clay as follows: 

𝑑(𝑠𝑜𝑖𝑙) = 𝑓2(𝐷𝑠, 𝑃𝑎, 𝑐, 𝜑,𝑊, 𝛼) (3-34) 

where, c is the cohesion of clay and  𝜑 is the internal friction angle of sand. Figure 3-24 

schematically shows the force systems in an ice-gouging event (Duplenskiy 2012; Duplenskiy and 

Gudmestad 2013). 

 

Figure 3-24. Schematic layout of ice-gouging analysis (Duplenskiy 2012) 

 

The parameter Fda is the drag force from the wind; Fdw is the drag force from the current; Fb is 

buoyancy force; Fw is ridge weight; N seabed reaction; Fa is friction force on the bottom of the 

ridge; Fc is Coulomb’s passive friction force acting in front and on both sides of the ridge; Fi is 

driving force from the surrounding floe; ω is the angle of the surcharged soil slope;  is the attack 
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angle; h’ is the height of the berm, and Ds is the scour depth. Assuming the force system in Figure 

3-24, the resultant horizontal (Lh) and vertical forces (Lv) can be written as follows:  

𝐿ℎ = ∑ 𝐹ℎ𝑖

𝑛

𝑖=1
= 𝐹𝑖 + 𝐹𝑑𝑎 + 𝐹𝑑𝑤 − 𝐹𝑎 − 𝐹𝑐 cos𝜔 

(3-35) 

𝐿𝑣 = ∑ 𝐹𝑣𝑖

𝑛

𝑖=1
= 𝐹𝑏 + 𝑁 − 𝑊 − 𝐹𝑐 sin𝜔 

(3-36) 

Therefore, equation (3-34) can be rewritten as follows: 

𝑑(𝑠𝑜𝑖𝑙) = 𝑓2(𝐷𝑠, 𝑃𝑎, 𝑐, 𝜑,𝑊, 𝛼, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣) (3-37) 

Furthermore, Schuring and Emori (1965) showed that soil deformations caused by bulldozing, 

torquing, and penetration are a function of V or velocity of the plow or the tractor, W or the width 

of the plow, the plate or the tractor, Li or driving force, 𝜌𝑠 or the soil density, g or gravitational 

acceleration, 𝜑 and c as follows: 

𝑑(𝑠𝑜𝑖𝑙) = 𝑓3(𝑉,𝑊, 𝐿𝑖 , 𝜌𝑠, 𝑔, 𝑐, 𝜑) (3-38) 

Thus, equation (3-37) can be written as follows: 

𝑑(𝑠𝑜𝑖𝑙) = 𝑓2(𝐷𝑠, 𝑃𝑎, 𝑐, 𝜑,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝜌𝑠, 𝑔) (3-39) 

here, 𝛾𝑠 is the specific weight of soil which equals to 𝜌𝑠 × 𝑔, while the atmospheric pressure (Pa) 

is constant and can be ignored. Therefore, equation (3-37) is rewritten as follows: 

𝑑(𝑠𝑜𝑖𝑙) = 𝑓2(𝐷𝑠, 𝑐, 𝜑,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠) (3-40) 

In other words, the subgouge soil deformation can be expressed by using parameters in equation 

(3-40) and the equation is written in a dimensional form as follows: 

𝑑(𝑠𝑜𝑖𝑙) = 𝑓4(Π1, Π2, Π3, Π4, Π5, Π6, Π7, Π8) (3-41) 

where, Π1, Π2,…, Π8 are dimensionless groups and f4 is a functional symbol regarding 

Buckingham’s π theory. Therefore, the following dimensionless groups can be defined: 
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Π1 =
𝐷𝑠

𝑊
 

(3-42) 

Π2 =
𝑐

𝛾𝑠𝑊
 

(3-43) 

Π3 = 𝜑 (3-44) 

Π4 = 𝛼 (3-45) 

Π5 = 𝜔 (3-46) 

Π6 =
ℎ′

𝑊
 

(3-47) 

Π7 =
𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
 

(3-48) 

Π8 =
𝑉2

𝑔𝑊
 

(3-49) 

Thus, equation (3-40) is expressed as a function of eight dimensionless groups in the following 

form: 

𝑑(𝑠𝑜𝑖𝑙)

𝑊
= 𝑓5 (

𝐷𝑠

𝑊
,

𝑐

𝛾𝑠𝑊
, 𝜑,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(3-50) 

The 𝑑(𝑠𝑜𝑖𝑙) is considered the maximum subgouge soil deformation which is formed just under the 

moving ice keel in the gouge centerline. It is noteworthy that the gouge depth and attack angle are 

functions of some other parameters such as seabed configuration, ice features, and environmental 

loads. However, these two parameters are usually determined by field-specific statistical and 

probabilistic analysis before any ice-gouging analysis. Therefore, these two parameters are 

commonly used as input parameters in experimental and numerical analyses. 

 

3.1.18. Construction of database  
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Various experimental studies were utilized to analyze the horizontal (𝑑ℎ(𝑠𝑜𝑖𝑙)
) and vertical 

(𝑑𝑣(𝑠𝑜𝑖𝑙)
) subgouge soil deformations for both sand and clay seabed. For the sand, the key values 

of six experimental studies conducted by Paulin (1991) (one test), Paulin (1992) (four tests), C-

CORE (1995) (five tests), Hynes (1996) (five tests), C-CORE (1996) (five tests), and Yang (2009) 

(seven tests) are employed. For clay, five laboratory investigations performed by C-CORE (1995) 

(eight tests), Lach (1996) (eight tests), C-CORE (1996) (four tests), Schoonbeek (2006) (one test), 

and Been (2008) (one test) were used to evaluate the subgouge soil deformations.  

The test condition in the iceberg-seabed interaction centrifuge laboratory test depends on the 

thickness of the soil layer and the size of the model iceberg. According to the web search results, 

plane strain conditions give the lowest fracture toughness value which is a material property. Plane 

strain conditions generally prevail when the specimen thickness is greater than or equal to a certain 

value, which depends on the material and the crack length. Plane stress conditions occur when the 

specimen thickness is much smaller than the crack length. 

For example, in Lach's (1996) and Yang's (2009) centrifuge tests, the plane strain conditions were 

applied. 

Therefore, if the soil layer is thick enough and the model iceberg is small enough, the test condition 

can be approximated as plane strain. However, if the soil layer is thin or the model iceberg is large, 

the test condition may deviate from plane strain and have some 3D effects or boundary effects. In 

that case, the test condition may be closer to real strain, which is the full 3D formulation of strain. 

In terms of the boundary conditions in the experimental works, generally, the boundary conditions 

in iceberg-seabed interaction centrifuge laboratory tests depend on the specific setup and design 

of the experiments. For example, the top boundary of the soil layer is subjected to a cyclic loading 

that simulates the wave-induced pressure on the seabed. The bottom boundary of the soil layer is 
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fixed and impermeable. The lateral boundaries of the soil layer are either free or restrained by a 

rigid wall. The model iceberg is either fixed or movable and can have different shapes, sizes, 

velocities, and attack angles. 

Table 3-9 shows the summary of the employed dimensionless parameters including maximum, 

minimum, average, variance, and standard deviation of the experimental measurements. 

The statistical significance of correlations was also checked by conducting a t-test and calculation 

of the P-value, assuming that a P-value of 0.05 or less is statistically significant (Bland and Peacock 

2002; Box 1987). This, indeed, was to assess the probability of the relationship between the 

parameters being affected by an alternative hypothesis (Myers et al. 2010). The calculated P-values 

for the sand and clay were 0.039 and 0.024, showing that the correlations are statistically 

significant. 

 

Table 3-9. Range of employed parameters in the current study 

Soil Values dh/W dv/W Ds/W φ α ω h’/W Lh/γs.W3 Lv/γs.W3 V2/g.W 

 

 

Sand 

Max 1.356 0.068 0.333 44 30 39.1 1.163 2.235 2.859 0.015 

Min 0.002 0.004 0.065 18 15 - - - - - 

Ave 0.300 0.019 0.125 34.745 20.556 4.633 0.168 0.586 0.756 0.004 

Var 0.186 0.0002 0.004 28.875 52.469 126.806 0.053 0.378 0.651 3.6E-05 

Std 0.431 0.015 0.064 5.374 7.244 11.261 0.230 0.615 0.807 0.006 

 Values dh/W dv/W Ds/W c/γs.W α h’/W Fh/γs.W3 Fv/γs.W3 V2/g.W 

 

 

Clay 

Max 0.396 0.189 0.333 24.059 45 0.077 118.731 243.712 0.031 

Min 0.039 0.013 0.033 0.027 15 - - - - 

Ave 0.166 0.071 0.125 4.791 19.6 0.015 9.907 25.578 0.008 
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Var 0.008 0.003 0.007 45.999 63.84 0.001 564.852 2720.803 8.01E-05 

Std 0.089 0.052 0.084 6.782 7.990 0.025 23.767 52.161 0.009 

 

For sand, eight dimensionless parameters including Ds/W, φ, α, ω, h’/W, Lh/γs.W
3, Lv/γs.W

3, and 

V2/g.W were calculated. However, for clay, seven dimensionless parameters were taken into 

account for the estimation of the subgouge soil deformation including Ds/W, c/γs.W, α, h’/W, 

Lh/γs.W
3, Lv/γs.W

3, and V2/g.W. The angle of surcharged soil slope (ω) has not been reported in the 

literature for clay. 

It is worth mentioning that all of the data in the current study comes from centrifuge model testing. 

The centrifugal acceleration simulates the gravity and allows for correspondence of stress fields 

between the model and full-scale permitting accurate geotechnical modeling. However, to verify 

the scale effects, modeling of model tests at different “g” levels is usually conducted to ensure the 

applicability and accuracy of centrifuge modeling. This has been done in many of the studies 

referred to in the current paper and resulted in an acceptable accuracy with most of the interaction 

curves within a bandwidth of fewer than 1.0 times the normalized loads. These results provided 

sufficient relaxation to construct the current database using the published centrifuge test results. 

 

3.1.19. Goodness of fit 

To assess the performance and precision of the developed models, some statistical indices 

including the correlation coefficient (R), the variance accounted for (VAF), root mean square error 

(RMSE), mean absolute error (MAE), scatter index (SI), and Nash-Sutcliff efficiency coefficient 

(NSC) were used by the following equations: 
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𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(3-50) 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑃𝑖 − 𝑂𝑖)

𝑣𝑎𝑟(𝑃𝑖)
) × 100 

(3-51) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(3-52) 

𝑀𝐴𝐸 =
∑ |𝑃𝑖 − 𝑂𝑖|

𝑛
𝑖=1

𝑛
 

(3-53) 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

�̅�
 

(3-54) 

𝑁𝑆𝐶 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1

 
(3-55) 

Here, Oi, Pi, �̅�, �̅�, and n are observed values, predicted values, the mean of observed values, the 

mean of predicted values, and the number of experimental values, respectively. The closeness of 

the correlation coefficient (R) and the Nash-Sutcliff efficiency coefficient (NSC) to one indicates 

that the model has the highest performance, whilst the closeness of the RMSE, MAE, and SI to zero 

proves that the particular model has the lowest error. Moreover, the best model has the highest 

value of the VAF index. 

 

3.1.20. Results and Discussion 

3.1.20.1. Developed models 

A schematic presentation of the applied input combinations for sand and clay seabed is illustrated 

in Figure 3-25. Model 1 estimated the target parameter (soil deformation) through all of the 

dimensionless input parameters. However, to identify the most effective input parameters 

governing the subgouge soil deformation, each dimensionless input parameter was eliminated and 
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then other models were defined including Model 2 to Model 9 for sand and Model 2 to Model 8 

for clay. 

 

Figure 3-25. A schematic layout of applied developed models for sand and clay seabed 

 

Using the Minitab software, linear regression (LR) was conducted to derive the required equations 

and introduce the combinations of input parameters. Nine equations for sand and eight equations 

for clay were obtained to estimate the horizontal (dh/W) and vertical (dv/W) subgouge soil 

deformations. The developed LR models (equations (5-29) to (5-62)) are provided in Appendix I. 

It is worth mentioning that the LR, which is a linear technique to approximate the relationship 

between a dependent parameter as a target function and one or more independent parameters as 

input variables, has been applied in different fields of study in the past (Freedman 2009; Yan and 

Su 2009; Koç and Barkana 2014; Forbrich et al. 2010). 
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The simplicity, cost-effectiveness, and low disturbance during the simulation process, are the key 

advantages of LR technics that have made it a practical method in a range of applications (Bao et 

al. 2010). 

 

3.1.20.2. Sensitivity analysis in sand 

The performance of the developed models for sand seabed was evaluated, meaning that the target 

parameters (horizontal and vertical deformations) were sensitized to each dimensionless 

parameter, and the most important parameter and the best models for estimation of the subgouge 

deformations were introduced. Figure 3-26 compares the calculated statistical indices for the 

estimated subgouge sand deformations using Model 1 to Model 9. 

Model 1 computed the horizontal and vertical deformations through all dimensionless input 

parameters (Ds/W, φ, α, ω, h’/W, Lh/γs.W
3, Lv/γs.W

3, V2/g.W). Model 1 with the variance accounted 

for (VAF), the correlation coefficient (R), and the scatter index (SI), root mean square error 

(RMSE), mean absolute error (MAE), and Nash-Sutcliff efficiency coefficient (NSC) of 82.974, 

0.936, 0.525, 0.012, 0.382, and 0.010, resulting in the highest precision among all of the defined 

models for sand. The parameters that were eliminated one at a time in Model 2, 3, 4, 5, 6, 7, 8, and 

9 were V2/g.W, Lv/γs.W
3, Lh/γs.W

3, h’/W, ω, α, φ, Ds/W, respectively. 
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Figure 3-26. Comparison of calculated statistical indices for estimated subgouge sand 

deformations using Model 1 to Model 9 

 

The error distribution of Model 1 to Model 9 in estimating the subgouge sand deformations is 

illustrated in 3-27. Based on the presented charts, about 37% of the horizontal deformations 

estimated by using Model 1 have an error of less than 10%, though 64% of the modeled vertical 

deformations using Model 1 own an error of less than one percent. Even though 22% of the 

horizontal deformations simulated adopting Model 1 have an error of more than 20%, almost 4% 

of the vertical deformations estimated using this model have an error of more than 2%. 
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Figure 3-27. Error distribution of Model 1 to Model 9 for estimating subgouge sand 

deformations 
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The depicted scatter plots for estimated horizontal and vertical sand deformations obtained by 

Model 1 to Model 9 are shown in Figure 3-27. 
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Figure 3-28. Scatter estimated horizontal and vertical subgouge sand deformations by Model 1 to 

Model 9 

 

Regarding the sensitivity analysis, Model 1 has the highest correlation with the experimental 

values. Among all developed LR models, Model 1 estimates the horizontal and vertical 

deformations with the lowest error. Therefore, Model 1 is introduced as the superior model in 

estimating the subgouge sand deformations. Additionally, Model 2 is detected as the second-best 

LR model. After Model 1 and Model 2, Model 4 has the highest level of correlation with the 

experimental measurements. Also, Model 5 and Model 9 in terms of precision and correlation are 

identified as the fifth and sixth models, respectively. Model 7 and Model 8 are detected as the 

seventh and eighth-best models among the LR models. Model 6 estimates the subgouge 

deformations with the lowest level of accuracy and this model has the weakest correlation with the 

experimental values compared to other LR models. 

The internal friction angle of sand (𝜑) was identified as the most influencing input parameter for 

estimating the horizontal subgouge sand deformations. Subsequently, the attack angle (α), the ratio 

of the gouge depth to the gouge width (Ds/W), dimensionless vertical force (Lv/γs.W
3), and 

dimensionless horizontal force (Lh/γs.W
3) are ascertained as the most effective input parameter in 

estimating the horizontal subgouge sand deformations, respectively. Furthermore, the attack angle 

(α) is detected as the most significant input parameter for estimating the vertical subgouge sand 

deformations. The ratio of the gouge depth to the gouge width (Ds/W), the internal friction angle 

of sand (𝜑), dimensionless vertical force (Lv/γs.W
3), and dimensionless horizontal force (Lh/γs.W

3) 

have the highest impact on the target parameter, respectively.  
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Evaluation of the dimensionless input parameters reveals that the number of experimental 

measurements for the surcharged soil slope (ω), the ratio of berm height to the gouge depth (h’/W), 

and the dimensionless velocity parameter (V2/g.W) are very few; as a result, the implemented 

sensitivity analysis is not able to identify the level of importance of the ω, h’/W, and V2/g.W 

dimensionless groups. 

 

3.1.20.3. Sensitivity analysis in clay 

In this section, the subgouge clay deformations estimated by Model 1 to Model 8 are evaluated. 

The results of the computed statistical indices for the models are depicted in Figure 3-29. 
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Figure 3-29. Comparison of calculated statistical indices for estimated subgouge clay 

deformations by Model 1 to Model 8 

 

To estimate the horizontal and vertical subgouge clay deformations, eight distinct models (Model 

1 to Model 8) were defined using the dimensionless parameters including Ds/W, c/γs.W,α, h’/W, 

Lh/γs.W
3, Lv/γs.W3, V2/g.W. Model 1 simulated the target parameter through all dimensionless input 

parameters with a high level of accuracy in comparison with other LR models. The NSE, VAF, and 

SI values in Model 1 for estimation of the horizontal subgouge deformations in clay were 0.737, 

64.250, and 0.274, respectively. The parameters that were eliminated one at a time in Model 2, 3, 

4, 5, 6, 7, and 8 were V2/g.W, Lv/γs.W
3, Lh/γs.W

3, h’/W, α, c/γs.W, Ds/W, respectively. Figure 3-30 

shows the error distribution charts of the horizontal and vertical subgouge deformations in clay 

that were obtained by Model 1 to Model 8. 
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Figure 3-30. Error distribution of Model 1 to Model 8 for estimating the horizontal and vertical 

subgouge clay deformations 
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The overwhelming majority of the simulated horizontal deformations obtained by Model 1 have 

an error of less than 5% and almost 5% of the estimated vertical deformations own an error of 

more than 10%. In Figure 3-31, the scatter plots for horizontal and vertical ice-induced clay 

deformations obtained by Model 1 to Model 8 are illustrated. 
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Figure 3-31. Scatter plots of estimated horizontal and vertical subgouge clay deformations by 

Model 1 to Model 8 

 

Model 1 was identified as the superior model in estimating both the horizontal and vertical 

subgouge clay deformations. The model was a function of all input parameters having the lowest 

error and the highest correlation with the experimental values. Furthermore, Model 6, Model 7, 

and Model 5 were respectively recognized as the second, third, and fourth-best LR models. 

Moreover, Model 4, Model 3, and Model 2 were identified as the fifth, sixth, and seventh LR 

models in terms of accuracy and performance. Model 8 was the worst LR model in predicting clay 

deformations. 

The sensitivity analysis indicated that the ratio of the gouge depth to the gouge width (Ds/W) is the 

most effective input parameter in simulating the horizontal subgouge clay deformations (dh/W). 

The dimensionless velocity parameter (V2/g.W), dimensionless vertical force parameter (Lv/γs.W
3), 

and dimensionless horizontal force parameter (Lh/γs.W
3) were respectively detected as the second, 

third, and fourth significant input parameters in modeling the horizontal deformations. In contrast, 

the dimensionless cohesion parameter (c/γs.W) and the attack angle (α) showed a negligible 

influence on the estimation of the horizontal deformations. The parameter V2/g.W was detected as 

the most influencing input parameter in modeling the subgouge vertical deformations in clay. The 

parameters c/γs.W, Lh/γs.W
3, α, Lv/γs.W

3, and Ds/W were identified as the most important input 

parameters in the simulation of the horizontal subgouge deformations in clay. 

 

3.1.20.4. Uncertainty analysis (UA) 
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Uncertainty analysis (UA) was conducted to evaluate the performance of LR models and describe 

the errors. The errors calculated by LR models (𝑒𝑗) were computed as the difference between the 

estimated (𝑃𝑗) and observed (𝑂𝑗) subgouge soil deformations (𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗). Then, the mean 

value of the estimated error (�̅�) and the standard deviation (𝑆𝑒) were calculated as follows 

(Crosetto et al. 2000; Azimi et al. 2018; Azimi et al. 2019): 

�̅� = ∑ 𝑒𝑗
𝑛

𝑗=1
 

(3-56) 

𝑆𝑒 = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(3-57) 

The negative sign of 𝑒 ̅means the underestimated performance of the LR model, whereas the 

positive sign shows the overestimated performance of the model. Using 𝑒 ̅ and 𝑆𝑒, confidence 

bound was formed around an estimated error through the “Wilson score approach” (Wilson 1927; 

Wallis 2013) without the continuity correction. The Wilson score interval is an improvement over 

the normal distribution interval in which an asymmetric normal distribution is used to improve the 

confidence interval bound. Next, ±1.96Se results were expressed in a 95% confidence bound 

which is a “95% prediction error interval or 95%PEI”. Then “width of uncertainty bound or WUB” 

was calculated. Figure 3-32 shows the results yielded by the UA of the LR models for horizontal 

and vertical soil deformations. All of the LR models (Model 1 to Model 9) have resulted in an 

underestimated performance in the estimation of the horizontal subgouge deformations. For 

predicting the vertical sand deformations, Model 1, Model 4, Model 5, Model 6, Model 8, and 

Model 9 simulated the target parameter with an underestimated performance, whereas Model 2, 

Model 3, and Model 7 have an overestimated performance. 

To model the horizontal sand deformations, the computed mean value of the standard deviation 

for Model 1, Model 2, and Model 3 are 0.157, 0.163, and 0.174, respectively. For prognosticating 
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the horizontal deformations by Model 4, Model 5, and Model 6, the value of 𝑆𝑒 were equal to 

0.166, 0.175, and 0.280. The mean value of the standard deviation for Model 7, Model 8, and 

Model 9 were found as 0.196, 0.210, and 0.182, respectively.  

 

Figure 3-32. Results of uncertainty analysis for LR models 
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The 95%PEI & WUB for simulating the horizontal sand deformations using Model 1 were (-0.093 

to 0.032) & ±0.062. The calculated 95%PEI for Model 2, Model 3, and Model 4 were (-0.097 to 

0.032), (-0.109 to 0.029), and (-0.104 to 0.027), whilst the computed WUB values for these LR 

models are ±0.064, ±0.069, and ±0.065, respectively. The results show that Model 1 owns the 

narrowest width of the uncertainty bound among these LR models. Also, Figure 3-32 shows that 

for vertical sand deformations, the narrowest bound belongs to Model 4 and Model 6. 

To simulate the horizontal clay deformations, Model 1, Model 2, and Model 7 forecasted the target 

parameter with an overestimated performance, while Model 3, Model 4, Model 5, Model 6, and 

Model 8 underestimated the horizontal clay deformations. The vertical clay deformations were 

underestimated by Model 1, Model 3, Model 4, Model 6, and Model 8, while the other models 

including Model 2 and Model 7 overestimated the vertical. Model 1 resulted in the narrowest width 

of uncertainty bound in order to model horizontal clay deformations, while Model 4 had the 

narrowest width of the uncertainty bound in the estimation of the vertical subgouge deformations 

among all LR models. 

 

3.1.20.5. Comparison with previous studies 

The empirical equations proposed by Woodworth-Lynes et al. (1996) were used to estimate the 

maximum horizontal (𝑑ℎ) and vertical (𝑑𝑣) subgouge clay deformations as follows: 

𝑑ℎ = 0.6√𝑊.𝐷𝑠 (3-58) 

𝑑𝑣 = 𝐷𝑠. 𝑒𝑥𝑝 (−
1

3
.
𝑦

𝐷𝑠
) 

(3-59) 

where, 𝑑ℎ, 𝑊, 𝐷𝑠, 𝑑𝑣, y are the maximum horizontal subgouge deformation, the width of the 

gouge, the gouge depth, the maximum vertical subgouge deformation, and the soil depth, 

respectively. After the normalization of the computed horizontal and vertical deformations by 
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equations (5-27) and (5-28), a comparison was made between the models proposed by 

Woodworth-Lynes et al. (1996) and the best LR models (equations (5-29) to (5-32)). The results 

of the comparison were tabulated in Table 3-10. 

 

Table 3-10. Comparison between empirical relationships and best LR models 

Soil Deformation Equation R VAF RMSE SI MAE NSC 

 

 

Sand 

 

Horizontal 

(3-58) 0.335 -68.042 2.056 1.677 1.720 -0.147 

(3-60) 0.936 82.974 0.157 0.525 0.131 0.866 

 

Vertical 

(3-59) -0.222 -2.382 6.388 28.405 3.778 -615.613 

(3-61) 0.618 -63.079 0.012 0.600 0.010 0.382 

 

 

Clay 

 

Horizontal 

(3-58) 0.895 79.647 0.771 0.569 0.411 0.838 

(3-62) 0.858 64.250 0.046 0.274 0.034 0.737 

 

Vertical 

(3-59) 0.718 50.583 1.090 1.550 0.547 -0.218 

(3-63) 0.396 -181.052 0.116 0.693 0.096 -0.578 

 

Table 3-10 shows that Model 1 has resulted in the highest correlation and lowest error in the 

estimation of both the horizontal and vertical subgouge soil deformations. The values of R, NSC, 

and SI for Eq. (5-30) were equal to 0.335, -0.147, and 1.677, respectively. Also, for the empirical 

formula, the RMSE, MAE, and VAF statistical indices were estimated to be 2.056, 1.720, and -

65.042. Thus, for predicting the maximum horizontal ice-induced sand deformation, the proposed 

LR model (Eq. 3-60) showed a better performance than Eq. (3-58). Also, Table 3-10 shows that 

the performance of the developed LR model for the estimation of the vertical deformations in the 

sand was better than the empirical formulae. By contrast, the empirical equations better estimated 
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the horizontal and vertical deformations in clay than the proposed LR models. For instance, the 

MAE, RMSE, and R indices for Eq. (3-58) were calculated to be 0.411, 0.771, and 0.895. Overall, 

Model 1, as a function of all dimensionless groups, was introduced as the superior LR model for 

the simulation of the horizontal and vertical sand deformations. The model forecasted the target 

parameter accurately with an underestimated performance. The internal friction angle of sand (𝜑) 

and the keel attack angle (α) were the most influential dimensionless groups in prognosticating the 

horizontal and vertical deformations in the sand. For estimation of the subgouge deformation in 

clay, Model 1 was the premium LR model overestimating the horizontal deformations. However, 

the LR model showed an underestimated performance in simulating the vertical displacements. 

Furthermore, the ratio of the gouge depth to the gouge width (Ds/W) had a significant impact on 

the modeling of the horizontal clay deformations, whilst the dimensionless velocity parameter 

(V2/g.W) was identified as the most important dimensionless group in simulating the vertical 

deformations in clay. 

 

3.1.21. Conclusion 

A dimensional analysis of the subgouge soil deformation due to an ice-gouging event was 

performed by using the Buckingham-π theory for the first time. Eight dimensionless groups of key 

parameters were identified affecting the maximum subgouge soil deformations. Subsequently, 

using the identified dimensionless groups and developing a comprehensive dataset, nine linear 

regression (LR) models for the sandy seabed and eight models for the clay seabed were developed. 

The most significant results of the study are summarized as follows: 
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 The defined LR models were validated with experimental measurements, signifying that 

the models estimated the maximum horizontal and vertical subgouge deformations with 

good precision. 

 According to the sensitivity analysis, Model 1 was the best LR model predicting the 

horizontal and vertical deformations by using all dimensionless input groups including 

Ds/W, φ,α, ω, h’/W, Fh/γs.W
3, Fv/γs.W

3, V2/g.W. This model had an acceptable level of 

accuracy, meaning that approximately 32% of the simulated vertical sand deformations 

showed an error of less than 2%.  

 The implemented sensitivity analysis identified the internal friction angle of sand (𝜑) and 

the attack angle (α) as the most effective dimensionless groups to estimate the horizontal 

and vertical subgouge deformations. 

 The best LR model (Model 1) simulating the clay deformations was a function of the 

Ds/W, c/γs.W, α, h’/W, Fh/γs.W
3, Fv/γs.W

3, V2/g.W. 

 The ratio of the gouge depth to the gouge width (Ds/W) and the dimensionless velocity 

parameter (V2/g.W) was respectively recognized as the most influencing dimensionless 

groups for modeling the horizontal and vertical subgouge clay deformations. 

 The uncertainty analysis showed that Model 1 had an underestimated performance in 

estimating the sand deformations. 

 The comparison of the results of the best LR models with the empirical models showed 

that the LR models predicted the sand deformations more accurately, whilst the empirical 

models estimated the clay deformations better than the LR models. 

The presented dimensional analysis provided a good insight into the key parameter governing ice-

induced soil deformations. The results obtained in this study can not only facilitate proposing new 
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analytical or empirical solutions for the prediction of the subgouge soil deformation but also be 

beneficial to the planning of costly experimental studies and numerical simulations and mitigate 

the expenses of future studies. 
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Appendix I 

The developed linear regression (LR) models (equations (5-29) to (5-62)) are tabulated in Table 

3-11. 

 

Table 3-11. Derived equations based on linear regression (LR) using different input 

combinations 

Model Soil Relationship Eq. # 

 

 

 

1 

 

Sand 

|dh/W|=1.490+2.121(Ds/W)-0.036(φ)-0.019(α)+0.030(ω)-0.466(h'/W)-

0.388(Fh/γs.W3)+0.432(Fv/γs.W3)+11.597(V2/g.W) 

(3-60) 

|dv/W|=0.020+0.069(Ds/W)+ 0.0002(φ)- 0.00081(α)- 0.0005(ω)+ 

0.008(h'/W)-0.001(Fh/γs.W3)+ 0.0008(Fv/γs.W3)+ 0.727(V2/g.W) 

(3-61) 
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Clay 

|dh/W|=0.018+1.053(Ds/W)+0.004(c/γs.W)-

0.001(α)+1.173(h'/W)+0.004(Fh/γs.W3)-

0.003(Fv/γs.W3)+3.333(V2/g.W) 

(3-62) 

|dv/W|=0.174+0.056(Ds/W)-0.008(c/γs.W)-0.003(α)-0.557(h'/W)-

0.0009(Fh/γs.W3)+0.002(Fv/γs.W3)-3.932(V2/g.W) 

(3-63) 

 

 

 

2 

 

Sand 

|dh/W|=1.349+1.868(Ds/W)-0.029(φ)-0.020(α)+0.031(ω)-0.375(h'/W)-

0.351(Fh/γs.W3)+0.357(Fv/γs.W3) 

(3-64) 

|dv/W|=-0.006+0.037(Ds/W)+0.001(φ)-0.0008(α)- 0.0004(ω)+ 

0.012(h'/W)+ 0.013(Fh/γs.W3)- 0.012(Fv/γs.W3) 

(3-65) 

 

Clay 

|dh/W|=0.090+0.814(Ds/W)-0.003(c/γs.W)-

0.001(α)+2.033(h'/W)+0.004(Fh/γs.W3)-0.002(Fv/γs.W3) 

(3-66) 

|dv/W|=0.087+0.339(Ds/W)-0.001(c/γs.W)-0.003(α)-1.316(h'/W)-

0.002(Fh/γs.W3)+0.001(Fv/γs.W3) 

(3-67) 

 

 

 

3 

 

Sand 

|dh/W|=1.150+1.645(Ds/W)-0.027(φ)-0.014(α)+0.031(ω)-

0.354(h'/W)+0.115(Fh/γs.W3)+6.297(V2/g.W) 

(3-68) 

|dv/W|=0.019+0.067(Ds/W)+0.0002(φ)-0.0008(α)-

0.0005(ω)+0.008(h'/W)-0.0005(Fh/γs.W3)+0.707(V2/g.W) 

(3-69) 

 

Clay 

|dh/W|=0.019+1.032(Ds/W)+0.001(c/γs.W)-0.0004(α)+0.266(h'/W)-

0.001(Fh/γs.W3)+3.104(V2/g.W) 

(3-70) 

|dv/W|=0.174+0.069(Ds/W)-0.007(c/γs.W)-0.003(α)-

0.044(h'/W)+0.002(Fh/γs.W3)-3.810(V2/g.W) 

(3-71) 

 

 

 

Sand 

|dh/W|=1.318+1.565(Ds/W)-0.032(φ)-0.016(α)+0.029(ω)-

0.426(h'/W)+0.144(Fv/γs.W3)+10.092(V2/g.W) 

(3-72) 
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4 

|dv/W|=0.018+ 0.067(Ds/W)+ 0.0003(φ)- 0.0008(α)- 

0.0005(ω)+0.008(h'/W)-0.0003(Fv/γs.W3)+0.702 (V2/g.W) 

(3-73) 

 

Clay 

|dh/W|=0.007+1.085(Ds/W)+0.004(c/γs.W)-0.0004(α)+0.360(h'/W)-

0.001(Fh/γs.W3)+3.547(V2/g.W) 

(3-74) 

|dv/W|=0.178+ 0.0458(Ds/W)-0.008(c/γs.W)-0.003(α)-

0.356(h'/W)+0.001(Fv/γs.W3)-4.020(V2/g.W) 

(3-75) 

 

 

 

5 

 

Sand 

|dh/W|=1.430+2.426(Ds/W)-0.034(φ)-0.021(α)+0.027(ω)-

0.316(Fh/γs.W3)+0.317(Fv/γs.W3)+5.022(V2/g.W) 

(3-76) 

|dv/W|=0.024+0.068(Ds/W)+8.816E-005(φ)-0.0008(α)-0.0004(ω)-

0.004(Fh/γs.W3)+0.004(Fv/γs.W3)+ 0.874(V2/g.W) 

(3-77) 

 

Clay 

|dh/W|=0.003+1.111(Ds/W)+0.007(c/γs.W)-

0.0004(α)+0.003(Fh/γs.W3)-0.002(Fv/γs.W3)+3.703(V2/g.W) 

(3-78) 

|dv/W|=0.182+0.027(Ds/W)-0.010(c/γs.W)-0.003(α)-

0.0004(Fh/γs.W3)+ 0.001(Fv/γs.W3)-4.112(V2/g.W) 

(3-79) 

 

 

 

6 

 

Sand 

|dh/W|=2.228+0.589(Ds/W)-0.045(φ)-0.038(α)-0.078(h'/W)-

0.256(Fh/γs.W3)+0.554(Fv/γs.W3)+21.884(V2/g.W) 

(3-80) 

|dv/W|=0.006+0.081(Ds/W)+0.0004(φ)-0.0004(α)+ 0.004(h'/W)-

0.006(Fh/γs.W3)+0.0001(Fv/γs.W3)+ 0.603(V2/g.W) 

(3-81) 

 

Clay 

|dh/W|=0.004+1.057(Ds/W)+0.004(c/γs.W)+1.069(h'/W)+0.003(Fh/γs.

W3)-0.003(Fv/γs.W3)+3.444(V2/g.W) 

(3-82) 

|dv/W|=0.114+0.044(Ds/W)- 0.006(c/γs.W)-0.982(h'/W)-

0.001(Fh/γs.W3)+0.002(Fv/γs.W3)-3.571(V2/g.W) 

(3-83) 
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7 

 

Sand 

|dh/W|=0.930+2.259(Ds/W)-0.032(φ)+0.036(ω)-0.547(h'/W)-

0.126(Fh/γs.W3)+0.172(Fv/γs.W3)+13.808(V2/g.W) 

(3-84) 

|dv/W|=-0.012+0.051(Ds/W)+0.0007(φ)-0.0002(ω)+ 

0.008(h'/W)+0.007(Fh/γs.W3)- 0.010(Fv/γs.W3)+0.692(V2/g.W) 

(3-85) 

 

Clay 

|dh/W|=0.035+0.998(Ds/W)-0.001(α)+1.759(h'/W)+0.004(Fh/γs.W3)-

0.002(Fv/γs.W3)+2.887(V2/g.W) 

(3-86) 

|dv/W|=0.131+0.199(Ds/W)-0.003(α)-1.882(h'/W)-

0.001(Fh/γs.W3)+0.001(Fv/γs.W3)-2.702(V2/g.W) 

(3-87) 

 

 

 

8 

 

Sand 

|dh/W|=0.450+0.691(Ds/W)-0.0156(α)+0.032(ω)-0.400(h'/W)-

0.086(Fh/γs.W3)+0.106(Fv/γs.W3)-6.795(V2/g.W) 

(3-88) 

|dv/W|=0.026+ 0.075(Ds/W)- 0.0008(α)- 0.0005(ω)+ 0.008(h'/W)-

0.005(Fh/γs.W3)+ 0.003(Fv/γs.W3)+0.820(V2/g.W) 

(3-89) 

 

Clay 

|dh/W|=0.209-0.015(c/γs.W)-0.001(α)+4.319(h'/W)+0.006(Fh/γs.W3)-

0.002 (Fv/γs.W3)-2.283(V2/g.W) 

(3-90) 

|dv/W|=0.184-0.009(c/γs.W)-0.003(α)-0.411(h'/W)-

0.0008(Fh/γs.W3)+0.002(Fv/γs.W3)-4.274(V2/g.W) 

(3-91) 

 

 

9 

 

Sand 

 

|dh/W|=1.403-0.026(φ)-0.020(α)+0.027(ω)-0.545(h'/W)-

0.134(Fh/γs.W3)+0.307(Fv/γs.W3)+6.914(V2/g.W) 

(3-92) 

|dv/W|=-0.0005+ 0.001(φ)-0.0007(α)-

0.0005(ω)+0.008(h'/W)+0.014(Fh/γs.W3)-

0.010(Fv/γs.W3)+0.335(V2/g.W) 

(3-93) 
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4. Chapter 4 

 

Prediction of Iceberg-Seabed Interaction Process Using Group Method of 

Data Handling-Based Algorithms 

 

This chapter includes two sections as follows: 

Section 1: Prediction of Ice-induced Subgouge Soil Deformation in Sand using Group Method of 

Data Handling-Based Neural Network 

Section 2: Ice-seabed interaction modeling in clay by using evolutionary design of generalized 

group method of data handling 
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Section 1 

 

Prediction of Ice-induced Subgouge Soil Deformation in Sand using Group 

Method of Data Handling-Based Neural Network 
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Abstract 

Ice-gouging is one of the critical threats to the subsea pipelines crossing the Arctic and neighboring 

shallow waters. The burial of subsea pipelines is considered a viable solution to protect them 

against ice-gouging attacks. The pipeline is usually buried below the deepest recorded ice gouges 

in that specific geographical location but is still threatened by subgouge soil deformation that is 

extended down the ice tip due to the shear resistance of the seabed soil. Determination of the 

subgouge soil deformations is a challenging design aspect that usually requires costly experimental 

and numerical studies to ensure the structural integrity of the buried pipeline against ice-gouging. 

In this paper, an alternative and cost-effective methodology has been proposed using the Group 

Method of Data Handling (GMDH) to simulate the horizontal and vertical subgouge soil 

deformation profiles in the sandy seabed. Ten GMDH models (GMDH 1 to GMDH 10) were 

defined by using the governing input parameters comprising the soil depth ratio, the gouge depth 

ratio, the shear strength of seabed soil, the attack angle, the frontal berm height ratio, the horizontal 

and vertical loads, and the ice dynamics. The results from the best GMDH models were compared 

to the artificial neural network (ANN) and empirical approaches showing a robust performance. 

 

Keywords: Ice-gouging analysis; Subgouge soil deformation; Group method of data handling 

(GMDH); Artificial Neural network (ANN); Sensitivity analysis (SA); Uncertainty analysis 

(UA)
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4.1.1. Introduction 

The Arctic area is considered one of the rich regions in terms of energy resources that hold a 

massive amount of hydrocarbon deposits. Regarding the U.S. Geological Survey (USGS), 

approximately 13% of the world's undiscovered crude oil (90 billion barrels) and 30% of the 

world's undiscovered natural gases (47.3 trillion cubic meters) are situated in this cold region 

(Mouawad 2008). In contrast, the vast majority of the extracted natural resources are transferred 

using subsea pipelines from offshore to onshore (Alba 2015). During warmer seasons, the seabed 

may be gouged by traveling icebergs in shallow waters. The soil displacement by ice scour is not 

limited to the soil body that is in direct contact with the ice keel or front of it. The shear resistance 

in the soil causes the soil displacement to be extended much deeper than the ice tip which is called 

subgouge soil deformation (see Figure 4-1).  

 

Figure 4-1. A schematic layout of deformations of the subgouge seabed and buried subsea 

pipeline during an ice-gouging event 
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Therefore, the subgouge soil deformation may still threaten the pipes that are located deeper than 

the ice gouge depth or below the ice tip. The subgouge soil deformation profile has a hyperbolic 

shape. The maximum horizontal deformation occurs directly beneath the bottom of the ice keel 

and the soil depth for horizontal displacement is measured from the bottom of the ice keel. The 

subgouge soil displacement may endanger the pipeline integrity in terms of the serviceability limit 

state (e.g., ovalization) or ultimate limit state (e.g., local buckling or tensile fracture) (Lach 1996, 

Nematzadeh and Shiri 2020). Figure 4-1 portrays the schematic layout of an ice-gouging event and 

the resultant subgouge soil deformation. 

Commonly, the estimation of the minimum burial depth for pipeline protection against ice-gouging 

is a challenging design task that can have a significant time and cost impact on the project. In 

practice, for the evaluation of the ice gouge impact on buried pipelines, a decoupled approach is 

followed by combining the accuracy of the continuum approach for finite element analysis of the 

free field ice-gouging event with the simplicity of the beam-spring method for modeling the 

pipeline. The decoupled approach starts with a free-field ice-gouging analysis without the presence 

of a pipeline. Then the observed subgouge soil deformations are manually transferred to the springs 

representing the soil in a beam-spring model to obtain the pipe response to soil movement. The 

decoupled approach assumes that the soil displacement is completely transferred to the pipe. 

Therefore, the decoupled approach does not model the slip between the pipe and soil and also the 

soil's local compression in contact with the pipe. The beam-spring model examines the soil 

displacements in various depths that have been obtained from a single free-field finite element 

analysis to come up with the best burial depth. Therefore, free-field ice-gouging is a significant 

part of the decoupled approach in practical pipeline design against an ice attack that is usually 

supported by costly computational and experimental studies. The current study introduces a neural 
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network-based (NN-based) method for fast estimation of the subgouge soil deformations that need 

to be fed into the beam-spring model. This can be a cost-effective alternative for continuum finite 

element models that are usually used in the free-field ice-gouging analysis. The proper data is a 

key object in the success of NN-based analysis. There are a large number of experimental, e.g., 

(Paulin 1992; Schoonbeek et al. 2008; Been 2008), analytical, e.g., (Nessim and Jordaan 1985, 

Comfort and Graham 1986), and numerical, e.g., (Nematzadeh and Shiri 2019a, Nematzadeh and 

Shiri 2019b, Nematzadeh and Shiri 2020) studies in the literature. However, in this paper, the 

database for training and testing of the NN-based models was extracted from a set of crucial 

experimental studies published in the literature including Paulin (1992), C-CORE (1995), Hynes 

(1996), C-CORE (1996), and Yang (2009).  

Paulin (1992) performed four centrifuge tests to study the subgouge deformation in the sand under 

submerged and dry conditions. The authors investigated the surface deformations, sub-scour 

displacements, pressure, and forces and concluded that the measured loads and forces for the 

submerged models were less than the dry tests.  

Later in 1995-1996, several free field centrifuge laboratory tests of the keel scour problems in 

various seabed conditions such as loose sand, dense sand, soft clay, and medium clay were 

implemented in the Centre for Cold Ocean Resources Engineering (C-CORE 1995 and C-CORE 

1996). The subgouge soil deformation profiles were measured and also a set of empirical formulas 

were derived from the experimental measurements to approximate the subgouge soil deformations. 

Hynes (1996) carried out eight pressure ridge ice scour experiment (PRISE) tests to measure the 

horizontal and vertical loads, the gouge-induced pore pressures and stresses, and the keel-soil 

interface pressures for the sandy seabed. The author proposed a linear relationship between the 

scour loads and the scour depth based on the shear-dragging theory. Yang (2009) studied the ice-
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induced deformations on a sandy seabed by performing seven tests through the pipeline ice risk 

assessment and mitigation program (PIRAM). The study resulted in proposing a set of equations 

for the relationship between the horizontal and vertical subgouge deformations, the bearing 

pressure, the gouge reaction force, the frontal berm height (the height of soil heave in front of the 

ice keel), and the gouge depth. 

NN-based models have been widely applied to simulate different non-linear and complex problems 

since they are reliable, quick, inexpensive, and accurate (Kaydani et al. 2014, Nazari 2015). There 

are only a few neural network-based studies that have simulated the ice-gouging event. Kioka et 

al. (2003) and Kioka et al. (2004) modeled characteristics of the ice scour problem by the neural 

network (NN) approach. The authors have not studied all parameters affecting a real ice-gouging 

problem, and the keel failure was examined using a simple model. Additionally, this NN model 

was just validated by the analytical results. 

Azimi and Shiri (2020a) performed a dimensional analysis using Buckingham's theory to identify 

the parameters affecting the ice-seabed interaction problems for the first time. The authors 

suggested several linear models (LMs) estimating the maximum ice-induced soil deformations. 

Moreover, a comprehensive dataset comprising the experimental measurements in sand and clay 

seabed was constructed, and the LMs were verified by them. 

Azimi and Shiri (2020b) simulated the horizontal subgouge sand deformations using gene 

expression programming (GEP). The authors compared the GEP with a multilayer perceptron 

(MLP) model, with better performance of the GEP than MLP. The study concluded that the soil 

depth and the dilation index had a significant impact on subgouge sand deformations. Azimi and 

Shiri (2021a) simulated the ice-seabed interaction parameters utilizing the extreme learning 

machine (ELM) model. The gouge depth ratio and the shear strength of the seabed soil were 
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recognized as the most important input parameters. The multi-layer perceptron neural network was 

applied to estimate the horizontal subgouge sand deformations by Azimi and Shiri (2021b). The 

author concluded that the soil depth, bearing pressure, and dilation index were the most significant 

variables to predict the subgouge sand characteristics. 

Among the NN-based models, the Group Method of Data Handling (GMDH) is a robust, fast, and 

reliable method that has been widely applied in various fields (Ebtehaj et al. 2015, Azimi et al. 

2018, Walton et al. 2019). Compared with the classical NN models, the GMDH has several 

advantages as follows: 

 The GMDH is capable of choosing the most influential input parameters and provision of 

an explicit relationship for the iceberg-seabed interaction problem, 

 A hidden neuron in the GMDH structure could simultaneously input from the adjacent and 

non-adjacent layers resulting in a better performance, 

 The GMDH model has a simple organization, where only a few parameters were set to 

simulate the ice-scoured deformation. 

Besides the advantages of the GMDH model in the estimation of the subgouge sand deformations, 

with a high level of correlation, precision, and simplicity, the model slightly lacks a sufficiently 

flexible architecture, where the number of layers and neurons in the hidden layers were determined 

during the simulation instead of predetermination. In terms of pipeline response to ice-gouging, 

the horizontal and vertical subgouge soil deformations are the ultimate design factors that directly 

affect the pipeline response. The subgouge soil deformations are resultant of several key input 

parameters including the attack angle, gouge depth, seabed soil properties, ice dynamics, etc. 

Similar to almost all of the earlier studies (e.g., Paulin 1991 & 1992; Lach 1996; C-CORE 1995; 

C-CORE 1996; Hynes 1996; Liferov 2005; Nobahar et al. 2007; Abdalla et al. 2009; Pike et al. 
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2016; Nematzadeh and Shiri 2019a), the subgouge soil deformation was considered as the key 

outputs of the ice-gouging analysis in the current study. 

In the current study, using the parameters governing the ice-induced sand deformations, ten 

GMDH models were developed, and then the best models, along with the most influencing 

parameters, were introduced using sensitivity and uncertainty analysis. The best GMDH models 

were compared to the artificial neural network (ANN) and empirical approaches. Finally, some 

GMDH-based formulas were suggested for the first time as a fast and cost-effective alternative 

approach for calculating the subgouge sand deformations profiles for practical applications. 

Further details related to the applied methodology and simulation results are provided in the 

coming sections. 

 

4.1.2. Methodology 

First, the development of the models by using the group method of data handling (GMDH) and its 

comparison with the artificial neural network (ANN) are discussed. Subsequently, the identified 

parameters governing the subgouge soil deformations are presented by performing dimensional 

analysis. Eventually, the applied datasets for validation of the NN-based models are introduced. 

 

4.1.2.1. Group method of data handling (GMDH) 

The group method of data handling (GMDH) was introduced by Ivakhnenko (1976). The technique 

has been broadly applied in different fields to approximate linear and non-linear problems, without 

having sufficient information about the system (Ivakhnenko and Ivakhnenko 1995, Ebtehaj et al. 

2015, Azimi et al. 2018, Walton et al. 2019). The GMDH is considered a self-organized technique 

in which a set of neurons are applied to estimate the subgouge sand deformation like fi as the output 
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(subgouge sand deformation) Oi by using the ice-gouging input parameters 𝜒 =

(𝜒1, 𝜒2, 𝜒3, … , 𝜒𝑘).  

In artificial neural network terminology, a neuron defines a mathematical function that simulates 

the functionality of the biological neuron. The neuron typically calculates the summation of the 

weighted average of the input parameters and then this sum is multiplied by a nonlinear function 

entitled the activation function. 

This means that a binary connection between different neurons adopting quadratic polynomials 

results in the development of the GMDH neural network. Therefore, the Oi is expressed for n 

observed values in each dataset comprising m ice-gouging input parameters and the subgouge sand 

deformations as output as follows: 

𝑂𝑖 = 𝑓(𝜒𝑖1,𝜒𝑖2,𝜒𝑖3, … , 𝜒𝑖𝑛,)                                                   𝑖 = (1,2,3, … ,𝑚) (4-1) 

During the simulation process, the GMDH algorithm measures the mean square error (MSE) 

criterion as the average squared difference between the simulated subgouge sand deformations and 

the observed subgouge sand deformations in every single iteration. It is worth noting that the 

subgouge soil deformation was dimensionless and the MSE criterion was dimensionless as well. 

The target function (difference between the observed subgouge deformations and the simulated 

ones) is minimized by calculating the MSE between the experimental value of the horizontal or 

vertical subgouge deformations (𝑜𝑖) and the estimated values are as follows: 

𝑀𝑆𝐸 = ∑ (𝑂𝑖(𝜒𝑖1,𝜒𝑖2,𝜒𝑖3, … , 𝜒𝑖𝑛,) − 𝑜𝑖)
𝑚
𝑖=1

2
→ 𝑚𝑖𝑛           𝑖 = (1,2,3, … ,𝑚) (4-2) 

Furthermore, the Corrected Akaike Information Criterion (AICc) (Akaike 1973) is employed for 

the correction of the target function to express the simplest model: 

𝐴𝐼𝐶𝑐 = 𝑛 × 𝑙𝑜𝑔 [∑ (𝑂𝑖(𝜒𝑖1,𝜒𝑖2,𝜒𝑖3, … , 𝜒𝑖𝑛,) − 𝑜𝑖)
𝑚

𝑖=1
]
2

+ 2𝜁 +
2𝜁(2𝜁 + 1)

𝑛 − 𝜁 − 1
 

(4-3) 
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where the 𝜁 is the number of optimized parameters during the training procedure. The Akaike 

information criterion (AIC) is an estimator of prediction error and thereby relative quality of 

statistical models for a given set of data that can estimate the quality of each model, relative to 

each of the other models. Additionally, the Volterra functional series (Volterra 1887) as a 

polynomial function is utilized to link between the input ice-gouging parameters and the subgouge 

sand deformations (output) parameter as follows: 

𝑂 = Γ0 + ∑ Γ𝑖𝜒𝑖

𝑛

𝑖=1
+ ∑ ∑ Γ𝑖𝑗𝜒𝑖𝜒𝑗

𝑛

𝑗=1

𝑛

𝑖=1
+ ∑ ∑ ∑ Γ𝑖𝑗𝑘𝜒𝑖𝜒𝑗

𝑛

𝑘=1
𝜒𝑘 + ⋯

𝑛

𝑗=1

𝑛

𝑖=1
 

(4-4) 

The Kolmogorov-Gabor polynomial as a quadratic and bivariate form of the Volterra functional 

series is applied in the below equation (Ivakhnenko 1971, Ivakhnenko 1976; Ivakhnenko and 

Ivakhnenko 1995): 

𝑂 = 𝐺(𝜒𝑖, 𝜒𝑗) = Γ0 + Γ1𝜒𝑖 + Γ2𝜒𝑗 + Γ3𝜒𝑖
2 + Γ4𝜒𝑗

2 + Γ5𝜒𝑖𝜒𝑗 (4-5) 

where, Γ𝑖 are unknown coefficients stemming from regression approaches to minimize the 

difference between the observed subgouge deformations (𝑜𝑖) and the simulated values for each 

input parameters pair 𝜒𝑖 and  𝜒𝑗 (Farlow 1984). All the unknown coefficients are calculated 

through the least square (LS) method by solving the following matrix: 

ΔΓ = 𝑂 (4-6) 

where, the Γ is the unknown coefficient vector of the Kolmogorov-Gabor polynomial, and the o is 

considered as the vector of observed values, so the Δ matrix is expressed in the form of Eq. (4-9): 

Γ = (Γ0, Γ1, Γ2, Γ3, Γ4, Γ5) (4-7) 

𝑜 = {𝑜0, 𝑜1, … , 𝑜𝑚}𝑇 (4-8) 
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Δ =

[
 
 
 
 

1   𝜒1𝑝   

1  𝜒2𝑝   

   𝜒1𝑞 𝜒1𝑝
2    

𝜒2𝑞 𝜒2𝑝
2

𝜒1𝑞
2 𝜒1𝑝𝜒1𝑞

𝜒2𝑞
2 𝜒2𝑝𝜒2𝑞

𝑚   𝑚     
1 𝜒𝑚𝑝

    𝑚   𝑚
𝜒𝑚𝑞 𝜒𝑚𝑝

2    
𝑚        𝑚

𝜒𝑚𝑞
2 𝜒𝑚𝑝𝜒𝑚𝑞]

 
 
 
 

 

(4-9) 

where the superscript T donates the transpose of the matrix. The vector of unknown coefficients is 

estimated through the least-square (LS) technique deriving from the multiple regression analysis 

and can be expressed as follows (Najafzadeh and Saberi-Movahed 2019): 

Γ = (Δ𝑇Δ)−1Δ𝑇𝑜 (4-10) 

The described procedure is iterated for each specific neuron of the next hidden layer regarding the 

linkage topology of the GMDH network (Najafzadeh and Saberi-Movahed 2019). Figure 4-2 

shows the flowchart of the current study. 

 

Figure 4-2. Flowchart of this study 
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of the data for testing, 60% for training against 40% for testing, 70% for training against 30% for 

testing, and 80% for training against 20% for testing the GMDH models were used in the current 

study. However, the ratio consists of 60% to train the models, and 40% to test them was utilized 

since the GMDH models had a better performance during the simulation process. Subsequently, 

the input and output parameters were respectively determined. After that, the GMDH model 

optimized the coefficients during the training procedure, and then the AICc was controlled and 

yielded the best outcome in the end. 

 

4.1.2.2. Artificial neural networks (ANN) 

Artificial neural networks (ANNs) are inspired by biological neuron networks in which a problem 

is solved similar to the way the human brain works. Due to the flexibility of the ANN models to 

predict complex problems, ANNs have been extensively applied to predict different high-

dimensional and complicated parameters (Shahin et al. 2001). It is noteworthy that a detailed 

description of ANNs is beyond the scope of the current study. Generally, each NN model has some 

layers, including an input layer, at least a hidden layer, and an output layer. Input parameters are 

connected to the network through the input layer. Thus, the number of neurons in the input layer 

is equal to the number of input variables of the problem. Besides, the number of neurons in the 

output layer equals the number of output parameters (subgouge sand deformation parameter). 

Although there is no regulation to determine the number of neurons in the hidden layer, the number 

of hidden layer neurons is a function of the problem’s complexity (Ebtehaj et al. 2016). In the 

current study, the number of neurons in the input layer equals the ice-gouging input parameters, 

while one neuron in the output layer was considered as the target parameter (subgouge sand 

deformations). Additionally, a trial and error procedure was used to select the number of neurons 
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in the hidden layers (Ebtehaj et al. 2016). This means that the number of neurons in the hidden 

layer was initially assumed equal to one, and the precision of the ANN model was evaluated by 

increasing this value to 10. The most optimal number of hidden layer neurons was selected to be 

five because the accuracy of the ANN model was insignificantly changed. In the NN-based models, 

the number of neurons in the antecedent layer is collected using the summation of weighted 

neurons in the hidden layer and then transferred to the next layer through a function entitled the 

“activation function” (Ebtehaj et al. 2016). In the current study, three activation functions 

including the “linear,” “sigmoid,” and “hyperbolic tangent” functions were used in the ANN model 

as follows: 

𝑙𝑖𝑛𝑒𝑎𝑟(𝑥) = 𝑥 (4-11) 

σ(𝑥) =
1

1 + 𝑒−𝑥
 

(4-12) 

tan(𝑥) =
2

1 + 𝑒−2𝑥
− 1 

(4-13) 

The sigmoid function was selected in the ANN algorithm since this activation function was well 

simulated the subgouge sand deformations compared with its counterparts. Additionally, the 

values of weighted outputs were summed through the multilayer perceptron throughout a 

procedure entitled “model training”. This means that the Levenberg-Marquardt (LM) algorithm 

was applied for training the multilayer perceptron neural network, where the biases and weights 

were adjusted using the back-propagation algorithm. The number of epochs was set to 2000 when 

the ANN model converges eventually, where the convergence was reached at epoch number 830. 

 

4.1.2.3. Subgouge deformations 



160 
 

The maximum subgouge soil deformation in the sand is a function of the scour depth (Ds), the 

internal friction angle of sand (𝜑), the width of gouge (W), the attack angle (), the angle of the 

surcharged soil slope (ω), the height of the frontal berm (h’) (the frontal berm is the passive soil 

heave formed in front of the moving ice keel and above the sea ground, see Figure 4-3), the 

resultant horizontal load (Lh) and resultant vertical load (Lv), the velocity of ice keel (V), and the 

specific weight of sand (𝛾𝑠) as follows (Azimi and Shiri 2020a): 

𝑑𝑚𝑎𝑥 = 𝑓1(𝐷𝑠, 𝜑,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠) (4-14) 

where, the Lh and Lv represent the resultant horizontal and vertical loads comprising drag force 

from wind, drag force from current, buoyancy force, keel weight, friction force on the bottom of 

the keel, Coulomb’s passive friction force acting in front and on both sides of the keel, and driving 

force from the surrounding floe that is all amongst the input parameters to the problem (Azimi and 

Shiri 2020a). The 𝑑 is considered the maximum subgouge deformation in the sand that is formed 

right under the moving ice keel in the gouge centerline. However, at greater depth on the subgouge 

centerline, by incorporating the soil depth (y/W), the subgouge sand deformation (d/W) is written 

as follows (Azimi and Shiri 2020a): 

𝑑

𝑊
= 𝑓2 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,𝜑,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(4-15) 

Similarly, the horizontal (dh/W) and vertical (dv/W) components of the subgouge soil 

deformations can be written as below: 

𝑑ℎ

𝑊
,
𝑑𝑣

𝑊
= 𝑓2 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,𝜑,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(4-16) 

Therefore, the introduced dimensionless groups in equation (4-16) were utilized as the input 

parameters for the GMDH model. Nondimensionalization determines systematically the 

characteristic units of a system to use, without relying heavily on prior knowledge of the system's 
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intrinsic properties. In other words, nondimensionalization can suggest the parameters, which 

should be used for analyzing a system. Therefore, using nondimensionalized parameters in this 

study benefitted broadening the applicability of the obtained results independent of physical 

equations governing the ice-seabed interaction. Figure 4-3 exhibits the applied input combinations 

in this study.  

 

Figure 4-3. Combinations of input parameters 

 

In other words, ten GMDH models were defined to predict the subgouge sand deformations both 

horizontally and vertically. GMDH 1, as the yardstick model, included all input variables, and to 

perform the sensitivity analysis of these variables, the inputs were disregarded one at a time in 

GMDH 2 to GMDH 10. These GMDH models show different performances in a wide range of 

precision, correlation, and complexity that makes challenges against using the fundamentals of 

soil mechanics to decide on the parameter that needs to be dropped. The elimination of the most 
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GMDH 1:   [1,2,3,4,5,6,7,8,9]

GMDH 2:   [1,2,3,4,5,6,7,8,9]

GMDH 3:   [1,2,3,4,5,6,7,8,9]

GMDH 4:   [1,2,3,4,5,6,7,8,9]

GMDH 5:   [1,2,3,4,5,6,7,8,9]

GMDH 6:   [1,2,3,4,5,6,7,8,9]

GMDH 7:   [1,2,3,4,5,6,7,8,9]

GMDH 8:   [1,2,3,4,5,6,7,8,9]

GMDH 9:   [1,2,3,4,5,6,7,8,9]

GMDH 10: [1,2,3,4,5,6,7,8,9]



162 
 

influential input parameters in the GMDH architecture resulted in poor performance of the 

simulation outcome. It is worth noting that implementation of such sensitivity analysis of input 

parameters in the field, experimental, and finite element studies is quite laborious, costly, and time-

consuming. 

 

4.1.2.4. Construction of the database 

In this study, different experimental datasets were utilized to simulate the horizontal (𝑑ℎ) and 

vertical (𝑑𝑣) subgouge sand deformations. This means that the key values of five experimental 

studies reported by Paulin (1992), C-CORE (1995), Hynes (1996), C-CORE (1996), and Yang 

(2009) were employed for training and testing the GMDH models. These testing programs were 

carried out by modeling the progressive seabed gouging by the ice keel in centrifuge facilities 

located at C-CORE. The experimental program consisted of towing a model ice keel across a 

model testbed at a set gouge depth under various centrifuge accelerations. The test setup consisted 

of a solid half-width ice keel model mounted on a gantry situated on top of the strong box with an 

observation window mounted on the side for visualization. Particle image velocimetry (PIV) was 

used to track the evolution of subgouge deformation in all tests. A large amount of data was 

acquired from these experimental programs covering most of the key parameters governing the 

ice-seabed interaction. The quality and sufficiency of these datasets and the statistical significance 

of the resultant correlations for developing the neural network-based models were checked by 

performing the t-test and calculation of the P-value. Table 4-1 exhibits the range of the employed 

dimensionless parameters, including the maximum, minimum, average, variance, and standard 

deviation of the experimental measurements. 
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Table 4-1. Range of applied experimental values 

Values y/W dh/W dv/W Ds/W φ α ω h’/W Lh/γs.W
3 Lv/γs.W

3 V2/g.W 

Max 0.838 1.356 0.068 0.333 44 30 39.1 1.163 2.235 2.859 0.015 

Min 0 0.002 0.004 0.065 18 15 - - - - - 

Ave 0.220 0.300 0.019 0.125 34.745 20.556 4.633 0.168 0.586 0.756 0.004 

Var. 0.071 0.186 0.0002 0.004 28.875 52.469 126.806 0.053 0.378 0.651 3.6E-05 

Std. 0.267 0.431 0.015 0.064 5.374 7.244 11.261 0.230 0.615 0.807 0.006 

 

The range of dimensionless horizontal subgouge deformations (dh/w) for the Paulin’s (1992) 

dataset comprising P-1 to P-4 tests was from 0.002 to 1.356 and these deformations were measured 

at the dimensionless soil depth up to 0.837. The keel attack angle and the internal friction angle of 

sand in the P-1 to P-4 tests were reported as 15o and 35o, respectively. The value of the surcharged 

soil slope angle (ω) in the P-1 to P-4 tests was 39.1o, 30.5o, 29.2o, and 26.3o, respectively. The 

gouge depth ratio (Ds/W) in P-1 to P-4 were respectively obtained at 0.059, 0.091, 0.088, and 

0.093. 

The C-1 to C-9 tests were reported in C-CORE’s (1996) and C-CORE’s (1995) datasets. The value 

of attack angle in C-1, C-4, C-7, C-8, and C-9 was 15o but this parameter in the C-2, C-5, and C-6 

tests was measured as 30o. In the C-1 and C-4 tests, the value of the internal friction angle of sand 

was 29.022o and 34.542o, whilst this parameter for C-2 and C-4 was similar, with the 𝜑 of 28.912o. 

The internal friction angle of sand seabed in C-5 to C-9 were respectively reported at 41.056o, 

33.880o, 41.332o, and 37.882o. The surcharged soil slope angle was not reported in the C-1 to C-9 

tests.  
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Moreover, the H-1 to H-4 tests have measured by Hynes (1996) in which the value of internal 

friction angle was respectively measured at 38.2o, 36.6o, 37o, and 39.3o. The attack angle in the H-

2 test was 30o, whereas this parameter in H-1, H-3, and H-4 was observed to be 15o. The angle of 

a surcharged soil slope in the H-1 to H-4 tests was not reported and the frontal berm ratio (h’/W) 

in these tests were at 0.233, 0.207, 0.207, and 0.240, respectively. The value of the ice velocity 

ratio (V2/g.W) in the H-1 to H-4 tests was constant at 0.015. 

The value of dimensionless horizontal subgouge deformations in Yang’s model (Y-1 to Y-2 tests) 

varied from zero to 0.026 and the two models with a keel attack angle of 15o and 30o were applied. 

Yang (2009) utilized a sandy seabed with the internal friction angles of sand, ranging from 29o to 

44o, respectively. 

The applied data for training and testing the GMDH model were randomly selected, meaning that 

some parts of every single experimental dataset were utilized to test the GMDH model, whereas 

the remaining were employed as testing datasets. Moreover, the statistical significance of 

correlations was checked by conducting a t-test and calculation of the P-value, assuming that a P-

value of 0.05 or less is statistically significant. This, indeed, was to assess the probability of the 

relationship between the parameters being affected by an alternative hypothesis (Azimi and Shiri 

2020a). The calculated P-value for the applied experimental studies was 0.039, showing that the 

correlation was statistically significant, so the performed t-test showed that the quality of these 

datasets was acceptable to develop the NN-based models. 

Thus, nine dimensionless parameters including y/W, Ds/W, φ, α, ω, h’/W, Lh/γs.W
3, Lv/γs.W

3, and 

V2/g.W were calculated to feed the NN-based models. It is noteworthy that 60% of the observed 

values were applied for training the GMDH models, whereas 40% was for testing these models. 
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4.1.2.5. Goodness of fit 

To evaluate the correlation of the GMDH models, the correlation coefficient (R), the variance 

accounted for (VAF), and the Nash-Sutcliff efficiency coefficient (NSC) were utilized, whereas the 

root mean square error (RMSE), the mean absolute error (MAE), and the scatter index (SI) were 

employed to assess the precision of the NN-based models. In addition, the complexity of these 

models was examined using the Akaike Information Criterion (AIC). The AIC index is a tool for 

model selection. The best GMDH model should have the lowest complexity and the lowest value 

of the AIC criterion (Stoica and Selen 2004, Ebtehaj et al. 2014). Presenting an NN-based model 

with the highest degree of correlation and accuracy along with the lowest level of complexity is 

the aim of the current study. 

The closeness of the R and the NSC to one indicated that the NN-based model had the highest 

correlation, whereas the closeness of the RMSE, MAE, and SI to zero signified that the particular 

model had the lowest error. It should be stated that the premium GMDH model had the highest 

value of the VAF index. Regarding the introduced indices, the premium GMDH model had the 

lowest AIC index and error (RMSE, SI, MAE), while this model had the highest level of correlation 

with the observed values (R and NSC). 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(4-17) 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑃𝑖 − 𝑂𝑖)

𝑣𝑎𝑟(𝑃𝑖)
) × 100 

(4-18) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(4-19) 

𝑀𝐴𝐸 =
∑ |𝑃𝑖 − 𝑂𝑖|

𝑛
𝑖=1

𝑛
 

(4-20) 
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𝑁𝑆𝐶 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1
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(4-22) 

𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(4-23) 

where, Oi, Pi, �̅�, �̅�, n and k are the observed values, the simulated values, the average observed 

values, the average simulated values, the number of experimental values, and the number of 

estimated factors included in the numerical model respectively. 

 

4.1.3. Results of sensitivity analysis (SA) 

Sensitivity analysis helps to determine how the uncertainty in the output of a mathematical model 

or system (numerical or otherwise) can be divided and allocated to different sources of uncertainty 

in its inputs. A related practice is uncertainty analysis, which has a greater emphasis on the 

quantification and propagation of uncertainty. The uncertainty and sensitivity analysis should be 

run in tandem. Here, first, a sensitivity analysis (SA) and an uncertainty analysis (UA) for the 

GMDH models were conducted to simulate the horizontal and vertical deformations. Then, results 

from the GMDH models were compared to the ANN and the empirical approaches. Lastly, the 

premium GMDH models and the most influential input parameters were introduced. 

To perform the sensitivity analysis, equations (4-17) to (4-23) were applied, whereas the 

uncertainty analysis was implemented using equations (4-24) to (4-26). In other words, the 

precision (RMSE, MAE, and SI indices), correlation (R, VAF, and NSC indices), and complexity 
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(AIC) of the NN-based models were evaluated in the sensitivity analysis section, whilst the 

performance and uncertainty of these models were examined in the uncertainty analysis section. 

 

4.1.3.1. Horizontal soil deformations 

For the horizontal subgouge sand deformations, a sensitivity analysis for GMDH 1 to GMDH 10 

models was implemented. Regarding the aforementioned sections, ten GMDH models were 

developed adopting nine dimensionless input parameters including y/W, Ds/W, φ, α, ω, h’/W, 

Lh/γs.W
3, Lv/γs.W

3, and V2/g.W. To assess the influence of these input parameters, the effect of each 

dimensionless factor was eliminated in each step, and then GMDH 2 to GMDH 10 were 

respectively defined. Table 4-2 shows the calculated statistical indices for the simulated horizontal 

deformations through all GMDH models in training, testing, and combined modes based on their 

ratios, i.e., 60% to 40% respectively. 

 

Table 4-2. Results of calculated statistical indices for modeling horizontal deformations by 

GMDH 1 to GMDH 10 models 

Indices  Correlation Precision Complexity 

Mode Model R VAF NSC RMSE SI MAE AIC 

 

 

 

 

 

 

GMDH 1 0.988 97.541 0.976 0.035 0.400 0.025 -120.769 

GMDH 2 0.900 97.958 0.980 0.032 0.365 0.021 -124.359 

GMDH 3 0.986 97.179 0.973 0.037 0.428 0.025 -118.125 

GMDH 4 0.985 96.873 0.970 0.039 0.449 0.025 -116.189 

GMDH 5 0.988 97.621 0.977 0.034 0.393 0.024 -121.451 

GMDH 6 0.986 97.047 0.971 0.038 0.437 0.024 -117.287 
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Training GMDH 7 0.989 97.741 0.978 0.033 0.383 0.023 -122.483 

GMDH 8 0.988 97.612 0.976 0.034 0.394 0.022 -121.329 

GMDH 9 0.983 96.545 0.967 0.041 0.471 0.027 -114.296 

GMDH 

10 

0.523 -

208.403 

0.270 0.192 2.205 0.092 -53.297 

 

 

 

 

 

Testing 

GMDH 1 0.955 89.353 0.832 0.065 1.085 0.038 -58.032 

GMDH 2 0.933 44.538 0.778 0.074 1.252 0.034 -54.630 

GMDH 3 0.841 27.883 0.678 0.089 1.507 0.041 -49.877 

GMDH 4 0.821 67.164 0.566 0.104 1.750 0.042 -46.044 

GMDH 5 0.954 89.280 0.910 0.047 0.799 0.026 -66.152 

GMDH 6 0.854 70.802 0.406 0.121 2.047 0.047 -42.030 

GMDH 7 0.951 88.638 0.904 0.049 0.823 0.026 -65.378 

GMDH 8 0.927 68.572 0.826 0.066 1.109 0.032 -57.732 

GMDH 9 0.943 87.494 0.888 0.053 0.888 0.027 -63.435 

GMDH 

10 

0.461 -79.626 0.125 0.147 2.485 0.078 -37.070 

 

 

 

 

Combined 

training 

and 

GMDH 1 0.975 94.266 0.918 0.047 0.674 0.030 -95.674 

GMDH 2 0.913 76.590 0.899 0.049 0.720 0.026 -96.467 

GMDH 3 0.928 69.461 0.855 0.058 0.860 0.031 -90.826 

GMDH 4 0.919 84.989 0.808 0.065 0.969 0.032 -88.131 

GMDH 5 0.974 94.285 0.950 0.039 0.555 0.025 -99.331 

GMDH 6 0.933 86.549 0.745 0.071 1.081 0.033 -87.184 

GMDH 7 0.974 94.100 0.948 0.039 0.559 0.024 -99.641 
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testing 

ratios 

GMDH 8 0.964 85.996 0.916 0.047 0.680 0.026 -95.890 

GMDH 9 0.967 92.925 0.935 0.046 0.638 0.027 -93.952 

GMDH 

10 

0.498 -

156.892 

0.212 0.174 2.317 0.086 -46.806 

 

Regarding the simulation results, the NSC for GMDH 1 in the training mode was obtained to be 

0.976. GMDH 1 predicts the horizontal subgouge deformations (dh/W) in terms of all input 

variables. In GMDH 2, the impact of the dimensionless velocity ratio (ice dynamics parameter or 

V2/g.W) was omitted for this model. In the testing mode of GMDH 2, the R was equal to 0.933.  

For GMDH 3, the influence of dimensionless vertical load (Lv/γs.W
3) was removed and the MAE 

index for the testing stage of this model was at 0.0407. The RMSE criterion in the testing mode of 

GMDH 4 equaled 0.104. For GMDH 4, the effect of the dimensionless horizontal load (Lh/γs.W
3) 

was disregarded. The influence of the h’/W parameter for GMDH 5 was ignored during the 

simulation process and the value of the MAE index in the testing stage of this model was equal to 

0.026. During the testing procedure of GMDH 6, the AIC index was obtained as -42.030. To 

simulate the subgouge sand deformations using the GMDH 6 model, the effect of the ω parameter 

was removed. 

For GMDH 7, the effect of the ice keel attack angle (α) was dropped to model the horizontal 

deformations. In the testing stage of GMDH 7, the value NSC was computed as 0.904. 

The value of the AIC criterion equaled -54.732 during the testing of the GMDH 8 model. To model 

the horizontal subgouge deformations using GMDH 8, the influence of the internal friction angle 

of sand (φ) as the shear strength parameter of the seabed soil was removed. In the GMDH 9 model, 
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the impact of the gouge depth ratio (Ds/W) was ignored, with the MAE of 0.027 in the testing 

mode. 

Additionally, the AIC in the training stage of GMDH 10 was estimated at -53.297. The influence 

of the dimensionless soil depth parameter (y/W), to simulate the horizontal deformations (dh/W) 

adopting GMDH 10, was eliminated. 

Regarding the simulation results of combined modes, overall, GMDH 1 had the lowest level of 

error and the highest level of correlation with experimental measurements. Thus, GMDH 1 was 

identified as the best model in terms of accuracy (RMSE, SI, and MAE), correlation (R, VAF, and 

NSC), and complexity (AIC) to predict the horizontal sand deformations in both training and testing 

modes. After GMDH 1, GMDH 5 was detected as the second-best model. Additionally, GMDH 

7, GMDH 9, and GMDH 2 were the third, fourth, and fifth premium models to estimate the 

horizontal deformations. Based on the sensitivity analysis, GMDH 8 as the sixth-best model, 

GMDH 6 as the seventh-best model, GMDH 3 as the eighth-best model, and GMDH 4 as the ninth-

best model were prioritized. Amongst all GMDH models, GMDH 10 had the highest level of error 

and the lowest level of correlation, so this model was considered the worst GMDH model to 

simulate horizontal deformations. The scatter plots of the GMDH 1 for the training and testing 

modes are depicted in Figure 4-4. 
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Figure 4-4. Scatter plots for simulated horizontal sand deformations by GMDH 1 in training and 

testing modes 

 

According to the performed analysis, the dimensionless soil depth (y/W) had the most significant 

impact to model the horizontal deformations since the accuracy of the simulation had dramatically 

decreased by removing the effect of the y/W. After the y/W parameter, Lh/γs.W
3, Lv/γs.W

3, and ω 

were respectively introduced as the second, the third, and the fourth influential input variables. 

Among all input parameters, the internal friction angle of sand (φ) had a fifth place in terms of 

effectiveness. Moreover, the dimensionless velocity parameter (V2/g.W), the gouge depth ratio 

(Ds/W), and the attack angle (α) were respectively recognized as the sixth, seventh, and eighth-

important inputs. The h’/W variable had insignificant importance to simulate the horizontal 

deformations adopting the GMDH model. 

For GMDH 1, almost 87% of the simulated horizontal deformations in the training mode and 76% 

of these values in the testing mode had an error of less than one percent. Therefore, GMDH 1 was 
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known as the superior model to predict the horizontal subgouge deformations since this model had 

an acceptable precision and complexity compared to other GMDH models. Besides, GMDH 1 was 

a function of all input variables. Regarding the conducted analyses, the dimensionless soil depth 

(y/W) was the most significant input parameter. 

 

4.1.3.2. Vertical soil deformations 

Table 4-3 displays computed statistical indices for simulation of the vertical deformations by 

GMDH 1 to GMDH 10 in training, testing, and combined modes with respective ratios, i.e., 60% 

to 40%. 

 

Table 4-3. Results of calculated statistical indices for modeling vertical deformations by GMDH 

1 to GMDH 10 models 

Indexes  Correlation Precision Complexity 

Mode Model R VAF NSC RMSE SI MAE AIC 

 

 

 

 

 

 

Training 

GMDH 1 0.985 97.308 0.974 0.008 0.374 0.006 -83.269 

GMDH 2 0.196 -2133.5 0.044 0.038 1.873 0.023 -51.806 

GMDH 3 0.982 96.394 0.965 0.009 0.452 0.007 -79.579 

GMDH 4 0.980 95.887 0.960 0.009 0.454 0.007 -79.491 

GMDH 5 0.978 95.608 0.955 0.010 0.480 0.007 -78.399 

GMDH 6 0.985 96.849 0.969 0.008 0.407 0.006 -81.642 

GMDH 7 0.963 92.270 0.926 0.011 0.527 0.008 -76.584 

GMDH 8 0.968 93.348 0.937 0.010 0.509 0.009 -77.268 

GMDH 9 0.979 95.695 0.958 0.010 0.490 0.008 -77.975 
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GMDH 10 0.319 -1114.45 0.099 0.038 1.847 0.021 -52.074 

 

 

 

 

 

Testing 

GMDH 1 0.849 57.960 0.709 0.007 0.568 0.005 -52.148 

GMDH 2 0.161 -172.808 -0.156 0.014 1.124 0.010 -43.265 

GMDH 3 0.707 30.578 0.460 0.009 0.733 0.006 -48.826 

GMDH 4 0.785 46.818 0.604 0.008 0.664 0.006 -50.120 

GMDH 5 0.768 25.094 0.583 0.009 0.705 0.006 -49.337 

GMDH 6 0.793 43.530 0.630 0.008 0.619 0.006 -51.024 

GMDH 7 0.810 47.544 0.639 0.005 0.357 0.003 -58.204 

GMDH 8 0.734 44.106 0.491 0.006 0.499 0.005 -53.849 

GMDH 9 0.707 -101.232 0.464 0.010 0.794 0.005 -47.795 

GMDH 10 -0.144 -167.531 -1.275 0.020 1.527 0.015 -39.271 

 

 

 

 

 

Based on 

the 

training 

and 

testing 

ratio 

GMDH 1 0.931 81.567 0.868 0.008 0.452 0.006 -70.821 

GMDH 2 0.182 -1349.223 -0.036 0.0284 1.573 0.018 -48.390 

GMDH 3 0.872 70.067 0.763 0.009 0.564 0.007 -67.278 

GMDH 4 0.902 76.259 0.818 0.009 0.538 0.007 -67.743 

GMDH 5 0.894 67.402 0.806 0.010 0.570 0.007 -66.774 

GMDH 6 0.908 75.521 0.833 0.008 0.492 0.006 -69.395 

GMDH 7 0.902 74.380 0.811 0.009 0.459 0.006 -69.232 

GMDH 8 0.874 73.651 0.759 0.008 0.505 0.007 -67.900 

GMDH 9 0.870 16.924 0.760 0.010 0.612 0.007 -65.903 

GMDH 10 0.134 -735.682 -0.451 0.031 1.719 0.019 -46.953 
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According to the implemented sensitivity analysis, in terms of accuracy, correlation, and 

complexity, GMDH 1 was the best model to simulate the vertical sand deformations, with an R 

index of 0.986 in the training mode. After GMDH 1, GMDH 7 was detected as the second-best 

model to simulate the vertical subgouge deformations (dv/W), whereas GMDH 4, GMDH 6, and 

GMDH 5 were respectively introduced as the third, fourth, and fifth-best models. Additionally, 

GMDH 8 as the sixth-best model, GMDH 9 as the seventh-best model, and GMDH 3 as the eighth-

best model were ranked. In addition, GMDH 2 was graded as the ninth-best GMDH model, and 

among all GMDH models and GMDH 10 was considered the worst model to simulate vertical 

deformations. In Figure 4-5, the scatter plots of GMDH 1 in both the training and testing procedure 

are illustrated. 

 

Figure 4-5. Scatter plots for simulated vertical sand deformations by GMDH 1 in training and 

testing modes 
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On the other hand, the ratio of the soil depth to the gouge width (y/W) was identified as the most 

effective input parameter to estimate the vertical deformations (dv/W) through the GMDH models. 

Furthermore, the dimensionless velocity parameter (V2/g.W), the dimensionless vertical load 

parameter (Lv/γs.W
3), and the gouge depth ratio (Ds/W) were prioritized as the second, third, and 

fourth most important input variables. Furthermore, the internal friction angle of sand (φ) was 

detected as the fifth significant input factor to model the vertical deformations. The h’/W as the 

sixth important factor, the ω as the seventh most important parameter, and the dimensionless 

horizontal load parameter (Lh/γs.W
3) as the eighth-most influencing variable was detected. Among 

all input factors, the attack angle has the lowest level of effectiveness in the estimation the vertical 

deformations.  

Results of the error analysis in the training and testing procedures of GMDH 1 were quite similar, 

denoting that approximately 13% of the simulated vertical deformations had an error between one 

percent and five percent. Moreover, almost one-third of the estimated vertical deformations 

adopting GMDH 2 had an error from one percent to five percent, whilst one-fifth of the simulated 

vertical deformations by GMDH 3 had an error from one to five percent. Regarding the conducted 

analyses and the results in combined modes, overall, GMDH 1, was known as the best model to 

predict vertical deformations. Additionally, the dimensionless soil depth parameter (y/W) was 

regarded as the most influential input factor to model the vertical subgouge deformations. 

It is worth mentioning that the best model does not necessarily mean containing all of the model 

parameters. Identifying the best GMDH model needs a set of criteria comprising the correlation, 

precision, and complexity indices in both the training and testing modes. The best model (i.e., 

GMDH 1) has the highest level of correlation (the closeness of the R and the NSC to one) and 

accuracy (closeness of the RMSE, MAE, and SI to zero) along with the lowest level of complexity 



176 
 

(the lowest value of AIC) overall in both training and testing modes simultaneously. Therefore, 

the coincidence of being the best model and containing all model parameters in GMDH1 is an 

accident in this study, whilst inverse cases have been observed in earlier studies (e.g., Azimi and 

Shiri 2021). 

 

4.1.4. Results of Uncertainty analysis (UA) 

4.1.4.1. Horizontal soil deformations 

Uncertainty analysis (UA) was implemented to assess the performance of the GMDH models and 

describe the error predicted by each model (Azimi and Shiri 2020a). It means that the estimated 

error by the GMDH model (𝑒𝑗) was calculated as the difference between the simulated (𝑃𝑗) and 

the observed (𝑂𝑗) subgouge sand deformations are as follows: 

𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (4-24) 

Subsequently, the mean value of the estimated error (�̅�) and the standard deviation (𝑆𝑒) were 

computed as below: 

�̅� = ∑ 𝑒𝑗
𝑛

𝑗=1
 

(4-25) 

𝑆𝑒 = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(4-26) 

The negative sign of the mean value of the estimated error (�̅�) denoted an underestimated 

performance of the GMDH model, meaning that the predicted deformations were less than the 

observed values. However, the positive sign showed an overestimated performance of the 

numerical model, signifying that the simulated deformations were more significant than the 

observed values. Furthermore, by employing the �̅� and 𝑆𝑒, a confidence bound was created around 
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an estimated error using the “Wilson score approach” without the continuity correction. The 

Wilson score interval, which was developed by Wilson (1927), was an improvement over the 

normal distribution interval in which an asymmetric normal distribution was utilized to improve 

the confidence interval bound (Wallis 2013). This method was used to perform the uncertainty 

analysis of the GMDH models. Subsequently, a ±1.96Se resulted in roughly the “95% confidence 

bound or 95% confidence interval (95%CB)” and then the “width of uncertainty bound (WUB)” 

was calculated. In Figure 4-6, a comparison between the experimental and the numerical horizontal 

deformations is shown. 
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Figure 4-6. Comparison between experimental horizontal deformations and GMDH results 
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Regarding the conducted UA, GMDH 1, GMDH 4, GMDH 5, GMDH 6, GMDH 7, GMDH 9, and 

GMDH 10 underestimated the subgouge deformations, whereas GMDH 2, GMDH 3, and GMDH 

8 had an overestimated performance. Additionally, the width of uncertainty bound (WUB) for 

GMDH 1, GMDH 2, and GMDH 8 was equal to ±0.008, while the WUB for GMDH 5 and GMDH 

7 was to be ±0.006. However, the widest uncertainty bound belonged to GMDH 10, with ±0.028. 

Moreover, Table 4-4 displays the results of the performed UA to simulate the horizontal 

deformations using the GMDH models. 

 

Table 4-4. Results of uncertainty analysis for modeling horizontal deformations by GMDH 

models 

Model �̅� 𝑆𝑒 WUB 95% CI 

GMDH 1 -0.006 0.049 ±0.008 -0.014 to 0.002 

GMDH 2 0.002 0.053 ±0.008 -0.006 to 0.011 

GMDH 3 0.0002 0.064 ±0.010  -0.010 to 0.010 

GMDH 4 -0.005 0.072 ±0.012 -0.017 to 0.006 

GMDH 5 -0.001 0.04 ±0.006 -0.007 to 0.006 

GMDH 6 -0.008 0.082 ±0.013 -0.021 to 0.005 

GMDH 7 -0.002 0.04 ±0.006 -0.008 to 0.005 

GMDH 8 0.001 0.049 ±0.008 -0.007 to 0.008 

GMDH 9 -0.001 0.046 ±0.007 -0.009 to 0.006 

GMDH 10 -0.017 0.175 ±0.028 -0.045 to 0.011 
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According to the implemented UA, the 95%CB for GMDH 1, GMDH 2, and GMDH 3 were 

respectively estimated to be (-0.014 to 0.002), (-0.006 to 0.011), and (-0.010 to 0.010). However, 

for GMDH 4, GMDH 5, and GMDH 6, the 95%CB equaled (-0.017 to 0.006), (-0.007 to 0.006), 

and (-0.021 to 0.005), respectively. It is noteworthy that the lower and upper bound of 95%CB for 

GMDH 10 were -0.045 and 0.011, respectively.  

 

4.1.4.2. Vertical soil deformations 

The comparison between the experimental and numerical vertical deformations is portrayed in 

Figure 4-7. Based on the performed UA, except for GMDH 7, which had an overestimated 

performance, other GMDH models underestimated the vertical sand deformations. The WUB for 

GMDH 1, GMDH 3, GMDH 4, and GMDH 6 was similar, with ±0.002. In addition, for GMDH 2 

and GMDH 10, the WUB equaled ±0.009. Moreover, the uncertainty bound of GMDH 5, GMDH 

7, GMDH 8, and GMDH 9 had the same width, with ±0.003. It should be stated that the 95%CB 

for GMDH 1, GMDH 2, and GMDH 4 were respectively calculated at (-0.002 to 0.001), (-0.012 

to 0.006), and (-0.003 to 0.001). The results of the UA to simulate vertical deformations by using 

the GMDH models are shown in Table 4-5. 
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Figure 4-7. Comparison between experimental vertical deformations and GMDH results 
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Table 4-5. Results of uncertainty analysis for modeling vertical deformations by GMDH model 

Model �̅� 𝑆𝑒. WUB 95% CI 

GMDH 1 -0.0005 0.008 ±0.002 -0.002 to 0.001 

GMDH 2 -0.003 0.038 ±0.009 -0.012 to 0.006 

GMDH 3 -0.0009 0.011 ±0.002 -0.003 to 0.002 

GMDH 4 -0.001 0.01 ±0.002 -0.003 to 0.001 

GMDH 5 -0.0004 0.011 ±0.003 -0.003 to 0.002 

GMDH 6 -0.0007 0.01 ±0.002 -0.003 to 0.002 

GMDH 7 0.0004 0.011 ±0.003 -0.002 to 0.003 

GMDH 8 -0.0004 0.012 ±0.003 -0.003 to 0.002 

GMDH 9 -0.0002 0.012 ±0.003 -0.003 to 0.002 

GMDH 10 -0.003 0.038 ±0.009 -0.012 to 0.005 

 

Therefore, GMDH 1 had an underestimated performance, with the WUB equaled to ±0.008 and 

±0.002 to predict the horizontal and vertical sand deformations, respectively. In contrast, GMDH 

10 had the wideset uncertainty bound, with an underestimated performance for modeling the 

deformations. It is worth mentioning that the best model does not necessarily mean containing all 

of the model parameters. Identifying the best GMDH model needs a set of criteria comprising the 

correlation, precision, and complexity indices both in the training and testing modes. The best 

model (i.e., GMDH 1) has the highest level of correlation (the closeness of the R and the NSC to 

one) and accuracy (closeness of the RMSE, MAE, and SI to zero) along with the lowest level of 

complexity (the lowest value of AIC) overall in both training and testing modes simultaneously. 

Therefore, the coincidence of being the best model and containing all model parameters in 
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GMDH1 is an accident in this study, whilst inverse cases have been observed in other published 

studies (e.g., Azimi and Shiri 2021). Also, Table 4-4 and Table 4-5 show whether the GMDH 

models have underestimated or overestimated the output parameters. 

 

4.1.5. Comparison of GMDH predictions with empirical and ANN models 

A comparison between the results of the best GMDH model (GMDH 1) with the ANN and the 

empirical (Woodworth-Lynes et al. 1998) approaches was made. It is noteworthy that Woodworth-

Lynes et al. (1998) presented two empirical formulas to estimate the horizontal (𝑑ℎ) and vertical 

(𝑑𝑣) subgouge soil deformations as follow: 

𝑑ℎ = 0.6(𝑊.𝐷𝑠). 𝑒𝑥𝑝 (−
2

3
.
𝑦

𝐷𝑠
) 

(4-27) 

𝑑𝑣 = 𝐷𝑠. 𝑒𝑥𝑝 (−
1

3
.
𝑦

𝐷𝑠
) 

(4-28) 

where, 𝑑ℎ, 𝑊, 𝐷𝑠, 𝑑𝑣, and y are the horizontal subgouge deformation, the width of the gouge, the 

depth of the gouge, the vertical subgouge deformation, and the soil depth, respectively. The 

comparison between the best GMDH models to the empirical and the ANN approaches are 

arranged in Table 4-6. To compare the results of the NN-based models with equations (27) and 

(28), the horizontal and vertical subgouge deformations estimated by the empirical models become 

dimensionless. 

 

Table 4-6. Comparison between results from GMDH with ANN and empirical models 

Target Model Mode R VAF RMSE SI MAE NSC AIC 

 

 

GMDH 1 Training 0.988 97.541 0.035 0.400 0.025 0.976 -120.769 

Testing 0.955 89.353 0.065 1.085 0.038 0.832 -58.032 
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dh/W ANN Training 0.971 94.394 0.052 0.677 0.023 0.938 -112.125 

Testing 0.964 92.907 0.052 0.681 0.029 0.929 -72.394 

Empirical - 0.894 79.650 0.425 1.081 0.193 0.785 -58.533 

 

 

dv/W 

GMDH 1 Training 0.985 97.308 0.008 0.374 0.006 0.974 -83.269 

Testing 0.849 57.960 0.007 0.568 0.005 0.709 -52.148 

ANN Training 0.799 63.609 0.034 1.778 0.010 0.833 -65.629 

Testing 0.739 20.722 0.010 0.680 0.006 0.984 -57.655 

 Empirical - 0.047 -2670.28 4.304 6.928 1.242 -0.006 52.709 

 

The value of R to predict the horizontal deformations using the ANN in training mode was 

computed to be 0.971 and the value NSC to estimate the horizontal deformations using the 

empirical model was estimated as 0.785. The profiles of horizontal and vertical deformations 

obtained from the experimental measurements, the GMDH, the ANN, and the empirical models 

are depicted in Figure 4-8 and Figure 4-9. 
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Figure 4-8. Comparison of simulated horizontal deformations by GMDH with ANN and 

empirical models (a-d) Paulin (1992) (e-h) C-CORE (1996) (i-l) Hynes (1996) (m-q) C-CORE 

(1995) (r-s) Yang (2009) 
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Figure 4-9. Comparison of simulated vertical deformations by GMDH with ANN and empirical 

models (a-d) Paulin (1992) (e) C-CORE (1996) (f-g) Hynes (1996) (h-l) C-CORE (1995) 
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correlation between the GMDH model and the experimental measurements provided by Yang 

(2009) was quite low (Y-1 and Y-2 tests). The constructed dataset was enough heterogeneous, 

with a wide range of data and this NN-based model was able to have a broad generalization 

capability to simulate the complex and non-linear ice-gouging problem. The GMDH model could 

simulate the C-1 to C-4 tests with higher accuracy in comparison with the C-5 to C-9 tests. Even 

though the discrepancies between the upper and lower limits of the applied datasets were high, the 

GMDH model estimated the subgouge deformations with acceptable precision. 

Therefore, GMDH 1 had better performance in terms of accuracy, correlation, and complexity in 

the training mode, while the ANN model showed better performance in some criteria during the 

testing procedure. However, unlike the GMDH model, the ANN was not able to provide an explicit 

equation to estimate the subgouge deformations (dh/W and dv/W). In addition, during the simulation 

of the subgouge deformations, the computation time of the GMDH model was significantly less 

than the ANN model. It was observed in Figure 9, that there is a deviation between the GMDH 

and test results, where the reported test data exhibits an unexpected noise (probably due to 

equipment or human error). However, the GMDH has attempted to bypass the noise and prevented 

the overall trend of the horizontal subgouge deformation with a nonlinear behavior to get affected 

by the noise. 

Furthermore, the empirical models estimated the subgouge deformations just as a function of the 

gouge geometry and the soil depth. The other governing parameters, such as the shear strength 

parameters, the attack angle, the keel velocity, the height of the berm, and the load components 

had not been taken into account by the existing empirical formulas. The empirical model had the 

worst performance to model the vertical deformations, signifying that this model showed the 

lowest level of correlation, and precision with experimental values (R=0.047, VAF=-2670.28, 
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MAE=1.242). It seems that the empirical model was not able to appropriately estimate the vertical 

subgouge sand deformations in a wide range of experimental values since this model was derived 

just for specific laboratory measurements. Therefore, the GMDH model was preferable to the ANN 

technique, and the empirical formulas and the GMDH were introduced as the superior model to 

estimate the subgouge soil deformations in the current study. Figure 4-10 displays the evolved 

structure of GMDH 1 to simulate both horizontal and vertical deformations. 

 

 

Figure 4-10. Evolved structure of the best GMDH models to predict horizontal (dh/W) and 

vertical (dv/W) deformations 
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Unlike the previous empirical models, which were just a function of the soil depth and the gouge 

geometry, the presented models were a function of more dimensionless subgouge parameters 

comprising the soil depth ratio (y/W), the gouge depth ratio (Ds/W), the shear strength of seabed 

soil (φ), the attack angle (α), the angle of the surcharged soil slope (ω), the berm height ratio 

(h’/W), the horizontal and vertical loads (Lh/γs.W
3 and Lv/γs.W

3), and the ice dynamics (V2/g.W). 

Thus, these models may pave the way for future research seeking physical governing equations. 

 

4.1.6. Conclusion 

In this study, the horizontal and vertical deformations caused by the ice-gouging in sandy seabed 

were simulated by the group method of data handling (GMDH) method for the first time. Firstly, 

the parameters governing the subgouge deformations were identified. Then, 60% of constructed 

datasets were used for training the GMDH models, and 40% of the experimental measurements 

were employed for testing these models. By conducting a sensitivity analysis (SA) and an 

uncertainty analysis (UA), the premium GMDH models, and the most influencing input parameters 

were introduced. Moreover, the results of the GMDH simulation were compared with the ANN 

and empirical models. The most important results obtained from the current study are summarized 

as follows: 

 GMDH 1 (as a function of all input parameters including y/W, Ds/W, φ, α, ω, h’/W, 

Lh/γs.W
3, Lv/γs.W

3, and V2/g.W) was detected as the best GMDH model to simulate the 

horizontal and vertical subgouge deformations. 

 The model had an acceptable accuracy in the estimation of the subgouge deformations. 

For instance, to simulate the horizontal deformations using GMDH 1 in the testing mode, 

the correlation coefficient (R), the variance accounted for (VAF), and the Nash-Sutcliff 
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efficiency coefficient (NSC) were computed at 0.955, 89.353, and 0.832, respectively. 

Additionally, the RMSE, MAE, and AIC to estimate the vertical deformations by using 

GMDH 1 in the testing mode were respectively approximated as 0.007, 0.005, and -

54.148. 

 Roughly 76% of the simulated horizontal deformations in the testing mode owned an 

error of less than 5%, whilst 87% of the estimated vertical deformation had an error of 

less than one percent. 

 Regarding the conducted UA, GMDH 1 had an underestimated performance to estimate 

both horizontal and vertical subgouge deformations. 

 In comparison to other GMDH models, GMDH 1 had the narrowest width of uncertainty 

bound (WUB) to approximate the vertical deformations. 

 In comparison to the ANN and the empirical methods, the GMDH model outperformed. 

The presented study provided invaluable insight into the simulation of subgouge problems using 

NN-based models. These results can facilitate proposing of new solutions to model the subgouge 

sand deformations. Moreover, the current study can be beneficial to the planning of costly 

experimental studies and time-consuming three-dimensional simulations and then deduct the hefty 

expenses of future investigations. 
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Section 2 

 

Ice-seabed interaction modeling in clay by using evolutionary design of 

generalized group method of data handling 
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Abstract 

Ice-induced scour is a serious challenge for the subsea pipelines in the Arctic shallow waters. 

Estimation of the maximum pipeline deformation and its minimum burial depth can guarantee the 

operational integrity of these structures in ice-prone regions. The pipeline buried below the ice 

keel is still threatened by subgouge soil deformation that is extended down the ice tip due to the 

shear resistance of the seabed soil. Determining the subgouge soil deformations is a challenging 

process that needs costly experimental and numerical simulations. In this paper, an alternative and 

cost-effective methodology has been proposed using a robust neural network-based method titled 

“generalized structure of group method of data handling” (GS-GMDH) for the first time to 

simulate the horizontal and vertical subgouge soil deformation profiles in clay. Using the 

parameters governing the subgouge soil deformations, nine GS-GMDH models were defined. The 

premium GS-GMDH models and the most influencing input parameters comprising the soil depth 

and the gouge geometry were introduced by performing a sensitivity analysis. Subsequently, the 

results of the best GS-GMDH models were compared with the classical group method of data 

handling (GMDH), the artificial neural network (ANN), and the empirical approaches. An 

uncertainty analysis showed that the GS-GMDH slightly overestimates the horizontal and 

underestimates the vertical subgouge soil deformations. A partial derivative sensitivity analysis 

(PDSA) was also performed to assess the influence of the input parameters on the subgouge soil 

deformations. Lastly, a set of GS-GMDH-based equations were proposed for fast estimation of the 

subgouge soil deformations in clay. 

Keywords: Iceberg-seabed interaction; Subgouge deformation in clay; Artificial neural network 

(ANN); Generalized structure of group method of data handling (GS-GMDH); Partial derivative 

sensitivity analysis (PDSA); Uncertainty analysis (UA)
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4.1.7. Introduction 

A huge amount of hydrocarbon deposits including crude oil (90 billion barrels) and natural gases 

(47.3 trillion cubic meters) have been located in the Arctic areas and these resources can be 

transferred through subsea pipelines from offshore to onshore. In the Arctic’s shallow waters, the 

seabed might be scoured by the traveling icebergs during the warmer seasons; as a result, the 

subsea pipelines, communications cables, wellheads, and other infrastructures may be gouged by 

the traveling masses (Mouawad 2008; Azimi and Shiri 2020a). A schematic layout of the ice-

induced scour considered in this study is shown in Figure 4-11. 

 

Figure 4-11. Schematic layout of an ice-scouring event 

 

As shown, Ds is the gouge depth and the angle between the ice keel face and the contacting seabed 

surface is defined as the attack angle (α). The seabed attacked by the ice-gouging is divided into 

three distinct zones: Zone 1, where the seabed soil is displaced by the gouging keel; Zone 2, where 

the seabed soil undergoes very large permanent deformations; and Zone 3, where the seabed soil 

witnesses only elastic strain, without significant deformations. The buried pipelines may be 

displaced by the subgouge soil deformation which is described by an exponential distribution 
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through the soil depth underneath the ice tip (ISO 19906: 2019 E). An example of these exponential 

expressions will be provided in the coming sections. The soil deformation caused by ice-gouging 

is not limited to the soil in front of the ice keel being directly in contact with the ice. The shear 

resistance in the soil extends the soil displacement much deeper than the ice tip which is called 

subgouge soil deformation (see Figure 7-1). Therefore, the subgouge soil deformation may still 

endanger the pipeline buried deeper than the gouge depth in terms of the serviceability limit state 

(e.g., ovalization) or ultimate limit state (e.g., local buckling or tensile fracture) (Lach 1996, 

Nematzadeh and Shiri 2020). The estimation of the additional burial depth below the ice tip for 

pipeline protection against the subgouge soil deformation is a challenging and costly design aspect 

that is usually evaluated through a decoupled approach. This approach combines the accuracy of 

the continuum finite element (FE) analysis of the free field ice-gouging event with the simplicity 

of the beam-spring models for the simulation of the pipeline. The decoupled approach begins with 

a free-field ice-gouging analysis without the presence of a pipeline. Then the resultant subgouge 

soil deformations are manually transferred to the springs representing the soil in a beam-spring 

model to obtain the pipe response to soil movement. The beam-spring model examines the 

subgouge soil displacements in various depths that have been obtained from a single free-field FE 

analysis to come up with the best burial depth. Therefore, free-field ice-gouging is a significant 

part of the decoupled approach in practical pipeline design that is usually supported by costly 

computational and experimental studies. The current study introduces a neural network-based 

(NN-based) method that can be alternatively used for fast and cost-effective estimation of the 

subgouge soil deformations to be fed into the beam-spring models. 

The proper dataset is of significant importance in the success of NN-based analysis. In this paper, 

the database for training and testing of the NN-based models was extracted from a set of crucial 
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experimental studies in clay published in the literature including C-CORE (1995), C-CORE 

(1996), Lash (1996), Schoonbeek et al. (2006), and Been et al. (2008). The study conducted at C-

CORE (1995) included a series of free field centrifuge tests of the ice keel scour problems in 

different seabed conditions including loose sand, dense sand, soft clay, and medium clay. Different 

configurations of the gouge depth ranging from 1 to 2 meters, the gouge width ranging from 15 to 

30 meters, and the attack angle ranging from 15 to 30 degrees were carried out in this study. The 

experimental measurements were verified with the soil displacements observed in the field and it 

was proved that the measurements were accurate enough. Lach (1996) performed nine centrifuge 

tests to study the behavior of saturated clay during ice-gouging events. The author surveyed the 

effects of the soil stress history, the width of the gouge, the depth of the gouge, and the attack angle 

on the mechanics of the ice-soil interaction process. The study concluded that the clay 

displacements depended on the initial state of the soil sample. Another set of experiments was 

conducted at C-CORE (1996) called “Pressure Ridge Ice Scour Experiment” (PRISE) tests to 

evaluate the soil characteristics including the soil deformations and the stress changes during the 

ice-induced events. Furthermore, some empirical relationships were derived from the experimental 

measurements to estimate the horizontal and vertical clay deformations. The study showed that the 

gouge geometry had a significant influence on the soil deformations and these formulas 

underestimated the horizontal displacements in the medium-dense silt and sand. 

Schoonbeek et al. (2006) studied the clay behavior during some centrifuge testing and assessed 

the effects of the undrained shear stress of clay, the ice keel speed, and the depth of scour. The 

subgouge soil displacements in clay were measured by using the image processing of video camera 

data. The author asserted that the undrained shear stress was a significant parameter to form the 

subgouge soil deformations in clay. Been et al. (2008) carried out some centrifuge tests to measure 
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ice-induced clay displacements. The author also studied two failure mechanisms including steep 

and shallow keel angles. The investigation concluded that the soil sample was pushed up into a 

mound in front of the steep ice keel, whereas the scoured clay was forced under and sides of the 

shallow keel.  

Bekker et al. (2005) simulated the effect of the traveling hummocks on the marine pipeline. Using 

a probabilistic model, the authors determined the bottom configuration of the subsea pipeline track. 

Arnau and Ivanović (2019) evaluated the impact of load rate on the scouring pattern in seabed sand 

in both dry and saturated circumstances. The effects of relative density and soil permeability were 

also assessed in 1g condition experimentally. The study showed that the rate effects grew linearly 

with the scour depth and the berm height. Moreover, Shin et al. (2019) simulated the ice scouring 

issue by means of the Coupled Eulerian Lagrangian (CEL) approach. The authors employed the 

contact condition and geostatic stress to model the ice keel gouging and verified the numerical 

results with experimental measurements. Nematzadeh and Shiri (2020) modeled the subgouge 

event in sand adopting the ABAQUS software and the Coupled Eulerian-Lagrangian (CEL) 

scheme. The authors assessed configurations of ice keel and soil properties and asserted that the 

higher magnitude of soil deformations stemmed from the soil with high unit weight and relative 

density. Azimi and Shiri (2020a) determined the parameters affecting the ice-seabed interaction 

problems by using Buckingham’s theory for the first time. A set of linear regression (LR) 

relationships were provided to estimate the maximum horizontal and vertical deformations both in 

clay and sand. The author validated their LR models with a comprehensive dataset. 

Besides the sophisticated computational methods, same as many other engineering challenges, if 

properly developed, artificial intelligence (AI) and soft computing (SC) algorithms can be used as 

potential cost-effective alternatives to analyze the ice-seabed interaction process. These techniques 
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can be of particular importance at the early stages of design projects, where a fast and fairly 

accurate estimation is required to decide on methodologies and logistics and plan the scope of 

detailed engineering works. However, despite many other engineering challenges, only a few AI 

methods and machine learning (ML) algorithms have been developed to simulate ice-induced 

problems to date. Kioka et al. (2003) used the artificial neural network (ANN) to estimate the ice 

scour depth. The authors employed the backpropagation method to train the ANN model and used 

five neurons in the hidden layer. Additionally, Kioka et al. (2004) integrated the ANN method and 

a mechanical approach for assessing the ice-gouging process. The bottom shape of the ice and the 

condition surrounding the ice ridge were detected as the most important variables. Azimi and Shiri 

(2020b) utilized gene expression programming (GEP) to estimate the horizontal subgouge 

displacements in the sand. The horizontal ice-induced displacements were simulated in terms of 

the bearing pressure, the attack angle, the sand dilation angle, and the gouge depth. The authors 

identified the gouge depth and the dilation index as the most decisive parameters in prediction of 

subgouge soil deformations and reaction forces. The sand characteristics during the gouging 

process were simulated using a machine learning (ML) model entitled extreme learning machine 

(ELM) by Azimi and Shiri (2021a). Nine ELM models were developed and the best ELM models 

and the most decisive input parameters were introduced by performing several analyses. The 

author proposed a set of ELM-based equations in order to estimate the ice-gouging features. Azimi 

and Shiri (2021b) estimated the horizontal subgouge soil deformations in the sand by means of a 

multi-layer perceptron neural network (MLPNN) model. The study demonstrated that the MLPNN 

model had a reasonable accuracy, signifying that the vast majority of the simulated subgouge soil 

deformations possessed an error of less than 5%. 
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Considering the high cost and challenges associated with the experimental studies and continuum 

FEA modeling in clay, the alternative robust neural network-based approach, proposed in this 

study, i.e.,  the “generalized structure of group method of data handling” (GS-GMDH) can mitigate 

the expenses of future designs and even improve the planning of the research investigations. 

Further details associated with the proposed method and the results compared with test data will 

be discussed in the coming sections. 

 

4.1.8. Material and methods 

In this section, the group method of data handling (GMDH), the generalized structure of the group 

method of data handling (GS-GMDH), and the artificial neural network (ANN) models were 

detailed. Subsequently, by using dimensional analysis, the parameters governing the ice-induced 

clay displacements were detected. Lastly, to verify these models, a comprehensive dataset was 

established. 

 

4.1.8.1. Group method of data handling (GMDH) 

The group method of data handling (GMDH) was introduced by Ivakhnenko (1976) for the first 

time. This approach has been broadly applied in different fields to approximate linear and non-

linear problems, without having sufficient information about the system (Ivakhnenko and 

Ivakhnenko 1995; Ebtehaj et al. 2015; Azimi et al. 2018; Walton et al. 2019). The GMDH is 

considered a self-organized technique in which a set of neurons are utilized to estimate a target 

function like fi with the output Oi by using multi-input  𝜒 = (𝜒1, 𝜒2, 𝜒3, … , 𝜒𝑘). This means that a 

binary connection between different neurons adopting quadratic polynomials results in the 
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development of the GMDH neural network. Thus, the Oi is expressed for n observed values in 

each dataset comprising m inputs and one output as follows: 

𝑂𝑖 = 𝑓(𝜒𝑖1,𝜒𝑖2,𝜒𝑖3, … , 𝜒𝑖𝑛,)                                                   𝑖 = (1,2,3, … ,𝑚) (4-29) 

The target function is minimized by calculating the mean square error (MSE) between real 

subgouge soil displacements (𝑜𝑖) and estimated values and also the corrected Akaike Information 

Criterion (AICc) is employed for correction of the target function to express the simple models in 

a noncomplex structure as below: 

𝑀𝑆𝐸 = ∑ (𝑂𝑖(𝜒𝑖1,𝜒𝑖2,𝜒𝑖3, … , 𝜒𝑖𝑛,) − 𝑜𝑖)
𝑚
𝑖=1

2
→ 𝑚𝑖𝑛           𝑖 = (1,2,3, … ,𝑚) (4-30) 

Subsequently, the corrected Akaike Information Criterion (AICc) is employed for the correction of 

the target function to express the simple models in a noncomplex structure as the following form: 

𝐴𝐼𝐶𝑐 = 𝑛 × 𝑙𝑜𝑔 [∑ (𝑂𝑖(𝜒𝑖1,𝜒𝑖2,𝜒𝑖3, … , 𝜒𝑖𝑛,) − 𝑜𝑖)
𝑚

𝑖=1
]
2

+ 2𝜁 +
2𝜁(2𝜁 + 1)

𝑛 − 𝜁 − 1
 

(4-31) 

where, the 𝜁 is the number of optimized parameters during the training procedure. Furthermore, 

the Volterra functional series as a polynomial function is employed so as to link between input and 

output parameters as follows: 

𝑂 = Γ0 + ∑ Γ𝑖𝜒𝑖

𝑛

𝑖=1
+ ∑ ∑ Γ𝑖𝑗𝜒𝑖𝜒𝑗

𝑛

𝑗=1

𝑛

𝑖=1
+ ∑ ∑ ∑ Γ𝑖𝑗𝑘𝜒𝑖𝜒𝑗

𝑛

𝑘=1
𝜒𝑘 + ⋯

𝑛

𝑗=1

𝑛

𝑖=1
 

(4-32) 

The Kolmogorov-Gabor polynomial as a quadratic and bivariate form of the Volterra functional 

series is used in the below equation (Ivakhnenko 1971; Farlow 1984; Nariman-Zadeh et al. 2002): 

𝑂 = 𝐺(𝜒𝑖, 𝜒𝑗) = Γ0 + Γ1𝜒𝑖 + Γ2𝜒𝑗 + Γ3𝜒𝑖
2 + Γ4𝜒𝑗

2 + Γ5𝜒𝑖𝜒𝑗 (4-33) 

where, Γ𝑖 is the unknown coefficients stemmed from regression approaches to minimize the 

difference between the observed ice-induced deformations (𝑜𝑖) and the simulated values for each 

input parameters pair 𝜒𝑖 and  𝜒𝑗 (Farlow 1984). All the unknown coefficients are calculated using 

the least square (LS) method by solving the following matrix: 



206 
 

ΔΓ = 𝑂 (4-34) 

where, the Γ is the unknown coefficient vector of the Kolmogorov-Gabor polynomial 

(Γ0, Γ1, Γ2, Γ3, Γ4, Γ5) and the o is considered the vector of the real subgouge soil deformations in 

clay, {𝑜0, 𝑜1, … , 𝑜𝑚}𝑇, thus the Δ matrix is expressed in the form of Eq. (4-9) as below: 

Δ =

[
 
 
 
 

1   𝜒1𝑝   

1  𝜒2𝑝   

   𝜒1𝑞 𝜒1𝑝
2    

𝜒2𝑞 𝜒2𝑝
2

𝜒1𝑞
2 𝜒1𝑝𝜒1𝑞

𝜒2𝑞
2 𝜒2𝑝𝜒2𝑞

𝑚   𝑚     
1 𝜒𝑚𝑝

    𝑚   𝑚
𝜒𝑚𝑞 𝜒𝑚𝑝

2    
𝑚        𝑚

𝜒𝑚𝑞
2 𝜒𝑚𝑝𝜒𝑚𝑞]

 
 
 
 

 

(4-35) 

where, the superscript T signifies the transpose of the matrix. The vector of the unknown 

coefficients is estimated through the least-square (LS) technique deriving from the multiple 

regression analysis and can be expressed as follows (Najafzadeh and Saberi-Movahed 2019): 

Γ = (Δ𝑇Δ)−1Δ𝑇𝑜 (4-36) 

The described procedure is iterated for each particular neuron of the next hidden layer regarding 

the linkage topology of the GMDH network (Najafzadeh and Saberi-Movahed 2019). 

 

4.1.8.2. Generalized structure of GMDH (GS-GMDH) 

The classical GMDH has several drawbacks including the use of the quadratic polynomial, limiting 

the inputs of each neuron to two, and limiting the inputs of each neuron to the use of the adjacent 

layer neurons. These disadvantages lead to the reduction of the modeling performance of the 

classical GMDH model along with the development of complex structures to simulate 

multidimensional non-linear problems (Walton et al. 2019). To overcome these challenges, the 

generalized structure of the group method of data handling (GS-GMDH) method was coded in the 

MATLAB software environment to estimate the ice-induced clay deformations in the current 

study. Figure 4-12 displays the structure of the GS-GMDH topology where a neuron in a particular 

layer is inputted from the non-adjacent and the adjacent layer simultaneously. The GS-GMDH 
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model used both the quadratic and cubic polynomials, applied two and three inputs in each neuron, 

and took input neurons from both the adjacent and the non-adjacent layers. Lastly, the premium 

GS-GMDH model was selected by means of the corrected Akaike Information Criterion (AICc), 

signifying that the simplicity and the accuracy of the chosen model were simultaneously evaluated. 

These features enhanced the performance of the GS-GMDH model compared to the classical 

GMDH. 

 

Figure 4-12. Structure of the GS-GMDH model 

 

Figure 4-13 portrays the flowchart of the used GS-GMDH model in the current study. Firstly, the 

constructed dataset was divided into two sub-samples as the training and testing data. It is worth 

noting that four sub-samples including 50%, 60%, 70%, and 80% of the constructed dataset were 

respectively utilized to train the GS-GMDH models. However, the sub-sample consisting of 60% 
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training the models and 40% testing them was chosen in this study since the GS-GMDH models 

had a better performance during the modeling process. The number of inputs for each neuron, the 

maximum number of neurons in the layers, and the maximum number of the layers were tuned in 

the next step. 

 

Figure 4-13. Flowchart of the applied GS-GMDH model 

 

4.1.8.3. Artificial neural network (ANN) 

Artificial neural networks (ANNs) are inspired by the biological neuron networks in which a 

problem is solved similar to the way the human brain works. Owing to the flexibility of the ANN 

model to predict complex problems, the ANN has been extensively applied to predict different 

high-dimensional and complicated parameters (Haykin 1994; Shahin et al. 2001; Guresen et al. 

2011). It is noteworthy that a detailed description of the ANN is beyond the scope of the current 

study. In general, each neural network model has some layers, including an input layer, at least a 

hidden layer, and an output layer. Input parameters are connected to the network through the input 

Start

Percentage of the train dataset

Percentage of the test dataset

Number of inputs for each neuron

Maximum number of neurons in a layer

Maximum number of layers

Set initial parameters affecting 

the subgouge deformations

Create all possible neurons 

Calculate coefficients

Calculate RMSE

Sort neurons 

based on RMSE

Keep neurons with higher 

RMSE than Criterion

Are neurons less

than maximum

allowable?

Keep the maximum allowable 

neurons and remove others

Use neurons’ output

as input variable

Is there only 

one neuron?

Have the 

maximum number of

layer reached?

Select the best models

and influencing inputs

based on the criteria

End

No

Yes

Yes

No

Yes

No



209 
 

layer. Thus, the number of neurons in the input layer is equal to the number of input parameters of 

the problem. In addition, the number of neurons in the output layer equals the number of target 

functions, the subgouge soil deformation in clay (Shahin et al. 2001). Although there is no 

regulation to determine the number of neurons in the hidden layer (Azimi and Shiri 2021b), the 

number of neurons in the hidden layer is a function of the problem’s complexity (Al-Alawi et al. 

1998; Vujicic et al. 2016). In the current study, the number of neurons in the input layer equaled 

eight input parameters including y/W, Ds/W, c/γs.W, α, h’/W, Lh/γs.W
3, Lv/γs.W

3, and V2/g.W, while 

one neuron in the output layer was considered as the target parameter (clay deformations or d/W). 

Moreover, a trial and error approach was employed to choose the number of neurons in the hidden 

layers (Azimi and Shiri 2021b). In other words, the number of neurons in the hidden layer was 

initially considered equal to one and the precision of the ANN model was evaluated by increasing 

this value to 12. The most optimum number of hidden layer neurons was selected to be seven since 

the accuracy of the ANN model was then insignificantly altered. It is worth noting that the number 

of neurons in the antecedent layer was gathered by using the summation of weighted neurons in 

the hidden and output layers and transferred to the next layer through an “activation function” 

(Smith 1993). In the current study, the “linear”, “sigmoid”, and “hyperbolic tangent” activation 

functions were applied in different models and then the accuracy of these activation functions was 

evaluated. The applied activation functions are set as below: 

𝑙𝑖𝑛𝑒𝑎𝑟(𝑥) = 𝑥 (4-37) 

σ(𝑥) =
1

1 + 𝑒−𝑥
 

(4-38) 

tan(𝑥) =
2

1 + 𝑒−2𝑥
− 1 

(4-39) 
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Subsequently, an optimum activation function for the ANN model was selected, meaning that the 

hyperbolic tangent function was used for the estimation of the ice-induced clay displacements 

since the accuracy of this activation function was better than others. Furthermore, the values of 

weighted outputs were summed by means of the multilayer perceptron throughout a procedure 

called “model training”. This means that the “Levenberg-Marquardt (LM) algorithm” was applied 

to training the multilayer perceptron neural network, where the biases and weights were adjusted 

by means of the back-propagation algorithm. The number of epochs was considered to be 5000 as 

the ANN model converged at some point, where the convergence was achieved at epoch number 

1200. 

 

4.1.8.4. Subgouge soil deformations in clay 

Ice-induced deformation in clay seabed is a function of the scour depth (Ds), the undrained shear 

strength (𝑐), the width of gouge (W), the attack angle (), the angle of the surcharged soil slope 

(ω), the height of the berm (h’), the resultant horizontal force (Lh) and the resultant vertical force 

(Lv), the velocity of ice keel (V), and the specific weight of sand (𝛾𝑠) as follows (Azimi and Shiri 

2020a): 

𝑑𝑚𝑎𝑥(𝑐𝑙𝑎𝑦) = 𝑓1(𝐷𝑠, 𝑐,𝑊,, 𝜔, ℎ′, 𝐿ℎ , 𝐿𝑣, 𝑉, 𝛾𝑠) (4-40) 

The Lh and Lv represent the resultant horizontal and vertical driving loads comprising drag force 

from wind, drag force from current, buoyancy force, keel weight, friction force on the bottom of 

the keel, Coulomb’s passive friction force acting in front and on both sides of the keel, and driving 

force from the surrounding floe that are all amongst the input parameters to the ice-gouging 

problem (Duplenskiy and Gudmestad 2013; Azimi and Shiri 2020a). It is worth mentioning that 

in all of these tests, the ice keel has been a rigid body moving in the horizontal direction under a 
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steady state condition with a restrained vertical motion and rotation. The ice-seabed interaction 

has been initialized and configured to properly simulate the desired ice driving force resulting from 

the ice dynamics. Therefore, the ice dynamics have been inherited in the dataset used for the 

current study and considered in the input parameters of the proposed algorithm. So, Eq. (7-12) can 

be written as a function of eight dimensionless groups in the following form: 

𝑑𝑚𝑎𝑥(𝑐𝑙𝑎𝑦)

𝑊
= 𝑓2 (

𝐷𝑠

𝑊
,

𝑐

𝛾𝑠𝑊
,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(4-41) 

here, 𝑑𝑚𝑎𝑥(𝑐𝑙𝑎𝑦) is considered the maximum subgouge displacement in clay formed just under the 

moving ice keel in the gouge centerline. It is worth noting that the ω and h’ parameters were not 

measured by the previous experimental surveys. The maximum subgouge soil deformation occurs 

right under the ice keel and exponentially reduces with the soil depth (y) (ISO 19906: 2019 E). 

Therefore, to obtain the subgouge soil deformation (d) in a given depth, the desired soil depth (y) 

needs to be fed into the analysis as an input parameter. At a greater depth on the subgouge 

centerline, by incorporating the soil depth (y/W), the subgouge soil deformation (d(clay)/W) can be 

written as follows (Azimi and Shiri 2020a): 

𝑑(𝑐𝑙𝑎𝑦)

𝑊
= 𝑓2 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,

𝑐

𝛾𝑠𝑊
,,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(4-42) 

Therefore, the introduced dimensionless groups in Eq. (4-42) were utilized as the input parameters 

in the GS-GMDH models. Furthermore, to verify the artificial intelligence models (GS-GMDH, 

GMDH, ANN), a comprehensive database including five experimental datasets were employed in 

the current study. The dataset includes the measurements reported by C-CORE (1995), Lach 

(1996), C-CORE (1996), Schoonbeek et al. (2006), and Been et al. (2008). The constructed dataset 

in the current study contains 162 cases, where 113 experiments were used for training and 49 

experiments for testing the models. A large number of publications are in the literature on the 
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application of the GMDH for simulation of the regression problems with a similar size dataset 

(e.g., Ebtehaj et al. 2017; Azimi et al. 2018; Najafzadeh and Saberi-Movahed 2019, Walton et al. 

2019). These studies have shown that the selected data size is sufficient for the GMDH algorithm 

to model different regression problems with acceptable performance. Thus, the number of 

experimental measurements applied in the current study was assumed to be sufficient for reliable 

training and testing of the ML models. In addition, the good results of a “Goodness to fit” analysis 

that will be discussed in the next section show the sufficiency of the size of the database. 

The range of dimensionless horizontal subgouge deformations (dh/w) for the C-CORE (1995) 

dataset comprising C-1 to C-8 tests was from 0.003 to 0.233 and these deformations were measured 

at the dimensionless soil depth up to 0.025. The keel attack angle in the C-1, C-2, C-4, C-5, C-6, 

and C-8 tests was reported as 15o, while this value for C-3 and C-7 was measured as 30o. The 

gouge depth ratio (Ds/W) in the C-1 to C-8 tests were respectively obtained at 0.053, 0.099, 0.033, 

0.033, 0.054, 0.095, 0.079, and 0.080. The berm height ratio was not reported in the C-1 to C-8 

tests. 

The L-1 to L-8 tests were reported in Lach’s datasets. The value of attack angle in L-1, L-2, L-3, 

L-4, L-5, L-6, and C-8 was 15o but this parameter in the L-7 test was measured as 25o. In the L-1, 

L-4, and L-7 tests, the value of the undrained shear strength ratio was 12.029, whilst this parameter 

for L-2 and L-3 was similar, with the 𝑐 𝛾𝑠𝑊⁄  of 9.452. The internal friction angle of sand seabed 

in L-5 L-6, and L-8 were respectively reported at 17.185, 24.059, and 15.037. 

Moreover, the C-9 to C-12 tests have measured by C-CORE (1996) in which the value of the 

undrained shear strength ratio was respectively measured at 0.168, 0.167, 0.333, and 0.333. The 

attack angle in the C-9 test was 30o, whereas this parameter in C-10, C-11, and C-12 was observed 
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to be 15o. The berm height ratio in the C-9 to C-12 tests was not reported. The value of the ice 

velocity ratio (V2/g.W) in the C-9 to C-12 tests was constant at 0.015. 

In Schoonbeek’s experimental setup (S-1), the gouge depth ratio, the undrained shear strength 

ratio, and the attach angle value were measured at 11.667, 13.637, and 14o, respectively. 

The value of dimensionless horizontal subgouge deformations in Been et al.’s model (B-1 to B-5 

tests) varied from 0.004 to 0.330 and the two models (B-2 and B-3) had the keel attack angle of 

15o, while the attack angle in the B-1 test was equal to 45o. In the B-4 and B-5 tests, the value of 

the attack angle was reported at 30o. Been et al. (2008) utilized a clay seabed with an undrained 

shear strength ratio of 1.444. 

To identify the most influencing input parameters and introduce the best GS-GMDH models, a 

sensitivity analysis (SA) was carried out, meaning that eight GS-GMDH models including GS-

GMDH 1 to GS-GMDH 8 were defined. In other words, GS-GMDH 1 estimated the subgouge soil 

deformations in clay by using all input parameters, comprising y/W, Ds/W, c/γs.W, α, Lh/γs.W
3, 

Lv/γs.W
3, and V2/g.W. Figure 4-14 illustrates the applied input combinations, as well as the 

developed artificial intelligence models. 
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Figure 4-14. Combination of the input parameters to develop different models 

 

Then, the effect of each input parameter was eliminated and GS-GMDH 2 to GS-GMDH 8 were 

developed. To estimate the horizontal clay deformations (dh/W) using the GS-GMDH model, y/W 

and Ds/W were detected as the most significant input parameters, whereas y/W, Ds/W, α, and V2/g.W 

had the highest effects to simulate the vertical clay deformations (dv/W). Thus, GS-GMDH 9 as 

the premium model was defined with a combination of the detected effective parameters. It is 

worth mentioning that the classical GMDH and ANN models were also developed using these 

influential input variables. 

 

4.1.8.5. Goodness of fit 

To assess the performance of the GS-GMDH models, some statistical indices including correlation 

coefficient (R), the variance accounted for (VAF), root mean square error (RMSE), mean absolute 
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error (MAE), scatter index (SI) and Nash-Sutcliff efficiency coefficient (NSC) were utilized as 

follow: 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(4-43) 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑃𝑖 − 𝑂𝑖)

𝑣𝑎𝑟(𝑃𝑖)
) × 100 

(4-44) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(4-45) 

𝑀𝐴𝐸 =
∑ |𝑃𝑖 − 𝑂𝑖|

𝑛
𝑖=1

𝑛
 

(4-46) 

𝑆𝐼 =

√1
𝑛

∑ (𝑃𝑖 − 𝑂𝑖)
𝑛
𝑖=1

2

�̅�
 

(4-47) 

𝑁𝑆𝐶 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1

 
(4-48) 

Here, Oi, Pi, �̅�, �̅�, and n are the observed ice-induced deformations, the estimated deformations, 

the average observed values, the average estimated values, and the number of experimental 

measurements, respectively. The closeness of the correlation coefficient (R) and the Nash-Sutcliff 

efficiency coefficient (NSC) to one signified that the GS-GMDH model had the highest correlation 

with the observed values, whilst the closeness of the RMSE, MAE, and SI criteria to zero meant 

that the particular model showed the lowest level of error. Furthermore, the superior GS-GMDH 

model had the highest value of the VAF criterion though the complexity of these GS-GMDH 

models was not shown through the applied indices. To overcome this problem, the Akaike 

Information Criteria (AIC) was employed as follows: 
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𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(4-49) 

where, k is the number of estimated factors included in the GS-GMDH model (Walton et al. 2019; 

Sudheer and Jain 2003). The less complex GS-GMDH model had the lowest value of the AIC 

index, hence, the superior GS-GMDH model had the lowest value of the AIC index and error 

(RMSE, SI, MAE), and the highest level of correlation with the experimental measurements (R and 

NSC). 

 

4.1.9. Results and discussion 

For GS-GMDH 1 to GS-GMDH 9, a sensitivity analysis was performed and then the superior 

model along with the most effective input parameters was introduced. After that, the premium GS-

GMDH models were compared with the GMDH, ANN, and empirical approaches. Subsequently, 

a set of GS-GMDH-based equations for the estimation of the horizontal and vertical deformations 

were provided. Lastly, a partial derivative sensitivity analysis for the best GS-GMDH models was 

implemented. 

 

4.1.9.1. Sensitivity analysis (SA) 

 Horizontal soil displacement 

Figure 4-15 shows the calculated statistical indices for the horizontal clay deformation by using 

GS-GMDH 1 to GS-GMDH 9 in the testing mode. GS-GMDH 1 was a function of all input 

variables and the magnitude of computed RMSE, SI, and MAE of this model in testing mode was 

0.162, 0.249, and 0.074, respectively. Moreover, GS-GMDH 2 simulated the target function by 

using Ds/W, c/γs.W, α, Lh/γs.W3, Lv/γs.W
3, and V2/g.W, signifying that the effect of the soil depth 
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parameter (y/W) was ignored. The AIC, NSC, and VAF values for GS-GMDH 2 in the testing stage 

were respectively computed at 36.246, 0.575, and 77.081. 

 

Figure 4-15. Results of statistical indices (a) R and RMSE (b) VAF and SI (c) NSC and MAE (d) 

NSC and AIC for the horizontal deformations simulated by GS-GMDH 1 to GSGMDH 9 in the 

testing mode. 

 

Moreover, the GS-GMDH 3 with the R, SI, and RMSE of 0.892, 0.377, and 0.004 in the testing 

process predicted the horizontal displacements by means of y/W, c/γs.W, α, Lh/γs.W
3, Lv/γs.W

3, and 

V2/g.W. It is worth noting that the influence of gouge geometry (Ds/W) for GS-GMDH 3 was 

eliminated. Additionally, GS-GMDH 4 was a function of y/W, Ds/W, α, Lh/γs.W
3, Lv/γs.W

3, and 

V2/g.W, whereas the impact of shear strength parameter (c/γs.W) was removed for this model. The 

values of AIC, NSC, and VAF for testing GS-GMDH 4 were respectively estimated to be -110.359, 

0.997, and 99.709. Moreover, GS-GMDH 5 modeled the target function in terms of y/W, Ds/W, 

c/γs.W, Lh/γs.W3, Lv/γs.W3, and V2/g.W, meaning that the effect of the ice keel’s attack angle (α) 
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was ignored for GS-GMDH 5, with the RMSE and MAE of 0.162 and 0.074. The horizontal 

component of load (Lh/γs.W
3) was the removed input in GS-GMDH 6, where this model comprised 

the parameters y/W, Ds/W, c/γs.W, α, Lv/γs.W3, and V2/g.W, with a scatter index of 0.249. In GS-

GMDH 7, the key input variables included y/W, Ds/W, c/γs.W, α, Lh/γs.W3, and V2/g.W, signifying 

that the vertical component of load (Lv/γs.W3) was eliminated. For testing the GS-GMDH 7, the 

values of RMSE and NSC were equal to 0.162 and 0.997. For GS-GMDH 8, the effect of velocity 

ratio (V2/g.W) was ignored and just the parameters y/W, Ds/W, c/γs.W, α, Lh/γs.W3, and Lv/γs.W3 

were kept to simulate the target values. 

Regarding the performed sensitivity analysis, the soil depth parameter (y/W) and the influence of 

gouge geometry (Ds/W) were detected as the most influencing input parameters to estimate the 

horizontal deformations. Thus, GS-GMDH 9 as a function of y/W and Ds/W was defined. The 

values of the correlation coefficient, Nash-Sutcliff efficiency coefficient, and scatter index for GS-

GMDH 9 were respectively calculated to be 0.999, 0.997, and 0.249. 

 

 Vertical soil displacement 

Figure 4-16 shows the computed statistical indices for the simulated vertical deformations by the 

GS-GMDH models. The value of RMSE, MAE, and SI for testing GS-GMDH 1 was respectively 

estimated to be 0.017, 0.013, and 0.631. Furthermore, in the testing mode, the value of Nash-

Sutcliff efficiency coefficient for GS-GMDH 2, GS-GMDH 3, and GS-GMDH 4 was equal to -

1.076, -0.236, and 0.483, respectively. Regarding the performed SA, GS-GMDH 2 owned the 

highest level of error, with a low range of correlation with experimental values. The variance 

accounted for (VAF) values in GS-GMDH 5 and GS-GMDH 6 for modeling the vertical 
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displacements in the testing mode were 51.493 and 61.994. Besides, the scatter index (SI) for GS-

GMDH 7 and GS-GMDH 8 were surmised to be 0.631 and 0.860, respectively. 

 

Figure 4-16. Results of statistical indices (a) R and RMSE (b) VAF and SI (c) NSC and MAE (d) 

NSC and AIC for the vertical deformations simulated by GS-GMDH 1 to GSGMDH 9. 

 

Thus, GS-GMDH 9 as the best model was developed by a combination of the y/W, Ds/W, α, and 

V2/g.W inputs. During testing GS-GMDH 9, the values of AIC, NSC, and R were respectively 

estimated to be -263.883, 0.764, and 0.881. 

 

4.1.9.2. Comparison of GS-GMDH with GMDH, ANN, and empirical models 

 Sub-scouring deformation profiles 

The superior GS-GMDH model (GS-GMDH 9) was compared with the GMDH, ANN, and 

empirical (Emp) models. It is worth noting that Woodworth-Lynas et al. (1998) suggested two 
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equations in order to estimate the horizontal and vertical subgouge soil deformations in clay seabed 

as follows: 

𝑑ℎ(𝑦) = 0.6(𝑊.𝐷𝑠). 𝑒𝑥𝑝 (−
2

3
.
𝑦

𝐷𝑠
) 

(4-50) 

𝑑𝑣(𝑦) = 𝐷𝑠. 𝑒𝑥𝑝 (−
1

3
.
𝑦

𝐷𝑠
) 

(4-51) 

where, 𝑑ℎ is the maximum horizontal subgouge soil deformation, 𝑊 is the width of the gouge, 𝐷𝑠 

is the depth of the gouge, 𝑑𝑣 is the maximum vertical subgouge soil deformation, and y is the soil 

depth. Figure 4-17 displays the profiles of horizontal deformations estimated using the GS-

GMDH, GMDH, ANN, and empirical models. The GS-GMDH simulated the horizontal ice-

induced displacements with better performance, with a higher range of correlation and a lower 

range of error in comparison with the GMDH, ANN, and empirical approaches. For instance, the 

correlation coefficient (R) for the GMDH, ANN, and the empirical models was respectively 

computed at 0.978, 0.984, and -0.162. Furthermore, for the GMDH, ANN, and empirical models, 

the mean absolute error (MAE) was estimated to be 0.269, 0.272, and 0.469, respectively. The GS-

GMDH model showed a better performance to simulate the horizontal deformations in a wide 

range of experimental measurements, whilst the GMDH and empirical models had an acceptable 

accuracy in some experimental cases. For example, the GS-GMDH model simulated the 

experimental measurements reported by C-CORE (1995), Lach (1996), and C-CORE (1996) with 

higher accuracy, while the GMDH, ANN, and the empirical models had an acceptable performance 

just for some particular experimental models.  

Additionally, the performance of the GS-GMDH model was quite better compared to other 

classical NN-based models. For instance, the value of the NSC index for the GS-GMDH model in 

comparison with the GMDH and ANN models improved by approximately 10% and 29%, 
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respectively. The GS-GMDH model showed better performance at dealing with Schoonbeek et 

al.’s measurements (S-1). Although Been et al.’s experimental values were simulated using a linear 

behavior (B-1 to B-5), the GS-GMDH model could estimate the test results reported by C-CORE 

with both linear and non-linear patterns (C-1 to C12). As shown, the GS-GMDH model utilized 

the monotonic and non-monotonic trends to predict the experimental values measured by Lach 

(1996) (L-1 to L8). The profiles of simulated vertical deformations using the GS-GMDH, GMDH, 

ANN, and empirical models are displayed in Figure 4-17.  
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Figure 4-17. Comparison of the experimental horizontal deformations (a-h) C-CORE (1995) (i-p) 

Lach (1996) (q-t) C-CORE (1996) (u) Schoonbeek et al. (2006) (v-z) Been et al. (2008) with 

estimated values by GS-GMDH, GMDH, ANN, and empirical models 
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Figure 4-18. Comparison of the experimental vertical deformations (a-g) C-CORE (1995) (h-o) 

Lach (1996) (p-s) C-CORE (1996) (t) Been et al. (2008) with estimated values by GS-GMDH, 

GMDH, ANN, and empirical models 
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The GS-GMDH estimated the vertical displacements with better precision compared to the 

GMDH, ANN, and empirical models. The value of the correlation coefficient (R) for the GMDH, 

ANN, and empirical models was calculated at 0.849, 0.823, and 0.445, respectively. For the 

GMDH, ANN, and empirical models, the variance accounted for (VAF) index was respectively 

equal to 57.567, 39.093, and 19.632. 

Unlike the GS-GMDH model, other techniques were not able to simulate the vertical 

displacements with acceptable accuracy in a wide range of experimental values. This means that 

the GS-GMDH predicted the observed vertical deformations reported by C-CORE (1995), Lach 

(1996), C-CORE (1996), and Been et al. (2008) with a high level of correlation along with a low 

level of error. However, the empirical model lacked a good performance at dealing with the 

simulation of the observed values reported by Lach (1996), C-CORE (1996), and Been et al. 

(2008). Additionally, the GMDH model could just simulate the experimental measurements 

reported by Lach (1996), C-CORE (1996), and Been et al. (2008) with appropriate precision. 

The GS-GMDH model managed to simulate Lach’s measurements (L-1 to L-8) with the highest 

level of precision. Several fluctuations were observed in the experimental values reported by C-

CORE (1995) (C-1 to C-7), whereas this NN-based model could estimate these measurements with 

acceptable correlation. Moreover, the GS-GMDH model used a non-linear behavior for the 

estimation of the C-CORE (1996) dataset (C-8 to C-11). 

From an engineering practical point of view, the GS-GMDH algorithm could estimate the ice-

seabed interaction mechanism with good performance and extremely lower cost. This 

methodology may be a viable alternative for the initial phases of design projects since a quick and 

precise estimation is required to plan the scope of a detailed engineering scheme. To illustrate the 

superiority of the applied NN-based algorithm in comparison with the experimental and numerical 
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studies, the allocated time to perform the centrifuge test (e.g., Lach 1996, Test #5), FE simulation 

(e.g., Pike 2016, Case #4), and NN-based model (GS-GMDH) along with the accuracy of these 

models for simulation of the maximum horizontal subgouge deformation (dmax(h)/W) was 

compared. 

In Table 4-7, the computation time of the FE analysis and the GS-GMDH algorithm and the 

accuracy of these models in comparison with the centrifuge test were tabulated. It should be stated 

the time needed for the centrifuge tests including the test design, model preparation, clay 

consolidation, instrument calibration, etc., is much greater than the reported time for the centrifuge 

test in the documents. Similarly, in FE analyses, additional time should be spent on the model 

construction and model validation. As shown in Table 4-7, the required time in GS-GMDH 

modeling was extremely lower than the centrifuge tests and the FE analyses. Moreover, The GS-

GMDH model was able to predict the maximum horizontal deformation much more accurately 

than the FE analysis. 

 

Table 4-7. The computation time of the FE analysis and the GS-GMDH algorithm and the 

accuracy of these models in comparison with the centrifuge test 

Model 0.25Ds 1.25Ds 2.25Ds Time 

required 

Accuracy 

(0.25Ds) 

Accuracy 

(1.25Ds) 

Accuracy 

(3.25Ds) 

Time-saving 

Centrifuge 

test (Lach 

1996, 

Test#5) 

0.276 0.055 0.028 4.7 hrs. - - - - 
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FE analysis 

(Pike 2016, 

Fine mesh) 

0.500 0.045 0.022 16 hrs. 8 

min 

18.8% 81.8 78.6 +343% more 

than the 

centrifuge test 

GS-GMDH 0.239 0.039 0.018 4 min 86.6% 70.9 64.3 -7050% less 

than the 

centrifuge test 

 

Therefore, the GS-GMDH was detected as a robust model so as to estimate both the horizontal and 

vertical deformation, with a better performance in terms of accuracy, correlation, complexity, and 

simulation time.  

 

4.1.9.3. Error analysis (EA) 

Figure 4-19 illustrates the error analysis of the GS-GMDH, GMDH, ANN, and empirical models 

to simulate the horizontal and vertical deformations. Approximately 75% of the horizontal 

deformations estimated by the empirical model produced an error of less than 6%, while this value 

for the GS-GMDH model was roughly 78%. Although about 99% of the results obtained from the 

GS-GMDH model had an error of less than 20%, this value for GMDH and ANN models was 93% 

and 97%, respectively. 
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Figure 4-19. Error distribution of (a) estimated horizontal deformations (dh/W) and (b) estimated 

vertical deformations (dv/W) by empirical, GS-GMDH, GMDH, and ANN models 
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of less than 16%. Thus, the lowest level of error to model the horizontal and vertical displacements 

was obtained for the GS-GMDH model. 
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𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (4-52) 

Moreover, the mean value of the calculated error (�̅�) and the standard deviation (𝑆𝑒) were 

computed as below (Azimi and Shiri 2020a): 

�̅� = ∑ 𝑒𝑗
𝑛

𝑗=1
 

(4-53) 

𝑆𝑒 = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(4-54) 

The negative sign of the mean value of the calculated error (�̅�) signifies the underestimated 

performance of a model, the simulated values are less than the real values. However, the positive 

sign denotes the overestimated performance of this model, meaning that the simulated 

displacements are greater than the actual deformations. Additionally, a confidence bound using 

𝑒 ̅and 𝑆𝑒was produced around an estimated error by means of the “Wilson score method” (Azimi 

and Shiri 2020a) without the continuity correction. The Wilson score interval is an improvement 

over the normal distribution interval in which an asymmetric normal distribution is employed to 

enhance the confidence interval bound. Then, ±1.96Se results were expressed in a 95% confidence 

bound which was a 95% estimated error interval (95% confidence interval). The results obtained 

from the performed uncertainty analysis for the GS-GMDH, GMDH, ANN, and empirical models 

are illustrated in Figure 4-20. To predict the horizontal displacements, the GS-GMDH, GMDH, 

ANN, and empirical models overestimated the target value, with the lowest level of the mean value 

of the calculated error (�̅�) for the GS-GMDH. To simulate the horizontal deformations, the 

narrowest and the widest width of the uncertainty bound were found as ±0.016 and ±0.382 for the 

GS-GMDH and the empirical model, respectively. In addition, the 95% confidence interval for the 

GS-GMDH model was calculated to be from -0.014 to 0.017. 
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In contrast, the mean value of the calculated error to simulate the vertical displacements adopting 

the GS-GMDH, GMDH, ANN, and empirical models were respectively computed at -0.001, -

0.001, -0.002, and -0.047. In other words, these models had an underestimated performance to 

model the vertical deformations. It is worth mentioning that the highest level of �̅� was computed 

for the empirical models. The width of the uncertainty bound for the GS-GMDH model was 

narrower than the empirical and the ANN models. Moreover, the 95% confidence interval for the 

GS-GMDH and GMDH models was the same, from -0.004 to 0.001. 

Therefore, the GS-GMDH overestimated the horizontal deformations, with the narrowest width of 

uncertainty bound, whilst this model had an underestimated performance at dealing with the 

simulation of the vertical deformations. 
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Figure 4-20. Uncertainty analysis results of empirical, GS-GMDH, GMDH, ANN models (a) e 

and ±WUB for the horizontal deformations (b) e and upper bound of 95%PI for the horizontal 

deformations (c) e and lower bound of 95%PI for the horizontal deformations (d) e and ±WUB 

for the vertical deformations (e) e and upper bound of 95%PI for the vertical deformations (f) e 

and lower bound of 95%PI for the vertical deformations 

(a) (b)
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4.1.9.5. Partial derivative sensitivity analysis (PDSA) 

To evaluate the influence of each input parameter as a dependent variable on subgouge soil 

deformations in clay as the independent parameter, a partial derivative sensitivity analysis (PDSA) 

for the superior GS-GMDH model (GS-GMDH 9) was carried out. The PDSA commonly shows 

how the dependent variables can influence the independent parameter and it is defined as follows: 

Horizontal deformation:   𝜕(𝑑ℎ 𝑊⁄ ) (𝜕𝑥𝑖)⁄            𝑥𝑖 =
𝑦

𝑊
,
𝐷𝑠

𝑊
 

Vertical deformation:       𝜕(𝑑𝑣 𝑊⁄ ) (𝜕𝑥𝑗)⁄            𝑥𝑗 =
𝑦

𝑊
,
𝐷𝑠

𝑊
, α,

𝑉2

𝑔.𝑊
 

(4-55) 

 

(4-56) 

A negative sign of the PDSA signifies a decreasing impact on the clay deformations, whereas a 

positive sign of the PDSA shows an increasing influence on the target function. The implemented 

PDSA for the horizontal deformations predicted by the premium GS-GMDH model is depicted in 

Figure 4-21. 

 

Figure 4-21. PDSA of the horizontal deformations for (a) y/W (b) Ds/W 
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The results of PDSA for the dimensionless soil depth parameter (y/W) were negative, signifying 

that the horizontal clay displacements (dh/W) decreased with increasing the dimensionless soil 

depth. In addition, all computed PDSA for the dimensionless gouge depth ratio (Ds/W) were 

positive. This means that the horizontal deformations grew with increasing the gouge depth 

parameter. The performed PDSA for the vertical deformations simulated by GS-GMDH 9 is 

illustrated in Figure 4-22. 

 

Figure 4-22. PDSA of the vertical deformations for (a) y/W (b) Ds/W (c) α (d) V2/gW 
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Most obtained PDSA for the soil depth ratio (y/W) had a positive sign, with a downward pattern. 

Likewise, the vast majority of the taken PDSA for the attack angle (α) had a positive sign, meaning 

that the vertical clay deformations grew with increasing the attack angle. However, almost all 

computed PDSA for the gouge depth ratio (Ds/W) and the velocity parameter (V2/g.W) were 

negative. 

 

4.1.9.6. GS-GMDH-based equations 

GS-GMDH 9 was introduced as the premium model to simulate the ice-induced clay deformations, 

with the lowest level of error and complexity along with the highest level of correlation with the 

experimental measurements. Thus, a set of GS-GMDH-based equations were presented in order 

to calculate the target function. The best GS-GMDH model was a function of the soil depth ratio 

(y/W) and the gouge geometry (Ds/W) to estimate the horizontal deformations as below: 

dh/W = 0.066 + 0.346(Ds/W) - 0.243(y/W) - 0.009(y/W)(Ds/W) + 0.301(Ds/W)2 + 

0.001(y/W)2 

(4-57) 

In contrast, to modeling the vertical ice-induced clay deformations, the best GS-GMDH was as a 

function of y/W, Ds/W, α, and V2/g.W as follows: 

dv/W = 0.014 - 0.109(x7) + 0.054(x6) + 31.9(x6)(x7) - 9.948(x7)(x7) - 7.897(x6)(x6) 

where, 

x6 = -0.001 - 0.551(V2/g.W) + 0.689(Ds/W) - 0.108(y/W) + 46.202(Ds/W)(V2/g.W) - 

6.426(y/W)(V2/g.W) - 0.030(y/W)(Ds/W) - 6.327(V2/g.W)2 - 3.142(Ds/W)2 + 

0.101(y/W)2 

and, 

 

 

 

 

 

 

(4-58) 
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x7 = 0.111 -0.006(α) + 0.645(Ds/W) - 0.306(y/W) - 0.021(Ds/W)(α) + 0.010(y/W)(α) - 

0.655(y/W)(Ds/W) + 0.0001(α)2 + 0.277(Ds/W)2 + 0.184(y/W)2 

Therefore, the GS-GMDH was a robust model to simulate the ice-induced clay deformations, with 

superior performance in comparison with the classical GMDH, ANN, and the empirical models. 

This means that the GS-GMDH had a low level of complexity along with a high level of precision 

and correlation with the observed values to estimate the horizontal and vertical displacements. 

 

4.1.10. Conclusion 

In this paper, the ice gouge deformations in clay seabed were estimated by means of a robust 

method entitled “generalized structure of group method of data handling (GS-GMDH). Using the 

factors affecting the ice-induced displacements in clay, nine GS-GMDH models were developed. 

To verify the GS-GMDH models, a comprehensive dataset was established and then 60% of the 

data were employed to train the GS-GMDH models, while 40% of the rest were adopted as the 

testing sub-sample. By using a sensitivity analysis, the superior GS-GMDH model along with the 

most influencing input parameters were introduced. Subsequently, the results of the GS-GMDH, 

the classical GMDH, the artificial neural network (ANN), and the empirical approaches were 

compared, and then an uncertainty analysis was performed. Lastly, a partial derivative sensitivity 

analysis (PDSA) for the proposed GS-GMDH-based model was implemented. The most 

significant results of the current study are summarized below: 

 The best GS-GMDH models simulated the subgouge soil deformations in clay with a high 

level of precision. For instance, the values of correlation coefficient (R), the variance 

accounted for (VAF), and Nash-Sutcliff efficiency coefficient (NSC) to model the 

horizontal displacements were respectively obtained to be 0.999, 99.709, and 0.997. 
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Moreover, for the simulation of the vertical deformations, the values of the scatter index 

(SI) and the mean absolute error (MAE) were calculated at 0.631 and 0.013. 

 To predict the horizontal deformations, the premium GS-GMDH model was a function of 

y/W and Ds/W, whereas the best model estimated the vertical displacements in terms of 

y/W, Ds/W, α, and V2/g.W. 

 In comparison with the GMDH, ANN, and empirical models, the GS-GMDH showed a 

better performance to estimate both the horizontal and vertical displacements, with a low 

level of complicity and a high level of accuracy and correlation. 

 The GS-GMDH model overestimated the horizontal deformations, with an 

underestimated performance to predict the vertical values. 

 The PDSA denoted that the horizontal clay displacements were reduced by increasing the 

soil depth ratio. However, by increasing the attack angle, the vertical deformations grew. 

 A set of GS-GMDH-based equations to estimate the subgouge clay deformation was 

provided for practical uses. 

 The GS-GMDH demonstrated several advantages including: (1) choosing the most 

influential input parameters and providing an explicit relationship for the problem (2) 

showing better topological performance and provision of simultaneous input by a hidden 

neuron from the non-adjacent and adjacent layers (unlike the classical version of neural 

network-based models), and (3) having a simple organization so that only a few 

parameters in the GS-GMDH structure are set to simulate the ice-scoured deformation. 

 Besides a high level of correlation/accuracy and a low degree of complexity in the 

simulation of the subgouge soil deformation in clay, the GS-GMDH model has some 

limitations as well. For instance, the architecture of the GS-GMDH algorithm is not 
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sufficiently flexible. This requires the algorithm to find the number of layers and neurons 

during the solving procedure instead of taking them as predetermined parameters. 

From a practical design perspective, the study showed that the GS-GMDH algorithm could 

simplify the simulation of the complex and non-linear problem of ice scour with acceptable 

accuracy and extremely lower cost. The proposed approach can be an ideal alternative for the 

initial stages of design projects, where a fast and fairly accurate estimation is required to decide 

on methodologies and logistics as well as plan the scope of detailed engineering.  
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5. Chapter 5 

 

Prediction of Iceberg-Seabed Interaction Process Using Extreme Learning 

Machine-Based Algorithms 

 

This chapter includes four sections as follows: 

Section 1: Sensitivity Analysis of Parameters Influencing the Ice-Seabed Interaction in Sand by 

Using Extreme Learning Machine 

Section 2: Assessment of Ice-Seabed Interaction Process in Clay Using Extreme Learning 

Machine 

Section 3: Evaluation of ice-seabed interaction mechanism in sand by using self-adaptive 

evolutionary extreme learning machine 

Section 4: A non-tuned machine learning method to simulate ice-seabed interaction process in 

clay 
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Section 1 

 

Sensitivity Analysis of Parameters Influencing the Ice-Seabed Interaction in 

Sand by Using Extreme Learning Machine 
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Abstract 

Ice-gouging problem is a significant challenge threatening the integrity of subsea pipelines in the 

Arctic (e.g., Beaufort Sea) and even non-Arctic (e.g., Caspian Sea) offshore regions. Determining 

the seabed response to ice scour through the subgouge soil deformations and the keel reaction 

forces are important aspects of a safe and cost-effective design. In this study, the subgouge soil 

deformations and the keel reaction forces were simulated by means of the extreme learning 

machine (ELM) for the first time. Nine ELM models (ELM 1 to ELM 9) were developed using the 

key parameters governing the ice-seabed interaction. The number of neurons in the hidden layer 

was optimized and the best activation function for the ELM network was identified. The premium 

ELM model, resulting in the lowest level of inaccuracy and complexity, and the highest level of 

correlation with experimental values was identified by performing a sensitivity analysis. The 

gouge depth ratio and the shear strength of the seabed soil were found to be the most influential 

input parameters affecting the subgouge soil deformations and the keel reaction forces. A set of 

ELM-based equations were proposed to approximate these parameters. The uncertainty analysis 

showed that the premium ELM model slightly underestimated the subgouge soil deformation. 

 

Keywords: Ice-seabed interaction, Sandy seabed, Extreme learning machine, Sensitivity 

analysis, Uncertainty analysis
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5.1.1. Introduction 

The Arctic areas have been discovered as one of the major hydrocarbon deposits comprising crude 

oil and natural gases, where marine pipelines are used to transfer these hydrocarbons from offshore 

to onshore (Azimi and Shiri 2020a). In the Arctic shallow waters, the ice-gouging event is 

universally considered a significant challenge for the bottom-founded infrastructures such as 

subsea pipelines, wellheads, and communication cables. The schematic layout of an ice-seabed 

interaction during an ice-gouging event is depicted in Figure 5-1, where a hyperbolic subgouge 

soil displacement occurs with the maximum magnitude right below the ice keel. Subsea trenching 

and backfilling are usually utilized as cost-effective solutions for the physical protection of 

pipelines. 

In terms of pipeline response to ice-gouging, the ultimate design factors include subgouge soil 

deformation and the keel reaction forces that directly affect the pipeline response. These factors, 

in turn, are resultant from several key input parameters including the attack angle, gouge depth, 

seabed soil properties, ice dynamics, etc. In the current study, similar to almost all of the earlier 

studies (e.g., Paulin 1991 & 1992; Lach 1996; C-CORE 1995; C-CORE 1996; Hynes 1996; 

Nobahar et al. 2007; Abdalla et al. 2009; Liferov et al. 2014; Pike and Kenny 2016; Nematzadeh 

and Shiri 2019), the subgouge soil deformation and the keel reaction forces were considered as the 

key outputs of the ice-gouging analysis. 
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Figure 5-1. Schematic layout of ice-seabed interaction process during an ice-gouging event 

 

Over the last decades, several experimental and numerical investigations have been done to 

improve the understanding of the ice-seabed interaction process. For instance, Palmer et al. (1990) 

performed an analytical study to approximate the horizontal and vertical subgouge forces. The 

authors suggested some linear models and asserted that the reaction forces were a function of 

iceberg weight, gouge depth, and gouge width. Paulin et al. (1991) conducted an experimental 

study to investigate the ice-soil interaction by 1g floor tests and 100g centrifuge tests. The authors 

examined clays with different saturations and concluded that the soil deformations increased by 

decreasing the relative density of the soil. Moreover, Paulin et al. (1992) performed a set of 

centrifuge tests to evaluate the subgouge deformation characteristics in the sand such as surface 

deformations, subscour displacements, pressure, and keel reaction forces. The study showed that 

measured loads and forces for the submerged models were less than the dry sand, whereas other 

parameters were partially similar to the dry and submerged tests. In addition, several pressure ridge 

ice scour experiment (PRISE) tests were performed in the sand by Hynes (1996) to measure the 
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horizontal and vertical keel reaction forces, gouge-induced pore pressures, stresses, and keel-soil 

interaction pressures. The study showed the shear dragging theory and resulted in a linear 

relationship between the scour loads and the scour depth. Lanan et al. (2001) reported the design 

and construction procedure of the Northstar offshore Arctic pipeline in Alaska. The trenching was 

applied for physical protection of the pipeline against the ice-gouging problem and the minimum 

burial depth was designed to be seven feet. The authors asserted that the ice-induced soil 

displacement was a function of soil depth, soil type, and gouge geometry. Nobahar et al. (2007) 

simulated the ice-seabed-pipe interaction mechanism by using the explicit arbitrary Lagrangian 

finite element method and the Winkler approach. The author displayed that the finite element 

model had a better performance in order to predict the ice-gouging issue. The study highlighted 

that the pipe movement increased by growing the magnitude of the keel gouge depth and the 

reaction forces were much greater for strong soil. Kenny et al. (2007) presented an overview of 

the numerical studies for the simulation of the ice-seabed-pipeline interaction phenomena. The 

authors highlighted that inputs of numerical and empirical models ought to be determined by using 

more statistical analysis to estimate the reaction forces and subgouge displacements. Konuk and 

Yu (2007) simulated the coupled ice-seabed-pipe interaction using the Arbitrary Lagrangian-

Eulerian (ALE) scheme and the Winkler approach. The authors proved that the ALE FE method 

had better performance to model the ice-gouging problem.  

Been et al. (2008) carried out an experimental investigation to measure the horizontal and vertical 

subgouge soil displacements in clay. The obtained results indicated that the magnitude of 

deformations grew by increasing the undrained shear strength since the stiffness of clay enhanced 

more slowly. Yang (2009) tested the ice-seabed interaction process in the sand by conducting the 

pipeline ice risk assessment and mitigation (PIRAM) program. The author evaluated the subgouge 
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sand displacements, the pressure, the keel reaction forces, the frontal berm, and the depth of the 

gouge. The study showed the maximum horizontal subscour deformations formed just beneath the 

ice keel base and concluded that the ratio of frontal berm height to gouge depth had a striking 

influence on the subgouge displacements and the reaction forces. Abdalla et al. (2009) modeled 

the horizontal ice-induced soil displacements by using the Coupled Eulerian Lagrangian (CEL) 

model. The study showed that the numerical models with a shallower attack angle had a better 

performance. The authors performed a parametric analysis and then demonstrated that the 

horizontal subgouge deformations were proportional to the depth of the gouge. Barrette (2011) 

classified ice-gouging studies into four major subgroups comprising field, laboratory, theoretical, 

and numerical simulation studies. The author asserted that enough knowledge of material 

characteristics was required to provide the guarded and economical burial depth for the subsea 

assets. Sancio et al. (2011) conducted a field testing program to study the ice-soil-pipeline 

interaction process in both clay and sand. The research concluded that the depth of the gouge had 

an inverse correlation with dry unit weight in the sand and undrained shear strength in clay. Phillips 

and Barrett (2012) reviewed the pipeline ice risk assessment and mitigation JIP (PIRAM) 

investigations comprising physical tests and numerical simulations. The authors demonstrated that 

the horizontal reaction force was a function of the submerged unit soil weight, attack angle, and 

gouge geometry. They also showed that the pipeline strain decreased by increasing the orientation 

of the ice gouge. Pike and Kenny (2012) modeled the ice-seabed-pipe interaction problem 

numerically through a finite element model. The study revealed that the shear stress limit had a 

remarkable influence on the axial pipe reaction forces. Peek et al. (2013) developed a FE approach 

to model the keel-soil-interaction process. The authors simulated the horizontal subgouge soil 
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displacement as a function of soil depth and showed that the numerical model had a reasonable 

performance when the size of computational elements was less than 0.1m. 

Liferov et al. (2014) developed a numerical model in order to simulate the keel-soil-pipeline 

interaction by means of a FE model. The ice mass was assumed to be a rigid body, rather and the 

pipe was simulated with Lagrangian elements. The authors concluded that the gouge depth was 

the most important factor to design the subsea pipelines during an ice-gouging event. 

Babaei and Sudom (2014) analyzed the results of eighteen numerical simulations in the field of 

ice-seabed interaction mechanisms. This review study showed that the pre-set gouge depth and the 

maximum depth of ice-scoured displacements had a linear relationship. Arnau and Ivanović (2019) 

conducted experiments to study the influence of the ice scour loads on a sandy seabed in saturated 

and dry conditions. The authors concluded that the rate effects enhanced linearly by increasing the 

scour width and the scour depth. Nematzadeh and Shiri (2019a) developed a CEL model for free-

field ice-gouging analysis in sand using ABAQUS/Explicit. The authors incorporated the non-

linear strain rate and softening effects through a user-defined subroutine. The study resulted in an 

improved prediction of the subgouge soil deformation and the keel reaction forces obtained from 

published experimental studies. Also, Nematzadeh and Shiri (2019b) simulated the ice-seabed 

interaction process using a self-correcting soil model in order to update the shear strength 

parameters during the pre-peak hardening and the post-peak softening of the sand. The authors 

showed that the subgouge soil deformation might be overestimated by the conventional decoupled 

approaches. Additionally, Nematzadeh and Shiri (2020) modeled the effect of the non-linear 

stress-strain behavior of dense sand in an ice-gouging problem by using a modified Mohr-Coulomb 

(MMC) model. The authors concluded that the size of side berms and the frontal mound were 
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affected by the magnitude of the attack angle, where greater subgouge deformations and reaction 

forces were observed for models with shallower attack angles. 

Overall, the experimental and three-dimensional (3D) simulations of ice-gouging are expensive 

and time-consuming. Therefore, the industry is seeking potential less-costly solutions for the 

simulation of the ice impact on buried pipelines. 

In recent years, artificial intelligence (AI) approaches and soft computing (SC) models have been 

successfully utilized to model the ice-seabed interaction process since these methods are accurate, 

quick, and inexpensive. For example, Kioka et al. (2003) modeled an ice-gouging problem using 

the Neural-Network (NN) approach. The NN showed a high level of accuracy and the authors 

asserted that this approach could be replaced with the nonlinear multiple-regression methods. 

Azimi and Shiri (2020a) introduced the parameters governing the ice-seabed interaction process 

in both clay and sandy conditions. They proposed a set of linear regression (LR) models to estimate 

the maximum subgouge soil displacements. The authors also concluded that the shear strength 

parameters of soil and the ratio of gouge depth to gouge width were the most influencing variables. 

Azimi and Shiri (2020b) simulated the horizontal subgouge deformations in the sand by the gene 

expression programming (GEP) model. The authors defined six GEP models and then the best 

GEP model was introduced by conducting a sensitivity analysis. The study showed that soil depth 

was considered the most significant input parameter. 

Machine learning (ML) is a powerful, accurate, and quick tool for assessing complex problems 

that have never been tried for ice-gouging analysis. In this study, the extreme learning machine 

(ELM), as a feedforward neural network (FFNN) was used for a precise, robust, and cost-effective 

evaluation of the seabed response to ice, and scour. More details are presented in the coming 

sections. 
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5.1.2. Methodology 

5.1.2.1. Extreme learning machine (ELM) 

Extreme learning machine (ELM) as a robust neural network algorithm was introduced by Huang 

et al. (2004) to solve various linear and non-linear problems. The ELM is a fast training approach 

that has the structure of a single-layer feed-forward neural network (SLFFNN) (Huang et al. 2006). 

Figure 5-2 exhibits the basic structure of the ELM network. In comparison with the classical 

backpropagation (BP) algorithm, the ELM has several benefits as follows: 

 The high training speed of feedforward neural network (FFNN) by ELM, 

 Better generalization performance, 

 Training with differentiable and non-differentiable activation functions, 

 Overcome the gradient-based algorithm such as local minimum, improper learning rate, 

and overfitting problems (Huang et al. 2011; Azimi et al. 2017; Sattar et al. 2019). 

 

Figure 5-2. Structure of ELM network 
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As shown in Figure 5-2, the ELM possesses three different layers including an input layer, a hidden 

layer, and an output layer. The input layer contains the input parameters of the ice-gouging issue 

and the number of neurons in the output layer equals the number of target parameters of the 

problem. However, the number of neurons in the hidden layer is selected based on a trial and error 

procedure. 

A single hidden layer forward network is formed by means of linear algebra in these three layers 

to solve the equations and obtain the optimum weights in the output layer (Sattar et al. 2019). The 

weights of the input layer are determined randomly, whereas the output weights are analytically 

estimated through a predefined training mechanism. 

𝑌 = ∑𝛽𝑗𝐺 (∑𝑤𝑖,𝑗𝜒𝑖 +

𝑛

𝑖=1

𝜅𝑗)

𝑚

𝑗=1

 
(5-1) 

where, 𝑌 and 𝜒 donate the output and inputs of the ELM model, respectively. Additionally, n is 

the number of input parameters, and m is the number of output parameters of the problem. Also, 

𝑤𝑖,𝑗 shows the input weight as the connection between the ith neuron in the input layer and the jth 

neuron in the hidden layer; 𝛽𝑗 is a coefficient to link the jth neuron in the hidden layer to the 

particular neuron in the output layer. Moreover, 𝐺( ) and 𝜅𝑗 are the activation function and biases 

of the hidden layer neurons, respectively. 

Generally, the output of an SLFFNN is computed in two major stages. First, the network of the 

hidden layer and the number of neurons in this layer is determined by using a trial and error 

procedure (Azimi et al. 2017). Subsequently, to train the ELM network, an activation function 

(AF) is defined. Indeed, the optimum number of hidden neurons and the best activation function 

lead to the optimal ELM network. Using arbitrary assignments of the input layer weights (𝑤𝑖,𝑗) 
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and the biases (𝜅𝑗), the structure of hidden layer neurons and the weight in the output layer are 

computed. Therefore, equation (5-1) is rewritten as below: 

𝐻𝛽 = 𝑌 (5-2) 

here, H is the extreme learning machine feature mapping matrix as follows: 

𝐻(𝑤𝑖,𝑗 , 𝜅𝑗 , 𝜒𝑖) = [

𝐻1,1 ⋯ 𝐻1,𝑚

⋮ ⋱ ⋮
𝐻𝑛,1 ⋯ 𝐻𝑛,𝑚

] = [
𝐺(𝑤1,1𝜒1 + 𝜅1) ⋯ 𝐺(𝑤1,𝑚𝜒𝑚 + 𝜅𝑚)

⋮ ⋱ ⋮
𝐺(𝑤𝑛,1𝜒𝑛 + 𝜅1) ⋯ 𝐺(𝑤𝑛,𝑚𝜒𝑚 + 𝜅𝑚)

] 

(5-3) 

Also, 𝛽 and Y are defined as below: 

𝑌 = [𝑌1 𝑌2  ⋯  𝑌𝑚]   and   𝛽 = [𝛽1 𝛽2  ⋯  𝛽𝑛] (5-4) 

It is worth noting that 𝛽𝑗 is obtained by minimizing error in the estimation through the Moore-

Penrose generalized inverse matrix as follows (Huang et al. 2011): 

�̂� = 𝐻+𝑌 (5-5) 

where, 𝐻+ represents the Moore-Penrose generalized inverse matrix of H.  

 

5.1.2.2. Seabed interaction process 

The ice-seabed interaction parameters (η) include the subgouge soil deformations (d/W) and 

reaction forces (F/𝛾𝑠𝑊
3) that in turn are a function of the scour depth (Ds), the internal friction 

angle of sand 𝜑 (representing the shear strength of cohesionless seabed), the width of gouge (W), 

the attack angle (), the angle of the surcharged soil slope (ω), the height of the berm (h’), the 

horizontal (Lh) and the vertical load (Lv), the velocity of ice keel (V), and the specific weight of 

sand (𝛾𝑠). These relationships are defined as follows (Lach 1996; Azimi and Shiri 2020a): 

𝜂 (𝑠𝑎𝑛𝑑) = 𝑓1(𝐷𝑠, 𝜑,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠) (5-6) 

Besides the internal friction angle, other parameters may affect the soil response to ice-gouging 

such as the relative density, dilation angle, and variation of shear strength parameters with depth. 
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However, it is challenging to find datasets reporting these parameters altogether. Also, the strength 

parameters considered in this study (γs and φ) have a direct relationship with the relative density 

and dilation angle, which can be considered as an inherent inclusion of their potential effects in 

terms of sensitivity (Mitchell and Soga 2005; Cinicioglu and Abadkon 2015). Equation (5-6) can 

be written as a function of eight dimensionless groups as below (Azimi and Shiri 2020a): 

𝑑(𝑠𝑎𝑛𝑑)

𝑊
,

𝐹

𝛾𝑠𝑊3
= 𝑓2 (

𝐷𝑠

𝑊
,𝜑,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-7) 

The maximum subgouge deformation in the sand (𝑑(𝑠𝑎𝑛𝑑)) occurs immediately under the ice keel 

in the gouge centerline. At greater depths, by incorporating the soil depth (y/W), the subgouge soil 

deformation (d(sand)/W) is written as follows: 

𝑑(𝑠𝑎𝑛𝑑)

𝑊
= 𝑓3 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,𝜑,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-8) 

Similarly, the keel reaction force (F) is a function of the position of the iceberg along the scour 

axis (x) and a set of parameters including 𝐷𝑠, 𝜑,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣 , 𝑉, 𝛾𝑠. Therefore, the equation 

(5-8) can be written as below: 

𝐹(𝑠𝑎𝑛𝑑)

𝛾𝑠𝑊3
= 𝑓4 (

𝑥

𝑊
,
𝐷𝑠

𝑊
,𝜑,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-9) 

In the current study, a series of investigations were conducted to obtain the ice-gouging output 

parameters (i.e., d/W and F/W). Therefore, the results from six experimental studies reported by 

Paulin (1991), Paulin (1992), C-CORE (1995), Hynes (1996), C-CORE (1996), and Yang (2009) 

were utilized to verify the ELM models. The angle of the surcharged soil slope (ω) was not 

reported by all applied experimental studies. Therefore, the introduced dimensionless groups in 

equations (5-8) and (5-9) were applied as the input parameters for the ELM model to simulate the 
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horizontal subgouge deformation (dh/W), the vertical subgouge deformation (dv/W), the horizontal 

reaction force (Fh/W), and the vertical reaction force (Fv/W).  

There are several experimental investigations in the literature. Usually, these studies provide 

different input parameters depending on the objectives of the investigation. This, in turn, limits the 

application of datasets to evolutionary numerical models. In this study, the dataset was selected 

amongst the studies that provided a common set of input parameters and were widely used in the 

literature for validation purposes. To ensure that the selected dataset is statistically significant, a t-

test was conducted and the P-values were calculated and assessed against a maximum target value 

of 0.05. This was to evaluate the probability of the relationship between the parameters being 

affected by an alternative hypothesis (Bland and Peacock 2002). The computed P-value for the 

applied datasets was 0.039, indicating that the correlations are statistically significant. Also, the 

test data from the centrifuge and 1g scale tests were non-dimensionalized to assure the consistency 

of the dataset and confidence of the obtained simulation results. Figure 5-3 shows the used input 

combinations in the current study.  

 

Figure 5-3. Applied input combinations in the current study 

ELM 1:   [1,2,3,4,5,6,7,8]

ELM 2:   [1,2,3,4,5,6,7]

ELM 3:   [1,2,3,4,5,6,8]

ELM 4:   [1,2,3,4,5,7,8]

ELM 5:   [1,2,3,4,6,7,8]

ELM 6:   [1,2,3,5,6,7,8]

ELM 7:   [1,2,4,5,6,7,8]

ELM 8:   [1,3,4,5,6,7,8]

ELM 9:   [2,3,4,5,6,7,8]
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Nine ELM models (ELM 1 to ELM 9) were defined to predict the ice-induced sand parameters. It 

means that ELM 1 was defined by using all input parameters and then the effect of each input was 

eliminated (ELM 2 to ELM 9) to identify the most significant input parameters and introduce the 

superior ELM model. 70% of the observed values were applied to train the ELM models, and 30% 

of the remaining data were employed to test these models. 

 

5.1.2.3. Goodness of fit 

To examine the performance of the ELM models, several statistical indices including correlation 

coefficient (R), the variance accounted for (VAF), root mean square error (RMSE), mean absolute 

error (MAE), Nash-Sutcliff efficiency coefficient (NSC), and Akaike Information Criteria (AIC) 

was calculated as follows: 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(5-10) 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑃𝑖 − 𝑂𝑖)

𝑣𝑎𝑟(𝑃𝑖)
) × 100 

(5-11) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(5-12) 

𝑀𝐴𝐸 =
∑ |𝑃𝑖 − 𝑂𝑖|

𝑛
𝑖=1

𝑛
 

(5-13) 

𝑁𝑆𝐶 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1

 
(5-14) 

𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(5-15) 
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where, Oi, Pi, �̅�, �̅�, and n are the observed ice-induced parameters, the simulated values, the 

average observed values, the average simulated values, and the number of experimental 

measurements, respectively. Moreover, the k is the number of hidden layer neurons used in the 

ELM network. The closeness of the correlation coefficient (R) and the Nash-Sutcliff efficiency 

coefficient (NSC) to unit value (i.e., one) showed that the ELM model has a high correlation with 

the observed values., The RMSE and MAE values close to zero meant that the particular model has 

the lowest level of error. Furthermore, the superior ELM model had the highest value of the VAF 

criterion. Although, the complexity of these ELM models was not shown through the applied 

indices. To overcome this problem, the Akaike Information Criteria (AIC) was employed. The less 

complex ELM model had the lowest value of the AIC index. Hence, the superior ELM model had 

the lowest value of the AIC index and error (RMSE and MAE) and the highest level of correlation 

(R and NSC) with the experimental values. 

 

5.1.3. Results and discussion 

Initially, the number of neurons in hidden layers (NHN) was optimized and then the best activation 

function (AF) of the extreme learning machine (ELM) was chosen. Subsequently, the subgouge 

sand deformations (dh/W and dv/W) and the subgouge reaction forces (Fh/W and Fv/W) were 

simulated by using ELM 1 to ELM 9. After that, a comprehensive sensitivity analysis (SA) for the 

ELM models was conducted. Next, an error analysis along with an uncertainty analysis (UA) was 

performed for the superior ELM model. Lastly, a set of ELM-based equations were provided to 

estimate the horizontal subgouge deformations (dh/W), the vertical subgouge deformations (dv/W), 

the horizontal subgouge reaction force (dh/W), and the vertical subgouge reaction force (dv/W). 
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5.1.3.1. Number of hidden neurons (NHN) 

The optimized number of hidden neurons (NHN) for the extreme learning machine (ELM) to 

simulate the ice-gouging parameters was evaluated. For instance, variations of NHN versus the 

applied statistical indices for modeling the horizontal subgouge deformations (dh/W) are shown in 

Figure 5-4. In the current study, the number of neurons in the hidden layer was initially set to two 

and then the performance of the ELM model was assessed by increasing this value to 32. As shown, 

with increasing the NHN, the precision of the ELM model enhanced notably. In other words, as 

the NHN was chosen to be two, the values of correlation coefficient (R), mean absolute error 

(MAE), and Akaike Information Criteria (AIC) were respectively estimated as 0.551, 0.055, and -

36.458. However, the VAF, RMSE, and NSC were equal to 95.771, 0.051, and 0.958 for an NHN 

value of 28. Therefore, the optimal NHN was chosen to be 28 since the performance of the ELM 

model was insignificantly altered. 
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Figure 5-4. Variations of the number of hidden neurons (NHN) versus the applied statistical 

indices for simulation of horizontal subgouge deformations (dh/W) 

 

5.1.3.2. Activation Function (AF) 

The effect of different activation functions including sigmoidal (Sig), sinusoidal (Sin), hard limit 

(Hardlim), radial basis (Radbas), and triangular basis (Tribas) functions was evaluated to model 

the ice-gouging parameters. The performance of the ELM network for each function was assessed 

and then the superior activation function was introduced. Figure 5-5 illustrates the estimated 

statistical indices for these activation functions to model the horizontal subgouge deformations.  
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Figure 5-5. Estimated statistical indices for different activation functions to model the horizontal 

subgouge deformations 

 

For example, for the Sig, Sin, and Hardlim functions, the value of the correlation coefficient was 

surmised as 0.980, 0.871, and 0.630, respectively. The Nash-Sutcliff efficiency coefficient for the 

Radbas and the Tribas functions equaled 0.748 and 0.773. The Sig activation function resulted in 

the highest level of accuracy and correlation with experimental values. Therefore, the Sig function 

was utilized as the best activation function to simulate the ice-induced process in the current study. 
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5.1.3.3. Sensitivity analysis (SA) 

Figure 5-6 shows the calculated statistical indices of ELM 1 to ELM 9 to simulate the horizontal 

subgouge deformations (dh/W) in training and testing modes. ELM 1 was a function of all input 

variables including y/W, Ds/W, φ, α, h’/W, Lh/γs.W3, Lv/γs.W3, and V2/g.W. The values of 

correlation coefficient (R), Nash-Sutcliff efficiency coefficient (NSC), and Akaike Information 

Criteria (AIC) for ELM 1 in training mode were respectively estimated as 0.980, 0.958, and -

86.511. Moreover, ELM 2 predicted the horizontal deformations by means of y/W, Ds/W, φ, α, 

h’/W, Lh/γs.W3, and Lv/γs.W3, interpreting that the influence of the velocity parameter (V2/g.W) 

was ignored for ELM 2. In the testing mode of ELM 2, the VAF, MAE, and RMSE were equal to 

40.013, 0.104, and 0.163, respectively. In comparison with ELM 1, the correlation of ELM 2 in 

testing mode with experimental values decreased by roughly 28%, whereas its accuracy in training 

mode reduced by almost 127%. 
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Figure 5-6. The key statistical indices for horizontal deformations simulated by ELM models in 

training and testing modes 

 

The y/W, Ds/W, φ, α, h’/W, Lh/γs.W3, and V2/g.W were used as the input variables of ELM 3 to 

model the horizontal deformations, meaning that the impact of dimensionless vertical load 

(Lv/γs.W3) was wiped out for this model. The complexity of ELM 3 in comparison with ELM 1 

increased by about 54%. In other words, the AIC, NSC, and VAF values for ELM 3 in the testing 

mode were respectively surmised at 13.597, -1.083, and 56.308. 
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The effect of Lh/γs.W
3 was relinquished for ELM 4 and this model estimated the horizontal 

deformations using other input parameters. The accuracy and correlation of ELM 4 in comparison 

with ELM 1 decreased by approximately 105% and 23%, with RMSE=0.106 and R=0.752. 

The MAE, R, and AIC values in ELM 5 for the simulation of the horizontal deformations in training 

mode were 0.060, 0.905, and -49.442, respectively. For ELM 5, the influence of h’/W was 

eliminated, meaning that ELM 5 predicted the target function by using y/W, Ds/W, φ, α, Lh/γs.W3, 

Lv/γs.W3, and V2/g.W. The correlation of ELM 5 in testing mode compared to ELM 1 was reduced 

by nearly 16%. ELM 6 predicted the horizontal deformations by a combination of y/W, Ds/W, φ, 

h’/W, Lh/γs.W3, Lv/γs.W3, and V2/g.W parameters and the ice attack angle variable (α) was the 

removed factor in ELM 6. The AIC and RMSE values for ELM 6 in the testing phase were 

respectively reckoned to be 15.058 and 0.135, with a correlation coefficient of 0.870. In ELM 7, 

the key variables included y/W, Ds/W, α, h’/W, Lh/γs.W3, Lv/γs.W3, and V2/g.W, signifying that the 

shear strength parameter of the seabed sand (φ) was ignored to model the horizontal deformations. 

The values of R, MAE, and VAF for ELM 7 in the testing situation were calculated to be 0.800, 

0.074, and 52.583, respectively. Regarding the comparison between ELM 1 and ELM 7, the 

complexity of ELM 7 was roughly a rise of 35%, with AIC=-59.077 in the training mode. The 

influence of Ds/W was removed from the input of ELM 8 and this model simulated the target 

function by using y/W, φ, α, h’/W, Lh/γs.W3, Lv/γs.W3, and V2/g.W. It is worth noting that the 

accuracy of ELM 8 compared to ELM 1 decreased by about 158%, with MAE=0.062 in the training 

stage. The ratio of soil depth to gouge width (y/W) was the eliminated factor in ELM 9, where this 

model comprised the input variables Ds/W, φ, α, h’/W, Lh/γs.W3, Lv/γs.W3, and V2/g.W. In the 

testing mode of ELM 9, the NSC, VAF, and RMSE values were -15.911, 17.377, and 0.357, 

respectively. The accuracy and correlation of ELM 9 in comparison with ELM 1 decreased close 



264 
 

to 250% and 31%, whereas the complexity of this model increased to nearly 71%. Therefore, ELM 

1 was identified as the best model to simulate the horizontal deformation (dh/W) since this model 

had a good performance in terms of accuracy, correlation, and complexity. After ELM 1 model, 

ELM 6, ELM 5, and ELM 8 were ranked as the second, third, and fourth-best ELM models. 

Moreover, ELM 7 as the fifth-best, ELM 3 as the sixth-best, ELM 4 as the seventh-best, and ELM 

2 as the eighth-best ELM modes were graded. ELM 9 was detected as the worst ELM model to 

predict horizontal deformations. 

According to the performed sensitivity analysis, the ratio of soil depth to gouge depth (y/W) was 

identified as the most significant input parameter to simulate the horizontal deformation. After 

that, the dimensionless velocity parameter (V2/g.W), the dimensionless horizontal load (Lh/γs.W
3), 

the ratio of gouge depth to gouge width (Ds/W), the shear strength parameter of the seabed sand 

(φ), the dimensionless vertical load (Lv/γs.W3), the attack angle (α), and the ratio of berm height to 

gouge width (h’/W) were respectively prioritized in terms of effectiveness. Figure 5-7 exhibits the 

estimated statistical indices for the vertical deformations simulated by the ELM models in training 

and testing modes. In the testing mode of ELM 1, the values of R, NSC, and AIC were respectively 

computed to be 0.915, 0.642, and 2.339. In comparison with ELM 1, the accuracy of ELM 2, ELM 

3, and ELM 4 reduced by approximately 67%, 33%, and 53%. In addition, the RMSE and MAE 

values for ELM 5 in the testing phase were estimated at 0.007 and 0.005, where the correlation of 

this model decreased by nearly 30%. Additionally, the complexity of ELM 6 and ELM 7 enhanced 

by about 259% and 358% as compared to ELM 1, with the AIC of 8.191 and 10.725, respectively. 

The correlation of ELM 8 decreased by a value close to 43%, with a computed correlation 

coefficient of 0.519 in the testing situation. The VAF, RMSE, and NSC values for ELM 9 in the 
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testing mode were respectively equal to -68.322, 0.007, and -0.190, with a decreased accuracy of 

75%. 

The ELM 1 was introduced as the best ELM model to estimate the vertical deformations (dv/W), 

with the highest level of accuracy and correlation along with the lowest level of complexity. After 

ELM 1 model, ELM 2, ELM 5, ELM 4, and ELM 3 were respectively known as the second-best, 

third-best, fourth-best, and fifth-best ELM models. Furthermore, ELM 9, ELM 6, ELM 8, and 

ELM 7 were graded as the sixth-best, seventh-best, eighth-best, and ninth-best ELM models for 

simulating vertical deformations. 

Based on the conducted sensitivity analysis, the shear strength parameter of the sandy seabed (φ) 

was identified as the most influencing input parameter to estimate the vertical deformations. 

Besides, other input variables including Ds/W, α, y/W, and Lv/γs.W3 were ranked as the second, 

third, fourth, and fifth significant input parameters, respectively. In addition, the Lh/γs.W3, h’/W, 

and V2/g.W were respectively ranked as the sixth, seventh, and eighth important inputs. 
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Figure 5-7. The key statistical indices for vertical deformations simulated by ELM models in 

training and testing modes 

 

The calculated statistical indices for the horizontal forces simulated by the ELM models in the 

training and testing modes are shown in Figure 5-8. The values of AIC, NSC, and VAF for ELM 1 

in the testing phase equaled 406.615, 0.987, and 98.665, with a computed correlation coefficient 

of 0.995. The R value for ELM 2 and ELM 3 models were the same, with 0.994. In the training 

mode of ELM 4, ELM 5, and ELM 6, the AIC index was respectively estimated to be 875.029, 
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833.302, and 842.798. Also, the VAF value for the testing situation of ELM 7 and ELM 8 was 

98.596 and 82.855, respectively. Among all ELM models, ELM 9 had the lowest level of 

correlation and precision, with a computed R value of 0.879. Moreover, the complexity of ELM 9 

was quite greater than other ELM models (AIC=450.833). 

According to the performed analyses, the performance of ELM 1 to ELM 8 dealing with the 

horizontal forces was partly similar. Thus, ELM 1 was introduced as the premium ELM model 

since it comprised all input parameters. 

Additionally, the performance of the ELM model lessened significantly by removing the soil depth 

parameter (y/W) so the y/W was known as the most effective input variable to predict the horizontal 

forces. It is worth mentioning that the ratio of gouge depth to gouge width (Ds/W) had also an 

important influence and this parameter was graded as the second significant input variable. 
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Figure 5-8. The key statistical indices for horizontal forces simulated by ELM models in training 

and testing modes 

 

Figure 5-9 illustrates the estimated statistical indices for vertical forces simulated by the ELM 

models in the training and testing stages. The correlation coefficient (R), Nash-Sutcliff efficiency 

coefficient (NSC), and Akaike Information Criteria (AIC) values for ELM 1 in the testing mode 

were equal to 0.982, 0.960, and 142.206, respectively. The magnitude of computed VAF for ELM 

2, ELM 3, and ELM 4 in the testing situation were respectively surmised to be 95.612, 95.438, and 
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95.231. For testing the ELM 5, ELM 6, ELM 7, and ELM 8 models, the AIC value was estimated 

at 142.718, 143.080, 141.565, and 142.551. Thus, ELM 1 to ELM 8 had a similar performance in 

terms of accuracy, correlation, and complexity so as to simulate the vertical forces.  

 

Figure 5-9. The key statistical indices for vertical forces simulated by ELM models in training 

and testing modes 

 

The implemented sensitivity analysis showed that ELM 9 was the worst ELM model for the 

estimation of the vertical forces, with computed R and NSC indices of 0.926 and 0.857. Therefore, 
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ELM 1 was considered as the superior ELM model in order to predict the vertical deformations 

and the ratio of soil depth to gouge width (y/W) was distinguished as the most effective input 

parameter. Moreover, the dimensionless horizontal load factor (Lh/γs.W
3) was ranked as the second 

significant input parameter. 

 

5.1.3.4. Error analysis (EA) 

The results of Error analysis for the superior ELM model (ELM 1) to simulate the horizontal 

deformation, the vertical deformation, the horizontal reaction force, and the vertical reaction 

force are shown in Figure 5-10. 

 

Figure 5-10. Error analysis results of the superior ELM model to simulate horizontal 

deformations, vertical deformations, horizontal reaction forces, vertical reaction forces 
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Almost 85% of the horizontal deformations estimated by the ELM model in the training mode had 

an error of less than 5%, whilst this percentage in the testing mode was nearly 96%. In addition, 

all simulated vertical deformations in both the training and testing stages had an error of less than 

10%. However, all horizontal forces predicted by the ELM model in the training and testing 

situations were more than 10 percent. It is worth noting that one-fifth and one-tenth of the predicted 

vertical forces respectively in training and testing modes had an error of less than 5%, whereas 

approximately 78% of the simulated vertical forces in testing mode had an error of more than 10%. 

Therefore, the error analysis showed that the superior ELM model predicted the subgouge soil 

parameters with reasonable accuracy. 

 

5.1.3.5. Uncertainty analysis (UA) 

Uncertainty analysis (UA) was performed for evaluating the performance of the superior ELM 

model to simulate the subgouge parameters. The errors estimated by the ELM model (𝑒𝑗) was 

considered as the difference between the simulated (𝑃𝑗) and the actual (𝑂𝑗) ice-induced sand 

parameters as below: 

𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (5-16) 

Moreover, the mean value of the calculated error (�̅�) and the standard deviation (𝑆𝑒) were 

computed as below (Azimi and Shiri 2020a): 

�̅� = ∑ 𝑒𝑗
𝑛

𝑗=1
 

(5-17) 

𝑆𝑒 = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(5-18) 

A positive 𝑒 ̅ shows that the simulated values are greater than the observed values and the ELM 

model has overestimated the output parameters. By contrast, a negative 𝑒 ̅ shows that the particular 
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ELM model has underestimated the output parameters, meaning that the simulated ice-gouging 

parameter is less than the experimental measurements. Moreover, a confidence bound using 𝑒 ̅and 

𝑆𝑒was created around an estimated error by means of the “Wilson score method” without the 

continuity correction (Azimi and Shiri 2020a). The Wilson score interval is an improvement over 

the normal distribution interval in which an asymmetric normal distribution is used to enhance the 

confidence interval bound. Subsequently, ±1.96Se results were expressed in a 95% confidence 

interval (95%CI) which was a 95% estimated error interval, and then the width of uncertainty 

bound (WUB) was estimated. It is worth mentioning that the width of uncertainty bound (WUB) 

was calculated as follows: 

𝑊𝑈𝐵 = ±
(𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 − 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑)

2
 

(5-19) 

The results of the UA for the best ELM model are tabulated in Table 5-1. 

 

Table 5-1. Results of uncertainty analysis for the superior ELM model 

Parameter ē Se WUB 95%CI 

dh/W -0.007 0.043 ±0.007 -0.014 to -0.001 

dv/W -0.001 0.004 ±0.0011 -0.002 to 0.0002 

Fh/W -26006 98424 ±12704 -38710 to -13302 

Fv/W -3.010 35.120 ±5.095 -8.110 to 2.080 

 

The results show that the ELM model underestimated all ice-induced sand parameters including 

the dh/W, dv/W, Fh/W, and Fv/W. Furthermore, the 95% confidence interval of the ELM model to 

simulate the horizontal deformations was from -0.014 to -0.001, with a WUB of ±0.007. The 

uncertainty bound widths for the best ELM model (ELM 1) to simulate the vertical deformations 
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(dv/W), the horizontal reaction forces (Fh/W), and the vertical reaction forces (Fv/W) were 

respectively estimated as ±0.0011, ±12704, and ±5.095. Furthermore, 95% confidence intervals of 

the ELM model to simulate the horizontal reaction forces (Fh/W) and the vertical reaction forces 

(Fv/W) were approximated at “-38710 to -13302” and “-8.110 to 2.080”, respectively. Therefore, 

the UA showed that the premium ELM model had an underestimated performance in dealing with 

the subgouge sand parameters. 

 

5.1.3.6. Comparison of ELM predictions with empirical models 

A set of empirical models proposed by Woodworth-Lynes et al. (1996) to estimate the subgouge 

deformations, and also Barker and Timco (2002) to approximate the reaction forces were used to 

compare the prediction results with ELM: 

𝑑ℎ = 0.6(𝑊.𝐷𝑠). 𝑒𝑥𝑝 (−
2

3
.
𝑦

𝐷𝑠
) 

(5-20) 

𝑑𝑣 = 𝐷𝑠. 𝑒𝑥𝑝 (−
1

3
.
𝑦

𝐷𝑠
) 

(5-21) 

𝐹 = 8.5𝑉 + 46.3𝐷𝑠 + 28.5𝑊 − 7.6 (5-22) 

 

Table 5-2 shows the comparison between the results of ELM 1 as the best ELM model and these 

empirical approaches. 

 

Table 5-2. Comparison between the results of ELM 1 and the empirical models 

Model Parameter R VAF RMSE MAE NSC AIC 

Eq. (5-20) dh 0.894 79.65 0.425 0.193 0.785 -58.533 

Eq. (5-21) dv 0.047 -2670.284 4.304 1.242 -0.006 52.709 
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Eq. (5-22) Fh 0.281 -

6.083E+11 

12878254.8 5910865.714 -0.267 1714.365 

 

 

ELM 1 

(test) 

dh 0.969 92.840 0.022 0.011 0.937 -22.094 

dv 0.915 81.097 0.004 0.003 0.642 2.339 

Fh 0.997 99.342 86922.52 48394.323 0.991 401.739 

Fv 0.986 95.612 35.543 25.199 0.963 141.291 

 

The correlation coefficient (R) values for equations (5-20), (5-21), and (5-22) were equal to 0.894. 

0.047, and 0.281, respectively. The RMSE values for the horizontal and vertical deformations 

estimated by the empirical model were surmised as 0.425 and 4.304, with an MAE of 1.242 for 

equation (5-22). Even though the empirical models had less accuracy and correlation in 

comparison with ELM 1, these empirical approaches were less complex than the ELM model since 

equations (5-20) to (5-22) possessed lower constants. Thus, the ELM model demonstrated superior 

performance at dealing with the simulation of the ice scouring parameters. 

 

5.1.3.7. Comparison of ELM predictions with test results 

Figures 5-11 to 5-14 depict the horizontal subgouge soil deformation (dh/W), the vertical subgouge 

soil deformation (dv/W), the horizontal reaction force (Fh/𝛾𝑠𝑊
3), and the vertical reaction force 

(Fv/𝛾𝑠𝑊
3) profiles simulated by the superior ELM model (i.e., ELM 1). As shown, ELM 1 showed 

a good performance to estimate the ice-induced soil parameters in sand since the ELM model 

simulated the subgouge sand deformations and reactions forces in terms of soil depth (y/W), gouge 

depth (Ds/W), friction angle of sand (φ), keel angle (α), berm height (h’/W), loads (Lh/γs.W3, 

Lv/γs.W3), and velocity of keel (V2/g.W). By contrast, the previous investigations proposed a set of 
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empirical models as a function of iceberg weight, gouge geometry, keel velocity, unit soil weight, 

and attack angle to approximate the subgouge soil characteristics (Palmer et al. 1990; Woodworth-

Lynes et al. 1996; Barker and Timco 2002; Yang 2009). It is worth mentioning that these empirical 

models as a function of two or three input parameters were suggested for a specific dataset, while 

the premium ELM model managed to simulate the ice-induced sand features in a comprehensive 

dataset, ranging from 1g experimental studies to centrifuge tests. 

Furthermore, ELM 1 could appropriately simulate the maximum horizontal subgouge 

deformations at y/W=0, where just beneath the ice keel in the experimental models, and this 

parameter decreased at greater depth, meaning that the overall trend of horizontal subgouge 

deformations was correctly modeled by the ELM network. 

In comparison with the centrifuge results, ELM 1 demonstrated a better performance at dealing 

with the 1g experimental measurements [Figures 5-11(a) to 5-11(e); Figures 5-12(a) to 5-12(d)]. 

There were several fluctuations in these centrifuge experimental values, rather ELM 1 predicted 

these measurements with an acceptable agreement [Figures 5-11(p) to Figures 5-11(t)]. 

Notwithstanding that the ELM network attempted to simulate the horizontal deformations with its 

highest performance in a wide range of experimental measurements, some discrepancies were 

observed with the centrifuge results because the maximum horizontal deformation parameter 

(dh/W) in the 1g tests varied from 0.9 to 1.4, whereas this range for the centrifuge tests was from 

0.002 to 0.9. It means that the ELM network had better performance for the simulation of large 

deformations. 

Unlike the horizontal deformation where its magnitude was decreased by a hyperbolic curve, it 

seems that the experimental vertical deformations lacked a meaningful trend because the vertical 

subgouge deformations in the 1g test (Paulin 1992) fluctuated severely [Figures 8-12(a) to Figures 
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8-12(d)] though ELM 1 managed to model all vertical displacements with both linear and nonlinear 

trends [Figures 8-12(e) to Figures 8-12(l)].  

As shown in figures 5-13 and 5-14, the minimum reaction forces were recorded in the initial 

position of the iceberg (x/W=0) and these values increased along the scour axis. Despite the 

oscillation trend in the experimental reaction forces, ELM 1 used a nonlinear behavior to predict 

the horizontal reaction forces (Figures 5-13). Moreover, the vertical reaction forces were reported 

by positive and negative values but ELM 1 simulated these values linearly (Figures 5-14). 
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Figure 5-11. Horizontal deformation (dh/W) profiles simulated by the superior ELM model 

0.6

0.68

0.76

0.84

0 0.4 0.8 1.2

y/
W

dh/W(a)

Paulin (1991)

ELM

0.6

0.68

0.76

0.84

0 0.4 0.8 1.2

y/
W

dh/W(b)

Paulin (1992)

ELM

0.6

0.68

0.76

0.84

0 0.4 0.8 1.2

y/
W

dh/W(c)

Paulin (1992)

ELM

0.6

0.68

0.76

0.84

0 0.35 0.7 1.05 1.4

y/
W

dh/W(d)

Paulin (1992)

ELM

0.55

0.65

0.75

0.85

0 0.3 0.6 0.9

y/
W

dh/W(e)

Paulin (1992)

ELM

0

0.05

0.1

0.15

0.2

0.25

0 0.06 0.12 0.18

y/
W

dh/W(f)

C-CORE (1995)

ELM

0

0.05

0.1

0.15

0.2

0.25

0 0.06 0.12 0.18

y/
W

dh/W(g)

C-CORE (1995)

ELM

0

0.06

0.12

0.18

0.24

0.3

0 0.025 0.05 0.075

y/
W

dh/W(h)

C-CORE (1995)

ELM

0

0.06

0.12

0.18

0.24

0.3

0 0.1 0.2 0.3

y/
W

dh/W(i)

C-CORE (1995)

ELM

0

0.07

0.14

0.21

0 0.15 0.3 0.45

y/
W

dh/W(j)

C-CORE (1995)

ELM

0.05

0.1

0.15

0.2

0 0.01 0.02 0.03

y/
W

dh/W(k)

Hynes (1996)

ELM

0

0.05

0.1

0.15

0.2

0 0.02 0.04 0.06

y/
W

dh/W(l)

Hynes (1996)

ELM

0.05

0.1

0.15

0.2

0.25

0.3

0 0.02 0.04 0.06

y/
W

dh/W(m)

Hynes (1996)

ELM

0.05

0.1

0.15

0.2

0.25

0.3

0 0.016 0.032 0.048

y/
W

dh/W(n)

Hynes (1996)

ELM

0.05

0.1

0.15

0.2

0 0.03 0.06 0.09

y/
W

dh/W(o)

Hynes (1996)

ELM

0

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15

y/
W

dh/W(p)

C-CORE (1996)

ELM

0.1

0.2

0.3

0.4

0.5

0 0.3 0.6 0.9

y/
W

dh/W(q)

C-CORE (1996)

ELM

0

0.1

0.2

0.3

0.4

0 0.2 0.4

y/
W

dh/W(r)

C-CORE (1996)

ELM

0

0.1

0.2

0.3

0.4

0 0.07 0.14 0.21

y/
W

dh/W(s)

C-CORE (1996)

ELM

0

0.13

0.26

0 0.02 0.04 0.06

y/
W

dh/W(t)

C-CORE (1996)

ELM

0

0.002

0.004

0.006

0 0.02 0.04 0.06 0.08

y/
W

dh/W(u)

Yang (2009)

ELM

0

0.001

0.002

0.003

0 0.003 0.006 0.009

y/
W

dh/W(v)

Yang (2009)

ELM

0

0.006

0.012

0.018

0 0.013 0.026 0.039

y/
W

dh/W(w)

Yang (2009)

ELM

0

0.0013

0.0026

0.0039

0 0.001 0.002 0.003

y/
W

dh/W(x)

Yang (2009)

ELM

0

0.008

0.016

0.024

0 0.007 0.014

y/
W

dh/W(y)

Yang (2009)

ELM



278 
 

 

 

 

Figure 5-12. Vertical deformation (dv/W) profiles simulated by the superior ELM model 
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Figure 5-13. Horizontal reaction force (Fh/𝛾𝑠𝑊
3) profiles simulated by the superior ELM model 

 

 

Figure 5-14. Vertical reaction force (Fv/𝛾𝑠𝑊
3) profiles simulated by the superior ELM model 
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complexity. Thus, a set of matrices for estimation of the subgouge deformations and the reaction 

forces through ELM 1 were presented in Appendix 1 

 

5.1.4. Conclusion 

The subgouge soil deformation and the keel reaction forces in the sand were simulated by the 

extreme learning machine (ELM). A set of ELM-based matrices were proposed to estimate the 

subgouge sand deformations and reaction forces. The ELM performance was evaluated through 

comparisons with existing empirical and experimental studies. The extreme learning machine 

(ELM) was found as a potential alternative tool for ice-gouging analysis. The study showed that 

the ELM can perform accurate, quick, and less expensive simulations compared with 3D FEA 

models and experimental studies. 

 ELM 1 as the best model simulated the subgouge sand features in terms of soil depth, 

gouge depth, friction angle of sand, keel angle, berm height, loads, and velocity of the 

keel. 

 The ELM model predicted the maximum horizontal subgouge deformations just under 

the ice keel in the experimental tests, whilst this parameter decreased at greater depth. 

 Error analysis showed an error of less than 5% for about 85% of simulated subgouge soil 

deformations. As the soil depth parameter was an eliminated input, the ELM might result 

in less accurate predictions.  

 Overall, the ELM was found to slightly underestimate the test results.  

 The ratio of soil depth to gouge depth was found to be the most influencing input 

parameter to estimate the horizontal subgouge deformations and reaction forces, whilst 
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the shear strength parameter of the sandy seabed was identified as the most effective 

input to predict the vertical deformations. 

The study provided a good insight into the applicability of the ELM method to ice-gouging in sand.  

More experimental and numerical investigations with managed input and output parameters would 

improve the performance of the developed ELM model as a potential alternative to the existing 

approaches. 
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Appendix 

ELM-based equations 

ELM 1 was considered as the premium ELM model to simulate the subgouge sand parameters (𝜂) 

comprising the subgouge deformations (dh/W & dv/W) and the subgouge forces (Fh/W & Fv/W). 

Among all ELM models, ELM 1 had a reasonable accuracy, correlation, and complexity. It is 

worth mentioning that ELM 1 estimated the subgouge sand parameters by using all input 

parameters and the general format of the extreme learning machine-based formula was as the 

following form: 
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𝜂 = [
1

1 + 𝑒𝑥𝑝(𝐼𝑛𝑊 × 𝐼𝑛𝑉 × 𝐵𝐻𝐼)
]
𝑇

× 𝑂𝑢𝑡𝑊 
(5-23) 

where, 𝐼𝑛𝑊 is the matrix of input weight, 𝐼𝑛𝑉 is the matrix of input parameters, 𝐵𝐻𝐼 is the matrix 

of bias of hidden layer, and 𝑂𝑢𝑡𝑊 is the matrix of output weights. As shown, ELM 1 had a good 

performance to estimate the horizontal ice-induced deformations (dh/W) in the sand. Thus, 

matrices of ELM 1 to estimate the horizontal deformations were presented below: 
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𝐼𝑛𝑉 =

[
 
 
 
 
 
 
 
 
 
 
 

𝑦

𝑊
𝐷𝑠

𝑊
𝜑

ℎ′

𝑊
𝐿ℎ

𝛾𝑠𝑊3

𝐿𝑣

𝛾𝑠𝑊3

𝑉2

𝑔𝑊 ]
 
 
 
 
 
 
 
 
 
 
 

, 𝐵𝐻𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.108
0.212
0.181
0.091
0.160
0.274
0.173
0.038
0.263
0.285
0.233
0.159
0.151
0.117
0.015
0.122
0.066
0.261
0.036
0.182
0.253
0.183
0.179
0.299
0.104
0.319
0.019
0.213]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐼𝑛𝑊 =

(5-

24) 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.076
0.122
0.353
0.180
0.016
0.046
0.335
0.261
0.028
0.063
0.249
0.174
0.164
0.265
0.081
0.176
0.213
0.010
0.135
0.050
0.200
0.361
0.260
0.042
0.002
0.150
0.111
0.252

0.053
0.190
0.072
0.082
0.291
0.182
0.052
0.144
0.291
0.254
0.100
0.072
0.183
0.144
0.266
0.167
0.164
0.090
0.321
0.217
0.150
0.218
0.039
0.141
0.315
0.045
0.326
0.051

   

0.231
0.258
0.025
0.456
0.021
0.093
0.088
0.017
0.367
0.131
0.136
0.117
0.106
0.054
0.228
0.098
0.076
0.079
0.120
0.314
0.052
0.104
0.015
0.303
0.315
0.038
0.185
0.026

  

0.351
0.168
0.032
0.019
0.103
0.317
0.245
0.092
0.307
0.117
0.122
0.159
0.029
0.118
0.122
0.388
0.007
0.220
0.038
0.468
0.049
0.042
0.050
0.114
0.036
0.186
0.047
0.086

   

0.091
0.473
0.173
0.103
0.301
0.171
0.026
0.167
0.154
0.201
0.166
0.227
0.012
0.054
0.119
0.082
0.073
0.044
0.241
0.283
0.072
0.100
0.112
0.098
0.057
0.191
0.224
0.367

  

0.039
0.003
0.305
0.237
0.002
0.231
0.123
0.083
0.118
0.092
0.140
0.038
0.067
0.243
0.043
0.195
0.392
0.123
0.058
0.059
0.136
0.418
0.216
0.399
0.039
0.172
0.049
0.123

   

0.224
0.234
0.047
0.104
0.132
0.135
0.101
0.124
0.009
0.003
0.309
0.243
0.242
0.025
0.069
0.013
0.229
0.061
0.105
0.187
0.376
0.067
0.150
0.410
0.167
0.260
0.140
0.212

  

0.113
0.094
0.183
0.006
0.185
0.109
0.309
0.303
0.009
0.095
0.212
0.438
0.057
0.103
0.339
0.080
0.219
0.459
0.002
0.032
0.090
0.070
0.101
0.060
0.041
0.135
0.138
0.031]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝑂𝑢𝑡𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

29.275
72.459
165.167
2160.705
596.242

35395.487
2167.263
22.303

17132.658
75.972
62.933
4.386

866.932
311.317
594.914
42.618
703.678
129.912
775.673

17100.189
168.320
1054.218
54.598
292.875

23846.632
30.669

2671.287
130.130 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Moreover, the matrices of ELM 1 to estimate the vertical sand deformations (dv/W) were provided 

as follows: 
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𝐼𝑛𝑉 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑦

𝑊
𝐷𝑠

𝑊
𝜑

ℎ′

𝑊
𝐿ℎ

𝛾𝑠𝑊3

𝐿𝑣

𝛾𝑠𝑊3

𝑉2

𝑔𝑊 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐵𝐻𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.007
0.081
0.077
0.169
0.217
0.218
0.130
0.112
0.298
0.113
0.060
0.166
0.155
0.015
0.285
0.298
0.212
0.030
0.140
0.162
0.277
0.143
0.048
0.175
0.292
0.291
0.167
0.289]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

(5-

25) 
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  𝐼𝑛𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.352
0.223
0.020
0.113
0.006
0.140
0.098
0.026
0.229
0.274
0.442
0.309
0.099
0.118
0.060
0.108
0.096
0.050
0.025
0.107
0.141
0.126
0.227
0.034
0.330
0.135
0.278
0.066

  

0.139
0.157
0.103
0.048
0.399
0.018
0.011
0.045
0.106
0.161
0.059
0.003
0.064
0.280
0.047
0.335
0.313
0.307
0.286
0.024
0.098
0.134
0.117
0.010
0.212
0.247
0.264
0.218

   

0.018
0.193
0.058
0.451
0.243
0.115
0.420
0.118
0.122
0.106
0.108
0.228
0.142
0.229
0.194
0.073
0.023
0.090
0.088
0.101
0.006
0.244
0.015
0.129
0.126
0.306
0.263
0.037

   

0.165
0.048
0.001
0.200
0.023
0.153
0.200
0.361
0.335
0.124
0.160
0.348
0.144
0.011
0.248
0.044
0.089
0.263
0.001
0.087
0.259
0.085
0.146
0.435
0.038
0.056
0.015
0.003

   

0.031
0.004
0.001
0.086
0.259
0.222
0.222
0.182
0.326
0.097
0.002
0.258
0.047
0.254
0.382
0.114
0.213
0.152
0.144
0.188
0.241
0.183
0.102
0.154
0.147
0.189
0.124
0.237

   

0.084
0.573
0.293
0.022
0.254
0.258
0.070
0.016
0.166
0.079
0.132
0.056
0.341
0.012
0.085
0.066
0.136
0.175
0.037
0.092
0.048
0.159
0.036
0.061
0.111
0.127
0.194
0.313

   

0.013
0.026
0.064
0.138
0.296
0.028
0.001
0.222
0.166
0.276
0.381
0.278
0.064
0.277
0.148
0.009
0.356
0.067
0.158
0.098
0.001
0.082
0.286
0.213
0.047
0.220
0.198
0.123

   

0.026
0.174
0.242
0.136
0.121
0.184
0.206
0.032
0.001
0.225
0.057
0.277
0.075
0.632
0.252
0.047
0.083
0.034
0.036
0.039
0.045
0.012
0.360
0.090
0.046
0.097
0.178
0.004]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝑂𝑢𝑡𝑊 =
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.367
129.078
13.435
734.438
1073.040
1914.414
3822.172
137.341
28.803
24.231
412.769
736.786
11.185

3327.398
385.798
4.120
9.616
43.026
300.883
74.807
342.412
750.359
18.367
124.443
336.378
305.840
78.977
31.751 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

Besides, the matrices of ELM 1 to estimate the ice-induced horizontal forces (Fh/γsW3) in the sand 

were written as below: 
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𝐼𝑛𝑉 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥

𝑊
𝐷𝑠

𝑊
𝜑

ℎ′

𝑊
𝐿ℎ

𝛾𝑠𝑊3

𝐿𝑣

𝛾𝑠𝑊3

𝑉2

𝑔𝑊 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐵𝐻𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−0.173
−0.218
−0.337
0.036

−0.026
0.113

−0.077
−0.133
−0.026
0.295

−0.052
0.321
0.331
0.233

−0.014
−0.101
−0.023
−0.117
−0.020
−0.281
−0.244
−0.235
−0.023
0.083

−0.162
−0.342
−0.095
0.177 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

(5-

26) 
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𝐼𝑛𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−0.158
0.340

−0.050
0.177
0.278
0.002
0.264
0.033

−0.095
−0.163
0.233

−0.202
−0.279
−0.216
−0.103
−0.101
0.046
0.098
0.075
0.098

−0.071
0.382
0.002

−0.292
0.064
0.356

−0.018
−0.051

  

0.154
−0.035
0.200
0.119

−0.153
0.197

−0.012
0.445

−0.260
−0.220
−0.101
−0.113
−0.097
−0.019
−0.033
0.023

−0.171
0.346

−0.021
−0.097
0.385

−0.213
−0.151
−0.088
−0.281
0.114
0.006

−0.177

  

−0.294
−0.082
0.160
0.061
0.073

−0.269
−0.045
0.018

−0.093
−0.006
0.260
0.019
0.178

−0.038
−0.292
0.174

−0.367
−0.134
−0.234
−0.320
0.190

−0.030
−0.116
0.079
0.192
0.152

−0.302
0.224

  

−0.299
−0.268
0.287
0.252

−0.149
−0.134
−0.233
−0.089
−0.128
0.121
0.091

−0.056
−0.188
−0.043
0.342
0.198
0.320
0.056

−0.340
0.256

−0.024
0.045

−0.106
0.023

−0.035
0.173
0.140

−0.001

  

0.018
−0.013
−0.250
−0.122
−0.090
0.214

−0.232
0.029

−0.269
−0.364
0.022

−0.172
−0.197
−0.052
−0.192
0.212

−0.136
−0.109
−0.267
0.328

−0.163
0.037
0.320
0.131

−0.061
−0.172
−0.151
0.196

  

0.032
−0.158
−0.034
0.222
0.211
0.254
0.128

−0.082
−0.142
0.232

−0.085
−0.240
0.190
0.115

−0.200
0.184

−0.024
0.214
0.038

−0.147
−0.059
0.043
0.289
0.356
0.064
0.229
0.418
0.099

  

−0.197
0.098
0.046
0.264

−0.003
−0.262
−0.222
0.203
0.003

−0.033
−0.311
−0.058
−0.082
−0.413
−0.232
−0.217
0.147
0.048
0.171
0.024

−0.033
−0.263
0.172
0.171
0.339

−0.175
0.0431
−0.084

  

0.258
−0.434
−0.161
−0.023
0.327

−0.179
−0.042
0.282

−0.011
0.312

−0.044
−0.023
−0.102
−0.229
0.131

−0.052
−0.194
−0.053
0.053
0.217
0.243
0.186
0.055

−0.202
0.033

−0.084
0.036
0.272 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,
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𝑂𝑢𝑡𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−579043842.543
11327617709.333
25804356551.036
23880116986.524

49235561.598
−2107351719.547
−6133664925.287
−324830407.099
14514446831.585
−691139063.538
69679699824.426
−270014640.236
−180938532.185

520312750
16177672.834

−45918830515.734
86028151.093

−641785582.707
914415067.981
444471868.539

23259646121.250
−118218046.915
4266202972.363
109167304.838
7941707982.082
9530629767.052
2019320579.769

−113281225148.813]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

Furthermore, the matrices of this ELM model to surmise the ice-induced vertical reaction forces 

(Fv/γsW3) in a sandy seabed were suggested as follows: 
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𝐼𝑛𝑉 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥

𝑊
𝐷𝑠

𝑊
𝜑

ℎ′

𝑊
𝐿ℎ

𝛾𝑠𝑊3

𝐿𝑣

𝛾𝑠𝑊3

𝑉2

𝑔𝑊 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐵𝐻𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−0.256
0.079
0.091

−0.278
0.127

−0.222
−0.338
0.336

−0.215
−0.119
0.311
0.097
0.326
0.152

−0.042
−0.159
−0.083
0.003

−0.140
−0.106
−0.045
0.135
0.138

−0.104
0.037
0.129
0.029
0.341 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

(5-

27) 
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𝐼𝑛𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−0.045
0.020
0.009
0.300

−0.293
−0.107
−0.259
−0.324
0.317
0.139

−0.059
−0.278
−0.107
0.070

−0.084
0.251

−0.272
0.091

−0.186
0.257
0.211
0.001

−0.055
−0.146
−0.191
0.061
0.013

−0.233

   

−0.358
0.120
0.371

−0.042
−0.060
0.386

−0.235
0.014
0.153
0.155
0.146
0.050
0.401
0.113

−0.079
−0.106
−0.154
−0.156
−0.020
−0.036
−0.088
0.248

−0.079
0.175
0.066
0.158
0.229
0.072

  

0.040
0.061
0.027

−0.015
−0.118
0.208

−0.155
0.166
0.149

−0.012
−0.012
−0.093
0.031
0.259
0.095
0.191
0.267

−0.031
0.057
0.141

−0.285
0.064

−0.233
−0.149
0.320

−0.431
−0.387
−0.203

  

0.217
0.146
0.181
0.086
0.273

−0.028
0.220

−0.165
−0.209
0.223

−0.122
−0.032
0.125

−0.188
−0.296
0.115

−0.277
0.138
0.180
0.077

−0.164
0.033

−0.254
−0.257
0.237

−0.206
0.281

−0.064

  

−0.267
−0.123
0.115

−0.045
0.029

−0.351
−0.044
−0.013
0.012
0.454

−0.077
0.198

−0.210
0.110

−0.046
−0.183
0.241
0.234

−0.425
−0.183
−0.033
0.056

−0.203
0.039
0.068

−0.193
0.087
0.039

  

0.029
−0.137
−0.013
0.032

−0.231
0.136

−0.001
−0.336
−0.338
0.389
0.163

−0.106
0.018

−0.071
0.160
0.111
0.182

−0.167
0.014
0.064

−0.052
0.162
0.307

−0.271
0.010

−0.057
−0.087
0.413

  

0.051
0.232

−0.055
−0.185
−0.196
0.236

−0.018
0.347

−0.056
−0.001
−0.101
0.218

−0.084
−0.161
0.028
0.194
0.225
0.107

−0.239
0.086
0.224
0.079
0.024

−0.437
0.084
0.247
0.311

−0.125

  

−0.338
0.254

−0.284
−0.208
0.283

−0.132
0.167
0.253

−0.043
0.269
0.109

−0.326
−0.015
0.055

−0.046
0.169
0.050

−0.129
0.043
0.440
0.046
0.006

−0.096
0.127

−0.138
0.048

−0.005
0.114 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,
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𝑂𝑢𝑡𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−9846993.568
−3754470.686
−57306.747
739540.221
567279.640
4111811.376
115947.041
776649.753

−101460.754
−3108267.921
−412567.206
528094.443

−4728862.345
896003.104
592571.805
6710766.618
−571166.680
−287955.147
−5324488.298
−1195984.731

37129.165
6906839.302
61221.738
625421.204
8430674.410

70.211
1328898.924
555030.486 ]
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Abstract 

The buried subsea pipelines in the Arctic offshore territories are commonly threatened by drifting 

icebergs scouring the sea bottom (ice-gouging). In this study, the subgouge soil deformations in 

clay and the ice keel-seabed reaction forces were simulated using Extreme Learning Machine 

(ELM) algorithm. Using the effective input parameters, eight ELM models were developed to 

predict the seabed response to ice-gouging. The superior ELM models and the most significant 

input parameters were identified by performing a sensitivity analysis. The developed ELM models 

well predicted the ice-seabed interaction parameters with the soil depth being the most influencing 

input factor affecting subgouge soil deformations, and the vertical load and the attack angle having 

the highest level of effectiveness for simulation of the ice keel-seabed reaction forces. 

 

Keywords: Extreme learning machine, Ice-seabed interaction, Clay seabed, Simulation, 

Uncertainty analysis 
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5.1.5. Introduction 

Discovered crude oil and natural gases in the Arctic areas are respectively estimated as 3 billion 

bbl. and 4 trillion cubic ft. The overwhelming majority of the future development projects for these 

oil and gas reserves in the areas comprise the deployment of subsea pipelines, manifolds, 

wellheads, and communication cables (Alba 2015). However, these bottom-founded structures are 

at risk of damage and potential failure from moving pressure ridges and icebergs since the seabed 

may be gouged by these traveling masses in the ice-prone regions during warmer seasons. Figure 

5-15 shows the layout of the ice-seabed interaction process during an ice-gouging phenomenon. 

As shown, the maximum subgouge deformation occurs just beneath the iceberg keel base (zone 1) 

and the magnitude of the soil displacements decreases by extending into Zone 2 and Zone 3.  

 

Figure 5-15. The layout of the ice-seabed interaction process during an ice-gouging phenomenon 

 

Moreover, the gouge depth equals the maximum depth of ice intrusion. On the other hand, subsea 

trenching and backfilling are commonly utilized to bury these structures for physical protection 
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against ice scour events (Nematzadeh and Shiri 2020; Azimi and Shiri 2020a) and the ice-gouging 

parameters ought to be estimated to avoid the collision (Croasdale 2000). 

Thus, thanks to the significant importance of this issue, so many expensive fields and laboratory 

studies have been performed on the ice-gouging problem (Barnes et al. 1984; Woodworth-Lynas 

et al. 1990; Chouinard 1995). Lach (1996) conducted nine centrifuge tests to measure the ice-

induced parameters comprising the reaction forces and the subgouge displacements. The author 

assumed that the ice block moved horizontally on a uniform clay seabed at a constant speed. The 

author developed a two-dimensional finite element model to simulate the ice-scoured problem and 

showed that the numerical model could estimate the subgouge behavior appropriately. 

Woodworth-Lynes et al. (1996) performed a set of the Pressure Ridge Ice Scour Experiment 

(PRISE) joint-industry projects to evaluate the scoured soil deformations. The investigation proved 

that the pipeline burial depth should be beneath the maximum depth of ice intrusion. The authors 

asserted that the subgouge soil deformations were a function of the soil depth and the gouge 

geometry. Schoonbeek et al. (2006) reported some centrifuge experimental values of ice-induced 

clay displacements. Effects of the gouge depth, the undrained shear strength of clay, and the ice 

keel velocity on the deformed subgouge clay were assessed. The survey confirmed that the large 

plastic strains took place under the moving ice keel base. Been et al. (2008) investigated the impact 

of ice keel shape including the steep and shallow keels on the clay failure mechanism in the ice-

gouging events. The authors concluded that the soil failure pattern depended upon the keel 

geometry and the impact of the keel length parameter should be evaluated in the future. Arnau and 

Ivanović (2019) studied experimentally the ice-induced loads on a sandy seabed in both saturated 

and dry circumstances. The effects of the relative density, soil permeability, gouge geometry, and 
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drifting velocities were assessed. The author concluded that the drifting velocity possessed a 

remarkable influence on the ice-gouging loads. 

Furthermore, to provide a good understanding of the local stresses and strains in the ice-seabed 

interaction process, several time-consuming 2D or 3D finite element simulations have been 

performed in this field (Lele et al. 2011; Pike and Kenny2012; Sabodash and Bekker 2019; 

Nematzadeh and Shiri 2019a). Nematzadeh and Shiri (2019b) modeled an ice-gouging problem 

through a self-correcting soil method to update the shear strength parameter of soil. The authors 

showed that the ice-induced deformations were overestimated by the conventional decoupled 

models. Nematzadeh and Shiri (2020) simulated the impact of the non-linear stress-strain behavior 

of an ice-gouging event in a sandy seabed by means of a modified Mohr-Coulomb (MMC) model. 

The authors asserted that the side berm size was affected by the magnitude of the attack angle, 

while the frontal berm was not significantly altered. 

It is worth noting that artificial intelligence (AI) methods and machine learning (ML) technology 

as precise, fast, and cost-effective tools have been recently utilized to simulate the ice-gouging 

problem. Kioka et al. (2003) modeled the scour depth as a function of the ice keel by using a 

Layered Neural-Network (NN) method. The authors showed that the NN algorithm managed to 

simulate the target value with good precision. Azimi and Shiri (2020a) conducted a dimensional 

analysis to introduce factors governing the ice-seabed interaction event. The authors suggested 

several linear regression (LR) models so as to calculate the maximum ice-scoured deformations. 

The shear strength of seabed soil and the gouge geometry were considered the most influencing 

parameters. Azimi and Shiri (2020b) modeled the ice-induced sand displacements through a gene 

expression programming-based (GEP) method. The GEP model outperformed the artificial neural 

network (ANN) and empirical approaches. The author concluded that the soil depth was a 
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significant factor to simulate the subgouge displacements. Azimi and Shiri (2021) estimated the 

subgouge sand features by means of a machine learning model. The author showed that the gouge 

depth ratio and the angle of internal friction of the seabed sand had a significant impact on the 

simulation results. 

The extreme learning machine (ELM) algorithm was used by Azimi and Shiri (2021) to model the 

ice-gouging event. The current study added several novelties to improve the limitations of the 

earlier study. For instance, the architecture of the ELM algorithm was significantly improved in 

the current study with a reduced number of hidden layer neurons (20 vs. 28 in the earlier study), 

and a hyperbolic-tangent (Hypertan) activation function (sigmoid in the earlier study). The 

Hypertan function is monotonic (with a non-monotonic derivative) and has an S-shaped curve with 

a range of -1 to 1. This helped well negative mapping of the negative input and near-zero mapping 

of the zero input. The sigmoid activation function in the earlier study (Azimi and Shiri 2021) was 

monotonic (with a bell-shaped derivative) and had a range of 0 to 1. The sigmoid function was 

concave for values greater than zero, and convex for values less than zero. In addition, the earlier 

study conducted by Azimi and Shiri (2021) was limited to the cohesionless sand seabed, which 

follows an entirely different geomechanical response compared with clay. The current study 

investigated a cohesive clay seabed using a completely different set of experimental data (i.e., five 

sets of experiments in clay including C-CORE 1995; Lach 1996; C-CORE 1996; Schoonbeek et 

al. 2006; and Been et al. 2008). This was the first application of the ELM algorithm in the literature 

on modeling the subgouge soil deformation in clay. The parameters governing the subgouge soil 

characteristics in sand and clay are significantly different. The input parameters in the earlier study 

(i.e., Azimi and Shiri 2021) was including the ice keel geometry, the angle of internal friction in 

the sand, the berm height, the environmental loads, and the ice dynamics. However, the input 
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parameters in the current study included a different set of parameters comprising the gouge depth 

ratio (Ds/W), the clay cohesion (c/γs.W), the attack angle (α), the horizontal and vertical loads 

(Lh/γs.W3, Lv/γs.W3), and the ice keel velocity (V2/g.W). 

Therefore, the ice-seabed interaction process in clay was simulated by using the ELM algorithm 

in this study for the first time. 

The literature tried to review the important studies in the field of ice-gouging and provide a good 

insight into the parameters governing the problem. Although, owing to the high level of uncertainty 

of the ice-gouging issue, the industry still prefers to implement costly experimental investigations 

and long-running 3D simulations, the companies are looking for a reliable, cost-effective, and 

quick alternative to simulate the behavior of subgouge soil to alleviate the collision risk of the 

moving icebergs with the sea bottom founded structures (Banke and Smith 1984; Azimi and Shiri 

2020b). Thus, to fill this knowledge gap, the ability of an accurate, quick, and powerful ML 

approach called Extreme Learning Machine (ELM) was evaluated to simulate the ice-seabed 

interaction features in this study. Further information is detailed in the upcoming sections. 

 

5.1.6. Methodology 

5.1.6.1. Extreme Learning Machine (ELM) 

An extreme learning machine (ELM) is a powerful neural network algorithm introduced by Huang 

et al. (2004) to solve different linear and non-linear problems (Azimi et al. 2017). The ELM is a 

quick training approach possessing the structure of a single-layer feed-forward neural network 

(SLFFNN) (Huang et al. 2006). In comparison with the classical backpropagation (BP) algorithm, 

the ELM has several benefits as follows: 

 The high training speed of feedforward neural network (FFNN) by ELM, 
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 Better generalization performance, 

 Training with differentiable and non-differentiable activation functions, 

 Overcome the gradient-based algorithm such as the local optimum, improper learning rate, 

and overfitting problem (Huang et al. 2011; Azimi et al. 2017; Sattar et al. 2019). 

The ELM has three distinct layers comprising an input layer, a hidden layer, and an output layer. 

The input layer contains the input parameters of the ice-gouging event and the number of neurons 

in the output layer equals the number of target parameters of the problem. However, the number 

of neurons in the hidden layer is chosen based on a trial and error procedure (Azimi et al. 2017).  

A single hidden layer forward network is formed by means of linear algebra in these three layers 

so as to solve the equations for obtaining the optimum weights in the output layer (Sattar et al. 

2019). It is worth noting that the weights of the input layer are determined randomly, whereas the 

output weights are analytically estimated through a predefined training mechanism.  

The input weights and the hidden layer biases are randomly assigned in the ELM algorithm. 

However, different random assignments were used in a simulation of each ice-gouging event to 

ensure a proper representation of the results. 

Tuning the value of hidden layer hyperparameters, e.g., hidden layer biases, in the ELM network 

was not necessary since the hidden layer output matrix remained unchanged once the arbitrary 

value of input weights and hidden layer biases were assigned at the beginning of the learning 

process. Thus, the initialization of these random numbers has no impact on the accuracy of the 

prediction (Huang et al. 2004). 

Thus, the training procedure in the ELM model is extremely fast and its generalization capability 

is quite high. Commonly, the output of an SLFFNN is solved by using the below equation: 
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𝑌 = ∑𝛽𝑗𝐺 (∑𝑤𝑖,𝑗𝜒𝑖 +

𝑛

𝑖=1

𝜅𝑗)

𝑚

𝑗=1

 
(5-28) 

where, 𝑌 and 𝜒 donate the output and inputs of the ELM model, respectively. Additionally, n 

equals the number of input parameters and m is the number of output parameters of the problem. 

Moreover, 𝑤𝑖,𝑗 indicates input weight that is the connection between the ith neuron in the input 

layer to the jth neuron in the hidden layer, 𝛽𝑗 is a coefficient that links the jth neuron in the hidden 

layer to the particular neuron in the output layer. Besides, 𝐺( ) and 𝜅𝑗 are respectively the 

activation function and biases of the hidden layer neurons. 

Generally, the output of an SLFFNN is computed in two major steps. First, the network of the 

hidden layer, meaning that the number of neurons in this layer is determined by using a trial and 

error procedure (Azimi et al. 2017). Subsequently, in order to train the ELM network, an activation 

function (AF) is defined. Indeed, the optimum number of hidden neurons and the best activation 

function lead to the optimal ELM network. After that, using arbitrary assignments of the input 

layer weights (𝑤𝑖,𝑗) and the biases (𝜅𝑗), the structure of hidden layer neurons and the weight in 

the output layer are calculated. Therefore, equation (5-28) is rewritten as below: 

𝐻𝛽 = 𝑌 (5-29) 

here, H is the extreme learning machine feature mapping matrix as follows: 

𝐻(𝑤𝑖,𝑗 , 𝜅𝑗 , 𝜒𝑖) = [

𝐻1,1 ⋯ 𝐻1,𝑚

⋮ ⋱ ⋮
𝐻𝑛,1 ⋯ 𝐻𝑛,𝑚

] = [
𝐺(𝑤1,1𝜒1 + 𝜅1) ⋯ 𝐺(𝑤1,𝑚𝜒𝑚 + 𝜅𝑚)

⋮ ⋱ ⋮
𝐺(𝑤𝑛,1𝜒𝑛 + 𝜅1) ⋯ 𝐺(𝑤𝑛,𝑚𝜒𝑚 + 𝜅𝑚)

] 

(5-30) 

In addition, 𝛽 and Y are defined as below: 

𝑌 = [𝑌1 𝑌2  ⋯  𝑌𝑚]   and   𝛽 = [𝛽1 𝛽2  ⋯  𝛽𝑛] (5-31) 

It is worth noting that 𝛽𝑗 is obtained by minimizing error in an estimation through the Moore-

Penrose generalized inverse matrix as follows (Huang et al. 2011): 
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�̂� = 𝐻+𝑌 (5-32) 

here, 𝐻+ represents the Moore-Penrose generalized inverse matrix of H. Figure 5-16 depicts the 

ELM flowchart to simulate the subgouge clay parameters in the current study. 

 

Figure 5-16. ELM flowchart to simulate the subgouge clay parameters 

 

Initially, the constructed dataset including the training and testing sub-samples was loaded. For 

the training dataset, the user parameters such as the number of iterations, the number of hidden 

neurons, and the activation function were defined. In the next step, the input weight matrix and the 

bias of the hidden neuron matrix were randomly assigned which resulted in the calculation of the 

hidden layer output matrix. Subsequently, by using the least square solution, the output weight 

matrix was determined. Next, the fitness function was computed and the performance of the ELM 
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model was assessed for the testing dataset. Lastly, if the level of accuracy, correlation, and 

complexity of the ELM model was acceptable, the simulation was ended, otherwise, this procedure 

was iterated. 

 

5.1.6.2. Seabed Interaction Process in Clay 

Seabed interaction parameters (η) in a clay mass comprising the soil deformations (d/W) and the 

reaction forces (F/𝛾𝑠𝑊
3) are a function of the scour depth (Ds), the shear strength parameter of 

the clay (𝑐), the width of gouge (W), the attack angle (), the angle of the surcharged soil slope 

(ω), the height of the berm (h’), the horizontal load (Lh) and the vertical load (Lv), the velocity of 

ice keel (V), and the specific weight of clay (𝛾𝑠) as follows (Lach 1996; Azimi and Shiri 2020a): 

𝜂 (𝑐𝑙𝑎𝑦) = 𝑓1(𝐷𝑠, 𝑐,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠) (5-33) 

Equation (5-33) can be written as a function of eight dimensionless groups as below (Azimi and 

Shiri 2020a): 

𝜂(𝑐𝑙𝑎𝑦)

𝑊
= 𝑓2 (

𝐷𝑠

𝑊
,

𝑐

𝛾𝑠.𝑊
,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-34) 

It is worth noticing that the maximum subgouge deformation in the clay (𝑑(𝑐𝑙𝑎𝑦)) is formed just 

under the moving ice keel in the gouge centerline. However, at greater depth on the subgouge 

centerline, by incorporating the soil depth (y/W), the subgouge clay displacement (d(clay)/W) is 

written as follows: 

𝑑(𝑐𝑙𝑎𝑦)

𝑊
= 𝑓3 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,

𝑐

𝛾𝑠.𝑊
,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-35) 

Or  

𝑑(ℎ)

𝑊
= 𝑓4 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,

𝑐

𝛾𝑠.𝑊
,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-36) 
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𝑑(𝑣)

𝑊
= 𝑓5 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,

𝑐
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ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-37) 

Similarly, the ice-induced reaction force (F) is a function of the position of the iceberg along the 

scour axis (x) and 𝐷𝑠, 𝑐,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠, so equation (5-37) can be written as below: 

𝐹(𝑐𝑙𝑎𝑦)

𝛾𝑠𝑊3
= 𝑓6 (

𝑥
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,
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(5-35) 

Or 

𝐹(ℎ)
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𝑥
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(5-36) 

𝐹(𝑦)
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) 

(5-37) 

In the current study, different laboratory investigations were applied so as to simulate the ice-

gouging clay parameters (d/W and F/𝛾𝑠𝑊
3). In other words, the key measurements of five 

experimental investigations reported by C-CORE (1995), Lach (1996), C-CORE (1996), 

Schoonbeek et al. (2006), and Been et al. (2008) were utilized to verify the ELM models. It should 

be noted that the angle of the surcharged soil slope (ω) and the height of the berm (h’) were not 

reported by all applied laboratory studies. Therefore, other introduced dimensionless groups in 

equations (5-36) and (5-37) were utilized as the input parameters for the ELM model to simulate 

the horizontal subgouge deformation (dh/W), the vertical subgouge deformation (dv/W), the 

horizontal reaction force (Fh/𝛾𝑠𝑊
3), and the vertical reaction force (Fv/𝛾𝑠𝑊

3). Figure 5-17 

portrays the defined input combinations in the current study. 
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Figure 5-17. Used input combinations to develop ELM models 

 

The ELM algorithm was fed with x/W, Ds/W, c/γs.W, α, Lh/γs.W3, Lh/γs.W3, and V2/g.W as input 

parameters to simulate the dv/W and dh/W as output. Moreover, the y/W, Ds/W, c/γs.W, α, Lh/γs.W3, 

Lh/γs.W3, and V2/g.W were regarded as inputs of the ELM model to predict the Fh/γsW
3 and Fv/γsW

3 

as output. 

Eight ELM models (ELM 1 to ELM 8) were developed to simulate the ice-induced clay 

parameters. This means that ELM 1 was defined by using all input parameters and then the effect 

of each input was eliminated (ELM 2 to ELM 8) to identify the most significant input parameters. 

It is noteworthy that 70% of the observed values were applied to train the ELM models, whereas 

30% of the remaining were utilized to test them. 

 

5.1.6.3. Goodness of Fit 

ELM 1:   [1,2,3,4,5,6,7]

ELM 2:   [1,2,3,4,5,6]

ELM 3:   [1,2,3,4,5,7]

ELM 4:   [1,2,3,4,6,7]

ELM 5:   [1,2,3,5,6,7]

ELM 6:   [1,2,4,5,6,7]

ELM 7:   [1,3,4,5,6,7]

ELM 8:   [2,3,4,5,6,7]

y/W
or

x/W  (1) Ds/W
(2)

c/γs.W
(3)

α
(4)

Lh/γs.W
3

(5)

Lv/γs.W
3

(6)

V2/g.W
(7)

Target

d/W

&

F/γs.W
3



 

311 
 

To examine the performance of the ELM models, a set of statistical indices including correlation 

coefficient (R), the variance accounted for (VAF), root mean square error (RMSE), mean absolute 

error (MAE), Nash-Sutcliff efficiency coefficient (NSC), and Akaike Information Criteria (AIC) 

were applied as below: 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(5-38) 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑃𝑖 − 𝑂𝑖)

𝑣𝑎𝑟(𝑃𝑖)
) × 100 

(5-39) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(5-40) 

𝑀𝐴𝐸 =
∑ |𝑃𝑖 − 𝑂𝑖|

𝑛
𝑖=1

𝑛
 

(5-41) 
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here, Oi, Pi, �̅�, �̅�, and n are the observed ice-induced seabed parameters, the simulated values, the 

average observed values, the average simulated values, and the number of experimental 

measurements, respectively. Moreover, the k is the number of hidden layer neurons used in the 

ELM network. The closeness of the correlation coefficient (R) and the Nash-Sutcliff efficiency 

coefficient (NSC) to one signified that the ELM model owned the highest correlation with the 

observed values, whilst the closeness of the RMSE and MAE criteria to zero meant that the 

particular model had the lowest level of error. Furthermore, the superior ELM model possessed 

the highest value of the VAF criterion though the complexity of these ELM models was not shown 
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through the applied indices. To overcome this drawback, the Akaike Information Criteria (AIC) 

was employed. The less complex ELM model had the lowest value of the AIC index, hence, the 

superior ELM model owned the lowest value of the AIC index and error (RMSE and MAE) and the 

highest level of correlation (R and NSC) with the experimental measurements. 

 

5.1.7. Results and discussion 

In the upcoming sections, the optimal number of hidden neurons (NHN) and the best activation 

function (AF) were chosen. The ELM 1 model was used to select the optimized number of hidden 

layer neurons (NHN) and the best activation function (AF). 

 

5.1.7.1. Number of Hidden Neurons (NHN) 

Determination of the optimal NHN can play a significant role in the precision of the ELM structure, 

meaning that by increasing the NHN, the generalization ability of the ELM model is improved 

(Feng et al. 2009). The NHN for the ELM network was initially chosen as 2 and then was increased 

to 22. The ELM network could simulate the ice-gouging parameters (dh/W, dv/W, Fh/γs.W3, 

Fv/γs.W3) with its highest performance once the NHN was adopted as 20. Figure 5-18 portrays the 

variations of NHN versus the calculated statistical indices for the simulation of ice-induced 

parameters (e.g., the horizontal reaction forces).  
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Figure 5-18. Variations of the number of hidden neurons (NHN) versus the used statistical 

indices for simulation of horizontal reaction forces (Fh/𝛾𝑠𝑊
3) 

 

As shown, the NHN for the ELM network was initially chosen as two, with a low level of accuracy 

and correlation (MAE=118770.564 and R=0.874). However, the R, MAE, and NSC values for the 

ELM network were respectively estimated to be 0.980, 46193.161, and 0.959 when the NHN was 

considered at 20. Additionally, once the NHN was equal to 20, the value of the NSC criterion for 

the ELM algorithm to predict the dh/W, dv/W, and Fv/γs.W
3 was surmised at 0.999, 0.841, and 0.993, 

respectively. Regarding the simulation results, the performance of the ELM model was 
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insignificantly changed when the NHN was greater than 20. Thus, the optimal number of NHN for 

the ELM network was selected to be 20 in the current study. 

 

5.1.7.2. Activation Function (AF) 

Before the evaluation of the activation functions in the ELM network, an optimal NHN of 20 was 

set for this algorithm. Generally, the weighted input parameters and biases in the ELM structure 

are nonlinearly transformed through an activation function (AF) (Hertz 2018). In the current study, 

six different AFs comprising the hyperbolic tangent (Hypertan), the triangular basis (Tribas), the 

radial basis (Radbas), the hard limit (Hardlim), the sigmoid (Sig), and the sinusoidal (Sin) were 

assessed to simulate the ice-scoured seabed interaction features. Figure 5-19 shows the calculated 

statistical indices for the applied activation functions to predict the subgouge parameters (e.g., the 

horizontal reaction forces). The Hypertan activation function with the NSC, AIC, and R of 0.959, 

697.554, and 0.980, resulted in the highest correlation and accuracy along with the lowest level of 

complexity among the applied AFs. The variance accounted for (VAF) and the correlation 

coefficient (R) values in the Tribas function for modeling the horizontal reaction forces were 

84.515 and 0.931. The calculated values of NSC, MAE, and AIC for the Radbas function were 

respectively surmised as 0.938, 59343.908, and 709.939. The Hardlim was detected as the worst 

activation function in the ELM network so as to simulate the ice-seabed interaction process, with 

the R and AIC values equal to 0.899 and 743.350. For the simulation of the subgouge clay 

parameters by using the Sig activation function, the values of AIC, NSC, and R criteria were 

respectively estimated at 699.367, 0.957, and 0.978. The magnitude of computed NSC, RMSE, and 

VAF values for the Sin function was calculated as 0.829, 151877.675, and 80.276, respectively. 
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Moreover, the value of the correlation coefficient (R) for the simulation of vertical reaction forces, 

horizontal deformations, and vertical deformations by using the Hypertan function was estimated 

as 0.997, 0.999, and 0.935, respectively. Therefore, regarding the simulation results for various 

activation functions in the ELM structure, the hyperbolic tangent was chosen as the premium 

activation function to model the ice-seabed interaction event in the current investigation. 

 

Figure 5-19. Calculated statistical indices for various activation functions to estimate the 

horizontal reaction forces 

 

Hence, the performance of the ELM algorithm to simulate the subgouge characteristics was 
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functions (AFs), meaning that the selected NHN and AF were the optimized values to predict the 

reaction forces and subgouge deformations. 

 

5.1.7.3. Sensitivity Analysis 

In the current study, eight ELM models (ELM 1 to ELM 8) were defined to simulate the horizontal 

reaction forces (Fh/𝛾𝑠𝑊
3), the vertical reaction forces (Fv/𝛾𝑠𝑊

3), the horizontal subgouge 

deformations (dh/W), and the vertical subgouge deformations (dv/W) in the clay seabed. Table 5-

3 depicts the calculated statistical indices for the horizontal reaction forces simulated by these 

ELM models in both training and testing modes. ELM 1 simulated the Fh/𝛾𝑠𝑊
3 by using all input 

factors including 𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠.𝑊,⁄ , 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠. 𝑊

3⁄ , 𝑉2 𝑔𝑊⁄ . Subsequently, these 

input parameters that were removed one at a time in ELM 2 to ELM 8 were respectively  𝑉2 𝑔𝑊⁄ , 

𝐿𝑣 𝛾𝑠. 𝑊
3⁄ , 𝐿ℎ 𝛾𝑠.𝑊

3⁄ ,  , 𝑐 𝛾𝑠.𝑊⁄ , 𝐷𝑠 𝑊⁄ , and  𝑥 𝑤⁄ . According to the simulation results, the 

values of variance accounted for (VAF), Akaike Information Criteria (AIC), and correlation 

coefficient (R) for ELM 1 in the testing phase were respectively reckoned to be 95.594, 697.554, 

and 0.980. ELM 2 predicted the Fh/𝛾𝑠𝑊
3 parameter in terms of 

  𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠.𝑊,⁄ , 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠.𝑊

3⁄ , with a Nash-Sutcliff efficiency coefficient 

(NSC) of 0.955 in the testing mode. To predict the horizontal reaction forces by using ELM 3 in 

the testing mode, the RMSE, NSC, and AIC criteria were respectively obtained as 87624.302, 

0.943, and 707.254. ELM 3 estimated the target function in terms 

of  𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠. 𝑊,⁄ , 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝑉2 𝑔𝑊⁄ . The 𝐿ℎ 𝛾𝑠.𝑊

3⁄  was an eliminated input factor 

for the ELM 4, signifying that this model prognosticated the horizontal reaction forces using 

 𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠.𝑊,⁄ , 𝐿𝑣 𝛾𝑠.𝑊
3⁄ , 𝑉2 𝑔𝑊⁄  parameters, with the computed R and AIC values of 

0.982 and 694.015. The VAF, R, and AIC values for ELM 5 in the testing mode were 96.618, 
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0.985, and 689.900, respectively. The ELM 5 was a function 

of  𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠. 𝑊,⁄ 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠.𝑊

3⁄ , 𝑉2 𝑔𝑊⁄ , meaning that the attack angle () was 

a deleted factor for this model. ELM 6 simulated the horizontal reaction forces adopting the 

 𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ ,, 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠.𝑊

3⁄ , 𝑉2 𝑔𝑊⁄  variables, signifying that the effect of the shear 

strength of clay (𝑐 𝛾𝑠.𝑊⁄ ) was ignored. In the testing mode of ELM 6, the values of MAE, NSC, 

and VAF indices were respectively computed at 50942.981, 0.951, and 94.759. The AIC and R 

criteria for ELM 7 were equal to 695.920, and 0.981, with the RMSE index of 72221.886. In ELM 

7, the key input parameters included  𝑥 𝑤⁄ , 𝑐 𝛾𝑠.𝑊,⁄ , 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠. 𝑊

3⁄ , 𝑉2 𝑔𝑊⁄ .  

The  𝑥 𝑤⁄  input was the eliminated factor in ELM 8, where this model comprised the input 

parameters  𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠. 𝑊,⁄ , 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠.𝑊

3⁄ , and 𝑉2 𝑔𝑊⁄ . For ELM 8 in the testing 

situation, the values of RMSE, AIC, and MAE were equal to 227442.199, 763.178, and 125394.709. 

Thus, ELM 5 possessed the highest level of precision and correlation with the laboratory 

measurements in order to estimate the horizontal reaction forces, with the lowest level of 

complexity. After ELM 5, other models including ELM 4, ELM 7, ELM 1, ELM 2, ELM 6, and 

ELM 3 were ranked as the second-best to seventh-best ELM models to simulate the Fh/𝛾𝑠𝑊
3. It 

is worth noticing that the ELM 8 was detected as the worst model. 

On the other hand, regarding the performed sensitivity analysis, the  𝑥 𝑤⁄  parameter was selected 

as the most influencing input factor to simulate the horizontal reaction forces. Furthermore, the 

𝐿𝑣 𝛾𝑠. 𝑊
3⁄ ,  𝑐 𝛾𝑠.𝑊⁄ ,  𝑉2 𝑔𝑊⁄ ,   𝐷𝑠 𝑊⁄ , 𝐿ℎ 𝛾𝑠.𝑊

3⁄  inputs were identified as the second-

important to sixth-important variables to predict the horizontal reaction forces. The attack angle 

() had an insignificant impact on modeling the horizontal reaction forces. 
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Table 5-3. Calculated statistical indices for horizontal reaction forces simulated by ELM models 

in training and testing modes 

Model Mode R VAF RMSE MAE NSC AIC 

ELM 1 Train 0.98 95.8 72505.47 43385.9 0.96 1571. 

Test 0.98 95.5 74262.76 46193.1 0.95 697.5 

ELM 2 Train 0.98 97.6 54848.88 37968.5 0.97 1532. 

Test 0.97 95.0 78129.78 50640.9 0.95 700.5 

ELM 3 Train 0.98 95.9 71938.39 44841.8 0.96 1569. 

Test 0.97 93.6 87624.30 57080.9 0.94 707.2 

ELM 4 Train 0.98 97.0 61803.44 35025.6 0.97 1549. 

Test 0.98 96.1 69912.11 40528.3 0.96 694.0 

ELM 5 Train 0.98 97.2 59946.94 36168.0 0.97 1544. 

Test 0.98 96.6 65173.66 37288.7 0.96 689.9 

ELM 6 Train 0.98 97.1 60282.87 38490.5 0.97 1545. 

Test 0.97 94.7 81221.26 50942.9 0.95 702.8 

ELM 7 Train 0.98 96.9 63046.37 36952.2 0.97 1551. 

Test 0.98 95.8 72221.88 42691.5 0.96 695.9 

ELM 8 Train 0.87 68.2 179088.3 101250. 0.75 1694. 

Test 0.79 53.36 227442.1 125394.7 0.617 763.17 

 

Table 5-4 illustrates the computed statistical indices for vertical reaction forces simulated by ELM 

models in training and testing modes. Among the ELM models, ELM 3 owned the highest level 

of precision and correlation with the observed values, with the MAE and R of 271.175 and 0.997. 
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The values of AIC, VAF, and R for ELM 1 in the testing stage were respectively approximated to 

be 252.291, 98.507, and 0.994. Moreover, the magnitude of RMSE and NSC for ELM 2 in the 

testing phase were calculated as 434.985 and 0.989, with a correlation coefficient of 0.996. In the 

testing mode of ELM 4, the variance accounted for (VAF), correlation coefficient (R), and Akaike 

Information Criteria (AIC) values were 98.811, 0.994, and 253.065, respectively.  

The ELM 5 was the seventh-best model to estimate the Fv/𝛾𝑠𝑊
3 parameter, where the RMSE and 

AIC values for this model in the testing situation were estimated as 573.596 and 257.930. For ELM 

6 during the testing mode, the R, AIC, and VAF statistical indices were respectively surmised to be 

0.994, 255.574, and 98.520. In addition, the values of MAE and NSC indices for the ELM 7 in the 

testing situation were estimated as 359.620 and 0.987, with a calculated VAF criterion of 98.797. 

ELM 8 with an R, RMSE, and VAF criteria of 0.967, 1389.374, and 81.532, resulting in the worst 

ELM model to predict the vertical reaction forces. After the ELM 3, ELM 2, ELM 7, ELM 1, ELM 

4, ELM 6, and ELM 5 were identified as the third-best to seventh-best ELM models to simulate 

the Fv/𝛾𝑠𝑊
3 parameter. According to the performed sensitivity analysis, the position of the iceberg 

along the scour axis (x/W), the attack angle (), and the shear strength of clay seabed (𝑐 𝛾𝑠.𝑊⁄ ) 

were considered the most significant input factors. Moreover, the 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐷𝑠 𝑊⁄ , 𝑉2 𝑔𝑊⁄ , and 

𝐿𝑣 𝛾𝑠. 𝑊
3⁄  variables were prioritized as the fourth-important to seventh-important input 

parameters. 

 

Table 5-4. Calculated statistical indices for vertical reaction forces simulated by ELM models in 

training and testing modes 

Model Mode R VAF RMSE MAE NSC AIC 

ELM 1 Train 0.993 98.56 535.2 405.4 0.986 536.5 
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Test 0.994 98.50 486.6 362.8 0.987 252.2 

ELM 2 Train 0.993 98.59 528.6 399.3 0.986 535.6 

Test 0.996 98.91 434.9 330.7 0.989 248.4 

ELM 3 Train 0.997 99.49 320.1 244.5 0.995 495.9 

Test 0.997 99.31 343.5 271.1 0.993 240.3 

ELM 4 Train 0.992 98.41 561.0 428.6 0.984 540.3 

Test 0.994 98.81 497.7 371.6 0.986 253.0 

ELM 5 Train 0.991 98.27 585.6 476.5 0.983 543.7 

Test 0.993 98.18 573.5 469.1 0.982 257.9 

ELM 6 Train 0.990 97.87 648.4 467.0 0.979 551.7 

Test 0.994 98.52 535.5 421.0 0.984 255.5 

ELM 7 Train 0.995 99.05 435.7 354.2 0.991 520.3 

Test 0.994 98.79 465.2 359.6 0.987 250.7 

ELM 8 Train 0.966 92.83 1161. 800.8 0.933 597.8 

Test 0.967 81.53 1389. 923.8 0.893 288.2 

 

The calculated statistical indices for horizontal subgouge deformations predicted by the ELM 

models in both training and testing phases are shown in Table 5-5. ELM 6 was the superior model 

to simulate the dh/W parameter, where the values of the correlation coefficient and Akaike 

Information Criteria in the testing mode of this model were equal to 0.999 and -28.275. Besides, 

ELM 4 was the second-best model, with RMSE and MAE values of 0.044 and 0.034. The VAF 

and NSC indices for the third-best model (ELM 5) in the testing mode were computed to be 99.939 

and 0.999. The magnitude of AIC, RMSE, and MAE criteria for ELM 2 as the fourth-premium 
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model were respectively reckoned at -24.626, 0.048, and 0.036. For ELM 1 (the fifth-best ELM 

model), the NSC and VAF values were approximated to be 0.999 and 99.940. The computed AIC 

index for the sixth-best model (ELM 3) and the seventh-best model (ELM 7) in the testing phase 

was respectively calculated as -23.284 and -22.417. ELM 8 with the highest level of complexity 

and the lowest level of accuracy was the worst ELM model to estimate the horizontal deformations, 

where the values of AIC and RMSE equaled 26.430 and 0.528. 

The sensitivity analysis showed that the soil depth parameter (y/W), the gouge dimension factor 

(Ds/W), and the vertical load factor (𝐿𝑣 𝛾𝑠. 𝑊
3⁄ ) were respectively detected as the most 

influencing input parameters to predict the horizontal subgouge deformations. Furthermore, other 

variables including the velocity factor (𝑉2 𝑔𝑊⁄ ), attack angle (), horizontal load 

factor (𝐿ℎ 𝛾𝑠.𝑊
3⁄ ), and the clay shear strength (𝑐 𝛾𝑠.𝑊⁄ ) were respectively ranked as the fourth-

significant to seventh-significant input parameters to model the horizontal subgouge 

displacements. 

 

Table 5-5. Calculated statistical indices for horizontal deformations simulated by ELM models in 

training and testing modes 

Model Mode R VAF RMSE MAE NSC AIC 

ELM 1 Train 0.991 98.11 0.360 0.102 0.981 -10.12 

Test 0.999 99.94 0.049 0.038 0.999 -24.37 

ELM 2 Train 0.999 99.81 0.113 0.052 0.998 -67.21 

Test 0.999 99.93 0.048 0.036 0.999 -24.62 

ELM 3 Train 0.998 99.69 0.146 0.063 0.997 -54.33 

Test 0.999 99.92 0.051 0.043 0.999 -23.28 
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ELM 4 Train 0.999 99.89 0.085 0.053 0.999 -81.12 

Test 0.999 99.95 0.044 0.034 0.999 -26.62 

ELM 5 Train 0.987 97.36 0.424 0.101 0.974 -2.057 

Test 0.999 99.93 0.047 0.037 0.999 -24.90 

ELM 6 Train 0.999 99.90 0.084 0.047 0.999 -81.70 

Test 0.999 99.95 0.040 0.032 0.999 -28.27 

ELM 7 Train 0.982 96.37 0.495 0.139 0.965 5.483 

Test 0.999 99.92 0.053 0.041 0.999 -22.41 

ELM 8 Train 0.800 43.84 1.587 0.361 0.640 62.67 

Test 0.999 84.63 0.528 0.116 0.919 26.43 

 

Table 5-6 portrays the computed statistical indices for the vertical deformations (dv/W) simulated 

by the ELM models in training and testing modes. The highest level of precision and correlation 

along with the lowest level of complexity were obtained for ELM 3, with the calculated MAE, R, 

and AIC of 0.010, 0.935, and -25.294 in testing mode. ELM 7 was the second-best model to 

simulate the vertical displacements, where the values of RMSE and AIC for this model were 

approximated to be 0.015 and -24.281. The VAF, NSC, and R indices for ELM 6 as the third-best 

model were respectively equal to 78.669, 0.812, and 0.915. In the testing mode of the fourth-best 

model (ELM 1), the MAE, AIC, and RMSE values were respectively computed as 0.012, -22.934, 

and 0.016. ELM 2 was the fifth-best ELM model, with a correlation coefficient of 0.914. The 

estimated MAE and AIC values for ELM 4 as the sixth-premium model equaled 0.013 and -22.580. 

ELM 5 was known as the seventh-best model, with the calculated RMSE and VAF of 0.017 and 
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77.201. ELM 8 with the R, MAE, and AIC of 0.485, 0.021, and -12.787, leading to the lowest level 

of precision and the highest level of complexity among all ELM models.  

The applied sensitivity analysis proved that the soil depth variable ( 𝑦 𝑤⁄ ) was identified as the 

most influencing input parameter to simulate the vertical deformations. Besides, the ,  𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 

𝑉2 𝑔𝑊⁄ , 𝑐 𝛾𝑠.𝑊⁄ , 𝐷𝑠 𝑊⁄ , and 𝐿𝑣 𝛾𝑠. 𝑊
3⁄  were ranked as the second-important to seventh-

important input factors. 

 

Table 5-6. Calculated statistical indices for vertical horizontal deformations simulated by ELM 

models in training and testing modes 

Model Mode R VAF RMSE MAE NSC AIC 

ELM 1 Train 0.843 59.24 0.020 0.013 0.710 -95.82 

Test 0.917 81.63 0.016 0.012 0.783 -22.93 

ELM 2 Train 0.877 70.09 0.018 0.013 0.770 -99.80 

Test 0.914 78.20 0.016 0.013 0.777 -22.72 

ELM 3 Train 0.934 85.31 0.013 0.010 0.872 -109.9 

Test 0.935 84.25 0.014 0.010 0.841 -25.29 

ELM 4 Train 0.933 85.35 0.013 0.009 0.872 -110.0 

Test 0.899 74.33 0.016 0.013 0.772 -22.58 

ELM 5 Train 0.890 73.84 0.017 0.012 0.793 -101.6 

Test 0.900 77.20 0.017 0.013 0.764 -22.29 

ELM 6 Train 0.924 82.78 0.014 0.011 0.853 -107.6 

Test 0.915 78.66 0.015 0.011 0.812 -24.09 

ELM 7 Train 0.953 89.84 0.011 0.008 0.908 -115.7 
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Test 0.946 89.38 0.015 0.011 0.818 -24.28 

ELM 8 Train 0.404 -413.3 0.034 0.024 0.163 -77.38 

Test 0.485 -236.7 0.031 0.021 0.175 -12.78 

 

 

5.1.7.4. Superior ELM Models 

Regarding the performed sensitivity analysis, ELM 5, ELM 3, ELM 6, and ELM 3 were known as 

the premium models so as to simulate the horizontal reaction forces (Fh/𝛾𝑠𝑊
3), the vertical 

reaction forces (Fv/𝛾𝑠𝑊
3), the horizontal deformations (dh/W), and the vertical deformations 

(dv/W), respectively. Almost all horizontal and vertical reaction forces simulated by the superior 

models possessed an error of less than 10%. Even though approximately one-fourth of the 

horizontal deformations predicted by ELM 6 owned an error of between 5% and 10%, about 73% 

of these results had an error of less than 5%. Additionally, the overwhelming majority of vertical 

deformations predicted by using ELM 3 had an error of less than 5%. 

The accuracy of laboratory measurements has originated from two main sources comprising 

systematic error (equipment error) and random error (human error). The source of the systematic 

error can be detected and the value of this error is measurable, whereas identification of a random 

error source is quite laborious. To prevent the random error, the experimental measurements had 

been repeated and their average values were reported as the laboratory records. It seems that the 

experimental values had some noises but the ELM algorithm could properly simulate the subgouge 

parameters. The discrepancy ratio (DR) of the superior ELM models was computed as follows: 

𝐷𝑅 =
𝜂(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)

𝜂(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
 

(5-44) 
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where, 𝜂(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑) and 𝜂(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑) are respectively the simulated subgouge clay parameters and 

the observed subgouge clay parameters. The magnitude of the DR index approaching the unity 

signified the higher performance of the ELM model (Azimi and Shiri 2020b). Figure 5-20 depicts 

the changes in discrepancy ratio (DR) versus the subgouge clay parameters for the superior ELM 

models. The average discrepancy ratio (DRave) for the horizontal and vertical reaction forces 

simulated by using the ELM 5 and ELM 3 models were respectively estimated at 1.367 and 1.004. 

Furthermore, for the dh/W and dv/W predicted through the superior ELM models, the DRave was 

equal to 2.481 and 1.578, respectively. As shown, the premium ELM models owned a reasonable 

performance in terms of the discrepancy ratio for the simulation of the subgouge clay parameters. 

 

Figure 5-20. Changes of discrepancy ratio (DR) versus the subgouge clay parameters for the 

superior ELM models 

 

To assess the performance of the superior ELM models, an uncertainty analysis (UA) was 

implemented. The results of the UA for the premium ELM models are arranged in Table 5-7. The 
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errors computed by the ELM model (𝑒𝑗) was calculated as the difference between the simulated 

ice-gouging parameters (𝑃𝑗) and the laboratory values (𝑂𝑗) as follows: 

𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (5-45) 

In addition, the mean value of the estimated error (�̅�) and the standard deviation (𝑆𝑒) were 

obtained by using the following equations (Azimi and Shiri 2020a): 

�̅� = ∑ 𝑒𝑗
𝑛

𝑗=1
 

(5-46) 

𝑆𝑒 = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(5-47) 

If the mean value of the predicted error (�̅�) had a negative sign, the ELM model had an 

underestimated performance, meaning that the simulated ice-induced parameter was less than the 

real values. However, the positive sign of �̅� signifies that the ELM model overestimated the 

subgouge parameters. It means that the simulated values were greater than the actual ones. 

Subsequently, using the 𝑒 ̅and 𝑆𝑒, confidence bound was assumed around the computed error 

through the “Wilson score method” without the continuity correction (Azimi and Shiri 2020a). 

It is worth mentioning that the Wilson score interval is an improvement over the normal 

distribution interval, where an asymmetric normal distribution is employed to improve the 

confidence interval bound. After that, a ±1.96Se led to a 95% confidence interval (95%CI) and 

then the width of uncertainty bound (WUB) was calculated. Regarding the performed UA, ELM 

5 overestimated the horizontal reaction forces, whilst ELM 6 had an underestimated performance 

to model the horizontal subgouge deformations. Furthermore, ELM 3 simulated the vertical 

reaction forces with an overestimated performance, however, this model underestimated the 

vertical subgouge deformations. As shown in Table 9-5, the WUB for the ELM models to simulate 
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the Fh/𝛾𝑠𝑊
3, Fv/𝛾𝑠𝑊

3, dh/W, and dv/W parameters were respectively estimated as ±5531, 

±39.950, ±0.012, and ±0.002. Additionally, in order to estimate the subgouge parameters including 

the Fh/𝛾𝑠𝑊
3, Fv/𝛾𝑠𝑊

3, dh/W, and dv/W, the 95%CI for the superior ELM models were calculated 

to be -3402 to 7660, -29 to 50.900, -0.014 to 0.010, and -0.004 to 0.0002, respectively. 

 

Table 5-7. Uncertainty analysis results of the superior ELM models to simulate the subgouge 

parameters 

Model ē Se WUB 95% CI 

ELM 5 2129 59366 ±5531 -3402 to 7660 

ELM 3 10.900 327.900 ±39.950 -29 to 50.900 

ELM 6 -0.002 0.073 ±0.012 -0.014 to 0.010 

ELM 3 -0.002 0.012 ±0.002 -0.004 to 0.0002 

 

A detailed comparison was made between the performance of the ELM and the multilayer 

perceptron neural networks (MLPNN), as a classical feedforward artificial neural network 

algorithm. Table 5-8 shows the results of a comparison between the MLPNN and the best ELM 

models in the simulation of the subgouge soil response in clay. It was observed that the training 

procedure of the ELM algorithm was faster than the MLPNN model in the same simulation 

circumstances, with the training time of ELM and MLPNN at 13.4 and 27.4 seconds, respectively. 

Also, the ELM showed a higher precision and correlation along with lower complexity. For 

instance, the value of MAE, R, and AIC indices for the MLPNN model to simulate the vertical 

deformations was calculated as 0.019, 0.823, and 226.508, respectively. 
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Table 5-8. Comparison between MLPNN and ELM models for simulation of subgouge clay 

parameters 

Model Parameter R VAF RMSE MAE NSC AIC 

 

 

MLPNN 

Fh/γs.W3 0.77 60.6 299490 70801 0.35 779.3 

Fv/γs.W3 0.98 97.69 691.34 451.93 0.99 264.3 

dh/W 0.98 27.67 1.42 0.272 0.77 43.59 

dv/W 0.82 39.09 0.026 0.019 0.07 -226.5 

ELM 5 Fh/γs.W3 0.98 96.61 65173 37288. 0.96 689.9 

ELM 3 Fv/γs.W3 0.99 99.31 343.53 271.2 0.99 240.3 

ELM 6 dh/W 0.99 99.95 0.04 0.032 0.99 -28.3 

ELM 3 dv/W 0.93 84.2 0.014 0.01 0.84 -25.3 

 

As shown, the performed analyses for the ELM models demonstrated that this methodology could 

appropriately simulate the subgouge clay parameters. In other words, the premium ELM models 

had reasonable accuracy and acceptable performance. Figure 5-21 illustrates the profiles of 

horizontal reaction forces (Fh/𝛾𝑠𝑊
3) simulated by ELM 5. This model in comparison with other 

ELM models possessed a high correlation, good precision along with a low level of complexity 

and an underestimated performance to prognosticate the horizontal reaction forces. 
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Figure 5-21. Horizontal reaction force (Fh/𝛾𝑠𝑊
3) profiles simulated by ELM 5 

 

ELM 3 was identified as the best model to predict the vertical reaction forces. The profiles of 

vertical reaction forces simulated by this model are depicted in Figure 5-22. According to 

simulation results, ELM 3 managed to estimate the vertical reaction forces meticulously, with a 

high index of precision and correlation as well as a low level of complicacy. 
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Figure 5-22. Vertical reaction force (Fv/𝛾𝑠𝑊
3) profiles simulated by ELM 3 

 

The profiles of horizontal subgouge deformation simulated by the best ELM model (ELM 6) are 

displayed in Figure 5-23. As shown, the ice-induced horizontal displacements were predicted 

accurately and efficiently along with a narrow bound of uncertainty by the ELM 6 model. It is 

worth noting that the highest level of correlation and the lowest level of complexity were obtained 

for this ELM model. 
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Figure 5-23. Horizontal deformation (dh/W) profiles simulated by ELM 6 

 

Figure 5-24 demonstrates the profiles of vertical ice-scoured deformations estimated by ELM 3, 

as the best ELM model. Based on the obtained results, ELM 3 possessed the narrowest uncertainty 

bound at dealing with the simulation of the vertical subgouge deformations, with an 
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underestimated performance. This model was quite precise, and its complicacy was entirely low 

compared to other ELM models. 

 

Figure 5-24. Vertical deformation (dv/W) profiles simulated by ELM 3 
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Therefore, the developed ELM models could estimate the ice-scoured clay parameters including 

reaction forces and deformations with reasonable accuracy and correlation along with a low level 

of complexity. Furthermore, the most important variables governing the subgouge displacements 

and reaction forces were identified in this study. 

 

5.1.8. Conclusion 

In the current study, the extreme learning machine (ELM) as a robust machine learning approach 

was utilized to simulate the subgouge clay parameters comprising the reaction forces and 

deformations. Firstly, by using the input parameters, eight ELM models were developed. It is 

worth mentioning that a comprehensive dataset was built to verify the ELM models and then 70% 

of these data were considered as the training dataset and 30% of the remaining as the testing 

dataset. The most significant results were summarized below: 

 The optimal number of hidden neurons in the ELM network was selected to be 20, with 

the correlation coefficient and Nash-Sutcliff efficiency coefficient of 0.980 and 0.959. 

 The hyperbolic tangent (Hypertan) was chosen as the optimized activation function in the 

ELM structure, with an Akaike Information Criteria of 697.554. 

 The superior ELM models were introduced by conducting a sensitivity analysis. For 

instance, to predict the horizontal subgouge deformations, ELM 6 as a function of 

 𝑦 𝑤⁄ , 𝐷𝑠 𝑊⁄ ,, 𝐿ℎ 𝛾𝑠. 𝑊
3⁄ , 𝐿𝑣 𝛾𝑠.𝑊

3⁄ , 𝑉2 𝑔𝑊⁄  had a high level of precision and low 

level of complexity compared to other ELM models, with an MAE and R of 0.032 and 

0.999. 
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 The vertical load factor (𝐿𝑣 𝛾𝑠.𝑊
3⁄ ), the attack angle (), and the soil depth parameter 

( 𝑦 𝑤⁄ ) were identified as the most influencing input factors to estimate the ice-scoured 

seabed features. 

 Detailed analyses proved that the ELM models had acceptable performance, for example, 

right 2% of the horizontal subgouge deformations simulated by ELM 6 had an error of 

greater than 10%. 

 The implemented uncertainty analysis demonstrated that the premium ELM models 

possessed an overestimation performance at dealing with the simulation of reaction 

forces, whilst they underestimated the subgouge deformations. 

The study showed that machine learning advancement as a cost-effective, robust, and fast 

alternative could be employed to deduct the expenses of costly experimental investigations and 

long-running numerical simulations in the field of the ice-seabed interaction process. Though the 

results presented an appropriate understanding of this complicated problem, more analyses should 

be done to gain a profound knowledge associated with this issue. 
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Section 3 

 

Evaluation of ice-seabed interaction mechanism in sand by using self-adaptive 

evolutionary extreme learning machine 
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Abstract 

Recently discovered oil and gases in the Arctic area have heightened the need for more attention 

to ice-seabed interaction during an ice-scouring event. The seabed is gouged by these drifting 

icebergs in warmer months threatening the subsea pipelines and transferring the hydrocarbons 

from offshore to onshore. The simulation of ice scouring the seabed needs costly large deformation 

finite element analysis for the guaranteed operational integrity of the subsea pipelines. In this 

paper, a cost-effective alternative approach using the self-adaptive evolutionary extreme learning 

machine (SaE-ELM) algorithm was taken to model the ice-induced seabed scour. Initially, using 

parameters governing the ice-gouging process, 17 SaE-ELM models were developed. Then, a 

comprehensive dataset was established and properly allocated for the training and testing of the 

developed models. The optimal number of hidden layer neurons and the best activation function 

opted for the SaE-ELM network. The premium SaE-ELM models and the most influencing inputs 

were recognized by conducting a sensitivity analysis. The vertical component of load showed a 

significant impact on the reaction forces, rather the soil depth and berm height possessed a striking 

effect for modeling the soil displacements. Ultimately, a set of SaE-ELM-based equations were 

presented to estimate the subgouge soil parameters. 

 

Keywords: Ice-gouging, Sandy seabed, Self-adaptive evolutionary extreme learning machine, 

Error analysis, Sensitivity analysis, Uncertainty analysis
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Graphical abstract 
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5.1.9. Introduction 

It is worthwhile noting that approximately 30% and 15% of the globe’s undiscovered natural gases 

and crude oil are stored in the Arctic territories (Gautier et al. 2009) and the vast majority of these 

hydrocarbons should be transferred from offshore to onshore by using the subsea pipelines as an 

economical and safe way (Arnau Almirall 2017). Seabed scouring by icebergs is recognized as 

being one of the most important features in the Arctic shallow waters where traveling icebergs and 

pressure ridges would gouge the sea floor during warmer months. During an ice-gouging 

phenomenon, the maximum subgouge soil deformation occurs right under the iceberg keel base, 

and the magnitude of the soil displacements decreases by extending to the greater depths (Azimi 

and Shiri 2020a). Figure 5-25 displays the schematic layout of an iceberg-seabed interaction 

problem. 

The gouge depth (Ds) is defined as the scour incision depth and the subsea pipeline is displaced in 

both horizontal (dh) and vertical (dv) directions during an ice-gouging problem (see Figure 5-25). 

The Lh and Lv represent the resultant horizontal and vertical loads comprising drag force from 

wind, drag force from current, buoyancy force, keel weight, friction force on the bottom of the 

keel, Coulomb’s passive friction force acting in front and on both sides of the keel, and driving 

force from the surrounding floe that are all amongst the input parameters to the problem. It is 

worthwhile noting that the resultant horizontal (Lh) and vertical loads (Lv) were reported in the 

applied experimental investigations to feed the used machine learning (ML) model in the current 

study (Azimi and Shiri 2020a). In terms of pipeline response to the ice-gouging, the ultimate design 

factors include subgouge soil displacements (d) and the keel reaction forces (F). These factors are 

resultant of several key input variables including the attack angle (α), gouge depth (Ds), gouge 

width (W), seabed soil properties (φ), ice dynamics (V), environmental loads (L), etc. In the current 
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investigation, similar to all of the previous studies (e.g., Paulin 1991 & 1992; Lach 1996; C-CORE 

1995; C-CORE 1996; Hynes 1996; Nematzadeh and Shiri 2019a; Azimi and Shiri 2021), the 

subgouge soil deformations (d) and the keel reaction forces (F) were considered as the key outputs 

of the ice-gouging analysis. 

Currently, subsea trenching and backfilling are commonly utilized to bury these structures for 

physical protection against ice scour events (Nematzadeh and Shiri 2020). Thus, the estimation of 

subgouge soil characteristics comprising the reaction forces and soil displacements are significant 

design factors playing with the project's budget redlines to minimize the required burial depth for 

physical protection against operational and environmental loads (Azimi and Shiri 2020b).  

 

Figure 5-25. Schematic layout of an iceberg-seabed interaction problem 

 

Some preliminary field and experimental investigations associated with sea ice scouring were 

carried out in the early 1980s (Chari 1980; Comfort and Graham 1986; Machemehl and Jo1989), 

rather ice-gouging issue has received much attention over the last three decades and several costly 

experimental studies have been implemented by many researchers and scholars. For instance, 
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Paulin (1991) performed ten experimental ice-gouging tests for the sandy and clay seabed under 

different circumstances. The author highlighted that the vertical reaction forces were significant 

for models with a smaller attack angle, whereas the horizontal reaction forces were quite dominant 

for a greater attack angle. Paulin (1992) carried out several ice-gouging tests experimentally for 

both dry and submerged sand seabed in order to measure the subgouge displacements and reaction 

forces. The author maintained that the ice-gouging process was similar for both submerged and 

dry seabed, whereas reaction forces and loads for the submerged models were much less than for 

the dry tests. Subsequently, a set of the Pressure Ridge Ice Scour Experiment (PRISE) tests was 

implemented at the Center for Cold Ocean Resources Engineering (C-CORE) to study the subscour 

deformations and reaction forces for different clay and sandy seabed (C-CORE 1995 and C-CORE 

1996). These research programs showed that the horizontal reaction forces enhanced by increasing 

the scour width, whilst this parameter decreased with the steeper attack angle of the ice keel. Hynes 

(1996) investigated the ice keel scour problem for a sandy seabed in a centrifuge study. The author 

reported the values of scour-induced reaction force, displacement, and pore pressure. They 

concluded that the relation between the scour loads and scour depths could be described linearly. 

Yang (2009) conducted some Pipeline Ice Risk Assessment and Mitigation (PIRAM) tests for the 

sand seabed. The author focused on ice-induced displacements and evaluated the effects of gouge 

depth, frontal berm height, and gouge rate. The study showed that the reaction force was a function 

of the gouge geometry and attack angle. 

Although there has been considerable interest in the large deformation finite element simulations 

of the ice-gouging problem in recent years (Nematzadeh and Shiri 2019a; Nematzadeh and Shiri 

2019b), these numerical analyses entail time-consuming calculations (Azimi and Shiri 2020a). For 

example, Shin et al. (2019) modeled the ice scouring issue by means of the Coupled Eulerian 
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Lagrangian (CEL) method. These authors applied the contact condition and geostatic stress to 

predict the ice keel gouging and verified the simulation results with experimental values. 

Arnau and Ivanović (2019) performed a set of small-scale 1g laboratory ice scour tests for dry and 

saturated sand. The investigation showed that the drifting speed had a significant impact on the 

scouring loads. The authors concluded that the rate effects grew linearly with the berm height and 

the scour depth. 

Moreover, Nematzadeh and Shiri (2020) simulated the influence of the non-linear stress-strain 

behavior of dense sand in an ice-gouging event through a modified Mohr-Coulomb (MMC) 

scheme. The study proved that the side berm size was affected by the magnitude of the attack 

angle, rather the frontal berm was not significantly changed. 

On the other hand, the last decades have witnessed a huge growth in the use of artificial intelligence 

(AI) and machine learning (ML) advancement since they are considered precise, fast, and cost-

effective tools. The first investigations into the application of AI technology in the simulation of 

the ice-gouging phenomenon were reported by Kioka et al. (2003) and Kioka et al. (2004). The 

authors utilized the neural network (NN) algorithm to simulate the ice scouring problem and 

validated these models with a mechanical approach. Azimi and Shiri (2020a) introduced the 

parameters affecting the ice-gouging process regarding Buckingham’s theory for both clay and 

sandy seabed. They suggested a set of linear regression (LR) models to estimate the maximum ice-

induced displacements. Additionally, Gene Expression Programming (GEP) was applied to predict 

the subgouge sand deformations for the first time by Azimi and Shiri (2020b). They pointed out 

that the soil depth and dilation index had a significant effect to simulate the horizontal subgouge 

deformations by the GEP model.  
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Azimi and Shiri (2021) simulated the ice-seabed interaction parameters by means of a machine 

learning (ML) algorithm. The authors asserted that the sand shear strength parameter and gouge 

depth ratio possessed a significant effect on the subgouge reaction forces and displacements. The 

study also showed that the ML algorithm outperformed the empirical models to estimate the ice-

induced sand deformations and the keel reaction forces. 

As shown, simulation of the subgouge soil response is a key design requirement for subsea 

facilities, so the industry keeps looking for more reliable and cost-effective alternatives to model 

the behavior of these sea bottom-founded structures to lessen the collision risk of icebergs with 

them. Therefore, to fill this knowledge gap, the capability of a robust self-adaptive machine 

learning called a self-adaptive evolutionary extreme learning machine (SaE-ELM) to model the 

subgouge sand characteristics is assessed in the current investigation for the first time. More details 

on this will be given in the next sections. 

 

5.1.10. Methodology 

The extreme learning machine (ELM), differential evolution (DE) algorithm, and self-adaptive 

evolutionary extreme learning machine (SaE-ELM) were detailed and then the parameters 

affecting the ice-induced sand seabed were presented. After that, using these inputs, seventeen 

SaE-ELM models were defined. Ultimately, several criteria were introduced for the appraisal of 

these self-adaptive machine learning models. 

 

5.1.10.1. Extreme learning machine (ELM) 

An extreme learning machine (ELM) is a powerful neural network algorithm introduced by Huang 

et al. (2004) to solve different linear and non-linear problems (Azimi and Shiri 2021). The ELM 
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is a quick training machine learning owning the structure of a single-layer feed-forward neural 

network (SLFFNN) (Huang et al. 2006). Figure 5-26 exhibits the basic structure of the ELM 

network. In comparison with the classical backpropagation (BP) algorithm, the ELM possesses 

several benefits as follows: 

 The high training speed of feedforward neural network (FFNN) by ELM, 

 Better generalization performance, 

 Training with differentiable and non-differentiable activation functions, 

 Overcome the gradient-based algorithm such as the local optimum, improper learning rate, 

and overfitting problem (Huang et al. 2011; Sattar et al. 2019, Azimi and Shiri 2021). 

 

Figure 5-26. Structure of ELM network 

 

As shown in Figure 5-26, the ELM has three distinct layers comprising an input layer, a hidden 

layer, and an output layer. The input layer contains the input parameters of the ice-gouging 

problem and the number of neurons in the output layer equals the number of target parameters of 
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the issue. However, the number of neurons in the hidden layer is chosen based on a trial and error 

procedure (Azimi and Shiri 2021). 

A single hidden layer forward network is formed by means of linear algebra in these three layers 

so as to solve the equations for obtaining the optimum weights in the output layer (Sattar et al. 

2019). It is worth noting that the weights of the input layer are determined randomly, rather the 

output weights are analytically estimated through a predefined training mechanism. Therefore, the 

training procedure in the ELM model is extremely fast and consequently, its generalization 

capability is quite significant. The output of an SLFFNN is solved as below: 

𝑌 = ∑𝛽𝑗𝐺 (∑𝑤𝑖,𝑗𝜒𝑖 +

𝑛

𝑖=1

𝜅𝑗)

𝑚

𝑗=1

 
(5-48) 

where, 𝑌 and 𝜒 denote the output and input of the ELM algorithm, respectively. Additionally, n 

and m are the number of input and output parameters, respectively. Moreover, 𝑤𝑖,𝑗 indicates input 

weight that is the connection between the ith neuron in the input layer to the jth neuron in the hidden 

layer; 𝛽𝑗 is a coefficient that links the jth neuron in the hidden layer to the particular neuron within 

the output layer. Besides, 𝐺( ) and 𝜅𝑗 are the activation function and biases of the hidden layer 

neurons, respectively. 

Generally, the output of an SLFFNN is computed in two major steps. Initially, the network of the 

hidden layer is constructed, meaning that the number of neurons in this layer is determined by 

using a trial and error procedure (Azimi and Shiri 2021). Subsequently, in order to train the ELM 

network, an activation function (AF) is defined. Indeed, the optimum number of hidden neurons 

and the best activation function lead to the optimal ELM network. Then, using arbitrary 

assignments of the input layer weights (𝑤𝑖,𝑗) and the biases (𝜅𝑗), the structure of hidden layer 
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neurons and the weight in the output layer are calculated. Therefore, equation (5-48) is rewritten 

as follows: 

𝐻𝛽 = 𝑌 (5-49) 

here, H is the extreme learning machine feature mapping matrix as below: 

𝐻(𝑤𝑖,𝑗 , 𝜅𝑗 , 𝜒𝑖) = [

𝐻1,1 ⋯ 𝐻1,𝑚

⋮ ⋱ ⋮
𝐻𝑛,1 ⋯ 𝐻𝑛,𝑚

] = [
𝐺(𝑤1,1𝜒1 + 𝜅1) ⋯ 𝐺(𝑤1,𝑚𝜒𝑚 + 𝜅𝑚)

⋮ ⋱ ⋮
𝐺(𝑤𝑛,1𝜒𝑛 + 𝜅1) ⋯ 𝐺(𝑤𝑛,𝑚𝜒𝑚 + 𝜅𝑚)

] 

(5-50) 

In addition, 𝛽 and Y are defined in the following form: 

𝑌 = [𝑌1 𝑌2  ⋯  𝑌𝑚]   and   𝛽 = [𝛽1 𝛽2  ⋯  𝛽𝑛] (5-51) 

The 𝛽𝑗 is obtained by minimizing error in an estimation through the Moore-Penrose generalized 

inverse matrix as follows (Huang et al. 2011): 

�̂� = 𝐻+𝑌 (5-52) 

here, 𝐻+ represents the Moore-Penrose generalized inverse matrix of H. 

 

5.1.10.2. Differential evolution (DE) 

Differential evolution (DE) as a robust optimizer algorithm was first proposed by Storn and Price 

(1997). The automatic detection-derivation mechanism and the high convergence speed are the 

most significant benefits of DE over other optimizer tools (Bonakdari et al. 2020). Commonly, 

minimizing the below equation is the major aim of the DE algorithm: 

min 𝑓(𝜗)    where    𝜗 ∈ 𝑹Ɗ (5-53) 

here, 𝜗 is a vector, where the DE algorithm generally employs a population of I individuals so as 

to calculate the global optimal of the ice-seabed interaction parameters. Therefore, the ith vector is 

surmised as below: 
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𝜗𝑖,𝜛 = 𝜗𝑖,𝜛
1 , 𝜗𝑖,𝜛

2 , 𝜗𝑖,𝜛
3 ,⋯ , 𝜗𝑖,𝜛

Ɗ                   where  𝑖 = 1,2,3,⋯ 𝐼 (5-54) 

where, 𝜛 is defined as the generation number. In the current study, the DE algorithm utilizes four 

major stages to solve the ice-seabed interaction problem as follows: 

(I) Initialization: I vectors are randomly produced by using the below equation: 

𝜗𝑖,𝜛 = 𝜗𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1)

× (𝜗𝑚𝑎𝑥 − 𝜗𝑚𝑖𝑛)         where {
𝜗𝑚𝑖𝑛 = [𝜗𝑚𝑖𝑛

1 , 𝜗𝑚𝑖𝑛
2 , ⋯ , 𝜗𝑚𝑖𝑛

Ɗ ]

𝜗𝑚𝑎𝑥 = [𝜗𝑚𝑎𝑥
1 , 𝜗𝑚𝑎𝑥

2 , ⋯ , 𝜗𝑚𝑎𝑥
Ɗ ]

 

(5-55) 

here, the 𝜗𝑚𝑎𝑥 and 𝜗𝑚𝑖𝑛 are defined as the boundaries considered for the ice-gouging problem. 

(II) Mutation: The mutant vectors (Ψ𝑖,𝜛) is created by means of the generated vector (𝜗𝑖,𝜛) in the 

mutation phase. Various mutation strategies have been introduced by Storn and Price (1997); 

however, four of them are applied in the current investigation comprised as follows: 

Strategy 1: 

Ψ𝑖,𝜛 = 𝜗𝜎1,𝜛
𝑖 + Λ × (𝜗𝜎2,𝜛

𝑖 − 𝜗𝜎3,𝜛
𝑖 ) (5-56) 

Strategy 2: 

Ψ𝑖,𝜛 = 𝜗𝜎1,𝜛
𝑖 + Λ × (𝜗𝑏𝑒𝑠𝑡,𝜛 − 𝜗𝜎1,𝜛

𝑖 ) + Λ × (𝜗𝜎2,𝜛
𝑖 − 𝜗𝜎3,𝜛

𝑖 ) + Λ × (𝜗𝜎4,𝜛
𝑖 − 𝜗𝜎5,𝜛

𝑖 ) (5-57) 

Strategy 3: 

Ψ𝑖,𝜛 = 𝜗𝜎1,𝜛
𝑖 + Λ × (𝜗𝜎2,𝜛

𝑖 − 𝜗𝜎3,𝜛
𝑖 ) + Λ × (𝜗𝜎4,𝜛

𝑖 − 𝜗𝜎5,𝜛
𝑖 ) (5-58) 

Strategy 4: 

Ψ𝑖,𝜛 = 𝜗𝑖,𝜛 + Λ × (𝜗𝜎1,𝜛
𝑖 − 𝜗𝑖,𝜛) + Λ × (𝜗𝜎2,𝜛

𝑖 − 𝜗𝜎3,𝜛
𝑖 ) (5-59) 

here, 𝜎𝑘
𝑖  is randomly calculated from the [1,2,3,⋯ , 𝐼] interval and k as the control parameter is 

randomly adjusted between 0 and 1. The Λ as a scaling factor is selected between 0 and 2 (Storn 

and Price 1997). 
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(III) Crossover: The crossover phase is performed on the mutated vectors to enhance the model's 

versatility. During this stage, the trial vector (Δ𝑖,𝜛 = ⌊Δ𝑖,𝜛
1 , Δ𝑖,𝜛

2 ,⋯ , Δ𝑖,𝜛
Ɗ , ⌋) is produced for the 

mutated vectors (Ψ𝑖,𝜛 = ⌊Ψ𝑖,𝜛
1 , Ψ𝑖,𝜛

2 , ⋯ ,Ψ𝑖,𝜛
Ɗ , ⌋) using the equation below: 

∆𝑖,𝜛
𝑗

= {
Ψ𝑖,𝜛

𝑗
                     if(rand𝑗 ≤ 𝐶𝐶)  or  (𝑗 = 𝑗rand)

𝜗𝑖,𝜛
𝑗

                                                            otherwise
 

(5-60) 

here, CC is the coefficient of crossover and the rand𝑗   variable is randomly taken into account as 

a constant value. The 𝑗rand parameter is adjusted between 1 and Ɗ, since one of the ∆𝑖,𝜛 variables 

ought to be different from the 𝜗𝑖,𝜛 values. 

(IV) Selection: The best individual with the minimum target value is chosen as the solution to the 

ice-seabed interaction problem. 

Phases (II) to (IV) are iterated till either the desired accuracy or maximum predefined iterations 

are achieved. 

 

5.1.10.3. Self-adaptive evolutionary extreme learning machine (SaE-ELM) 

Even though the ELM algorithm has an acceptable performance to simulate multifarious linear or 

nonlinear issues, selecting the optimized value of the parameters in the hidden layer manually 

plays a crucial role to result in simulating a problem appropriately. Moreover, in practical 

applications, the input parameters should be dimensionless which is another drawback of the ELM 

network (Cao et al 2012). In order to overcome these limitations, the self-adaptive evolutionary 

extreme learning machine (SaE-ELM), as a hybrid model of the ELM network and DE algorithm, 

was developed for the first time by Cao et al. (2012). 

The DE algorithm has been widely utilized in the literature to optimize the parameters of SLFFNN 

models (e.g., Cao et al. 2012). In the current study, the parameters of neurons in the hidden layer 
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were optimized by using the DE algorithm, while the output weights were analytically determined 

through the ELM model. The developed SaE-ELM network has a better generalization ability and 

also a further compact network structure in comparison with the classical ELM algorithm (Cao et 

al. 2012). 

The developed SaE-ELM model in this study has several advantages compared with the classical 

ELM models (e.g., Azimi and Shiri 2021): 

 SaE-ELM algorithm has a better generalization capability owing to optimization of the 

parameters of neurons in the hidden layer by using the Differential evolution (DE). 

However, the parameters of the hidden layer neurons in the ELM algorithm were randomly 

determined (e.g., Cao et al. 2012). 

 The classical ELM algorithm was sensitive to the number of hidden layer neurons and the 

determination of the optimal number of hidden layer neurons was quite laborious (Azimi 

and Shiri 2021) but these parameters in the SaE-ELM network were analytically optimized 

by means of the DE algorithm.  

 The input parameters in the ELM network had to be dimensionless which prevented the 

ELM usage in practical applications (Azimi and Shiri 2021) whereas the input parameters 

in the SaE-ELM model could be either dimensional or dimensionless. 

 In the current study, 17 SaE-ELM models had been defined in which the effect of each 

single input parameter on the target function was assessed, whilst the published works in 

the field of ice-gouging lacked this comprehensive analysis. 

Generally, SaE-ELM was a novel version of the ELM algorithm that overcame the drawbacks of 

the classical form. Although the classical ELM algorithm had a good performance at dealing with 

the simulation of the ice-gouging characteristics (Azimi and Shiri 2021), the ELM trapped in local 
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optima and the algorithm had overfitting problems in some cases, while the SaE-ELM algorithm 

overcome these disadvantages. Figure 5-27 details the flowchart of the SaE-ELM model in the 

current study.  

 

Figure 5-27. Flowchart of the SaE-ELM in the current study 

 

In the SaE-ELM algorithm, the number of neurons in the hidden layer is optimized by using the 

self-adaptive differential evolution algorithm. During the training procedure, the control 

coefficients in the DE algorithm and the strategies for trial vector generation are determined as a 

self-adaptive mechanism. In other words, during the simulation process, the output weights are 

estimated by means of the ELM network, whereas the input weights and biases of the hidden layer 

neurons are determined through the DE algorithm. To model the ice-seabed interaction process, 

the main steps comprising initialization, output weights, mutation and crossover, and evaluation 

are applied by using the SaE-ELM algorithm as follows: 

Initialization: the I vector is randomly created in the first DE generation and the following vector 

is computed: 

Load subgouge dataset

Forming Neural Network:

Number of hidden layer neurons & Activation function

Assigning weights and biases of neurons in the input layer arbitrary

Calculation of output weights and accuracy of model (RMSE)

The population vector of the best case and lowest RMSE is stored

Mutation and crossover

Evaluation
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𝜗𝑘,𝜛 = ⌊𝑎1,(𝑘,𝜛)
𝑌 , ⋯ , 𝑎𝑙,(𝑘,𝜛)

𝑌 , 𝑏1,(𝑘,𝜛),⋯ , 𝑏𝑙,(𝑘,𝜛)⌋ (5-61) 

where, a and b are the learning parameters and l is the size of the hidden layers. 

Output weights: the output weights are defined by using the following equation: 

𝛽𝑘,𝜛 = 𝐻𝑘,𝜛𝑌 (5-62) 

where, the 𝐻𝑘,𝜛 is determined by using the equation below: 

𝐻𝑘,𝜛 = [

𝐺(𝑎1,(𝑘,𝜛), 𝑏1,(𝑘,𝜛), 𝜒1) ⋯ 𝐺(𝑎𝑛,(𝑘,𝜛), 𝑏𝑛,(𝑘,𝜛), 𝜒1)

⋮ ⋱ ⋮
𝐺(𝑎1,(𝑘,𝜛), 𝑏1,(𝑘,𝜛), 𝜒𝑚) ⋯ 𝐺(𝑎𝐿,(𝑘,𝜛), 𝑏𝐿,(𝑘,𝜛), 𝜒𝑚)

] 

(5-63) 

The Root Mean Squared Error (RMSE) of the generated individuals is computed as follows: 

𝑅𝑀𝑆𝐸𝑘,𝜛 = √
∑ ‖∑ 𝛽𝑗 . 𝐺(𝑎𝑗,(𝑘,𝜛), 𝑏𝑗,(𝑘,𝜛), 𝜒𝑖) − 𝑌𝑖

𝐿
𝑗=1 ‖𝑚

𝑖=1

𝑛 × 𝑚
 

(5-64) 

Then, the next generation of individuals is calculated using the following equation: 

𝜗𝑘,𝜛+1

= {

Δ𝑘,𝜛+1     𝑖𝑓                                                           𝑅𝑀𝑆𝐸𝜗𝑘,𝜛
− 𝑅𝑀𝑆𝐸𝜗𝑘,𝜛

> 𝜋. 𝑅𝑀𝑆𝐸𝜗𝑘,𝜛

Δ𝑘,𝜛+1    𝑖𝑓    |𝑅𝑀𝑆𝐸𝜗𝑘,𝜛
− 𝑅𝑀𝑆𝐸𝜗𝑘,𝜛

| < 𝜋. 𝑅𝑀𝑆𝐸𝜗𝑘,𝜛
    𝑎𝑛𝑑    ‖𝛽Δ𝑘,𝜛+1

‖ < ‖𝛽𝑘,𝜛‖

𝜗𝑘,𝜛                                                                                                                                          𝑒𝑙𝑠𝑒

 

(5-

65) 

where, 𝜋 is defined as a positive constant value to hinder the zero improvement rate. 

Mutation and Crossover: using the introduced strategies in equations (5-56) to (5-59), the trial 

vectors of the DE algorithm are defined. Furthermore, the best strategy is chosen regarding the 

probability procedure 𝑃𝑙,𝜛 where the lth strategy is considered for the 𝜛𝑡ℎ and l is 1, 2, 3, or 4. 

Generally,  𝑃𝑙,𝜛 is updated in each step, meaning that if the population of generated vectors (I) is 

higher than 𝜛, the four applied strategies possess an identical probability (𝑃𝑙,𝜛 = 0.25). If 𝜛 is 

greater than the I, 𝑃𝑙,𝜛 is calculated as follows: 
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𝑃𝑙,𝜛 =
𝜚𝑙,𝜛

∑ 𝜚𝑙,𝜛
4
𝑙=1

         where       𝜚𝑙,𝜛 =
∑ 𝑛𝜚𝑙,𝜛

𝜛−1
𝑞=𝜛−𝐼

∑ 𝑛𝜚𝑙,𝜛
𝜛−1
𝑞=𝜛−𝐼 + ∑ 𝑛𝑓𝑙,𝜛

𝜛−1
𝑞=𝜛−𝐼

+ 𝜋 
(5-66) 

where, 𝑛𝑓𝑙,𝜛 and 𝑛𝜚𝑙,𝜛 are trial vectors. The CC and Λ values are determined for a target vector 

through the selection phase from the normal distribution function. 

Evaluation: the next generation of trial vectors are created by equation (5-65). The mutation, 

crossover, and evaluation steps are iterated until either the predefined iteration number or required 

accuracy is reached during simulating the ice-induced seabed parameters using the SaE-ELM 

algorithm. 

Although the generalization ability of SaE-ELM network was improved by using the DE algorithm 

and this hybrid ML model could overcome the sensitivity to the number of neurons in the hidden 

layer, in comparison with the classical ELM model, the SaE-ELM algorithm was slightly long-

running during the simulation of target function. 

 

5.1.10.4. Ice-seabed interaction process 

The ice-induced interaction parameters (η) in a sand mass including soil deformations (d/W) and 

reaction forces (F/γsW3) are a function of a set of parameters including the scour depth (Ds), the 

internal friction angle of sand (𝜑), the width of gouge (W), the attack angle (), the angle of the 

surcharged soil slope (ω), the height of the berm (h’), the horizontal load (Lh), the vertical load 

(Lv), the velocity of ice keel (V), and the specific weight of sand (𝛾𝑠) (Lach 1996; Azimi and Shiri 

2020a): 

𝜂 (𝑠𝑎𝑛𝑑) = 𝑓1(𝐷𝑠, 𝜑,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠) (5-67) 

Equation (5-67) can be written as a function of eight dimensionless groups as below (Azimi and 

Shiri 2020a): 
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𝜂(𝑠𝑎𝑛𝑑)

𝑊
= 𝑓2 (

𝐷𝑠

𝑊
,𝜑,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-68) 

It is worth noting that the maximum subgouge deformation in the seabed sand (𝑑(𝑠𝑎𝑛𝑑)) is formed 

just under the moving ice keel in the gouge centerline. However, at greater depth on the subgouge 

centerline, by incorporating the soil depth (y/W), the subgouge sand deformation (d(sand)/W) is 

written as follows: 

𝑑(𝑠𝑎𝑛𝑑)

𝑊
= 𝑓3 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,𝜑,,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-69) 

Similarly, the ice-induced reaction force (F) is a function of the position of the iceberg along the 

scour axis (x) and 𝐷𝑠, 𝜑,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠 so equation (5-69) can be written as below: 

𝐹(𝑠𝑎𝑛𝑑)

𝛾𝑠𝑊3
= 𝑓4 (

𝑥

𝑊
,
𝐷𝑠

𝑊
,𝜑,,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-70) 

In this study, a set of experimental investigations were used to simulate the ice-induced seabed 

parameters (d/W and F/γsW3). This means that the key measurements of six experimental datasets 

reported by Paulin (1991), Paulin (1992), C-CORE (1995), Hynes (1996), C-CORE (1996), and 

Yang (2009) were applied to validate the SaE-ELM models. The values of the surcharged soil 

slope (ω) were not reported by the aforementioned research works. Therefore, the introduced 

dimensionless groups in equations (5-69) and (5-70) were applied as the input parameters for the 

SaE-ELM models to simulate the subgouge deformations and the reaction forces. The applied 

input combinations in this study are displayed in Figure 5-28. 
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Figure 5-28. Applied input combinations in this study 

 

Regarding the performed sensitivity analysis for the ice-gouging problem, there were eight 

dimensionless groups of parameters governing the subgouge sand characteristics. The SaE-ELM 

1 model was a function of all input parameters, whereas the input parameters were eliminated one 

at a time in SaE-ELM 2 to SaE-ELM 9 (8 models) and eight models (SaE-ELM 10 to SaE-ELM 

17) were developed by means of solely one input parameter  

Therefore, seventeen SaE-ELM models were defined and the best models along with the most 

significant input parameters were identified by performing a sensitivity analysis. The superior SaE-

ELM model was recognized by evaluation of the SaE-ELM 1 to SaE-ELM 9 models, while the 

most important input factors were respectively ranked by analyzing the SaE-ELM 10 to SaE-ELM 

17 models. Subsequently, the applied dataset were split into two sub-samples comprising training 

(70% of the entire data) and testing (30% of the remaining) dataset. 
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5.1.10.5. Goodness of fit 

A set of criteria such as correlation coefficient (R), variance accounted for (VAF), root mean square 

error (RMSE), mean absolute error (MAE), Nash-Sutcliff efficiency coefficient (NSC), and Akaike 

Information Criteria (AIC) were utilized to evaluate the accuracy, correctness, correlation, and 

complexity of the SaE-ELM models. The correlation of the SaE-ELM models was examined by 

the R, NSC indices, while the precision of these models was evaluated by the RMSE and MAE 

criteria. The correctness of the models was verified through the VAF index but the AIC indicator 

was applied in order for evaluation of the complexity of the defined models. 

Closeness of the R and NSC indices to one signified that the SaE-ELM model owned the highest 

correlation with the experimental values, rather the closeness of the RMSE and MAE values to zero 

meant that a particular model had the lowest level of error. Moreover, the best SaE-ELM model 

possessed the highest value of the VAF index though the complexity of these SaE-ELM models 

was not assessed using the defined criteria. To overcome this limitation, the Akaike Information 

Criteria (AIC) was used, meaning that the less complex SaE-ELM model owned the lowest value 

of AIC value; hence, the premium SaE-ELM model had the lowest value of the AIC index and 

error (RMSE and MAE), with the highest level of correlation (R and NSC). 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(5-71) 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑃𝑖 − 𝑂𝑖)

𝑣𝑎𝑟(𝑃𝑖)
) × 100 

(5-72) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(5-73) 

𝑀𝐴𝐸 =
∑ |𝑃𝑖 − 𝑂𝑖|

𝑛
𝑖=1

𝑛
 

(5-74) 
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𝑁𝑆𝐶 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1

 
(5-75) 

𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(5-76) 

here, Oi, Pi, �̅�, �̅�, and n are respectively the experimental measurements, the simulated values, the 

average experimental values, the average simulated values, and the number of experimental 

measurements. In addition, the k is the number of hidden layer neurons used in the SaE-ELM 

network. 

 

5.1.11. Results and discussion 

First, the best value for the number of hidden layer neurons and the premium activation function 

were opted. Subsequently, a comprehensive sensitivity analysis for SaE-ELM 1 to SaE-ELM 17 

was performed and then the superior SaE-ELM models along with the most significant inputs were 

introduced. More analyses were conducted including the error analysis and uncertainty analysis 

for the best models. Ultimately, a set of SaE-ELM-based equations were proposed to estimate the 

subgouge sand parameters. It should be mentioned that only the simulation results in the testing 

mode are presented in this paper. 

 

5.1.11.1. Hidden layer neurons 

Determination of the optimal number of hidden layer neurons (NHN) is considered as a striking 

feature of the SaE-ELM structure since the accuracy and complexity of the SaE-ELM model is 

increased by growing the NHN (Sattar et al. 2019). Thus, the optimized value of NHN was selected 

based on a trial and error procedure in the current investigation. Figure 5-29 shows the variation 

of NHN against the key statistical indices for simulation of the horizontal reaction forces. 
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Figure 5-29. Variation of the number of hidden layer neurons against the key statistical criteria 

for simulation of reaction forces 

 

The initial value of NHN was chosen as 2, where the computed variance accounted for (VAF) and 

correlation coefficient (R) were estimated as 81.844 and 0.924, respectively. The NHN was 

considered to be 28, the key criteria such as the R, AIC, and NSC were respectively surmised at 

0.994, 1628.419, and 0.988. As shown in Figure 5, by increasing the value of NHN greater than 

28, the performance of SaE-ELM model was negligibly altered. Therefore, the optimal value of 

NHN for the SaE-ELM network was selected to be 28. 
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The weighted input parameters and biases in the applied machine learning are nonlinearly 

transformed by using an activation function (AF) (Hertz 2018). Six different AFs in the SaE-ELM 

network comprising the hyperbolic tangent (Hypertan), the triangular basis (Tribas), the radial 

basis (Radbas), the hard limit (Hardlim), the sigmoid (Sig), and the sinusoidal (Sin) functions were 

applied to simulate the ice-gouging parameters in this study. The Hypertan and Sig activation 

functions have widely applied in feedforward neural networks (FFNN). The Hypertan has an S-

shaped curve in which the range of the function is from -1 to 1, whereas the Sig function varies 

from zero to 1. The Hypertan is monotonic function and its derivative is non-monotonic curve but 

the sigmoid is monotonic function and its derivative has a bell-shaped curve. Using the Hypertan 

activation function, the negative input is mapped quite negative and the zero input is mapped near 

zero. The Sig function is concave for values greater than zero, while it is convex for values less 

than zero. The Tribas is a linear Gaussian-based activation functions but it is simpler and quicker. 

In the Radbas activation function, the output ranges from −∞ to + ∞ and this value is estimated 

regarding the distance from the origin point. By using the Hardlim activation function, the output 

of neuron is 1 as its input approaches a threshold, otherwise zero. The Sin is a sinusoidal activation 

function and it goes up and down but it outputs zero for large negative and positive input values. 

These activation functions have been extensively utilized in the field of machine learning (ML) 

for regression, classification, and clustering problems. The schematic layout of the applied 

activation functions is presented in Figure 5-30. 
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Figure 5-30. The schematic layout of the applied activation functions in the current study 

 

Figure 5-31 portrays the comparison between the performances of various activation functions in 

the SaE-ELM network for simulation of the horizontal reaction forces. 
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Figure 5-31. Comparison between the performances of various activation functions in the SaE-

ELM network for simulation of the horizontal reaction forces 

 

Among the utilized AFs, the Tribas function demonstrated the worst performance, where the 

values of AIC and R for this activation function were equal to 1865.751 and 0.793. It was found 
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AFs, with the VAF, NSC, and AIC indices of 98.929, 0.988, and 1626.670, respectively. Thus, the 

sigmoid function was opted as the best activation function for the SaE-ELM network in this paper. 

 

5.1.11.3. SaE-ELM models 

To introduce the superior SaE-ELM model, SaE-ELM 1 to SaE-ELM 9 were developed where 

SaE-ELM 1 was a function of all input factors, whereas the effect of each input parameter was 

removed one at a time in the SaE-ELM 2 to SaE-ELM 9 models. On the other hand, in order to 

detect the most influencing input factors, the SaE-ELM 10 to SaE-ELM 17 were defined. Figure 

5-32 displays the calculated statistical criteria of the SaE-ELM models for simulation of the 

horizontal reaction forces. SaE-ELM 1 predicted the target value through x/W, Ds/W, φ, α, h’/W, 

Lh/γs.W3, Lv/γs.W3, and V2/g.W. The value of R for SaE-ELM 1 had been found to be 0.993. 

The influence of the velocity parameter (V2/g.W) for SaE-ELM 2 was ignored and this model 

simulated the horizontal reaction forces by using other inputs (x/W, Ds/W, φ, α, h’/W, Lh/γs.W3, 

and Lv/γs.W3) where the values of NSC for the SaE-ELM 2 model equaled to 0.983. SaE-ELM 3 

was a function of x/W, Ds/W, φ, α, h’/W, Lh/γs.W3, and V2/g.W, signifying that the Lv/γs.W3 

input was a removed parameter for this model. The values of VAF for SaE-ELM 3 were 

respectively computed to be 98.636. SaE-ELM 4 predicted the Fh/γs.W3 in terms of x/W, Ds/W, 

φ, α, h’/W, Lv/γs.W3, and V2/g.W, with a correlation coefficient of 0.995. However, the effect of 

h’/W was removed for SaE-ELM 5, with a low value of complexity and high value of correlation 

(AIC=1628.924 and R= 0.995). The ice keel attack angle (α) was an eliminated input for SaE-

ELM 6, indicating that this model simulated the horizontal reaction forces by means of x/W, Ds/W, 

φ, h’/W, Lh/γs.W3, Lv/γs.W3, and V2/g.W inputs, with the computed NSC value of 0.986. To 

model the horizontal reaction forces using SaE-ELM 7, the x/W, Ds/W, α, h’/W, Lh/γs.W3, 
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Lv/γs.W3, and V2/g.W were as input factors where the shear strength parameter of the sand seabed 

(φ) was an eliminated parameter. The values of AIC for SaE-ELM 7 was reckoned at 1671.649. 

SaE-ELM 8 predicted the target values using the x/W, φ, α, h’/W, Lh/γs.W3, Lv/γs.W3, and 

V2/g.W inputs and the ratio of gouge depth to gouge width (Ds/W) was excluded, with a 

correlation coefficient of 0.936. Amongst the SaE-ELM models with eight input factors, SaE-ELM 

9 scored as the worst model, with the lowest correlation (R=0.893), the highest error 

(RMSE=408259.6), and the highest complexity (AIC=1823.445), since the effect of soil depth 

parameter (y/W) was deleted for the SaE-ELM 9 model, revealing that the y/W had a striking 

impact to simulate the Fh/γs.W3. 

As shown in figure 10-4, the SaE-ELM 10 to SaE-ELM 17 models were just a function of one 

input factor comprising x/W, Ds/W, φ, α, h’/W, Lh/γs.W3, Lv/γs.W3, and V2/g.W, respectively. 

Regarding the performed sensitivity analysis, Lv/γs.W3, Lh/γs.W3, and x/W were respectively 

identified as the most significant inputs to model the horizontal reaction forces. Moreover, h’/W, 

V2/g.W, φ, and Ds/W were the fourth, fifth, sixth, and seventh influencing input factors to predict 

the Fh/γs.W3, rather the effect of attack angle parameter was partially insignificant. 

The SaE-ELM 5 was identified as the superior model to estimate the horizontal reaction forces as 

a function of x/W, Ds/W, φ, α, Lh/γs.W3, Lv/γs.W3, and V2/g.W missing h’/W that was the fourth 

significant input factor in the sensitivity analysis. This emphasizes that the relationship between 

the input factors and output parameter may not be linear explicit. In other words, the best model 

may still exclude some of the secondary significant input parameters, even if a nonlinear machine 

learning (ML) algorithm is used for the simulation. 
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Therefore, SaE-ELM 5 was regarded as the superior SaE-ELM model to simulate the horizontal 

reaction forces, nevertheless, the components of vertical and horizontal loads possessed an 

overriding influence. 

 

 

Figure 5-32. Comparison between the performances of SaE-ELM 1 to SaE-ELM 17 to simulate 

the horizontal reaction forces 
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Figure 5-33 shows the comparison between the performances of SaE-ELM models to simulate the 

vertical reaction forces. According to the simulation results, SaE-ELM 1 was distinguished as the 

third-best model to predict the vertical reaction forces. Furthermore, SaE-ELM 2 and Sa-ELM 3 

were ranked as the fourth and seventh-premium models, respectively. The values of AIC for SaE-

ELM 4 as the fifth-superior model was equal to 143.373. Additionally, SaE-ELM 5 and SaE-ELM 

6 with the AIC index of 141.606 and 143.303 resulting in the second-best and sixth-best models. 

Among the SaE-ELM models to simulate the vertical reaction forces, SaE-ELM 7 was preferred 

as the best model. The AIC index for the eighth-best model (SaE-ELM 8) equaled to 143.490. 

Amongst the SaE-ELM models with seven input parameters, SaE-ELM 9 possessed the lowest 

level of precision and highest level of complexity with RMSE=64.196 and AIC=155.413. 

On the other hand, the Lv/γs.W3, Lh/γs.W3, and h’/W parameters were recognized as the most 

effective input parameters to prognosticate the vertical reaction forces. Furthermore, V2/g.W, 

Ds/W, φ, and x/W were prioritized as the fourth, fifth and sixth-influencing input variables, whilst 

the implemented sensitivity analysis proved that the impact of ice keel attack angle was quite 

trivial. 

Therefore, to approximate the vertical reaction forces, SaE-ELM 7 outperformed other SaE-ELM 

models and the Lv/γs.W3, Lh/γs.W3 inputs represented the highest level of effectiveness. 
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Figure 5-33. Comparison between the performances of SaE-ELM 1 to SaE-ELM 17 to simulate 

the vertical reaction forces 

 

Figure 5-34 compares the performances of SaE-ELM models to estimate the horizontal ice-

intrusion displacements. Regarding the carried out analyses, SaE-ELM 1 scored the lowest level 

of complexity (AIC=-2.860) and inaccuracy (RMSE=0.056) along with the highest level of 

correlation (R=0.992). After the SaE-ELM 1 model, SaE-ELM 7 and SaE-ELM 8, and SaE-ELM 
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5 were preferred as the second (AIC=15.456), third (AIC=16.006), and fourth-best (AIC=17.496) 

models to estimate the values of horizontal deformations. In addition, SaE-ELM 3 was regarded 

as the fifth-superior model. The R criterion for the sixth-superior model (SaE-ELM 4) were 

respectively surmised at 0.817. The computed Akaike Information Criteria (AIC) for the seventh-

best (SaE-ELM 2) and eighth-best (SaE-ELM 6) models were estimated to be 17.742 and 17.698. 

The lowest level of precision (MAE=0.080) and correlation (R=0.491) as well as the highest level 

of complication (AIC=25.771) to model the horizontal deformations were obtained for SAE-ELM 

9. Among the SaE-ELM models with one input parameter, SaE-ELM 10 was recognized as the 

premium model; as a result, the soil depth parameter (y/W) possessed the highest level of 

effectiveness to predict the horizontal subgouge displacements. After the soil depth variable, the 

velocity parameter (V2/g.W), the shear strength of sand seabed (φ), and the horizontal component 

of load (Lh/γs.W3) were ranked as the second, third, and fourth-effective input factors. In terms 

of significance, the h’/W, α, and Ds/W were put in the fifth, sixth, and seventh ranks, whereas the 

influence of the Lv/γs.W3 parameter was utterly negligible. 

Thus, SaE-ELM 1 and soil depth (y/W) were detected as the best model and the most influencing 

input factor to estimate the horizontal ice-scoured displacements. 
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Figure 5-34. Comparison between the performances of SaE-ELM 1 to SaE-ELM 17 to simulate 

the horizontal displacements 

 

Figure 5-35 shows the comparison between the SaE-ELM models to predict the vertical subgouge 

deformations. The performed sensitivity analysis indicated that SaE-ELM 1 owned an excellent 

performance to simulate the vertical deformations among these SaE-ELM models. The estimated 

value of AIC carrion for SaE-ELM 2 (the second-best model), SaE-ELM 3 (the fifth-best model), 
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and SaE-ELM 4 (the third-best model) were respectively approximated as 14.595, 15.403, 15.242. 

The SaE-ELM 5 performed as the sixth-premium model to foresee the vertical deformation, with 

a correlation coefficient of 0.376. The value of Nash-Sutcliff efficiency coefficient (NSC) index 

for the seventh-best (SaE-ELM 6) and eighth-best (SaE-ELM 9) models equaled to 0.068 and 

16.789. The VAF index associated with the worst SaE-ELM model (SaE-ELM 7) was calculated 

to be -525.217. The made sensitivity analysis for SaE-ELM 10 to SaE-ELM 17 indicated that the 

h’/W parameter was the most important factor affecting to simulate the vertical displacements. 

After the h’/W factor, the shear strength parameter (φ), the horizontal load component (Lh/γs.W3), 

and the vertical load component (Lv/γs.W3) were graded as the second, third, and fourth-important 

input variables. Furthermore, the V2/g.W, y/W, and Ds/W were recognized as the fifth, sixth, and 

seventh-governing parameters. The ice keel attack angle (α) was proved to be as the less important 

input variable. Therefore, SaE-ELM 1 was introduced as the superior SaE-ELM model to forecast 

the vertical ice-scoured deformations, while the ratio of berm height to gouge width (h’/W) was a 

dominating input factor. 
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Figure 5-35. Comparison between the performances of SaE-ELM 1 to SaE-ELM 17 to simulate 

the vertical displacements 

 

5.1.11.4. Premium SaE-ELM models 

To estimate the subgouge soil parameters, the premium SaE-ELM models were detected and 

further evaluations associated with the performance of the best SaE-ELM models ought to be 

conducted. Figure 5-36 demonstrates the results of error analysis for the superior SaE-ELM 
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models. As shown, the overwhelming majority of the horizontal reaction forces predicted by SaE-

ELM 5 possessed an error of greater than 20%, rather a small minority of the horizontal reaction 

forces had an error between 10% and 20%. Over half of the vertical reaction forces simulated by 

SaE-ELM 7 owned an error of less than 10% and approximately a quarter of the predicted vertical 

reaction forces had an error of more than 20%. Although about a third of the horizontal 

deformations modeled by SaE-ELM 1 indicated an error of less than 10%, this figure for the 

vertical deformation was almost 42%. The performed error analysis showed that roughly 27% and 

28% of the simulated horizontal and vertical deformations had an error between 10% and 20%. 

Thus, the conducted error analysis proved that the superior SaE-ELM models predicted the ice-

induced seabed parameters with a high level of precision. 
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Figure 5-36. Results of error analysis (a) SaE-ELM 5 for horizontal reaction force (b) SaE-ELM 

7 for vertical reaction force (c) SaE-ELM 1 for horizontal deformation (d) SaE-ELM 1 for 

vertical deformation 

 

After that, the discrepancy ratio (DR) of the best SaE-ELM models was also calculated using the 

following equation: 

𝐷𝑅 =
𝜂(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)

𝜂(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
 

(5-77) 

here, 𝜂(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑) and 𝜂(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑) are respectively the simulated and observed subgouge values. 

The DR compares the distance between the simulated and observed values, which is a ratio of the 

simulated ice-gouging parameter to the real data. Also, the accuracy of the SaE-ELM model can 

be determined by DR, where the magnitude of DR parameter approaching the unity indicates a 

better performance of the SaE-ELM model (Azimi and Shiri 2020b). The result of calculated DR 

for the premium SaE-ELM models are depicted in Figure 5-37. The minimum discrepancy ratio 

for SaE-ELM 5 and SaE-ELM 1 to model the horizontal reaction forces and vertical deformations 

were respectively estimated as 0.335 and 0.640, whereas the averaged DR for the horizontal and 

vertical subgouge displacements simulated by the SaE-ELM 1 model equaled to 1.669 and 1.309. 

So, regarding the discrepancy ratio analysis, the superior SaE-ELM models exhibited an 

acceptable performance to forecast the ice-scoured seabed characteristics. 
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Figure 5-37. Results of discrepancy ratio (DR) for the premium SaE-ELM models 

 

Subsequently, the uncertainty analysis (UA) was conducted for precise examination of the SaE-

ELM model performance. Figure 5-38 details the results from the performed UA. The errors 

approximated by the SaE-ELM model (𝑒𝑗) were computed as the difference between the predicted 

ice-gouging values (𝑃𝑗) and the observed values (𝑂𝑗) as below: 

𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (5-78) 

The averaged calculated errors (�̅�) and the standard deviation (𝑆𝑒) of errors were estimated as 

follows (Azimi and Shiri 2020a): 

�̅� = ∑ 𝑒𝑗
𝑛

𝑗=1
 

(5-79) 

𝑆𝑒 = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(5-80) 

A negative 𝑒 ̅ means that the SaE-ELM model has underestimated the output parameter, showing 

that the simulated ice-induced parameter is less than the measured value. By contrast, a positive 𝑒 ̅ 

proves that the predicted value is greater than the real value and the SaE-ELM model has 
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overestimated the target value. In the next step, regarding the “Wilson score method” without the 

continuity correction, the confidence bound was considered around the estimated error by using 

the 𝑒 ̅ and 𝑆𝑒 values (Azimi and Shiri 2020a). Note that the Wilson score interval is an improvement 

over the normal distribution interval where an asymmetric normal distribution is utilized so as to 

rectify the confidence interval bound. Moreover, a ±1.96Se brought about a 95% confidence 

interval (95%CI), and then the width of uncertainty bound (WUB) was calculated as follows: 

WUB = ±
(Lower bound − upper bound)

2
 

(5-81) 

Even though the SaE-ELM 5 model underestimated the horizontal reaction forces, SaE-ELM 7 

overestimated the vertical reaction forces. Besides, the SaE-ELM 1 model represented an 

overestimated and underestimated performance to simulate the horizontal and vertical 

deformations, respectively. The values of WUB to foresee the Fh/γs.W3, Fv/γs.W3, dh/W, and 

dv/W parameters by the superior SaE-ELM models equaled to -12214.5, -4.745, -0.006, and -

0.001. As it could be seen, the narrowest width of uncertainty bound was obtained for SaE-ELM 

1, rather SaE-ELM 5 was recognized as a model with the widest uncertainty bound. 
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Figure 5-38. Results of uncertainty analysis (a) with of uncertainty bound (WUB) and averaged 

calculated error (b) lower and upper bound of uncertainty for the premium SaE-ELM models 

 

Figure 5-39 illustrates the profiles of horizontal reaction forces simulated by SaE-ELM 5. As 

shown, a significant correlation was found between the experimental measurements and the results 

obtained from the SaE-ELM 5 model. This model was a function of x/W, Ds/W, φ, α, Lh/γs.W3, 

Lv/γs.W3, and V2/g.W, with a high level of precision and an underestimated performance. 

Regarding the Figures 15, the measured horizontal reaction forces had a conspicuous pattern, 

signifying that the minimum value of horizontal reaction forces were measured in initial position 

of the ice keel (x/W=0) and this parameter grew along the scour axis. Notwithstanding the fluctuant 
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trend in the experimental measurements, the SaE-ELM 5 model could predict the horizontal 

reaction forces by means of a nonlinear behavior. It means that this SaE-ELM model simulated 

appropriately the overall trend of horizontal reaction forces. 

 

Figure 5-39. Comparison between the simulated horizontal reaction forces by SaE-ELM 5 with 

experimental values (a-e) C-CORE (1995) 

 

Figure 5-40 compared the simulated vertical reaction forces by SaE-ELM 7 with experimental 

values. SaE-ELM 7 predicted the vertical reaction forces through the x/W, Ds/W, α, h’/W, 

Lh/γs.W3, Lv/γs.W3, and V2/g.W inputs, with a low level of inaccuracy and complexity. 

Regarding Figure 10-16, the magnitude of vertical reaction forces were reported as zero in initial 
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position of iceberg and this value changed along the scour axis. Although the vertical reaction 

forces witnessed severe fluctuations where the experimental measurements were recorded by 

positive and negative values, the SaE-ELM 7 model managed to simulate the vertical reaction 

forces with both monotonic linearity [Figures 5-40(c, f, g, i, j)] and nonlinearity patterns [Figures 

10-16(a, b, d, e, h, k, l)]. 
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Figure 5-40. Comparison between the simulated vertical reaction forces by SaE-ELM 7 with 

experimental values (a-e) Hynes (1996) (f-l) Yang (2009) 

 

The simulated horizontal deformations by the SaE-ELM 1 model with experimental measurements 

were compared in Figure 5-41. SaE-ELM 1 modeled the target values in terms of all inputs (y/W, 

Ds/W, φ, α, h’/W, Lh/γs.W3, Lv/γs.W3, and V2/g.W). This model overestimated the subgouge 

horizontal displacements, with a high level of correlation and accuracy along with a low level of 

complexity. 

The horizontal subgouge deformations were measured as a hyperbolic curve where the maximum 

magnitude was observed below the keel iceberg and the horizontal soil displacements reduced at 

greater depth on the subgouge centerline. Despite some discrepancies between the experimental 

and numerical results, the SaE-ELM 1 model was able to predict the horizontal soil deformations 

with an appropriate performance in different experimental conditions, ranging from 1g laboratory 

circumstance [Figures 5-41(a-e)] to centrifuge tests [Figures 5-41(f-x)]. 
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Figure 5-41. Comparison between the simulated horizontal deformations by SaE-ELM 1 with 

experimental values (a) Paulin (1991) (b-e) Paulin (1992) (f-j) C-CORE (1995) (k-n) Hynes 

(1996) (o-s) C-CORE (1996) (t-x) Yang (2009) 
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In Figure 5-42, the comparison between the modeled vertical deformations by SaE-ELM 1 with 

observed values is highlighted. As aforementioned, the key inputs comprising the y/W, Ds/W, φ, 

α, h’/W, Lh/γs.W3, Lv/γs.W3, and V2/g.W factors were applied in order for anticipation of the 

vertical deformations by using SaE-ELM 1. This model possessed an underestimated performance 

and demonstrated an acceptable precision with a low level of complicacy. 

The accuracy of laboratory measurements has originated from two main sources comprising 

systematic error (equipment error) and random error (human error). The source of the systematic 

error can be detected and value of this error is measurable, whereas identification of random error 

source is quite laborious. In order to prevent the random error, the experimental measurements had 

been repeated and their average values were reported as the laboratory records. It seems that the 

experimental vertical displacements lacked a meaningful trend and several oscillations were 

reported for this parameter but the SaE-ELM 1 model could properly simulate the vertical 

subgouge deformations with both linear [Figures 5-42(b, f)] and nonlinear [Figures 5-42(a, c, d, 

e)] behaviors. 
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Figure 5-42. Comparison between the simulated vertical deformations by SaE-ELM 1 with 

experimental values (a) Paulin (1992) (b-e) C-CORE (1996) (f) Hynes (1996) 

 

Therefore, the SaE-ELM methodology could simulate the ice-induced seabed parameters in sand 

with an acceptable precision. The best SaE-ELM models represented a low level of complexity 

and a high level of correlation with observed values. 

 

5.1.12. Conclusion 
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In this study, for the first time, a self-adaptive evolutionary machine learning algorithm entitled 

the self-adaptive evolutionary extreme learning machine (SaE-ELM) was applied to simulate the 

ice-induced scour in the sandy seabed. Initially, the factors affecting the ice-seabed interaction 

phenomenon were introduced and 17 SaE-ELM models were defined by using these parameters. 

After that, the number of neurons in the hidden layer (NHN) was optimized and then the most 

accurate activation function was selected for the SaE-ELM network. Subsequently, sensitivity 

analysis, error analysis, and uncertainty analysis were conducted for the SaE-ELM models. The 

most important obtained results are listed below: 

 The SaE-ELM was found to be a cost-effective and robust alternative for simulation of 

the ice-seabed interaction, particularly for the early stages of the pipeline design projects 

where fast estimations are required with an acceptable level of accuracies.  

 A set of the SaE-ELM-based equations were proposed to approximate the ice-scoured 

seabed parameters in practical design projects. 

 The implemented sensitivity analysis demonstrated that SaE-ELM 1 as a function of all 

input factor was the premium model to predict the ice-scoured seabed deformations, 

whilst SaE-ELM 5 and SaE-ELM 7 had the lowest level of complexity along with highest 

level of correlation with the experimental values for simulation of the reaction forces.  

 The optimum NHN was adopted at 28, while the sigmoid function was the best activation 

function to model the subgouge seabed parameters using the SaE-ELM network. 

 Though the vertical component of the load (𝐿𝑣 𝛾𝑠.𝑊
3⁄ ) possessed the highest level of 

effectiveness to estimate the reaction forces, the soil depth (y/W) and berm height (h’/W) 

parameters were distinguished to be the most important input factors to model the 

subgouge displacements. 
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 The performed error analysis showed that about 54% of the vertical reaction forces 

predicted by SaE-ELM 7 had an error of less than 10% and this figure for SaE-ELM 5 

was almost 35%. 

 SaE-ELM 1 showed an overestimated performance dealing with the horizontal 

deformations; however, this model underestimated the vertical subgouge displacements. 

This study was the first step towards evaluating the capability of a self-adaptive machine learning 

to enhance our understanding of the ice-gouging phenomenon. The SaE-ELM algorithm showed 

a better generalization performance at dealing with simulation of target parameter overcoming the 

sensitivity to the number of neurons in the hidden layer, but the computation time of this model 

was slightly longer than the classical version of ELM algorithm. The present findings can support 

providing fast and cost-effective alternatives for simulation of ice-seabed interaction but more 

investigations still need to be conducted using other optimization tools and machine learning 

algorithms to identify the most efficient and robust approach. 

 

Appendix I: 

SaE-ELM-based matrices 

SaE-ELM 5, SaE-ELM 7, and SaE-ELM 1 were respectively selected as the superior models so as 

to estimate the horizontal reaction forces (Fh/γs.W3), the vertical reaction forces (Fv/γs.W3), the 

horizontal deformations (dh/W), and the vertical deformations (dv/W). It is worth noting that the 

general format of the SaE-ELM-based equation is as below: 

𝜂 = [
1

1 + 𝑒𝑥𝑝(𝐼𝑛𝑊 × 𝐼𝑛𝑉 × 𝐵𝐻𝐼)
]
𝑇

× 𝑂𝑢𝑡𝑊 
(5-82) 

where, 𝜂 is the ice-seabed interaction parameter (F/γsW3 or d/W), 𝐼𝑛𝑊 is the matrix of input 

weight, 𝐼𝑛𝑉 is the matrix of input variables, 𝐵𝐻𝐼 is the matrix of bias of hidden layer, and 𝑂𝑢𝑡𝑊 
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is the matrix of output weights. Matrices of the SaE-ELM 5 model to calculate the horizontal 

reaction forces were provided below: 

𝐼𝑛𝑉 =

[
 
 
 
 
 
 
 
 
 

𝑥

𝑊
𝐷𝑠

𝑊
𝜑
𝛼
𝐿ℎ

𝛾𝑠𝑊
3

𝐿𝑣

𝛾𝑠𝑊
3

𝑉2

𝑔𝑊 ]
 
 
 
 
 
 
 
 
 

, 𝐵𝐻𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.201
0.466
0.095
0.962
0.735
0.058

−0.107
0.411
0.885
0.355
0.330
0.845
0.253
0.696
0.015
0.988
0.161
0.089
0.095
0.637
0.352
0.787
0.582

−0.197
−0.107
0.491
0.134
0.564 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐼𝑛𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−0.521
0.663
0.935

−0.687
0.149
0.361
0.538
0.219

−0.868
0.052
0.583
0.159
0.814

−0.645
0.918
0.594
0.235
0.276
0.837
0.434
0.529
0.803
0.662
0.310

−0.310
−0.206
0.240
0.621

0.838
0.668
0.111
0.771
0.397
0.410
0.733
0.222
0.762
0.796

−0.471
−0.284
0.089
0.503
0.146
0.148
0.188
0.373
0.470
0.632

−0.040
0.921

−0.407
−0.599
0.735
0.001
0.426

−0.592

0.130
0.355
0.073
0.484
0.401
0.536
0.336
0.178

−0.419
0.105
0.933
0.666
0.865
0.146
0.270
0.044
0.356

−0.905
−0.003
0.877
0.257
0.416

−0.068
0.399
0.640
0.241
0.134
0.108

−0.035
0.003
0.484
0.368
0.090

−0.519
0.433
0.697

−0.039
0.813
0.122
0.410
0.789
0.482
0.325
0.789

−0.687
0.610

−0.596
0.358
0.566
0.835

−0.377
0.549

−0.445
0.295
0.673

−0.976

0.450
−0.781
0.294
0.478
0.789
0.385
0.164
0.532

−0.616
−0.680
−0.768
0.025
0.284
0.841
0.025
0.588
0.565

−0.159
0.690
0.388

−0.586
0.573

−0.494
0.718

−0.987
−0.545
0.585
0.523

0.877
0.523
0.841
0.027

−0.212
0.747
1.031
0.108
0.835
0.689

−0.306
0.475

−0.454
0.828
0.163
0.983

−0.367
0.475

−0.034
0.181
0.410
0.842
0.423
0.282
0.750
0.301
0.348

−0.295

0.419
0.036
0.589
0.326
0.525
0.787
0.584
0.587
0.924
0.500
0.448
0.270

−0.106
0.385
0.613
0.651
0.607
0.811

−0.096
1.272
0.514

−0.044
−0.902
0.098
0.751
0.415

−0.084
0.146 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

(5-83) 
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𝑂𝑢𝑡𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

28215.598
49118158019.649

−625826814413.669
−6353322556826090
−14225295030822.5
5040932.1014631

−167095253419015
2503010096988850
−56910687024.4821
839441093095939

−2926907161308550
−2862808413664180
−2932341606220150
2026662830725.44
24263621253068.7
138999255982638
13985926.7575799
2535924543.34386
2453850378.24901

−2932300664626640
−1336509355744550
−2914764047124080
−5920820452.55523
19492217685272700
243284955.180934

−5893042007554.72
−553214559215756
227307328116.784 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

For SaE-ELM 7, the matrices to predict the vertical reaction forces were suggested as follows: 
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𝐼𝑛𝑉 =

[
 
 
 
 
 
 
 
 
 
 

𝑥

𝑊
𝐷𝑠

𝑊
𝛼
ℎ;

𝑊
𝐿ℎ

𝛾𝑠𝑊3

𝐿𝑣

𝛾𝑠𝑊3

𝑉2

𝑔𝑊 ]
 
 
 
 
 
 
 
 
 
 

, 𝐵𝐻𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.889
−0.167
0.871
0.996
0.938

−0.179
−0.208
−0.361
−0.579
−0.946
0.626

−0.166
0.598
0.898

−0.099
−0.423
−0.805
−0.649
0.369
0.753

−0.958
0.993
0.449

−0.313
0.334
0.276
0.780
0.116 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐼𝑛𝑊 =

(5-84) 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−0.386
−0.916
0.816

−0.028
0.983
0.434

−0.675
−0.118
−0.830
−0.226
0.749

−0.079
0.966

−0.623
0.417
0.490

−0.137
0.664
0.612

−0.154
−0.715
0.850
0.494
0.121
0.056
0.863

−0.643
0.426

0.270
−0.863
0.278
0.899

−0.694
−0.352
0.126
0.171

−0.398
−0.288
−0.503
0.149

−0.191
0.919
0.022
0.981

−0.546
−0.742
−0.410
−0.346
0.676

−0.134
0.726

−0.887
−0.634
−0.950
0.306
0.634

0.822
0.716

−0.068
−0.631
0.428

−0.967
0.779

−0.288
0.688

−0.366
0.203
0.728

−0.443
0.585
0.595

−0.189
−0.933
0.767
0.622

−0.936
0.365
0.416
0.087
0.085

−0.453
0.107
0.017

−0.696

−0.478
0.862

−0.349
0.367
0.039
0.622

−0.896
0.564
0.764

−0.060
0.103

−0.227
−0.088
−0.162
−0.858
0.792
0.793

−0.648
0.505

−0.800
−0.215
−0.874
0.988
0.053
0.876

−0.353
−0.876
−0.669

−0.556
0.549
0.458
0.275

−0.325
−0.790
−0.849
0.082
0.703
0.210

−0.228
0.947
0.995
0.234

−0.459
−0.505
−0.300
−0.488
−0.908
0.268
0.294

−0.807
−0.970
0.323
0.573
0.419
0.140
0.796

0.653
−0.564
0.705

−0.335
0.145

−0.792
−0.315
0.916

−0.488
0.254
0.194

−0.084
0.421

−0.639
−0.842
0.400
0.549
0.113

−0.548
−0.945
−0.579
0.793
0.254
0.599

−0.968
0.222

−0.268
−0.018

−0.553
0.733

−0.292
0.298
0.793

−0.394
−0.584
−0.424
−0.321
0.215

−0.291
0.258

−0.141
−0.796
−0.467
−0.668
−0.841
0.097
0.516

−0.360
0.256

−0.180
−0.665
−0.898
0.299

−0.171
0.712

−0.522]
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𝑂𝑢𝑡𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−1872648442408.43
443032259289.844
14700.3467612937
16866269825.812

−10461575827.599
−25023424110740.5
380359024714.12

25166709.063
−267990850064.857
−2481091752.490

68785463.057
947274762390.157
−205171386.997

115713376933.871
66506525782.960

3427836.565
3235981911222.91
316660180663.925

−118168125102.645
−6189763479086.53

−308279882.112
−36784665.632
−388448.092
624276.579

20425622883.656
−1321923.470
333103.014

363439040980.949 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

To compute the horizontal subgouge deformations by using the SaE-ELM 1 model, the proposed 

matrices were as below: 
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𝐼𝑛𝑉 =

[
 
 
 
 
 
 
 
 
 
 
 

𝑥

𝑊
𝐷𝑠

𝑊
𝜑
𝛼
ℎ;

𝑊
𝐿ℎ

𝛾𝑠𝑊3

𝐿𝑣

𝛾𝑠𝑊3

𝑉2

𝑔𝑊 ]
 
 
 
 
 
 
 
 
 
 
 

, 𝐵𝐻𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.334
0.706
0.079
0.244
0.680
0.476
0.365
0.414
0.712
0.622
0.728
0.745
0.537
0.330
0.244
0.345
0.693
0.687
0.605
0.399
0.376
0.470
0.497
0.091
0.168
0.402
0.469
0.517]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐼𝑛𝑊 =

(5-85) 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.199
0.021
0.533
0.918
0.213
0.348
0.277
0.959
0.933
0.563
0.668
0.784
0.982
0.206
0.078
0.622
0.421
0.112  
0.503
0.663
0.280
0.185
0.029
0.003
0.342
0.782
0.414
0.665

0.704
0.197
0.212
0.313
0.035
0.557
0.462
0.262
0.571
0.161
0.797
0.792
0.224
0.897
0.136
0.508
1.162
0.0001
0.502
0.949
0.137
0.537
0.552
0.274
0.733
0.961
0.205
0.171

0.350
0.427
0.433
0.092
0.361
0.791
0.136
0.483
0.193
0.372
0.569
0.458
1.058
0.126
0.346
0.655
0.829
0.404
0.104
0.426
0.178   
0.276
0.179
0.898
0.247
0.915
0.416
1.022

0.362
0.526
0.941
0.444
0.722
1.052
0.758
0.148
1.049
0.759
0.436
0.770
0.738
0.600
 0.351  
0.824
0.852
0.638
0.650
0.716
0.954
0.612
0.856
0.622
0.425
0.046
1.127
0.739

0.493
0.365
0.675
0.102
0.027
0.566
0.617
0.105
1.117
0.187
0.429
0.171
0.863
0.712
0.402   
0.815
0.649
0.490
0.876
0.221
0.185
0.397
0.726
0.340
0.272
0.347
0.119
0.354

0.454
0.655
0.163
0.593
0.066
0.535
0.612
0.617
0.813
0.181
0.801
0.697
0.004
0.577
0.047
0.619
0.123
0.616
0.664
0.404
0.367
0.155
0.983
0.727
0.043
0.613
0.556
0.560

0.835
0.349
0.539
0.304
0.080
0.290
0.036
1.013
0.285
0.074
0.295
0.470
0.497
0.528
0.788
0.581
1.089
0.034
1.146
0.655
0.744
0.694
0.917
0.086
0.345
0.593
0.374
0.548

0.390
0.638
0.729
0.670
0.658
0.638
0.462
0.226
0.257
0.704
0.373
0.801
0.173
0.979
0.840
0.831
0.009
0.076
0.964
0.587
0.002
0.480
0.260
0.553
0.671
0.684
0.230
0.828]
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𝑂𝑢𝑡𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

150861655.981
731354216.280

4.934
116444.748

56.468
10296137831.450
203183265.333

1693.236
54006255729.879

60.008
4.250
1.338

10295957606.547
116.042

133651705.737
10245905286.115
10295911748.938
13898001832.974

6599893.098
2977907325.429
8010461965.166
13141833.297
581717767.903

10279887032.661
10659119.639

5126627993.304
2.437

10297342423.233]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

And for estimation of the vertical ice-induced deformations, the SaE-ELM-based matrices are 

written as follows: 
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𝐼𝑛𝑉 =

[
 
 
 
 
 
 
 
 
 
 
 

𝑥

𝑊
𝐷𝑠

𝑊
𝜑
𝛼
ℎ;

𝑊
𝐿ℎ

𝛾𝑠𝑊3

𝐿𝑣

𝛾𝑠𝑊3

𝑉2

𝑔𝑊 ]
 
 
 
 
 
 
 
 
 
 
 

, 𝐵𝐻𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.886
0.374
0.267
0.028
0.514
0.021
0.269
0.242
0.424
0.591
0.119
0.522
0.016
0.749
0.669
0.080
0.349
0.031
0.094
0.791
0.545
0.902
0.469
0.009
0.061
0.775
0.712
0.744]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐼𝑛𝑊 =

(5-86) 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.008
0.343
0.002
0.014
0.574
0.563
0.503
0.807
0.828
0.268
0.381
0.667
0.747
0.864
0.003
0.022
0.014
0.002
0.588
0.871
0.031
0.033
0.653
0.234
0.176
0.621
0.757
0.041

0.047
0.999
0.009
0.987
0.014
0.301
0.003
0.427
0.126
0.001
0.271
0.939
0.984
0.530
0.811
0.651
0.625
0.072
0.477
0.430
0.830
0.563
0.313
0.023
0.595
0.878
0.571
0.255

0.395
0.160
0.588
0.204
0.356
0.247
0.386
0.461
0.321
0.123
0.389
0.022
0.341
0.219
0.892
0.861
0.176
0.249
0.018
0.316
0.206
0.536
0.019
0.897
0.195
0.642
0.942
0.486

0.215
0.127
0.294
0.015
0.858
0.751
0.329
0.281
0.546
0.180
0.788
0.879
0.607
0.498
0.802
0.238
0.144
0.330
0.639
0.486
0.919
0.008
0.641
0.837
0.983
0.591
0.309
0.859

0.200
0.042
0.216
0.559
0.610
0.209
0.490
0.864
0.912
0.516
0.976
0.635
0.327
0.017
0.292
0.958
0.644
0.139
0.434
0.039
0.313
0.740
0.778
0.878
0.257
0.034
0.474
0.234

0.321
0.746
0.508
0.738
0.885
0.810
0.038
0.412
0.554
0.180
0.428
0.473
0.406
0.034
0.988
0.889
0.0003
0.637
0.886
0.166
0.436
0.705
0.505
0.173
0.403
0.085
0.260
0.697

0.889
0.574
0.744
0.952
0.598
0.085
0.659
0.364
0.022
0.008
0.384
0.033
0.699
0.942
0.774
0.149
0.155
0.754
0.781
0.335
0.640
0.794
0.215
0.025
0.265
0.455
0.727
0.888

0.014
0.028
0.417
0.525
0.004
0.303
0.430
0.686
0.935
0.155
0.013
0.079
0.033
0.507
0.476
0.821
0.722
0.033
0.238
0.988
0.565
0.936
0.909
0.058
0.801
0.900
0.592
0.231]
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𝑂𝑢𝑡𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4733749.051
1.880

255412246.148
98.642
4.426

166098349.443
49864560.027
219901900.279
133652612.513

4427.562
8151325219.923

487905.145
14.712
7.038

133.347
103389656.302

14304.200
4.032

4203.011
19519300.856

111.251
2106938.603
29048.120

3.326
8179037224.417

1.098
37176.757

29.504 ]
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Section 4 

 

A non-tuned machine learning method to simulate ice-seabed interaction 

process in clay 
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Abstract 

The exploitation of oil and gas in the Arctic area is expected to expand in the coming years. These 

hydrocarbons are transferred through subsea pipelines from offshore to onshore; however, the 

marine pipelines are threatened by traveling icebergs where the seabed may be gouged by the 

moving masses in warmer months. Subsea trenching and backfilling are usually utilized to bury 

the subsea pipelines for physical protection against ice scouring. Regarding the stress-based design 

methods, deformations and forces are generally the controlling design factors for the subsea assets. 

In this study, the subgouge clay displacements and the reaction forces were simulated using a non-

tuned self-adaptive machine learning (ML) entitled “self-adaptive extreme learning machine” 

(SAELM). Initially, fifteen SAELM models were defined by means of the parameters affecting 

the ice-scoured features. Subsequently, 70% and 30% of the constructed dataset were respectively 

applied to train and test the machine learning models. After that, the optimum number of hidden 

layer neurons and the best activation function was selected for the SAELM network. By 

conducting a comprehensive sensitivity analysis, the premium SAELM models and the most 

influencing input parameters in the estimation of the subgouge clay characteristics were 

introduced. Regarding the performed analyses, the horizontal load factor and the gouge depth ratio 

were identified as the most influential parameters to model the reaction forces, whereas the soil 

depth had a significant impact on the simulation of the ice-induced clay deformations. Finally, a 

set of SAELM-based equations were presented to estimate the subgouge clay parameters. 

 

Keywords: Machine learning, Self-adaptive model, Ice-gouging, Clay seabed, Parametrical 

analysis, Simulation 
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5.1.13. Introduction 

Recent discovered crude oil and natural gases in the Arctic area have led to an increased interest 

in developing subsea pipelines for transferring hydrocarbons from offshore to onshore. Despite 

being safe and cost-effective, these pipelines are subjected to the hazards inherent to the arctic 

environment such as ice-scouring. This particular phenomenon occurs when a traveling iceberg 

keel plows the seafloor, presenting a threat to the subsea assets. This is more likely to happen 

during the warmer seasons (Azimi and Shiri, 2021). 

Backfilling and trenching are generally used to protect these sea bottom-founded infrastructures 

against the ice-gouging problem, so estimation of the subgouge soil response is considered an 

important design factor for the subsea infrastructures since minimizing the required burial depth 

to physical protection is crucial for the project budget. The maximum subgouge deformation 

occurs just beneath the ice keel and the magnitude of the soil deformation decreases with greater 

depths (Nematzadeh and Shiri, 2020). The schematic layout of the ice-seabed interaction process 

is displayed in Figure 5-43. Regarding the figure, Ds is the gouge depth, α is the attack angle, ω is 

the angle of the surcharged soil slope, and h’ is the height of the berm. 
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Figure 5-43. Schematic layout of the ice-seabed interaction process 

 

Hefty field and experimental investigations as well as time-consuming numerical simulations are 

currently utilized to evaluate the ice-seabed interaction process (Comfort and Graham, 1986; 

Machemehl and Jo, 1989; Kioka et al., 2000; Abdalla et al., 2009; Bailey Dudley et al., 2017; 

Nematzadeh and Shiri, 2019); however, the industry is constantly looking for alternative 

approaches to predict the behavior of the subsea pipelines to lessen the collision risk of icebergs 

with the subsea assets (Azimi and Shiri, 2020). In the past three decades, a number of researchers 

have sought to study the parameters affecting the ice-seabed interaction process. For instance, Lach 

(1996) investigated the ice scouring problem experimentally and numerically. The author 

performed a set of centrifuge tests to determine the ice-clay interaction parameters. The study also 
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showed that the scouring force was a function of undrained shear strength, keel geometry, and 

subgouge deformation. A series of the Pressure Ridge Ice Scour Experiment (PRISE) joint-

industry tests were conducted by Woodworth-Lynes et al. (1996). The authors demonstrated that 

the subgouge deformations could be estimated in terms of the soil depth, gouge depth, and gouge 

width. At the center for Cold Ocean Resources Engineering (C-CORE), several centrifuge tests 

were conducted to measure the ice-induced deformations and reaction forces in both sand and clay 

seabed (C-CORE, 1995, 1996). The experimental results showed that the magnitude of scour force 

increased with increasing the soil shear strength, scour width, and scour depth, while this parameter 

reduced when the keel attack angle increased. Schoonbeek et al. (2006) measured the subgouge 

clay deformations through centrifuge tests. The authors presented an empirical equation in terms 

of gouge geometry and soil parameters to estimate the subgouge depth. Been et al. (2008) studied 

the mechanism of clay failure in ice scouring problems. The authors concluded that greater 

deformations occurred in a clay mass with higher undrained shear strength, meaning that the scour 

depth was a function of the soil properties. Arnau Almirall (2017) conducted several 1g laboratory 

tests to perform the subgouge sand features in saturated and dry circumstances. The author studied 

the effect of velocity change, scour geometry, and soil conditions on the subgouge parameters. The 

study demonstrated that the ice-induced sand deformations in the 1g test are less than those 

resulting from the centrifuge tests. 

Liu et al. (2015) simulated the ice keel-seabed interaction by means of a discrete element method 

(DEM) and the cohesive frictional model (CFM) was applied to model the freeze-bonds between 

blocks of ice. The numerical results were validated by PIRAM tests and the authors asserted that 

the numerical results improved by considering the water drag. Shin et al. (2019) developed a three-

dimensional model to simulate the ice-gouging phenomenon. The authors showed that the 
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numerical model had a better performance by considering the geostatic stress and contact 

condition. Using the modified Mohr-Coulomb (MMC) scheme, the ice-gouging problem in a 

sandy seabed was modeled by Nematzadeh and Shiri (2020). The authors concluded that the 

magnitude of subgouge sand displacements and reaction forces enhanced with the growing value 

of the unit weight and relative density. 

Although several expensive and time-consuming experimental and numerical research has been 

carried out on the ice-seabed interaction process, there have been few artificial intelligence (AI) 

investigations into studying this phenomenon. Different linear and non-linear problems have been 

modeled by using AI and machine learning (ML) algorithms since these tools are sufficiently 

precise, quick, and cost-effective. For example, Kioka et al. (2002, 2003) estimated the scour depth 

through the artificial neural network (ANN). The optimized number of neurons in the hidden layer 

was considered to be 5, and then the scour depth was approximated by four inputs: ice drift 

velocity, sand property, sea-bottom gradient, and attack angle. Azimi and Shiri (2020a) performed 

a dimensional analysis to identify the factors affecting the ice-seabed interaction process by using 

the Buckingham theorem. The authors proposed a series of linear regression (LR) models to 

estimate the maximum subgouge soil displacements. Azimi and Shiri (2020b) simulated the 

horizontal subgouge sand deformations by means of gene expression programming (GEP). Using 

the input parameters, five GEP models were defined and then the best model was selected by 

performing a sensitivity analysis. In the end, a GEP-based equation was suggested to compute the 

subgouge sand displacements. Azimi and Shiri (2021a) estimated the subgouge sand features by 

using the extreme learning machine (ELM). The authors performed several analyses in order to 

identify the superior model and the influencing input variables. The study concluded that the gouge 

depth ratio had a considerable impact on the estimation of the sand displacements. A multi-layer 
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perceptron neural network (MLPNN) was applied to predict the horizontal subgouge sand 

deformation by Azimi and Shiri (2021b). The authors asserted that the soil depth and bearing 

pressure were the most important input parameters to simulate the objective function. 

By analyzing the literature, it is possible to notice the considerable amount of effort dedicated to 

the study of the ice seabed interaction through experimental or 3D numerical models. Even though 

in small numbers, these novel alternatives are still very much sought by the industry given their 

cost-effectiveness and high potential for design purposes. Hence, in the current study, the ability 

of a non-tuned self-adaptive machine learning (ML) called “self-adaptive extreme learning 

machine” (SAELM) to model the ice-clay interaction process is scrutinized for the first time. More 

information about this will be provided in the next sections. 

 

5.1.14. Methodology 

Initially, the extreme learning machine (ELM), differential evolution (DE) algorithm, and self-

adaptive extreme learning machine (SAELM) were introduced and then the parameters affecting 

the ice-induced clay seabed were detailed. Subsequently, fifteen SAELM models were defined by 

means of these input parameters. Lastly, several statistical indices were also presented for the 

appraisal of these SAELM models. Through that analysis, the best models were selected and the 

most influential parameters were determined. 

 

5.1.14.1. Extreme learning machine (ELM) 

Extreme learning machine (ELM) as a single-layer feed-forward neural network (SLFFNN) was 

first developed by Huang et al. (2004). Using the ELM, the ice-gouging features including the 

reaction forces (F/𝛾𝑠𝑊
3) and the subgouge deformations (d/W) as the output of the problem (Ϙ) 
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were simulated by m as the number of input parameters and L as the size of hidden layers as follows 

(Ebtehaj et al., 2016): 

Ϙ = ∑ 𝛽𝑗 . 𝐺(𝑎𝑗 , 𝑏𝑗 , 𝜒𝑖)
𝐿

𝑗=1
 

(5-87) 

here, 𝑖 = 1, 2, 3,𝑚 and 𝑗 = 1, 2, 3, 𝐿. Moreover, 𝑎𝑗 and 𝑏𝑗 are training parameters, while 𝛽𝑗 is 

defined as the connection between the ith input parameter and the jth neuron within the hidden layer. 

Regarding the 𝜒𝑖 as an input parameter, the output of the jth neuron in the hidden layer is 

𝐺(𝑎𝑗 , 𝑏𝑗 , 𝜒𝑖)  and it is connected to the output neuron via 𝛽𝑗. The cost function of the ELM model 

is estimated below (Ebtehaj et al., 2016): 

С = ∑ ‖Ϙ𝑖 − 𝑌𝑖‖
𝑚

𝑗=1
 

(5-88) 

where, Y is the value of the target parameter. In order to minimize the cost function of the ELM 

model, the network parameter (Ŋ) is a set of 𝑎𝑗, 𝑏𝑗, and 𝛽𝑗 that is repetitively updated through the 

conventional gradient-based algorithm as follows (Ebtehaj et al., 2016):: 

Ŋ𝑘+1 = Ŋ𝑘 − Ɩ
𝜕С(Ŋ𝑘)

𝜕(Ŋ𝑘)
 

(5-89) 

here, Ɩ is the learning rate. To estimate the outputs with zero error (∑ ‖Ϙ𝑖 − 𝑌𝑖‖
𝑚
𝑗=1 = 0), 𝐺(. ) is 

applied as the activation function, therefore (Ebtehaj et al., 2017): 

𝐻𝛽 = 𝑌 (5-90) 

where, H is the hidden layer matrix, 𝛽 is the matrix of output weight, 𝑌 is the matrix of the target. 

The SLFFNN functions as a common estimator by randomly selecting the neurons in the hidden 

layer and calculating the output weights regarding the target parameter. Thus, the output weights 

are computed by solving the least square problem below (Ebtehaj et al., 2017): 

�̂� = 𝐻+𝑌 (5-91) 
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here, 𝐻+ represents the Moore-Penrose generalized inverse matrix of H. 

 

5.1.14.2. Differential evolution (DE) 

Differential evolution (DE), as a robust optimizer algorithm, was first presented by Storn and Price 

(1997). The automatic detection-derivation mechanism and the high convergence speed are the 

most significant benefits of DE over other optimizer tools (Bonakdari et al., 2020). Commonly, 

minimizing the following equation is the main goal of a DE algorithm: 

min 𝑓(𝜗)    where    𝜗 ∈ 𝑹Ɗ (5-92) 

here, 𝜗 is a vector where the DE algorithm generally employs a population of I individuals so as 

to calculate the global optimal of the ice-seabed interaction parameters. So, the ith vector is 

surmised as below: 

𝜗𝑖,𝜛 = 𝜗𝑖,𝜛
1 , 𝜗𝑖,𝜛

2 , 𝜗𝑖,𝜛
3 ,⋯ , 𝜗𝑖,𝜛

Ɗ                   where  𝑖 = 1,2,3,⋯ 𝐼 (5-93) 

where, 𝜛 is defined as the generation number. In the current study, the DE algorithm utilizes four 

major stages to solve the ice-seabed interaction problem as follows: 

(I) Initialization: I vectors are randomly produced by using the below equation: 

𝜗𝑖,𝜛 = 𝜗𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1)

× (𝜗𝑚𝑎𝑥 − 𝜗𝑚𝑖𝑛)         where {
𝜗𝑚𝑖𝑛 = [𝜗𝑚𝑖𝑛

1 , 𝜗𝑚𝑖𝑛
2 , ⋯ , 𝜗𝑚𝑖𝑛

Ɗ ]

𝜗𝑚𝑎𝑥 = [𝜗𝑚𝑎𝑥
1 , 𝜗𝑚𝑎𝑥

2 , ⋯ , 𝜗𝑚𝑎𝑥
Ɗ ]

 

(5-94) 

here, the 𝜗𝑚𝑎𝑥 and 𝜗𝑚𝑖𝑛 are defined as the boundaries considered for the ice-gouging problem. 

(II) Mutation: The mutant vectors (Ψ𝑖,𝜛) are created by means of the generated vector (𝜗𝑖,𝜛) in the 

mutation phase. Various mutation strategies have been introduced by Storn and Price (1997); 

however, four of them are applied in the current investigation: 

Strategy 1: 
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Ψ𝑖,𝜛 = 𝜗𝜎1,𝜛
𝑖 + Λ × (𝜗𝜎2,𝜛

𝑖 − 𝜗𝜎3,𝜛
𝑖 ) (5-95) 

Strategy 2: 

Ψ𝑖,𝜛 = 𝜗𝜎1,𝜛
𝑖 + Λ × (𝜗𝑏𝑒𝑠𝑡,𝜛 − 𝜗𝜎1,𝜛

𝑖 ) + Λ × (𝜗𝜎2,𝜛
𝑖 − 𝜗𝜎3,𝜛

𝑖 ) + Λ × (𝜗𝜎4,𝜛
𝑖 − 𝜗𝜎5,𝜛

𝑖 ) (5-96) 

Strategy 3: 

Ψ𝑖,𝜛 = 𝜗𝜎1,𝜛
𝑖 + Λ × (𝜗𝜎2,𝜛

𝑖 − 𝜗𝜎3,𝜛
𝑖 ) + Λ × (𝜗𝜎4,𝜛

𝑖 − 𝜗𝜎5,𝜛
𝑖 ) (5-97) 

Strategy 4: 

Ψ𝑖,𝜛 = 𝜗𝑖,𝜛 + Λ × (𝜗𝜎1,𝜛
𝑖 − 𝜗𝑖,𝜛) + Λ × (𝜗𝜎2,𝜛

𝑖 − 𝜗𝜎3,𝜛
𝑖 ) (5-98) 

here, 𝜎𝑘
𝑖  is randomly calculated from the [1,2,3,⋯ , 𝐼] interval and k as the control parameter is 

randomly adjusted between 0 and 1. The Λ is a scaling factor selected between 0 and 2 (Storn and 

Price, 1997). 

(III) Crossover: The crossover phase is performed on the mutated vectors to enhance the model's 

versatility. During this stage, the trial vector (Δ𝑖,𝜛 = ⌊Δ𝑖,𝜛
1 , Δ𝑖,𝜛

2 ,⋯ , Δ𝑖,𝜛
Ɗ , ⌋) is produced for the 

mutated vectors (Ψ𝑖,𝜛 = ⌊Ψ𝑖,𝜛
1 , Ψ𝑖,𝜛

2 , ⋯ ,Ψ𝑖,𝜛
Ɗ , ⌋) using the equation below: 

∆𝑖,𝜛
𝑗

= {
Ψ𝑖,𝜛

𝑗
                     if(rand𝑗 ≤ 𝐶𝐶)  or  (𝑗 = 𝑗rand)

𝜗𝑖,𝜛
𝑗

                                                            otherwise
 

(5-99) 

here, CC is the coefficient of crossover and the rand𝑗   variable is randomly taken into account as 

a constant value. It is worth mentioning that the 𝑗rand parameter is adjusted between 1 and D since 

one of the ∆𝑖,𝜛 variables ought to be different from the 𝜗𝑖,𝜛 values. 

(IV) Selection: The best individual with the minimum target value is chosen as the solution to the 

ice-seabed interaction problem. 

Phases (II) to (IV) are iterated till either the desired accuracy or maximum iterations predefined 

are achieved. 
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5.1.14.3. Self-adaptive extreme learning machine (SAELM) 

Even though the ELM algorithm has an acceptable performance while simulating multifarious 

linear or nonlinear problems, the manual selection of optimized hidden layer neurons plays a 

crucial role in the results. Moreover, in practical applications, the input parameters should be 

dimensionless, and that is another drawback of the ELM network (Cao et al., 2012). In order to 

overcome these limitations, the self-adaptive evolutionary extreme learning machine (SAELM), 

as a hybrid model of the ELM network and DE algorithm, was developed for the first time by Cao 

et al. (2012). Figure 5-44 details the flowchart of the SAELM model in the current study. In the 

SAELM algorithm, the number of neurons in the hidden layer is optimized by using the self-

adaptive differential evolution algorithm. During the training procedure, the control coefficients 

in the DE algorithm and the strategies for trial vector generation are determined through a self-

adaptive mechanism. In other words, during the simulation process, the output weights are 

estimated by means of the ELM network, whereas the input weights and biases of the hidden layer 

neurons are determined through the DE algorithm. To model the ice-seabed interaction process, 

the main steps comprising initialization, output weights, mutation and crossover, and evaluation 

are applied by using the SAELM algorithm as follows: 

Initialization: The I vector is randomly created in the first DE generation and the following vector 

is computed: 

𝜗𝑘,𝜛 = ⌊𝑎1,(𝑘,𝜛)
𝑌 , ⋯ , 𝑎𝑙,(𝑘,𝜛)

𝑌 , 𝑏1,(𝑘,𝜛),⋯ , 𝑏𝑙,(𝑘,𝜛)⌋ (5-100) 

where a and b are the learning parameters. Additionally, l is the size of hidden layers. 

Output weights: The output weights are defined by using the following equation: 

𝛽𝑘,𝜛 = 𝐻𝑘,𝜛𝑌 (5-101) 
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where, 𝐻𝑘,𝜛 is determined by using the below equation: 

𝐻𝑘,𝜛 = [

𝐺(𝑎1,(𝑘,𝜛), 𝑏1,(𝑘,𝜛), 𝜒1) ⋯ 𝐺(𝑎𝑛,(𝑘,𝜛), 𝑏𝑛,(𝑘,𝜛), 𝜒1)

⋮ ⋱ ⋮
𝐺(𝑎1,(𝑘,𝜛), 𝑏1,(𝑘,𝜛), 𝜒𝑚) ⋯ 𝐺(𝑎𝐿,(𝑘,𝜛), 𝑏𝐿,(𝑘,𝜛), 𝜒𝑚)

] 

(5-102) 

Additionally, the Root Mean Squared Error (RMSE) of the generated individuals is computed as 

follows: 

𝑅𝑀𝑆𝐸𝑘,𝜛 = √
∑ ‖∑ 𝛽𝑗 . 𝐺(𝑎𝑗,(𝑘,𝜛), 𝑏𝑗,(𝑘,𝜛), 𝜒𝑖) − 𝑌𝑖

𝐿
𝑗=1 ‖𝑚

𝑖=1

𝑛 × 𝑚
 

(5-103) 

After that, the next generation of individuals is calculated using the following equation: 

𝜗𝑘,𝜛+1

= {

Δ𝑘,𝜛+1     𝑖𝑓                                                           𝑅𝑀𝑆𝐸𝜗𝑘,𝜛
− 𝑅𝑀𝑆𝐸𝜗𝑘,𝜛

> 𝜋. 𝑅𝑀𝑆𝐸𝜗𝑘,𝜛

Δ𝑘,𝜛+1    𝑖𝑓    |𝑅𝑀𝑆𝐸𝜗𝑘,𝜛
− 𝑅𝑀𝑆𝐸𝜗𝑘,𝜛

| < 𝜋. 𝑅𝑀𝑆𝐸𝜗𝑘,𝜛
    𝑎𝑛𝑑    ‖𝛽Δ𝑘,𝜛+1

‖ < ‖𝛽𝑘,𝜛‖

𝜗𝑘,𝜛                                                                                                                                          𝑒𝑙𝑠𝑒

 

(5-

104

) 

where 𝜋 is defined as a positive constant value so as to hinder the zero improvement rate. 

Mutation and Crossover: Using the introduced strategies in equations (5-95) to (5-98), the trial 

vectors of the DE algorithm are defined. Furthermore, the best strategy is chosen regarding the 

probability procedure 𝑃𝑙,𝜛 where the lth strategy is considered for the 𝜛𝑡ℎ generation and l is 1, 2, 

3, or 4. Generally,  𝑃𝑙,𝜛 is updated in each step, meaning that if the population of generated vectors 

(I) is higher than 𝜛, the four applied strategies possess an identical probability (𝑃𝑙,𝜛 = 0.25). If 𝜛 

is greater than the I, 𝑃𝑙,𝜛 is calculated as follows: 

𝑃𝑙,𝜛 =
𝜚𝑙,𝜛

∑ 𝜚𝑙,𝜛
4
𝑙=1

         where       𝜚𝑙,𝜛 =
∑ 𝑛𝜚𝑙,𝜛

𝜛−1
𝑞=𝜛−𝐼

∑ 𝑛𝜚𝑙,𝜛
𝜛−1
𝑞=𝜛−𝐼 + ∑ 𝑛𝑓𝑙,𝜛

𝜛−1
𝑞=𝜛−𝐼

+ 𝜋 
(5-105) 

where, 𝑛𝑓𝑙,𝜛 and 𝑛𝜚𝑙,𝜛 are trial vectors. It is worth mentioning that the CC and Λ values are 

determined for a target vector through the selection phase from the normal distribution function. 
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Evaluation: The next generation of trial vectors is created by means of equation (5-104). The 

mutation, crossover, and evaluation steps are iterated until either the predefined iteration number 

or required accuracy is reached while simulating the ice-induced seabed deformation using the 

SAELM algorithm. 

 

Figure 5-44. Flowchart of the SAELM in the current study 

 

5.1.14.4. Seabed interaction process in clay 

Seabed interaction parameters (η) in a clay mass comprising the soil deformations (d/W) and the 

reaction forces (F/𝛾𝑠𝑊
3) are a function of the scour depth (Ds), the shear strength parameter of 

the clay (𝑐), the width of gouge (W), the attack angle (), the angle of the surcharged soil slope 

(ω), the height of the berm (h’), the horizontal load (Lh), the vertical load (Lv), the velocity of ice 

keel (V), and the specific weight of clay (𝛾𝑠) as follows (Azimi and Shiri, 2020; Lach, 1996): 

𝜂 (𝑐𝑙𝑎𝑦) = 𝑓1(𝐷𝑠, 𝑐,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠) (5-105) 

Load subgouge dataset comprising training and testing sub-datasets

Forming Neural Network: Number of hidden layer neurons & Activation function

Assigning weights and biases of neurons in the input layer arbitrary

Calculation of output weights and accuracy of model (RMSE)

The population vector of the best case and lowest RMSE is stored

Mutation and crossover

Evaluation
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Equation (5-105) can be written as a function of eight dimensionless groups as below (Azimi and 

Shiri, 2020): 

𝜂(𝑐𝑙𝑎𝑦)

𝑊
= 𝑓2 (

𝐷𝑠

𝑊
,

𝑐

𝛾𝑠.𝑊
,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-106) 

It is worth noticing that the maximum subgouge deformation in the clay (𝑑(𝑐𝑙𝑎𝑦)) is formed just 

under the moving ice keel in the gouge centerline. However, at a greater depth on the subgouge 

centerline, by incorporating the soil depth (y/W), the subgouge clay displacement (d(clay)/W) is 

written as follows: 

𝑑(𝑐𝑙𝑎𝑦)

𝑊
= 𝑓3 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,

𝑐

𝛾𝑠.𝑊
,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-107) 

Similarly, the ice-induced reaction force (F) is a function of the position of the iceberg along the 

scour axis (x) and 𝐷𝑠, 𝑐,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠, so equation (5-107) can be written as below: 

𝐹(𝑐𝑙𝑎𝑦)

𝛾𝑠𝑊3
= 𝑓4 (

𝑥

𝑊
,
𝐷𝑠

𝑊
,

𝑐

𝛾𝑠.𝑊
,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(5-108) 

In the current study, different laboratory investigations were used in order to simulate the ice-

gouging clay parameters (d/W and F/𝛾𝑠𝑊
3). In other words, the key measurements of five 

experimental investigations reported by C-CORE (1995), Lach (1996), C-CORE (1996), 

Schoonbeek et al. (2006), and Been et al. (2008) were utilized to verify the SAELM models. It 

should be noted that the angle of the surcharged soil slope (ω) and the height of the berm (h’) were 

not reported by all applied laboratory studies. Therefore, other introduced dimensionless groups 

in equations (5-107) and (5-108) were utilized as the input parameters for the SAELM model to 

simulate the horizontal subgouge deformation (dh/W), the vertical subgouge deformation (dv/W), 

the horizontal reaction force (Fh/𝛾𝑠𝑊
3), and the vertical reaction force (Fv/𝛾𝑠𝑊

3). Figure 5-45 

portrays the defined input combinations in the current study. Fifteen SAELM models (SAELM 1 
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to SAELM 15) were developed to simulate the ice-induced clay parameters. This means that 

SAELM 1 was defined by using all input parameters and then the effect of each input was 

eliminated (SAELM 2 to SAELM 8) and then SAELM 9 to SAELM 15 were developed so as to 

detect the most significant input parameters. It is noteworthy that 70% of the experimental 

measurements were utilized to train the SAELM network, whilst 30% of the rest were used to test 

it. 

 

Figure 5-45. Combination of input parameters to develop SAELM models 

 

5.1.14.5. Quality of fit 

A set of criteria such as correlation coefficient (R), variance accounted for (VAF), root mean square 

error (RMSE), mean absolute error (MAE), Nash-Sutcliff efficiency coefficient (NSC), and Akaike 

Information Criteria (AIC) were utilized to evaluate the accuracy, correlation, and complexity of 

the SAELM models. These criteria were utilized to assess the correlation, precision, correctness, 
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and complexity of the SAELM models. The correlation of the models was examined by the R, 

NSC indices, while the precision of these models was evaluated by the RMSE and MAE criteria. 

The correctness of the models was verified through the VAF index, but the AIC indicator was 

applied in order for evaluation of the complexity of the defined models. 

Closeness of the R and NSC indices to one signified that the SAELM model had the best correlation 

with the experimental values, on the other hand, the closeness of the RMSE and MAE values to 

zero meant that a particular model had the lowest level of error. Moreover, the best SAELM model 

possessed the highest value of the VAF index though the complexity of these SAELM models was 

not assessed using the defined criteria. To overcome this limitation, the Akaike Information 

Criteria (AIC) was used, meaning that the less complex SAELM model owned the lowest value of 

AIC; hence, the premium SAELM model had the lowest values of AIC index and error (RMSE and 

MAE), with the highest level of correlation (R and NSC). 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(5-109) 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑃𝑖 − 𝑂𝑖)

𝑣𝑎𝑟(𝑃𝑖)
) × 100 

(5-110) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(5-111) 

𝑀𝐴𝐸 =
∑ |𝑃𝑖 − 𝑂𝑖|

𝑛
𝑖=1

𝑛
 

(5-112) 

𝑁𝑆𝐶 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1

 
(5-113) 

𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(5-114) 
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here, Oi, Pi, �̅�, �̅�, and n are respectively the experimental measurements, the simulated values, the 

average experimental values, the average simulated values, and the number of experimental 

measurements. In addition, k is the number of hidden layer neurons used in the SAELM network. 

 

5.1.15. Results and discussion 

In the first instance, the optimized number of hidden layer neurons and the premium activation 

function were determined. After that, a sensitivity analysis for SAELM 1 to SAELM 15 was 

implemented and then the best SAELM models, along with the most significant input variables, 

were introduced. Subsequently, further analyses comprising the error analysis and the uncertainty 

analysis were performed for the premium SAELM models. Lastly, a set of SAELM-based 

equations were suggested to approximate the subgouge clay characteristics. The simulation results, 

obtained during the test stage, will be presented in the upcoming sections. 

 

5.1.15.1. Number of hidden neurons (NHN) 

Although the precision of SAELM network is improved with increasing the number of hidden 

neurons (NHN), the computation time and complexity of the SAELM model grow (Sattar et al., 

2019). It means that the determination of the optimal NHN can play a significant role to improve 

the performance of the SAELM network. The alterations of NHN against different computed 

indices to predict the horizontal reaction forces are shown in Figure 11-4. In the current study, the 

SAELM 1 model was used for evaluation of the NHN and the optimum number of NHN was 

selected by means of a trial and error approach, meaning that the initial number of neurons in the 

hidden layer was assumed to be 2 where the SAELM model demonstrated the worst performance, 

with the R, RMSE, and AIC values of 0.891, 168566.038, and 745.614. As shown in Figure 5-46, 
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the performance of SAELM model was slightly changed as the NHN was greater than 20 where 

the values of VAF, AIC, and R were respectively approximated at 97.759, 678.923, and 0.989. It 

seems that the SAELM model with NHN=18 had a similar performance to the model with 

NHN=20, with a VAF, AIC, and R of 96.719, 694.474, and 0.984. However, the model with 

NHN=20 outperformed the model with NHN=18. Therefore, to simulate the subgouge clay 

characteristics in the current investigation, the optimized number of neurons in the hidden layer 

was selected as 20. 

 

Figure 5-46. Alterations of NHN against computed indices for modeling the horizontal reaction 

forces 

 

5.1.15.2. Activation Function (AF) 
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In the machine learning algorithms, the weighted input parameters and biases are nonlinearly 

transformed through a transfer function or activation function (AF) (Hertz, 2018). In this study, 

various AF for the SAELM network comprising the hyperbolic tangent (Hypertan), the triangular 

basis (Tribas), the radial basis (Radbas), the hard limit (Hardlim), the sigmoid (Sig), and the 

sinusoidal (Sin) functions were utilized to simulate the ice-seabed interaction process in clay. The 

performance of different AFs for simulation of the horizontal reaction forces is illustrated in Figure 

11-5. It is worth noting that the SAELM 1 model was used to assess the effect of the AFs. 

According to the simulation results, the value of correlation coefficient for the Hypertan, Tribas, 

and Radbas functions was respectively estimated as 0.977, 0.893, and 0.969. For the Hardlim 

function, the computed MAE and NSC indices were equal to 99083.311 and 0.829. 

The Sin function showed the worst performance among the applied activation functions, with an 

AIC value of 746.767. However, the Sig function may be considered the most accurate activation 

function to model the ice-induced features in clay seabed where the values of AIC and VAF for 

this function were computed at 674.927 and 98.236. Thus, the sigmoid activation function was 

selected for the simulation of the ice-seabed interaction event in this investigation. 
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Figure 5-47. Comparison between the performances of various activation functions in the 

SAELM network for the simulation of the horizontal reaction forces 
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The performance of the defined SAELM models was evaluated by conducting a sensitivity 

analysis. This means that the capability of SAELM 1 to SAELM 8 was assessed in order to 

introduce the best SAELM model. The impact of each input was eliminated one at a time in the 

SAELM 2 to SAELM 8 models, while SEALM 1 was a function of all input parameters. 

Furthermore, to detect the most influencing input parameters, the ability of the SAELM 9 to 

SAELM 15 models for the simulation of the ice-induced parameters was investigated. Table 5-9 

shows the comparison between the performances of the SAELM models to simulate the horizontal 

reaction forces. For SAELM 1 a function of 

 𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠.𝑊,⁄ , 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠.𝑊

3⁄ , 𝑉2 𝑔𝑊⁄  inputs, the correlation coefficient (R), 

and Akaike Information Criteria (AIC) were calculated to be 0.987 and 684.047. It is worth 

noticing that SAELM 1 was ranked as the sixth-best model to predict horizontal reaction forces. 

SAELM 2 as the third-best model simulated the horizontal reaction forces by using 

 𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠.𝑊,⁄ , 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠.𝑊

3⁄ , with a VAF value of 97.768. The effect of 

𝐿𝑣 𝛾𝑠. 𝑊
3⁄  for SAELM 3 (the forth-best model) was removed, signifying that this model was a 

function of  𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠.𝑊,⁄ , 𝐿ℎ 𝛾𝑠. 𝑊
3⁄ , 𝑉2 𝑔𝑊⁄ . The NSC and R values for SAELM 3 

were respectively estimated at 0.975 and 0.987. The 𝐿ℎ 𝛾𝑠.𝑊
3⁄  parameter was the eliminated 

factor for SAELM 4 (the seventh-best model) and other inputs including 

 𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠.𝑊,⁄ , 𝐿𝑣 𝛾𝑠.𝑊
3⁄ , 𝑉2 𝑔𝑊⁄  were used to simulate the horizontal reaction forces 

where the VAF, MAE, and R criteria for this model equaled 97.428, 35066.664, and 0.987, 

respectively. The attack angle () was the removed parameter for SAELM 5 (the best SAELM 

model) and this model predicted the Fh/𝛾𝑠𝑊
3 in terms of 

 𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠.𝑊,⁄ 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠. 𝑊

3⁄ , and 𝑉2 𝑔𝑊⁄ , with an RMSE of 49662.134. 

SAELM 6 was fed by using the  𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ ,, 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠.𝑊

3⁄ , 𝑉2 𝑔𝑊⁄  inputs so as to 
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model the horizontal reaction forces, whereas the clay shear strength (𝑐 𝛾𝑠.𝑊⁄ ) was the eliminated 

factor. For SAELM 6 (the fifth-best model), the values of AIC and NSC were equal to 683.531 and 

0.975. The second-best model (SAELM 7) forecasted the target function (𝐹ℎ 𝑊⁄ ) through 

 𝑥 𝑤⁄ , 𝑐 𝛾𝑠.𝑊,⁄ , 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠.𝑊

3⁄  and 𝑉2 𝑔𝑊⁄  input parameters and the ratio of gouge 

depth to gouge width (𝐷𝑠 𝑊⁄ ) was ignored for this SAELM model, with a correlation coefficient 

of 0.989. The MAE, VAF, and AIC values for SAELM 8 (the worst model) were respectively 

estimated to be 125104.727, 53.391, and 763.182. The  𝑥 𝑤⁄  was a removed parameter for SAELM 

8 where this model simulated the horizontal reaction forces in terms of 

𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠.𝑊,⁄ , 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠. 𝑊

3⁄ , and 𝑉2 𝑔𝑊⁄  parameters. Among the SAELM models 

with one input (SAELM 9 to SAELM 16), SAELM 13 a function of the horizontal load parameter 

(𝐿ℎ 𝛾𝑠.𝑊
3⁄ ) had the highest level of correlation and precision along with the lowest level of 

complexity (R=0.801, MAE=121211.917, and AIC=761.914), so the 𝐿ℎ 𝛾𝑠.𝑊
3⁄  was detected as 

the most significant input parameter. Sensitivity analysis also showed that the vertical load 

parameter (𝐿𝑣 𝛾𝑠. 𝑊
3⁄ ), the velocity parameter (𝑉2 𝑔𝑊⁄ ), the clay shear strength (𝑐 𝛾𝑠.𝑊⁄ ), the 

ratio of gouge depth to gouge width (𝐷𝑠 𝑊⁄ ), and the position of iceberg along the scour axis (x/W) 

were recognized as the second important to sixth important input parameters. However, the attack 

angle () demonstrated a negligible influence to simulate the horizontal reaction forces. 

Thus, SAELM 5 was introduced as the best model to predict the horizontal reaction forces 

(Fh/𝛾𝑠𝑊
3), while the horizontal load parameter (𝐿ℎ 𝛾𝑠.𝑊

3⁄ ) possessed the highest level of 

influence for simulation of the target values.  

 

Table 5-9. Comparison between the performances of the SAELM models to simulate the 

horizontal reaction forces 
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Model R VAF RMSE MAE NSC AIC 

SAELM 1 0.987 97.488 58981.48 33873.16 0.974 684.047 

SAELM 2 0.989 97.768 55163.91 33828.04 0.977 680.123 

SAELM 3 0.987 97.477 58456.26 37083.99 0.975 683.522 

SAELM 4 0.987 97.428 58598.64 35066.66 0.974 683.665 

SAELM 5 0.991 98.13 49662.13 27756.89 0.982 673.963 

SAELM 6 0.988 97.498 58464.64 37982 0.975 683.531 

SAELM 7 0.989 97.866 55541.67 32207.49 0.977 680.524 

SAELM 8 0.794 53.391 227462.5 125104.7 0.617 763.182 

SAELM 9 0.387 -689.185 345849.6 283069.2 0.115 787.750 

SAELM 10 0.594 -117.046 296853.1 231393.8 0.348 778.793 

SAELM 11 0.764 43.737 240648.3 141417.2 0.571 766.487 

SAELM 12 0.182 -2193.92 364218.6 304225.2 0.018 790.784 

SAELM 13 0.801 54.080 222593.8 121211.9 0.633 761.914 

SAELM 14 0.793 52.001 226642.6 131446.7 0.620 762.971 

SAELM 15 0.764 22.961 237717.2 145973.8 0.582 765.768 

 

The comparison of the computed key statistical indices for SAELM models in order to predict the 

vertical reaction forces is tabulated in Table 5-10. Based on the simulation results, SAELM 6 

showed the best performance to model the vertical reaction forces (Fv/𝛾𝑠𝑊
3), where the computed 

AIC, R, and VAF values for this model were respectively calculated at 238.217, 0.997, and 99.423. 

The correlation coefficient for SAELM 3 (the second-best model) equaled 0.996. The AIC index 

for the third-best model (SAELM 4), the fourth-best model (SAELM 1), and the fifth-best model 
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(SAELM 2) were respectively approximated to be 252.771, 254.259, and 258.008. The values of 

RMSE and NSC for SAELM 8 (the sixth-best) were about 1388.961 and 0.893. SAELM 5 was 

known as the fifth-best model in which the variance accounted for (VAF) and correlation 

coefficient (R) values were at 98.029 and 0.990. SAELM 7 represented the poorest performance 

at dealing with the simulation of the vertical reaction forces, with an NSC of 0.978. Amongst 

SAELM 9 to SAELM 15 models, SAELM 10 (a function of Ds/W) simulated the target values 

with the highest level of accuracy and correlation, so the ratio of gouge depth to gouge width was 

recognized as the most influencing input parameter to model the vertical reaction forces. By 

contrast, the position of the iceberg along the scour axis (x/W) showed up to be the least effective 

parameter to model the vertical reaction forces. SAELM 9 (a function of x/W) showed the worst 

results among the models with one input parameter. Moreover, the input parameters 

𝐿𝑣 𝛾𝑠. 𝑊
3⁄ , 𝐿ℎ 𝛾𝑠.𝑊

3⁄ , 𝑉2 𝑔𝑊⁄ , 𝑐 𝛾𝑠.𝑊⁄ , and  were classified in a range from second to sixth 

respectively, in terms of their influence to model the vertical reaction forces. Therefore, SAELM 

6 was the most accurate and showed the highest level of correlation in order to estimation of the 

vertical reaction forces. Still regarding SAELM 6, the ratio of gouge depth to gouge width was the 

most influential input parameter. 

 

Table 5-10. Comparison between the performances of SAELM models to simulate the vertical 

reaction forces 

Model R VAF RMSE MAE NSC AIC 

SAELM 1 0.994 98.811 515.390 379.113 0.985 254.259 

SAELM 2 0.992 98.441 574.906 419.319 0.982 258.008 

SAELM 3 0.996 99.152 396.392 270.272 0.991 245.252 
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SAELM 4 0.995 99.067 493.520 349.677 0.986 252.771 

SAELM 5 0.991 98.029 580.714 431.109 0.981 258.353 

SAELM 6 0.997 99.423 322.908 260.777 0.994 238.217 

SAELM 7 0.990 97.809 633.188 430.489 0.978 261.321 

SAELM 8 0.966 81.614 1388.961 928.155 0.893 288.273 

SAELM 9 -0.034 -2021.88 5074.151 4522.248 -0.431 332.724 

SAELM 10 0.966 81.723 1387.301 924.233 0.893 288.232 

SAELM 11 -0.002 -598.027 4980.19 4005.37 -0.379 332.082 

SAELM 12 -0.002 -623.025 5012.235 4235.255 -0.211 345.258 

SAELM 13 0.951 78.749 1512.42 1094.644 0.873 291.194 

SAELM 14 0.951 78.777 1511.814 1094.532 0.873 291.180 

SAELM 15 0.319 -242.73 4542.99 3680.212 -0.147 328.93 

 

The calculated statistical indices for SAELM models to predict the horizontal subgouge 

displacements are arranged in Table 5-11. SAELM 5 demonstrated a better performance than other 

SAELM models, meaning that the RMSE, VAF, and AIC values for this model were 0.047, 99.936, 

and -25.085. SAELM 3 was the second-best model for the simulation of the horizontal 

deformations, with the MAE and NSC of 0.054 and 0.999. The performed sensitivity analysis 

proved that SAELM 1 was the third-best model where the value of AIC was at -22.025. The VAF 

and MAE values associated with the fourth-best model (SAELM 7) were respectively reckoned to 

be 99.901 and 0.043. The computed statistical indices showed that SAELM 2 was the fifth-best 

model (RMSE= 0.064 and AIC=-18.332). The estimated NSC and MAE criteria for the sixth-best 

model (SAELM 6) equaled 0.999 and 0.042. The values of variance accounted for (VAF) and 
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Akaike Information Criteria (AIC) for the worst SAELM model (SAELM 8) were respectively 

approximated as 84.588 and 26.450. According to the implemented sensitivity analysis for 

SAELM 9 to SAELM 15, the soil depth parameter (y/W) and the ratio of gouge depth to gouge 

width (Ds/W) were detected as the most effective inputs in estimating the horizontal subgouge 

deformations. SAELM 15 in terms of the velocity parameter (V2/g.W) had the lowest level of 

correlation and precision, indicating that the V2/g.W input possessed the lowest level of 

effectiveness to model the horizontal displacements. Additionally, 𝐿𝑣 𝛾𝑠.𝑊
3⁄ , 𝐿ℎ 𝛾𝑠.𝑊

3⁄ , α, and 

𝑐 𝛾𝑠. 𝑊⁄  were classified in a range between third and sixth in terms of their relevance as input 

variables for this particular simulation. Thus, to estimate the horizontal subgouge deformations, 

SAELM 5 and the soil depth (y/W) were respectively identified as the premium model and the 

most substantial input variable. 

 

Table 5-11. Comparison between the performances of SAELM models to simulate the horizontal 

subgouge deformations 

Model R VAF RMSE MAE NSC AIC 

SAELM 1 0.999 99.917 0.054 0.036 0.999 -22.025 

SAELM 2 0.999 99.898 0.064 0.044 0.999 -18.332 

SAELM 3 0.999 99.916 0.054 0.040 0.999 -22.272 

SAELM 4 0.999 99.434 0.154 0.061 0.993 0.177 

SAELM 5 0.999 99.936 0.047 0.034 0.999 -25.085 

SAELM 6 0.999 99.849 0.070 0.042 0.999 -16.462 

SAELM 7 0.999 99.901 0.058 0.043 0.999 -20.537 

SAELM 8 0.999 84.588 0.529 0.118 0.919 26.450 
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SAELM 9 0.999 99.915 0.059 0.040 0.999 -20.377 

SAELM 10 0.999 84.634 0.529 0.118 0.919 26.444 

SAELM 11 0.999 84.634 0.529 0.120 0.919 26.458 

SAELM 12 0.999 84.403 0.530 0.131 0.919 26.494 

SAELM 13 0.999 84.669 0.530 0.123 0.919 26.473 

SAELM 14 0.999 84.598 0.529 0.122 0.919 26.467 

SAELM 15 0.295 -760.043 1.778 0.557 0.086 52.245 

 

Table 5-12 presents the calculated key criteria for SAELM models in order to estimate the vertical 

subgouge displacements. As shown in Figure 9, SAELM 3 was able to predict the vertical 

deformations with the highest correlation (R=0.952) and lowest complexity (AIC=-28.896). After 

SAELM 3, SAELM 5 was preferred as the second-best model, where the values of VAF and MAE 

equaled 77.781 and 0.010 respectively. Although SAELM 7 exhibited an acceptable performance, 

it was the third-best model to simulate vertical deformation (RMSE=0.015 and R=0.920). The AIC 

and NSC values of SAELM 2 were respectively equal to -23.595 and 0.801 making SAELM 2 the 

fourth-best model. The obtained VAF and MAE values for SAELM 6 (the fifth-best model) were 

about 77.393 and 0.012, while these indices for the sixth-best model (SAELM 4) were estimated 

to be 74.986 and 0.011. SAELM 1 in terms of all input factors was classified as the seventh-best 

model, with an Akaike Information Criteria of -22.963. SAELM 8 had an unsatisfactory 

performance to model the vertical ice-induced deformations since the values of AIC, R, and NSC 

for this model were respectively computed at -13.184, 0.530, and 0.217. Amongst SAELM 9 to 

SAELM 15, the lowest level of error and complexity was attributed to SAELM 9, so the soil 

parameter had also a significant influence in order to estimate the vertical deformations. In 
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addition, different components of load factor (𝐿ℎ 𝛾𝑠.𝑊
3⁄   and 𝐿𝑣 𝛾𝑠.𝑊

3⁄ ) were found to be 

respectively the second and the third most influential input parameters. Based on the simulation 

results, the clay shear strength, the velocity factor, and the attack angle were ranked as the fourth, 

fifth and sixth most significant input variables. The ratio of gouge depth to gouge width exhibited 

a poor correlation with the vertical ice scouring displacements. Hence, SAELM 3 was introduced 

as the best model, and the soil depth parameter had a considerable impact on predicting the vertical 

subgouge deformations. 

 

Table 5-12. Comparison between the performances of SAELM models to simulate the vertical 

subgouge deformations 

Model R VAF RMSE MAE NSC AIC 

SAELM 1 0.911 76.338 0.0159 0.012 0.784 -22.963 

SAELM 2 0.939 86.418 0.015 0.012 0.801 -23.595 

SAELM 3 0.952 90.322 0.011 0.008 0.901 -28.896 

SAELM 4 0.911 74.986 0.015 0.011 0.795 -23.386 

SAELM 5 0.915 77.781 0.014283 0.010 0.825 -24.581 

SAELM 6 0.910 77.393 0.015 0.012 0.800 -23.569 

SAELM 7 0.920 82.104 0.015 0.012 0.805 -23.743 

SAELM 8 0.530 -190.847 0.030 0.020 0.217 -13.184 

SAELM 9 0.619 -261.429 0.028 0.019 0.324 -14.307 

SAELM 10 0.305 -525.673 0.034 0.023 -0.011 -11.245 

SAELM 11 0.474 -335.679 0.031 0.021 0.189 -12.921 

SAELM 12 0.351 -1820.84 0.033 0.021 0.082 -11.979 
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SAELM 13 0.548 -582.127 0.030 0.021 0.216 -13.182 

SAELM 14 0.515 -350.095 0.030 0.021 0.204 -13.060 

SAELM 15 0.432 -563.028 0.031 0.019 0.156 -12.614 

 

5.1.15.4. Superior SAELM models 

The performed sensitivity analysis showed that SAELM 5, SAELM 6, SAELM 5, and SAELM 3 

were selected as the premium models in predicting the horizontal reaction forces, the vertical 

reaction forces, the horizontal deformations, and the vertical deformations, respectively. Thus, 

these models were carried on for further evaluation. The discrepancy ratio (DR) of the premium 

SAELM models was computed by using the equation below: 

𝐷𝑅 =
𝜂(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)

𝜂(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
 

(5-115) 

where, 𝜂(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑) and 𝜂(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑) are respectively the simulated and observed subgouge 

parameters. The closer DR is to the unity, the better is the SEALM model l (Azimi and Shiri, 

2020b). Figure 5-48 shows the results of discrepancy ratio (DR) for these SAELM models. For 

instance, the average discrepancy ratio (DRave) for the SAELM 5 and SAELM 6 models for 

simulation of the horizontal and vertical reaction forces were computed as 1.031 and 0.994 

respectively. Additionally, the minimum discrepancy ratio (DRmin) for SAELM 5 to predict the 

horizontal subgouge deformations was 0.067 and the maximum discrepancy ratio (DRmax) for 

SAELM 3 in modeling the vertical ice-induced displacements equaled to 0.403. Therefore, the 

superior SAELM models could estimate the subgouge clay characteristics with a reasonable 

performance. 
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Figure 5-48. Results of discrepancy ratio (DR) for the best SAELM models 

 

Additionally, the implemented error analysis for the SAELM models is depicted in Figure 5-49. 

For example, about 57% of the horizontal reaction forces obtained from SAELM 5 had an error of 

less than 10%, whereas this value for the vertical reaction forces was almost 95%. A minority of 

the vertical reaction forces predicted by SAELM 6 (roughly 2.5%) possessed an error greater than 

20%. As shown, approximately one-fifth of the simulated horizontal displacements had an error 

of less than 10% (though this figure for the vertical deformations was nearly 34%). Moreover, a 

small part of the vertical ice-scoured displacements modeled by SAELM 3 (virtually 6%) indicated 

an error between 10% and 20%. Thus, the superior SAELM models showed a reasonable level of 

accuracy in order to simulate the subgouge clay features. 
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Figure 5-49. Results of error analysis for the best SAELM models 
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The uncertainty analysis (UA) was carried out to determine the performance of the best SAELM 

models. Results of the UA for the selected SAELM models are presented in Table 5-13. The errors 

obtained from the SAELM model (𝑒𝑗) were commonly approximated as the difference between 

the predicted ice-scoured characteristics (𝑃𝑗) and the experimental values (𝑂𝑗) as follows: 

𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (5-116) 

The averaged estimated errors (�̅�) and the standard deviation (𝑆𝑒) of errors were calculated 

using the equations below (Azimi and Shiri, 2020a): 

�̅� = ∑ 𝑒𝑗
𝑛

𝑗=1
 

(5-117) 

𝑆𝑒 = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(5-118) 

A positive averaged estimated error (�̅�) means that the SAELM models overestimated the 

subgouge sand parameters, whilst a negative estimated error means that the SAELM models 

underestimated the experimental results. In the next step, regarding the “Wilson score approach” 

without the continuity correction, a confidence interval was built around the estimated error by 

using the 𝑒 ̅ and 𝑆𝑒 values l (Azimi and Shiri, 2020b). It is worthwhile noting that the Wilson score 

interval is an improvement over the normal distribution interval where an asymmetric normal 

distribution is utilized so as to rectify the confidence interval bounds. Moreover, a ±1.96Se brought 

about a 95% confidence interval (95%CI), and then the width of uncertainty bound (WUB) was 

calculated as follows: 

WUB = ±
(Lower bound − upper bound)

2
 

(5-119) 
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Figure 5-50 shows the normal distribution graphs for the uncertainty analysis of the best SAELM 

models. Regarding the performed UA, SAELM 5 underestimated the horizontal reaction forces 

(�̅� = −1572), while SAELM 6 overestimated the vertical reaction forces (�̅� = 2.9). Furthermore, 

SAELM 5 (�̅� = −0.0032) and SAELM 3 (�̅� = −0.0009) slightly underestimated the values of 

horizontal and vertical displacements. The values of standard deviation of predicted error for 

SAELM 5, SAELM 6, SAELM 5, and SAELM 3 were respectively equal to 49800, 400.8, 0.356, 

and 0.011. Additionally, the widest uncertainty bound was obtained for SAELM 5 while modeling 

the horizontal reaction forces, with a WUB of ±4613.5, whereas SAELM 3 had the narrowest 

uncertainty bound  (WUB=±0.002). 

 

Table 5-13. Results of the uncertainty analysis for SAELM models 

Parameter Fh Fv dh dv 

Model SAELM 5 SAELM 6 SAELM 5 SAELM 3 

Number of observations 450 261 162 115 

Mean -1572 2.9 -0.0032 -0.0009 

St.Dev 49800 400.8 0.3555 0.01145 

SE Mean 2348 24.8 0.0279 0.00107 

WUB ±4613.5 ±48.85 ±0.055 ±0.002 

95%CI (-6185 to 

3042) 

(-46.0, 

51.7) 

(-0.0584, 0.0519) (-0.00302, 0.00121) 
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Figure 5-50. Normal distribution graphs for the performed uncertainty analysis of the best 

SAELM models 
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monotonic trend to simulate the horizontal reaction forces (Figures 11-9). Likewise, the vertical 

reaction forces were almost zero at the beginning of scour axis and this parameter reached its 

highest value along the scour axis, after several fluctuations. In other words, SAELM 6, a function 
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of  𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ ,, 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠. 𝑊

3⁄ , 𝑉2 𝑔𝑊⁄ , managed to model the vertical reaction forces 

by using a nonlinear trend with reasonable precision (Figures 5-51).  

SAELM 5 simulated the horizontal ice-induced deformations in terms of the soil depth, ratio of 

gouge depth to gouge width, clay shear strength, horizontal and vertical loads, and velocity 

parameters. Furthermore, SAELM 5 had the lowest level of complexity and the highest level of 

accuracy. According to the simulation results, the maximum horizontal subgouge deformations 

were predicted under the position of the iceberg keel, and the magnitude of this parameter was 

reduced with increasing the soil depth (Figure 5-52). Even though some oscillations were reported 

in the applied experimental measurements, SAELM 3 was able to estimate the vertical subgouge 

displacements with good performance [Figure 5-54(b, c, o, and p)]. It means that SAELM 3 

modeled the target function (dv/W) using the  𝑦 𝑤⁄ , 𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠.𝑊,⁄ , 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝑉2 𝑔𝑊⁄  

parameters, with a low level of complexity along with a high level of accuracy. Like the horizontal 

deformations profiles, the maximum vertical displacements were observed at the soil surface and 

then the magnitude of this parameter decreased at greater depths. 
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Figure 5-51. Comparison between the simulated horizontal reaction forces by SAELM 5 with 

experimental measurements 
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Figure 5-52. Comparison between the simulated vertical reaction forces by SAELM 6 with 

experimental measurements 
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Figure 5-53. Comparison between the simulated horizontal deformations by SAELM 5 with 

experimental measurements 
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Figure 5-54. Comparison between the simulated vertical deformations by SAELM 3 with 

experimental measurements 
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5.1.16. Conclusion 

In this study, the subgouge clay characteristics comprising the reaction forces and soil 

displacements were predicted by means of a non-tuned self-adaptive machine learning model 

called “self-adaptive extreme learning machine” (SAELM). Initially, using the parameters 

affecting the ice-induced clay seabed, fifteen SAELM models were defined. After that, by making 

use of published experimental results, a dataset was constructed and divided into two major sub-

samples including the training sub-sample (70% of the dataset) and the testing sub-sample (30% 

of the rest). Subsequently, different analyses for the SAELM models were implemented. The most 

important results are summarized as follows: 

 The most optimized number of neurons in the hidden layer was determined to be 20, with 

the correlation coefficient (R) and the Nash-Sutcliff efficiency coefficient (NSC) of 0.989 

and 0.978. 

 The sigmoid was selected as the best activation function for the SAELM network where 

the AIC and VAF indices were respectively equal to 674.927 and 98.236. 

 SAELM 5, SAELM 6, SAELM 5, and SAELM 3 were respectively selected as the superior 

models to simulate the horizontal reaction forces, the vertical reaction forces, the horizontal 

subgouge deformations, and the vertical subgouge deformation. 

 The horizontal component of load parameter and the ratio of gouge depth to gouge width 

were the most influencing inputs to model the reaction forces, whereas the soil depth 

variable had a significant impact in estimating the ice-induced deformation.  
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 The error analysis demonstrated that more than 90% of the vertical reaction forces 

predicted by SAELM 6 possessed an error of less than 10%, whilst this value for SAELM 

3 was 34%. 

 Regarding the uncertainty analysis, SAELM 6 overestimated the vertical reaction forces; 

however, SAELM 5 and SAELM 3 underestimated the other subgouge parameters. 

 Finally, a set of SAELM-based equations were presented to approximate the ice-induced 

clay features. 

Though several expensive experimental studies and long-running numerical simulations have been 

conducted in the field of ice scouring, the capability of self-adaptive machine learning for 

modeling this problem has not been utilized so much. The SAELM network demonstrated a 

superior generalization performance at dealing with simulation of the objective function 

overcoming the sensitivity to the number of neurons in the hidden layer; however, the computation 

time of this model was slightly longer than the classical form of ELM model. The obtained results 

proved that the SAELM algorithm is a precise, cost-effective, and quick alternative and could be 

used to simulate the subgouge clay parameters. The current study was the first footstep of the non-

tuned self-adaptive machine learning application in the field of ice-gouging, further research on 

this theme is to be expected in the future. The present findings can support providing fast and cost-

effective alternatives for simulation of ice-seabed interaction but more investigations still need to 

be conducted using other optimization algorithms and machine learning models to identify the 

most efficient and robust approach. 

 

Appendix 

SAELM-based equations 
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The common format of the self-adaptive extreme learning machine-based (SAELM) formula is: 

𝜂 = [
1

1 + 𝑒𝑥𝑝(𝐼𝑛𝑊 × 𝐼𝑛𝑉 × 𝐵𝐻𝐼)
]
𝑇

× 𝑂𝑢𝑡𝑊 
(5-120) 

where 𝐼𝑛𝑊 is the matrix of input weight, 𝐼𝑛𝑉 is the matrix of input parameters, 𝐵𝐻𝐼 is the matrix 

of bias of hidden layer, and 𝑂𝑢𝑡𝑊 is the matrix of output weights. SAELM 5, SAELM 6, SAELM 

5, and SAELM 3 were respectively selected as the premium SAELM models for the simulation of 

the horizontal reaction forces, the vertical reaction forces, the horizontal deformations, and the 

vertical deformations. The matrices of SAELM 5 to predict the horizontal reaction forces are 

presented below: 
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𝐼𝑛𝑉 =

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑥

𝑊
𝐷𝑠

𝑊
𝑐

𝛾𝑠.𝑊
𝐿ℎ

𝛾𝑠𝑊
3

𝐿𝑣

𝛾𝑠𝑊
3

𝑉2

𝑔𝑊 ]
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐵𝐻𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.137
0.672
0.429
0.367
0.759
0.276
0.887
0.125
0.249
0.209
0.034
0.465
0.600
0.433
0.201
0.120
0.823
0.665
0.588
0.341]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐼𝑛𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.804
0.709
0.106
0.439
0.382
0.362
0.685
0.919
0.346
0.427
0.421
0.222
0.546
0.424
0.430
0.373
0.547
0.750
0.470
0.928

 

1.368
0.288
0.848
0.254
0.786
0.967
0.303
0.596
0.804
0.268
0.996
1.472
1.079
0.659
0.363
0.278
0.724
0.885
0.081
0.141

 

0.283
0.087
0.172
0.549
0.394
0.785
0.905
0.570

−0.539
0.414
0.456
0.693
0.551
0.872
0.156
0.709
0.632
1.268
0.038
0.887

 

0.219
1.131
0.396
0.565
1.110
0.113
0.436
0.382
0.041
0.137
0.440
1.476
0.968

−0.535
0.660
1.115
0.230
1.254
0.636
0.014

 

0.452
0.106
0.377
0.603
0.775
0.094
0.982
0.387
0.379
0.464
0.044
0.281
1.546
0.854
0.633
0.465
0.015
0.473
1.624
0.659

 

0.338
0.508

−0.014
0.208
0.843
0.537
1.632
0.285
0.889
0.426
0.037
0.737
0.224
0.090
1.801
0.955
0.861
0.907
0.081
0.439 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 𝑂𝑢𝑡𝑊

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

81454574.880
9858947.424

−43398676.342
226126922.942
76594229.866
69992267.559

−196450851.039
−212768962.673

339950.056
634508844.353

−393599219.977
166528636.712
249733803.590

−239205854.575
82795238.535

−305218224.322
−68505659.283
−36440008.877
−330160337.170
227818062.419 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(5-

121) 

 

Furthermore, the matrices of SAELM 6 to approximate the vertical reaction forces are: 
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𝐼𝑛𝑉 =

[
 
 
 
 
 
 
 
 
 
 
 

𝑥

𝑊
𝐷𝑠

𝑊
𝛼
𝐿ℎ

𝛾𝑠𝑊
3

𝐿𝑣

𝛾𝑠𝑊
3

𝑉2

𝑔𝑊 ]
 
 
 
 
 
 
 
 
 
 
 

, 𝐵𝐻𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−0.231
0.278
0.372
0.476

−0.545
−0.821
−0.160
−0.401
0.440

−0.171
−0.552
0.730
0.950
0.255

−0.057
−0.915
−0.290
−0.611
0.962
0.073 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐼𝑛𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.328
0.885

−0.148
0.376
0.247

−0.078
−0.102
0.533

−0.621
0.615

−0.341
0.603

−0.055
0.957

−0.154
0.323

−0.262
−0.812
−0.505
−0.625

 

−0.111
−0.260
−0.0005
0.944

−0.375
0.046
0.894

−0.748
0.721

−0.572
0.635

−0.117
0.254

−0.431
−0.907
−0.711
−0.884
−0.671
−0.693
0.155

 

−0.607
−0.980
−0.953
−0.745
0.325
0.995
0.445

−0.423
0.997
0.237

−0.451
0.208
0.637
0.863

−0.762
0.286

−0.860
−0.383
−0.114
0.088

 

−0.427
0.918
0.962
0.583

−0.591
0.382
0.910

−0.795
−0.566
0.375

−0.455
−0.828
−0.413
−0.040
−0.580
0.006

−0.947
0.370

−0.139
−0.472

 

−0.154
0.603
0.009

−0.547
−0.832
0.678
0.687

−0.340
0.041

−0.335
0.452

−0.294
0.970
0.032
0.223
0.015
0.061

−0.445
0.487

−0.986

 

0.770
−0.867
−0.858
0.813
0.975
0.939
0.965

−0.756
0.431

−0.745
0.811

−0.888
0.127

−0.144
−0.966
0.291

−0.889
−0.815
−0.450
−0.560]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 𝑂𝑢𝑡𝑊

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4710292681462.980
−23130960.575

−2712.673
811259256833.264
−117105903408286
−31950438000.231
−15811860133.841
−216018097792274

374.977
−131721.752
−20328.146

1161778663.675
36342192406.932
11056026674.790

−841071.755
−250395.332

−10336542922678.700
−2239866434.206
387498565.804

−7457874661382.450 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(5-
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Likewise, the matrices of SAELM 5 to calculate the ice-induced horizontal deformations are: 
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𝐼𝑛𝑉 =

[
 
 
 
 
 
 
 
 
 

𝑦

𝑊
𝐷𝑠

𝑊
𝑐

𝛾𝑠.𝑊

𝐿ℎ

𝛾𝑠𝑊3

𝐿𝑣

𝛾𝑠𝑊3

𝑉2

𝑔𝑊 ]
 
 
 
 
 
 
 
 
 

, 𝐵𝐻𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−0.676
−0.042
−0.136
−0.347
0.595
0.733
0.885
0.736
0.571

−0.346
−0.609
0.989
0.994

−0.497
−0.345
0.670

−0.581
−0.581
−0.139
0.440 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐼𝑛𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.240
−0.515
−0.232
0.458
0.927

−0.080
0.695
0.326

−0.536
−0.139
0.483

−0.490
−0.191
−0.569
−0.071
−0.330
0.375

−0.918
−0.046
−0.139

 

0.282
0.899

−0.479
−0.734
−0.666
−0.631
−0.627
0.314

−0.298
−0.878
0.604
0.377

−0.454
−0.305
−0.815
0.203
0.631

−0.968
0.647
0.602

 

−0.064
−0.174
0.227

−0.143
−0.739
−0.177
0.568

−0.879
−0.272
0.778
0.401

−0.521
−0.527
0.990
0.903

−0.737
0.510

−0.356
−0.582
0.850

 

−0.775
−0.749
−0.502
0.757
0.598
0.737
0.781
0.182
0.591
0.312
0.980
0.611
0.621
0.323

−0.684
0.535

−0.880
−0.041
0.311
0.520

 

−0.605
−0.479
−0.464
−0.637
−0.285
0.874
0.751
0.134

−0.379
−0.482
0.770

−0.917
−0.712
−0.157
0.003

−0.653
0.812

−0.087
0.363

−0.145

 

0.035
−0.669
0.186

−0.549
0.817
0.101
0.292

−0.577
0.746

−0.871
0.783

−0.450
0.339

−0.419
−0.790
0.557
0.218
0.007

−0.618
−0.709]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 𝑂𝑢𝑡𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−0.676
−0.042
−0.136
−0.347
0.595
0.733
0.885
0.736
0.571

−0.346
−0.609
0.989
0.994

−0.497
−0.345
0.670

−0.581
−0.581
−0.139
0.440 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(5-
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And, the matrices of SAELM 3 to predict the subgouge vertical displacements in a clay seabed 

are: 
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𝐼𝑛𝑉 =

[
 
 
 
 
 
 
 
 

𝑥

𝑊
𝐷𝑠

𝑊
𝛼
𝐿ℎ

𝛾𝑠𝑊3

𝐿𝑣

𝛾𝑠𝑊3

𝑉2

𝑔𝑊 ]
 
 
 
 
 
 
 
 

, 𝐵𝐻𝐼 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.331
0.348
0.139
0.832
0.763
0.109
0.708
0.823
0.508
0.176
0.252
0.832
0.977
0.115
0.426
0.047
0.094
0.204
0.957
0.909]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐼𝑛𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.683
0.182
0.251
0.894
0.133
0.131
0.851
0.360
0.639
0.499
0.807
0.809
0.154
0.244
0.029
0.962
0.349
0.222
0.633
0.753

 

0.387
0.630
0.660
0.720
0.012
0.446
0.703
0.883
0.687
0.001
0.543
0.278
0.421
0.511
0.228
0.097
0.771
0.009
0.116
0.225

 

0.061
0.100
0.125
0.502
0.899
0.360
0.952
0.404
0.741
0.461
0.040
0.910
0.019
0.042
0.060
0.036
0.362
0.173
0.646
0.189

 

0.912
0.713
0.995
0.178
0.224
0.095
0.396
0.593
0.062
0.214
0.002
0.177
0.124
0.933
0.143
0.287
0.112
0.849
0.008
0.856

 

0.131
0.090
0.053
0.453
0.037
0.942
0.114
0.118
0.026
0.485
0.065
0.069
0.024
0.103
0.552
0.958
0.187
0.108
0.482
0.579

 

0.087
0.573
0.027
0.167
0.403
0.030
0.151
0.034
0.363
0.396
0.324
0.336
0.029
0.962
0.165
0.007
0.127
0.803
0.206
0.910]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 𝑂𝑢𝑡𝑊 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158656.805

749.405
76.735
7.806
56.786
3.743

122.843
0.057
3.900
2.053
0.439
14.120
0.558
0.246
11.314
23.141
2.825

778237.724
0.864

158766.616]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(5-

124) 

 

References 



 

448 
 

Abdalla, B., Pike, K., Eltaher, A., Jukes, P., Duron, B., 2009. Development and validation of a 

coupled Eulerian Lagrangian finite element ice scour model. In: 28th International 

Conference on Ocean, Offshore and Arctic Engineering, 43451, pp. 87–95. 

Arnau Almirall, S., 2017. Ice-gouging in sand and the associated rate effects. University of 

Aberdeen, UK. 

Azimi, H., Shiri, H., 2020a. Dimensionless groups of parameters governing the ice-seabed 

interaction process. Journal of Offshore Mechanics and Arctic Engineering, 142: 051601. 

Azimi, H., Shiri, H., 2020b. Ice-seabed interaction analysis in sand using a gene expression 

programming-based approach. Applied Ocean Research, 98: 102120.  

Azimi, H., Shiri, H., 2021a. Sensitivity analysis of parameters influencing the ice-seabed 

interaction in sand by using extreme learning machine. Natural Hazards, 106 (3): 2307–

2335. 

Azimi, H., Shiri, H., 2021b. Modeling subgouge sand deformations by using multi-layer 

perceptron neural network. 31st International Ocean and Polar Engineering Conference, 

ISOPE-I-21-2150. 

Bailey Dudley, E., Liu, L., Sarracino, R., Taylor, R., 2017. Using discrete element model to 

simulate Keel-Gouging: a sensitivity analysis. In the 36th International Conference on 

Ocean, Offshore and Arctic Engineering, V008T07A022: OMAE2017-62479. 

Been, K., Sancio, R.B., Ahrabian, D., van Kesteren, W., Croasdale, K., Palmer, A., 2008. 

Subscour displacement in clays from physical model tests. In the 7th International Pipeline 

Conference, 48609: 239–245. 



 

449 
 

Bonakdari, H., Qasem, S.N., Ebtehaj, I., Zaji, A.H., Gharabaghi, B., Moazamnia, M., 2020. An 

expert system for predicting the velocity field in narrow open channel flows using self-

adaptive extreme learning machines. Measurement, 151: 107202. 

Cao, J., Lin, Z., Huang, G.B., 2012. Self-adaptive evolutionary extreme learning machine. 

Neural processing letters, 36: 285–305. 

C-CORE., 1995. Phase 3: centrifuge modelling of ice Keel Scour, C-CORE Report 95-Cl2. 

C-CORE., 1996. PRISE Phase 3c: extreme LEE Gouge event—modeling and interpretation, C-

CORE Report 96-C32. 

Comfort, G., Graham, B., 1986. Evaluation of sea bottom ice scour models (No. 37). Environ. 

Stud. Revolving Funds. 

Ebtehaj, I., Bonakdari, H., Shamshirband, S., 2016. Extreme learning machine assessment for 

estimating sediment transport in open channels. Engineering with Computers, 32(4): 691–

704. 

Ebtehaj, I., Sattar, A.M, Bonakdari, H., Zaji, A.H., 2017. Prediction of scour depth around bridge 

piers using self-adaptive extreme learning machine. Journal of Hydroinformatics, 19(2): 

207–224. 

Hertz, J.A., 2018. Introduction to the theory of neural computation. CRC Press. 

Huang, G.B., Zhu, Q.Y., Siew, C.K., 2004. Extreme learning machine: a new learning scheme of 

feedforward neural networks. In: 2004 IEEE International Joint Conference on Neural 

Networks, IEEE Cat. No. 04CH37541, 2. IEEE, pp. 985–990. 

Kioka, S., Yasunaga, Y., Watanabe, Y., Saeki, H., 2000. Evaluation of ice forces acting on sea 

bed due to ice scouring. 10th International Offshore and Polar Engineering Conference, 

ISOPE-I-00-111. 



 

450 
 

Kioka, S.D., Kubouchi, A., Saeki, H., 2003. Training and generalization of experimental values 

of ice Scour event by a neural-network. 13th International Offshore and Polar Engineering 

Conference, ISOPE-I-03-081. 

Kioka, S.D., Kubouchi, A., Ishikawa, R., Saeki, H., 2004. Application of the mechanical model 

for ice scour to a field site and simulation method of Scour depths. 14th International 

Offshore and Polar Engineering Conference, ISOPE-I-04-107. 

Lach, P.R., 1996. Centrifuge modelling of large soil deformation due to ice scour. Memorial 

University of Newfoundland. St. John’s. NL, Canada. 

Liu, L., Bailey, E., Sarracino, R., Taylor, R., Power, C., Stanbridge, C., 2015. Numerical 

simulation of ice ridge gouging. 34th International Conference on Ocean, Offshore and 

Arctic Engineering, 56567: V008T07A022 

Machemehl, J.L., Jo, C.H., 1989. Note on nearshore ice gouge depths in Alaskan Beaufort Sea. 

Journal of cold regions engineering, 3: 150–153. 

Nematzadeh, A., Shiri, H., 2019. Large deformation analysis of ice scour process in dense sand. 

10th Congress on Numerical Methods in Engineering. 

Nematzadeh, A., Shiri, H., 2020. The influence of non-linear stress-strain behavior of dense sand 

on seabed response to ice-gouging. Cold Regions Science and Technology, 170: 102929. 

Sattar, A.M., Ertuğrul, Ö.F., Gharabaghi, B., McBean, E.A., Cao, J., 2019. Extreme learning 

machine model for water network management. Neural Computing and Applications, 31: 

157–169. 

Schoonbeek, I.S., van Kesteren, W.G., Xin, M.X., Been, K., 2006. Slip line field solutions as an 

approach to understand ice subgouge deformation patterns. In the16th International 

Offshore and Polar Engineering Conference, ISOPE-I-06-289. 



 

451 
 

Shin, M.B., Park, D.S., Seo, Y.K., 2019. Comparative study of ice gouge simulation considering 

ice keel-seabed interactions. Journal of Ocean Engineering and Technology, 33: 556–563. 

Storn, R., Price, K., 1997. Differential evolution–a simple and efficient heuristic for global 

optimization over continuous spaces. Journal of global optimization, 11: 341–359. 

Woodworth-Lynes, C., Nixon, D., Phillips, P., Palmer, A., 1996. Subgouge deformations and the 

security of Arctic marine pipelines. Offshore Technology Conference, OTC-8222-MS. 

 



 

452 
 

6. Chapter 6 

 

Prediction of Iceberg-Seabed Interaction Process Using Tree-Based Machine 

Learning Algorithms 

 

This chapter includes three sections as follows: 

Section 1: Simulation of subgouge sand deformations using robust machine learning algorithms 

Section 2: Iceberg-seabed interaction analysis in sand by a random forest algorithm 

Section 3: Iceberg-seabed interaction evaluation in clay seabed using tree-based machine 

learning algorithms 
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Section 1 

 

Simulation of subgouge sand deformations using robust machine learning 

algorithms 
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Abstract 

Ice-gouging is one of the major menaces to the subsea pipelines crossing the Arctic (e.g., Beaufort 

Sea) or the non-Arctic (e.g., Caspian Sea) shallow waters. Burial of the sea-bottom-founded 

infrastructures is regarded as a feasible method for protection of the subsea assets against the ice-

gouging threat. These pipelines are commonly embedded underneath the deepest ice-scoured 

records in the area, whereas the pipeline system is still threatened by the ice-induced soil 

displacement developed into the ice tip owing to the shear resistance of the seabed soil. 

Determination of the subgouge soil displacements is a governing design factor for the subsea 

structures in the Arctic offshore that commonly need costly laboratory studies and long-running 

finite element (FE) analyses to guarantee the operational integrity of the subsea pipeline against 

the ice-gouging event. Thus, the industry is still seeking more cost-effective, reliable, and faster 

alternative approaches for simulation of the iceberg-seabed-pipeline interaction process to 

minimize the collision risk of ice keels with the subsea structures. Recently, the application of 

machine learning (ML) in different fields has witnessed impressive growth since the ML 

technology is sufficiently precise, quick, reliable, and cost-effective to model various linear and 

non-linear problems. 

In this study, three robust ML algorithms comprising the Decision Tree Regression (DTR), 

Random Forest Regression (RFR), and Extra Tree Regression (ETR) models were used for the 

first time to simulate the iceberg-seabed interaction process in the sandy seabed. Using the 

parameters governing the ice-seabed interaction mechanism, a set of the DTR, RFR, and ETR 

models were developed. To verify the ML models, a comprehensive dataset was constructed and 

the data was divided into two sub-samples including the training (70% of data) and testing (the 

remaining 30% of the data) datasets. Subsequently, for the DTR, RFR, and ETR models, several 



 

456 
 

analyses such as sensitivity analysis, error analysis, and uncertainty analysis were performed. The 

conducted analyses demonstrated that the ETR algorithm had a reasonable performance to 

simulate both horizontal and vertical subgouge soil deformations in the sand. The soil depth ratio 

(y/W) and the horizontal load factor (Lh/γs.W3) had substantial significance to model the horizontal 

and vertical deformations in the present study. 

The presented results provided a good notion of modeling the ice-gouging problem through the 

ETR algorithm. The outcomes may facilitate proposing new solutions to estimate the subgouge 

soil deformations in the sandy seabed. The present work can also be used for the planning of 

expensive field, laboratory, and FE simulations and to reduce expenditures on future studies. 

 

Keywords: Iceberg-seabed interaction process; Seabed sand; Decision Tree Regression (DTR), 

Random Forest Regression (RFR), Extra Tree Regression (ETR); Uncertainty analysis (UA)
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6.1.1. Introduction 

The past decades have witnessed the rapid exploitation of crude oil and natural gases in the Arctic 

territories, where a huge amount of these hydrocarbons is transferred from offshore to onshore 

through the subsea pipelines safely and economically. However, ice scouring is one of the primary 

hazards to the subsea pipelines crossing the Arctic area, when the traveling icebergs may gouge 

the seabed and collide with the sea bottom-founded infrastructures in shallow waters during 

warmer months. Figure 6-1 demonstrates the layout of the ice-seabed interaction mechanism. 

 

Figure 6-1. Layout of the ice-seabed interaction mechanism 

 

To safeguard the subsea pipelines against ice scouring, these marine pipelines are embedded below 

the maximum estimated gouge depth. It is worth noting that the soil displacements are not limited 

to the soil in front of the ice keel, rather the soil shear resistance displaces the subgouge soil much 

deeper than the ice tip. This subgouge soil deformation has an exponential distribution through the 

soil (Figure 12-1) underneath the ice tip (ISO 19906: 2019 E) and can still threaten buried 

Iceberg movement

Trench
Pipe

Sea floor

Ds= Zone 1 ~ gouge depth

Zone 2: Large deformation zone

Zone 3: Small deformation zone Subgouge soil deformation profile

Attack angle
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pipelines. The estimation of the depth of the subgouge deformation zone underneath the ice tip is 

a burdensome and costly design aspect that is generally performed by a decoupled simulation. 

In the decoupled simulation, initially, free-field iceberg-seabed interaction analysis is modeled 

without the presence of the pipeline. Subsequently, the deformed sub-gauge soil is manually 

transferred to the beam-spring model to simulate the pipe response to soil displacements. As 

shown, the free field iceberg-seabed interaction process is a significant phase of the decoupled 

simulation in practical pipeline design and relies on costly laboratory and long-running finite 

element (FE) analyses. 

The past years have seen increasingly rapid advances in the application of machine learning (ML) 

in different fields although the ML models have seen limited use in the analysis of the ice-seabed 

interaction phenomenon. As an example, Kioka et al. (2003, 2004) used a neural network-based 

(NN) model to estimate the ice-gouging problem. In the NN model, five hidden neurons were 

embedded and the ice drift velocity, sand property, sea-bottom gradient, and attack angle were 

assumed as the input parameters. The authors validated this model with a mechanical method and 

showed that it was able to approximate the ice-seabed interaction features with good accuracy. 

Azimi and Shiri (2020a) detected the dimensionless group governing the iceberg-seabed 

interaction parameters for both sandy and clay seabeds. The authors proposed a set of relationships 

to calculate the maximum horizontal and vertical subgouge deformations. A gene expression 

programming-based approach was applied to simulate the horizontal subgouge soil deformations 

in the sand by Azimi and Shiri (2020b). The study highlighted that the gouge depth and the dilation 

angle had a significant effect on the predicted horizontal subgouge soil displacements. Azimi and 

Shiri (2021a) simulated the subgouge soil characteristics in sandy seabed through the extreme 

learning machine (ELM) algorithm. The authors showed that the gouge depth ratio and the shear 
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strength of the seabed soil were the most important input parameters to model the objective 

parameter. The horizontal subgouge deformations in the sand were modeled using a multi-layer 

perceptron neural network algorithm by Azimi and Shiri (2021b). The authors employed six 

neurons in the hidden layer and used the sigmoid as the activation function. Azimi and Shiri 

(2021c) combined the extreme learning machine (ELM) and the differential evolution (DE) 

algorithm to simulate the ice-seabed interaction process. The study concluded that roughly 30% of 

the horizontal subgouge deformations estimated by the SaE-ELM algorithm had an error of less 

than 10%, and almost 43% of the results showed an error between 10% and 20%. 

The present investigation utilized extra tree regression (ETR) as a robust ML algorithm and 

compared the results with the random forest regression (RFR) and decision tree regression (DTR) 

as other alternatives for estimation of the horizontal and vertical subgouge soil deformations to be 

fed into the beam-spring models. 

The dataset for training and testing of the models was constructed by using six well-recognized 

experimental studies in sand comprising Paulin (1991, 1992), C-CORE (1995, 1996), Hynes 

(1996), and Yang (2009). Paulin (1991, 1992) performed different experimental tests for 

submerged and dry sand to measure the reaction forces and deformations during the ice-scouring 

phenomenon. The author asserted that the loads and reaction forces for the submerged sand were 

smaller than in the dry seabed circumstances. Several Pressure Ridge Ice Scour Experiment 

(PRISE) tests at the Center for Cold Ocean Resources Engineering (C-CORE) were implemented 

to quantify the subgouge deformations and keel reaction forces in both clay and sand seabed (C-

CORE 1995, 1996). These studies showed that the horizontal reaction forces increased by growing 

the width of scouring, rather the horizontal reaction forces decreased with the steeper keel attack 

angle. Hynes (1996) investigated the ice-seabed interaction process in a centrifuge study. The 
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author reported that the scour depth and scour load had a linear correlation. Yang (2009) conducted 

various Pipeline Ice Risk Assessment and Mitigation (PIRAM) tests on the sandy seabed. The 

author evaluated the influence of gouge depth, frontal berm height, and gouge rate and concluded 

that the attack angle and gouge geometry significantly affected the reaction forces. 

The ETR algorithm presented in the current study provides fast estimations of the horizontal and 

vertical subgouge soil deformations, which can be used in the initial stages of engineering design, 

for planning the construction methodologies, logistics, and the scope of detailed engineering. This 

method is fast and cost-effective as compared to centrifuge testing or continuum FE analyses. 

More details about the proposed methodology will be presented in the upcoming sections. 

 

6.1.2. Methodology 

The three types of regression used in this study are described in the following sections. 

 

6.1.2.1. Decision Tree Regression (DTR) 

A tree data structure comprising a set of nodes and branches in every single node is considered a 

decision tree (DT). The DT can be applied for the estimation of the classification and regression 

problems. The DT consists of several sections including a root node, some leaf nodes, internal 

nodes, and branches. The uppermost node in the tree is defined as the root node and the terminal 

nodes (leaf nodes) end with the labels of classes, whereas the non-leaf nodes are regarded as the 

internal nodes. These nodes connect to each other by using the branches. In the current 

investigation, the mean squared error (MSE) is applied to control the fitness function in the DT 

algorithm (Pekel 2020). The value of DTR parameters including the max_depth, max_features, 

max_leaf_nodes, min_samples_leaf, min_weight_fraction_leaf, and splitter was respectively 
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adjusted as 8, 'auto', 12, 1, 0.01, and 'random'. It should be asserted that these parameters were 

found using a trial-and-error procedure. 

 

6.1.2.2. Random Forest Regression (RFR) 

The random forest (RF) algorithm has been developed by Breiman (2001) to solve classification 

and regression problems. The RF algorithm, as an ensemble learning method, is the extension of 

the Classification and Regression Trees (CART) algorithm where the tree-based CART models 

have the overfitting problem and the RF algorithm overcomes this limitation (Breiman 2001). In 

the RF algorithm, several decision trees are created and decisions with the highest number of votes 

are chosen as the simulation results (Sahani and Ghosh 2021). In the random forest regression, the 

number of trees for a random vector is increased and the tree predictor, input parameters, and 

output parameters are considered as numerical values. Regarding the random vector distribution, 

the training dataset is independently utilized. The RFR model reduces the average error of the trees 

utilized by means of the weighted correlation between the residuals and the applied randomization 

ought to be employed at the low level of correlation. In the investigation, the parameters applied 

in the RFR algorithm comprising the max_depth, random_state, number of estimators, and verbose 

were tuned by a trial and error method as 5000, 500, 1000, and 1, respectively.  

 

6.1.2.3. Extra Tree Regression (ETR) 

ETR was originally driven from the RF algorithm by Geurts et al. (2006). The RF algorithm utilizes 

the bootstrapping, generation of the decision trees, and bagging, division of the decision tree 

leaves, in order to solve a regression problem. The ETR commonly generates a set of unexpected 

regression trees. By choosing the best subset, the decision-making procedure is implemented. The 
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ETR and RF algorithms have two main differences: (1) In the ETR model, the leaves are split 

using the random selection from the cutting points (2) The ETR algorithm utilizes the complete 

training dataset in order to generate the trees to minimize the value of bias. The ETR algorithm (i) 

applies the number of features that are selected randomly in the leave (ii) minimizes the sample 

size for the separation of leaves. The feature selection strength is determined using (i) and (ii) 

mechanisms; rather the strength of the averaged outcome noise is defined through (ii) procedure. 

These mechanisms can lessen the overfitting problem in the ETR algorithm and enhance the 

performance of this model (Hammed et al. 2021). It should be stated that the ETR parameters were 

tuned through a trial-and-error approach in the current study. This means that the value of 

n_estimators, random_state, criterion, max_depth, min_sample_split, and min_sample_leaf was 

regulated to be 500, 12, 'mse', 2000, 4, and 2 respectively. 

 

6.1.2.4. Ice-seabed interaction process 

The maximum subgouge soil deformation in the sand (𝑑(𝑠𝑎𝑛𝑑_𝑚𝑎𝑥)) is a function of a set of 

parameters including the scour depth (Ds), the internal friction angle of sand (𝜑), the width of 

gouge (W), the attack angle (), the angle of the surcharged soil slope (ω), the height of the berm 

(h’), the horizontal load (Lh), the vertical load (Lv), the velocity of ice keel (V), and the specific 

weight of sand (𝛾𝑠) (Azimi and Shiri 2020a): 

𝑑(𝑠𝑎𝑛𝑑_𝑚𝑎𝑥) = 𝑓1(𝐷𝑠, 𝜑,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠) (6-1) 

Equation (6-1) can be written as a function of eight dimensionless groups as below (Azimi and 

Shiri 2020a): 

𝑑(𝑠𝑎𝑛𝑑_𝑚𝑎𝑥)

𝑊
= 𝑓2 (

𝐷𝑠

𝑊
,𝜑,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(6-2) 
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It is worth noting that the maximum subgouge deformation in the seabed sand (𝑑(𝑠𝑎𝑛𝑑_𝑚𝑎𝑥)) is 

formed just under the moving ice keel in the gouge centerline. However, on the subgouge 

centerline, by incorporating the soil depth (y/W) at greater depth, the subgouge sand deformation 

(d(sand-y)/W) is written as follows: 

𝑑(𝑠𝑎𝑛𝑑−𝑦)

𝑊
= 𝑓3 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,𝜑,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(6-3) 

In this study, a set of experimental investigations were used to simulate the ice-induced seabed 

deformations (d/W). This means that the key measurements of six experimental datasets reported 

by Paulin (1991, 1992), C-CORE (1995, 1996), Hynes (1996), and Yang (2009) were applied to 

validate the ML models. Table 6-1 shows the range of experimental parameters used in the present 

study. 

 

Table 6-1. Range of experimental parameters used in the present study 

Model Test Ds/W φ (Deg) α 

(Deg) 

h'/W Lh/γs.W3 Lv/γs.W3 V2/g.W 

 

 

 

Paulin (1991, 

1992) 

P-1 0.930 18 15 - 1.051 1.524 0.001 

P-2 0.095 35 15 1.163 1.271 1.642 0.008 

P-3 0.091 35 15 0.119 1.054 1.528 0.008 

P-4 0.088 35 15 0.109 0.721 0.910 0.008 

P-5 0.093 35 15 0.102 0.751 0.777 0.008 

 

 

 

C-1 0.113 29.022 15 - 0.001 0.001 6.8E-05 

C-2 0.065 28.912 30 - 0.0002 0.0002 6.8E-05 

C-3 0.073 28.912 30 - 0.0002 0.0003 6.8E-05 
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C-CORE 

(1995, 1996) 

C-4 0.079 34.542 15 - 0.0004 0.0003 6.8E-05 

C-5 0.143 34.542 15 - 0.001 0.001 6.8E-05 

C-6 0.300 41.056 30 - 1.065 1.397 - 

C-7 0.333 43.540 15 - 2.235 2.598 - 

C-8 0.140 33.880 15 - 0.731 0.646 - 

C-9 0.177 41.332 15 - 0.845 0.764 - 

C-

10 

0.167 37.882 15 - 0.764 0.723 - 

 

 

 

Hynes (1996) 

H-1 0.113 38.2 15 0.233 2E-05 2.27E-05 0.015 

H-2 0.065 36.6 30 0.207 2E-05 6.46E-06 0.015 

H-3 0.073 37 15 0.207 1E-05 1.18E-05 0.015 

H-4 0.080 39.3 15 0.240 1.17E-05 1.28E-05 0.015 

H-5 0.143 38.4 15 0.240 2.17E-05 2.44E-05 0.015 

 

 

 

Yang (2009) 

Y-1 0.130 44 30 0.338 0.512 1.620 2.55E-09 

Y-2 0.14 32 30 0.215 0.539 0.693 2.55E-09 

Y-3 0.082 34 30 0.295 0.614 0.905 5.61E-08 

Y-4 0.160 32 30 0.260 1.103 1.530 8.57E-09 

Y-5 0.167 29 30 0.280 1.091 1.261 2.14E-07 

Y-6 0.086 37 30 0.336 2.033 2.859 0.0001 

 

The aforementioned research works did not report the value of the surcharged soil slope (ω), so 

equation (6-3) is written as below: 
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𝑑(𝑠𝑎𝑛𝑑_𝑦)

𝑊
= 𝑓3 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,𝜑,,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(6-4) 

Therefore, the dimensionless groups introduced in equation (6-4) were applied as the input 

parameters for the ML models to simulate the horizontal and vertical subgouge deformations. The 

applied input combinations in the present study are drawn in Figure 6-2. 

 

Figure 6-2. Applied input combinations in the current study 

 

Regarding the sensitivity analysis performed for the ice-gouging problem, there were eight 

dimensionless groups of parameters governing the subgouge soil deformations in the sand. The 

ETR 1 was a function of all input parameters, whereas the input parameters were removed one at 

a time in ETR 2 to ETR 9. Thus, nine ETR models were developed and the best models along with 

the governing input parameters were identified by performing several analyses. It should be noted 

that the applied dataset was split into two main sub-samples comprising training (70% of the entire 

data) and testing (the remaining 30% of the data) dataset. 

 

6.1.2.5. Quality of fit 

A set of criteria, such as correlation coefficient (R), root mean square error (RMSE), mean absolute 

percentage error (MAPE), Willmott Index (WI), coefficient of residual mass (CRM), and Akaike 
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Information Criteria (AIC) were utilized to evaluate the accuracy, correlation, and complexity of 

the ML models. The closeness of the R and WI indices to one signified that the model had a high 

correlation with the experimental values. On the other hand, the closeness of the RMSE, MAPE, 

and CRM values to zero meant that a particular model had the lowest level of error though the 

complexity of the ML models was not assessed using the aforementioned criteria. To overcome 

this limitation, the Akaike Information Criteria (AIC) was used, meaning that the less complex ML 

model owned the lowest value of AIC; hence, the best model had the lowest values of AIC index 

and error (RMSE, MAPE, and CRM), with the highest level of correlation (R and WI). 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(6-5) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(6-6) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑃𝑖 − 𝑂𝑖

𝑂𝑖
|

𝑛

𝑖=1
 

(6-7) 

𝑊𝐼 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (|𝑃𝑖 − �̅�| + |𝑂𝑖 − �̅�|)2𝑛
𝑖=1

 
(6-8) 

𝐶𝑅𝑀 =
∑ 𝑂𝑖

𝑛
𝑖=1 − ∑ 𝑃𝑖

𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 
(6-9) 

𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(6-10) 

here, Oi, Pi, �̅�, �̅�, and n are the experimental measurements, the simulated values, the average 

experimental values, the average simulated values, and the number of experimental measurements, 

respectively. In addition, k is the number of input parameters in the ML models. 
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6.1.3. Results and Discussion 

6.1.3.1. Sensitivity analysis 

By performing a sensitivity analysis, the ETR model’s performance (ETR 1 to ETR 9) was 

assessed. In Figure 6-3, the results of key criteria computed for ETR 1 to ETR 9 to model the 

horizontal subgouge deformations are illustrated. In this figure, the shading and the size of the 

rectangles do not signify the significance of the ML models. Among the ETR models, ETR 4 was 

the best model to simulate the horizontal displacements since it had the lowest degree of 

complexity along with the highest level of correlation and accuracy, with the AIC, R, and RMSE 

of -38.368, 0.978, and 0.077, respectively. After ETR 4, the ETR 3, ETR 1, and ETR 7 models 

were recognized as the second-best to fourth-best ML models to predict horizontal deformations. 

The sensitivity analysis showed that ETR 9 had the worst performance for the simulation of the 

objective parameter. Regarding the obtained results, ETR 2, ETR 8, ETR 6, and ETR 5 were 

respectively ranked as the fifth-best to eighth-best ETR models so as to estimate the horizontal 

subgouge deformations. 

Moreover, the performed sensitivity analysis showed that the soil depth ratio (y/W) had the most 

significant influence to model the objective parameter (dh/W). However, the berm height ratio 

(h’/W), the attack angle (α), the gouge depth ratio (Ds/W), the ice dynamic factor (V2/g.W), and 

the shear strength parameter of the sand seabed (φ) were distinguished as the second-effective to 

the seventh-effective input parameters to model the horizontal displacements, respectively. 
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Figure 6-3. Results of key criteria computed for ETR 1 to ETR 9 to model the horizontal 

subgouge deformations (a) R (b) RMSE (c) AIC (d) CRM (e) WI 

 

Figure 6-4 displays the calculated key criteria for ETR 1 to ETR 9 to model the vertical subgouge 

deformations. The shading and the size of the rectangles do not signify the significance of the ML 

models in this figure. According to the simulation results, ETR 1 as a function of all input 

parameters was the best ETR model to approximate the vertical subgouge deformation, where the 

value of AIC, CRM, and WI for ETR 1 was equal to -41.783, -0.093, and 0.975. However, ETR 4 

demonstrated the worst performance to simulate the vertical displacements, with the R and AIC of 
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0.695 and -24.395. Based on the conducted sensitivity analysis, ETR 7, ETR 5, ETR 2, ETR 3, 

ETR 8, ETR 9, and ETR 6 were known as the second-best to eighth-best models to predict the 

target parameter. To estimate the vertical subgouge soil deformations in the sand, the vertical load 

factor (Lv/γs.W3) possessed the highest level of effectiveness, while the influence of sand shear 

strength (φ) was slightly insignificant. In terms of effectiveness, the attack angle (α), the soil depth 

ratio (y/W), the gouge depth ratio (Ds/W), the vertical load factor (Lv/γs.W3), ice velocity factor 

(V2/g.W), and the berm height ratio (h’/W) were respectively rated as the second-important to 

seventh-important input variables to model the vertical displacements. 
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Figure 6-4. Results of key criteria computed for ETR 1 to ETR 9 to model the vertical subgouge 

deformations (a) R (b) RMSE (c) AIC (d) CRM (e) WI 

 

6.1.3.2. Comparison with other ML algorithms 

The ETR 4 and ETR 1 models gave good predictions of the horizontal and vertical subgouge soil 

deformations in the sandy seabed, respectively. The performance of these superior ETR models 

was compared with DTR and RFR algorithms. In Figure 6-5, the comparison of ETR 4, DTR, and 

RFR models’ performance is presented. As shown, the ETR 4 models simulated the horizontal 

subgouge displacements with a better level of accuracy, correlation, and simplicity in comparison 

with DTR and RFR models. For instance, the AIC value for the ETR 4, DTR, and RFR algorithms 

was respectively calculated as -38.368, -20.720, and -37.368. 

 

Figure 6-5. Comparison of ETR 4, DTR, and RFR models performance (a) R (b) RMSE (c) AIC 

(d) CRM (e) WI 
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Figure 6-6 displays the compression between the performance of ETR 1, DTR, and RFR models 

to estimate the vertical subgouge deformations. The computed RMSE value for the ETR 1, DTR, 

and RFR models was surmised as 0.003, 0.006, and 0.005, respectively. As can be seen, the value 

of all indices (R, RMSE, AIC, CRM, and WI) showed that ETR 1 is a better model than DTR and 

RFR to simulate vertical deformations. 

 

Figure 6-6. Comparison of ETR 1, DTR, and RFR models performance (a) R (b) RMSE (c) AIC 

(d) CRM (e) WI 

 

6.1.3.3. Error analysis 

The error analysis of the ETR, DTR, and RFR models for simulation of the horizontal and vertical 

deformations was carried out. The results of the error analysis performed for the horizontal 

displacements estimated by the ETR 4, DTR, and RFR models are drawn in Figure 6-7. The 
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conducted error analysis demonstrated that approximately 83% of the horizontal deformations 

predicted by the DTR model had an error of greater than 20%, whereas this value for RFR and 

ETR 4 models equaled roughly 72% and 51%. Additionally, almost one-third of the ETR 4 results 

possessed an error of less than 10% but a tiny minority of the horizontal displacements predicted 

by the DTR model had an error of smaller than 10%. 

 

Figure 6-7. Results of the performed error analysis for the horizontal displacements estimated by 

(a) DTR (b) RFR (c) ETR 4 

 

Figure 6-8 presents the results of the performed error analysis for the vertical displacements 

estimated by DTR, RFR, and ETR 1. Almost 72% of the vertical deformations simulated by the 

DTR and RFR algorithms showed an error of more than 20% though this amount for the ETR 1 

model was 36%. 
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Figure 6-8. Results of the performed error analysis for the vertical displacements estimated by 

(a) DTR (b) RFR (c) ETR 1 

 

Therefore, the performed error analysis proved that the ETR algorithms had better performance in 

comparison with the DTR and RFR methods to simulate the subgouge soil displacements in the 

sandy seabed. 

 

6.1.3.4. Uncertainty analysis 

To appraise the performance of the ML models used in this study, an uncertainty analysis was 

carried out. To perform the uncertainty analysis, errors from these ML models (𝑒𝑗) were calculated 

as the difference between the simulated ice-induced deformation (𝑃𝑗) and the observed values 

(𝑂𝑗) as follows: 
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𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (6-11) 

The mean calculated errors (Mean) and the standard deviation (StDev) of errors were obtained by 

the following equations: 

Mean =
1

𝑛
∑ 𝑒𝑗

𝑛

𝑗=1
 

(6-12) 

StDev = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(6-13) 

The ML model had an underestimated performance if the sign of Mean was negative, while the 

positive Mean reprinted that the ML model overestimated the deformations. Using the “Wilson 

score method” and disregarding the continuity correction, a confidence interval (CI) was generated 

near the computed error by using the Mean and StDev values. A modified normal distribution 

interval as an asymmetric normal distribution, entitled the Wilson score interval, was employed to 

rectify the CI bounds. After that, a ±1.96Se created a 95%CI. It is worth noting that the width of 

uncertainty bound (WUB) was calculated as follows (Azimi and Shiri 2021c): 

WUB = ±
(Lower bound − upper bound)

2
 

(6-14) 

The results of uncertainty analysis for the horizontal and vertical deformations predicted by the 

DTR, RFR, and ETR algorithms are exhibited in Figure 6-9. Regarding the performed uncertainty 

analysis, the DTR, RFR, and ETR models indicated an overestimated performance in order to 

simulate the horizontal deformations, signifying that the Mean value for these ML models was 

respectively obtained at 0.011, 0.008, and 0.006. In addition, the ETR algorithm had the narrowest 

width of uncertainty bound to model the horizontal ice-induced displacements, with a WUB of 

0.007. Although the DTR and ETR models overestimated the vertical displacements, these 

deformations were underestimated by the RFR method, where the Mean value for DTR, ETR, and 
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RFR was equal to 0.0007, -0.00002, and 0.0004. To simulate the vertical subgouge deformations, 

the widest uncertainty bound belonged to the DTR model (WUB=0.006), whereas the narrowest 

one was for the ETR algorithm (WUB=0.001). 

 

Figure 6-9. Results of uncertainty analysis for the DTR, RFR, and ETR algorithms (a) Mean and 

StDev for horizontal deformations (b) Lower bound and Upper bound of 95% for horizontal 

deformations (c) Mean and StDev for vertical deformations (d) Lower bound and Upper bound 

of 95% for vertical deformations 

 

6.1.3.5. Comparison with test results 

ETR was identified as the premium ML model to simulate the subgouge soil deformations in the 

sand in the present study. Figure 6-10 compares the horizontal ice-induced soil deformations 

estimated by the ETR 4 and the test results. As shown, the maximum value of horizontal subgouge 
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deformations was predicted just under the ice keel, and the magnitude of this parameter was 

reduced at greater soil depth. ETR 4 managed to model the P-1, P-2, P-3, P-5, H-2, H-5, C-6, Y-

5, and Y-6 with a high level of correlation and precision. Even though several discrepancies were 

reported between the simulation results and the experimental values (P-1, C-1, C-2, C-4, C-5, H-

1, H-3, C-8, C-10, Y-1, Y-3, and Y-4), ETR 4 was able to simulate the objective function with its 

highest performance. 
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Figure 6-10. Comparison between the simulated horizontal deformations by ETR 4 with test 

results 
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The comparison between the simulated vertical displacements by ETR 1 with experimental results 

is illustrated in Figure 6-11. As can be seen, there were some fluctuations in the experimental 

measurements (P-1, P-2, P-3, and P-4); rather ETR 1 could model the vertical subgouge 

deformations with reasonable accuracy. The C-2, H-1, H-2, and H-3 tests were well simulated by 

ETR 1; however, several differences were observed between the ETR 1 results and C-1, C-3, C-4, 

and C-5 tests. The ETR 1 model using the linear (C-3, H-2, and H-3) and non-linear (C-2, C-4, H-

1, C-5) trends commonly predicted the vertical subgouge deformations. 

 

Figure 6-11. Comparison between the simulated vertical deformations by ETR 1 with test results 
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deformations in the sand, meaning that the horizontal load factor (Lh/γs.W3) was a removed 

variable for this model. ETR 4 could model the horizontal displacements with a good level of 

correlation, precision, and simplicity. Furthermore, ETR 1 was determined to be the best model to 

simulate the vertical deformations, and was fed with all inputs including y/W, Ds/W, φ, α, h’/W, 

Lh/γs.W3, Lv/γs.W3, and V2/g.W. The ETR 1 was able to estimate the objective parameter with the 

highest degree of correlation and accuracy along with the lowest level of complexity. 

 

6.1.4. Conclusion 

In this study, the extra tree regression (ETR) algorithm was applied to simulate the horizontal and 

vertical subgouge soil deformations in the sandy seabed. Nine ETR models, comprising ETR 1 to 

ETR 9, were developed to compute deformations from the parameters governing the iceberg-

seabed interaction process. A comprehensive dataset was constructed and it was divided into two 

major sub-samples comprising the training sub-sample (70% of the dataset) and the testing sub-

sample (the remaining 30% of the data). The superior ETR model and the governing input 

parameters were determined by performing a sensitivity analysis. Furthermore, the performance 

of the best ETR models was compared with the decision tree regression (DTR) and random forest 

regression (RFR) algorithms. The most important results obtained from the current study are 

summarized as follows: 

 The ETR 4 and ETR 1 models were identified as the superior models to simulate the 

horizontal and vertical subgouge soil deformations in the sand, respectively. ETR 4 

modeled the horizontal deformations using the y/W, Ds/W, φ, α, h’/W, Lv/γs.W3, and 

V2/g.W inputs, while the ETR 1 model was a function of y/W, Ds/W, φ, α, h’/W, 

Lh/γs.W3, Lv/γs.W3, and V2/g.W. 
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 The superior ETR models had the highest level of accuracy and correlation along with the 

lowest degree of complexity. 

 The soil depth ratio (y/W) and the berm height ratio (h’/W) governed the prediction of 

the horizontal deformations, whereas the horizontal load factor (Lh/γs.W3) and the attack 

angle (α) were identified as the most significant inputs to simulate the vertical 

deformations. 

 The ETR algorithm outperformed the DTR and RFR models for the estimation of both 

the horizontal and vertical displacements. 

 Almost one-third of the horizontal and vertical deformations simulated by the ETR model 

had an error of less than 10%. 

 Uncertainty analysis showed that the ETR model was biased towards overestimating both 

horizontal and vertical deformations. 

 The narrowest width of uncertainty bound belonged to the ETR algorithm. 

These results proved that the ETR algorithm was well suited to the simulation of the subgouge soil 

deformations in the sandy seabed. This investigation can pave the way to develop fast and cost-

effective alternatives to centrifuge tests or continuum FE modeling of the ice-seabed interaction 

problem. The ETR algorithm is considered especially useful in the early phases of engineering 

design projects, where a quick and precise evaluation is needed to plan the construction 

methodology, corresponding logistics, and the future scope of detailed schemes. 
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Section 2 

 

Iceberg-seabed interaction analysis in sand by a random forest algorithm 
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Abstract 

Iceberg-seabed interaction that threatens subsea pipelines and structures is a challenging and costly 

engineering design aspect of Arctic offshore infrastructures. In this study, the subgouge soil 

deformation in the sand along with the keel reaction forces was simulated using Random Forest 

(RF) as a strong machine learning (ML) model and compared with the Gradient Boosting Model 

(GBM), and Support Vector Regression (SVR) as other alternatives. Nine RF models were built 

based on the most influential parameters and the best model was identified by performing a 

sensitivity analysis. The study showed that the proposed RF model outperformed its counterparts 

and proved to be a cost-effective and reliable alternative to assess the iceberg-seabed interaction 

in the sand, particularly at the early stages of the projects, where a fast and accurate estimation is 

required for planning the construction methodologies, logistics, and the scope of detailed 

engineering. 

 

Keywords: Iceberg-seabed interaction, Sandy seabed, Random forest, Gradient boosting model  

Support vector regression,  
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Graphical abstract 
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6.1.5. Introduction 

Recently discovered crude oil (90 billion barrels) and natural gases (47.3 trillion cubic meters) in 

the Arctic regions have led to a growing interest in these regions, where the overwhelming majority 

of these resources are transferred through the subsea pipelines from offshore to onshore. The 

seabed may be gouged into the shallower waters by drifting icebergs, threatening the integrity of 

the subsea pipelines and other bottom-founded structures (Alba, 2015). Figure 6-12 illustrates the 

layout of the iceberg-seabed interaction process schematically. 

 

Figure 6-12. Schematic layout of the iceberg-seabed interaction problem 
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Papusha et al. (2013) described several subsea systems damaged by icebergs in the shallow Arctic 

waters on the bottom of Lake Erie, Great Slave Lake, and the Labrador Sea. Grand Banks Scour 

Catalogue (GBSC) GeoDatabase”, one of the complete investigations of the ice-gouging 

characteristics identified on the Grand Banks of Canada, reported that several icebergs drifted and 

gouged the ocean floor across the shallow water area of the Grand Banks, where scour marks 

observed in depths of up to 400 m (Campbell 2014). Moreover, Minerals Management Service 

(2002) recorded that 529 out of 836 gouges (roughly 63%) surveyed from 1995 to 1998 were 

observed in the shallower waters. 

For pipeline protection against the ice-gouging, the pipeline is buried below the maximum 

predicted ice gouge. However, the soil deformation is not limited to the soil in front of the iceberg 

keel. The soil shear resistance causes the soil displacement to extend much deeper than the iceberg 

tip and still threatens the pipeline which is called subgouge soil deformation (see Figure 1). The 

estimation of the additional burial depth below the iceberg tip is a challenging and costly design 

aspect that is usually conducted by a decoupled approach. The decoupled approach combines the 

accuracy of the continuum finite element analysis (FEA) of the free field ice-gouging event with 

the simplicity of the beam-spring models for the simulation of the pipeline. In this approach, first, 

a free-field ice-gouging analysis is conducted without the presence of the pipeline. Then, the 

resultant subgouge soil deformations are manually transferred to the beam-spring model to obtain 

the pipe response to soil movement. Therefore, free-field ice-gouging is a significant part of the 

decoupled approach in practical pipeline design and is usually supported by costly numerical and 

experimental studies. 

Artificial intelligence (AI) and machine learning (ML) models have been limitedly used for the 

analysis of iceberg-seabed interaction. Kioka et al. (2003, 2004) used a Neural Network (NN) 
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model for the simulation of the ice-gouging problem in the sand. The NN model was validated 

using a mechanical approach and the author concluded that the NN results had a strong correlation 

with this mechanical approach. Azimi and Shiri (2020a) introduced the dimensionless parameters 

affecting the iceberg-seabed interaction in the sand by using Buckingham’s theory for the first 

time. The authors proposed some linear regression (LR) models to estimate the maximum 

subgouge soil displacements. Azimi and Shiri (2020b) simulated the horizontal subgouge soil 

displacements in the sand through Gene Expression Programming (GEP). The gouge depth and 

the dilation angle were found as the most significant input variables to predict the objective 

function. The extreme learning machine (ELM) was utilized for modeling the iceberg-scoured 

parameters by Azimi and Shiri (2021a). The authors suggested a set of ELM-based formulas for 

estimating the subgouge deformations and reaction forces. The shear strength of the seabed soil 

and the gouge depth ratio was the most influential input to predict the reaction forces and the 

subgouge deformations, respectively. Multi-layer perceptron neural network (MLPNN) was 

applied to simulate the horizontal ice-intrusion displacements by Azimi and Shiri (2021b). The 

authors concluded that the soil depth and the bearing pressure had a remarkable impact on the 

estimation of the target parameter. Moreover, Azimi and Shiri (2021c) optimized the ELM model 

using the differential evolution (DE) algorithm to simulate the iceberg-seabed interaction 

mechanism in the sand. The study highlighted that the berm height ratio, gouge depth ratio, and 

vertical component of the load had a significant effect on the simulation of the subgouge soil 

parameters. 

Azimi et al. (2021) applied a non-tuned machine learning algorithm to model the sub-gauge soil 

displacements in clay seabed along with the reaction forces. The authors concluded that the 

horizontal load factor and the gouge depth ratio were recognized as the most influential input 
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parameters and a set of equations was provided to estimate the sub-gauge soil features. Azimi and 

Shiri (2021d) assessed the iceberg-seabed interaction process in clay mass through the ELM 

model. The soil depth was the most significant input factor governing the subgouge soil 

deformations. Azimi et al (2022a) utilized an evolutionary design of the generalized group method 

of data handling (GS-GMDH) to model the iceberg-seabed interaction mechanism. The 

comparison of the best GS-GMDH model with the artificial neural network (ANN) and the GMDH 

algorithm showed the better performance of the GS-GMDH model. Azimi et al (2022b) simulated 

the horizontal and vertical subgouge soil deformations in clay by using the Decision Tree 

Regression (DTR), Random Forest Regression (RFR), and Extra Tree Regression (ETR) models. 

The simulation results demonstrated that the ETR model possessed the highest degree of precision 

and correlation with the experimental values. Azimi et al (2022c) estimated the iceberg-seabed 

interaction characteristics in clay seabed through decision tree regression (DTR), random forest 

regression (RFR), and gradient boosting regression (GBR) algorithms. The authors stated that the 

ETR algorithm was able to predict the target parameters. 

The current study used Random Forest (RF) as a strong machine-learning model and compared 

the results with the Gradient Boosting Model (GBM), and Support Vector Regression (SVR) as 

other alternatives for a fast and cost-effective estimation of the subgouge soil deformations to be 

fed into the beam-spring models. This can be of significant importance at the fair stages of design 

projects, where a fast and fairly accurate estimation of burial depth is required for planning the 

construction methodologies, logistics, and the scope of detailed engineering.  

The dataset is of significant importance in the success of ML models. In this paper, the database 

for training and testing of the models was extracted from six series of well-recognized 

experimental studies in sand including Paulin (1991), Paulin (1992), C-CORE (1995), Hynes 
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(1996), C-CORE (1996), and Yang (2009). The last five decades have witnessed a huge growth in 

the costly field and experimental studies of the iceberg-seabed interaction process (Chari 1980; 

Prasad 1986; Machemehl 1986). For instance, several experimental ice-gouging tests in sand and 

clay seabed were performed by Paulin (1991). The author showed that the vertical reaction forces 

were more influential for experimental models with a smaller angle of attack, and the horizontal 

reaction force was the dominant factor for a greater attack angle. Additionally, Paulin (1992) 

implemented some laboratory tests for submerged and dry sand to quantify the reaction forces and 

deformations during the ice scouring event. The author concluded that the ice scouring mechanism 

in submerged and dry circumstances was almost identical; however, the loads and reaction forces 

for the submerged sand were smaller than in the dry seabed condition. At the Center for Cold 

Ocean Resources Engineering (C-CORE), some Pressure Ridge Ice Scour Experiment (PRISE) 

tests were done to the measurement of the subgouge displacements and keel reaction forces in both 

clay and sand seabed (C-CORE 1995; C-CORE 1996). The investigations proved that the 

horizontal component of the reaction forces grew by increasing the width of the scouring, whereas 

the horizontal reaction forces reduced with the steeper attack angle. A set of centrifuge tests in 

seabed sand was implemented by Hynes (1996). They observed a linear correlation between the 

scour load and scour depth. Several Pipeline Ice Risk Assessment and Mitigation (PIRAM) tests 

in the sand condition were conducted by Yang (2009). The effects of gouge depth, frontal berm 

height, and gouge rate were assessed in this investigation. The author asserted that the gouge 

geometry and attack angle had a remarkable effect on the reaction forces. 

Hashemi and Shiri (2022) simulated the iceberg-seabed interaction in clay by incorporating the 

strain rate and strain-softening effects. The authors conducted a parametric study to assess the 

impact of different model parameters on the seabed response to iceberg intrusion. This study 
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concluded that strain softening had a significant influence on a larger amount of plastic shear strain 

below and in front of the iceberg tip. Hashemi et al. (2022) modeled the impact of the layered 

seabed, e.g., soft over stiff clay, in the ice-gouging problem. The keel reaction force was reduced 

by growing the attack angle. 

Considering the high cost and challenges associated with the experimental studies and continuum 

FEA modeling, the Random Forest (RF) model proposed in this study can mitigate the expenses 

of future designs and even improve the planning of the research investigations. 

In this paper, first, the applied machine learning (ML) algorithms, the iceberg-seabed interaction 

process, and the used criteria to assess the ML models are discussed in the materials and methods 

section. Then the performance of the ML models is evaluated in the results and discussion section. 

Eventually, the best ML models along with the most important input parameters are introduced. 

Further details associated with the proposed method and the results compared with test data will 

be discussed in the coming sections. 

 

6.1.6. Materials and methods 

In this section, RF, GBM, and SVR are described and then the parameters governing the iceberg-

seabed interaction mechanism in the sand will be introduced. Regarding the input parameters, nine 

RF models were developed in this study. Ultimately, a set of criteria were also provided for the 

appraisal of the ML models. The flowchart of the current investigation is shown in Figure 6-13. 
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Figure 6-13. Flowchart of the current study 

 

6.1.7. Random forest (RF) 

Start

Construct the subgouge dataset

Split the dataset into training and testing sub-samples

Create the decision trees and then tune the RF parameters  

Is the quality of fit

acceptable?

No

Define the RF 1 to RF 9 models

Yes

Introduce the best RF models 

and influential inputs  

Compare with GBM, SVR and empirical models

End



 

494 
 

RF algorithm has been developed by Breiman (2001) to solve classification and regression 

problems. The RF algorithm, as an ensemble learning method, is the extension of the Classification 

and Regression Trees (CART) algorithm where the tree-based CART models have the overfitting 

problem and the RF algorithm overcomes this limitation (Breiman 2001). Figure 6-14 shows the 

diagram of the RF regression schematically. 

 

Figure 6-14. Diagram of the Random Forest (RF) regression 
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In the RF algorithm, several decision trees are created and decisions with the highest number of 

votes are chosen as the simulation results (Sahani and Ghosh 2021). In the random forest 

regression, the number of trees for a random vector is increased and the tree predictor, input 

parameters, and output parameters are considered numerical values. Regarding the random vector 

distribution, the training dataset is independently utilized. Therefore, the mean-squared 

generalization error for the tree predictor is calculated (Sahani and Ghosh 2021). The RF model 

reduces the average error of the trees utilized by utilizing the weighted correlation between the 

residuals and the applied randomization ought to be employed at a low level of correlation. In the 

current study, the parameters applied in the RF algorithm comprising the max_samples, bootstrap, 

max_depth, random_state, number of estimators, and verbose were tuned by a trial-and-error 

method as None, True 5000, 500, 1000, 1, respectively. 

 

6.1.8. Gradient boosting model (GBM) 

GBM creates an ensemble estimator, regarding the decision trees, to overcome the drawbacks of 

weak ML tools. In this model, a single decision tree may perform poorly; however, the ensemble 

algorithm, entitled gradient boosted trees, usually outperforms other decision-based models 

(Hastie et al. 2009). The GBM estimates the latent function “f”’ that maps the input parameters to 

the objective function in an additive expansion form (Li and Bai 2016). 

The regression tree is fitted within every single leave in each leave tree for an entire tree (Friedman 

2001). It is worth noting that the used parameters of the GBM algorithm, including the number of 

estimators, learning rate, random_state, loss function, max_depth, and verbose were adjusted 

using a trial and error approach at 1000, 0.1, 2000, Huber, 5, and 1, respectively. 
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6.1.9. Support vector regression (SVR) 

Support vector machine (SVM) is based on Vapnik-Chervonenkis (VC) theory, and this algorithm 

has been proposed by Vapnik (2004). To simulate the regression problems, SVR is applied in 

which the training data is mapped from the input variables (input space) into the objective 

parameter (feature space) through a function (Ϙ). In the feature space, a separating hyperplane with 

the highest margin is produced. In a regression problem, a nonlinear transformation from the input 

space to high-dimensional space is made by using the Ϙ function. Regardless of the transformation 

function (Ϙ), the kernel function can implement the dot product in the multidimensional feature 

space through the low-dimensional space input variables. In practical applications, several kernel 

functions comprising the linear, polynomial, and radial basis functions (RBF) are utilized in the 

SVR algorithm. Moreover, the 𝜀-insensitive loss function is employed as a cost function in this 

model. To simulate the subgouge soil characteristics in this study, the parameters of the SVM 

algorithm, such as the penalty parameter (C), the kernel coefficient (gamma), epsilon, verbose, 

and kernel were respectively tuned as 1000, 1.5, 0.001, 1, and RBF. The applied parameters of the 

SVM model in the current study were chosen based on a trial and error method. 

 

6.1.10. Modeling Process of Iceberg-seabed Interaction 

The ice-induced interaction parameters (η) in a sand mass including soil deformations (d/W) and 

reaction forces (F/γsW3) are a function of a set of parameters including the scour depth (Ds), the 

internal friction angle of sand (𝜑), the width of gouge (W), the attack angle (), the angle of the 

surcharged soil slope (ω), the height of the berm (h’), the horizontal load (Lh), the vertical load 

(Lv), the velocity of iceberg keel (V), and the specific weight of sand (𝛾𝑠) (Lach 2006, Azimi and 

Shiri 2020a): 
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𝜂 (𝑠𝑎𝑛𝑑) = 𝑓1(𝐷𝑠, 𝜑,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠) (6-15) 

Equation (6-15) can be written as a function of eight dimensionless groups as below (Azimi and 

Shiri 2020a): 
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It is worth noting that the maximum subgouge deformation in sand (𝑑(𝑠𝑎𝑛𝑑)) is formed just under 

the moving iceberg keel in the gouge centerline. However, at greater depth on the subgouge 

centerline, by incorporating the soil depth (y/W), the subgouge soil deformation in the sand 

(d(sand)/W) is written as follows: 

𝑑(𝑠𝑎𝑛𝑑)
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(6-17) 

Similarly, the ice-induced reaction force (F) is a function of the position of the iceberg along the 

scour axis (x) and 𝐷𝑠, 𝜑,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠 so equation (6-17) can be written as below: 
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(6-18) 

The Lh and Lv indicate the consequence of horizontal and vertical loads incorporating drag force 

from wind, drag force from current, buoyancy force, keel weight, friction force on the base of the 

keel, Coulomb’s passive friction force acting in front and on both sides of the keel, and driving 

force from the surrounding floe that all are among the input parameters to the problem. However, 

the Fh and Fv are the seabed reaction forces resultant from the iceberg collision with the seabed. 

 

6.1.11. The physical process of Iceberg-seabed interaction 

The past decades have seen the physical modeling application of the iceberg-seabed interaction 

processes under highly controlled circumstances in the laboratory environment. The ice-gouging 
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modeling in the laboratory has been carried out adopting two different methods, e.g., the Earth 

gravity simulation or 1g condition and centrifuge test. Simulation of the iceberg-seabed interaction 

process in the laboratory may deal with several challenges such as the expensive lab equipment, 

heavily regulated lab safety, time spent, scaling issues, etc. For instance, the time in-flight for 

centrifuge simulation excluding the days of preparation for Test #5 in Lach (1996) was 4.7 hours. 

Additionally, scaling the vertical stress distribution in the 1g condition is impossible. Hence, to 

overcome these challenges, the iceberg-seabed process in the sand is simulated through different 

machine learning (ML) algorithms in the current study. 

This means that a set of experimental investigations were used to simulate the ice-induced seabed 

parameters (d/W and F/γsW3) using ML technology. This means that the key measurements of six 

experimental datasets reported by Paulin (1991), Paulin (1992), C-CORE (1995), Hynes (1996), 

C-CORE (1996), and Yang (2009) were applied to validate the RF models. The values of the 

surcharged soil slope (ω) were not reported by the aforementioned research works. The value of 

the internal friction angle of sand (𝜑), the keel attack angle (), the gouge depth ratio (Ds/W), and 

the velocity ratio (V2/gW) in Paulin’s (1991) experimental model (P-1) were 18o, 15o, 0.093, and 

0.00054, respectively. In the P-1 model, the value of the berm height ratio (h’/W) was not reported. 

The range of dimensionless horizontal subgouge deformations (dh/w) for the Paulin’s (1992) 

dataset comprising P-2 to P-5 tests was from 0.002 to 1.356 and these deformations were measured 

at the dimensionless soil depth up to 0.837. The keel attack angle and the internal friction angle of 

sand in the P-2 to P-5 tests were reported as 15o and 35o, respectively. The value of the surcharged 

soil slope angle (ω) in the P-1 to P-4 tests was 39.1o, 30.5o, 29.2o, and 26.3o, respectively. The 

gouge depth ratio (Ds/W) in P-1 to P-4 were respectively obtained at 0.059, 0.091, 0.088, and 

0.093. The C-1 to C-10 tests were reported in C-CORE’s (1995) and C-CORE’s (1996) datasets. 
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The value of attack angle in C-1, C-4, C-5, C-7, C-8, C-9, and C-10 was 15o but this parameter in 

the C-2, C-3, and C-6 tests was measured as 30o. In the C-1, C-4, and C-5 tests, the value of the 

internal friction angle of sand was 29.022o, 34.542o, and 34.542o, whilst this parameter for C-2 and 

C-3 was similar, with the 𝜑 of 28.912o. The internal friction angle of sand seabed in C-6 to C-10 

were respectively reported at 41.056o, 43.540o, 33.880o, 41.332o, and 37.882o. The berm height 

ratio was not reported in the C-1 to C-10 tests. 

Moreover, the H-1 to H-5 tests have measured by Hynes (1996) in which the value of internal 

friction angle was respectively measured at 38.2o, 36.6o, 37o, 39.3o, and 38.4o. The attack angle in 

the H-2 test was 30o, whereas this parameter in H-1, H-3, H-4, and H-5 was observed to be 15o. 

The angle of a surcharged soil slope in the H-1 to H-4 tests was not reported and the frontal berm 

ratio (h’/W) in these tests was at 0.233, 0.207, 0.207, 0.240, and 0.240, respectively. The value of 

the iceberg velocity ratio (V2/g.W) in the H-1 to H-5 tests was constant at 0.015. The gouge depth 

ratio (Ds/W) in the H-1 to H-5 models were equal to 0.113, 0.065, 0.073, 0.080, and 0.143, 

respectively. 

The value of dimensionless horizontal subgouge deformations in Yang’s model (Y-1 to Y-7 tests) 

varied from zero to 0.026. Although the value of the keel attack angle in Y-1 to Y-6 models was 

30o, this parameter in Y-7 was measured as 15o. Additionally, the internal friction angle in Y-1 to 

Y-7 tests was at 44o, 32o, 34o, 32o, 29o, 37o, and 29o, respectively. Therefore, the introduced 

dimensionless groups in equations (6-17) and (6-18) were applied as the input parameters for the 

RF models to simulate the subgouge deformations and the reaction forces. The applied input 

combinations in this study are displayed in Figure 6-15. The number of experimental 

measurements in the training and testing modes to simulate the horizontal reaction forces 

(Fh/γs.W3) was 163 and 70, respectively. However, 130 and 55 experiments were respectively 
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utilized for training and testing to model the vertical reaction forces (Fv/γs.W3). Additionally, 110 

and 47 experimental cases were respectively used to train and test the ML model for the prediction 

of the horizontal sub-gauge soil deformation (dh/W). In addition, the ML model was fed with 50 

and 22 laboratory measurements to model the vertical subgouge soil deformations (dv/W) in the 

training and testing modes 

 

Figure 6-15. Applied input combinations in the current study 
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dimensionless groups of parameters governing the subgouge soil characteristics. RF 1 was a 
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dataset was divided into two main sub-samples including the training and testing sub-samples with 

four different ratios, e.g., (i) 50% for training against 50% for testing, (ii) 60% for training against 

40% for testing, (iii) 70% for training against 30% for testing, and (iv) 80% for training against 

20% for testing. However, the ML model demonstrated a good performance when 70% and 30% 

of data were used in the training and testing modes. Thus, the applied dataset was split into two 

sub-samples comprising training (70% of the entire data) and testing (30% of the remaining) 

dataset. 

 

6.1.12. Quality of fit 

A set of criteria, such as correlation coefficient (R), root mean square error (RMSE), mean absolute 

percentage error (MAPE), Willmott Index (WI), coefficient of residual mass (CRM), and Akaike 

Information Criteria (AIC) were utilized to evaluate the accuracy, correlation, and complexity of 

the ML models. The closeness of the R and WI indices to one signified that the model had a high 

correlation with the experimental values. On the other hand, the closeness of the RMSE, MAPE, 

and CRM values to zero meant that a particular model had the lowest level of error though the 

complexity of these models was not assessed using the defined criteria. To overcome this 

limitation, the Akaike Information Criteria (AIC) was used, meaning that the less complex ML 

model owned the lowest value of AIC; hence, the premium model had the lowest values of AIC 

index and error (RMSE, MAPE, and CRM), with the highest level of correlation (R and WI) (Ahmed 

et al. 2021). 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(6-19) 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1
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𝑊𝐼 = 1 −
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2𝑛
𝑖=1
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(6-22) 
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(6-23) 

𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(6-24) 

here, Oi, Pi, �̅�, �̅�, and n are the experimental measurements, the simulated values, the average 

experimental values, the average simulated values, and the number of experimental measurements, 

respectively. In addition, k is the number of input parameters in the ML models. 

 

6.1.13. Results and Discussion 

The performance of the defined RF models was assessed in the first step and then the best RF 

models along with the most effective input parameters were identified. Subsequently, the premium 

RF models were compared with the GBM, SVR, and empirical models, and several analyses, 

including error analysis and uncertainty analysis, were performed for these models. 

 

6.1.13.1. Evaluation of Random Forest (RF) Models 

Figure 6-15 demonstrates the results of the computed key statistical indices for the RF 1 to RF 9 

models for the simulation of the horizontal reaction forces. As shown, RF 1 to RF 8 had a similar 

performance in dealing with modeling the horizontal reaction forces. It is worth noting that RF 1 
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was a function of all input variables and the effect of each input was disregarded one at a time in 

RF 2 to RF 9. The value of the correlation coefficient and Willmott Index for the RF 1 model was 

surmised as 0.995 and 0.998, respectively. The impact of iceberg dynamic (V2/g.W) was removed 

for the RF 2 model. For the RF 2 model, the value of CRM and AIC were equal to 0.011 and 

360.321. The influence of the vertical load factor (Lv/γs.W3) for RF 3 was removed, with an Akaike 

Information Criteria of 360.274. The value of the coefficient of residual mass for the RF 4 model 

was 0.012. The h’/W was a removed input for the RF 5 model where the AIC criterion for this 

model equaled 360.531. The attack angle () was the removed input for RF 6, with a CRM of 

0.012. The shear strength parameter of the sand seabed (φ) was eliminated for RF 7 and the value 

of WI for RF 7 was 0.998. The gouge depth ratio (Ds/W) was excluded from the simulation of 

Fh/γs.W3 in the RF 8 model. For the RF 8 model, the values of RMSE and WI criteria were 

respectively reckoned at 88748.668 and 0.998. The position of the iceberg along the scour axis 

(x/W) was disregarded for the RF 9 model, with an AIC index of 409.091. 

The performed sensitivity analysis indicated that RF 4 was the premium model to simulate the 

horizontal reaction forces, whereas RF 9 had the worst performance. Moreover, RF 7, RF 1, RF 3, 

RF 2, RF 8, RF 6, and RF 5 were ranked as the second-best to the seventh-best model to predict 

the horizontal reaction forces. Regarding the simulation results, the position of the iceberg along 

the scour axis (x/W) had a significant effect on the estimation of the target function since the 

performance of the RF model worsened by removing this input parameter. Besides, the berm 

height ratio (h’/W), the attack angle (α), the gouge depth ratio (Ds/W), the vertical load factor 

(Lv/γs.W3), the shear strength parameter of the sand seabed (φ), the iceberg dynamic factor 

(V2/g.W), and the horizontal load factor (Lh/γs.W3) were recognized as the second-effective to the 

eighth-effective input parameters to model the horizontal reaction forces. Even though the 
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sensitivity analysis demonstrated that RF 4 was the premium model to simulate the horizontal 

reaction forces in the current study, other combinations of input parameters, e.g., model 1 a 

function of all inputs, were introduced as the superior model to simulate the subgouge 

characteristics (Azimi et al. 2022a; Azimi et al. 2022b; Azimi et al. 2022c). Hence, conducting the 

sensitivity analysis does not always result in introducing model 1 as the best model to estimate the 

target parameter since a particular ML algorithm may show that a specific input parameter has a 

remarkable influence but other inputs lack this significance. 

 

Figure 6-16. Key statistical indices for horizontal reaction forces estimated by RF models 

 

The calculated statistical indices for vertical reaction forces estimated by RF models are compared 
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random forest model, with a correlation coefficient of 0.980. Additionally, RF 1, RF 2, and RF 7 

were ranked in the second to fourth places and the value of AIC for them was respectively 

approximated to be 103.708, 101.736, and 101.765. For the fifth-best model (RF 8), the value of 

RMSE and WI criteria was equal to 39.466 and 0.988, respectively. RF 6 and RF 5, and RF 4 with 

the AIC index of 101.803, 101.914, and 102.759 resulting in the sixth-best to eight-best RF model. 

Amongst the RF models, RF 9 was known as the worst model for the simulation of the vertical 

reaction forces where the value of the Willmott Index was equal to 0.960. The position of the 

iceberg along the scour axis was also found to as the most influential input factor to model the 

vertical reaction forces. The horizontal load factor, berm height ratio, attack angle, gouge depth 

ratio, shear strength parameter of the sandy seabed, iceberg dynamic factor, and vertical load factor 

were sorted as the second-important to the eighth-important input variables. 

 

Figure 6-17. Key statistical indices for vertical reaction forces estimated by RF models 
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In Figure 6-18, the comparison between the performances of RF models to predict horizontal 

deformations is drawn. RF 2 had the lowest level of complexity (AIC=-37.708) along with 

appropriate precision and correlation (RMSE= 0.079 and R= 0.978). After the RF 2 model, RF 3, 

RF 8, and RF 7 were preferred as the second-superior to fourth-superior RF models. The value of 

CRM for the fifth-best RF model (RF 4) was computed as 0.219, whilst this index for the sixth-

best model (RF 6) equaled 0.222. For RF 5 and RF 1 as the seventh and eighth-premium random 

forest models, the value of Akaike Information Criteria was respectively calculated at -37.303 and 

-35.695. RF 9 exhibited the worst performance to simulate the horizontal deformations among all 

RF models. The soil depth ratio (y/W) was the most influential input factor in predicting the target 

function, whereas the berm height ratio, the attack angle, the horizontal load factor, the shear 

strength parameter of the sandy seabed, the gouge depth ratio, and the vertical load factor were 

placed at the second to seventh-significant input parameters. The iceberg dynamic parameter 

(V2/g.W) also had an insignificant effect to model the horizontal subgouge displacements. 
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Figure 6-18. Key statistical indices for horizontal deformation estimated by RF models 
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(RMSE=0.016) along with the highest level of complexity (AIC=-25.452). The berm height ratio 

(h’/W) possessed the highest level of effectiveness for estimation of the vertical deformations, 

rather the influence of sand shear strength (φ) was quite insignificant. Furthermore, the soil depth 

ratio (y/W), the vertical load factor (Lv/γs.W3), and the horizontal load factor (Lh/γs.W3) were 

identified as the second to fourth-important input factors. The iceberg velocity factor (V2/g.W), the 

attack angle (α), and the gouge depth ratio (Ds/W) were ranked at six to eight places in the 

estimation of the target parameter by the RF models. 

 

Figure 6-19. Key statistical indices for vertical deformation estimated by RF models 
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The performed sensitivity analysis for the RF models indicated that the RF 4, RF 3, RF 2, and RF 

7 models well simulated the ice-seabed interaction characteristics, with a good level of accuracy 

and correlation with experimental measurements. 

 

6.1.13.2. Comparison with GBM, SVR, and empirical models 

The performance of the superior RF models (RF 4, RF 3, RF 2, and RF 7) was compared with 

GBM, SVR, and empirical (Emp) models. It is worth noting that some empirical models were 

suggested by Woodworth-Lynes et al. (1996) to compute the ice-induced soil displacements 

(equations 6-25 and 6-26), and Barker and Timco (2002) to estimate the subgouge reaction forces 

as follows (equation 6-27): 

𝑑ℎ = 0.6(𝑊.𝐷𝑠). 𝑒𝑥𝑝 (−
2

3
.
𝑦

𝐷𝑠
) 

(6-25) 

𝑑𝑣 = 𝐷𝑠. 𝑒𝑥𝑝 (−
1

3
.
𝑦

𝐷𝑠
) 

(6-26) 

𝐹 = 8.5𝑉 + 46.3𝐷𝑠 + 28.5𝑊 − 7.6 (6-27) 

Figure 6-20 displays the key criteria computed for RF 4, GBM, SVR, and empirical (Barker and 

Timco 2002) models to simulate horizontal reaction forces. The value of the correlation coefficient 

for GBM, SVR, and Emp was equal to 0.973, 0.887, and 0.281, with an AIC index of 389.663, 

410.046, and 1714.365, respectively. 
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Figure 6-20. Key indices computed for RF 4, GBM, SVR, and empirical models to simulate 

horizontal reaction forces (a) correlation coefficient (b) RMSE (c) AIC (d) CRM (e) WI 
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The conducted error analysis for the RF 4, GBM, SVR, and Emp models is demonstrated in Figure 

6-21. For instance, half of the simulated reaction forces predicted by RF 4 had an error of less than 

10%, whereas this figure for GBM, SVR, and Emp models were 14%, 3%, and zero, respectively. 

Thus, to simulate the horizontal reaction forces, RF 4 outperformed the GBM, SVR, and Emp 

models. 

 

Figure 6-21. Result of MAPE index for (a) RF 4, (b) SVR, (c) GBM, and (d) empirical models to 

estimate the horizontal reaction forces 
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Figure 6-22 illustrates the comparison between the RF 3, GBM, and SVR, algorithms to estimate 

the vertical reaction forces. Similarly, RF 3 had a good performance at dealing with the simulation 

of the objective function, with a high level of correlation, low level of inaccuracy, and complexity. 

For GBM and SVR models, the value of WI criteria was computed as 0.957 and 0.954, whilst this 

index for RF 3 was at 0.988. 

 

Figure 6-22. Key indices computed for RF 3, GBM, SVR, and empirical models to simulate 

vertical reaction forces (a) correlation coefficient (b) RMSE (c) AIC (d) CRM (e) WI 
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In Figure 6-23, the results of error analysis for RF 3, GBM, and SVR algorithms for modeling the 

vertical reaction forces are presented. The vast majority of the predicted vertical reaction forces 

by RF 3 (94%) possessed an error of less than 10%; however, this value for GBM and SVR models 

was 93%. 
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Figure 6-23. Result of MAPE index for (a) RF 3, (b) SVR, (c) GBM, and (d) empirical models to 

estimate the vertical reaction forces 

 

The performance of the RF 2, GBM, SVR, and empirical models for simulation of the horizontal 

deformations are compared in Figure 6-24. The RMSE Index of the GBM, SVR, and Emp models 
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Figure 6-24. Key indices computed for RF 2, GBM, SVR, and empirical models to simulate the 

horizontal deformations (a) correlation coefficient (b) RMSE (c) AIC (d) CRM (e) WI 
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Figure 6-25. Result of MAPE index for (a) RF 2, (b) SVR, (c) GBM, and (d) empirical models to 

estimate the horizontal deformations 

 

Figure 6-26 demonstrates the calculated indices for the simulated vertical deformation by RF 7, 
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0.153, respectively. The comparison showed that the empirical model (Emp) gave the worst 

estimation since its RMSE value was the highest (4.304) and its correlation was close to zero 

(R=0.047). 
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Figure 6-26. Key indices computed for RF 7, GBM, SVR, and empirical models to simulate the 

horizontal deformations (a) correlation coefficient (b) RMSE (c) AIC (d) CRM (e) WI 

 

The error analysis for the vertical deformation predicted by the RF 7, GBM, SVR, and Emp models 

is presented in Figure 6-27. Though just about a quarter of the vertical deformations modeled by 

RF 7 possessed an error of between 10% and 20%, this value for the SVR model was obtained as 

about 27%. Almost all vertical deformation simulated by the empirical model had an error of 

greater than 20% and this amount for GBM was nearly 68%. As compared with the other models, 

the RF 7 model provided better performance in terms of accuracy, correlation, and complexity. 
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Figure 6-27. Result of MAPE index for (a) RF 7, (b) SVR, (c) GBM, and (d) empirical models to 

estimate the vertical deformations 

 

To determine the performance of the RF, SVR, GBM, and empirical models, uncertainty analysis 

(UA) was conducted. To perform this UA, the errors obtained from each model (𝑒𝑗) were 

calculated as the difference between the predicted ice-scoured parameters (𝑃𝑗) and the 

experimental values (𝑂𝑗) as: 

𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (6-28) 

The averaged computed errors (�̅�) and the standard deviation (𝑆𝑒) of errors were obtained using 

the equations below (Azimi and Shiri 2021a): 

�̅� = ∑ 𝑒𝑗
𝑛

𝑗=1
 

(6-29) 

𝑆𝑒 = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(6-30) 

A positive averaged estimated error (�̅�) means that the models overestimated the subgouge sand 

parameters, whilst a negative estimated error means that the models underestimated the 

experimental results. In the next step, regarding the “Wilson score approach” without the 

continuity correction, a confidence interval was built around the estimated error by using the 𝑒 ̅ 

and 𝑆𝑒 values (Azimi and Shiri 2021a). It is worthwhile noting that the Wilson score interval is an 

improvement over the normal distribution interval where an asymmetric normal distribution is 

utilized to rectify the confidence interval bounds and then a ±1.96Se brought about a 95% 

confidence interval (95%CI). In Figure 6-28, the normal distribution graphs for the performed UA 

of the horizontal reaction forces predicted by RF 4, GBM, SVR, and Emp models are presented. 



 

519 
 

According to the conducted UA, the RF 4, SVR, and Emp models showed an overestimated 

performance, although the GBM model underestimated the target parameter. The 95%CI for the 

RF 4, SVR, GBM, and Emp models was obtained as (-15432 and 26778), (-89603 and 114840), (-

98837 and 3223), and (4452548 and 7368490), respectively. 

 

Figure 6-28. Normal distribution graphs for the performed uncertainty analysis of the horizontal 

reaction forces predicted by (a) RF 4, (b) GBM, (c) SVR, and (d) empirical models 

 

Figure 6-29 depicts the normal distribution graphs for the UA of the vertical reaction forces 

estimated by RF 3, GBM, and SVR. The performed UA showed that the RF 3, GBM, and SVR 

models underestimated the vertical reaction forces, with average computed errors (�̅�) of -12.10, -

15.91, and -7.1, respectively. The computed 95%CI for RF 3, GBM, and SVR were equal to (-

22.28 and -1.93), (-35.65 and 3.84), and (-27.3 and 13.2). 
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Figure 6-29. Normal distribution graphs for the performed uncertainty analysis of the vertical 

reaction forces predicted by (a) RF 3, (b) GBM, and (c) SVR 

 

The normal distribution graphs for the UA of the horizontal deformations simulated by RF 2, 

GBM, SVR, and Emp models are shown in Figure 6-30. The RF 2 model had an overestimated 

error, with a 95%CI of (-0.003, 0.042). The SVR and GBM models similarly overestimated the 

target parameter; however, the empirical model underestimated the horizontal subgouge 

displacements. The value of 95%CI for the SVR, GBM, and Emp models was respectively 

approximated at (-0.017 and 0.071), (0.0001 and 0.038), and (-0.159 and -0.031). 
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Figure 6-30. Normal distribution graphs for the performed uncertainty analysis of the horizontal 

deformations predicted by (a) RF 2, (b) GBM, (c) SVR, and (d) empirical models 

 

Figure 6-31 displays the normal distribution graphs for the UA of the vertical deformations 

estimated by RF 7, GBM, SVR, and Emp models. The ML-based models (RF 7, GBM, and SVR) 

overestimated the vertical deformations, whilst the empirical model had an underestimated 

performance. The 95%CI for RF 7 was (-0.002 and 0.010) and this value for GBM, SVR, and Emp 

models equaled (-0.003 and 0.011), (-0.003 and 0.012), and (-1.176 and 0.749). 
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Figure 6-31. Normal distribution graphs for the performed uncertainty analysis of the vertical 

deformations predicted by (a) RF 7, (b) GBM, (c) SVR, and (d) empirical models 

 

Therefore, the RF model overestimated the ice-induced sand displacements, while the vertical 

reaction forces and horizontal reaction forces were simulated by an underestimated and 

overestimated performance by the RF model, respectively. 

The performance of the superior RF models was compared with other ML models (GBM & SVR) 

and empirical approaches to exemplify how accurate and flexible are the RF models. The empirical 

models that have been proposed based on a specific dataset showed an appropriate performance in 

a limited range of variables. In contrast, the RF models were able to estimate the subgouge soil 

features in a wide domain of datasets (six applied datasets), with the lowest degree of inaccuracy 

and complexity along with the highest level of correlation with the experimental values. 
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SVR Emp

(a) (b)

(c) (d)



 

523 
 

Furthermore, the RF algorithm was a meta-estimator that fitted several classifying decision trees 

on different sub-samples of the dataset and applied averaging to enhance the predictive precision 

and handled the over-fitting issue. The size of the sub-sample was also regulated with the 

max_samples hyperparameter when the bootstrap parameter was set as True; otherwise, the entire 

dataset was going to be utilized to construct each tree. The GBM and SVR models lacked these 

features. Therefore, the RF algorithm was found as the best method to simulate the subgouge soil 

characteristics in the current study. 

 

6.1.13.3. Comparison of RF predictions with test results 

RF was the premium model to simulate the ice-induced characteristics in the current investigation. 

Figure 6-32 compares the modeled horizontal reaction forces by RF 4 with experimental 

measurements. As shown, RF 4 had an acceptable performance to estimate the horizontal reaction 

forces, with a high level of accuracy and correlation along with a low level of complexity. The 

minimum amount of the horizontal reaction forces occurred just at the beginning of the iceberg 

position and this parameter increased along the scour axis. Although several oscillatory behaviors 

were observed in the applied experimental values (C-2, C-4, H-1, Y-2, and Y-3), the RF 4 model 

attempted to well predict the horizontal reaction forces. The RF 4 model could simulate the 

horizontal reaction forces with a non-linear trend, and this model showed an overestimated 

performance in some cases (C-2, H-1, and H-2) but the C-4 and Y-3 tests were modeled by using 

an underestimated performance. 



 

524 
 

 

Figure 6-32. Comparison between the simulated horizontal reaction forces by RF 4 with 

experimental values 
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The predicted vertical reaction forces by RF 3 were compared with the used experimental values 

in Figure 6-32. The magnitude of the vertical reaction forces was near zero at the beginning of the 

scouring axis and then, after some oscillations, the vertical reaction forces reached their highest 

amount along the ice-gouging axis. However, the RF 3 model could simulate the target parameter 

using a nonlinear trend with acceptable accuracy. Even though the RF 3 model overestimated the 

H-1, H-5, and Y-3 tests, this ML model was able to well simulate the H-2, H-3, H-4, and Y-2 tests. 
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Figure 6-33. Comparison between the simulated vertical reaction forces by RF 3 with 

experimental values 

 

In Figure 6-34, the simulated horizontal subgouge deformations by RF 2 are compared with the 

experimental values. The maximum horizontal subgouge displacements took place beneath the 

iceberg keel and the enlargement of this parameter decreased with increasing the soil depth. 

Though some discrepancies between the experimental values and simulation results were observed 

(C-2, C-3, C-4, C-5, H-1, C-10, Y-1, Y-4, and Y-5), RF 2 managed to model the horizontal 

deformation with its highest performance. The RF 2 model applied both linear (H-1, H-4, C-7) and 

non-linear (P-1 to P-5) behavior to estimate the horizontal subgouge deformations. Although there 

were several discrepancies between the simulated values and experimental measurements (C-2 to 

C-4, C-10, Y-1, Y-4, and Y-5), the P-1 to P-5, C-1, H-3, H-4, C-6, and C-9 tests were simulated 

with a high level of correlation. 
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Figure 6-34. Comparison between the simulated horizontal deformations by RF 2 with 

experimental values 
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Figure 6-35 shows the comparison between the simulated vertical deformations by RF 7 with 

experimental measurements. The RF 7 model estimated the objective function by using y/W, 

Ds/W, α, h’/W, Lh/γs.W3, Lv/γs.W3, and V2/g.W. There were several fluctuations in experimental 

values (P-2 to P-4); however, the RF 7 model was able to simulate the vertical subgouge 

displacements with both linear (H-1 to H-4) and nonlinear patterns (C-1 and C-6). 

 

Figure 6-35. Comparison between the simulated vertical deformations by RF 7 with 

experimental values 
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The RF model as an ensemble ML model had a reasonable performance to predict the ice-scoured 

sand parameters comprising the reaction forces and sand displacements in the current study. The 

RF indicated a low level of complexity and a high level of precision along with a high level of 

correlation in comparison with the GBM, SVR, and empirical models. 

 

6.1.14. Conclusion 

In this study, the subgouge reaction forces and sand displacements were simulated by the RF 

model. Using the parameters affecting the iceberg-seabed interaction mechanism, nine RF models 

were built. Subsequently, 70% of the constructed dataset was used for training the RF model, 

whereas 30% of the remaining were employed for testing these models. By conducting a sensitivity 

analysis, the superior RF models and the most effective input variables were observed. 

Furthermore, the results of the RF, GBM, and SVR models, as well as empirical methods were 

compared. The most important outcomes of the current investigation are summarized as follows: 

 RF 4, RF 3, RF 2, and RF 7 were known as superior models for the simulation of the 

horizontal reaction forces, vertical reaction forces, horizontal deformations, and vertical 

deformations, respectively. 

 The best RF models demonstrated a good capability to predict the iceberg-gouging 

parameters. For instance, the value of correlation coefficient (R), Willmott Index (WI), 

and coefficient of residual mass (CRM) for RF 4 were estimated to be 0.995, 0.998, and 

0.012, respectively. 

 Regarding the sensitivity analysis, the position of the iceberg along the scour axis and the 

berm height ratio were regarded as the most influential inputs to model the reaction 
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forces; however, the soil depth ratio and the berm height ratio had a significant effect on 

the estimation of the subgouge displacements. 

 The best RF models, with the highest level of precision, correlation, and lowest level of 

complexity, outperformed the GBM, SVR, and empirical models. 

 RF 4, RF 2, and RF 7 overestimated the horizontal reaction forces, horizontal 

deformations, and vertical deformations, whereas the RF 3 model showed an 

underestimated performance to simulate the vertical reaction forces. 

This research was the first step toward assessing the ability of the RF as an ensemble ML algorithm 

to improve our understanding of the iceberg-seabed interaction mechanism. The RF model 

demonstrated an appropriate performance in dealing with the simulation of the ice-gouging 

parameters. The present results may pave the way to develop some fast and cost-effective 

approaches for modeling the iceberg-seabed interaction problem, particularly at the early stages of 

design projects; whereas a fast and fairly accurate assessment is required to plan the construction 

methodology, corresponding logistics, and the future scope of detailed engineering. In addition, 

the results can benefit planning future numerical and experimental studies. 
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Abstract 

The upcoming years are likely to witness a considerable rise in oil and gas exploitation in the 

Arctic regions, where the vast majority of these hydrocarbons can be transferred through the subsea 

pipelines from offshore to onshore. However, the operational integrity of the subsea pipeline may 

be at risk of collision with traveling icebergs, which gouge the seabed in the Arctic shallow waters. 

Even though these sea bottom-founded structures are buried at a secure depth below the seafloor, 

the pipeline is still threatened by the ice scouring event extended much deeper than the ice tip due 

to the shear resistance of the seabed soil. Modeling the subgouge soil characteristics is a 

challenging problem that requires costly experimental and long-running finite element (FE) 

simulations. To overcome these challenges, in this paper, the reaction forces and subgouge soil 

deformations in clay seabed were modeled using the advanced extra tree regression (ETR) 

algorithm, as a quick and cost-effective alternative in the early design phases of pipeline 

engineering projects. Eight ETR models, ETR-1 to ETR-8, were developed by using the input 

parameters governing the iceberg-seabed interaction problem.  

The collected data were randomly split into 70% for training the machine learning (ML) models 

and 30% for validation purposes. The most accurate ETR models and the most significant input 

parameters were identified by performing a sensitivity analysis. The comparison of the most 

accurate ETR models and decision tree regression (DTR), random forest regression (RFR), and 

gradient boosting regression (GBR) algorithms proved that the ETR models had better 

performance to simulate the ice-induced soil features. 

 

Keywords: Ice-seabed interaction process, Clay seabed, Extra tree regression (ETR), Decision 

tree regression (DTR), Random forest regression (RFR), Gradient boosting regression (GBR)
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6.1.15. Introduction 

Recent developments of oil and gases in Arctic areas have led to scientific interest in iceberg-

seabed interaction processes where the moving icebergs can scour the seafloor and may collide 

with the subsea pipelines conveying these hydrocarbons exploited from offshore to onshore (Azimi 

and Shiri 2021a). The layout of the ice-seabed interaction process is schematically drawn in Figure 

6-36. 

The gouge depth (Ds) is specified as the scour incision deepness and the submarine pipeline is 

replaced in both horizontal (dh) and vertical (dv) directions during the ice-gouging occurrence. 

The Lh and Lv indicate the consequence of horizontal and vertical loads incorporating drag force 

from wind, drag force from current, buoyancy force, keel weight, friction force on the base of the 

keel, Coulomb’s passive friction force acting in front and on both sides of the keel, and driving 

force from the surrounding floe that are all among the input parameters to the problem (Azimi and 

Shiri 2021a). 

The subsea pipelines and even other sea bottom-funded infrastructures, such as wellheads or 

communication cables, are commonly backfilled below the maximum estimated ice-gouging 

depth. 
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Figure 6-36. Layout of the ice-seabed interaction process schematically (Azimi et al 2021a) 

 

As shown in Figure 6-36, the soil in front of the ice keel is displaced and the subgouge soil is also 

deformed by an exponential distribution at greater soil depth (ISO 19906: 2019 E). However, the 

structural integrity of the buried pipeline may be threatened by the traveling-icebergs, so the 

estimation of the required burial depth and subgouge soil characteristics play a crucial role to 

guarantee the pipeline operations safety involving costly centrifuge tests and long-running finite 

element (FE) analyses that are commonly conducted by a decoupled approach.  

The decoupled approach combines the accuracy of the continuum FE analysis of the free field ice-

gouging problem with the simplicity of the beam-spring models for pipeline simulation. In this 
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Iceberg movement

Trench
Pipe

Sea floor

Ds= Zone 1 ~ gouge depth

Zone 2: Large deformation zone

Zone 3: Small deformation zone Subgouge soil deformation profile

Attack angle



 

542 
 

of the decoupled approach in practical pipeline design and is usually supported by high-cost 

centrifuge and FE modeling. 

The two past decades have witnessed the rapid development of machine learning (ML) algorithms 

in different fields, particularly the iceberg-seabed interaction process. For instance, a simple neural 

network (NN) model was applied for the simulation of the ice-scouring problem by Kioka et al. 

(2003, 2004). In the developed NN architecture, five neurons in the hidden layer were used and 

the ice drift velocity, sand property, sea-bottom gradient, and attack angle were put in the input 

layer. They verified the NN results with a mechanical approach and asserted that this methodology 

could predict the ice-seabed interaction parameters with an acceptable correlation. Barrette et al. 

(2015) discussed several standards addressing the subsea pipeline protection against the ice-

scouring problem. The authors stated that the estimation of the required gouge depth, clearance 

underneath the required gouge depth, and the subsea infrastructure response were key phases to 

design the pipeline. Zvyagin and Heinonen (2017) presented a stochastic method to determine the 

parameters affecting the keel depths. The authors analyzed the ice-intrusion depths ranging from 

6.5 m to 10 m and discussed both lognormality and an exponential distribution of gouge depth. 

The study concluded that the exponential distribution resulted in wide confidence intervals. Azimi 

and Shiri (2020) introduced the dimensionless groups of parameters affecting the iceberg-seabed 

interaction mechanism in both clay and sandy seabed. The authors estimated the maximum 

horizontal subgouge soil displacements regarding the provided dimensionless variables by using 

the linear regression (LR) models. Azimi et al. (2021a) utilized a non-tuned ML model to 

approximate the reaction forces and the ice-induced soil deformations in clay seabed. In that study, 

the optimized number of neurons in the hidden layer and the best activation function were obtained 

as 20 and the sigmoid function, respectively. Azimi et al. (2021b) also simulated the horizontal 
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and vertical ice-scoured soil displacements in clay seabed utilizing an NN-based model entitled 

the generalized structure of group method of data handling (GS-GMDH). A set of GS-GMDH-

based equations were proposed in order to calculate the horizontal and vertical deformations by 

the authors. 

To study the ice keel-seabed interaction precisely, some centrifuge tests were done at the Center 

for Cold Ocean Resources Engineering (C-CORE). In these investigations, the reaction forces and 

the subgouge soil displacements in clay and sand seabed were measured. It was concluded that the 

value of the scouring force was enhanced, while the magnitude of other parameters such as the soil 

shear strength, scour width, and scour depth increased; however, the scouring force decreased as 

the attack angle grew (C-CORE 1995 & 1996). Lach (1996) conducted a centrifuge work to study 

the iceberg-seabed interaction mechanism. This author implemented nine centrifuge tests in 

different geometric and physical circumstances for clay seabed. It was highlighted that the 

scouring force could be estimated using ice-induced displacement, keel geometry, and undrained 

shear strength. The ice-induced soil displacements in clay seabed were studied by Schoonbeek et 

al. (2006). The authors evaluated the influence of keel velocity, gouge depth, and undrained shear 

strength of clay seabed and reported that the plastic deformations of clay seabed occurred beneath 

the traveling keel bottom. Been et al. (2008) utilized an idealized sub-scour model in an 

experimental investigation disregarding the presence of a pipe, stratified seabed, backfill 

characteristics, and trench geometry to measure the reaction forces and subgouge soil deformations 

in clay seabed. The authors demonstrated that there was a strong correlation between the scour 

depth and the clay properties. 

In the current study, the extra tree regression (ETR) algorithm, as a quick and cost-effective 

alternative for modeling the ice-induced soil features, was applied to be fed into the beam-spring 
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models. Furthermore, the robustness of ETR was compared with decision tree regression (DTR), 

random forest regression (RFR), and gradient boosting regression (GBR) models. The results 

obtained may be applied at the primary phases of pipeline design projects where a rapid and 

accurate approximation of subgouge soil behavior is required for planning the construction 

methodologies, logistics, and correct engineering perspective. In this study, a dataset comprising 

C-CORE (1995, 1996), Lach (1996), Schoonbeek et al. (2006), and Been et al. (2008) experimental 

measurements was built. 

Regarding the high expenses and difficulties related to the experimental and FE studies, the ETR 

model used in the current work may deduct the expenditures of future projects and progress the 

planning of the research investigations. More details about the applied algorithm and the obtained 

results are presented in the upcoming parts. 

 

6.1.16. Methodology 

6.1.16.1. Decision Tree Regression (DTR) 

A tree data structure comprising a set of nodes and branches wherein every single node is 

considered as a decision tree (DT). The DT can be applied to solve both classification and 

regression problems. The DT consists of several sections, including a root node, some leaf nodes, 

internal nodes, and branches. The uppermost node in the tree is defined as the root node and the 

terminal nodes (leaf nodes) end with the labels of classes, whereas the non-leaf nodes are regarded 

as the internal nodes. These nodes connect each other by using the branches (Pekel 2020). In the 

current investigation, the mean squared error (MSE) is applied to control the fitness function in the 

DT algorithm. 
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In the current study, the hyperparameters of the DTR algorithms were selected based on a trial and 

error procedure, meaning that the value of max_depth, max_leaf_nodes, and 

min_weight_fraction_leaf was initially set as 2, 4, and 0.1, respectively, and the performance of 

the DTR model was evaluated. The value of these hyperparameters increased in each step until the 

DTR’s performance reached a satisfactory level. The DTR algorithm simulated the ice-seabed 

interaction features with its highest degree of accuracy and correlation along with its lowest level 

of complexity when the value of hyperparameters including the max_depth, max_features, 

max_leaf_nodes, min_samples_leaf, min_weight_fraction_leaf, and splitter was respectively 

adjusted as 8, 'auto', 12, 1, 0.01, and 'random'. 

 

6.1.16.2. Random Forest Regression (RFR) 

The random forest (RF) algorithm has been developed by Breiman (2001) to solve classification 

and regression problems. The RF algorithm, as an ensemble learning method, is the extension of 

the Classification and Regression Trees (CART) algorithm. In contrast to the tree-based CART 

models, RF has a great capability to deal with a high-dimensional, multi-source dataset while not 

being over-fitted to the data (Breiman 2001). More specifically, several decision trees are created 

in the RF model, and decisions with the highest number of votes are chosen as the simulation 

results (Sahani and Ghosh 2021). The RFR model reduces the average error of the trees utilized 

through the weighted correlation between the residuals and the applied randomization. 

Similar to the DTR algorithm, the RFR’s hyperparameters were also chosen using a trial-and-error 

approach. This means that the initial value of max_depth, random_state, and the number of 

estimators was respectively regulated at 500, 50, and 10. The RFR algorithm showed its best 
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performance as the max_depth, random_state, number of estimators, and verbose values were 

tuned at 8000, 500, 100, and 1, respectively.  

 

6.1.16.3. Extra Tree Regression (ETR) 

ETR was initially driven from the RF algorithm by Geurts et al. (2006). The RF algorithm utilizes 

the bootstrapping, generation of the decision trees, and bagging, division of the decision tree 

leaves, to solve a regression problem. The ETR commonly generates a set of unexpected regression 

trees. By choosing the best subset, the decision-making procedure is implemented. The ETR and 

RF algorithms have two main differences: (1) In the ETR model, the leaves are split using the 

random selection from the cutting points (2) The ETR algorithm utilizes the entire training dataset 

to generate the trees to minimize the value of bias. The ETR algorithm (i) applies the number of 

features that are selected randomly in the leave using κ parameter (ii) minimizes the sample size 

for the separation of leaves utilizing the ռ parameter. The feature selection strength is determined 

by the κ parameter; rather the strength of the averaged outcome noise is defined using the ռ 

parameter. This means that the κ and ռ parameters will lessen the overfitting problem in the ETR 

algorithm and enhance the performance of this model (Hammed et al. 2021). The flowchart of the 

ETR algorithm is illustrated in Figure 6-37. 
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Figure 6-37. Flowchart of ETR algorithm 
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min_sample_split, and min_sample_leaf was regulated to be 100, 1, 'mse', 2000, 4, and 2, 

respectively. 

 

6.1.16.4. Gradient Boosting Regression (GBR) 

GBR is considered an ML technique to model various regression and classification problems. GBR 

creates an ensemble estimator, regarding the decision trees, to overcome the drawbacks of weak 

ML tools. In this model, a single decision tree may perform poorly; however, the ensemble 

algorithm, entitled gradient boosted trees, usually outperforms other decision-based models 

(Hastie et al. 2009). In the current study, the parameters applied for the GBR algorithm, including 

the number of estimators, learning rate, random_state, loss function, max_depth, and verbose were 

adjusted using a trial and error approach at 1000, 0.1, 2000, Huber, 5, and 1, respectively. 

 

6.1.16.5. Seabed interaction process in clay 

Seabed interaction parameters (η) in a clay mass comprising the soil deformations (d/W) and the 

reaction forces (F/W) are a function of the scour depth (Ds), the shear strength parameter of the 

clay (𝑐), the width of gouge (W), the attack angle (), the angle of the surcharged soil slope (ω), 

the height of the berm (h’), the horizontal load (Lh), the vertical load (Lv), the velocity of ice keel 

(V), and the specific weight of clay (𝛾𝑠) as follows (Azimi and Shiri 2020): 

𝜂 (𝑐𝑙𝑎𝑦) = 𝑓1(𝐷𝑠, 𝑐,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠) (6-31) 

Equation (6-31) can be written as a function of eight dimensionless groups as below (Azimi and 

Shiri 2020): 

𝜂(𝑐𝑙𝑎𝑦)
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It is worth noticing that the maximum subgouge deformation in the clay (𝑑𝑚𝑎𝑥(𝑐𝑙𝑎𝑦)) is formed 

just under the moving ice keel in the gouge centerline. However, at a greater depth on the subgouge 

centerline, by incorporating the soil depth (y/W), the subgouge clay displacement (d(clay)/W) is 

written as follows: 

𝑑(𝑐𝑙𝑎𝑦)

𝑊
= 𝑓3 (
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𝑊
,
𝐷𝑠

𝑊
,

𝑐

𝛾𝑠.𝑊
,, 𝜔,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(6-33) 

Similarly, the ice-induced reaction force (F) is a function of the position of the iceberg along the 

scour axis (x) and 𝐷𝑠, 𝑐,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠, so equation (6-33) can be written as below: 

𝐹(𝑐𝑙𝑎𝑦)
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(6-34) 

The performance of ML models on simulation of both the soil deformations and the reaction forces 

was independently evaluated. This means that the subgouge deformations and the reaction forces 

were separately simulated using the ML algorithms. In other words, the ML models were fed with 

x/W, Ds/W, c/γs.W, α, Lh/γs.W3, Lh/γs.W3, and V2/g.W as input parameters to simulate the dh/W 

and dv/W as output (Eq. 6-33). In addition, the y/W, Ds/W, c/γs.W, α, Lh/γs.W3, Lh/γs.W3, and 

V2/g.W were employed as inputs of the ML models to estimate the Fh/γsW3 and Fv/γsW3 as output 

(Eq. 6-34). 

In the current study, different laboratory investigations were used in order to simulate the ice-

gouging clay parameters (d/W and F/𝛾𝑠𝑊
3). In other words, the key measurements of five 

experimental investigations reported by C-CORE (1995), Lach (1996), C-CORE (1996), 

Schoonbeek et al. (2006), and Been et al. (2008) were utilized to verify the ML models. 

The range of dimensionless horizontal subgouge deformations (dh/w) for the C-CORE (1995) 

dataset comprising C-1 to C-8 tests was from 0.003 to 0.233 and these deformations were measured 

at the dimensionless soil depth up to 0.025. The keel attack angle in the C-1, C-2, C-4, C-5, C-6, 
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and C-8 tests was reported as 15o, while this value for C-3 and C-7 was measured as 30o. The 

gouge depth ratio (Ds/W) in the C-1 to C-8 tests were respectively obtained at 0.053, 0.099, 0.033, 

0.033, 0.054, 0.095, 0.079, and 0.080. The berm height ratio was not reported in the C-1 to C-8 

tests. 

The L-1 to L-8 tests were reported in Lach’s datasets. The value of attack angle in L-1, L-2, L-3, 

L-4, L-5, L-6, and C-8 was 15o but this parameter in the L-7 test was measured as 25o. In the L-1, 

L-4, and L-7 tests, the value of the undrained shear strength ratio was 12.029, whilst this parameter 

for L-2 and L-3 was similar, with the 𝑐 𝛾𝑠𝑊⁄  of 9.452. The internal friction angle of sand seabed 

in L-5, L-6, and L-8 was respectively reported at 17.185, 24.059, and 15.037. 

Moreover, the C-9 to C-12 tests have measured by C-CORE (1996) in which the value of the 

undrained shear strength ratio was respectively measured at 0.168, 0.167, 0.333, and 0.333. The 

attack angle in the C-9 test was 30o, whereas this parameter in C-10, C-11, and C-12 was observed 

to be 15o. The berm height ratio in the C-9 to C-12 tests was not reported. The value of the ice 

velocity ratio (V2/g.W) in the C-9 to C-12 tests was constant at 0.015. 

In Schoonbeek et al.’s experimental setup (S-1), the gouge depth ratio, the undrained shear strength 

ratio, and the attach angle values were measured at 11.667, 13.637, and 14o, respectively. 

The value of dimensionless horizontal subgouge deformations in Been et al.’s model (B-1 to B-5 

tests) varied from 0.004 to 0.330 and the two models (B-2 and B-3) had the keel attack angle of 

15o, while the attack angle in the B-1 test was equal to 45o. In the B-4 and B-5 tests, the value of 

attack angle was reported at 30o. Been et al. (2008) utilized a clay seabed with an undrained shear 

strength ratio of 1.444. 

It should be noted that the angle of the surcharged soil slope (ω) and the height of the berm (h’) 

were not reported by all applied laboratory studies. Therefore, other introduced dimensionless 
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groups in equations (14-3) and (14-4) were utilized as the input parameters for the ML model to 

simulate the horizontal subgouge deformation (dh/W), the vertical subgouge deformation (dv/W), 

the horizontal reaction force (Fh/𝛾𝑠𝑊
3), and the vertical reaction force (Fv/𝛾𝑠𝑊

3). Figure 6-38 

shows the defined input combinations to develop ETR models in the current study.  

In order to assess the pipeline behavior during the ice scouring event, the ultimate design aspects 

comprise the sub-gauge soil displacements (d) and the reaction forces of the iceberg keel (F) are 

predicted. These aspects are consequential of different key input parameters such as the attack 

angle (α), gouge depth (Ds), gouge width (W), seabed soil properties (φ), ice dynamics (V), 

environmental loads (L), etc. In the present research, similar to the previous investigations (e.g., 

Lach 1996; C-CORE 1995; C-CORE 1996; Azimi and Shiri 2021a), the ice scouring soil 

displacements (d) and the reaction forces (F) were regarded as the essential outcomes of the ice-

gouging simulation. 

 

 

Figure 6-38. The combination of input parameters to develop the ETR 1 to ETR 8 

 

Eight ETR models (ETR 1 to ETR 8) were defined to simulate the ice-induced clay parameters. 

This means that ETR 1 was defined by using all input parameters and then the effect of each input 

Model x/W or y/W Ds/W c/γs.W α

ETR 1

ETR 2

ETR 3

ETR 4

ETR 5

ETR 6

ETR 7

ETR 8

𝐿ℎ 𝛾𝑠.𝑊
3⁄ 𝐿𝑣 𝛾𝑠.𝑊

3⁄ 𝑉2 𝑔.𝑊⁄
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was ignored in the ETR 2 to ETR 8 models. To train the ML models, 70% of the constructed data 

was applied, whereas 30% of the rest was used to test the trained models. 

 

6.1.16.6. Quality of fit 

A set of criteria, such as correlation coefficient (R), root mean square error (RMSE), mean absolute 

percentage error (MAPE), Willmott Index (WI), coefficient of residual mass (CRM), and Akaike 

Information Criteria (AIC) were utilized to evaluate the accuracy, correlation, and complexity of 

the ML models. The closeness of the R and WI indices to one signified that the model had a high 

correlation with the experimental values. On the other hand, the closeness of the RMSE, MAPE, 

and CRM values to zero meant that a particular model had the lowest level of error though the 

complexity of these models was not assessed using the defined criteria. To overcome this 

limitation, the Akaike Information Criteria (AIC) was used, meaning that the less complex ML 

model owned the lowest value of AIC; hence, the premium model had the lowest values of AIC 

index and error (RMSE, MAPE, and CRM), with the highest level of correlation (R and WI) (Azimi 

et al. 2021a). 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1
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𝑖=1

2
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2
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1
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(6-36) 

𝑀𝐴𝑃𝐸 =
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𝑛
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|
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𝑊𝐼 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1
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𝐶𝑅𝑀 =
∑ 𝑂𝑖

𝑛
𝑖=1 − ∑ 𝑃𝑖

𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 
(6-39) 

𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(6-40) 

here, Oi, Pi, �̅�, �̅�, and n are the experimental measurements, the simulated values, the average 

experimental values, the average simulated values, and the number of experimental measurements, 

respectively. In addition, k is the number of input parameters in the ML models. 

 

6.1.17. Results and discussion 

The sensitivity analysis for the ETR 1 to ETR 8 models was performed. Then, the robustness of 

the best ETR models was compared to the DTR, RFR, and GBR algorithms. Finally, the results of 

the superior ETR models were compared to the experimental measurements. 

 

6.1.17.1. Sensitivity analysis of ETR models 

Figure 6-39 demonstrates the calculated statistical indices for the horizontal reaction forces 

simulated by ETR 1 to ETR 8. The ETR 1 model adopted all input parameters so as to predict the 

horizontal component of the reaction forces, with a WI value of 0.994. Regarding the performed 

sensitivity analysis, ETR 1 was the six-best model for the estimation of the horizontal forces. 

Although the effect of the ice dynamics parameter (𝑉2 𝑔.𝑊⁄ ) was excluded for ETR 2, this model 

was known as the fifth-best ETR model, where the value of R and AIC criteria for it was surmised 

as 0.988 and 656.577. The sensitivity analysis showed that ETR 3 was the fourth-best model since 

the influence of the vertical component of loads (𝐿𝑣 𝛾𝑠.𝑊
3⁄ ) was disregarded for that, with the 

CRM and AIC indices of 0.006 and 655.956. ETR 4 as a function of 

 𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠.𝑊,⁄ , 𝐿𝑣 𝛾𝑠.𝑊
3⁄ , and 𝑉2 𝑔𝑊⁄  was the premium ETR model for the 
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simulation of the horizontal reaction forces, with the highest degree of correlation (R=0.989), the 

lowest level of complexity (AIC=653.553), and inaccuracy (RMSE=54630.154). The keel’s attack 

angle (α) was an eliminated input factor for ETR 5 (the seventh-best model), while the value of 

CRM, WI, and AIC was respectively equal to 0.011, 0.994, and 657.811. For the third-best model 

(ETR 6), the impact of the clay shear strength (𝑐 𝛾𝑠.𝑊⁄ ) was ignored where the RMSE and WI 

criteria for this model were reckoned as 56624.436 and 0.994. ETR 7 was ranked as the second-

best model to estimate the horizontal forces once the gouge depth ratio (Ds/W) was the removed 

input parameter for this model, with a correlation coefficient value of 0.989. Amongst ETR models 

for simulation of the horizontal reaction forces, ETR 8 had the worst performance (R=0.794, 

AIC=737.183, and WI=0.898) because the effectiveness of the  𝑥 𝑤⁄  input factor was eliminated. 

According to the implemented sensitivity analysis, the  𝑥 𝑤⁄  had a striking effect to model the 

horizontal reaction forces, rather the attack angle (), the ice dynamics parameter (𝑉2 𝑔𝑊⁄ ), the 

vertical component of the load factor (𝐿𝑣 𝛾𝑠.𝑊
3⁄ ), the clay shear strength parameter (𝑐 𝛾𝑠.𝑊⁄ ), the 

gouge depth ratio (𝐷𝑠 𝑊⁄ ), and the horizontal component of the load factor (𝐿ℎ 𝛾𝑠.𝑊
3⁄ ) were 

ranked as the second important to seventh important input parameters. 

Hence, ETR 4 and the  𝑥 𝑤⁄  along with  variables were respectively recognized as the superior 

ETR model and the most significant input parameters for simulation of the horizontal reaction 

forces. 
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Figure 6-39. Accuracy assessment indices (a) R, (b) RMSE, (c) AIC, (d) CRM, and (e) WI for 

the horizontal reaction forces simulated by ETR 1 to ETR 8 

 

The key statistical indices computed for the vertical reaction forces predicted by ETR 1 to ETR 8 

are compared in Figure 6-40. The value of CRM and WI for the premium ETR model to estimate 

the vertical reaction forces, the ETR 6 model, were approximated as -0.006 and 0.997. This 

sensitivity analysis proved that ETR 2, ETR 3, and ETR 5 were respectively detected as the second-

best to fourth-best ETR model to forecast the vertical component of reaction forces where the 

value of AIC criterion for these models were 225.696, 225.680, and 225.538, respectively. The 

ETR 1 model represented the fifth-best model for the estimation of the vertical forces, with an 
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RMSE value of 475.567. For ETR 4 as the sixth-best ETR model, the R and AIC values were 

calculated at 0.996 and 225.367. ETR 7 was determined as the seventh-best model and the value 

of CRM and RMSE indices for this model equaled to -0.006 and 473.307. ETR 8 possessed the 

poorest performance to model the vertical reaction forces, indicating that the AIC value for this 

model was estimated to be 265.194. 

According to the sensitivity analysis, the position of the iceberg along the scour axis (x/W) showed 

up to be the most influential input parameter for modeling the vertical component of reaction 

forces. The second significant input parameter was recognized to be the gouge depth ratio (𝐷𝑠 𝑊⁄ ), 

whereas the horizontal component of the load factor (𝐿ℎ 𝛾𝑠.𝑊
3⁄ ) and the attack angle (α) were the 

third important and the fourth important input factors, respectively. The vertical load factor 

(𝐿𝑣 𝛾𝑠.𝑊
3⁄ ) and the ice velocity parameter (𝑉2 𝑔𝑊⁄ ) were ranked as the fifth important and the 

sixth significant input parameters for the simulation of the vertical reaction forces. The degree of 

effectiveness of the clay shear strength (𝑐 𝛾𝑠.𝑊⁄ ) was insignificant to model the vertical reaction 

forces. 

Thus, the ETR 6 model and the position of the iceberg along the scour axis (x/W) were introduced 

as the superior model and the most important input variable to estimate the vertical reaction forces, 

respectively. 
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Figure 6-40. Accuracy assessment indices (a) R, (b) RMSE, (c) AIC, (d) CRM, and (e) WI for 

the vertical reaction forces simulated by ETR 1 to ETR 8 

 

In Figure 6-41, the statistical indices computed for the horizontal subgouge deformations modeled 

by ETR 1 to ETR 8 are compared. As shown, ETR 6 was the excellent model for approximation 

of the horizontal subgouge deformations, with the highest level of correlation, precision, and 

lowest degree of complexity (R=0.999, RMSE=0.037, AIC=-56.264). However, ETR 8 

demonstrated the worst performance to model the horizontal displacements, signifying that the 

value of AIC and RMSE criteria for ETR 8 was obtained to be 0.463 and 0.529. With respect to the 

performed sensitivity analysis, ETR 5, ETR 2, and ETR 3 were preferred to be the second-best to 
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the fourth-best ETR model at dealing with the simulation of horizontal deformations. This means 

that the value of the AIC index for the ETR 5, ETR 2, and ETR 3 models was equal to -55.679, -

53.137, and -51.624, respectively. For the fifth-best ETR model (ETR 7), the RMSE and CRM 

values were surmised at 0.057 and -0.044, while the indices for the sixth-best ETR model (ETR 4) 

were about 0.066 and -0.057, respectively. The RMSE and AIC criteria of ETR 1 were obtained 

as 0.091 and -36.939, making ETR 1 the seventh-best model. 

The soil depth ratio (y/W) was found to be the most substantial input parameter to model the 

horizontal displacements, whilst the horizontal load factor (𝐿ℎ 𝛾𝑠.𝑊
3⁄ ), the gouge depth ratio 

(Ds/W), the vertical load factor (𝐿𝑣 𝛾𝑠.𝑊
3⁄ ), the ice keel velocity (V2/g.W), and the attack angle 

(α) were ranked as the second to sixth most significant input parameters. However, the clay shear 

strength (𝑐 𝛾𝑠.𝑊⁄ ) had the lowest degree of effectiveness to model the horizontal deformations 

using the ETR algorithm. 

Therefore, ETR 6 was preferred as the premium ETR model and the soil depth ratio possessed the 

highest impact so as to predict the horizontal subgouge deformations. 
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Figure 6-41. Accuracy assessment indices (a) R, (b) RMSE, (c) AIC, (d) CRM, and (e) WI for 

the horizontal subgouge deformations simulated by ETR 1 to ETR 8 

 

The computed key criteria for the vertical ice-induced displacements estimated by ETR 1 to ETR 

8 are illustrated in Figure 6-42. For the ETR 1 model as the fifth-best model, the R and AIC indices 

were obtained to be 0.963 and -53.633, whereas ETR 2 was ranked in the first position in terms of 

accuracy, correlation, and simplicity, with the RMSE and WI value of 0.009 and 0.977. ETR 3 was 

identified as the third-best model where the value of the correlation coefficient and Willmott index 

for the ETR 3 model were equal to 0.974 and 0.968. ETR 4, ETR 5, and ETR 6 were the fourth, 

seventh, and second-best models for simulation of the vertical deformations where the value of 
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correlation coefficient for these models was respectively calculated to be 0.971, 0.920, and 0.980. 

The simulation results showed that ETR 7 was the sixth-best ETR model, with an AIC criterion of 

-51.091. ETR 8 represented the weakest performance to model the vertical ice-induced 

deformation in clay, and the value of RMSE and CRM indices for ETR 8 was reckoned at 0.033 

and -0.417. For the simulation of the vertical subgouge soil deformations in clay using the ETR 

algorithm, ETR 2 was distinguished as the superior model. Furthermore, the soil depth ratio and 

the attack angle possessed a remarkable influence in predicting the target parameter. 

 

 

Figure 6-42. Accuracy assessment indices (a) R, (b) RMSE, (c) AIC, (d) CRM, and (e) WI for 

the vertical subgouge deformations simulated by ETR 1 to ETR 8 
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6.1.17.2. Comparison with DTR, RFR, and GBR models 

The performed sensitivity analysis demonstrated that the ETR 4, ETR 6, ETR 6, and ETR 2 models 

were respectively the superior models to estimate the horizontal reaction forces, the vertical 

reaction forces, the horizontal subgouge deformations, and the vertical subgouge deformations. 

The performance of these ETR models was compared to the DTR, RFR, and GBR algorithms. In 

Figure 6-43, the capability of the ETR 4 model in the simulation of the horizontal reaction forces 

is compared to the DTR, RFR, and GBR methods. Even though the RFR algorithm represented 

the worst outcome among these approaches (R=0.927 and AIC=708.288), ETR 2 still had the 

highest amount of precision and correlation (RMSE=54630.154 and R=0.989). Based on the 

simulation results, the DTR and GBR algorithms were ranked as the second-best and the third-best 

decision-based ML methodology for modeling the horizontal reaction forces. Then, the ETR 2 

managed to outperform its counterparts in the estimation of the target parameters. 
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Figure 6-43. Comparison of the ETR 4 model in simulation of the horizontal reaction forces with 

the DTR, RFR, and GBR methods (a) RMSE and R (b) AIC and CRM (c) AIC and WI 

 

Figure 6-44 shows the comparison of the ETR 6 model with other decision-based machine learning 

algorithms for modeling the vertical reaction forces. The best performance was obtained for ETR 

6; however, the DTR algorithm had the lowest degree of accuracy and simplicity. In other words, 

the value of the RMSE index for the ETR 6, DTR, RFR, and GBR models was respectively 

calculated as 472.658, 1255.463, 529.059, and 506.399. Therefore, the most intriguing 

performance for the prediction of the vertical reaction forces was with the ETR 6 algorithm as a 

function of  𝑥 𝑤⁄ , 𝐷𝑠 𝑊⁄ ,, 𝐿ℎ 𝛾𝑠.𝑊
3⁄ , 𝐿𝑣 𝛾𝑠.𝑊

3⁄ , and 𝑉2 𝑔𝑊⁄ . 

 

Figure 6-44. Comparison of the ETR 6 model in simulation of the vertical reaction forces with 

the DTR, RFR, and GBR methods (a) RMSE and R (b) AIC and CRM (c) AIC and WI 
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The key statistical indices computed for the horizontal subgouge deformations simulated by the 

ETR 6, DTR, RFR, and GBR models are illustrated in Figure 6-45. The made comparison proved 

that the ETR 6 had the highest level of agreement with the experimental values though the DTR 

algorithm produced the highest amount of inaccuracy, indicating that the value of the AIC index 

for the ETR 6, DTR, RFR, and GBR models was respectively equal to -56.264, 6.822, -43.925, 

and -2.385. Hence, the study found that the ETR 6 model surpassed other ML algorithms to 

forecast the horizontal subgouge deformations in terms of accuracy, correlation, and complexity. 

 

Figure 6-45. Comparison of the ETR 6 model in simulation of the horizontal subgouge 

deformations with the DTR, RFR, and GBR methods (a) RMSE and R (b) AIC and CRM (c) 

AIC and WI 
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dealing with the simulation of the vertical deformations where the value of the AIC index for these 

models was computed to be -57.192, -49.221, -45.838, and -45.021, respectively. Thus, the 

findings indicate that the performance of the ETR 2 model exceeded other ML algorithms. 

 

Figure 6-46. Comparison of the ETR 2 model in simulation of the vertical subgouge 

deformations with the DTR, RFR, and GBR methods (a) RMSE and R (b) AIC and CRM (c) 

AIC and WI 
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8%, but close to 10% of the results from the GBR and DTR methodologies showed an error of less 

than 10%. The performed error analysis for simulation of the vertical deformations indicated that 

virtually one-fourth of the ETR 2 results held an error of slighter than 14%; however, for the RFR, 

GBR, and DTR methods, this number was respectively equal to 20%, 22%, and 6%. Hence, the 

error analysis presented that the premium ETR models could estimate the subgouge soil 

characteristics in clay seabed with acceptable accuracy. 

 

Figure 6-47. Error analysis for the superior ETR models along with the DTR, RFR, and GBR 

algorithms (a) horizontal reaction forces (b) vertical reaction forces (c) horizontal subgouge 

deformations (d) vertical subgouge deformations 
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The performance of the superior ETR models along with the GBR, RFR, and DTR algorithms was 

evaluated using the discrepancy ratio (DR) as below (Azimi and Shiri 2021a): 

𝐷𝑅 =
𝑃𝑖

𝑂𝑖
 

(6-41) 

here, 𝑃𝑖 and 𝑂𝑖 are the predicted and observed subgouge soil characteristics, respectively. 

Commonly, the closer the value of DR is to the unity, the better performance represents the ML 

algorithm. The predicted and observed ice-gouging parameters are compared using the DR index, 

which is the estimated value to the actual amount ratio. Additionally, the precision of the ML 

model is evaluated by the DR, where the significance of the DR criterion approaching the unity 

shows a better performance of the ML model (Azimi and Shiri 2021a). 

Figure 6-48 depicts the DR computed for ice-seabed interaction parameters predicted by the ML 

models. As shown, the overwhelming majority of the simulated ice-induced parameters had a DR 

near to one. For example, the average discrepancy ratio (DRave) for the horizontal reaction forces 

estimated by the ETR 4 model was 1.063; rather this value for the GBR algorithm was appraised 

at 1.095. The maximum DR (DRmax) for the vertical reaction forces estimated by the GBR, RFR, 

DTR, and ETR 6 models were equal to 3.269, 3.349, 5.643, and 3.320, respectively. The minimum 

discrepancy ratio (DRmin) for the horizontal displacements predicted by ETR 6 and GBR models 

was 0.522 and 0.350. The DRmin for ETR 2 in modeling the vertical ice-induced deformations 

equaled 0.650. Therefore, the ETR algorithm showed good efficiency in predicting the ice-seabed 

interaction parameters. 
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Figure 6-48. DR computed for ice-seabed interaction parameters (a) horizontal reaction forces 

(b) vertical reaction forces (c) horizontal subgouge deformations (d) vertical subgouge 

deformations predicted by the ML models 

 

To assess the performance of the applied ML algorithms, an uncertainty analysis was conducted. 

To perform the uncertainty analysis, errors obtained from the ML models (𝑒𝑗) were computed as 

the difference between the simulated ice-induced characteristics (𝑃𝑗) and the observed values (𝑂𝑗) 

as below (Azimi and Shiri 2021a): 

𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (6-62) 

The averaged calculated errors (�̅�) and the standard deviation (𝑆𝑒) of errors were obtained by the 

following equations (Azimi and Shiri 2021a): 

�̅� = ∑ 𝑒𝑗
𝑛

𝑗=1
 

(6-63) 
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𝑆𝑒 = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(6-64) 

The ML model had an underestimated performance if the sign of averaged obtained error (�̅�) was 

negative; however, the positive averaged calculated error indicated that the ML model 

overestimated the target parameters. Concerning the “Wilson score method” and disregarding the 

continuity correction, a confidence interval was generated near the computed error by means of 

the 𝑒 ̅ and 𝑆𝑒 values. A modified normal distribution interval as an asymmetric normal distribution, 

entitled the Wilson score interval, was applied to amend the confidence interval bounds. Then, a 

±1.96Se created a 95% confidence interval (95%CI), and the width of uncertainty bound (WUB) 

was obtained as below (Azimi and Shiri 2021b): 

WUB = ±
(Lower bound − upper bound)

2
 

(6-65) 

The uncertainty analysis results from the ML algorithms are tabulated in Table 6-2. According to 

the uncertainty analysis, the GBR model overestimated the horizontal reaction forces; by contrast, 

the RFR, DTR, and ETR 4 models underestimated this parameter. The uncertainty analysis showed 

that the narrowest WUB was built for ETR models, as an example, the value of WUB for the 

vertical reaction forces predicted by the ETR 6 model equaled ±104.75. The vertical reaction forces 

were underestimated by using the GBR and ETR 6 models although the RFR and DTR algorithms 

overestimated this parameter. For the simulation of the horizontal deformations, the GBR and RFR 

models demonstrated an overestimated performance, but this parameter was underestimated 

through the DTR and ETR 6 models. All applied ML models in the current study performed an 

overestimated behavior.  

 

Table 6-2. Uncertainty analysis parameters for ML algorithms 



 

569 
 

Parameter Model Mean (�̅�) St.Dev (𝑆𝑒) WUB 95%CI 

 

Fh 

GBR 5532 58508 ±10035.5 -4504 to 15567 

RFR -7751 140164 ±24041.5 -31793 to 16290 

DTR -1125 114846 ±19699 -20824 to 18574 

ETR 4 -373 54930 ±9422 -9795 to 9049 

 

Fv 

GBR -107.6 498 ±111.55 -219.1 to 4 

RFR 108.1 521.2 ±116.75 -224.8 to 8.7 

DTR 144 1255 ±281 -137 to 425 

ETR 6 -86.4 467.7 ±104.75 -191.1 to 18.4 

 

dh 

GBR 0.068 0.478 ±0.142 -0.075 to 0.210 

RFR 0.001 0.069 ±0.020 -0.020 to 0.021 

DTR -0.119 0.735 ±0.218 -0.337 to 0.099 

ETR 6 -0.012 0.036 ±0.011 -0.023 to -0.001 

 

dv 

GBR 0.007 0.014 ±0.005 0.002 to 0.012 

RFR 0.005 0.019 ±0.007 -0.002 to 0.011 

DTR 0.002 0.021 ±0.008 -0.005 to 0.010 

ETR 2 0.001 0.009 ±0.003 -0.002 to 0.004 

 

The uncertainty analysis showed that the narrowest WUB was built for ETR models, as an 

example, the value of WUB for the vertical reaction forces predicted by the ETR 6 model equaled 

±104.75, similarly, the WUB for the ETR 2 model was ±0.003. 

 

6.1.17.3. Comparison with experimental measurements 
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Figure 6-49 displays the comparison made between the horizontal reaction forces simulated by the 

ETR 4 model and the experimental measurements. As shown, the superior ETR model managed 

to approximate the reaction forces with its highest level of accuracy, correlation, and lowest degree 

of complexity. Regarding the simulation results, the minimum value of the horizontal reaction 

forces was modeled at the initial position of scouring; after that, the magnitude of this parameter 

grew along the scour axis. The ETR 4 model utilized a non-linear trend to predict this ice-gouging 

parameter (C-1, C-2, C-3, and C-8). Though there were several fluctuations in the experimental 

tests, the ETR 4 model was able to simulate the horizontal reaction forces with acceptable 

performance. Moreover, some discrepancies between the simulation outcomes and test results 

were observed (C-7, L-1, L-2, L-4, and L-5). 



 

571 
 

 

Figure 6-49. Comparison between the horizontal reaction forces simulated by the ETR 4 model 

and the experimental measurements (a-h) C-1 to C-8 (i-o) L-1 to L-7 

 

The results of the ETR 6 model and the vertical reaction forces are compared in Figure 6-50. 

Similar to the ETR 4 model, the smallest amount of the vertical reaction forces was estimated in 

the initial location of the scouring and it reached the maximum amount by developing along the 

scour axis. ETR 6 modeled the L-2, L-4, and L-5 cases with a strong correlation; however, in the 
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L-1, L-3, and L-6 tests, several disagreements were reported between the test and the numerical 

results. Despite the oscillatory trend in the L-7 and L-8 cases, the ETR 6 model could appropriately 

predict the alteration pattern of the vertical reaction forces. 
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Figure 6-50. Comparison between the vertical reaction forces simulated by the ETR 6 model and 

the experimental measurements (a-h) L-1 to L-8 

 

Figure 6-51 demonstrates the comparison between the horizontal ice-induced soil deformations 

estimated by ETR 6 and the test results. As can be seen, the maximum subgouge displacement was 

recorded beneath the ice keel body, rather the magnitude of this parameter was reduced by an 

exponential distribution at greater soil depth. Apart from some slight discordances between the 

numerical and experimental results (C-4, C-8, L-1, L-2, L-3, and L-8 to L-12), the ETR 6 model 

approximated the horizontal displacements with reasonable exactness. This comparison indicated 

that the ETR 6 model estimated the C-1, C-2, C-3, C-7, L-5, L-7, S-1, and B-2 tests with a strong 

correlation. 
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Figure 6-51. Comparison between the horizontal subgouge deformations simulated by the ETR 6 

model and the experimental measurements (a-h) C-1 to C-8 (i-p) L-1 to L-8 (q-t) C-9 to C-12 (u) 
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The comparison between the vertical subgouge deformations simulated by the ETR 2 model and 

the test measurements is drawn in Figure 6-52. A remarkable correlation was found between the 

test and simulation results (C-1 to C-3, C-7, L-1, L-3, and C-8), but several differences occurred 

in the C-4, L-4 to L-8, and B-1 tests. The ETR 2 model could simulate the C-5 and C-6 tests by 

using a linear trend; whilst the C-8 to C-11 tests were modeled regarding a non-linear pattern. 

 

Figure 6-52. Comparison between the vertical subgouge deformations simulated by the ETR 2 

model and the experimental measurements (a-g) C-1 to C-7 (h-n) L-1 to L-8 (o-r) C-8 to C-11 (s) 
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The precision of experimental values has originated from two major sources containing systematic 

error (equipment error) and random error (human error). The source of the systematic error may 

be identified and the value of this error is measurable, while identification of a random error source 

is quite arduous. To hinder the random error, the experimental measurements had been repeated 

and their average values were reported as the laboratory records. It seems that the experimental 

values lacked a meaningful trend and there were several oscillations in the experimental 

measurements (Figure 14-14-i, Figure 14-17-c, and 14-17-d); however, the superior ETR model 

was able to appropriately estimate the vertical sub-gauge displacements with the linear and the 

nonlinear trends. 

Therefore, the ETR model estimated the ice-induced soil characteristics, including the reaction 

forces and the subgouge soil deformations in clay seabed with sufficient precision, a high level of 

correlation, a low degree of discrepancy, and a high amount of simplicity.  

 

6.1.18. Conclusion 

In this study, the ETR algorithm was used for the simulation of the iceberg-seabed interaction 

parameters comprising the reaction forces and the subgouge soil deformations in clay. Regarding 

the variables governing the ice-seabed interaction, eight ETR models (ETR 1 to ETR 8) were 

defined. Using the test studies published in the literature, a comprehensive dataset was established, 

where 70% of the data was allocated to train the ML models, and the trained models were tested 

using the remaining 30%. The superior ETR models and the most influencing input parameters 

were introduced by performing a sensitivity analysis. Subsequently, the performance of premium 

ETR models was compared with three ML algorithms, including the DTR, RFR, and GBR models. 
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A set of analyses, e.g., error analysis, discrepancy analysis, and uncertainty analysis, were 

implemented for a detailed evaluation of the applied ML models. The most important outcomes of 

the current investigation are summarized below: 

 The simulation results proved that the ETR model could predict the ice-seabed interaction 

features with the highest level of accuracy and correlation along with the lowest level of 

complexity. 

 ETR 4, a function of the x/W, Ds/W, φ, α, h’/W, Lv/γs.W3, and V2/g.W inputs, was 

identified as the best model to approximate the horizontal reaction forces, while ETR 6 a 

function of x/W, Ds/W, φ, h’/W, Lh/γs.W3, Lv/γs.W3, and V2/g.W was the best ML model 

for estimation of the vertical reaction forces. 

 To model the horizontal and vertical ice-induced soil displacements in clay, ETR 6 and 

ETR 2 were respectively recognized as the best ML models. 

 The attack angle (α) and the gouge depth ratio (Ds/W) had a striking effect on the 

simulation of the subgouge reaction forces; however, the soil depth ratio (y/W), the 

horizontal component of the load (Lh/γs.W3), and the attack angle (α) were detected as the 

most significant input factors to predict the ice-induced soil deformations in clay seabed. 

 The comparison between the ETR model with the DTR, RFR, and DTR algorithms 

represented that the ETR method outperformed the counterparts. 

 Error analysis showed that almost 82% of the results from the ETR 4 model possessed an 

error of less than 12%, but this amount for GBR, RFR, and DTR were about 71%, 77%, 

and 42%, respectively. 

From a practical design point of view, this investigation demonstrated that the ETR algorithm 

could simply simulate the complex and non-linear ice-scouring problem with acceptable precision 
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and low expenses. The proposed model may be a perfect alternative to the early stages of pipeline 

design projects in the Arctic area, even though a quick and accurate estimate is still needed to 

decide on the methodology, logistics, and planning of the accurate engineering area. Further 

studies with more focus on advanced ML methods, Neuro-Fuzzy models, and optimization 

algorithms are therefore suggested in future works. 
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Part II 

 

Prediction of Iceberg Draft 
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7. Chapter 7 

 

Dimensionless Groups and Sensitivity Study of Parameters Governing Iceberg 

Draft 

 

This chapter includes two sections as follows: 

Section 1: Determination of Parameters Affecting the Estimation of Iceberg Draft 

Section 1: Sensitivity Analysis of Parameters Governing the Iceberg Draft through Neural 

Network-Based Models 
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Section 1 

 

Determination of Parameters Affecting the Estimation of Iceberg Draft 
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Abstract 

Recent offshore oil and gas loading facilities developed in the Arctic area have led to a 

considerable awareness of the iceberg draft approximation, where deep keel icebergs may gouge 

the ocean floor, and these submarine infrastructures would be damaged in the shallower waters. 

Developing reliable solutions to estimate the iceberg draft requires a profound understanding of 

the problem's dominant parameters. As such, the dimensionless groups of the parameters affecting 

the iceberg draft estimation were determined for the first time in the present study. Using the 

dimensionless groups recognized and the linear regression (LR) analysis, nine LR models (i.e., LR 

1 to LR 9) were developed and then validated using a comprehensive dataset, which has been 

constructed in this study. A sensitivity analysis distinguished the premium LR models and 

important dimensionless groups. The best LR model, as a function of all dimensionless parameters, 

was able to estimate the iceberg draft with the highest level of precision and correlation along with 

the lowest degree of complexity. The ratio of iceberg length to iceberg height as the "iceberg length 

ratio" and the ratio of iceberg width to iceberg height as the "iceberg width ratio" was detected as 

the important dimensionless groups in the estimation of the iceberg draft. An uncertainty analysis 

demonstrated that the best LR model was biased towards underestimating the iceberg drafts. The 

premium LR model outperformed the previous empirical models. Ultimately, a set of LR-based 

relationships were derived for estimating the iceberg drafts for practical engineering applications, 

e.g., the early stages of the iceberg management projects. 

 

Keywords: Dimensional analysis, Iceberg draft, Subsea assets, Linear regression (LR), 

Sensitivity analysi 
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7.1.1. Introduction 

Deep draft icebergs may scour the seafloor in the Arctic and shallow subarctic waters, posing a 

threat to the operational integrity of the submarine assets, such as subsea pipelines, wellheads, 

offshore oil loading equipment, and communication cables. As shown in Figure 7-1, if the iceberg 

draft is greater than the water depth, the seabed may be gouged; otherwise, the iceberg keel is 

considered in the free-floating condition. The estimation of the iceberg draft is a challenging issue 

to warn of the collision risk of the iceberg keel with the subsea infrastructures. Therefore, 

determining the parameters affecting the iceberg draft estimation may be crucial in protecting the 

subsea structures. 

 

Figure 7-1. Schematic layout of the iceberg free-floating and iceberg scouring in the Arctic 

waters 
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The precise iceberg draft estimation is essential for improving the ice management projects, 

diminishing the collision risk of the iceberg keel with the submarine assets, and deducting the 

expenses and downtime.  

Papusha et al. (2013) reported many impaired subsea infrastructures by traveling icebergs in the 

Arctic shallow waters in the Labrador Sea, Great Slave Lake, and Lake Erie. "Grand Banks Scour 

Catalogue (GBSC) GeoDatabase," as one of the comprehensive investigations of the ice collision 

events on the Grand Banks of Canada, documented that multi icebergs drifted and gouged the 

ocean floor across the shallow water area of the Grand Banks, where scour marks reported in the 

water depth of up to 400 m (Campbell 2014). Furthermore, Minerals Management Service (2002) 

recorded 529 out of 836 gouges (roughly 63%) monitored from 1995 to 1998 were marked in the 

shallower waters. Additionally, several studies have sought to determine the iceberg draft, where 

preceding iceberg draft models have correlated the height of the underwater iceberg portion (D) 

with the iceberg length (L) or iceberg mass (M). For instance, Robe and Farmer (1976) reported 

the features of tabular, broken tabular, pinnacle, dry dock, and domed icebergs. They asserted that 

the iceberg draft (D) correlated with the iceberg height (H). In particular, the authors proposed a 

relationship for the estimation of the iceberg draft as follows: 

0.849.4
D

H
H


 

(7-1) 

Mognor and Zorn (1979) investigated the iceberg dimensions and showed that iceberg stability 

was a function of its draft and width (w). The authors suggested an equation to surmise the iceberg 

draft: 

D=1.2w+50 (7-2) 

El-Tahan and El-Tahan (1982) used the iceberg characteristics, including the height and draft of 

different bergs. The study highlighted that the domed and tabular icebergs had more remarkable 
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drafts than the dry dock and pinnacle icebergs. The authors introduced the following relationships 

to calculate the iceberg drafts: 

 
1.111

111.04
D

H
H




           For domed icebergs 

(7-3) 

 
1.235

198
D

H
H




                For Tabular icebergs 

(7-4) 

Hotzel and Miller (1983) analyzed the iceberg dimensions and assumed that the planimetric section 

of icebergs was circular, while the length of berg (L) was twice the circle radius. The authors 

derived a formula for the approximation of iceberg draft through the power curve method as below: 

 0.633.781  D L
 

(7-5) 

C-CORE (2001a) and C-CORE (2001b) reported several iceberg management programs to 

measure iceberg characteristics. In these studies, a set of relationships were extracted from the 

field measurements analyzed for approximation of the iceberg draft as follows: 

 0.282.1D M
 

(7-6) 

 0.683.239D L
 

(7-7) 

Where M is the iceberg mass. Barker, Sayed, and Carrieres (2004) assessed the geometry of iceberg 

sails and keels. The authors calculated the cross-sectional areas of the iceberg at various water 

depth intervals from a particular waterline length. They presented some empirical equations for 

the estimation of the iceberg draft in terms of the iceberg length by using the power curve and 

regression analysis: 

 0.712.91D L
 

(7-8) 

 0.7D L
 

(7-9) 
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Sacchetti et al. (2012) studied the berg characteristics and ice scouring in Labrador and Hibernia 

regions. The features of different icebergs, such as wedged, domed, tabular, and pinnacle bergs, 

were evaluated in this study. The authors offered a set of equations in terms of the iceberg length 

to appraise the iceberg draft in the following forms: 

 0.633.9D L
           for Labrador region 

(7-10) 

 0.791.95D L
         for Hibernia region 

(7-11) 

King et al. (2016) conducted a field investigation to estimate the rolling rate of the iceberg. The 

iceberg draft was modeled through a calving analysis, with a calculated standard deviation of draft 

variations from 19% to 34%. The iceberg draft has corresponded with the iceberg mass as follows: 

 0.2762.05D M
 

(7-12) 

Most recently, Stuckey et al. (2021) simulated the three-dimensional iceberg shapes by adopting 

field measurements. The investigation demonstrated that the iceberg draft was computed in terms 

of iceberg length by utilizing the power curve. The authors derived two empirical models regarding 

the data collected in 2016 and the post-2000 data as below: 

 0.584.78D L
           data collected in 2016 

(7-13) 

 0.721.87D L
           post-2000 data 

(7-14) 

Although several empirical models for estimating the iceberg draft have been proposed, 

determining a dimensionless group of parameters for rapid simulation of the iceberg draft can be 

used in the early stages of engineering projects to plan construction methodologies, logistics, and 

the scope of detailed engineering. 

This study recognized the dimensionless group of parameters affecting the iceberg draft estimation 

through the Buckingham-π theorem for the first time. A set of LR models were developed using 
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the dimensionless groups and linear regression (LR) approach. The best LR models and the most 

influencing dimensionless groups were ascertained by conducting several analyses. 

 

7.1.2. Methodology 

The flowchart of the methodology applied in the current study is drawn in Figure 7-2. In the 

proposed method, dimensional analysis of the iceberg draft is performed, and the dimensionless 

groups affecting the iceberg draft estimation are introduced through the Buckingham-π theorem. 

Several linear regression (LR) models are proposed to estimate the iceberg draft. Using the 

characteristics of the real icebergs reported in the literature, a comprehensive dataset was created, 

which has been used for validating the accuracy, correlation, and complexity of the LR models. 

The study compared the performance of the LR models with the previous models in the literature. 

The premium LR models and the most influencing input parameters were recognized by 

performing several analyses. 

 

Figure 7-2. Flowchart of the proposed method employed in this study 

Making several idealistic assumptions

Building a comprehensive dataset

Performing dimensional analysis using Buckingham-π theorem 

Introducing the dimensionless groups governing the iceberg draft

Development of linear regression (LR) models using the dimensionless groups

Verifying and analyzing the LR models  

Comparison with the previous models

Introducing the superior LR models and the most influencing dimensionless groups
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7.1.2.1. Dimensional analysis 

Dimensional analysis is a type of analysis in which correlations between significant quantities, 

such as mass, time, and length, are assessed in terms of their dimensions. Dimensional analysis is 

a globally valid method used in various engineering designs, applied mathematics, and physical 

challenges. This analysis represents that quantities involving a specific equation are dimensionally 

homogeneous. By using the analysis, scholars and engineers can gain insight into measuring and 

scaling different quantitative parameters to provide an elaborate design. The dimensional analysis 

is utilized as a relation that can be written between the target function as an output parameter (δ1) 

and input parameters (δ2, δ3,…, δn)  , as below: 

 1 2 3, , , nf    
 

(7-15) 

Accordingly, 

 1 2 3, , , , 0nf     
 

(7-16) 

Where f is "some function of"' and n is defined as the number of input parameters describing the 

physical problem (Massey 1971; Simon, Weigand, and Gomaa 2017). Thus, the appropriate 

primary output and input parameters should be chosen, meaning that just one relation between 

input variables and output parameters may exist. Subsequently, several dimensional groups 

(𝜋1, 𝜋2, 𝜋3, … , 𝜋𝑛−𝑚′) are defined regarding the primary parameters; hence, the new form of the 

relationship is written as follows: 

𝑓(𝜋1, 𝜋2, 𝜋3, … , 𝜋𝑛−𝑚′) = 0 (7-17) 

Where "𝑚′" is the number of the principal quantities, and "n-𝑚′" is the number of dimensionless 

groups. In other words, if a physical problem involves a certain number "n" of independent input 

parameters, which have "𝑚′" main quantities, then "n-𝑚′" dimensional groups can be developed. 
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The procedure mentioned is universally considered the Buckingham-π theorem to introduce the 

dimensionless groups in sophisticated and complex physical problems (Massey 1971; Simon 

Simon, Weigand, and Gomaa 2017). 

To conduct a robust dimensional analysis of the iceberg draft estimation, several simplifying 

assumptions were made below to assist the implementation of the methodology developed in the 

practical applications: 

 The iceberg is in free-floating condition; 

 The density of seawater is constant; 

 The temperature of seawater is constant, and; 

 The viscosity of seawater is constant. 

Even though determining the parameters to consider in the dimensional analysis is one of the most 

critical aspects, there is no specific regulation or rule for selecting those parameters. 

Notwithstanding this, thoroughly comprehending the problem can significantly help the issue 

(Stuckey 2008). Hence, the parameters involved in the dimensional analysis of the iceberg draft 

estimation can be categorized into three distinct types: 

(i) The geometric characteristics of the iceberg, e.g., the above-water parameters and shape of 

the iceberg; 

(ii) The physical characteristics of the iceberg, e.g., mass and density of the iceberg; 

(iii)  The physical characteristics of the ocean water, e.g., the density and viscosity of ocean 

water. 

Although some of the parameters mentioned above might not be completely independent, the 

parameters related to the geometric characteristics of the iceberg, physical characteristics of the 

iceberg, and physical characteristics of the ocean water could be used to determine the 
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dimensionless groups of iceberg properties, e.g., iceberg drift speed estimation (Stuckey 2008). 

Furthermore, in dimensional analysis, a dependent variable is generally estimated in terms of 

independent variables. A dimensionless expression of the acquired relations then involves a 

dependent parameter, including the dependent variable and other independent parameters 

comprising the independent variables. Several independent variables happen in both the dependent 

and independent parameters. The existence of standard variables in the dependent and independent 

parameters may produce a statistical correlation that cannot be seen between the dependent and 

independent variables of the problem (Mahmood and Siddiqui 1980). 

The iceberg draft (D) was considered as a function of the physical characteristics of the iceberg, 

including the iceberg length (L), iceberg height (H), iceberg width (w), and iceberg mass (M) in 

several fields, analytical, and numerical studies as follows (Barker, Sayed, and Carrieres 2004; 

McKenna et al. 2019; and Stuckey et al. 2021): 

𝐷 = 𝑓1(𝐿, 𝐻,𝑤,𝑀) (7-18) 

Moreover, the density of an iceberg (ρi), the density of seawater (ρsw), seawater viscosity (μsw), 

and gravitational acceleration (g) can affect the iceberg draft as below: 

𝐷 = 𝑓2(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝜌𝑠𝑤 , 𝜇𝑠𝑤, 𝑔) (7-19) 

The iceberg shape factor (Sf) represents the global shape of icebergs, which can affect the 

magnitude of the iceberg draft (Turnbull, King, and Ralph 2018). The shape factor of the 

traveling icebergs is placed into six categories, as demonstrated in Figure 7-3 (Rudkin 2005). 

Thus, equations (7-19) can be written in the following form: 

𝐷 = 𝑓3(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝜌𝑠𝑤, 𝜇𝑠𝑤, 𝑔, 𝑆𝑓) (7-20) 
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Figure 7-3. Shape factors for different icebergs 

 

Assuming that the density, viscosity of the seawater, and gravitational acceleration are constant 

parameters, hence equation (7-20) is rewritten as below: 

𝐷 = 𝑓4(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝑆𝑓) (7-21) 

The dimensional form of equation (7-21) is formed as follows: 

 5 1 2 3 4Π ,Π ,Π ,ΠD f
 

(7-22) 

where Π1, Π2,…, Π4 are dimensionless groups and f5 is a functional symbol based on the 

Buckingham-π theorem. Hence, the dimensionless groups below are written: 

1Π
L

H


 

(7-23) 

Π2 =
𝑤

𝐻
 

(7-24) 

3 3
Π

.i

M

H


 

(7-25) 

4Π fS
 

(7-26) 

Equation (7-21) is then formulated as a function of four dimensionless groups as follows: 

𝐷

𝐻
= 𝑓6 (

𝐿

𝐻
,
𝑤

𝐻
,

𝑀

𝜌𝑖. 𝐻3
, 𝑆𝑓) 

(7-27) 

Tabular Blocky Domed Dry Dock Pinnacle Wedge

Sf=0.5 Sf=0.5 Sf=0.41 Sf=0.15 Sf=0.25 Sf=0.33
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Therefore, the iceberg draft ratio, D/H, is a function of the length ratio (L/H), width ratio (𝑤 𝐻⁄ ), 

the mass ratio (M/𝜌𝑖. 𝐻
3), and iceberg shape factor (Sf). 

 

7.1.2.2. Construction of Dataset 

The study adopted several field observations to analyze the iceberg draft. The key values of 12 

field studies reported by El-Tahan et al. (1985) (38 cases), Woodworth-Lynas et al. (1985) (one 

case), Løset and Carstens (1996) (52 cases), Barker, Sayed, and Carrieres (2004) (14 cases), 

McKenna (2004) (two cases), Sonnichsen et al. (2006) (nine cases), Turnbull et al. (2015) (two 

cases), McGuire et al. (2016) (eight cases), Younan et al. (2016) (29 cases), Talimi et al. (2016) 

(one case), Zhou (2017) (three cases), and Turnbull, King, and Ralph (2018) (two cases) were 

used. The total number of field observations in the present investigation was 161 cases. Table 7-1 

summarizes the current study's key parameters, comprising the field observations' maximum, 

minimum, average, variance, and standard deviation. 

To demonstrate the significant difference between the means of the individual datasets, the T-test 

and the P-value for the datasets were calculated, presuming that the P-value of 0.05 or less is 

statistically significant (Azimi and Shiri 2020), where an alternative hypothesis influences the 

likelihood of the relationship between the observed values. This P-value for the constructed dataset 

was estimated as 0.008, representing that the correlations were statistically significant. 

 

Table 7-1. Summary of the key parameters employed in the present study 

Value D(m) H(m) w(m) M(kg) L(m) Sf 

Max 240 94 408 1.13E+13 499 0.58 

Min 18 3.9 9.672 8317400 34 0.11 
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Ave 88.988 30.956 101.605 1.68E+11 144.522 0.298 

Var. 1696.272 399.389 3733.368 1.14E+24 6546.271 0.011 

Std. 41.186 19.985 61.101 1.07E+12 80.909 0.107 

 

Hence, four dimensionless groups, including length ratio (L/D), width ratio (𝑤 𝐻⁄ ), the mass ratio 

(M/𝜌𝑖 . 𝐻
3), and the iceberg shape factor (Sf) were applied to estimate the iceberg draft ratio (D/H) 

through the LR approach in the present investigation. Figure 7-4 shows the combinations of four 

dimensionless groups introduced to develop the LR models. 

LR is a linear method for the estimation of the relationship between a dependent parameter (D/H) 

and independent parameters (𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,𝑀 𝜌𝑖 . 𝐻
3⁄ , and 𝑆𝑓). The unknown parameters of the LR 

relationship were extracted from the constructed dataset using the LR analysis, and the relationship 

between the dependent and independent variables was determined utilizing a linear predictor 

function. As shown in Figure 7-4, nine LR models, including LR 1 to LR 9, were defined to 

introduce the premium LR models and the most influencing dimensionless groups. The LR 1 

model included all dimensionless groups, while these dimensionless groups were disregarded one 

at a time in LR 2 to LR 5 models. It is worth noting that the LR 6 to LR 7 models function solely 

as one dimensionless group. 

 

Model L /H W /H S f

LR 1

LR 2

LR 3

LR 4

LR 5

LR 6

LR 7

LR 8

LR 9

𝑀/𝜌𝑖𝐻
3
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Figure 7-4. Combinations of four dimensionless groups introduced to develop the LR models 

 

7.1.2.3. Quality of fit 

Several criteria like correlation coefficient (R), root mean square error (RMSE), mean absolute 

percentage error (MAPE), Willmott Index (WI), coefficient of residual mass (CRM), and Akaike 

Information Criteria (AIC) were employed to assess the precision, correlation, and complexity of 

the LR models. The R and WI criteria evaluated the correlation of these LR models. However, the 

RMSE and MAPE indices assessed the precision of these models. Besides, the performance and 

the complexity of the LR models have been evaluated using the WI and AIC value, respectively.  

The proximity of the R and WI criteria to one representing the LR model tended to have a high 

degree of correlation with the values observed. The nearness of the RMSE, MAPE, and CRM 

indices to zero signify the LR model possessed the lowest degree of impreciseness, but the 

complexity of the LR models was not examined through the indices introduced. The Akaike 

Information Criteria (AIC) was utilized to overcome this restriction. It means that the less complex 

LR model had the lowest amount of AIC so that the best LR model might have the lowest degree 

of AIC index and error (RMSE, MAPE, and CRM), with the highest amount of correlation (R and 

WI) (Ahmed et al. 2021): 
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Where Oi, Pi, �̅�𝑖, �̅�𝑖, n, and k are the observational value, the predicted amount, the average 

observational values, the average predicted amount, the number of observations, and the number 

of independent variables in the LR models. 

 

7.1.3. Results and discussion 

The results obtained from the LR models were evaluated by performing a sensitivity analysis. The 

superior LR models and the most influential dimensionless groups were also identified. Error 

analysis and uncertainty analysis were conducted for LR 1 to LR 9. The performance of the 

premium LR model was compared with the previous empirical models in the literature. Ultimately, 

a set of LR relationships was proposed to estimate the iceberg draft for practical applications. 

 

7.1.3.1. Sensitivity analysis 

Figure 7-5 demonstrates the key criteria obtained from the LR 1 to 9 models. Regarding the 

simulation results, the R, AIC, and WI values for the LR 1 model were respectively surmised as 

0.882, 26.701, and 0.946. The LR 1 model estimated the iceberg draft ratio (D/H) by using all 

dimensionless groups, including 𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,𝑀 𝜌𝑖 . 𝐻
3⁄ , and 𝑆𝑓. For the LR 2 model, the shape 

factor (Sf) was a dimensionless group dropped, indicating that this LR model utilized 
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dimensionless groups, 𝐿 𝐻⁄ ,𝑤 𝐻⁄ , and 𝑀 𝜌𝑖 . 𝐻
3⁄ , to approximate the iceberg draft ratio, with the 

RMSE and R values of 1.338 and 28.373. The magnitude of calculated AIC, RMSE, and R criteria 

for the LR 3 model was equaled at 26.922, 1.311, and 0.881, respectively. The LR 3 model was a 

function of 𝐿 𝐻⁄ ,𝑤 𝐻⁄ , and 𝑆𝑓, whereas the mass ratio (M/𝜌𝑖. 𝐻
3) was eliminated to model the 

iceberg draft. The amount of WI and R indices for the LR 4 model was calculated to be 0.941 and 

0.875, respectively. The LR 4 model predicted the iceberg draft in terms of 𝐿 𝐻⁄ ,𝑀 𝜌𝑖 . 𝐻
3⁄ ,

and 𝑆𝑓, while the w/H was removed from the model. Even though the effect of the iceberg length 

ratio (L/H) was excluded in the LR 5 model, the iceberg draft ratio was modeled utilizing other 

factors, such as 𝑤 𝐻⁄ ,𝑀 𝜌𝑖 . 𝐻
3⁄ , and 𝑆𝑓 by this linear regression model. In the current 

investigation, four LR models (LR 6 to LR 9) were developed using just one dimensionless group. 

For instance, the LR 6 model was a function of the iceberg length ratio (L/H), with an AIC and 

RMSE criteria of 30.994 and 1.389. In the LR 7 model, the key input dimensionless group included 

the iceberg width ratio (w/H). The value of CRM, WI, and R for the LR 7 model was respectively 

estimated at 0.0004, 0.930, and 0.858. The iceberg mass ratio (𝑀 𝜌𝑖 . 𝐻
3⁄ ) was used to simulate the 

iceberg draft by the LR 8 model, with the RMSE, R, and AIC of 2.774, 0.040, and 79.328. The LR 

9 was merely fed with the iceberg shape factor (Sf), while the magnitude of the WI and CRM indices 

was reckoned as 0.670 and -0.002, respectively. 
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Figure 7-5. Key criteria obtained from the LR 1 to LR 9 models (a) R (b) RMSE (c) AIC (d) CRM 

(e) WI 

 

The sensitivity analysis showed that the LR 1 model best estimates the iceberg draft ratio. The 

comparison between the iceberg drafts estimated by the LR models with the observational values 

is presented in Figure 7-6. The LR 1 model had the highest correlation, accuracy, and lowest level 

of complexity in predicting the target parameter. 
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The LR 3, LR 2, and LR 4 models were the second, third, and fourth best LR models for estimating 

iceberg draft ratio, followed by LR 6, LR 7, LR 5, LR 9, and LR 8 models, respectively. On the 

other hand, the iceberg length ratio (L/H) was identified as the most significant dimensionless 

group to model the iceberg draft, but the iceberg width ratio (w/H) was situated in second place in 

terms of effectiveness. Furthermore, the third-significant dimensionless group was allocated to the 

iceberg shape factor (Sf) for the simulation of the iceberg draft ratio. The influence of the iceberg 

mass ratio, 𝑀 𝜌𝑖 . 𝐻
3⁄ , was relatively trivial to estimate the iceberg draft. 

 

Figure 7-6. Comparison between the iceberg drafts estimated by the LR models with the 

observational values (a) LR 1 (b) LR 2 (c) LR 3 (d) LR 4 (e) LR 5 (f) LR 6 (g) LR 7 (h) LR 8 (i) 

LR 9 

 

Although there were several discrepancies between the results simulated by the LR 1 model and 

the observational values, this model managed to approximate the iceberg draft. As shown in Figure 
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15-6, the LR 1 model had the highest level of correlation with the field data, but the LR 8 model 

showed the worst performance in estimating the target value.  

 

7.1.3.2. Error analysis 

Figure 7-7 demonstrates the error analysis results obtained from the LR models. For example, 

roughly one-quarter of the iceberg draft estimated by the LR 1 model showed an error of less than 

10% though this amount for the LR 2, LR 3, and LR 4 models was about 20%, 25%, and 22%, 

respectively. Regarding the error analysis, a tiny minority of the iceberg draft simulated by the LR 

5 model possessed an error of between 10% and 20%, and this value for the LR 1 model was 

approximately 24%. Nearly half of the outcomes of the LR 6 and LR 7 models had an error of 

greater than 20% (55%); however, a vast majority of the iceberg drafts predicted by the LR 8 

model contained an error of more than 20% (77%). In addition, the error analysis indicated that 

about 85% of the LR 9 model's results had more than 20% error, while this value for the LR 1 

model was just about 52%. 

In summary, the conducted error analysis proved that the LR 1 model performed the iceberg draft 

well compared with the other LR models; instead, the LR 8 and LR 9 models showed the worst 

performance in terms of error analysis. 
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Figure 7-7. Results of error analysis obtained from (a) LR 1 (b) LR 2 (c) LR 3 (d) LR 4 (e) LR 5 

(f) LR 6 (g) LR 7 (h) LR 8 (i) LR 9 models 
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The error analysis conducted for the LR models demonstrated that the LR 1 model could 

approximate the iceberg draft ratio with a reasonable degree of precision. 

 

7.1.3.3. Uncertainty analysis 

An uncertainty analysis was conducted to appraise the performance of the LR models developed 

in the present investigation. To implement the uncertainty analysis, errors from the LR models (ej) 

were obtained as the difference between the iceberg drafts estimated (Pj) and the observational 

amounts (Oj), as below: 

j j je P O 
 

(7-34) 

The mean (Mean) and the standard deviation (StDev) of these errors were computed through the 

equations below: 
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A particular LR model underestimated the iceberg draft if the sign of the Mean value was negative, 

whereas the positive sign of the Mean reprinted that the LR model had an overestimated 

performance on the iceberg draft. Subsequently, a confidence interval (CI) was generated around 

the error estimated using the Mean, StDev values, and the "Wilson score approach" by disregarding 

the continuity correction. A regular distribution interval rectified as an asymmetric normal 

distribution called the Wilson score interval, was utilized to modify the CI bounds. After that, a 

±1.96Se generated a 95%CI. It should be stated that the width of uncertainty bound (WUB) of 

each single LR model was obtained as below (Azimi, Shiri, and Zendehboudi 2022): 
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 Lower bound upper bound
WUB

2


 

 

(7-37) 

The normal distribution of the CI for the iceberg drafts simulated by the LR models is illustrated 

in Figure 7-8. The LR 1, LR 2, LR 3, and LR 4 models estimated the CI value as (-0.205 to 0.203), 

(-0.208 to 0.210), (-0.205 to 0.205), and (-0.212 to 0.208), respectively. According to the 

uncertainty analysis, the LR 1, LR 3, LR 4, LR 6, and LR 9 models underestimated the iceberg 

draft, with a Mean value of -0.001, -9.046E-06, -0.002, -0.001, and -0.009, respectively. However, 

the LR 2, LR 5, LR 7, and LR 8 models simulated the iceberg draft with an overestimated 

performance. The LR 1 model had the narrowest width of uncertainty bound (WUB=±0.204), 

whereas the widest uncertainty bound belonged to the LR 8 model, where the value of WUB was 

equal to ±0.433. The CI estimated for the LR 5, LR 6, LR 7, LR 8, and LR 9 models were at (0.827 

to 1.274), (-0.218 to 0.216), (-0.221 to 0.225), (-0.431 to 0.435), and (-0.376 to 0.357), 

respectively. 
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Figure 7-8. Normal distribution of the confidence interval for the iceberg drafts simulated by the 

LR models 
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Thus, the uncertainty analysis done for the LR models proved that the premium LR model (LR 1) 

possessed the narrowest width of uncertainty bound, and this model underestimated the iceberg 

draft, with a CI of (-0.205 to 0.203). 

 

7.1.3.4. Comparison with the previous models 

Several empirical models were developed to estimate the iceberg draft by Robe and Farmer (1976) 

(Eq. 7-1), Mognor and Zorn (1979) (Eq. 7-2), El-Tahan and El-Tahan (1982) (Eq. 7-3 and Eq. 15-

4), Hotzel and Miller (1983) (Eq. 7-5), C-CORE (2001) (Eq. 7-6 and Eq. 7-7), Barker, Sayed, and 

Carrieres (2004) (Eq. 7-8 and Eq. 7-9), Sacchetti et al. (2012) (Eq. 7-10 and Eq. 7-11), King et al. 

(2016) (Eq. 7-12), and Stuckey et al. (2021) (Eq. 7-13 and Eq. 7-14). The performance of the 

premium LR model (LR 1) was compared with the empirical models proposed for the constructed 

dataset. The results of key criteria obtained from these empirical models are presented in Table 7-

2. For example, the value of the R index for Eq. (7-1), Eq. (7-2), and Eq. (7-3) were respectively 

equaled 0.526, 0.767, and -0.500. Additionally, for Eq. (7-4), Eq. (7-5), and Eq. (7-6), the WI 

criterion was estimated at 0.859, 0.850, and 0.958, respectively. It is important to note that the 

empirical models were functions of solely one feature of the iceberg, e.g., the iceberg length, 

iceberg height, iceberg width, and iceberg mass; however, the LR 1 model as the superior model 

introduced in the current study managed to simulate the iceberg draft in terms of all iceberg 

features. Amongst the empirical models, Eq. (7-7) had the lowest level of precision and correlation, 

but Eq. (7-10) and Eq. (7-13) showed the highest degree of correlation to predict the iceberg draft. 

It is noteworthy that Eq. (7-5), Eq. (7-6), Eq. (7-8), Eq. (7-9), Eq. (7-10), Eq. (7-11), Eq. (7-13), 
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and Eq. (7-14) surmised the iceberg draft with almost identical performance, while Eq. (7-7) and 

Eq. (7-12) had a similar capability in the estimation of the target parameter. 

 

Table 7-2. Results of key criteria obtained from the empirical models 

Model R RMSE AIC CRM WI 

LR 1 0.882 1.307 26.701 0.0002 0.946 

Eq. (7-1) 0.526 36.589 253.699 -0.066 0.505 

Eq. (7-2) 0.767 96.518 321.522 -0.932 0.351 

Eq. (7-3) -0.500 51.201 277.194 -0.060 0.775 

Eq. (7-4) -0.509 45.921 269.584 0.124 0.859 

Eq. (7-5) 0.769 26.964 232.355 0.057 0.850 

Eq. (7-6) 0.769 26.684 231.628 -0.039 0.958 

Eq. (7-7) 0.330 185.770 367.305 -0.565 0.222 

Eq. (7-8) 0.769 38.301 256.896 -0.137 0.867 

Eq. (7-9) 0.769 28.011 235.020 -0.085 0.895 

Eq. (7-10) 0.770 29.389 238.378 -0.089 0.896 

Eq. (7-11) 0.769 26.517 231.189 0.027 0.863 

Eq. (7-12) 0.333 163.520 358.385 -0.429 0.257 

Eq. (7-13) 0.770 35.917 252.404 0.267 0.674 

Eq. (7-14) 0.768 27.684 234.199 0.071 0.824 

 

As shown, the LR 1 model outperformed the empirical models, meaning that the superior linear 

regression model could simulate the iceberg draft with the highest level of correlation and accuracy 
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and the lowest degree of complexity. Furthermore, the LR 1 model had more generalization 

capability since this model estimated the iceberg draft in a wide range of measurements; instead, 

the empirical models were derived from solely particular circumstances or a specific study area. 

Even though the previous empirical equations were a function of just one parameter, e.g., the 

length, width, height, or mass of icebergs, the influence of all dimensionless groups was considered 

in the LR 1 model. 

It is worth mentioning that remote sensing technology has been widely used to assess different 

aspects of iceberg properties comprising iceberg detection and iceberg trajectory (Lopez-Lopez et 

al. 2021; Braakmann-Folgmann et al. 2022), iceberg drift (Monteban et al. 2020), and iceberg draft 

(Liu et al. 2021). The geometrical properties of the exposed part of the icebergs are obtained from 

remote sensing studies. However, the iceberg draft, which is the underwater portion, cannot be 

estimated directly through satellite images. The current study is to explicitly predict the iceberg 

draft with reasonable accuracy using the above-water properties of the iceberg. 

The significant advantages of the current study, which can facilitate practical solutions to protect 

the subsea infrastructures in actual iceberg grounding events, were summarized as follows: 

(i) The literature review revealed that the dimensionless groups affecting the iceberg draft 

estimation had not been ascertained, which were determined for the first time in this work. These 

dimensionless groups affecting the iceberg draft estimation may be utilized to present additional 

cost-effective and quick solutions in practical applications. 

(ii) Even though several empirical models were suggested in the past by other scholars, these 

models were able to estimate the iceberg draft using merely one parameter, e.g., iceberg length, 

iceberg mass, iceberg height, or iceberg width, and influence of other parameters affecting the 

iceberg draft estimation was disregarded. However, the LR models proposed in the current study 
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predicted the iceberg draft through the above-water parameters of the iceberg, including iceberg 

length, iceberg width, iceberg mass, and iceberg shape factor simultaneously. 

(iii) The analyses performed in this investigation represented the better performance of the explicit 

LR models than prior empirical methods. It means that the premium LR model had the lowest level 

of inaccuracy and complexity along with the highest degree of correlation with the observational 

values compared with the previous methods. 

(iv) The methodology presented in the current investigation may pave the way to achieve robust 

and versatile answers for the iceberg draft prediction. This methodology may preserve a significant 

amount of time and expenses, particularly in the initial phases of the iceberg management projects. 

Therefore, the current study was the first step to identifying the most influencing parameter for the 

iceberg draft estimation, and the obtained results might inspire further investigations in this 

domain. 

 

7.1.4. Conclusion 

In the present investigation, the dimensionless groups affecting the iceberg draft were 

distinguished using the Buckingham-π theorem for the first time. Regarding the dimensionless 

groups detected and using the linear regression (LR) method, nine LR models (LR 1 to LR 9) were 

defined. A comprehensive dataset was constructed to validate the LR model results. For the LR 

models developed, several analyses, including sensitivity analysis, error analysis, and uncertainty 

analysis, were implemented. The performance of the LR models was compared with the previous 

empirical models. The most important findings of this study can be summarized as follows: 
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 Four dimensionless groups comprising the length ratio (L/H), width ratio (w/H), the mass 

ratio (𝑀 𝜌𝑖. 𝐻
3⁄ ), and iceberg shape factor (Sf) were recognized to predict the iceberg 

draft. 

 The best LR model (LR 1) could approximate the iceberg draft by using all dimensionless 

groups introduced. 

 The LR 1 model estimated the iceberg draft with the highest level of correlation 

(R=0.882), the highest degree of precision (RMSE=1.307), and the lowest level of 

complexity (AIC=26.701). 

 The performed sensitivity analysis demonstrated that the iceberg length ratio (L/H) and 

the iceberg width ratio (w/H) had the highest level of effectiveness in modeling the 

iceberg draft. 

 The error analysis showed that almost a quarter of the iceberg draft estimated had an 

error of less than 10%. 

 According to the uncertainty analysis, the superior LR model was biased towards 

underestimating the iceberg draft ratio. 

 The comparison between the LR 1 and the previous models unfolded that the LR 1 model 

outperformed its counterparts. 

 A set of LR models were proposed to simulate the iceberg drafts. 

The proposed dimensionless groups may provide better insight into the key parameter affecting 

the iceberg draft. The outcome of this study can build a way to foster quick and cost-effective 

alternatives to use in the early phases of engineering design projects, where an intuition and 

detailed assessment is required for planning the construction methodology, corresponding 

logistics, and the future scope of precise schemes. 
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Appendix 

In the current investigation, nine LR models (LR 1 to LR 9) were proposed to estimate the iceberg 

draft ratio. The LR-based relationships derived in this study are shown in Table 7-3. It is worth 

noting that the coefficients of the proposed LR models were derived from the Minitab statistical 

software. 

 

Table 7-3. The LR-based relationship proposed to estimate the iceberg draft ratio 

Model Relationship Equation 

LR 1 D/H=-0.159+0.295(L/H)+0.330(w/H)+0.000006(M/ρi.H
3)+3.16(Sf) (7-38) 

LR 2 D/H=0.542+0.309(L/H)+0.367(w/H)+0.000008(M/ρi.H
3) (7-39) 

LR 3 D/H=-0.165+0.298(L/H)+0.322(w/H)+3.30(Sf) (7-40) 

LR 4 D/H=-0.084+0.488(L/H)+0.000005(M/ρi.H
3)+3.58(Sf) (7-41) 

LR 5 D/H=-0.274+0.761(w/H)+0.000007(M/ρi.H
3)+3.52(Sf) (7-42) 

LR 6 D/H=0.759+0.529(L/H) (7-43) 
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LR 7 D/H=0.546+0.824(w/H) (7-44) 

LR 8 D/H=3.85+0.000006(M/ρi.H
3) (7-45) 

LR 9 D/H=-0.260+13.9(Sf) (7-46) 
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Abstract 

Precise estimation of the iceberg draft may significantly reduce the collision risk of deep keel 

icebergs with the offshore facilities comprising the submarine pipelines, wellheads, 

communication cables, and hydrocarbon loading equipment crossing the Arctic shallow waters. 

As such, in this study, the iceberg drafts were simulated using a self-adaptive machine learning 

(ML) algorithm entitled self-adaptive extreme learning machine (Sa-ELM) for the first time, to the 

best of our knowledge. Initially, the parameters governing the iceberg drafts were specified, and 

then nine Sa-ELM models were defined using these parameters. To test and train the Sa-ELM 

models, a comprehensive dataset was constructed, where 60% of the dataset was utilized for model 

training and 40% for model validation. In addition, several hyper-parameters have been optimized 

during the training procedure to obtain the most accurate results. The superior Sa-ELM model and 

the most influencing input parameters were determined by conducting a sensitivity analysis. The 

comparison of the premium Sa-ELM model with the artificial neural network (ANN) and extreme 

learning machine (ELM) models demonstrated that the Sa-ELM model had the highest level of 

accuracy and correlation as well as the lowest degree of complexity. Ultimately, a Sa-ELM-based 

equation was presented to estimate the iceberg draft in practical applications. 

 

Keywords: Artificial neural network, Machine learning, Iceberg Draft, Subsea assets, Sensitivity 

analysis, Self-adaptive evolutionary extreme learning machine, Extreme learning machine
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7.1.5. Introduction 

Determining the iceberg draft in the Arctic and subarctic shallower waters have led to a large 

number of investigations, where the operational and structural integrity of subsea pipelines, 

wellheads, offshore oil loading equipment, and communication cables are likely to threaten by the 

deep iceberg keels. The schematic layout of the iceberg free-floating and iceberg scouring in cold 

waters is demonstrated in Figure 7-9. As seen, the iceberg is in a free-floating situation if the ocean 

depth is greater than the iceberg draft; otherwise, the seafloor is scoured and the seabed soil shear 

resistance causes the soil displacement to extend deeper than the iceberg tip threatening the subsea 

assets, which is called the ice-gouging event. 

 

Figure 7-9. The iceberg free-floating and iceberg scouring schematically 

 

The efficient iceberg management designs and the guaranteed operational integrity of the sea 

bottom-founded infrastructure against the berg attacks in the ice-prone areas demand the 

Sea surface

Subsea 

pipeline Wellhead
Submarine

Communication

cable 

Sea depth

Iceberg length (L)

Iceberg height (H)

Iceberg draft (D)

Subsea assets

Iceberg movement

Scouring Free-floating

Initial seabed



 

622 
 

appropriate iceberg draft appraisal, which may lead to a potential decrease in operating expenses 

and downtime. The side scan sonar mounted on autonomous underwater vehicles (AUVs), and 

remote operating vehicles (ROVs) is currently used for measuring iceberg drafts. However, these 

methods are costly because of needing vessels, experienced crew, expensive logistics, and 

advanced pieces of equipment. The industry is still looking for cost-effective solutions that can 

assess the iceberg draft using the easily measurable exposed parameters. The current study has 

tried to address this need by performing a sensitivity analysis to identify the most influential 

parameters that can be used in ML-based algorithms for draft estimation. Several investigations 

have tended to focus on iceberg characteristics and behavior. For instance, iceberg stability, 

iceberg calving evaluation, iceberg drift, and iceberg draft were assessed in analytical studies, e.g., 

Allaire (1972) analyzed the stability status of various icebergs regarding the sail features. They 

demonstrated that the minimum stable ratio of iceberg width to sail height for tabular, dry dock, 

and dome bergs were 6:1, 4:1, and 1.8:1, respectively. Bass (1980) analytically evaluated the 

stability of icebergs in different configurations. The study highlighted that the volume of the 

underwater section was almost seven times greater than the volume of the above-water section. In 

addition, Brooks (1980) analyzed the stability of theoretical icebergs and provided a hypothesis to 

estimate the iceberg draft. The investigation demonstrated that the draft of icebergs was smaller 

than the length of icebergs. In another study, Hotzel and Miller (1983) assessed the iceberg 

dimensions and supposed that the planimetric section of icebergs was circular, while the length of 

a berg was twice the circle radius. The iceberg draft was estimated in terms of iceberg length by 

using the power-law method. Liang (2001) presented a model to determine the relationship 

between the dynamics and stability of icebergs using the size and shape of bergs. The author 

asserted that the draft and hydrostatic force distribution affected the iceberg's stability. In another 
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study, Barker et al. (2004) evaluated the geometry of iceberg sails and keels. They estimated the 

cross-sectional areas of the berg at different water depth intervals from a particular waterline 

length. To approximate the iceberg draft, a set of models in terms of the iceberg length were 

suggested using the power curve and regression analysis. McKenna (2004) studied the spatial 

correlation between the above-water and below-water sections of the iceberg. The relationships 

between the length, width, height, and draft of icebergs were determined, and the three-

dimensional shape of icebergs was simulated. Stuckey (2008) modeled the iceberg drift speed by 

using the probabilistic approach. The author stated that the above-water dimension, below-water 

dimension, and shape factor of the icebergs impacted the environmental driving forces. McKenna 

and King (2009) simulated the deterioration mechanisms of various icebergs by considering the 

incremental changes in draft, mass, and shape of bergs. The study highlighted that the draft and 

length of icebergs were reduced by decreasing the iceberg mass. In addition, Sacchetti et al. (2012) 

analyzed the features of different icebergs, such as wedged, domed, tabular, and pinnacle and ice 

scouring in the Northeast Atlantic Ocean. The investigation reported that the bimodal distribution 

of the scour depth was observed across the study area. 

Furthermore, iceberg characteristics were documented in the field investigation, e.g., Robe and 

Farmer (1976) measured the drafts of tabular, broken tabular, pinnacle, dry dock, and domed by 

the sonar technology. They correlated the iceberg draft with the iceberg height and proposed a 

regression model for the estimation of the iceberg draft. The International Ice Patrol (IIP) has been 

annually monitoring the characteristics of traveling icebergs in the Atlantic and Arctic Oceans. In 

1987, the IIP reported that the iceberg draft was surmised as 3.95 times the height of a sail. Several 

investigations were performed by the Centre for Cold Ocean Resources Engineering (C-CORE) to 

study the shape, behavior, and dynamics of icebergs over the years. The above-water shape of 
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bergs comprising the blocky, domed, dry dock, tabular, pinnacle, and wedge icebergs were 

reported regarding the standard categories. The iceberg dimensions were recorded using the scan 

sonar technology and marine sextant. The study showed that the iceberg draft was correlated with 

iceberg length (C-CORE, 2001). Dowdeswell and Bamber (2007) examined the keel depths of 

traveling icebergs in Antarctic waters. The authors estimated the depth of the keel utilizing the ice 

thickness and surface elevation. The research concluded that a tiny minority of icebergs in the 

Antarctica and Greenland waters had drafts of greater than 650 m. 

Different numerical models were used to simulate the iceberg features, e.g., King (2012) modeled 

the iceberg's characteristics including the draft, length, and mass through the Monte Carlo 

simulation. The author outlined that the survey of iceberg drafts greater than 150 m was quite 

limited. Turnbull et al. (2015) forecasted the drift trajectory of the traveling icebergs in Northwest 

Greenland using the hindcast simulation. It was revealed that the trajectory of icebergs was 

sensitized to the iceberg drafts. King et al. (2016) performed a field investigation to calculate the 

iceberg rolling rate. The iceberg drafts were estimated through a calving analysis, with a calculated 

standard deviation of draft variations from 19% to 34%. The iceberg drafts corresponded with the 

mass of the icebergs. Talimi et al. (2016) simulated the iceberg-structure interaction using 

computational fluid dynamics (CFD). The modeling results demonstrated that the iceberg was 

shifted upward by almost 10% of the iceberg draft. Turnbull et al. (2018) proposed a model for the 

drift estimation of moving icebergs on the Grand Banks of Newfoundland. This model 

approximated the draft of icebergs roughly 1.3 times more than the real values. 

McKenna et al. (2019) have recently simulated ice scouring on the Grand Banks of Canada by 

using the Monte Carlo method. The iceberg draft alterations were utilized to lessen the size of draft 

variations in this modeling. Most recently, Stuckey et al. (2021) simulated the three-dimensional 
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iceberg shapes by adopting field measurements. The investigation demonstrated that the draft and 

mass of the iceberg were estimated in terms of the iceberg length by utilizing the power curve. 

The determination of objective function and parameters affecting a specific problem using 

machine learning (ML) advancement were widely investigated in prior studies, e.g., Guyon and 

Elisseeff (2003), Ma et al. (2020) Azimi et al. (2023) since the selection of objective functions and 

parameters affecting a problem can play a significant role in improving the simulation performance 

of ML algorithms, e.g., providing a reliable solution, presenting the more cost-effective 

methodology, and giving a better comprehension for generating datasets. 

Despite the wide application of ML technology in the estimation of linear and nonlinear problems 

(Azimi and Shiri 2020a, Mahdianpari et al. 2021, Azimi et al. 2022, 2023), no previous study has 

estimated the iceberg drafts through the ML algorithm so far. To fill this knowledge gap, the 

iceberg drafts were simulated using the artificial neural network (ANN), extreme learning machine 

(ELM), and self-adaptive extreme learning machine (Sa-ELM) in the current study, for the first 

time. Several analyses were performed to ascertain the superior ML models and the most 

significant input parameters to estimate the iceberg draft. 

 

7.1.6. Methodology 

To simulate the iceberg drafts, three ML algorithms comprising the ANN, ELM, and Sa-ELM 

models were employed. More details associated with these ML approaches are provided in the 

next sections. Subsequently, the parameters affecting the iceberg draft are introduced. A 

comprehensive dataset was then constructed to train and validate the ML algorithms. Ultimately, 

a set of statistical criteria were utilized to assess the performance of the ML algorithms.  
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7.1.6.1. Artificial neural networks (ANN) 

ANN is one of the most universally supervised ML algorithms, which is widely utilized to simulate 

linear and non-linear relationships, such as regression and classification problems since this 

method is quite flexible and simple. The main structure of an ANN algorithm consists of at least 

three distinct layers comprising an input layer, a hidden layer, and an output layer. The input 

parameters are embedded within the input layer, while the target parameter, e.g., the iceberg draft, 

is considered in the output layer. The hidden neurons are situated within the hidden layer, where 

the size of this layer is determined by the problem's complexity and desired accuracy. It should be 

noted that there is no particular formula to adjust the number of neurons within the hidden layer, 

thus a trial and error procedure was employed to determine the optimum number of hidden layer 

neurons in the current study (Shahin et al. 2001). The number of hidden layer neurons was initially 

set as one and the magnitude of this hyperparameter was increased to 15, where the optimum 

number of the hidden layer neurons was chosen at 12 for the reason that the proficiency of the 

ANN algorithm was negligibly altered after this amount. In each hidden neuron, both the input 

parameters and their weights are calculated using mathematical operations, and the outcome is 

passed through a transfer function entitled the activation function. The sigmoid function was 

applied for the current architecture because it had better performance in comparison with other 

activation functions. The output value was then computed by randomly assigning the input 

parameters and weights. Subsequently, the performance of the ANN algorithm was evaluated by 

the Mean squared error (MSE) as the loss function in the present study to measure the difference 

between the computed outputs and the target outputs. The weights updating in each epoch using a 

procedure called “model training” which has been defined as the backpropagation algorithm, 
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where the Levenberg-Marquardt (LM) algorithm was selected as the model training approach and 

the number of epochs was set as 5000 in this study. 

 

7.1.6.2. Extreme learning machine (ELM) 

ELM as a single-layer feed-forward neural network (SLFFNN) has been introduced by Huang et 

al. (2004) to estimate various non-linear and linear problems. An ELM algorithm consists of three 

different layers, including the input layer, the hidden layer, and the output layer. The input 

parameters governing the iceberg draft were assigned to the input layer, whereas the iceberg draft 

value as the output parameter was considered as the output layer. The optimal number of the hidden 

layer neurons was selected based on a trial and error process in this study. It means that the initial 

number of neurons within the hidden layer was regarded at one and this hyperparameter was 

incremented one at a time until 35 although the optimum value of the hidden layer neurons was 

set as 30 once the ELM simulation demonstrated the best performance. The input weights were 

determined randomly though the output weights were analytically obtained by using a predefined 

training procedure; as a result, the training process speed of the ELM algorithm was fast. The 

weights and biases of the input parameters in the ELM model were nonlinearly transformed along 

with an activation function, where the sigmoid was chosen for the ELM structure since this 

activation function had a better capability in comparison with its counterparts. It should be noted 

that the coefficients connecting the neurons in the hidden layer to the neurons in the output layer 

were calculated by minimizing the error using the Moore-Penrose generalized inverse matrix. 

 

7.1.6.3. Self-Adaptive Extreme Learning Machine (Sa-ELM) 
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Although the ELM model possessed a reasonable performance; however, the manual selection of 

the optimal number of hidden neurons might affect the simulation results. As another downside of 

the ELM model, the input parameters ought to be dimensionless in practice (Azimi and Shiri 

2021a). To solve these issues, the ELM and differential evolution (DE) algorithms were combined, 

and then the Sa-ELM algorithm was developed to simulate the iceberg draft in the current 

investigation. The DE, as a powerful optimization algorithm, had a high convergence speed and 

an automatic detection-derivation mechanism. The DE algorithm uses four main steps comprising 

initialization, mutation, crossover, and selection to simulate the iceberg drafts (Storn and Price 

1997). The Sa-ELM flowchart applied in the present study is shown in Figure 7-10. In the Sa-ELM 

approach, the number of hidden neurons was optimized by adopting the self-adaptive differential 

evolution algorithm. In the training process, the control coefficients in the DE algorithm and the 

strategies for trial vector generation were adjusted by a self-adaptive method, meaning that the 

output weights were determined using the ELM algorithm but the input weights and biases of the 

hidden neurons were tuned utilizing the DE tool. The Sa-ELM algorithm simulated the iceberg 

drafts using the major phases, including the initialization, output weights, mutation and crossover, 

and evaluation (Azimi and Shiri 2021a). 
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Figure 7-10. Sa-ELM flowchart applied in the present study 

 

7.1.6.4. Iceberg draft 

The iceberg draft (D) was assumed as a function of the physical characteristics of the iceberg, 

comprising the iceberg length (L), iceberg height (H), iceberg width (w), iceberg mass (M) in 

several fields, analytical, and numerical studies in the form below (Barker et al. 2004; McKenna 

et al. 2019; and Stuckey et al. 2021): 

𝐷 = 𝑓1(𝐿, 𝐻,𝑤,𝑀). (7-47) 

Furthermore, the density of an iceberg (𝜌𝑖), the density of seawater (𝜌𝑠𝑤), seawater viscosity 

(𝜇𝑠𝑤), and gravitational acceleration (𝑔) may influence the iceberg draft as follows: 

𝐷 = 𝑓2(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝜌𝑠𝑤 , 𝜇𝑠𝑤, 𝑔) (7-48) 
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The iceberg shape factor (Sf) signifies the global shape of icebergs, which can affect the magnitude 

of the iceberg draft (Turnbull et al. 2018). The shape factor of the traveling icebergs is considered 

universally into six categories as illustrated in Figure 7-11 (Rudkin 2014). Hence, equation (7-48) 

can be stated as below: 

𝐷 = 𝑓3(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝜌𝑠𝑤, 𝜇𝑠𝑤, 𝑔, 𝑆𝑓) (7-49) 

 

Figure 7-11. Shape factors for different icebergs 

 

It is assumed that the density along with the viscosity of the seawater is constant and the value of 

gravitational acceleration can be regarded as a constant value; as a result, equation (7-49) can be 

rewritten as follows: 

𝐷 = 𝑓4(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝑆𝑓). (7-50) 

The dimensional form of equation (7-50) is as below: 

𝐷 = 𝑓5(Π1, Π2, Π3, Π4) (7-51) 

here, Π1, Π2,…, Π4 are dimensionless groups and f5 is a functional symbol based on the 

Buckingham-π theorem. Thus, the dimensionless groups below can be calculated as: 

Π1 =
𝐿

𝐻
 

(7-52) 

Tabular Blocky Domed Dry Dock Pinnacle Wedge

Sf=0.5 Sf=0.5 Sf=0.41 Sf=0.15 Sf=0.25 Sf=0.33
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Π2 =
𝑤

𝐻
 

(7-53) 

Π3 =
𝑀

𝜌𝑖 . 𝐻3
 

(7-54) 

Π4 = 𝑆𝑓 (7-55) 

Equation (7-51) is then formulated as a function of four dimensionless groups as follows: 

𝐷

𝐻
= 𝑓6 (

𝐿

𝐻
,
𝑤

𝐻
,

𝑀

𝜌𝑖. 𝐻3
, 𝑆𝑓) 

(7-52) 

Therefore, 𝐷 𝐻⁄  as the iceberg draft ratio is a function of the length ratio (𝐿 𝐻⁄ ), width ratio (𝑤 𝐻⁄ ), 

the mass ratio (𝑀 𝜌𝑖. 𝐻
3⁄ ), and iceberg shape factor (𝑆𝑓). Subsequently, the ML models applied in 

the current investigations were fed with the input parameters in equation (7-52). 

 

7.1.6.5. Construction of Dataset 

Several field observations were adopted to analyze the iceberg draft. The key values of 12 field 

studies applied in the present work are tabulated in Table 7-4. 

 

Table 7-4. The studies applied in the present work 

No. Study Number of reported cases Type of Study 

1 El-Tahan et al. (1985) 38 Documentation 

2 Woodworth-Lynas et al. (1985) one Analytical 

3 Løset and Carstens (1996) 52 Field 

4 Barker et al. (2004) 14 Analytical 

5 McKenna (2004) 2 Analytical 
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6 Sonnichsen et al. (2006) 9 Documentation & 

analytical 

7 Turnbull et al. (2015) 2 Analytical 

8 McGuire et al. (2016) 8 Field 

9 Younan et al. (2016) 29 Field 

10 Talimi et al. (2016) 1 CFD 

11 Zhou (2017) 3 Autonomous Underwater 

Vehicle (AUV) 

12 Turnbull et al. (2018) 2 Field & numerical 

 

Table 7-5 also tabulates a summary of the key parameters employed in the present study 

comprising the maximum, minimum, average, variance, and standard deviation of the field 

observations. To demonstrate whether a population is statistically significant, the t-test is 

performed and then the P-value is calculated. The t-test has a probability called P-value stemming 

from the sample of the population that happened by chance. The P-values range from 0% to 100% 

and the low P-values signify the applied dataset has not happened by chance. The T-test and the 

P-value for the dataset were calculated, presuming that the P-value of 0.05 or less is statistically 

significant (Azimi and Shiri 2020b), where the likelihood of the relationship between the observed 

values is influenced by an alternative hypothesis. This P-value for the constructed dataset was 

estimated as 0.008, representing that the correlations were statistically significant. 

 

Table 7-5. Summary of the key parameters employed in the present study 

Value D(m) H(m) w(m) M(kg) L(m) Sf 
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Max 240 94 408 1.13E+13 499 0.58 

Min 18 3.9 9.672 8317400 34 0.11 

Ave 88.988 30.956 101.605 1.68E+11 144.522 0.298 

Var. 1696.272 399.389 3733.368 1.14E+24 6546.271 0.011 

Std. 41.186 19.985 61.101 1.07E+12 80.909 0.107 

 

Hence, the dimensionless parameters in Eq. (16-10) were applied to estimate the iceberg draft ratio 

through the ML models. Figure 7-12 demonstrates the combinations of four dimensionless groups 

introduced to define the ML models. As seen, to introduce the premium Sa-ELM models and the 

most influencing input parameters, nine Sa-ELM models, including Sa-ELM 1 to Sa-ELM 9 were 

defined. The Sa-ELM 1 model included all dimensionless groups, whilst these dimensionless 

groups were disregarded one at a time in Sa-ELM 2 to Sa-ELM 5 models. It is worth noting that 

the Sa-ELM 6 to Sa-ELM 9 models were function of solely one input parameter. 
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Figure 7-12. Combination of input parameters to develop the Sa-ELM models 

 

It is worth noting that the constructed database contains 161 case studies, where 97 cases (i.e., 

60%) were randomly separated for the training and 64 cases (i.e., 40%) were randomly selected 

for testing of the models. A similar size dataset has been successfully used in the literature to 

simulate the regression problems with sufficient reliability for training and testing the ML models 

(e.g., Ebtehaj et al., 2015; Azimi et al., 2018; Walton et al., 2019). Also, the results of a “Goodness 

to fit” analysis that will be further discussed in the next section have shown the sufficiency of the 

size of the constructed database. 

 

7.1.6.6. Goodness of fit 

In this study, a set of criteria such as correlation coefficient (R), root mean square error (RMSE), 

mean absolute percentage error (MAPE), Willmott Index (WI), coefficient of residual mass (CRM), 
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and Akaike Information Criteria (AIC) were utilized to evaluate the precision, correlation, and 

complexity of the Sa-ELM models. 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(7-53) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(7-54) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑃𝑖 − 𝑂𝑖

𝑂𝑖
|

𝑛

𝑖=1
 

(7-55) 

𝑊𝐼 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (|𝑃𝑖 − �̅�| + |𝑂𝑖 − �̅�|)2𝑛
𝑖=1

 
(7-56) 

𝐶𝑅𝑀 =
∑ 𝑂𝑖

𝑛
𝑖=1 − ∑ 𝑃𝑖

𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 
(7-57) 

𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(7-58) 

where, Oi, Pi, �̅�, �̅�, n, and k are respectively the observational value, the predicted amount, the 

average observational values, the average predicted amount, the number of observations, and the 

number of independent variables in the Sa-ELM models. The proximity of the R and WI criteria to 

one showing the Sa-ELM model tended to have a high degree of correlation with the observed 

values. The closeness of the RMSE, MAPE, and CRM indices to zero representing the Sa-ELM 

model possessed a high degree of accuracy; however, the complexity of the Sa-ELM models was 

not examined through the indices applied. To overcome this restriction, the Akaike Information 

Criteria (AIC) was used. In other words, the less complex Sa-ELM model had the lowest amount 

of AIC, so the best Sa-ELM model might have the lowest degree of AIC index and error (RMSE, 

MAPE, and CRM), with the highest amount of correlation (R and WI). 
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7.1.7. Results and discussion 

Through the implementation of several defined scenarios, the optimal number of hidden layer 

neurons and the best activation function within the Sa-ELM architecture has been selected in this 

study. In the next step, several analyses, such as sensitivity analysis, error analysis, and uncertainty 

analysis are carried out to detect the superior Sa-ELM model and the most effective input 

parameters. For this purpose, the results of the NN-based models in the testing mode are analyzed. 

The best Sa-ELM model is compared with the ELM and ANN algorithms. Eventually, a Sa-ELM-

based equation is presented to estimate the iceberg draft. 

 

7.1.7.1. Number of hidden neurons (NHN) 

The performance of the neural network-based models alters by changing the number of neurons 

within the hidden layer, signifying that finding the optimum number of hidden layer neurons 

(NHN) plays an important role in the precision and complexity of the applied neural-network-

based algorithm (Sattar et al. 2019 and Azimi and Shiri 2021a). The variation of the Sa-ELM 

algorithm performance regarding the NHN parameter against the determined accuracy assessment 

indices is depicted in Figure 7-13. In the present study, the NHN was initially taken as one and 

this parameter was increased to eight in each step. 
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Figure 7-13. Variation of the Sa-ELM algorithm performance regarding the NHN parameter 

against the statistical criteria calculated (a) R (b) RMSE (c) AIC (d) WI 

 

As shown in Figure 7-13, when the NHN was assumed as one, the R, WI, and AIC indices were 

obtained at 0.708, 0.749, and 25.159, respectively. The best performance of the Sa-ELM model 

was achieved once the NHN value was set to five, with the AIC and R criteria of 18.488 and 0.858. 

By increasing the NHN value, the accuracy and correlation of the Sa-ELM model have been 

significantly decreased. For instance, the value of RMSE and WI indices were computed to be 

2.159 and 0.802 for the Sa-ELM model with eight neurons in its hidden layer. As such, the optimal 

NHN in the Sa-ELM structure for the simulation of the iceberg draft was set to 5 in this study. 
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Using a nonlinear transformation, both the input variables (e.g., weights and biases) are conveyed 

through an activation function in the neural network-based architecture (Hertz 2018). In the Sa-

ELM structure applied, six activation functions, including the hyperbolic tangent (Tanh), the 

triangular basis (Tribas), the radial basis (Radbas), the hard limit (Hardlim), the sigmoid (Sig), and 

the sinusoidal (Sin) were examined for the simulation of the iceberg draft. Figure 7-14 displays 

the comparison between the applied activation functions in this study.  
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Figure 7-14. Comparison between the applied activation functions (a) R (b) RMSE (c) AIC (d) 

CRM (e) WI 
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The value of the AIC index for the Tanh, Sin, and Radbas functions was estimated at 26.037, 

44.187, and 40.119, respectively. As seen in Figure 7-14, the Sig activation function presented the 

best performance for modeling the iceberg draft (R=0.858, WI=0.878, and AIC=18.488). 

Regarding the simulation results, the Tribas function represented the worst performance in order 

to estimate the iceberg draft, with the RMSE calculated at 4.200. Hence, the Sig was selected as 

the best activation function to predict the target parameter in the current work. 

 

7.1.7.3. Sensitivity analysis 

Figure 7-15 depicts the comparison between the statistical indices calculated for Sa-ELM 1 to Sa-

ELM 9. The Sa-ELM 1 model was a function of all input parameters, and the influence of each 

input was disregarded in the Sa-ELM 2 to Sa-ELM 5 models one at a time. The superior Sa-ELM 

model in the estimation of the iceberg draft was identified by the evaluation of the Sa-ELM 2 to 

Sa-ELM 5 models. In order to determine the effectiveness level of each input parameter in the 

prediction of the iceberg draft (D/H), sensitivity analysis was conducted by feeding only one input 

parameter into  the Sa-ELM 6, Sa-ELM 7, Sa-ELM 8, and Sa-ELM 9 models, i.e., 𝐿 𝐻⁄ , 𝑤 𝐻⁄ ,

𝑀 𝜌𝑖 . 𝐻
3, and 𝑆𝑓⁄ , respectively. 
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Figure 7-15. Comparison between the statistical indices calculated for the Sa-ELM 1 to Sa-ELM 

9 (a) R (b) RMSE (c) AIC (d) CRM (e) WI 

 

The scatter plots of the Sa-ELM 1 to Sa-ELM 9 are displayed in Figure 7-16. According to the 

simulation results, the Sa-ELM 3 model estimated the iceberg draft with a low degree of 

complexity along with a high level of correlation and accuracy, meaning that the value AIC, R, and 

RMSE indices for the Sa-ELM 3 were obtained as 11.155, 0.902, and 1.120, respectively. In 
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addition, the iceberg draft values were predicted using the 𝐿 𝐻⁄ ,𝑤 𝐻⁄ , and 𝑆𝑓 inputs by the Sa-

ELM 3 model, and the impact of iceberg mass ratio ( 𝑀 𝜌𝑖. 𝐻
3⁄ ) was eliminated for this model. 

The sensitivity analysis demonstrated that Sa-ELM 2 was the second-best model for the simulation 

of iceberg draft, with an RMSE of 1.351. For Sa-ELM 2, the effect of the iceberg shape factor (𝑆𝑓) 

was ignored and this model predicted the target parameter by means of 𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,

and  𝑀 𝜌𝑖. 𝐻
3⁄ . The Sa-ELM 1 model, the third-best model, forecasted the iceberg draft by using 

all inputs. For the Sa-ELM 1 model, the WI and CRM values were equal to 0.878 and 0.143, 

respectively. The influence of the iceberg width ratio (𝑤 𝐻⁄ ) was dropped for the fourth-best model 

(Sa-ELM 4), with an AIC computed of 18.601. Although Sa-ELM 5 modeled the iceberg draft 

through 𝑤 𝐻⁄ ,𝑀 𝜌𝑖. 𝐻
3⁄ , and 𝑆𝑓, the effectiveness of the iceberg length ratio (𝐿 𝐻⁄ ) was 

removed, where the value of RMSE and R criteria for this model was respectively calculated at 

1.482 and 0.832. 

Amongst the Sa-ELM 6 to Sa-ELM 9 models, the Sa-ELM 6 model, which is a function of 𝐿 𝐻⁄ , 

has a better performance compared to other models. As a result, the iceberg length ratio was the 

most important input parameter to simulate the iceberg draft. It is worth noting that the 

overwhelming majority of studies estimating iceberg drafts through monitoring the above-water 

features of icebergs have used the iceberg length as the first influential parameter to predict the 

draft (Hotzel and Miller 1983; C-CORE 2001; Barker et al. 2004; Sacchetti et al. 2012; Stuckey et 

al. 2021). In the current study, the iceberg width ratio (𝑤 𝐻⁄ ) and the iceberg mass ratio 

( 𝑀 𝜌𝑖 . 𝐻
3⁄ ) were identified as the second and third most influential parameters for determining 

the iceberg draft. This is in agreement with several investigations in the literature that have 

revealed that the iceberg width and iceberg mass are amongst the key governing parameters in the 

iceberg draft estimation (Mognor and Zorn 1979; King et al. 2016). 
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Figure 7-16. Scatter Plots of Sa-ELM 1 to Sa-ELM-9 

 

Ultimately, the performed sensitivity analysis highlighted that the influence of the iceberg shape 

factor (Sf) in the prediction of the draft was insignificant. These findings are in agreement with 

physical fundamentals. The length and width are the dimensions both contributing to the iceberg's 
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volume, mass, weight, and draft, consequently. These dimensions can be used for draft estimation 

by aircraft, vessels, and satellites. The shape factor is a dimensionless parameter, which depends 

on the simplified shape of the iceberg and the governing convective heat transfer law applicable 

across the thin boundary layer over the keel, which is more suitable for predominantly flat or 

axisymmetric icebergs (Shipilova et al. 2022). The shape factor for irregular icebergs that are 

widely found in the hired database carries large uncertainties that make it insignificant in the 

determination of the draft. As the shape factors are further developed in the literature and 

incorporate more complicated characteristics such as flow separation effects, the current type of 

studies is suggested to be re-conducted to re-assess the significance of this parameter. 

 

7.1.7.4. Error analysis 

Table 7-6 shows the error analysis results for the Sa-ELM models. In this table, the percentage 

cumulative errors from 2% to 20% for the Sa-ELM models are tabulated. Regarding this error 

analysis, almost a quarter of iceberg drafts estimated by the Sa-ELM 3 model possessed an error 

of less than 12%, while about half of the results from this model showed an error of less than 18%. 

On the other hand, more than 60% of the Sa-ELM 3 model’s outcomes comprised an error of 

smaller than 20%. As shown, the Sa-ELM 2 and Sa-ELM 4 models demonstrated a similar 

performance for the estimation of the iceberg draft. For instance, approximately 46% of iceberg 

drafts predicted by these models had an error of less than 20%. Roughly one-third of the Sa-ELM 

1 and Sa-ELM 7 models’ results had an error of less than 14%. About 40% of results simulated by 

the Sa-ELM 5 and Sa-ELM 6 models included an error of smaller than 16%. Based on the error 

analysis, Sa-ELM 9 displayed the worst performance for modeling the iceberg drafts, where just 

about one-fifth of the results provided by the Sa-ELM 9 model had an error of less than 20%. 
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Table 7-6. Results of the percentage cumulative errors from 2% to 20% for the Sa-ELM models 

(%) 

Cumulative 

error (%) 

2 4 6 8 10 12 14 16 18 20 

Sa-ELM 1 4.69 7.81 10.94 10.94 15.63 23.44 28.13 34.38 40.63 43.75 

Sa-ELM 2 3.13 4.69 6.25 12.50 18.75 28.13 31.25 34.38 42.19 46.88 

Sa-ELM 3 4.69 7.81 10.94 17.19 23.44 25.00 29.69 45.31 51.56 60.94 

Sa-ELM 4 3.13 6.25 9.38 20.31 26.56 31.25 43.75 45.31 46.88 46.88 

Sa-ELM 5 3.13 6.25 9.38 14.06 17.19 26.56 35.94 40.63 46.88 53.13 

Sa-ELM 6 3.13 6.25 15.63 18.75 25.00 28.13 37.50 42.19 50.00 57.81 

Sa-ELM 7 4.69 10.94 12.50 15.63 20.31 26.56 32.81 40.63 43.75 48.44 

Sa-ELM 8 0.00 7.81 10.94 14.06 17.19 20.31 26.56 34.38 43.75 50.00 

Sa-ELM 9 0.00 3.13 4.69 4.69 7.81 7.81 12.50 12.50 17.19 21.88 

 

7.1.7.5. Uncertainty analysis 

Uncertainty is inherent in machine learning for predictive modeling. There can be many sources 

of uncertainty in an ML project, including variance in the specific data values, the sample of data 

collected from the domain, and the imperfect nature of any models developed from such data. 

Therefore, to examine the efficiency of the Sa-ELM models, an uncertainty analysis was carried 

out. To do this, errors from the Sa-ELM model (𝑒𝑗) were calculated as the difference between the 

iceberg drafts predicted (𝑃𝑗) and the observed amounts (𝑂𝑗) as follows: 

𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (7-59) 
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The mean errors (Mean) and the standard deviation (StDev) values of the errors were obtained 

by the following equations: 

Mean =
1

𝑛
∑ 𝑒𝑗

𝑛

𝑗=1
 

(7-60) 

StDev = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(7-61) 

A certain Sa-ELM model underestimated the iceberg draft if the sign of the Mean value was 

negative; however, the positive sign of the Mean reprinted that the Sa-ELM model possessed an 

overestimated performance on the iceberg draft. In addition, a prediction interval (PI) was 

generated around the error values using the Mean, StDev values, and the “Wilson score approach” 

by disregarding the continuity correction. A normal distribution interval rectified as an asymmetric 

normal distribution, entitled the Wilson score interval, was employed to modify the PI bounds; as 

a result, a ±1.96Se produced a 95% of PI (95%PI). It is worth mentioning that the width of 

uncertainty bound (WUB) of the Sa-ELM model was computed as below (Azimi and Shiri 2021b): 

WUB = ±
(Lower bound − upper bound)

2
 

(7-62) 

Table 7-7 and Figure 7-17 show the uncertainty analysis results from the Sa-ELM 1 to Sa-ELM 

models. According to the uncertainty analysis performed, all Sa-ELM models overestimated the 

iceberg drafts. Among the Sa-ELM 1 to Sa-ELM 5 models, Sa-ELM 3 created the narrowest 

uncertainty bound, whereas the widest uncertainty bound was calculated for the Sa-ELM 4 model. 

 

Table 7-7. Results of uncertainty analysis for Sa-ELM models 

Model Mean StDev WUB 95%PI 

Sa-ELM 1 0.553 1.360 ±0.340 0.213 to 0.893 
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Sa-ELM 2 0.266 1.335 ±0.334 -0.068 to 0.599 

Sa-ELM 3 0.181 1.114 ±0.279 -0.098 to 0.459 

Sa-ELM 4 0.295 1.446 ±0.361 -0.066 to 0.656 

Sa-ELM 5 0.496 1.408 ±0.352 0.144 to 0.847 

Sa-ELM 6 0.135 1.027 ±0.257 -0.121 to 0.392 

Sa-ELM 7 0.104 1.244 ±0.311 -0.207 to 0.414 

Sa-ELM 8 0.21 1.583 ±0.396 -0.186 to 0.605 

Sa-ELM 9 0.271 2.413 ±0.603 -0.332 to 0.874 

 

 

Figure 7-17. Uncertainty analysis results from the Sa-ELM 1 to Sa-ELM 9 models variations of 

Mean against estimates of WUB (a), St Dev (b), Upper and Lower bounds of 95% PI (c, d) 

 

7.1.7.6. Comparison with ELM and ANN 
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The capability of Sa-ELM 3, as the best model in the present study, to simulate the iceberg draft 

has been compared to the proficiency of other neural network-based models comprising the ELM 

and ANN algorithms. Figure 7-18 compares the performance of the Sa-ELM, ELM, and ANN 

models in the estimation of the iceberg draft. The value of the correlation coefficient for the Sa-

ELM, ELM, and ANN models was calculated at 0.902, 0.896, and 0.746, whilst the AIC index for 

these models equaled 11.116, 13.082, and 25.346, respectively. As a result, the Sa-ELM model 

had higher precision and correlation along with a lower complexity to predict the iceberg draft. 

This means that the Sa-ELM method outperformed other neural network-based algorithms for the 

simulation of the iceberg draft. 

 

Figure 7-18. (a) Performance comparison of Sa-ELM, ELM, and ANN (b) scatter plot of the Sa-

ELM, ELM, and ANN 

 

The general form of the Sa-ELM formula to estimate the target parameter is written as: 

𝜂 = [
1

1 + 𝑒𝑥𝑝(𝐼𝑛𝑊 × 𝐼𝑛𝑉 × 𝐵𝐻𝐼)
]
𝑇

× 𝑂𝑢𝑡𝑊 
(7-63) 

where, the 𝐼𝑛𝑊, 𝐼𝑛𝑉, 𝐵𝐻𝐼, and 𝑂𝑢𝑡𝑊 are the matrix of input weight, the matrix of input 

parameters, the matrix of bias of hidden layer, and the matrix of output weights, respectively. In 
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this study, the Sa-ELM 3, which was a function of the iceberg length ratio (L/H), the iceberg width 

ratio (w/H), and the iceberg shape factor (Sf) has been recognized as the premium model to predict 

the iceberg draft. The matrices of Sa-ELM 3 to approximate the iceberg draft is formulated as 

follows: 

𝐼𝑛𝑉 = [

𝐿/𝐻
𝑤/𝐻
𝑆𝑓

] , 𝐵𝐻𝐼 =

[
 
 
 
 

0.260
−0.071
−0.116
0.483

−0.247]
 
 
 
 

, 𝐼𝑛𝑊 =

[
 
 
 
 

0.444 −0.492 0.694
0.080 0.568 −0.467

−0.554
−0.465
−0.029

−0.265
0.216
0.748

0.767
0.574
0.841 ]

 
 
 
 

, 𝑂𝑢𝑡𝑊 =

[
 
 
 
 
−6.297
−31.396
40.934

−26.879
46.468 ]

 
 
 
 

  (7-64) 

Therefore, Sa-ELM 3 is better able to simulate the iceberg draft with reasonable proficiency and 

the highest degree of correlation accuracy compared to other neural network-based methods. The 

iceberg length ratio (L/H) and iceberg width ratio (w/H) were identified as the most important input 

parameters to simulate the iceberg draft using the Sa-ELM algorithm. 

 

7.1.8. Conclusion 

In the present investigation, the iceberg drafts were modeled by a self-adaptive machine learning 

algorithm entitled “self-adaptive extreme learning machine” (Sa-ELM). In the first step, the 

parameters governing the iceberg draft were recognized and nine Sa-ELM models were developed 

by using these parameters. To train and test these ML models, a comprehensive dataset was 

constructed, where 60% of the data were employed for the training of the ML models and 40% for 

validation. An optimized structure for the Sa-ELM algorithm was obtained, meaning that the 

optimal number of hidden layer neurons (NHN) and the best activation function have been 

determined for this algorithm. By defining different scenarios, the premium Sa-ELM model and 

the most important input parameters affecting the iceberg draft were introduced. The proficiency 

of the Sa-ELM was compared to the ELM and ANN approaches. A Sa-ELM-based equation was 
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finally presented for the estimation of the iceberg draft for practical applications. The most 

important findings of this study are summarized as: 

 The optimum NHN for the Sa-ELM architecture was chosen at 5 since the applied 

algorithm demonstrated the best performance. 

 The sigmoid function showed an excellent outcome to model the iceberg draft in 

comparison with other activation functions. 

 The Sa-ELM 3 is a function of 𝑤 𝐻⁄ ,𝑀 𝜌𝑖 . 𝐻
3⁄ , and 𝑆𝑓 input parameters were identified 

as the best ML model to predict the iceberg draft. 

 The sensitivity analysis proved that the iceberg length ratio (L/H) and iceberg width ratio 

(w/H) had a remarkable influence to model the iceberg drafts using the Sa-ELM 

algorithm. 

 The performed error analysis indicated that almost 60% of the iceberg draft estimated by 

the Sa-ELM 3 model had an error of less than 20%. 

 Regarding the uncertainty analysis, the Sa-ELM 3 model overestimated the iceberg 

drafts. 

 The Sa-ELM 3 model simulated the iceberg drafts with better performance in comparison 

with the ELM and ANN methods, signifying that the Sa-ELM 3 had the highest degree of 

precision, correlation, and simplicity compared to its counterparts. 

The superior Sa-ELM model demonstrated a reasonable generalization ability in the iceberg draft 

estimation. The model was trained and validated through a comprehensive dataset, comprising the 

most important field studies in this area. Therefore, the results obtained from this model are 

sufficiently general to apply to other independent draft prediction scenarios. 
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Although the current work was the first application of the ML advancement for the simulation of 

the iceberg draft, the provided results exhibited that the ML algorithms can pave the way to present 

alternative approaches to preserve the time and expenses of iceberg management projects. For 

future studies, it is recommended to collect more field measurements using the underwater survey 

facilities to improve the model performance and validate against a wider dataset. 
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8. Chapter 8 

 

Prediction of Iceberg Draft using ML algorithms 

 

This chapter includes two sections as follows: 

Section 1: Generalized Structure of the Group Method of Data Handling for Modeling Iceberg 

Drafts 

Section 2: Iceberg Draft Prediction using Gradient Boosting Regression Algorithm 

Section 3: Iceberg Draft Evaluation through Robust Tree-Based Machine Learning Algorithms 

Section 4: Iceberg Drafts Assessment using Decision Tree Regression (DTR), Artificial Neural 

Network (ANN), and Support Vector Regression (SVR) algorithms 
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Section 1 

 

Generalized Structure of the Group Method of Data Handling for Modeling 

Iceberg Drafts 
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Abstract 

The iceberg draft prediction is vital to mitigate the collision risk of deep keel icebergs with the 

seafloor-founded infrastructures, including the subsea pipelines, wellheads, hydrocarbon loading 

equipment, and communication cables crossing the Arctic areas (e.g., the Grand Bank of Canada, 

Beaufort Sea, or the Caspian Sea), since the traveling icebergs may gouge the ocean floor and the 

physical and operational integrity of the submarine structures would be threatened. In this study, 

the iceberg drafts were simulated using the generalized structure of the group method of data 

handling (GS-GMDH) algorithm for the first time. The parameters affecting the iceberg drafts 

were determined, and five GS-GMDH models comprising GS-GMDH 1 to GS-GMDH 5 were 

developed utilizing those parameters governing. A dataset was generated, and the GS-GMDH 

models were trained through 60% of the data, the rest of the data (i.e., 40%) were considered for 

the GS-GMDH models’ validation. By defining different scenarios, the most accurate GS-GMDH 

model and the most important input parameters were identified. The sensitivity analysis 

demonstrated that the iceberg width ratio (𝑤 𝐻⁄ ) and the iceberg shape factor (𝑆𝑓) were identified 

as the most influencing input parameters. The comparison between the performance of the 

premium GS-GMDH model and the group method of data handling (GMDH), artificial neural 

network (ANN) algorithms, and the empirical models proved that the GS-GMDH model simulated 

the iceberg drafts with the highest level of precision and correlation along with the lowest degree 

of complexity. Based on the partial derivative sensitivity analysis (PDSA), the magnitude of 

iceberg drafts grew by increasing the value of the iceberg width and iceberg length. Ultimately, a 

GS-GMDH-based equation was presented to estimate the iceberg drafts for practical applications, 

particularly in the early stages of iceberg management projects and engineering designs. 
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8.1.1. Introduction 

Although the Arctic region has provided approximately 25% of the natural gas and 10% of the 

crude oil across the world, about 22% of the planet's undiscovered hydrocarbons are located in this 

ice-prone area. (WWF Arctic Programme). The recent offshore oil and gas loading facilities (e.g., 

subsea pipelines, wellheads, and communication cables) developed in the Arctic area have led to 

a considerable awareness of the iceberg draft approximation, where deep keel icebergs may plow 

the ocean floor; as a result, the operational integrity of these submarine infrastructures may be 

threatened in the shallower waters (Bruce et al. 2016; Nematzadeh and Shiri 2020). The iceberg 

free-floating and iceberg scouring in the Arctic waters are schematically displayed in Figure 8-1. 

As seen, if the ocean depth is deeper than the iceberg draft, the traveling iceberg is in free-floating 

condition; however, the iceberg tip would gouge the seafloor, which is called the ice-gouging 

problem. 

 

Figure 8-1. Schematic layout of the iceberg in free-floating and seabed gouging 
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The precise iceberg draft prediction may reduce expenditures and provide an effective iceberg 

management system to guarantee the physical and operational integrity of the subsea structures 

against the deep-keel iceberg attacks in the Arctic region. The studies conducted up to date have 

tended to focus on the estimation of the iceberg drafts regarding the iceberg length or mass. 

Allaire (1972) studied the stability of icebergs with different shapes. The author demonstrated that 

the above-water features had a significant impact on the iceberg stability, rather the effect of the 

below-water section was insignificant. Robe and Farmer (1976) measured the characteristics of 

various icebergs in order to estimate the iceberg draft. The investigation concluded that the iceberg 

with massive height had the greatest height-to-draft ratios. They proposed a set of relationships to 

surmise the iceberg drafts in terms of iceberg height. Hotzel and Miller (1983) assessed the iceberg 

dimensions and supposed that the planimetric section of icebergs was circular, while the length of 

a berg was twice the circle radius. The iceberg draft was estimated in terms of iceberg length by 

using the power-law method. Furthermore, the International Ice Patrol (IIP) has been annually 

monitoring the characteristics of traveling icebergs in the Atlantic and Arctic Oceans. McKena 

(2000) assessed the risk of ice-gouging to the offshore oil and gas facilities operating in the Grand 

Banks area. The author asserted that the iceberg dimension was a function of the iceberg length. 

Barker et al. (2004) determined the iceberg sails and keels using the measurements observed in the 

field. The research exhibited that the iceberg draft could be calculated using the iceberg waterline 

length. McKenna (2004) evaluated the influence of iceberg shapes on the above-water and below-

water portions. The author simulated the three-dimensional iceberg configuration using a 

probabilistic-based approach, where the iceberg shape was modeled regarding the principles of 

spatial statistics. 
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Timco (2007) described different iceberg management systems applied on the Grand Banks of 

Newfoundland. The iceberg draft estimation chart was evaluated in this work, and it was shown 

that the precision of this chart was nearly 25% for the iceberg draft prediction. Ralph et al. (2008) 

conducted a field experiment to measure the above-water and below-water characteristics of 

several icebergs moving on the Grand Bank of Newfoundland. They calculated the iceberg draft 

by using the multi-beam sonar system, whilst the iceberg mass was surmised through the 

photographs of the profile. Stuckey (2008) presented a probabilistic method for the estimation of 

the drift velocity distribution of the icebergs moving on the Grand Bank of Canada. The author 

introduced the dimensionless groups affecting the drift speed of icebergs. McKenna and King 

(2009) focused on the mass variation of icebergs due to different deterioration factors, including 

the size and shape of icebergs. The study demonstrated that the gradual relationship between mass 

fluxes and draft variations for single icebergs was potentially different from existing iceberg 

dimensions and volumes. King (2012) computed the iceberg impact risk for the sea bottom-

founded infrastructures using the Monte Carlo simulation technique. This model predicted the 

collision risk of iceberg tips with submarine equipment regarding the iceberg draft height. 

Sacchetti et al. (2012) analyzed the features of different icebergs, such as wedged, domed, tabular, 

as well as pinnacle, and ice scouring in the Northeast Atlantic Ocean. The investigation reported 

that the bimodal distribution of the scour depth was observed across the study area. Turnbull et al. 

(2015) used a numerical model through a MATLAB environment so as to forecast the iceberg 

drift, where the iceberg drafts were approximated using the available empirical equations. The 

obtained results demonstrated that the iceberg trajectory was quite sensitive to iceberg drafts in 

some cases. Stuckey et al. (2016) utilized the Iceberg Load Software (ILS) for the simulation of 

load posing on structures such as gravity-based structures (GBS) and floating, production, storage, 
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and offloading (FPSO) operating in the Arctic and sub-Arctic areas. The equations correlating the 

iceberg draft, mass, and length were updated in this investigation. Turnbull et al. (2018) proposed 

a model for iceberg drift prediction for up to 24 hours. The authors highlighted that the iceberg 

mass and underwater portion were the primary sources of uncertainty in forecasting the iceberg 

drift. The study discussed that the empirical equation as a function of the iceberg length 

overestimated the iceberg drafts. Stuckey et al. (2021) most recently modeled the three-

dimensional iceberg configuration using the adopting field measurements. The power curve, draft, 

and mass of icebergs were calculated in terms of the iceberg length in this research. 

Several fields, analytical, and numerical studies have been carried out over the years to estimate 

the under-water section and draft of icebergs to ensure the operational integrity of the subsea assets. 

However, despite the accuracy, reliability, and cost-effectiveness of machine learning (ML) 

models, ML algorithms have not been applied in this field. Hence, developing an advanced ML-

based solution to predict iceberg drafts is a real need in this field. To fill this knowledge gap, the 

use of a generalized structure of group method of data handling (GS-GMDH) algorithm as a neural 

network-based ML method was proposed in this study to model the iceberg drafts for the first time. 

 

8.1.2. Methodology 

In this section, a short overview of the artificial neural network (ANN), group method of data 

handling (GMDH), and generalized structure of group method of data handling (GS-GMDH) are 

presented. Subsequently, the parameter governing the iceberg drafts were defined and five GS-

GMDH models were generated. A dataset was constructed using the field observations reported in 

the literature. A set of criteria were then utilized for the evaluation of the ML models. 

 



 

667 
 

8.1.2.1. Artificial neural network (ANN) 

ANN is assumed as one of the universally supervised ML methods that are extensively applied to 

model different linear and nonlinear issues, e.g., the regression to classification problems. The 

major architecture of an ANN algorithm comprises at least three different layers such as an input 

layer, a hidden layer, and an output layer. The input parameters are situated in the input layer, 

whereas the objective function, e.g., the iceberg draft, is embedded in the output layer. The hidden 

neurons are located in the hidden layer, while the dimension of the hidden layer is ascertained 

regarding the problem's intricacy and desirable precision. It is worth noting that there is no certain 

regulation to determine the number of hidden layer neurons. The optimized number of hidden layer 

neurons was adjusted using a trial-and-error procedure in the present study. In other words, the 

number of hidden layer neurons was enhanced from one to 15 and the optimal number of this 

hyperparameter was 12 when the performance of the ANN algorithm was negligibly changed after 

this amount. In all neurons, the inputs and their weights are computed by mathematical operations, 

and the result is gone through a transfer function called the activation function. The sigmoid 

activation function was utilized since it showed better performance in comparison with the other 

activation functions evaluated in the present work. The capability of the applied ANN model was 

then assessed by the Mean squared error (MSE) when the loss function was to calculate the 

difference between the simulated values and the actual amounts.  

 

8.1.2.2. Group method of data handling (GMDH) 

GMDH was initially developed by Ivakhnenko (1976). The GMDH has been widely used in 

various areas to model linear and nonlinear issues, despite knowing insufficient knowledge of the 

problem (Ivakhnenko and Ivakhnenko 1995; Azimi et al. 2022). This method is a self-organized 
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approach in that different neurons are applied to simulate an objective parameter employing the 

input parameters. A binary relationship between the neurons using a quadratic polynomial leads 

to the construction of the GMDH algorithm. Hence, the objective function is predicted for the 

number of real values in a specific dataset including the output and input parameters. 

The objective parameter is optimized by controlling the amount of the MSE between real iceberg 

drafts and the iceberg drafts simulated. The corrected Akaike Information Criterion (AICc) is 

applied for the amendment of the objective parameter to demonstrate the output in an 

uncomplicated form. 

A polynomial function entitled the Volterra functional series is used to connect the input 

parameters and output one. Indeed, a quadratic and bivariate form of the Volterra functional series 

named the Kolmogorov-Gabor polynomial is employed in the GMDH solution (Ivakhnenko 1971). 

The vectors of unresolved factors of the Kolmogorov-Gabor polynomial arose from the regression 

methods computed by the least square (LS) approach. These vectors are surmised using the LS 

method stemming from the multiple regression approach. The explained process is retreaded for 

all neurons of the subsequent hidden layer based on the nexus topology of the GMDH algorithm 

(Azimi et al. 2022). 

 

8.1.2.3. Generalized structure of group method of data handling (GS-GMDH) 

The traditional version of the GMDH algorithm has a few drawbacks, comprising the application 

of the quadratic polynomial, restricting the contributions of each neuron to two, and restricting the 

contribution of each neuron to the use of neurons from the adjacent layer. These drawbacks result 

in the decline of the simulation capability of the traditional version of the GMDH algorithm, as 

well as the progress of complicated structures to model nonlinear and multidimensional issues. To 
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solve these problems, the generalized structure of the group method of data handling (GS-GMDH) 

approach was developed to simulate the iceberg drafts in the present work. The GS-GMDH 

approach applied the quadratic and cubic polynomials at the same time, employed two and three 

input parameters in all neurons, and inputted neurons from the non-adjacent and adjacent layers 

simultaneously. Ultimately, the superior GS-GMDH model was chosen by using the AICc, 

meaning that the plainness and precision of the selected model were assessed at the same time. 

These characteristics increased the ability of the GS-GMDH algorithm in comparison with the 

traditional version of the GMDH model.  

Figure 8-2 illustrates the flowchart of the GS-GMDH approach used in the current study. Initially, 

the built dataset was divided into the training and testing sub-samples, e.g., the sub-sample consists 

of 60% for training and 40% for testing the GS-GMDH model. The number of inputs for all 

neurons, the highest number of neurons in each layer, and the highest number of layers were 

adjusted in the next stages. 

 

Figure 8-2. Flowchart of the GS-GMDH approach used in the current study 
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8.1.2.4. Iceberg draft 

The iceberg draft (D) was assumed as a function of the physical characteristics of the iceberg, 

comprising the iceberg length (L), iceberg height (H), iceberg width (w), iceberg mass (M) in 

several fields, analytical, and numerical studies in the form below (Barker et al. 2004; McKenna 

et al. 2019; and Stuckey et al. 2021): 

𝐷 = 𝑓1(𝐿, 𝐻,𝑤,𝑀) (8-1) 

Furthermore, the density of an iceberg (𝜌𝑖), the density of seawater (𝜌𝑠𝑤), seawater viscosity 

(𝜇𝑠𝑤), and gravitational acceleration (𝑔) may influence the iceberg draft as follows: 

𝐷 = 𝑓2(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝜌𝑠𝑤 , 𝜇𝑠𝑤, 𝑔) (8-2) 

The iceberg shape factor (Sf) signifies the global shape of icebergs, which can affect the magnitude 

of the iceberg draft (Turnbull et al. 2018). The shape factor of the traveling icebergs is considered 

universally into six categories as illustrated in Figure 8-3 (Rudkin 2005). Hence, equation (8-2) 

can be summarized below: 

𝐷 = 𝑓3(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝜌𝑠𝑤, 𝜇𝑠𝑤, 𝑔, 𝑆𝑓) (8-3) 

 

Figure 8-3. Shape factor values for different icebergs 
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It is assumed that the density along with viscosity of the seawater is constant and the value of 

gravitational acceleration can be regarded as a constant value; as a result, equation (8-3) is 

rewritten as follows: 

𝐷 = 𝑓4(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝑆𝑓). (8-4) 

The dimensional form of equation (8-4) is written as: 

𝐷 = 𝑓5(Π1, Π2, Π3, Π4) (8-5) 

here, Π1, Π2,…, Π4 are dimensionless groups and f5 is a functional symbol based on the 

Buckingham-π theorem. Thus, the dimensionless groups below are written: 

Π1 =
𝐿

𝐻
 

(8-6) 

Π2 =
𝑤

𝐻
 

(8-7) 

Π3 =
𝑀

𝜌𝑖 . 𝐻3
 

(8-8) 

Π4 = 𝑆𝑓 (8-9) 

Equation (8-5) is then formulated as a function of four dimensionless groups as follows: 

𝐷

𝐻
= 𝑓6 (

𝐿

𝐻
,
𝑤

𝐻
,

𝑀

𝜌𝑖. 𝐻3
, 𝑆𝑓) 

(8-10) 

Therefore, 𝐷 𝐻⁄  as the iceberg draft ratio is a function of the length ratio (𝐿 𝐻⁄ ), width ratio (𝑤 𝐻⁄ ), 

the mass ratio (𝑀 𝜌𝑖. 𝐻
3⁄ ), and iceberg shape factor (𝑆𝑓). Subsequently, the ML models applied in 

the current investigations were fed with the input parameters in equation (8-10). 

Hence, four dimensionless groups, including length ratio (𝐿 𝐻⁄ ), width ratio (𝑤 𝐻⁄ ), the mass ratio 

(𝑀 𝜌𝑖 . 𝐻
3⁄ ), and iceberg shape factor (𝑆𝑓) were applied to estimate the iceberg draft ratio (𝐷 𝐻⁄ ) 

through the ML models in the present work. Figure 8-4 shows the combinations of four 

dimensionless groups introduced to define the GS-GMDH models. 
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As it can be seen, to introduce the premium GS-GMDH models and the most influencing input 

parameters, five GS-GMDH models, including GS-GMDH 1 to GS-GMDH 5 were defined. The 

GS-GMDH 1 model included all dimensionless groups, whilst these dimensionless groups were 

disregarded one at a time in GS-GMDH 2 to GS-GMDH 5 models. 

 

Figure 8-4. The combinations of the input parameters to introduce the GS-GMDH models 

 

8.1.2.5. Construction of Dataset 

Several field observations were adopted to analyze the iceberg draft. The key values of 12 field 

studies reported by El-Tahan et al. (1985) (38 cases), Woodworth-Lynas et al. (1985) (one case), 

Løset and Carstens (1996) (52 cases), Barker et al. (2004) (14 cases), McKenna (2004) (two cases), 

Sonnichsen et al. (2006) (nine cases), Turnbull et al. (2015) (two cases), McGuire et al. (2016) 

(eight cases), Younan et al. (2016) (29 cases), Talimi et al. (2016) (one case), Zhou (2017) (three 

cases), Turnbull et al. (2018) (two cases) were used. Table 8-1 tabulates a summary of the key 
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parameters employed in the present study comprising the maximum, minimum, average, variance, 

and standard deviation of the field observations. 

The T-test and the P-value for the dataset were calculated, presuming that the P-value of 0.05 or 

less is statistically significant (Azimi and Shiri 2020), where the likelihood of the relationship 

between the observed values is influenced by an alternative hypothesis. This P-value for the 

constructed dataset was estimated as 0.008, representing that the correlations were statistically 

significant. 

 

Table 8-1. Summary of the key parameters employed in the present study 

Value D(m) H(m) w(m) M(kg) L(m) Sf 

Max 240 94 408 1.13E+13 499 0.58 

Min 18 3.9 9.672 8317400 34 0.11 

Ave 88.988 30.956 101.605 1.68E+11 144.522 0.298 

Var. 1696.272 399.389 3733.368 1.14E+24 6546.271 0.011 

Std. 41.186 19.985 61.101 1.07E+12 80.909 0.107 

 

 

8.1.2.6. Goodness of fit 

In the current study, the correlation coefficient (R), root mean square error (RMSE), mean absolute 

percentage error (MAPE), Willmott Index (WI), coefficient of residual mass (CRM), and Akaike 

Information Criteria (AIC) were employed to examine the precision, correlation, and complexity 

of the GS-GMDH models. The closeness of the R and WI indices to one demonstrating the GS-

GMDH model possessed a high level of correlation with the observed reports. The low RMSE, 
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MAPE, and CRM criteria showed the GS-GMDH model had the highest level of accuracy, while 

the complexity of the GS-GMDH models was not assessed using these indices. To overcome this 

limitation, the Akaike Information Criteria (AIC) was introduced in this study. This means that the 

less complex GS-GMDH model had the lowest magnitude of AIC, so the best GS-GMDH model 

may have the lowest degree of AIC index and error (RMSE, MAPE, and CRM), with the highest 

level of correlation (R and WI). 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(8-11) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(8-12) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑃𝑖 − 𝑂𝑖

𝑂𝑖
|

𝑛

𝑖=1
 

(8-13) 

𝑊𝐼 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (|𝑃𝑖 − �̅�| + |𝑂𝑖 − �̅�|)2𝑛
𝑖=1

 
(8-14) 

𝐶𝑅𝑀 =
∑ 𝑂𝑖

𝑛
𝑖=1 − ∑ 𝑃𝑖

𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 
(8-15) 

𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(8-16) 

Here, Oi, Pi, �̅�, �̅�, n and k are respectively the observational value, the predicted amount, the 

average observational values, the average predicted amount, the number of observations, and the 

number of independent variables in the GS-GMDH models. 

 

8.1.3. Results and discussion 
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The GS-GMDH models’ performance was assessed by conducting several analyses. The premium 

GS-GMDH model was also compared to GMDH, ANN, and empirical methods. Next, a partial 

derivative sensitivity analysis (PDSA) was performed for the best GS-GMDH model. A GS-

GMDH-based equation was ultimately proposed for the estimation of the iceberg drafts. 

 

8.1.3.1. Sensitivity analysis 

The statistical indices estimated for the GS-GMDH models are depicted in Figure 8-5. The results 

demonstrated that GS-GMDH 3 was the premium model since it had the lowest degree of 

inaccuracy (RMSE=1.333) and complexity (AIC=13.996) along with the highest degree of 

correlation (R=0.877) with the iceberg drafts observed. The GS-GMDH 3 predicted the iceberg 

draft values utilizing the 𝐿 𝐻⁄ ,𝑤 𝐻⁄ , and 𝑆𝑓 inputs; however, the effect of iceberg mass ratio 

( 𝑀 𝜌𝑖 . 𝐻
3⁄ ) was disregarded in this model. The GS-GMDH 1 model as a function of all input 

parameters (𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,  𝑀 𝜌𝑖. 𝐻
3,   and ⁄ 𝑆𝑓) was known as the second-best model to estimate the 

iceberg draft, with the AIC and WI of 15.995 and 0.902, respectively. The value of R, CRM, and 

RMSE for the third-best model (i.e., GS-GMDH 5) was respectively calculated at 0.531, -0.021, 

and 2.910. It is worth noting that GS-GMDH 5 used the 𝑤 𝐻⁄ ,  𝑀 𝜌𝑖 . 𝐻
3,   and ⁄ 𝑆𝑓 inputs to model 

the iceberg draft but the iceberg length ratio (𝐿 𝐻⁄ ) was a removed factor in the GS-GMDH 5 

model. Using the 𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,  𝑀 𝜌𝑖 . 𝐻
3⁄ input factors, the iceberg drafts were simulated through 

the GS-GMDH 2 model, meaning that the impact of the iceberg shape factor (𝑆𝑓) was neglected 

for this model, with an RMSE and AIC estimated of 5.484 and 53.302. Regarding the sensitivity 

analysis conducted, the GS-GMDH 4 model as a function of 𝐿 𝐻⁄ ,  𝑀 𝜌𝑖 . 𝐻
3,   and ⁄ 𝑆𝑓 was 

detected as the worst GS-GMDH model to forecast the iceberg draft, where the effectiveness of 
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the iceberg width ratio (𝑤 𝐻⁄ ) was eliminated for GS-GMDH 4. The computed WI, R, and RMSE 

values for the GS-GMDH 4 model were equal to 0.367, 0.331, and 6.225, respectively. 

 

Figure 8-5. Statistical indices estimated for the GS-GMDH models (a) R (b) RMSE (c) AIC (d) 

CRM (e) WI 

 

Figure 8-6 displays the scatter plots of the GS-GMDH 1 to GS-GMDH 5 models. As shown, the 

GS-GMDH 3 model had the highest level of correlation with the value of iceberg drafts observed; 

hence, this model was introduced as the superior GS-GMDH model for the estimation of the target 
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parameter. The sensitivity analysis proved that the iceberg width ratio (𝑤 𝐻⁄ ) was the most 

significant input parameter to model the iceberg drafts. Furthermore, the iceberg shape factor (𝑆𝑓) 

and the iceberg length ratio (𝐿 𝐻⁄ ) were ranked as the second-important and the third-important 

input parameter in the present study. The results analyzed showed that the iceberg mass ratio 

( 𝑀 𝜌𝑖 . 𝐻
3⁄ ) had the lowest level of influence to model the iceberg draft using the GS-GMDH 

algorithm. 
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Figure 8-6. Scatter plots of (a) GS-GMDH 1 (b) GS-GMDH 2 (c) GS-GMDH 3 (d) GS-GMDH 4 

(e) GS-GMDH 5 models 

 

8.1.3.2. Error analysis 

The error analysis performed for the GS-GMDH models is shown in Figure 8-7. The GS-GMDH 

1 and GS-GMDH 3 models had a similar performance in terms of the implemented error analysis, 

signifying that almost half of the iceberg drafts simulated by those models possessed an error of 

greater than 20%, while approximately one-third of results obtained from them had an error of 

between 10% and 20%. About one-fifth of the iceberg drafts estimated by the GS-GMDH 2, GS-

GMDH 4, and GS-GMDH 5 models provided an error of smaller than 10%, whereas this value for 

the GS-GMDH 3 was surmised as roughly 14%. Moreover, a 10% error arose from 22% of the 

GS-GMDH 4 and GS-GMDH 5 models' outcomes, while this amount for the GS-GMDH 3 model 

was roughly 14%. In terms of the error analysis conducted, the GS-GMDH 5 model demonstrated 

unsatisfactory performance; however, the GS-GMDH 3 simulated the iceberg drafts reasonably. 
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Figure 8-7. Error analysis performed for (a) GS-GMDH 1 (b) GS-GMDH 2 (c) GS-GMDH 3 (d) 

GS-GMDH 4 (e) GS-GMDH 5 models 
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To examine the efficiency of the GS-GMDH models, an uncertainty analysis was also conducted. 

To do so, the errors arising from the GS-GMDH model (𝑒𝑗) were calculated as the difference 

between the iceberg drafts predicted (𝑃𝑗) and the observed amounts (𝑂𝑗) as follows: 

𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (8-17) 

The mean (Mean) and the standard deviation (StDev) values of the error values were obtained 

by the equations below: 

Mean =
1

𝑛
∑ 𝑒𝑗

𝑛

𝑗=1
 

(8-18) 

StDev = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(8-19) 

A particular GS-GMDH model underestimated the iceberg draft if the sign of the Mean value was 

negative; however, the positive sign of the Mean reprinted that the GS-GMDH model possessed 

an overestimated performance on the iceberg draft. In addition, a confidence interval (CI) was 

generated around the error values using the Mean, StDev values, and the “Wilson score approach” 

by disregarding the continuity correction. A normal distribution interval rectified as an asymmetric 

normal distribution, entitled the Wilson score interval, was employed to modify the CI bounds; as 

a result, a ±1.96Se produced a 95% of the confidence interval as 95%CI. It is worth mentioning 

that the width of uncertainty bound (WUB) of the GS-GMDH model was computed as below 

(Azimi and Shiri 2021): 

WUB = ±
(Lower bound − upper bound)

2
 

(8-20) 

Figure 8-8 presents the uncertainty analysis outcomes of the GS-GMDH 1 to GS-GMDH 5 models. 

Regarding the uncertainty analysis results, the GS-GMDH 1 and GS-GMDH 3 models showed an 

overestimated performance, with a Mean value of 0.436 and 0.435. In contrast, the GS-GMDH 2, 
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GS-GMDH 4, and GS-GMDH 5 models underestimated the iceberg drafts, where the Mean values 

were -0.434, -0.401, and -0.081, respectively. The uncertainty analysis demonstrated that the 

narrowest bound of uncertainty belonged to the GS-GMDH 3 model (WUB=0.317), rather the GS-

GMDH 4 had the widest uncertainty bound, with a WUB of 1.564. Additionally, 95%CI for the 

GS-GMDH 1 to GS-GMDH 5 models was approximated at (0.118 to 0.753), (-1.810 to 0.943), 

(0.118 to 0.753), (-1.965 to 1.163), and (-0.813 to 0.652), respectively. 

 

Figure 8-8. Normal distribution of the error calculated for (a) GS-GMDH 1 (b) GS-GMDH 2 (c) 

GS-GMDH 3 (d) GS-GMDH 4 (e) GS-GMDH 5 models 
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8.1.3.4. Comparison with GMDH, ANN, and empirical models 

The performance of the premium GS-GMDH model was compared to the GMDH, ANN, and a set 

of empirical models. Barker et al. (2004) presented a relationship for estimation of the iceberg 

draft in terms of the iceberg length by using the power curve and regression analysis as below: 

𝐷 = 2.91(𝐿0.71) (8-21) 

Sacchetti et al. (2012) offered an equation in terms of the iceberg length to appraise the iceberg 

draft in the following form: 

𝐷 = 3.9(𝐿0.63) (8-22) 

King et al. (2016) proposed an empirical model that corresponded with the iceberg mass as 

follows: 

𝐷 = 2.05(𝑀0.276) (8-23) 

Stuckey et al. (2021) derived an empirical model regarding the data collected in 2016 as below: 

𝐷 = 4.78(𝐿0.58) (8-24) 

Figure 8-9 displays the comparison of the premium GS-GMDH model with GMDH, ANN, and 

empirical approaches. As shown, the value of the R index for the GS-GMDH, GMDH, ANN, 

equations (8-21), (8-22), (8-23), and (8-24) was computed to be 0.877, 0.876, 0.746, 0.769, 0.770, 

0.333, and 0.770, respectively. The GS-GMDH algorithm was able to predict the iceberg draft 

with the lowest degree of complexity, where the AIC criteria for the ANN model, equations (8-

21), (8-22), (8-23), and (8-24) equaled 25.346, 256.896, 238.378, 358.385, and 252.404. Thus, the 

premium GS-GMDH model outperformed the GMDH, ANN, and empirical models. 
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Figure 8-9. Comparison of the premium GS-GMDH model with GMDH, ANN, and empirical 

approaches 
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𝜕(𝑑 𝐻⁄ ) (𝜕𝑥𝑖)⁄                  𝑥𝑖 = 𝐿 𝐻⁄ ,  𝑤 𝐻⁄ , and 𝑆𝑓 (8-25) 

A negative sign of the PDSA represents a decreasing influence on the independent variable, rather 

a positive sign of the PDSA means an increasing effect on the iceberg draft (Azimi et al. 2022). 

The PDSA performed for the iceberg drafts simulated by the GS-GMDH 3 model is shown in 

Figure 8-10. 

The overwhelming majority of the PDSA taken for the iceberg length ratio (𝐿 𝐻⁄ ) had the positive 

sign, with an upward pattern. In other words, the iceberg drafts grew with increasing the iceberg 

length ratio (𝐿 𝐻⁄ ). Furthermore, almost all the PDSA calculated for the iceberg width ratio (𝑤 𝐻⁄ ) 

had the positive sign, meaning that the magnitude of the iceberg drafts incremented when the value 

of the iceberg width ratio (𝑤 𝐻⁄ ) was enhanced. Although most PDSA estimated for the iceberg 

shape factor (Sf) were positive, a minority of the obtained PDSA had a negative sign, with a 

downward trend. 

 

Figure 8-10. Result of PDSA for the premium GS-GMDH model (a) L/H (b) w/H (c) Sf 
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and 𝑆𝑓; hence, an explicit GS-GMDH-based equation was extracted to model the iceberg drafts 

for practical applications as below: 

𝐷/𝐻 = −4.205 + 13.281(𝑆𝑓) + 0.579(𝑤/𝐻) + 1.049(𝐿/𝐻) − 0.499(𝑤/𝐻). (𝑆𝑓) −

2.706(𝐿/𝐻). (𝑆𝑓) + 0.050(𝐿/𝐻). (𝑤/𝐻) + 5.963(𝑆𝑓)
2 − 0.045(𝑤/𝐻)2 + 0.004(𝐿/𝐻)2 (8-26) 

The proposed model biased slightly toward overestimation; however, it was able to calculate the 

iceberg drafts with acceptable performance. This model had a significant superiority compared to 

the GMDH, ANN algorithms, and empirical models. 

 

8.1.4. Conclusion 

The generalized structure of the group method of data handling (GS-GMDH) simulated the iceberg 

drafts in this study for the first time. First, the parameters governing the iceberg drafts were 

detected and five GS-GMDH models comprising the GS-GMDH 1 to GS-GMDH 5 models were 

then produced. Using the field measurements published in the literature, a comprehensive dataset 

was constructed, and the GS-GMDH models were trained and tested through 60% and 40% of the 

dataset, respectively. The superior GS-GMDH model and the most effective input parameters were 

identified using a sensitivity analysis. The error analysis, uncertainty analysis, and partial 

derivative sensitivity analysis were conducted for the GS-GMDH model. The best GS-GMDH 

model was also compared to the group method of data handling (GMDH), artificial neural network 

(ANN), and empirical models. The most important results obtained from the present study are 

summarized as follows: 

 The GS-GMDH 3 model as a function of 𝐿 𝐻⁄ , 𝑤 𝐻⁄ , and 𝑆𝑓 was identified as the 

premium model since it predicted the iceberg drafts meticulously, with the R, RMSE, and 

AIC of 0.877, 1.333, and 13.996, respectively. 
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 The iceberg width ratio (𝑤 𝐻⁄ ) and the iceberg shape factor (𝑆𝑓) had a remarkable impact 

on estimating the iceberg drafts using the GS-GMDH algorithm. 

 The accuracy of the GS-GMDH 3 model was relatively high, signifying that approximately 

36% of the iceberg drafts simulated by this model had an error of between 10% and 20%. 

 Regarding the uncertainty analysis implemented, the narrowest bound of uncertainty 

belonged to the GS-GMDH 3 model, where this model overestimated the iceberg drafts. 

 The comparison between the performance of the GS-GMDH 3 model with GMDH, ANN, 

and empirical models demonstrated that the GS-GMDH 3 model forecasted the iceberg 

drafts with the highest degree of accuracy and correlation along with the lowest level of 

complexity. 

 The performed partial derivative sensitivity analysis for the GS-GMDH 3 model indicated 

that by growing the iceberg lengths and the iceberg widths, the magnitude of the iceberg 

drafts incremented. 

 A GS-GMDH-based equation was proposed for the estimation of the iceberg drafts in the 

practical applications of iceberg management operations and engineering design projects. 

Although the current study was the first implementation of the GS-GMDH algorithm for the 

iceberg drafts modeling to guarantee the integrity of offshore oil and gas equipment operating in 

the Arctic shallow waters, the results obtained may facilitate the cost-effective, quick, and accurate 

alternatives to estimate the iceberg drafts. 
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Section 2 

 

Iceberg Draft Prediction using Gradient Boosting Regression Algorithm 
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Abstract 

The Arctic area is one of the best destinations for the development of oil and gas loading 

equipment. However, the recent development of oil and gas facilities, including the submarine 

pipelines and wellheads crossing the Arctic area, has elevated the need for more attention to 

iceberg draft (under-water height of icebergs) estimation during an ice scouring event. This means 

if the draft of an iceberg is more than the ocean deepness, the iceberg tip can gouge the ocean floor 

and collide with the subsea assets; as a result, the operational integrity of the submarine 

infrastructures is threatened. Hence, the estimation of the iceberg drafts is vital for the oil and gas 

operators in the Arctic waters. In the present study, the use of the Gradient Boosting Regression 

(GBR) algorithm was proposed to simulate the iceberg drafts for the first time. Initially, the 

parameters governing the iceberg drafts were recognized, and nine GBR models were then 

developed. The premium GBR model along with the most important inputs was known by 

conducting a sensitivity analysis. The best GBR model was compared with Support Vector 

Regression (SVR) and K-Nearest Neighbors Regression (KNR) algorithms, rather the GBR 

algorithm had the highest degree of accuracy and correlation as well as the lowest amount of 

complexity. Lastly, the performed uncertainty analysis proved that the superior GBR model 

possessed the narrowest bound of uncertainty, with an overestimated performance in the iceberg 

draft simulation. 

 

Keywords: Iceberg Draft; Gradient Boosting Regression; Support Vector Regression; K-Nearest 

Neighbors Regression; Subsea assets, Iceberg management system 



 

695 
 

Graphical abstract 
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8.1.5. Introduction 

Roughly 22% of the Earth’s undiscovered hydrocarbons are held in the Arctic area (WWF Arctic 

Programme), where crude oil, natural gases, and natural gas liquids discovered on the Grand Banks 

of Newfoundland are estimated at 2 billion barrels, 5.4 trillion cubic feet, and 313 million barrels, 

respectively (CNLOPB, 2005). However, current offshore hydrocarbon transferring equipment 

(e.g., subsea pipelines, wellheads, and communication cables) developed on the Grand Banks of 

Canada has led to a significant awareness of the iceberg draft prediction and the iceberg-seabed 

interaction process. The iceberg scouring and iceberg free-floating in the Arctic waters are 

schematically displayed in Figure 8-11. As shown, if the ocean depth is deeper than the iceberg 

draft, the traveling berg is in a free-floating circumstance, rather the iceberg tip would gouge the 

seafloor, which is called the ice-gouging problem. The profound keel bergs can plow the seabed 

and the subgauge soil deformations would extend down the ice keel owing to the shear resistance 

of the sea bottom soil; as a result, the operational integrity of such subsea assets may be threatened 

in the shallow areas (Nematzadeh and Shiri 2020).  
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Figure 8-11. Iceberg in scouring and free-floating circumstances 
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double the circle radius. The draft was counted using iceberg length through the power-law 

technique. McKena (2000) evaluated the threat of ice-gouging to the offshore petroleum 

installations serving the Grand Banks region. The author showed that the iceberg proportions were 

a function of the iceberg length. Sonnichsen et al. (2003) reported the seafloor surveys and ice-

gouging on the Grand Bank of Canada in the 2000 iceberg season. The drafts of the iceberg were 

recorded through a lateral scan sonar tool mounted on the tracking boat. The study demonstrated 

that there was serious concern about the precision of lateral scans of iceberg draft estimation. 

McKenna (2004) analyzed the impact of iceberg configurations on the above-water and below-

water parts. The author modeled the three-dimensional iceberg formatting by adopting a 

probabilistic-based system, where the iceberg profile was estimated regarding the principles of 

spatial statistics. Barker et al. (2004) specified the iceberg sails and keels utilizing the dimensions 

marked in the field. The investigation revealed that the iceberg draft could be summed by 

employing the iceberg waterline length. Dowdeswell and Bamber (2007) scrutinized the keel 

deepness of crossing icebergs in the Antarctic waters. The authors calculated the depth of the keel 

through the ice thickness and surface elevation. The study ended that a small minority of icebergs 

in the Antarctica and Greenland waters had drafts deeper than 650 m. Sacchetti et al. (2012) 

explored the iceberg features and ice-gouging in Labrador and Hibernia territories. The 

characteristics of various bergs like wedged, domed, tabular, and pinnacle icebergs were 

considered in the examination. They proposed some relationships as a function of the berg length 

to predict the draft. King et al. (2016) completed field experimentation to count the rolling iceberg 

rate. The draft was surmised by a calving study, with a computed standard deviation of draft 

changes from 19% to 34%. The draft was approximated using the mass of the iceberg. Turnbull et 

al. (2018) suggested an instance of the drift mensuration of shifting bergs in Newfoundland’s 
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waters. The study stated that the iceberg draft estimated was roughly 1.3 times deeper than the real 

iceberg draft. McKenna et al. (2019) modeled the ice scouring on the Grand Banks of Canada 

adopting the Monte Carlo simulation (MCs). The iceberg draft variations were also employed to 

reduce the dimension of draft changes in the applied methodology. Stuckey et al. (2021) modeled 

the 3D iceberg forms through a field survey. The examination exhibited that the iceberg drafts 

were summed in terms of iceberg length through the power method. They provided two practical 

instances concerning the information gathered in 2016 and the post-2000 report. 

As shown in the literature, developing a reliable and cost-effective solution to predict iceberg drafts 

is necessary to guarantee the operational and physical integrity of the submarine assets. Despite 

the quick progress of machine learning (ML) algorithms for modeling linear and non-linear 

problems, ML models have not been applied in the estimation of iceberg draughts. To fill this 

knowledge gap, in this research, several ML algorithms comprising gradient boosting regression 

(GBR), support vector regression (SVR), and k-nearest neighbors regression (KNR) were applied 

to predict the iceberg drafts for the first time. 

 

8.1.6. Methodology 

In this section, a summary of the ML algorithms (i.e., GBR, SVR, and KNR) applied in the current 

study, was presented. Next, the parameters governing the iceberg drafts were introduced and nine 

GBR models were developed by using these input parameters. Moreover, a comprehensive dataset 

for the training and testing of the ML models was constructed. Lastly, the used statistical criteria 

for the evaluation of the ML models were discussed. 

 

8.1.6.1. Gradient Boosting Regression (GBR) 
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GBR is an ML model to simulate different regression and classification issues. GBR forms an 

ensemble estimator, concerning the decision trees, to overwhelm the weaknesses of powerless ML 

models. In this algorithm, a single decision tree may act inadequately; nonetheless, the ensemble 

algorithm, entitled gradient boosted trees, generally exceeds other sole decision-based methods 

(Hastie et al. 2009). In the present investigation, the hyperparameters of the GBR model were 

adjusted utilizing the trial-and-error procedure, e.g., loss='huber', n_estimators=25, 

subsample=1.0, learning_rate=0.14, min_samples_split=4, criterion='friedman_mse', 

min_samples_leaf=1, max_depth=3, min_weight_fraction_leaf=0.0, min_impurity_decrease=0.0, 

random_state=None, max_features=None, init=None, alpha=0.9, warm_start=False, verbose=0, 

max_leaf_nodes=None, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0, 

validation_fraction=0.1. The structure of the GBR algorithm is depicted in Figure 8-12. 

 

Figure 8-12. Structure of GBR algorithm 
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8.1.6.2. Support Vector Regression (SVR) 

A support vector machine (SVM) is a supervised ML algorithm to decode classification and 

regression issues. The SVM is established on Vapnik-Chervonenkis (VC) hypothesis, and this 

algorithm was suggested by Vapnik (1995). To approach the regression problems, SVR is involved 

in which the training dataset is mapped from the inputs (input space) into the target function 

(feature space) via a function (Ϙ). A separating hyperplane with the highest margin is constructed 

in the feature space. In a regression problem, a nonlinear transformation from the input space to 

high-dimensional space is created employing the Ϙ function. Regardless of the transformation 

function (Ϙ), the kernel function may perform the dot product in the multidimensional feature 

space via the low-dimensional space inputs. In realistic problems, several kernel functions 

containing the linear, polynomial, and radial basis functions (RBF) are employed in the SVR 

method. Additionally, the ε-insensitive loss function is engaged as a cost function in this algorithm. 

To predict the iceberg drafts in the present work, the hyperparameters of the SVM model, e.g., the 

penalty parameter (C), the kernel coefficient (gamma), epsilon, verbose, and kernel were adjusted 

as 0.01, 1, 0.5, 1, and linear, respectively. The involved hyperparameters of the SVM algorithm in 

the present investigation were selected according to a trial and error strategy. 

 

8.1.6.3. K-Nearest Neighbors Regression (KNR) 

The K-Nearest Neighbors algorithm is also applied in classification and regression studies. The 

KNR is a non-parametric machine learning approach that intuitively estimates the correlation 

between independent and dependent features by averaging the observed values in the same 

neighborhood (Altman 1992). In the first step, the distance between the new value and each 

training point is computed using the most commonly known approaches, e.g., the Euclidean 
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distance, Manhattan distance, or Hamming distance. Subsequently, according to the calculated 

distance, the closest K value is chosen regarding the error calculation for the training and testing 

datasets. Lastly, the average of these data is estimated to predict the new value. In the current 

study, the hyperparameters of the KNR algorithm for estimation of the iceberg drafts were set 

utilizing a trial and error approach, wherein n_neighbors=5, weights='uniform', algorithm='auto', 

leaf_size=1, p=1, metric='minkowski', metric_params=None, n_jobs=None. 

 

8.1.6.4. Iceberg draft 

The iceberg draft (D) was considered in terms of the physical characteristics of the iceberg, 

comprising the iceberg length (L), iceberg height (H), iceberg width (w), and iceberg mass (M). 

Azimi et al. (2023) introduced the dimensionless groups governing the iceberg draft in the 

following form: 

𝐷

𝐻
= 𝑓6 (

𝐿

𝐻
,
𝑤

𝐻
,

𝑀

𝜌𝑖. 𝐻3
, 𝑆𝑓) 

(8-27) 

Hence, the iceberg draft ratio (𝐷 𝐻)⁄  is a function of the length ratio (𝐿 𝐻⁄ ), width ratio (𝑤 𝐻⁄ ), 

the mass ratio (𝑀 𝜌𝑖. 𝐻
3⁄ ), and iceberg shape factor (𝑆𝑓) (Azimi et al. 2023). In the present 

research, the ETR algorithm was fed with the dimensionless groups in equation (8-1) as input 

parameters to simulate the iceberg draft ratio. 

Figure 8-13 illustrates the composition of four dimensionless groups to create the ML models. As 

seen, to identify the premium ML models, five ML models, e.g., Model 1 to Model 5 were 

developed, while Model 6 to Model 9 were defined to recognize the most influencing input 

parameters. Model 1 included all input factors, whilst those dimensionless groups were ignored 

one at a time in Model 2 to Model 5. 
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Figure 8-13. Input combination applied for developing the ML models 

 

8.1.6.5. Construction of Dataset 

The observational values of 12 field investigations documented by El-Tahan et al. (1985) (38 

cases), Woodworth-Lynas et al. (1985) (one case), Løset and Carstens (1996) (52 cases), Barker 

et al. (2004) (14 cases), McKenna (2004) (two cases), Sonnichsen et al. (2006) (nine cases), 

Turnbull et al. (2015) (two cases), McGuire et al. (2016) (eight cases), Younan et al. (2016) (29 

cases), Talimi et al. (2016) (one case), Zhou (2017) (three cases), Turnbull et al. (2018) (two cases) 

were applied in the current study to build the dataset (Azimi et al. 2023). Table 8-2 presents the 

maximum, minimum, average, variance, and standard deviation of the field observations. To show 

the significance of the constructed dataset, the T-test and the P-value were calculated, assuming 

that the P-value of 0.05 or less is statistically significant (Azimi and Shiri 2020), where the 

likelihood of the relationship between the observational amounts is influenced by an alternative 
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hypothesis. The P-value for the built database was calculated as 0.008, expressing that the 

correlations were statistically significant. 

 

Table 8-2. Maximum, minimum, average, variance, and standard deviation of the field 

observations 

Value D(m) H(m) w(m) M(kg) L(m) Sf 

Max 240 94 408 1.13E+13 499 0.58 

Min 18 3.9 9.672 8317400 34 0.11 

Ave 88.988 30.956 101.605 1.68E+11 144.522 0.298 

Var. 1696.272 399.389 3733.368 1.14E+24 6546.271 0.011 

Std. 41.186 19.985 61.101 1.07E+12 80.909 0.107 

 

 

8.1.6.6. Goodness of fit 

A set of benchmarks like correlation coefficient (R), root mean square error (RMSE), mean 

absolute percentage error (MAPE), Willmott Index (WI), coefficient of residual mass (CRM), and 

Akaike Information Criteria (AIC) were employed to assess the accurateness, correlation, and 

complexness of the ML models. The nearness of the R and WI indices to one indicating the ML 

model had a high level of correlation with the observational measurements. The proximity of the 

RMSE, MAPE, and CRM criteria to zero denoting the ML model included the lowest grade of 

impreciseness, whereas the complexity of the ML models was not scrutinized via these indices. 

To solve this problem, the Akaike Information Criteria (AIC) was operated. It means that the less 

complex ML model had the lowest value of AIC, so the best ML model might have the lowest 



 

705 
 

degree of AIC index and error (RMSE, MAPE, and CRM), with the highest amount of correlation 

(R and WI) (Azimi et al. 2022a). 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(8-28) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(8-29) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑃𝑖 − 𝑂𝑖

𝑂𝑖
|

𝑛

𝑖=1
 

(8-30) 

𝑊𝐼 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (|𝑃𝑖 − �̅�| + |𝑂𝑖 − �̅�|)2𝑛
𝑖=1

 
(8-31) 

𝐶𝑅𝑀 =
∑ 𝑂𝑖

𝑛
𝑖=1 − ∑ 𝑃𝑖

𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 
(8-32) 

𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(8-33) 

Here, Oi, Pi, �̅�, �̅�, n and k are respectively the field measurements, the simulated values, the 

average field values, the average simulated amount, the number of experiments, and the number 

of independent variables in the ML models. 

 

8.1.7. Results and discussion 

The results of the GBR models were assessed and the best GBR models along with the most 

influencing input parameters were detected in the sensitivity analysis. The performance of the 

premium GBR model was compared to the SVR and KNR algorithms by conducting several 

statistical analyses. 
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8.1.7.1. Sensitivity analysis 

Figure 8-14 shows the comparison of the calculated statistical indices for the GBR, SVR, and KNR 

models. The GBR 1, SVR 1, and KNR 1 models predicted the iceberg drafts 

adopting 𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,  𝑀 𝜌𝑖 . 𝐻
3,   and ⁄ 𝑆𝑓. The value of the RMSE index for the GBR 1, SVR 1, 

and KNR 1 models was obtained at 1.348, 1.395, and 1.617, respectively. For the GBR 2, SVR 2, 

and KNR 2 models, the influence of the iceberg shape factor (𝑆𝑓) was ignored for the estimation 

of the iceberg drafts, signifying that these models were a function of 𝐿 𝐻⁄ , 𝑤 𝐻⁄ , and  𝑀 𝜌𝑖 . 𝐻
3⁄ , 

with an AIC criterion of 18.964, 15.250, and 19.299, respectively. The GBR 3, SVR 3, and KNR 

3 models utilized the 𝐿 𝐻⁄ ,𝑤 𝐻⁄ , and 𝑆𝑓 inputs to forecast the iceberg drafts, whereas the effect 

of iceberg mass ratio ( 𝑀 𝜌𝑖 . 𝐻
3⁄ ) was eliminated, where the WI value for these models were 0.860, 

0.870, and 0.915. Using the 𝐿 𝐻⁄ ,  𝑀 𝜌𝑖. 𝐻
3,   and ⁄ 𝑆𝑓 input parameters, the iceberg drafts were 

simulated through the GBR 4, SVR 4, and KNR 4 models, rather than the 𝑤 𝐻⁄  the factor was 

eliminated. The CRM statistical index for GBR 4, SVR 4, and KNR 4 were respectively equal to 

0.138, 0.104, and 0.120. The iceberg length ratio (L⁄H) was an eliminated input factor in the GBR 

5, SVR 5, and KNR 5 models although these models were fed with 𝑤 𝐻⁄ ,  𝑀 𝜌𝑖. 𝐻
3,   and ⁄ 𝑆𝑓 

input parameters, where the AIC value for GBR 5, SVR 5, and KNR 5 was computed as 21.407, 

20.967, and 20.295. It is worth noting that models 6 to 9 were individually a function of the 

𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,  𝑀 𝜌𝑖 . 𝐻
3,   and ⁄ 𝑆𝑓 input factors. For example, the value of RMSE for the GBR 6, 

SVR 6, and KNR 6 models were 1.692, 1.497, and 1.433. 

The performed sensitivity analysis demonstrated that the GBR 4 model was identified as the 

superior model among all GBR models, while SVR 2 and KNR 3 were detected as the premium 

models amongst the SVR and KNR models. Moreover, the iceberg length ratio (L⁄H) and iceberg 
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width ratio (𝑤 𝐻⁄ ) had the highest degree of effectiveness to model the iceberg drafts; however, 

the iceberg shape factor (𝑆𝑓) showed an insignificant influence. 

 

Figure 8-14. Comparison of the GBR, SVR, and KNR models’ performance (a) R (b) RMSE (c) 

AIC (d) CRM (e) WI 

 

8.1.7.2. Superior models 

Among all GBR, SVR, and KNR models, the GBR 4, SVR 2, and KNR 3 models were recognized 

as the superior ML models to simulate the iceberg drafts. The scatter plots for these superior 

models are depicted in Figure 8-15. According to simulation results, the values of the correlation 

coefficient (R) for the GBR 4, SVR 2, and KNR 3 models were surmised to be 0.907, 0.896, and 
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0.893, respectively. As shown, the superior model possessed a high level of correlation in 

comparison with other ML models. Furthermore, the lowest degree of complexity was obtained 

for the GBR 4, SVR 2, and KNR 3 models, where the AIC index for these models was to be 12.571, 

15.250, and 12.633, respectively. Thus, the GBR 4 model showed the highest degree of correlation 

and simplicity among the superior ML models. 

 

Figure 8-15. Scatter plots for (a) GBR 4 (b) SVR 2 (c) KNR 3 as the superior models 
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The iceberg drafts simulated by the GBR 4, SVR 2, and KNR 3 models are compared with the 

iceberg drafts observed in Figure 8-16. As can be seen, even though some discrepancies were 

witnessed between the results simulated with the iceberg drafts observed, the superior ML models 

attempted to forecast the target parameter with their highest degree of performance. However, the 

GBR 4 model predicted the iceberg drafts with higher accuracy (RMSE=1.267) in comparison with 

the SVR 2 (RMSE=1.395) and KNR 3 (RMSE=1.270). Hence, the simulation outcomes proved 

that the GBR 4 demonstrated the highest level of precision among the superior ML models. 
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Figure 8-16. Comparison between the observed iceberg drafts and (a) GBR 4 (b) SVR 2 (c) KNR 

3 models 

 

Figure 8-17 illustrates the results of the error analysis for the GBR 4, SVR 2, and KNR 3 models. 

Regarding the error analysis conducted, approximately one-third of the iceberg drafts simulated 

by GBR 4 possessed an error of less than 10%; rather, nearly one-fifth of the results obtained from 

the SVR 2 and KNR 3 models had an error of smaller than 10%. Almost 28% of the outcomes 

achieved from the GBR 4 model demonstrated an error between 10% and 20%, whilst this amount 

for SVR 2 and KNR 3 was estimated as 26% and 31%. Roughly half of the iceberg drafts modeled 

using KNR 3 and SVR 2 showed an error of greater than 20% though this figure for GBR 4 was 

about 38%. Therefore, the GBR 4 model managed to simulate the iceberg draft values with the 

lowest level of incorrectness. 
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Figure 8-17. Results of the error analysis for (a) GBR 4 (b) SVR 2 (c) KNR 3 models 

 

The efficiency of the premium ML models was assessed through the discrepancy ratio (DR) as 

follows (Azimi et al. 2022b): 

𝐷𝑅 =
𝑃𝑖

𝑂𝑖
 

(8-34) 

where, 𝑃𝑖 and 𝑂𝑖 are respectively the predicted and observed iceberg drafts. Generally, the closer 

the magnitude of DR is to the unity, the higher performance demonstrates the ML model. The 

value of the maximum (DR(max)), minimum (DR(min)), and average (DR(ave)) discrepancy ratio for 

the superior models are drawn in Figure 8-18. For the GBR 4, SVR 2, and KNR 3 models, the 

maximum discrepancy ratio (DR(max)) was reckoned at 1.704, 1.998, and 1.916; however, the 

minimum discrepancy ratio (DR(min)) for these models equaled as 0.526, 0.453, and 0.402, 

respectively. It is worth mentioning that the average discrepancy ratio (DR(ave)) for GBR 4, SVR 

2, and KNR 3 were at 0.943, 1.049, and 0.971. As seen, the lowest value of DR(max) and the highest 

amount of DR(min) were acquired for the GBR 4 model. 
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Figure 8-18. Value of (a) maximum discrepancy ratio (DR(max)) (b) minimum discrepancy ratio 

(DR(min)) (c) average discrepancy ratio (DR(ave)) for the superior models 

 

In order to evaluate the performance of the superior ML models, an uncertainty analysis was also 

implemented. In other words, the difference between the predicted iceberg drafts (𝑃𝑗) and the 

observed values (𝑂𝑗) is defined as the error (𝑒𝑗) as below: 

𝑒𝑖 = 𝑃𝑖 − 𝑂𝑖 (8-35) 

The mean (Mean) and the standard deviation (StDev) of the error values were calculated using 

the equations below: 

Mean =
1

𝑛
∑ 𝑒𝑖

𝑛

𝑖=1
 

(8-36) 

StDev = √∑ (𝑒𝑖 − Mean)2 (𝑛 − 1)⁄
𝑛

𝑖=1
 

(8-37) 
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Assuming that the sign of the Mean error was positive, the ML model overestimated the iceberg 

drafts; otherwise, if the Mean error had a negative sign, the ML model tended to underestimate the 

target values. By disregarding the continuity correction, a confidence interval (CI) was created 

around the values of error utilizing the Mean, StDev values, and the “Wilson score approach”. It 

is worth mentioning that an asymmetric normal distribution interval entitled the Wilson score 

interval was utilized to rectify the CI bounds; hence, a ±1.96Se brought about a 95% of confidence 

interval (95%CI). Moreover, the width of uncertainty bound (WUB) of the superior ML models 

was calculated as follows (Azimi et al. 2022b): 

WUB = ±
(Lower bound − upper bound)

2
 

(8-38) 

Figure 8-19 illustrates the error normal distribution of the GBR 4, SVR 2, and KNR 3 models. 

Additionally, the results of uncertainty analysis for the superior ML models are exhibited in Figure 

8-20. Regarding the uncertainty analysis, the value of Mean error for the GBR 4, SVR 2, and KNR 

3 models was approximated at 0.533, 0.363, and 0.474, so the superior models biased toward 

overestimation, with a StDev of 1.158, 1.358, and, 1.187, respectively. The GBR 4 had the 

narrowest width of uncertainty bound (WUB=±0.290), whereas the widest WUB was for SVR 2 

(WUB=±0.339). 
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Figure 8-19. Error normal distribution of (a) GBR 4 (b) SVR 2 (c) KNR 3 models 

 

The lower and upper bound of uncertainty for the KNR 3 model was 0.178 and 0.771, with a WUB 

of 0.297. It should be stated that the lower and upper uncertainty bound for the GBR 4 was 

computed to 0.243 and 0.822 but these values for the SVR 2 were at 0.024 and 0.702. 
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Figure 8-20. The results of uncertainty analysis for the superior ML models (a) Mean and StDev 

(b) Mean and WUB (c) Lower bound and Upper bound 

 

As shown, the GBR 4 model managed to simulate the iceberg drafts with better performance in 

terms of accuracy, correlation, complexity, and discrepancy. Furthermore, the iceberg length ratio 

(L⁄H) and iceberg width ratio (𝑤 𝐻⁄ ) input parameters had a remarkable influence on the iceberg 

drafts prediction by the GBR model. 

 

8.1.8. Conclusion 

In this investigation, the Gradient Boosting Regression (GBR) algorithm was utilized to model the 

iceberg drafts for the first time. In the first step, the dimensionless groups affecting the iceberg 

±
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drafts were found and nine GBR models, e.g., GBR 1 to GBR 9, were defined by employing these 

dimensionless groups as input parameters. The performance of the GBR models was assessed by 

conducting sensitivity analysis and then the premium GBR model as well as the most influencing 

input parameters were distinguished. Subsequently, the ability of the best GBR model was 

compared with Support Vector Regression (SVR) and K-Nearest Neighbors Regression (KNR) 

models. Several statistical analyses, such as error analysis, discrepancy analysis, and uncertainty 

analysis were performed to present a robust and reliable model for the iceberg draft prediction. 

The most important outcomes of the current study are summarized below: 

 Amongst the GBR models, the GBR 4 model as a function of 𝐿 𝐻⁄ ,  𝑀 𝜌𝑖 . 𝐻
3,   and ⁄ 𝑆𝑓 

was able to predict the iceberg drafts with the best performance. 

 The value of R, RMSE, and AIC indices for the GBR 4 model was respectively reckoned 

to be 0.907, 1.267, and 12.571. 

 The sensitivity analysis showed that the iceberg length ratio (L⁄H) and iceberg width ratio 

(𝑤 𝐻⁄ ) possessed the highest level of importance in approximating the iceberg drafts. 

 The GBR 4 model had the highest degree of accuracy, correlation, and simplicity in 

comparison with the SVR and KNR methods. 

 Roughly 34% of the iceberg draft predicted by the GBR 4 model had an error of less than 

10%, whereas this amount for SVR and KNR models was 19%. 

 The maximum discrepancy ratio (DRmax) for the GBR 4, SVR, and KNR models was 

obtained as 1.704, 1.998, and 1.916, respectively. 

 Regarding the sensitivity analysis implemented, the GBR 4 model was biased towards 

overestimating, with the narrowest bound of uncertainty. 
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The presented results demonstrated that the ML-based algorithms are able to predict the iceberg 

drafts with acceptable performance. These models can significantly reduce the expenditures and 

downtime in the iceberg management system to guarantee the physical and operational integrity 

of the subsea structures against the deep-keel iceberg attacks in the Arctic region. 
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Abstract 

Climate change is causing the polar ice caps and glaciers in the Arctic to melt faster, leading to an 

increase in the number of icebergs that break off each year. These traveling icebergs are a potential 

threat and one of the governing design factors of subsea assets crossing the ocean floor in the 

shallower waters when the iceberg's tip scratches the seabed, and the integrity of subsea structures 

may be impaired. Hence, iceberg management operations with significant downtime and expenses, 

such as iceberg towing and re-routing, are currently performed to protect the subsea infrastructures, 

offshore structures, and ships. In this study, Extra Tree Regression (ETR) was used as a cost-

effective and efficient method to estimate the draft of icebergs in the early stages of decision-

making projects for managing icebergs. To end this, nine ETR models were defined using the 

parameters affecting the iceberg drafts, then the superior ETR model alongside the most influential 

inputs was introduced by performing several analyses. The uncertainty analysis demonstrated that 

the superior ETR model was biased toward the overestimation of the iceberg drafts, and the best 

ETR model simulated the iceberg draft with the highest level of precision, correlation, and 

simplicity. The comparison between the best ETR model with decision tree regression (DTR), 

random forest regression (RFR), and empirical approaches demonstrated the outperformance of 

the ETR algorithm to predict the iceberg drafts. 

 

Keywords: Subsea assets, Offshore structures, Iceberg draft, Decision tree regression (DTR), 

Random forest regression (RFR), Extra tree regression (ETR)
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8.1.9. Introduction 

Roughly one-fifth of the Earth's undiscovered hydrocarbons are situated in the Arctic area (WWF 

Arctic Programme), and the Arctic offshore regions with rich wind culture also have a high 

potential for developing offshore wind farms (CNLOPB, 2005). However, thousands of icebergs 

are born every year out of glaciers in the Arctic zone and carried away by the currents into the 

North Atlantic. These icebergs may touch the ocean bottom in shallow waters and scratch the 

seabed, causing so-called "ice-gouging" that may endanger the physical and operational integrity 

of subsea pipelines and power cables or even directly collide with offshore structures like ships, 

platforms, wind turbines, and subsea manifolds. Currently, so-called "Ice Management," i.e., 

iceberg towing and re-routing, is the most reliable approach to protect the subsea and offshore 

infrastructures, where the threatening icebergs are hooked and towed in a safe direction. This 

operation was conducted under a collaborative program between the North Atlantic and Europe 

called the International Ice Patrol (IIP) program, which was established after the well-known 

Titanic sank in 1912. Thus, ice management operations are costly and require standby marine 

spread with a range of advanced tools and equipment, such as subsea survey facilities, vessels, and 

expert crews, to investigate the iceberg draft and determine if it is a threat to infrastructures. 

In addition to using underwater survey equipment such as side scan sonars and multi-beam echo 

sounders, there has been a growing need for data-based methods to predict the draft of icebergs, 

which has led to numerous studies and investigations. Despite the offshore structures such as ships, 

wind turbines, and floating or fixed platforms that icebergs can directly attack, the threat to the 

buried pipelines and power cables is much more complicated involving the ice-soil-structure 

interactions. During the ice-gouging, the subgouge soil displacement is vastly extended down the 
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seabed much deeper than the gouge depth, and this may cause large deformations in the pipelines 

buried even below the gouge depth. 

The schematic layout of the iceberg free-floating and iceberg scouring in cold waters is 

demonstrated in Figure 8-21. As shown, the iceberg is in a free-floating situation if the ocean depth 

is greater than the iceberg draft; otherwise, the seafloor is scoured, and the seabed soil shear 

resistance causes the soil displacement to extend more profound than the iceberg tip threatening 

the buried subsea assets.  

 

Figure 8-21. Icebergs in free-floating and scouring conditions schematically 

 

The efficient iceberg management designs and the guaranteed operational integrity of the sea 

bottom-funded infrastructure against the iceberg attacks in the ice-prone areas demand the 
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Subsea pipeline

Free-floating

Ice-scouring

Icebergs travelling

Ocean surface Iceberg height (H)

Iceberg length (L)

Iceberg draft (D)

Ocean depth

Initial seabed



 

727 
 

iceberg length or mass. For instance, Allaire (1972) analyzed the stability status of various icebergs 

regarding the sail features. They demonstrated that the minimum stable ratio of iceberg width to 

sail height for tabular, dry dock, and dome bergs were 6:1, 4:1, and 1.8:1, respectively. Similarly, 

Robe and Farmer (1976) measured the drafts of tabular, broken tabular, pinnacle, dry dock, and 

domed by the sonar technology. They correlated the iceberg draft with the iceberg height and 

proposed a regression model for estimating the iceberg draft. Bass (1980) analytically evaluated 

the stability of icebergs in different configurations. The study highlighted that the volume of the 

underwater section was almost seven times greater than the volume of the above-water area. 

Brooks (1980) evaluated iceberg lengths and drafts to decide whether an iceberg's length might be 

regarded as its utmost potential draft. The maximum iceberg length and draft were reported to be 

599m and 219m in this survey. In another investigation, Hotzel and Miller (1983) assessed the 

iceberg dimensions and supposed that the planimetric section of icebergs was circular, while the 

length of a berg was twice the circle radius. The study estimated the iceberg drafts in terms of 

length using the power-law approach.  

Furthermore, the IIP has been annually monitoring the characteristics of traveling icebergs in the 

Atlantic and Arctic Oceans. In 1987, this organization IIP reported that the iceberg draft was 3.95 

times the height of a sail. PERD (1999) distinguished the data collected from traveling icebergs 

observed in the Labrador Sea and Grand Banks and then provided a relationship for the iceberg 

draft prediction in terms of length. Liang (2001) presented a model to determine the relationship 

between the dynamics and stability of icebergs using the size and shape of bergs. The author 

asserted that the draft and hydrostatic force distribution affected the iceberg's stability. 

The Centre for Cold Ocean Resources Engineering (C-CORE) performed several investigations to 

study icebergs' shape, behavior, and dynamics over the years. The above-water form of bergs 
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comprising the blocky, domed, dry dock, tabular, pinnacle, and wedge icebergs were reported 

regarding the standard categories. The iceberg dimensions were recorded using the scan sonar 

technology and marine sextant. The study showed that the iceberg draft was correlated with iceberg 

length (C-CORE, 2001). In another study, Barker et al. (2004) evaluated the geometry of iceberg 

sails and keels. They estimated the cross-sectional areas of the berg at different water depth 

intervals from a particular waterline length. The authors provided a set of models in terms of the 

length using the power curve and regression analysis to approximate the iceberg draft. Dowdeswell 

and Bamber (2007) examined the keel depths of traveling icebergs in Antarctic waters. The authors 

estimated the depth of the keel through the ice thickness and surface elevation. The research 

concluded that a tiny minority of icebergs in the Antarctica and Greenland waters had drafts greater 

than 650m. Moreover, Stuckey (2008) modeled the iceberg drift speed using the probabilistic 

approach. The author stated that the above-water dimension, below-water dimension, and shape 

factor of the icebergs impacted the environmental driving forces. McKenna and King (2009) 

simulated the deterioration mechanisms of various icebergs by considering the incremental 

changes in draft, mass, and shape of bergs. The study highlighted that decreasing the iceberg mass 

reduced the draft and length of icebergs. In another study, Sacchetti et al. (2012) analyzed the 

features of different icebergs, such as wedged, domed, tabular, and pinnacle and ice scouring in 

the Northeast Atlantic Ocean. The investigation reported that the bimodal distribution of the scour 

depth was observed across the study area. Turnbull et al. (2015) forecasted the drift trajectory of 

the traveling icebergs in Northwest Greenland using the hindcast simulation. It was revealed that 

the trajectory of icebergs was sensitized to the iceberg drafts. King et al. (2016) performed a field 

investigation to calculate the rolling iceberg rate. The iceberg drafts were estimated utilizing a 

calving analysis, with a calculated standard deviation of draft variations from 19% to 34%. The 
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iceberg drafts corresponded with the mass of the icebergs. Turnbull et al. (2018) proposed a model 

for the drift estimation of moving icebergs on the Grand Banks of Newfoundland. This model 

approximated the draft of icebergs roughly 1.3 times more than the actual values. McKenna et al. 

(2019) have recently simulated ice scouring on the Grand Banks of Canada using the Monte Carlo 

method. The iceberg draft alterations were utilized to lessen the size of draft variations in this 

modeling. Most recently, Stuckey et al. (2021) simulated the three-dimensional iceberg shapes by 

adopting field measurements. The investigation demonstrated that the power curve estimated the 

draft and mass in terms of the iceberg length. 

Machine learning (ML) technology has been widely applied to solve different linear and nonlinear 

problems in various fields such as environmental monitoring, remote sensing, and geotechnical 

engineering (Azimi and Shiri 2021; Azimi et al. 2021; Mahdianpari 2021; Azimi et al. 2022), due 

to its reliability, precision, cost-effectiveness, and speed. However, despite its potential, the 

literature reveals that ML has not yet been investigated in simulating iceberg drafts. Hence, to fill 

this knowledge gap, iceberg drafts were modeled through three robust tree-based ML algorithms 

comprising decision tree regression (DTR), random forest regression (RFR), and extra tree 

regression (ETR). More descriptions are provided in the upcoming sections. 

 

8.1.10. Methodology 

The applied ML algorithms in the present study, including the DTR, RFR, and ETR, are initially 

introduced. Subsequently, the parameters affecting the iceberg drafts were determined, and then 

nine ETR models were developed using the presented parameters. A comprehensive dataset was 

constructed using the reported iceberg characteristics in the literature to train and test the ML 

models. Finally, different statistical criteria were employed to assess the ML models’ performance.  
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8.1.10.1. Decision Tree Regression (DTR) 

A tree data system contains a series of leaves and branches in which each node is regarded as a 

decision tree (DT). The DT may be used to solve both regression and classification problems. The 

DT comprises many components, such as a root node, several leaf nodes, internal nodes, and 

branches. The topmost node in this tree is considered the root node, and the leaf nodes (terminal 

nodes) end with the titles of types, while the non-leaf nodes are assumed as the internal nodes. 

Such nodes link to each other through the branches (Pekel 2020). In the present work, the mean 

squared error (MSE) is involved in maintaining the fitness function in the DT algorithm.  

In this investigation, the hyperparameters of the DTR algorithms were determined using a trial-

and-error strategy. It means that the value of max_depth, max_leaf_nodes, and 

min_weight_fraction_leaf was primary at 10, 2, and 0.01, and the performance of the DTR 

algorithm was assessed. The number of hyperparameters was raised in the following stages until 

the DTR's results reached an adequate level. The DTR model estimated the iceberg drafts with its 

highest level of precision and correlation as well as its lowest degree of complicatedness until the 

number of hyperparameters comprising the max_depth, max_features, max_leaf_nodes, 

min_samples_leaf, min_weight_fraction_leaf, and splitter was, in turn, adapted as 150, 'auto', 2, 

2, 0.001, and 'random'. 

 

8.1.10.2. Random Forest Regression (RFR) 

Random forest (RF) has been proposed by Breiman (2001) to model different problems like 

classification and regression data. The RF is an ensemble algorithm, an extended version of the 

Classification and Regression Trees (CART) learning method. However, the RF can deal with 
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multi-source and high-dimensional data without over-fitted problems (Breiman 2001). Multiple 

decision trees are constructed in the RF algorithm, and decisions with the highest value of votes 

are selected as the modeling outcomes (Sahani and Ghosh 2021). The RFR algorithm decreases 

the mean error of the trees employed using the weighted correlation between the applied 

randomization and the residuals. 

The hyperparameters of the RFR algorithm were also chosen using a trial and error method, similar 

to the DTR model. In particular, the initial number of max_depth, random_state, and the number 

of estimators were set to be 2, 2, and 2, respectively. The simulation results demonstrated that the 

RFR algorithm had the best performance when the max_depth, random_state, number of 

estimators, and verbose values were adjusted as 12, 6, 8, and 1, respectively. 

 

8.1.10.3. Extra Tree Regression (ETR) 

The ETR algorithm is an advanced version of the RF algorithm initially proposed by Geurts et al. 

(2006). To solve a regression problem, the RF algorithm operates bootstrapping, creating the 

decision trees, bagging, and separating the decision tree leaves. The ETR often builds several 

random regression trees. By selecting the most suitable subset, the decision-making process is 

performed. The ETR and RF models possess two major dissimilarities: (1) in the ETR model; these 

leaves are divided utilizing the random choice from the cutting points and (2) the ETR algorithm 

uses the whole training data to create the trees to minimize the value of bias. The ETR model (i) 

involves the number of features chosen randomly in the leave utilizing κ variable (ii) minimizes 

the specimen size for the splitting of leaves utilizing the ռ variable. The κ value specifies the 

characteristic selection strength; however, the strength of the averaged result noise is expressed 

utilizing the ռ variable. In other words, the κ and ռ values will reduce the overfitting issue in the 
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ETR model and improve the efficiency of this algorithm. Figure 8-22 demonstrates the flowchart 

of the ETR algorithm. It is worth noting that the hyperparameters of the ETR model were adjusted 

using a trial-and-error strategy in the present work, as max_depth=None, min_samples_split=8, 

min_samples_leaf=1, min_weight_fraction_leaf=0, max_features=1.0, random_state=None, 

min_impurity_decrease=0.0, max_leaf_nodes=None, and ccp_alpha=0.0. 

 

Figure 8-22. Flowchart of the ETR algorithm applied in the current study 
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8.1.10.4. Iceberg draft 

The iceberg draft (D) was considered as a function of the physical characteristics of the iceberg, 

comprising the iceberg length (L), iceberg height (H), iceberg width (w), iceberg mass (M) in so 

many fields, analytical, and numerical investigations in the form below (Barker et al. 2004; 

McKenna et al. 2019; and Stuckey et al. 2021): 

𝐷 = 𝑓1(𝐿, 𝐻,𝑤,𝑀). (8-39) 

Furthermore, the density of an iceberg (𝜌𝑖), the density of seawater (𝜌𝑠𝑤), seawater viscosity 

(𝜇𝑠𝑤), and gravitational acceleration (𝑔) may influence the iceberg draft as follows: 

𝐷 = 𝑓2(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝜌𝑠𝑤 , 𝜇𝑠𝑤, 𝑔) (8-40) 

The iceberg shape factor (Sf) signifies the global shape of icebergs, which can affect the magnitude 

of the iceberg draft (Turnbull et al. 2018). The shape factor of the traveling icebergs is considered 

universally into six categories, as illustrated in Figure 19-3 (Rudkin 2005). Hence, equation (8-40) 

can be summarized below: 

𝐷 = 𝑓3(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝜌𝑠𝑤, 𝜇𝑠𝑤, 𝑔, 𝑆𝑓) (8-41) 

 

Figure 8-23. Applied shape factor values for different icebergs in the present study 
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Presumably, the density along with the viscosity of the seawater is constant, and the value of 

gravitational acceleration may be regarded as a constant value; as a result, equation (8-41) is 

rewritten as follows: 

𝐷 = 𝑓4(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝑆𝑓). (8-42) 

The dimensional form of equation (8-42) is written below: 

𝐷 = 𝑓5(Π1, Π2, Π3, Π4) (8-43) 

here, Π1, Π2,…, and Π4 are dimensionless groups and f5 is a functional symbol based on the 

Buckingham-π theorem. Thus, the dimensionless groups below are written: 

Π1 =
𝐿

𝐻
 

(8-44) 

Π2 =
𝑤

𝐻
 

(8-45) 

Π3 =
𝑀

𝜌𝑖 . 𝐻3
 

(8-46) 

Π4 = 𝑆𝑓 (8-47) 

Equation (8-47) is then formulated as a function of four dimensionless groups as follows: 

𝐷

𝐻
= 𝑓6 (

𝐿

𝐻
,
𝑤

𝐻
,

𝑀

𝜌𝑖. 𝐻3
, 𝑆𝑓) 

(8-48) 

Therefore, 𝐷 𝐻⁄  is the iceberg draft ratio and is a function of the length ratio (𝐿 𝐻⁄ ), width ratio 

(𝑤 𝐻⁄ ), the mass ratio (𝑀 𝜌𝑖 . 𝐻
3⁄ ), and iceberg shape factor (𝑆𝑓). Subsequently, the ML models 

applied in the current investigations were fed with the input parameters in equation (8-48). 

Hence, four dimensionless groups, including length ratio (𝐿 𝐻⁄ ), width ratio (𝑤 𝐻⁄ ), the mass ratio 

(𝑀 𝜌𝑖 . 𝐻
3⁄ ), and iceberg shape factor (𝑆𝑓) were applied to estimate the iceberg draft ratio (𝐷 𝐻⁄ ) 

through the ML models in the present work. Figure 8-24 illustrates the combinations of four 

dimensionless groups introduced to develop the ML models. As seen, to identify the premium ML 
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models, five ML models, e.g., Model 1 to Model 5, were acquired, while Model 6 to Model 9 were 

defined to recognize the most influencing input parameters. Model 1 included all input factors, 

whilst these dimensionless groups were disregarded one at a time in Model 2 to Model 5. 

 

 

Figure 8-24. Input combination utilized for developing the ML models in the current study 

 

8.1.10.5. Dataset construction 
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case), Løset and Carstens (1996) (52 cases), Barker et al. (2004) (14 cases), McKenna (2004) (two 

cases), Sonnichsen et al. (2006) (nine cases), Turnbull et al. (2015) (two cases), McGuire et al. 

(2016) (eight cases), Younan et al. (2016) (29 cases), Talimi et al. (2016) (one case), Zhou (2017) 

(three cases), Turnbull et al. (2018) (two cases) were used. Table 8-3 summarizes the key 

parameters employed in the present study, comprising the field observations' maximum, minimum, 

average, variance, and standard deviation. 

The T-test and the P-value for the dataset were calculated, presuming that the P-value of 0.05 or 

less is statistically significant (Azimi and Shiri 2020), where an alternative hypothesis influences 

the likelihood of the relationship between the observed values. This P-value for the constructed 

dataset was estimated as 0.008, representing that the correlations were statistically significant. It 

is worth mentioning that 60% of the constructed dataset was used to train the ML algorithms, 

whereas 40% of the rest data was applied to test these models. 

 

Table 8-3. Summary of the key parameters employed in the present study 

Value D(m) H(m) w(m) M(kg) L(m) Sf 

Max 240 94 408 1.13E+13 499 0.58 

Min 18 3.9 9.672 8317400 34 0.11 

Ave 88.988 30.956 101.605 1.68E+11 144.522 0.298 

Var. 1696.272 399.389 3733.368 1.14E+24 6546.271 0.011 

Std. 41.186 19.985 61.101 1.07E+12 80.909 0.107 

 

8.1.10.6. Goodness of fit 
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A set of criteria such as correlation coefficient (R), root mean square error (RMSE), mean absolute 

percentage error (MAPE), Willmott Index (WI), coefficient of residual mass (CRM), and Akaike 

Information Criteria (AIC) were utilized to evaluate the precision, correlation, and complexity of 

the ML models. The proximity of the R and WI criteria to one showing the ML model tended to 

have a high degree of correlation with the values observed. The nearness of the RMSE, MAPE, and 

CRM indices to zero representing the ML model possessed the lowest degree of impreciseness; 

however, the complexity of the ML models was not examined through the indices applied. Hence, 

the Akaike Information Criteria (AIC) was used to overcome this restriction. In other words, the 

less complex ML model had the lowest amount of AIC, so the best ML model might have the 

lowest degree of AIC index and error (RMSE, MAPE, and CRM), with the highest amount of 

correlation (R and WI) (Azimi et al. 2022). 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(8-49) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(8-50) 
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100

𝑛
∑ |
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|
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(8-51) 

𝑊𝐼 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (|𝑃𝑖 − �̅�| + |𝑂𝑖 − �̅�|)2𝑛
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(8-53) 

𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(8-54) 
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Here, Oi, Pi, �̅�, �̅�, n, and k are the observational value, the predicted amount, the average 

observational values, the average predicted amount, the number of observations, and the number 

of independent variables in the ML models. 

 

8.1.11. Results and discussion 

The ETR models' performance was evaluated by performing several analyses, then the superior 

ETR model and the most significant input parameters were identified. Ultimately, the capability 

of the superior ETR model was compared with DTR, RFR, and empirical models. 

 

8.1.11.1. Evaluation of ETR models 

Figure 8-25 displays the results of key statistical indices obtained from the ETR 1 to ETR 9 models. 

The slices' size in this figure denotes the ETR models' significance. For instance, the highest level 

of precision was for the ETR 1 model, with an RMSE index of 1.081. The ETR 1 model 

approximated the iceberg draft through all inputs, including 𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,  𝑀 𝜌𝑖 . 𝐻
3,   and ⁄ 𝑆𝑓, 

where the value of WI and AIC criteria for this model equaled 0.943 and 10.165. The highest degree 

of accuracy was also obtained for the ETR 2 model (RMSE=1.081), while the iceberg shape factor 

(𝑆𝑓) was an eliminated input for this model. The influence of mass ratio ( 𝑀 𝜌𝑖. 𝐻
3⁄ ) was ignored 

for the ETR 3 model, and the CRM and R indices for this model were calculated to be 0.108 and 

0.917. The ETR 4 model estimated the iceberg drafts using 𝐿 𝐻⁄ ,  𝑀 𝜌𝑖 . 𝐻
3, and ⁄ 𝑆𝑓 inputs and 

the effect of 𝑤 𝐻⁄  was disregarded for this ML model, with the WI and AIC values of 0.926 and 

10.138. Among the ETR models with three inputs, the ETR 5 model had the lowest amount of 

precision (RMSE=1.234) and the highest level of complexity (AIC=11.837). For the ETR 5 model, 

the iceberg length ratio (𝐿 𝐻⁄ ) was removed from its input combination. 
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Four ETR models with one input, e.g., ETR 6 to ETR 9, were defined to recognize the most 

significant input parameters to approximate the iceberg drafts. The simulation results proved that 

the iceberg length ratio (𝐿 𝐻⁄ ) was detected as the most influential input since the ETR 6 model as 

a function of 𝐿 𝐻⁄ , possessed the highest level of precision, correlation, and simplicity to predict 

iceberg drafts. Furthermore, the width ratio (𝑤 𝐻⁄ ), the mass ratio ( 𝑀 𝜌𝑖 . 𝐻
3⁄ ), and shape factor 

(𝑆𝑓) were ranked in terms of effectiveness in the second, third, and fourth places.  
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Figure 8-25. Results of key statistical indices obtained from the ETR 1 to ETR 9 models (a) R 

(b) RMSE (c) AIC (d) CRM (e) WI 
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Figure 8-26 illustrates the scatter plots for the ETR 1 to ETR 9 models. Regarding this figure, the 

highest degree of correlation belonged to the ETR 4 model, with an R criterion of 0.924, whereas, 

amongst the ETR models with three input parameters, the ETR 5 model's correlation with the field 

data was relatively low. Moreover, the R index for the ETR 1, ETR 2, ETR 3, and ETR 5 models 

was surmised as 0.920, 0.906, 0.917, and 0.887, respectively. Among the ETR models with just 

one input parameter, the ETR 6 model had the uppermost correlation with the observed values, 

while the lowest level of correlation was achieved for the ETR 9 model. 

 

Figure 8-26. scatter plots for the ETR 1 to ETR 9 models (a) ETR 1 (b) ETR 2 (c) ETR 3 (d) 

ETR 4 (e) ETR 5 (f) ETR 6 (g) ETR 7 (h) ETR 8 (i) ETR 9 
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The error analysis for the ETR models was performed to evaluate these ML models' performance 

further. In Figure 8-27, the results of the error analysis for the ETR 1 to ETR 9 models are 

exhibited. Almost 36% of the iceberg drafts simulated by the ETR 1 and ETR 4 models showed 

an error of more than 20%. However, more than one-third of the iceberg drafts modeled by ETR 

1 had an error of less than 10%, and this amount for the ETR 4 model was about 30%. 

Approximately half of the iceberg drafts simulated by the ETR 2 model possessed an error of 

greater than 20%, whilst this value for the ETR 3 and ETR 5 model was nearly 38% and 45%. The 

error analysis for the ETR models with three and four inputs, e.g., ETR 1 to ETR 5, demonstrated 

that the ETR 1 model had the best performance in estimating the iceberg drafts. 

Among the ETR models with one input parameter, the ETR 6 model exhibited better performance 

in terms of error analysis, signifying that virtually 44% of the ETR 6 model's results provided an 

error of bigger than 20%. In contrast, this value for ETR 7, ETR 8, and ETR 9 was just about 56%, 

52%, and 53%, respectively. The ETR 7 and ETR 9 models showed the worst error analysis 

amount than the ML models with just one input parameter. 
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Figure 8-27. Error analysis of the ETR 1 to ETR 9 models (a) ETR 1 (b) ETR 2 (c) ETR 3 (d) 

ETR 4 (e) ETR 5 (f) ETR 6 (g) ETR 7 (h) ETR 8 (i) ETR 9 

 

The results of the discrepancy analysis for the ETR models are depicted in Figure 8-28. The 

efficiency of the ETR models was examined using the discrepancy ratio (DR) as below: 

𝐷𝑅 =
𝑃𝑖
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(8-55) 
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where, 𝑃𝑖 and 𝑂𝑖 are the simulated and observed iceberg drafts, respectively. The closer the 

magnitude of DR is to the unity, the higher performance shows the ETR model. The value of the 

maximum (DR(max)), minimum (DR(min)), and average (DR(ave)) discrepancy ratio for these models 

was calculated. For example, the DR(min) value for ETR 1, ETR 2, and ETR 3 models equaled, in 

turn, 0.493, 0.474, and 0.480. The nearest DR(ave) to one belonged to ETR 2, with a DR(ave) value 

of 1.005, whereas this index for ETR 4 and ETR 5 was 0.973 and 0.965. 

Among the ETR models with solely one input, e.g., ETR 6 to ETR 9, the highest value of DR(max) 

was obtained for the ETR 8 model (DR(max)=2.470), and this criterion for the ETR 6, ETR 7, and 

ETR 9 models were respectively computed to be 1.984, 2.139, and 2.293. 
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Figure 8-28. Results of the discrepancy analysis for the ETR models (a) DR(max) (b) DR(min) 

(c) DR(ave) 

 

The study performed an uncertainty analysis (UA) to further assessment of the ETR models' 

performance. To do so, the ETR model's error (𝑒𝑗) were calculated as the difference between the 

iceberg drafts predicted (𝑃𝑗) through this model and the actual iceberg drafts (𝑂𝑗), as follows: 
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𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (8-56) 

The mean (Mean) and the standard deviation (StDev) of such error values were obtained by the 

equations as follows: 

Mean =
1

𝑛
∑ 𝑒𝑗

𝑛

𝑗=1
 

(8-57) 

StDev = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(8-58) 

An individual ETR model underestimated the iceberg draft if the sign of the Mean value was 

negative, while the positive sign of the Mean meant that the ETR model overestimated the iceberg 

drafts. Thereon, a confidence interval (CI) was produced near the error counted using the Mean, 

StDev values, and the "Wilson score technic" by omitting the continuity correction. A normal 

distribution interval corrected as an asymmetric normal distribution, named the Wilson score 

interval, was employed to adjust the CI bounds. Subsequently, a ±1.96Se yielded a 95%CI. It 

should be remarked that the width of uncertainty bound (WUB) of each ETR model was acquired 

below (Azimi et al. 2022): 

WUB = ±
(Lower bound − upper bound)

2
 

(8-59) 

Figure 8-29 exhibits the normal distribution of the CI for the iceberg drafts simulated by the ETR 

models. According to the performed UA, all ETR models overestimated the iceberg drafts since 

the value of "Mean" for these models had positive signs, e.g., for the ETR 1 to ETR 9 models, the 

"Mean" values were surmised at 0.390, 0.335, 0.415, 0.411, 0.395, 0.357, 0.337, 0.407, and 0.463, 

respectively.  
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Figure 8-29. Error normal distribution of (a) ETR 1 (b) ETR 2 (c) ETR 3 (d) ETR 4 (e) ETR 5 (f) 

ETR 6 (g) ETR 7 (h) ETR 8 (i) ETR 9 

 

The smallest StDev value alongside the narrowest WUB was for the ETR 1 model, with a StDev 

and WUB of 1.016 and ±0.254. Amid the ETR 1 to ETR 5 models, the highest StDev and the 

widest WUB belonged to the ETR 5 model (StDev=1.178 & WUB=±0.295). The 95%CI value for 

the ETR 2, ETR 3, and ETR 4 models was at (0.059 to 0.612), (0.156 to 0.674), and (0.137 to 

0.684), respectively. Amongst the ETR models with one input parameter, the lowest and highest 

StDev and WUB amounts referred to the ETR 6 and ETR 9 models. 

Thus, several analyses were performed, including sensitivity, error, discrepancy, and uncertainty 

analysis, to identify the superior ETR model. The ETR 1 model, as a function of all inputs, was 

recognized as the superior ETR model to estimate the iceberg drafts in the present study. 
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8.1.11.2. Comparison between the superior ETR model with DTR, RFR, and empirical 

models 

The ETR 1 model was introduced as the best ETR model to predict the iceberg drafts in the 

previous sections. Hence, the capability of the ETR 1 model was compared with several tree-based 

ML models and empirical methods. In other words, the performance of DTR and RFR algorithms, 

along with four empirical models provided by Barker et al. (2004) (Eq. 8-59), Sacchetti et al. 

(2012) (Eq. 8-60), King et al. (2016) (Eq. 8-61), and Stuckey et al. (2021) (Eq. 8-62) was compared 

with the ETR 1 model. 

𝐷 = 0.7(𝐿) (8-59) 

𝐷 = 3.9(𝐿0.63) (8-60) 

𝐷 = 2.05(𝑀0.276) (8-61) 

𝐷 = 4.78(𝐿0.58) (8-62) 

Figure 8-30 compares the key statistical criteria between the ETR 1 model, ML algorithms, and 

empirical approaches. The correlation coefficient for DTR, RFR, Eq. (8-59), Eq. (8-60), Eq. (8-

61), and Eq. (8-62) equaled 0.848, 0.900, 0.769, 0.770, 0.333, and 0.769. The ETR 1 model's 

correlation with the observed values was 2.2% and 19.5% higher than the RFR algorithm and Eq. 

(8-60). Additionally, the ETR 1 model was almost 19.3% and 96.1% more accurate than the DTR 

and Eq. (8-59), where its complexity level was 97.2% and 96% less than Eq. (8-61) and Eq. (8-

62). The CRM index for DTR and RFR models was estimated to be 0.005 and 0.115, while the WI 

criterion for Eq. (8-59) to Eq. (8-62) equaled 0.895, 0.896, 0.257, and 0.674, respectively. 
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Figure 8-30. Comparison between the ETR 1 model, ML algorithms, and empirical approaches 

 

As shown, the ETR 1 model could simulate the iceberg draft values more efficiently than its 

counterparts, with more accuracy, better correlation, and lower complexity. It is worth mentioning 
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models since the ability of ETR 1 to model the iceberg draft was examined through 12 different 
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geographical locations and datasets. Furthermore, the empirical models suggested in the literature 

0

0.25

0.5

0.75

1

DTR RFR ETR Eq. (8-59) Eq. (8-60) Eq. (8-61) Eq. (8-62)

R
(a)

Models

0

60

120

180

DTR RFR ETR Eq. (8-59) Eq. (8-60) Eq. (8-61) Eq. (8-62)

R
M

S
E

(b)

Models

0

90

180

270

360

DTR RFR ETR Eq. (8-59) Eq. (8-60) Eq. (8-61) Eq. (8-62)

A
IC

(c)

Models

-0.5

-0.3

-0.1

0.1

0.3

DTR RFR ETR Eq. (8-59) Eq. (8-60) Eq. (8-61) Eq. (8-62)

C
R

M

(d)

Models

0

0.25

0.5

0.75

1

DTR RFR ETR Eq. (8-59) Eq. (8-60) Eq. (8-61) Eq. (8-62)

W
I

(e)

Models



 

750 
 

were able to estimate the iceberg drafts just using one input parameter, e.g., length or mass, etc., 

while the best ETR model managed to simulate the draft values through the length, width, mass, 

and shape factor of the iceberg. Moreover, the iceberg length and width ratio were identified as 

the most influential input parameters to model the iceberg drafts using the ETR algorithm. 

 

8.1.12. Conclusion 

This study proposed the use of extra tree regression (ETR) to model the iceberg drafts for the first 

time. Initially, nine ETR models were developed utilizing the parameters affecting the iceberg 

draft; then, a dataset was built using the observational measurements in the literature, and 60% and 

40% of the data were used for the training and testing of the ML models, respectively. The superior 

ETR model and the most significant input parameters were recognized by performing sensitivity, 

error, discrepancy, and uncertainty analyses. Lastly, the performance of the superior ETR model 

was compared with the decision tree regression (DTR), random forest regression (RFR), and 

empirical methods. The most important outcomes of this study are summarized as follows: 

 The superior ETR model, ETR 1, could simulate the iceberg drafts with the highest level 

of precision and correlation alongside the lowest degree of complexity. 

 The ETR 1 model predicted the iceberg drafts as a function of all input parameters, 

including 𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,  𝑀 𝜌𝑖. 𝐻
3,   and ⁄ 𝑆𝑓, 

 The value of RMSE, R, and AIC indices for the superior ETR model was obtained at 

1.081, 0.920, and 10.165, respectively. 

 Approximately 36% of the iceberg drafts estimated by the ETR 1 model possessed an 

error of less than 10%. 
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 The sensitivity analysis showed that the iceberg length ratio (L/H) and iceberg width ratio 

(w/H) was the most influential input parameters. 

 Regarding the performed uncertainty analysis, the ETR 1 model overestimated the 

iceberg drafts, with the smallest value of the standard deviation of computed error 

(StDev) and narrowest bound of uncertainty analysis (WUB). 

 Comparing the ETR 1 model's performance with the DTR, RFR, and empirical 

approaches demonstrated that the ETR 1 model outperformed its counterparts. 

The presented investigation was the first application of the tree-based ML algorithms in estimating 

iceberg drafts, and the results gave an excellent understanding of this domain. The achieved 

outcomes can preserve significant downtime and expenditures, particularly in the initial phases of 

the iceberg management projects, to enhance the safety and integrity of offshore structures and 

subsea assets. 
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Section 4 

 

Iceberg Drafts Assessment using Decision Tree Regression (DTR), Artificial 

Neural Network (ANN), and Support Vector Regression (SVR) algorithms 
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Abstract 

Nearly one-fifth of the Earth’s undiscovered hydrocarbons are reserved in the Arctic area whereas, 

the recent offshore oil and gas loading equipment, e.g., subsea pipelines, wellheads, and 

communication cables, developed in the Arctic waters has led to a considerable awareness of the 

iceberg draft prediction. The iceberg tip would gouge the ocean floor and the operational integrity 

of the sea bottom-founded infrastructures may be threatened in the Arctic shallower waters if the 

ocean depth is smaller than the traveling iceberg draft. Hence, developing an intelligent and cost-

effective solution to predict iceberg drafts is necessary to guarantee the operational integrity of the 

subsea assets. In this study, the iceberg drafts were simulated using three machine learning (ML) 

algorithms comprising decision tree regression (DTR), artificial neural network (ANN), and 

support vector regression (SVR). Initially, using the parameters governing the iceberg draft 

simulation, a set of ML models was defined. By performing several analyses including sensitivity 

analysis, error analysis, and uncertainty analysis, the premium ML model along with the most 

significant input parameters was introduced. The obtained outcome can smooth the path to offer 

alternative techniques to maintain the time and expenditures of the iceberg management projects 

and subsea structure design, specifically in the primary phases of the construction methodology, 

corresponding logistics, and the prospective scope of engineering design projects. 

 

Keywords: Iceberg draft simulation; Subsea infrastructures; decision tree regression (DTR); 

artificial neural network (ANN); support vector regression (SVR).
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8.1.13. Introduction 

Every year many icebergs are born out of glaciers in the Arctic area and carried away by the 

currents and into the North Atlantic. These traveling masses may touch the sea bottom in shallow 

waters and scratch the seabed, causing “ice-gouging” that can endanger the integrity of subsea 

pipelines and power cables or even directly collide with offshore structures such as ships, 

platforms, wind turbines, subsea manifolds, etc. Currently, ice management such as iceberg towing 

and re-routing is the most reliable approach to protect the subsea and offshore infrastructures, 

where the threatening icebergs are hooked and towed in a safe direction. Ice management is 

generally a costly operation and requires standby marine spread with a range of advanced tools, 

vessels, and equipment, like subsea survey facilities, to investigate the iceberg draft and determine 

if it is a threat to infrastructures. The Arctic region is one of the best resources to grow oil and gas 

loading equipment. Moreover, the Arctic offshore regions with rich wind culture have a high 

potential for the development of offshore wind farms (Blažauskas et al. 2013). The schematic 

layout of the iceberg free-floating and iceberg scouring in cold waters is displayed in Figure 8-31. 

As shown, the iceberg is in a free-floating circumstance if the ocean depth is greater than the 

iceberg draft; otherwise, the seafloor is scoured, and the seabed soil shear resistance causes the 

soil displacement to extend deeper than the iceberg tip threatening the buried subsea assets. 
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Figure 8-31. Icebergs in scouring and free-floating circumstances 

 

Owing to the significance of the iceberg draft estimation, extensive experimental, analytical, and 

numerical studies have been conducted in the domain. For example, McKena (2000) evaluated the 

threat of ice-gouging to offshore petroleum installations serving in the Grand Banks region. The 

author showed that the iceberg proportions were a function of the iceberg length. Sonnichsen et al. 

(2003) reported the seafloor surveys and ice-gouging on the Grand Bank of Canada in the 2000 

iceberg season. The drafts of the iceberg were recorded through a lateral scan sonar tool mounted 

on the tracking boat. The study demonstrated that there was serious concern about the precision of 

lateral scans of iceberg draft estimation. Barker et al. (2004) specified the iceberg sails and drafts 

utilizing the dimensions marked in the field. The investigation revealed that the iceberg draft could 

be approximated regarding the iceberg waterline length. Dowdeswell and Bamber (2007) 

scrutinized the draft deepness of traveling icebergs in the Antarctic waters. The authors calculated 

the draft through the ice thickness, keel depth at the grounding line, and surface elevation. The 
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study ended that a small minority of icebergs in the Antarctica and Greenland waters had drafts 

deeper than 650 m. Sacchetti et al. (2012) explored the iceberg features and ice scouring in 

Labrador and Hibernia territories. The characteristics of various icebergs such as wedged, domed, 

tabular, and pinnacle bergs were considered in this examination. The authors proposed a set of 

relationships in terms of the iceberg length to predict the iceberg draft. King et al. (2016) completed 

field experimentation to count the rolling iceberg rate. The iceberg draft was surmised by a calving 

study, with a computed standard deviation of draft changes from 19% to 34%. The iceberg draft 

has been approximated using the iceberg mass. Turnbull et al. (2018) suggested an instance of the 

drift mensuration of shifting icebergs on the Grand Banks of Newfoundland. The study stated that 

the iceberg draft estimated was roughly 1.3 times deeper than the real iceberg draft. McKenna et 

al. (2019) modeled the ice-gouging on the Grand Banks of Canada adopting the Monte Carlo 

simulation (MCs). The iceberg draft variations were also employed to reduce the dimension of 

draft changes in the applied methodology. Stuckey et al. (2021) modeled the 3D iceberg forms 

through a field survey. The examination exhibited that the iceberg drafts were summed in terms of 

iceberg length through the power method. They provided two practical instances concerning the 

information gathered in 2016 and the post-2000 report. Despite the wide applications of machine 

learning (ML) technology in multifarious fields to simulate different linear and nonlinear problems 

(Azimi and Shiri 2021a, Azimi et al. 2022, Azimi et al. 2023), the literature indicated that the 

iceberg draft has not been predicted using ML algorithms so far. Hence, to fill this knowledge gap, 

the iceberg drafts were simulated through three robust ML algorithms, e.g., artificial neural 

network (ANN), decision tree regression (DTR), and support vector regression (SVR) models. 

More information will be presented in the forthcoming sections. 
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8.1.14. Methodology 

8.1.14.1. Artificial neural networks (ANN) 

ANN is one of the most universally supervised machine learning (ML) algorithms. The main 

structure of an ANN algorithm consists of at least three distinct layers comprising an input layer, 

a hidden layer, and an output layer. The input parameters are embedded within the input layer, 

while the target parameter, e.g., the iceberg draft, is considered in the output layer. The hidden 

neurons are situated within the hidden layer, where the size of this layer is determined by the 

problem's complexity and desired accuracy (Azimi and Shiri 2021b). The number of hidden layer 

neurons was initially set as one and the magnitude of this hyperparameter was increased to 15, 

where the optimum number of the hidden layer neurons was chosen at 12 for the reason that the 

proficiency of the ANN algorithm was negligibly altered after this amount. In each hidden neuron, 

both the input parameters and their weights are calculated using mathematical operations, and the 

outcome is passed through a transfer function entitled the activation function. The sigmoid 

function was applied for the current architecture because it had better performance in comparison 

with other activation functions. Subsequently, the performance of the ANN algorithm was 

evaluated by the Mean squared error (MSE) as the loss function in the present study to measure 

the difference between the computed outputs and the target outputs. 

 

8.1.14.2. Decision tree regression (DTR) 

A tree data system contains a series of leaves and branches in which each node is regarded as a 

decision tree (DT). The DT may be used to solve both regression and classification problems. The 

DT comprises many components, such as a root node, several leaf nodes, internal nodes, and 

branches. The topmost node in this tree is considered the root node, and the leaf nodes (terminal 
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nodes) end with the titles of types, while the non-leaf nodes are assumed as the internal nodes. 

Such nodes link to each other through the branches (Pekel 2020). In the present work, the mean 

squared error (MSE) is involved in maintaining the fitness function in the DT algorithm. In this 

investigation, the hyperparameters of the DTR algorithms were determined using a trial-and-error 

strategy. It means that the value of max_depth, max_leaf_nodes, and min_weight_fraction_leaf 

was primary at 10, 2, and 0.01, and the performance of the DTR algorithm was assessed. The 

number of hyperparameters was raised in the following stages until the DTR's results reached an 

adequate level. The DTR model estimated the iceberg drafts with its highest level of precision and 

correlation as well as its lowest degree of complicatedness until the number of hyperparameters 

comprising the max_depth, max_features, max_leaf_nodes, min_samples_leaf, 

min_weight_fraction_leaf, and splitter was, in turn, adapted as 150, 'auto', 2, 2, 0.001, and 

'random'. 

 

8.1.14.3. Support vector regression (SVR) 

A support vector machine (SVM) is known as a supervised learning ML algorithm to solve both 

classification and regression problems. The SVM is based on Vapnik-Chervonenkis (VC) theory, 

and this algorithm was proposed by Vapnik (1995). To simulate the regression problems, SVR is 

applied in which the training data is mapped from the input variables (input space) into the 

objective parameter (feature space) through a function (Ϙ). In the feature space, a separating 

hyperplane with the highest margin is produced. In a regression problem, a nonlinear 

transformation from the input space to high-dimensional space is made by using the Ϙ function. 

Regardless of the transformation function (Ϙ), the kernel function can implement the dot product 

in the multidimensional feature space through the low-dimensional space input variables. In 
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practical applications, several kernel functions comprising the linear, polynomial, and radial basis 

functions (RBF) are utilized in the SVR algorithm. Moreover, the 𝜀-insensitive loss function is 

employed as a cost function in this model. To simulate the iceberg drafts in this study, the 

parameters of the SVM algorithm, such as the penalty parameter (C), the kernel coefficient 

(gamma), epsilon, verbose, and kernel were respectively tuned as 0.01, 1, 0.5, 1, and linear. The 

applied parameters of the SVM model in the current study were chosen based on a trial and error 

method. The Flowchart of the SVR algorithm applied in the current study is shown in Figure 8-

32. Regarding the flowchart, the constructed dataset was initially loaded and it was divided into 

the training and testing sub-samples. Subsequently, the iceberg drafts were simulated by using the 

parameters affecting the SVR model. If the performance of the SVR was acceptable, the results 

were compared with the ANN and DTR algorithms; otherwise, the SVR’s hyperparameters were 

tuned. It is worth mentioning that the definition of acceptable performance for the ML algorithm 

is determined by the applied indices in equations (8-8) to (8-13). These statistical indices assess 

the accuracy, correlation, and complexity of the ML model at the same time. 
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Figure 8-32. Flowchart of the SVR algorithm applied in the current study 

 

8.1.14.4. Iceberg drafts 

The iceberg draft (D) was assumed as a function of the physical characteristics of the iceberg, 

comprising the iceberg length (L), iceberg height (H), iceberg width (w), iceberg mass (M) in 

several fields, analytical, and numerical studies in the form below (Barker et al. 2004; McKenna 

et al. 2019; and Stuckey et al. 2021): 

𝐷 = 𝑓1(𝐿, 𝐻,𝑊,𝑀). (8-63) 

Furthermore, the density of an iceberg (𝜌𝑖), the density of seawater (𝜌𝑠𝑤), seawater viscosity 

(𝜇𝑠𝑤), and gravitational acceleration (𝑔) may influence the iceberg draft as follows: 

𝐷 = 𝑓2(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝜌𝑠𝑤 , 𝜇𝑠𝑤, 𝑔) (8-64) 

The iceberg shape factor (Sf) signifies the global shape of icebergs, which can affect the magnitude 

of the iceberg draft (Turnbull et al. 2018). The iceberg shape factor has been already defined. The 
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shape factor of an iceberg describes the estimated fraction filled by the iceberg sail of a rectangle 

whose dimensions are the length by the height (Turnbull et al. 2015). The shape factor of the 

traveling icebergs is considered universally into six categories including Tabular (Sf=0.5), Blocky 

(Sf=0.5), Domed (Sf=0.41), Dry Dock (Sf=0.15), Pinnacle (Sf=0.25), and Wedge (Sf=0.5) (Rudkin 

2005). Hence, equation (2) can be summarized below: 

𝐷 = 𝑓3(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝜌𝑠𝑤, 𝜇𝑠𝑤, 𝑔, 𝑆𝑓) (8-65) 

It is assumed that the density along with viscosity of the seawater is constant and the value of 

gravitational acceleration can be regarded as a constant value; as a result, equation (8-65) is 

rewritten as follows: 

𝐷 = 𝑓4(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝑆𝑓). (8-66) 

The dimensional form of equation (20-4) is written below: 

𝐷 = 𝑓5(Π1, Π2, Π3, Π4) (8-67) 

here, Π1, Π2,…, and Π4 are dimensionless groups and f5 is a functional symbol based on the 

Buckingham-π theorem. Thus, the dimensionless groups below are written: 

Π1 =
𝐿

𝐻
, Π2 =

𝑤

𝐻
, Π3 =

𝑀

𝜌𝑖.𝐻
3 , Π4 = 𝑆𝑓  (8-68) 

Equation (8-67) is then formulated as a function of four dimensionless groups as follows: 

𝐷

𝐻
= 𝑓6 (

𝐿

𝐻
,
𝑤

𝐻
,

𝑀

𝜌𝑖. 𝐻3
, 𝑆𝑓) 

(8-69) 

Therefore, 𝐷 𝐻⁄  as the iceberg draft ratio is a function of the length ratio (𝐿 𝐻⁄ ), width ratio (𝑤 𝐻⁄ ), 

the mass ratio (𝑀 𝜌𝑖. 𝐻
3⁄ ), and iceberg shape factor (𝑆𝑓). Subsequently, the ML models applied in 

the current investigations were fed with the input parameters in equation (8-69). Hence, four 

dimensionless groups, including length ratio (𝐿 𝐻⁄ ), width ratio (𝑤 𝐻⁄ ), the mass ratio (𝑀 𝜌𝑖 . 𝐻
3⁄ ), 

and iceberg shape factor (𝑆𝑓) were applied to estimate the iceberg draft ratio (𝐷 𝐻⁄ ) through the 
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ML models in the present work. Figure 8-33 illustrates the combinations of four dimensionless 

groups introduced to develop the ML models. As seen, to identify the premium ML models, five 

ML models, e.g., Model 1 to Model 5 were developed, while Model 6 to Model 9 were defined to 

recognize the most influencing input parameters. Model 1 included all input factors, whilst these 

dimensionless groups were disregarded one at a time in Model 2 to Model 5. Additionally, models 

6 to 9 predicted the iceberg drafts solely one input parameter. 

 

Figure 8-33. Input combination applied for developing the ML models 

 

8.1.14.5. Construction of database 

Several field observations were adopted to analyze the iceberg draft. The key values of 12 field 

studies reported by El-Tahan et al. (1985) (38 cases), Woodworth-Lynas et al. (1985) (one case), 

Løset and Carstens (1996) (52 cases), Barker et al. (2004) (14 cases), McKenna (2004) (two cases), 

Sonnichsen et al. (2006) (nine cases), Turnbull et al. (2015) (two cases), McGuire et al. (2016) 

(eight cases), Younan et al. (2016) (29 cases), Talimi et al. (2016) (one case), Zhou (2017) (three 

cases), Turnbull et al. (2018) (two cases) were used. It is worth noting that the iceberg drafts in the 

El-Tahan et al. (1985) study were measured using a set of technices such as submarine cables, 
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exploration vessels, shore-based radar, drill-rig radar, etc. Woodworth-Lynas et al. (1985) utilized 

acoustic profilers and sextants to measure the iceberg draft. Løset and Carstens (1996) calculated 

the iceberg draft through the real dimension above the water surface. Barker et al. (2004) employed 

the sonar profiles of the iceberg draft to document the iceberg draft. McKenna (2004) reported the 

magnitude of the iceberg draft by analyzing the iceberg profiles obtained from sonar technology. 

Sonnichsen et al. (2006) asserted that the side scan sonar equipment had been applied to 

approximate the iceberg draft. Turnbull et al. (2015) estimated iceberg draft regarding the 

relationships between above-water height and underwater depth. McGuire et al. (2016) applied a 

multi-beam sonar system for the iceberg draft measurement. Younan et al. (2016) scanned the 

iceberg drafts by means of a sideway-oriented multi-beam mounted on a remotely operated vehicle 

(ROV). Talimi et al. (2016) reported that the dimensions of the applied iceberg in this study were 

obtained from multi-beam sonar profiling. Zhou (2017) used the digital iceberg which was profiled 

by the National Research Council Canada (NRC). Turnbull et al. (2018) quantified the iceberg 

draft using a multi-beam profiling system. The T-test and the P-value for the dataset were 

calculated, presuming that the P-value of 0.05 or less is statistically significant (Azimi and Shiri 

2020), where the likelihood of the relationship between the observed values is influenced by an 

alternative hypothesis. This P-value for the constructed dataset was estimated as 0.008, 

representing that the correlations were statistically significant. It is worth mentioning that 60% of 

the constructed database was utilized for training the ANN, DTR, and SVR models, whereas 40% 

of the remaining dataset was employed to test these models. 

 

8.1.14.6. Goodness of fit 
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To examine the precision, correlation, and complexity of the ML models, several criteria such as 

correlation coefficient (R), root mean square error (RMSE), mean absolute percentage error 

(MAPE), Willmott Index (WI), coefficient of residual mass (CRM), and Akaike Information 

Criteria (AIC) were utilized. The proximity of the R and WI criteria to one showing the ML model 

tended to have a high degree of correlation with the values observed. The nearness of the RMSE, 

MAPE, and CRM indices to zero representing the ML model possessed the lowest degree of 

impreciseness; however, the complexity of the ML models was not examined through the indices 

applied. To overcome this restriction, the Akaike Information Criteria (AIC) was used. (Azimi et 

al. 2022). 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛
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𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
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𝑛
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2
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(8-75) 

Here, Oi, Pi, �̅�, �̅�, n and k are respectively the observational value, the predicted amount, the 

average observational values, the average predicted amount, the number of observations, and the 

number of independent variables in the ML models. 
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8.1.15. Results and discussion 

8.1.15.1. Sensitivity analysis 

Figure 8-34 demonstrates the statistical indices calculated for the ANN, DTR, and SVR models. 

Model 1 estimated the iceberg drafts using 𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,  𝑀 𝜌𝑖 . 𝐻
3,   and ⁄ 𝑆𝑓 parameter. The RMSE 

index for the ANN 1, DTR 1, and SVR 1 models was equal to 0.698, 0.848, and 0.896. The effect 

of the iceberg shape factor (𝑆𝑓) was disregarded for model 2, where the value of the AIC criterion 

for the ANN 2, DTR 2, and SVR 2 models were respectively computed to be 132.007, 18.512, and 

15.250. The iceberg mass ratio ( 𝑀 𝜌𝑖 . 𝐻
3⁄ ) was an eliminated factor for Model 3, e.g., ANN 3, 

DTR 3, and SVR 3, with a WI value of 0.455, 0.785, and 0.870, in turn. The value of the CRM 

statistical index for ANN 4, DTR 4, and SVR 4 was -1.016, 0.025, and 0.104 as the influence of 

the iceberg width ratio (𝑤 𝐻⁄ ) was removed for these ML models. The iceberg length ratio (𝐿 𝐻⁄ ) 

was ignored for the iceberg draft estimation using the ANN 5, DTR 5, and SVR 5 models when 

the RMSE amount for such models was surmised as 1.598, 2.059, and 1.713. Models 6 to 9 were 

the function of solely one input parameter, e.g., 𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,  𝑀 𝜌𝑖. 𝐻
3,   and ⁄ 𝑆𝑓, respectively. The 

simulation outcomes demonstrated that the ANN 5, DTR 1, and SVR 3 models were detected as 

the superior models among the ANN, DTR, and SVR models. According to the performed 

sensitivity analysis, the iceberg length ratio (𝐿 𝐻⁄ ) and the iceberg width ratio (𝑤 𝐻⁄ ) had the 

highest degree of effectiveness to simulate the iceberg drafts, while the iceberg mass ratio 

( 𝑀 𝜌𝑖 . 𝐻
3⁄ ) possessed an insignificant influence. 



 

771 
 

 

Figure 8-34. Comparison between the statistical indices calculated for the ANN, DTR, and SVR 

models 

 

The error analysis showed that roughly one-fourth of iceberg drafts predicted by the ANN 1 model 

had an error of less than 10%, whereas this amount for the ANN 2, ANN 3, ANN 4, and ANN 5 

models was approximately 17%, 23%, 31, and 33%, in turn. Almost 53% of the ANN 5 model’s 

results possessed an error of smaller than 20% but this value for the ANN 6, ANN 7, ANN 8, and 

ANN 9 models was nearly 40%, 34%, 39%, and 50%, respectively. About one-third of the DTR 

1, DTR 2, DTR 3, DTR 4, and DTR 5 models’ results had an error of less than 18%; however, this 
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value for the DRE 6, DTR 7, DTR 8, and DTR 9 models was near 21%, 26%, 18%, and 25%. Just 

about half of the iceberg drafts predicted by the SVR 3 model showed an error of less than 20% 

and this figure for the SVR 4 and SVR 5 was 42% and 40%. The performed error analysis 

demonstrated that ANN 5, DTR 1, and SVR 3 had the highest level of accuracy among the ANN, 

DTR, and SVR models, respectively. 

 

8.1.15.2. Comparison between the superior models 

The performed analysis in the previous section demonstrated that the ANN 5, DTR 1, and SVR 3 

models were the superior models to estimate the iceberg drafts. Figure 8-35 exhibits the scatter 

plots for these superior models. The value of correlation coefficient (R) for the ANN 5, DTR 1, 

and SVR 3 models was respectively obtained at 0.789, 0.848, and 0.908. Hence, the SVR 3 

predicted the iceberg drafts with the highest level of correlation. 
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Figure 8-35. Scatter plots for the superior models (a) ANN 5 (b) DTR 1 (c) SVR 3 

 

The study performed an uncertainty analysis (UA) to further assessment of the ETR models' 

performance. To do so, the ETR model's error was calculated as the difference between the iceberg 

drafts predicted through this model and the actual iceberg drafts. The mean (Mean) and the 

standard deviation (StDev) of such error, values were obtained. An individual ETR model 

underestimated the iceberg draft if the sign of the Mean value was negative, while the positive sign 

of the Mean meant that the ML models overestimated the iceberg drafts. Thereon, a confidence 

interval (CI) was produced near the error counted using the Mean, StDev values, and the "Wilson 

score technic" by omitting the continuity correction. A normal distribution interval corrected as an 

asymmetric normal distribution, named the Wilson score interval, was employed to adjust the CI 

bounds. Subsequently, a ±1.96Se yielded a 95%CI. It should be remarked that the width of the 

uncertainty bound (WUB) is half of the difference between the lower and upper bound (Azimi et 

al. 2023). Figure 8-36 illustrates the binomial and normal error distribution of the ANN 5, DTR 1, 

and SVR 3 models. Regarding the performed uncertainty analysis, the ANN 5, DTR 1, and SVR 

3 models overestimated the iceberg drafts, with a Mean value of 0.252, 0.019, and 0.432. 

Moreover, the lowest value of StDev was known for the SVR 3 model. Although the widest 

uncertainty bound was calculated for the ANN 5 (WUB=±0.398), the width of the uncertainty 

bound for the DTR 1 and SVR 3 was equal to ±0.338. Therefore, the SVR 3 model as a function 

of 𝐿 𝐻⁄ ,𝑤 𝐻⁄ , and 𝑆𝑓 was recognized to be the superior ML model to simulate the iceberg drafts 

in the present study. This model showed the lowest degree of complexity alongside the highest 

degree of accuracy and correlation with the observational values, where it biased toward the 

overestimation to predict the target parameter. It is worth noting that the iceberg length ratio (𝐿 𝐻⁄ ) 



 

774 
 

and the iceberg width ratio (𝑤 𝐻⁄ ) were known as the most influential inputs in order to model the 

iceberg drafts. 

 

Figure 8-36. Binomial and normal error distribution of the superior models (a) ANN 5 (b) DTR 1 

(c) SVR 3 

 

8.1.16. Conclusion 

In the present study, three ML algorithms, e.g., ANN, DTR, and SVR, were used to model the 

iceberg drafts. By performing several analyses including, the sensitivity, error, and uncertainty 

analyses, the superior ML model alongside the most influencing input parameters was 

distinguished. The SVR algorithm outperformed the ANN and DTR methods in the estimation of 

the iceberg drafts. The conducted sensitivity analysis proved that the SVR 3 model as a function 

of 𝐿 𝐻⁄ ,𝑤 𝐻⁄ , and 𝑆𝑓 was the superior ML model for the simulation of iceberg drafts. The SVR 
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3 model possessed the highest degree of precision, correlation, and simplicity, meaning that the 

value of RMSE, R, and AIC for this model was reckoned to be 1.411, 0.908, and 15.562. Regarding 

the performed error analysis, almost one-fifth of the simulation results of the SVR 3 model had an 

error of smaller than 12%. The performed uncertainty analysis revealed that the SVR 3 model 

overestimated the iceberg drafts, with the lowest value of the error standard deviation (StDev) at 

1.353. The iceberg length ratio (𝐿 𝐻⁄ ) and the iceberg width ratio (𝑤 𝐻⁄ ) were found to be the most 

effective input parameters to model the iceberg drafts using the SVR algorithm. The obtained 

results gave a good understanding of the modeling of the iceberg drafts through ML algorithms in 

order to protect the offshore structures and subsea assets in the Arctic and subarctic areas. These 

outcomes can facilitate proposing of cost-effective and quick alternatives in the early stages of 

iceberg management projects and subsea structure designs. 
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Part III 

 

Prediction of Iceberg Draft and iceberg Response to Ice-gouging Using 

Machine Learning Algorithms: Integration of Part I and Part II 
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9. Chapter 9 

 

Prediction of Iceberg Draft and iceberg Response to Ice-gouging Using 

Machine Learning Algorithms 

 

This chapter includes two sections as follows: 

Section 1: Evaluation of Iceberg Draft and Iceberg-Seabed Interaction Using Random Forest 

Regression Algorithm 

Section 2: Simulation of Iceberg Draft and Subgouge Soil Characteristics Using Extra Tree 

Regression Algorithm 
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Section 1 

 

Evaluation of Iceberg Draft and Iceberg-Seabed Interaction Using Random 

Forest Regression Algorithm 
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Abstract 

In the present study, the iceberg drafts and iceberg-seabed interaction process were simulated using 

the random forest regression (RFR) algorithm for the first time. Initially, utilizing the parameters 

governing the iceberg drafts and the iceberg-seabed interaction process in the sandy seabed, a set 

of RFR models were developed. To train and test the RFR models, a comprehensive dataset was 

subsequently constructed by using the field and experimental values reported in the published 

literature. By performing a sensitivity analysis, the premium RFR model and the most significant 

input parameters were introduced. 

 

Keywords: Iceberg draft; Iceberg-seabed interaction; Random forest regression (RFR); Subsea 

assets; Iceberg management system; Arctic area.
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9.1.1. Introduction 

Approximately 22% of the Earth's undiscovered hydrocarbons are stored in the Arctic region. 

Therefore, the Arctic area is one of the best resources to grow oil and gas loading equipment. 

Moreover, the Arctic offshore regions with rich wind culture have a high potential for the 

development of offshore wind farms. This combined with climate change and global warming 

means an increased number of ice management operations to protect the subsea pipelines, power 

cables, and offshore and subsea structures. The schematic layout of the iceberg free-floating and 

iceberg scouring in cold waters is shown in Figure 9-1. 

 

Figure 9-1. Schematic layout of the iceberg free-floating and iceberg scouring in cold waters 

 

As seen, the iceberg is in a free-floating situation if the ocean depth is greater than the iceberg 

draft; otherwise, the seafloor is scoured, and the seabed soil shear resistance causes the soil 

displacement to extend deeper than the iceberg tip threatening the buried subsea assets. 
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The efficient iceberg management designs and the guaranteed operational integrity of the sea 

bottom-funded infrastructure against the iceberg attacks in the ice-prone areas demand the 

appropriate iceberg draft appraisal, which may lead to a potential decrease in operating expenses 

and downtime. Earlier investigations have tended to focus on modeling the iceberg draft by using 

the iceberg length or iceberg mass (Robe and Farmer 1976; Hotzel and Miller 1983; Barker et al. 

2004). King et al. (2016) performed a field investigation to calculate the iceberg rolling rate. The 

iceberg drafts were estimated utilizing a calving analysis, with a calculated standard deviation of 

draft variations from 19% to 34%. The iceberg drafts corresponded with the mass of the icebergs. 

In another investigation, Turnbull et al. (2018) proposed a model for the drift estimation of moving 

icebergs on the Grand Banks of Newfoundland. This model approximated the draft of icebergs 

roughly 1.3 times more than the real values. 

McKenna et al. (2019) have recently simulated ice scouring on the Grand Banks of Canada using 

the Monte Carlo method. The iceberg draft alterations were utilized to lessen the size of draft 

variations in this modeling. Most recently, Stuckey et al. (2021) simulated the three-dimensional 

iceberg shapes by adopting field measurements. The investigation demonstrated that the draft and 

mass of the iceberg were estimated in terms of the iceberg length by utilizing the power curve. 

Despite the offshore structures such as ships, wind turbines, and floating or fixed platforms that 

can be directly attacked by icebergs, the threat that goes to the buried pipelines and power cables 

is much more complicated involving the ice-soil-structure interactions. During the ice-gouging, 

the subgouge soil displacement is largely vastly extended down the seabed much deeper than the 

gouge depth. This may cause large deformations in the pipelines buried even below the gouge 

depth. Investigation of the subgouge soil deformation and the best trench depth to bury the 

pipelines and power cables have been a hot topic in the literature over the past few decades (Paulin 
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1992; Hynes 1996; Yang 2009). Arnau Almirall (2017) conducted several 1g laboratory tests to 

perform the subgouge sand features in saturated and dry circumstances. The study demonstrated 

that the ice-induced sand deformations in the 1g test are less than those resulting from the 

centrifuge tests. Hashemi and Shiri (2022) simulated the iceberg-seabed interaction in clay by 

incorporating the strain rate and strain-softening effects. This study concluded that strain softening 

had a significant influence on a larger amount of plastic shear strain below and in front of the 

iceberg tip. 

Moreover, artificial intelligence (AI) models and machine learning (ML) algorithms have been 

recently employed for the analysis of iceberg-seabed interaction (Kioka et al. 2003, 2004; Azimi 

and Shiri 2020a, 2020b; Azimi and Shiri 2021a, 2021b, 2021c; 2021d, Azimi et al. 2021) since 

these tools are cost-effective, fast, and accurate. Azimi et al. (2022a) utilized an evolutionary 

design of the generalized group method of data handling (GS-GMDH) to model the iceberg-seabed 

interaction mechanism. The comparison of the best GS-GMDH model with the artificial neural 

network (ANN) and the GMDH algorithm showed the better performance of the GS-GMDH 

model. Azimi et al. (2022b) simulated the horizontal and vertical subgouge soil deformations in 

clay by using the Decision Tree Regression (DTR), Random Forest Regression (RFR), and Extra 

Tree Regression (ETR) models. The simulation results demonstrated that the ETR model 

possessed the highest degree of precision and correlation with the experimental values. Azimi et 

al. (2022c) estimated the iceberg-seabed interaction characteristics in clay seabed through decision 

tree regression (DTR), random forest regression (RFR), and gradient boosting regression (GBR) 

algorithms. The authors stated that the ETR algorithm was able to predict the target parameters 

with a better performance. Literature shows that there is no study to predict iceberg drafts and 

subgouge soil features at the same time. Hence, to fill this knowledge gap, a tree-based ML 
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algorithm is used in the current study to simulate the iceberg drafts and subgouge soil 

characteristics simultaneously. More details are presented in the next sections. 

Every year thousands of icebergs are born out of glaciers in the Arctic zone and carried away by 

the currents and into the North Atlantic. These icebergs may touch the sea bottom in shallow waters 

and scratch the seabed, causing so-called “ice-gouging” that may endanger the integrity of subsea 

pipelines and power cables. Currently, so-called “ice management,” i.e., iceberg towing and re-

routing, is the most reliable approach to protect the subsea and offshore infrastructures, where the 

threatening icebergs are hooked and towed in a safe direction. Ice management is a costly operation 

and needs standby marine spread with a range of advanced tools and equipment, such as subsea 

survey facilities, to investigate the iceberg draft and determine if it is a threat to infrastructures. 

On the other hand, expensive numerical simulations and experimental testing programs are 

conducted to explore the soil displacement under the tip of the iceberg, scouring the seabed or so-

called “subgouge soil displacement” that, in turn, governs the structural response of the buried 

subsea pipelines and power cables. In this research program, using advanced Machine Learning 

(ML) algorithms, the iceberg draft and subgouge soil parameters were simulated. 

Firstly, the parameters affecting the iceberg draft estimation along with the parameters governing 

the subgouge soil feature modeling were identified utilizing Buckingham’s theorem. 

Subsequently, regarding the identified parameters affecting the problems, two distinct datasets for 

iceberg draft and subgouge soil feature estimation were constructed by using the published papers 

and reports that have been cited in this work. Each dataset was divided into two subsets comprising 

the training and testing subsets. The ML algorithm was fed with these parameters affecting to 

estimate the iceberg drafts and subgouge soil characteristics in the training mode. After that, the 

ML model was validated by employing the testing datasets. The results of ML models were 
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analyzed to introduce the best combination of the parameters affecting, the superior ML model, 

alongside the most significant parameters. The applied ML algorithm in the current study as a fast 

and cost-effective alternative can be used to simulate the iceberg drafts and iceberg-seabed 

interaction process, particularly in the early stages of iceberg management systems and subsea 

design projects. 

 

9.1.2. Methodology 

9.1.2.1. Random forest regression (RFR) 

RF algorithm has been developed by Breiman (2001) to solve classification and regression 

problems. The RF algorithm, as an ensemble learning method, is the extension of the Classification 

and Regression Trees (CART) algorithm where the tree-based CART models have the overfitting 

problem and the RF algorithm overcomes this limitation (Breiman 2001). Figure 9-2 demonstrates 

the RFR model’s flowchart in the present study. 

In the RF algorithm, several decision trees are created and decisions with the highest number of 

votes are chosen as the simulation results. In the random forest regression, the number of trees for 

a random vector is increased and the tree predictor, input parameters, and output parameters are 

considered numerical values. Regarding the random vector distribution, the training dataset is 

independently utilized. Therefore, the mean-squared generalization error for the tree predictor is 

calculated (Sahani and Ghosh 2021). The RF model reduces the average error of the trees utilized 

by utilizing the weighted correlation between the residuals and the applied randomization ought to 

be employed at a low level of correlation. In this study, the hyperparameters tuned in the RFR 

algorithm including the max_samples, bootstrap, max_depth, random_state, number of estimators, 

and verbose were adjusted by a trial and error procedure at None, True, 12, 6, 8, 1, respectively. 
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Figure 9-2. RFR model’s flowchart in the present study 

 

9.1.2.2. Iceberg draft 

The iceberg draft (D) was considered as a function of the physical characteristics of the iceberg, 

comprising the iceberg length (L), iceberg height (H), iceberg width (w), iceberg mass (M) in so 
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many fields, analytical, and numerical investigations in the form below (Barker et al. 2004; 

McKenna et al. 2019; and Stuckey et al. 2021): 

𝐷 = 𝑓1(𝐿, 𝐻,𝑤,𝑀) (9-1) 

Furthermore, the density of an iceberg (ρi), the density of seawater (ρsw), seawater viscosity (μsw), 

and gravitational acceleration (g) may influence the iceberg draft as follows: 

𝐷 = 𝑓2(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝜌𝑠𝑤 , 𝜇𝑠𝑤, 𝑔) (9-2) 

The iceberg shape factor (Sf) signifies the global shape of icebergs, which can affect the magnitude 

of the iceberg draft (Turnbull et al. 2018). The shape factor of the traveling icebergs is considered 

universally into six categories, e.g., the shape factor for tabular, blocky, domed, dry dock, pinnacle, 

and wedge icebergs are 0.5, 0.5, 0.41, 0.15, 0.25, 0.33, respectively (Rudkin 2005). Hence, 

equation (9-2) can be summarized below: 

𝐷 = 𝑓3(𝐿, 𝐻,𝑤,𝑀, 𝜌𝑖 , 𝜌𝑠𝑤, 𝜇𝑠𝑤, 𝑔, 𝑆𝑓) (9-3) 

Presumably, the density along with the viscosity of the seawater is constant, and the value of 

gravitational acceleration may be regarded as a constant value. The dimensional form of equation 

(9-3) is written below: 

𝐷 = 𝑓5(Π1, Π2, Π3, Π4) (9-4) 

here, Π1, Π2,…, and Π4 are dimensionless groups and f5 is a functional symbol based on the 

Buckingham-π theorem. Thus, equation (9-5) is then formulated as a function of four 

dimensionless groups as follows: 

𝐷

𝐻
= 𝑓6 (

𝐿

𝐻
,
𝑤

𝐻
,

𝑀

𝜌𝑖. 𝐻3
, 𝑆𝑓) 

(9-5) 

Therefore, 𝐷 𝐻⁄  is the iceberg draft ratio and is a function of the length ratio (𝐿 𝐻⁄ ), width ratio 

(𝑤 𝐻⁄ ), mass ratio (𝑀 𝜌𝑖 . 𝐻
3⁄ ), and iceberg shape factor (𝑆𝑓). 
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9.1.2.3. Iceberg-seabed interaction process 

The ice-induced interaction parameters (η) in a sand mass including soil deformations (𝑑/𝑊) and 

reaction forces (𝐹/𝛾𝑠𝑊3) are a function of a set of parameters including the scour depth (𝐷𝑠), the 

internal friction angle of sand (𝜑), the width of gouge (𝑊), the attack angle (), the angle of the 

surcharged soil slope (ω), the height of the berm (h’), the horizontal load (Lh), the vertical load 

(Lv), the velocity of iceberg keel (V), and the specific weight of sand (𝛾𝑠) (Azimi and Shiri 2020a). 

The maximum subgouge deformation in the sand (𝑑(𝑠𝑎𝑛𝑑)) is formed just under the moving 

iceberg keel in the gouge centerline. However, at greater depth on the subgouge centerline, by 

incorporating the soil depth (y/W), the subgouge soil deformation in the sand (d(sand)/W) is written 

as follows: 

𝑑(𝑠𝑎𝑛𝑑)

𝑊
= 𝑓3 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,𝜑,,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(9-6) 

Similarly, the ice-induced reaction force (F) is a function of the position of the iceberg along the 

scour axis (x) and 𝐷𝑠, 𝜑,𝑊,, 𝜔, ℎ′, 𝐿ℎ, 𝐿𝑣, 𝑉, 𝛾𝑠 so equation (9-6) can be written as below: 

𝐹(𝑠𝑎𝑛𝑑)

𝛾𝑠𝑊3
= 𝑓4 (

𝑥

𝑊
,
𝐷𝑠

𝑊
,𝜑,,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(9-7) 

Here, Lh and Lv indicate the consequence of horizontal and vertical loads. Figure 9-3 illustrates 

the combination of input parameters for the development of the RFR model to simulate iceberg 

draft and subgouge soil characteristics. 
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Figure 9-3. Combination of input parameters for the development of RFR model to simulate (a) 

iceberg draft (b) subgouge soil characteristics 

 

9.1.2.4. Construction of dataset 

The measured values of 12 field studies reported by El-Tahan et al. (1985) (38 cases), Woodworth-

Lynas et al. (1985) (one case), Løset and Carstens (1996) (52 cases), Barker et al. (2004) (14 

cases), McKenna (2004) (two cases), Sonnichsen et al. (2006) (nine cases), Turnbull et al. (2015) 

(two cases), McGuire et al. (2016) (eight cases), Younan et al. (2016) (29 cases), Talimi et al. 

(2016) (one case), Zhou (2017) (three cases), Turnbull et al. (2018) (two cases) were used. 

The key measurements of six experimental datasets reported by Paulin (1991, 1992) (P-1 to P-5), 

C-CORE (1995, 1996) (C-1 to C-10), Hynes (1996) (H-1 to H-5), and Yang (2009) (Y-1 to Y-7) 

were applied to validate the subgouge soil features simulated by RFR algorithm. 

To assess the quality of the datasets, the t-test and the P-value for the datasets were calculated, 

presuming that the P-value of 0.05 or less is statistically significant, where an alternative 

hypothesis influences the likelihood of the relationship between the observed values. This P-value 
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for the iceberg draft dataset and iceberg-seabed interaction dataset was respectively estimated as 

0.008 and 0.039 representing that the correlations were statistically significant. It should be stated 

that 70% of the constructed dataset was utilized for training the RFR models, whilst 30% of the 

rest was employed for testing these ML models. 

 

9.1.2.5. Goodness of fit 

A set of criteria, such as correlation coefficient (R), root mean square error (RMSE), mean absolute 

percentage error (MAPE), Willmott Index (WI), coefficient of residual mass (CRM), and Akaike 

Information Criteria (AIC) were utilized to evaluate the accuracy, correlation, and complexity of 

the RFR models. The closeness of the R and WI indices to one signified that the model had a high 

correlation with the experimental values. On the other hand, the closeness of the RMSE, MAPE, 

and CRM values to zero meant that a particular model had the lowest level of error though the 

complexity of these models was not assessed using the defined criteria. To overcome this 

limitation, the Akaike Information Criteria (AIC) was used, meaning that the less complex RFR 

model owned the lowest value of AIC; hence, the premium model had the lowest values of AIC 

index and error (RMSE, MAPE, and CRM), with the highest level of correlation (R and WI). 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)𝑛
𝑖=1

2
∑ (𝑂𝑖 − �̅�)𝑛

𝑖=1

2

 
(9-8) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

 

(9-9) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑃𝑖 − 𝑂𝑖

𝑂𝑖
|

𝑛

𝑖=1
 

(9-10) 
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𝑊𝐼 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (|𝑃𝑖 − �̅�| + |𝑂𝑖 − �̅�|)2𝑛
𝑖=1

 
(9-11) 

𝐶𝑅𝑀 =
∑ 𝑂𝑖

𝑛
𝑖=1 − ∑ 𝑃𝑖

𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 
(9-12) 

𝐴𝐼𝐶 = 𝑛 × log(√
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

2

) + 2𝑘 

(9-13) 

here, Oi, Pi, �̅�, �̅�, and n are the experimental measurements, the simulated values, the average 

experimental values, the average simulated values, and the number of experimental measurements, 

respectively. In addition, k is the number of input parameters in the RFR models. 

 

9.1.3. Results and discussion 

Firstly, the performance of the RFR models was examined through a sensitivity analysis. Then, 

the superior RFR models in the estimation of the iceberg drafts along with the subgouge soil 

parameters are introduced. Finally, the subgouge soil profiles and reaction forces simulated by the 

superior models are depicted. 

 

9.1.3.1. RFR models 

Figure 9-4 exhibits the computed statistical indices for the RFR 1 to RFR 5 models to predict the 

iceberg draft. Regarding the simulation results, the RFR 3 model showed the best performance so 

as to estimate the iceberg drafts, where this model was a function of 𝐿 𝐻⁄ ,𝑤 𝐻⁄ , and 𝑆𝑓, and the 

value of R, RMSE, and AIC criteria for it was 0.915, 1.186, and 10.734, respectively. The RFR 1 

as a function of all inputs, e.g., 𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,  𝑀 𝜌𝑖 . 𝐻
3,   and ⁄ 𝑆𝑓, was ranked as the second-best 

model in order to approximate the iceberg drafts, with an AIC of 13.181. The impact of the iceberg 
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shape factor (Sf) was removed for the RFR 2 model, as the RMSE and WI values for this model 

were calculated to be 1.309 and 0.909. The RFR 4 model was recognized as the third-best model 

for the iceberg draft simulation, while the iceberg width ratio (w/H) was an eliminated input and 

the R index for this model was obtained at 0.871. Among the RFR models for the iceberg draft 

estimation, the RFR 5 model had the worst act to forecast the iceberg draft values since the RMSE 

and R indices for such a model were 1.345 and 0.856. According to the implemented sensitivity 

analysis, the iceberg length ratio (L/H) had the highest level of effectiveness to model the iceberg 

draft using the RFR algorithm although the iceberg mass ratio ( 𝑀 𝜌𝑖 . 𝐻
3⁄ ) had an insignificant 

impact in this aspect. 

 

Figure 9-4. Key statistical indices calculated for the RFR 1 to RFR 5 models to simulate the 

iceberg drafts 
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Figure 9-5 illustrates the criteria computed for the RFR 6 to RFR 14 models to simulate the 

horizontal subgouge deformations. In this situation, RFR 7 had the highest amount of precision 

and correlation with experimental values (RMSE=0.079 & WI=0.967), where the influence of 

iceberg dynamic (V2/g.W) was ignored for the RFR 2 model. After the RFR 2 model, the RFR 8, 

RFR 13, RFR 12, RFR 9, RFR 11, RFR 10, and RFR 6 were respectively introduced as the second-

best to the eighth-best models. The inferior performance belonged to the RFR 14 because the value 

of AIC and CRM criteria for these models was -14.737 and 0.407. The simulation results proved 

that the soil depth ratio (y/W) and the berm height ratio (h’/W) were the most influential input 

parameters to model the horizontal subgouge soil deformations through the RFR algorithm. 

 

Figure 9-5. Key statistical indices calculated for the RFR 6 to RFR 14 models to simulate the 

horizontal subgouge deformations 
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Figure 9-6 displays the obtained statistical criteria for the RFR 6 to RFR 14 models to estimate the 

vertical subgouge soil deformations. As seen, RFR 12 was identified as the superior model to 

predict the vertical subgouge deformations. The RFR 12 simulated the vertical deformations in 

terms of 𝑦 𝑊,𝐷𝑠 𝑊,𝛼, ℎ′ 𝑊,𝐿ℎ 𝛾𝑠𝑊
3,⁄⁄⁄⁄ 𝐿𝑣 𝛾𝑠𝑊

3, and 𝑉2 𝑔𝑊⁄⁄ , whereas the effect of the sand 

shear strength (φ) was extinguished, and the value of AIC and CRM indices for this model was -

26.568 and 0.241. After RFR 12, the RFR 13 model was in second place in terms of performance 

to estimate the vertical deformations, with an RMSE of 0.015. The performed analysis 

demonstrated that the RFR 11, RFR 6, RFR 7, RFR 9, RFR 8, and RFR 14 models located third to 

eight places when it came to accuracy, correlation, and complexity. According to the sensitivity 

analysis, the berm height and soil depth ratios were known as the most significant input parameters 

to simulate the vertical displacements using the RFR algorithm. 
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Figure 9-6. Key statistical indices calculated for the RFR 6 to RFR 14 models to simulate the 

vertical subgouge deformations 

 

In Figure 9-7, the results of the statistical indices obtained for the ETR 6 to ETR 14 model to 

simulate the horizontal reaction forces are depicted. The RFR 9 as a function of 

𝑦 𝑊,𝐷𝑠 𝑊,𝜑, 𝛼, ℎ′ 𝑊,⁄⁄⁄ 𝐿𝑣 𝛾𝑠𝑊
3, and 𝑉2 𝑔𝑊⁄⁄  was the best model to predict the horizontal 

reaction forces (R=0.995 & AIC=360.135), where 𝐿ℎ 𝛾𝑠𝑊
3⁄  was an eliminated factor. It is worth 

noting that the RFR 14 was identified as the worst model to approximate the horizontal reaction 

forces, with the CRM and R of -0.066 and 0.880. The simulation outcomes showed that the RFR 

12, RFR 6, RFR 8, RFR 7, RFR 13, RFR 11, and RFR 10 models were located in the second to 

eighth places. Among the input parameters to model the horizontal reaction forces by the RFR 

algorithm, the position of the iceberg along the scour axis (x/W) and the berm height ratio (h’/W) 

were realized to be the most important inputs. 



 

800 
 

 

Figure 9-7. Key statistical indices calculated for the RFR 6 to RFR 14 models to simulate the 

horizontal reaction forces 
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and the horizontal load factor (Lh/γs.W3) were identified as the most impactful input parameters to 

model the vertical reaction forces by the RFR algorithm. 

 

Figure 9-8. Key statistical indices calculated for the RFR 6 to RFR 14 models to simulate the 

vertical reaction forces 
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estimate the horizontal subgouge deformations with a reasonable agreement. The RFR 7 model 

employed both linear (H-1, H-4, C-7) and non-linear (P-1 to P-5) systems in estimating the 

horizontal displacements. Several discrepancies were observed between the modeled horizontal 

deformations and reported values (C-2 to C-4, C-10, Y-1, Y-4, and Y-5); however, the P-1 to P-5, 

C-1, H-3, H-4, C-6, and C-9 experimental cases were surmised with a strong correlation. 

 

Figure 9-9. Horizontal subgouge deformations profiles simulated by the RFR 7 model 
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Figure 9-10 draws the comparison between the modeled vertical subgouge deformations through 

RFR 12 with laboratory values. RFR 7 predicted the vertical deformations employing y/W, Ds/W, 

α, h’/W, Lh/γs.W3, Lv/γs.W3, and V2/g.W. There was some oscillatory behaviors in laboratory 

reports (P-2 to P-4), but the RFR 12 model attempted to estimate the vertical deformations with 

the linear (H-1 to H-4) and also nonlinear patterns (C-1 and C-6). 

 

Figure 9-10. Vertical subgouge deformations profiles simulated by the RFR 7 model 
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reaction forces took place exactly at the beginning of the keel position and this parameter enhanced 

along the scour axis. Some discrepancies were reported in the used experimental measurements 

(C-2, C-4, H-1, Y-2, and Y-3); however, the RFR 9 model attempted to simulate the target 

parameter with a reasonable performance. RFR 9 was able to model the horizontal reaction forces 

with a nonlinear pattern, and it overestimated the target values (C-2, H-1, and H-2), whereas the 

C-4 and Y-3 cases were underestimated by such a model. 

 

Figure 9-11. Horizontal reaction force profiles simulated by the RFR 9 model 
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Figure 9-12 compares the modeled vertical reaction forces by RFR 8 with the experimental 

measurements. The amount of vertical reaction forces was almost zero at the beginning of the 

scouring axis, but after some fluctuations, this parameter reached its highest value along the ice-

gouging axis. The RF 3 model managed to predict the vertical reaction forces utilizing a nonlinear 

behavior with good efficiency. Although the RFR 8 model had an overestimation performance in 

the H-1, H-5, and Y-3 cases, this model could well simulate the H-2, H-3, H-4, and Y-2 

experimental cases. The RFR algorithm was able to simulate the iceberg drafts and the subgouge 

soil characteristics in the sandy seabed with reasonable performance, meaning that the superior 

RFR models had a high level of accuracy and correlation alongside the low level of complexity in 

order to model the iceberg drafts, subgouge soil deformations, and keel reaction forces 

simultaneously. 
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Figure 9-12. Vertical reaction force profiles simulated by the RFR 8 model 
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identical to the multiple linear regression. The perceptrons feed the signal made by a multiple 

linear regression into an activation function that can be linear or nonlinear. Tree-based algorithms 

are powerful predictors and valuable in data exploration with high precision, stability, and ease of 

understanding. Unlike linear algorithms, these models can map nonlinear connections entirely 

well. They utilize the mean for continuous attributes or mode for definite features to make 

predictions on training data. Ensemble algorithms are models that integrate the predictions from 

two or more algorithms, in which several simple models are combined to create one optimum 

predictive algorithm. Ensembles deliver better outcomes when there is considerable diversity 

between the models. The ML model used in this study (RFR), as a tree-based algorithm, does not 

provide an explicit formula for the prediction of ice-seabed interaction parameters and iceberg 

drafts. Several ML algorithms were used to simulate the iceberg-seabed interaction process, e.g., 

Azimi and Shiri (2021a), (2021b), (2021c), and Azimi et al. (2022b) modeled the subgouge soil 

parameters in the sandy seabed, while Azimi and Shiri (2021d), Azimi et al. (2021), Azimi et al. 

(2022a), (2022c) predicted the ice-induced soil characteristics in the clay seabed. For the horizontal 

reaction forces simulated by the extreme learning machine (ELM) in Azimi and Shiri (2021a) and 

(Azimi 2021d) studies, the value of AIC was obtained to be -22.094 and -28.275. Additionally, 

Azimi and Shiri (2021c) and Azimi et al. (2021) employed the self-adaptive extreme learning 

machine (Sa-ELM) for the horizontal reaction forces in sandy and clay seabed, where the 

correlation coefficient (R) for these studies equaled 0.995 and 0.990, respectively. For the 

multilayer perceptron neural network (MLPNN) utilized by Azimi and Shiri (2021b) to simulate 

the horizontal subgouge soil deformations, the RMSE, R, and AIC indices were at 0.344, 0.897, 

and 4.727. As shown, the RFR model applied in the current study had better performance in terms 

of accuracy, correlation, and complexity compared with the mentioned studies. The superior RFR 



 

808 
 

model demonstrated a reasonable generalization ability in the iceberg draft estimation and 

subgouge soil simulation. The model was trained and validated through a comprehensive dataset, 

comprising the most important studies in this area. Therefore, the results obtained from this model 

are sufficiently general to apply to other independent draft prediction scenarios. For future studies, 

it is recommended to collect more field measurements using the underwater survey facilities to 

improve the model performance and validate against a wider dataset. 

 

9.1.4. Conclusion 

In this study, the iceberg drafts and the subgouge soil features in a sandy seabed were simulated 

using a robust tree-based machine learning algorithm entitled random forest regression (RFR). To 

do so, several RFR models, e.g., RFR 1 to RFR 14, were defined using the parameters affecting 

the iceberg drafts and subgouge soil characteristics. Subsequently, a comprehensive dataset was 

constructed to train and test the RFR models. Indeed, 70% of the built dataset was applied to train 

the RFR models, and 30% of the remaining data was used to test these models. The results of the 

RFR models were evaluated and the most important outcomes are summarized below: 

 RFR 3 as a function of 𝐿 𝐻⁄ ,𝑤 𝐻⁄ , and 𝑆𝑓 could simulate the iceberg drafts with a good 

performance, e.g., the value of RMSE and R for this model was reckoned as 1.186 and 

0.915. 

 RFR 7, RFR 12, RFR 9, and RFR 8 were respectively known as the superior models to 

simulate the horizontal subgouge deformations, vertical subgouge deformations, 

horizontal reaction forces, and vertical reaction forces. 

 The superior RFR models demonstrated the highest degree of precision, correlation, and 

low level of complexity in predicting the target parameters, e.g., the correlation 
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coefficient (R) for the RFR 7, RFR 12, RFR 9, and RFR 8 models equaled 0.978, 0.603, 

0.995, and 0.980, respectively. 

 The analyses showed that the iceberg length ratio was the most influential input 

parameter to estimate the iceberg drafts, while the soil depth ratio, berm height ratio, and 

the position of the iceberg along the scour axis had the highest level of effectiveness so as 

to simulate the subgouge soil parameters using the RFR algorithm. 

 The RFR algorithm was able to predict the profiles of subgouge soil deformation and 

reaction force with acceptable performance. 

The current study gave a good understanding of the application of the tree-based ML algorithm to 

model the iceberg drafts and subgouge soil characteristics. The obtained results demonstrated that 

ML models, as cost-effective, fast, and accurate alternatives, can be used in the early stages of 

iceberg management operations and subsea structure designs to preserve downtime and expenses 

of the offshore companies operating in the Arctic waters. 
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Section 2 

 

Simulation of Iceberg Draft and Subgouge Soil Characteristics Using Extra 

Tree Regression Algorithm 
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Abstract 

Along with this growth in offshore and subsea infrastructures in the Arctic and subarctic areas; 

however, owing to climate change and global warming, there is increasing concern over the 

collision risk of traveling icebergs with those structures in the cold waters. Besides using costly 

and time-consuming underwater survey apparatus and centrifuge tests to surmise the underwater 

height of icebergs and subgouge soil characteristics, the industry is always pursuing fast and cost-

effective alternatives in this realm. Hence, in the present investigation, the extra tree regression 

(ETR) algorithm was applied to model simultaneously the iceberg drafts and subgouge soil 

features in sandy and clay seabed for the first time. The ETR algorithm predicted the iceberg draft 

in the first step and then modeled the subgouge soil reaction forces and deformations. To do so, 

22 ETR models were defined utilizing the parameters affecting the iceberg draft estimation and 

subgouge soil characteristics simulation. The premium ETR models alongside the most influential 

inputs were recognized by implementing several analyses including sensitivity analysis, error 

analysis, discrepancy analysis, and uncertainty analysis. The superior ETR model predicted the 

iceberg draft using all input parameters. The error analysis revealed that roughly 70% of the 

vertical reaction forces in the sand seabed had an error of less than 16%. The proposed 

methodology can be applied in the initial phases of iceberg management plans and offshore 

structure designs. 

 

Keywords: Iceberg draft, Subgouge soil parameters, Extra tree regression (ETR), Offshore 

structure design, Machine Learning
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9.1.5. Introduction 

Almost 22% of the Earth's undiscovered hydrocarbons are stored in the Arctic region; hence, the 

Arctic area is one of the best resources to grow oil and gas loading equipment. The Arctic offshore 

regions with rich wind culture have also a high potential for the expansion of offshore wind farms 

(Blažauskas et al. 2013). This combined with climate change and global warming means an 

increased number of ice management operations to protect the subsea pipelines, power cables, and 

offshore and subsea structures. Every year thousands of icebergs are born out of glaciers in the 

Arctic zone and carried away by the currents and into the North Atlantic. These icebergs may touch 

the sea bottom in shallow waters and scratch the seabed, causing “ice-gouging” that may endanger 

the integrity of subsea pipelines and power cables or even directly collide with offshore structures 

such as ships, platforms, wind turbines, subsea manifolds, etc. Currently, “ice management,” i.e., 

iceberg towing and re-routing, is the most reliable approach to protect the subsea and offshore 

infrastructures, where the threatening icebergs are hooked and towed in a safe direction (Tsvetkova 

2020). Ice management is a costly operation and needs standby marine spread with a range of 

advanced tools and equipment, such as subsea survey facilities, to investigate the iceberg draft and 

determine if it is a threat to infrastructures. Figure 9-13 illustrates the scheme of the iceberg in 

free-floating and ice-gouging conditions 
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Figure 9-13. Schematic layout of the iceberg in free-floating and ice-gouging conditions 

 

The well-planned iceberg management systems and the guaranteed operational integrity of the sea 

bottom-funded structures against iceberg attacks in the ice-prone regions demand an adequate 

iceberg draft estimation, which may lead to a possible reduction in operating costs and downtime. 

Earlier investigations have focused on predicting the iceberg draft using the iceberg length or 

iceberg mass. As an example, Allaire (1972), Robe and Farmer (1976), Bass (1980), Hotzel and 

Miller (1983), and C-CORE (2001) evaluated different aspects of iceberg geometry in the field, 

analytical, and numerical investigations. 

Additionally, Barker et al. (2004) considered the iceberg dimensions including keel and sail. The 

authors evaluated the cross-sectional areas of the iceberg at diverse sea depth intervals from a 

certain waterline length. To reckon the draft of the iceberg, some equations as the function of the 

length were proposed utilizing the regression technique and power curve. Dowdeswell and Bamber 
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(2007) scrutinized the keel height of voyaging icebergs in the Antarctic Ocean. The scholars 

assessed the profoundness of the keel via the ice height and surface size. The study stated that a 

small number of icebergs in the Greenland waters and Antarctica possessed drafts of more 

significant than 650 m. 

Stuckey (2008) estimated the iceberg drift velocity through the probabilistic procedure. He 

remarked that the above-water extent, below-water size, and iceberg shape factors affected the 

environmental driving loads. In another study, McKenna and King (2009) predicted the 

deterioration process of diverse icebergs by viewing the accumulative evolutions in draft, mass, 

and formation of bergs. The analysis underlined that the draft and length of icebergs were 

diminished by reducing the iceberg mass. King (2012) simulated the iceberg's features comprising 

the draft, length, and mass via the Monte Carlo modeling. This author summarized that the 

evaluation of iceberg drafts deeper than 150 m was fairly restricted. Turnbull et al. (2015) indicated 

the drift course of the transient icebergs in Northwest Greenland utilizing the hindcast simulation. 

It was disclosed that the trajectory of bergs might be sensitized to the draft of the iceberg. King et 

al. (2016) completed a field examination to estimate the iceberg rolling rate. The iceberg drafts 

were calculated through a calving method, with a computed standard deviation of draft changes 

from 19% to 34%. The iceberg drafts were correlated with the mass of the icebergs. Turnbull et 

al. (2018) suggested a relationship in the estimation of drift for traveling icebergs on the Grand 

Banks of Canada. This equation estimated the iceberg drafts of around 1.3 times more additional 

than the observed amounts. McKenna et al. (2019) modeled ice-gouging on the Grand Banks of 

Canada by the Monte Carlo simulation. The iceberg draft changes were employed to reduce the 

dimension of draft alterations in such a simulation. Stuckey et al. (2021) modeled the 3D iceberg 

formations using field data. The mass and draft of the iceberg were considered in terms of the 
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iceberg length regarding the power law assumptions. Most recently, Azimi et al. (2023) determined 

the dimensionless groups of the variables governing the iceberg draft approximation for the first 

time. The Authors developed a set of linear regression (LR) equations through the identified 

dimensionless groups and recognized the most influencing parameters affecting along with the 

premium LR models. They presented several LR-based models to approximate the iceberg drafts 

in daily engineering practices. The best LR model had better performance rather than the prior 

empirical relationships. 

In the past three decades, numerous scholars have attempted to investigate the parameters 

governing subgouge soil characteristics. For example, Paulin (1991), Paulin (1992), Lach (1996), 

Woodworth-Lynes et al. (1996), C-CORE (1995, 1996), Hynes (1996), Schoonbeek et al. (2006), 

Been et al. (2008), and Yang (2009) assessed the iceberg-seabed interaction mechanism for a sandy 

or clay seabed in the laboratory scales. Arnau Almirall (2017) has recently done a couple of 1g 

experimental studies to measure the sub-gouge sand features in saturated and dry cases. The author 

examined the influence of velocity modification, scour geometry, and soil characteristics on the 

subgouge features. The analysis revealed that the ice-scoured sand displacements in the 1g 

condition are smaller than the outcomes from the centrifuge circumstance. 

The application of machine learning (ML) advancement is growing in ubiquity, ranging from 

engineering to medicine since this technology is fast, precise, and cost-effective. 

ML algorithms have been limitedly applied for the simulation of the iceberg-seabed interaction 

process. Kioka et al. (2003, 2004) utilized a Neural Network (NN) method to model the ice-

gouging issue in the sandy seabed. The NN approach was verified by a mechanical method, and 

the scholars asserted that the NN results possessed a high correlation with the mechanical model. 

Azimi and Shiri (2020a) ascertained the dimensionless groups impacting the iceberg-seabed 
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process in both clay and sandy seabed using Buckingham’s theory for the first time. They provided 

a set of LR-based relationships to calculate the maximum subgouge soil deformations. In another 

research, Azimi and Shiri (2020b) modeled the horizontal subgouge soil deformations in the sandy 

seabed via gene expression programming (GEP). The dilation index, gouge depth, and attack angle 

were recognized as the most influential inputs to simulate the target parameter. Azimi and Shiri 

(2021a), Azimi and Shiri (2021b), Azimi and Shiri (2021c), Azimi et al. (2021), Azimi and Shiri 

(2021d), Azimi et al. (2022a) applied several neural network-based (NN-based) algorithms such 

as artificial neural network (ANN), extreme learning machine (ELM), self-adaptive extreme 

learning machine (Sa-ELM), group method of data handling (GMDH), and generalized structure 

of group method of data handling (GS-GMDH) to model the subgouge soil characteristics in clay 

and sand seabed.  

To overcome the challenges in the applied NN-based algorithms including overfitting problems, 

limited data, and hyperparameters tuning, Azimi et al. (2022b) and Azimi et al. (2022c) estimated 

the iceberg-seabed interaction characteristics in clay and sandy seabed through the tree-based 

algorithms comprising decision tree regression (DTR), random forest regression (RFR), and 

gradient boosting regression (GBR) algorithms. They concluded that the ETR model could 

estimate the objective parameters with a better performance. 

The literature revealed that the iceberg draft and the subgouge soil features in clay and sandy 

seabed have not been simultaneously simulated. Therefore, to fill this knowledge gap, the iceberg 

drafts along with the subgouge soil parameters, including reaction forces and deformations in both 

sandy and clay seabed, were modeled using the extra tree (ETR) regression algorithm in the current 

investigation. The main objectives of the current work are framed as follows: 
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 Establishing an ETR model to simulate the iceberg draft and subgouge soil features 

simultaneously. 

 Analyzing the simulation results to identify the superior ETR models. 

 Determination of the most influential input parameters to predict the iceberg draft and 

subgouge soil characteristics in clay and sandy seabed. 

More details about the applied methodology and simulation results will be provided in the 

forthcoming sections. 

 

9.1.6. Methodology 

Figure 9-14 exhibits the flowchart of the current investigation. In the present research, the iceberg 

draft and subgouge soil characteristics datasets were constructed and the datasets were divided into 

the training and testing datasets. The ETR algorithm was fed with the training dataset and the 

efficiency of the ETR models was validated through the testing dataset. By performing several 

analyses, the best ETR models alongside the most significant inputs were ascertained. 
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Figure 9-14. Flowchart of the present research 

 

9.1.6.1. Extra Tree Regression (ETR) 

The ETR algorithm is a developed version of the RF algorithm originally offered by Geurts et al. 

(2006). To model a regression issue, the RF algorithm functions by bootstrapping, forming the 

decision trees, bagging, and splitting the decision tree leaves. The ETR frequently constructs 

different random regression trees. By choosing the most appropriate subset, the decision-making 

process is conducted. The ETR and RF models have two primary distinctions: (1) in the ETR 

method; these leaves are split employing the random selection from the cutting points and (2) the 

ETR method employs the whole training data to build the trees to minimize the amount of bias. 

The ETR method (i) utilizes the number of features selected randomly in the leave employing κ 

variable and (ii) minimizes the sample size for the splitting of leaves operating the ռ variable. The 

Start

Feed the ETR algorithm using the training datasets 

Divide the constructed dataset into training and testing dataset

End

Simulate the iceberg drafts and subgouge soil 

characteristics using the testing dataset

Construct iceberg draft and subgouge soil characteristics datasets 

Analyze the simulation results by perfuming sensitivity analysis, error 

analysis, discrepancy analysis, and uncertainty analysis

Determine the superior ETR models and the most influential input 

parameters to predict the iceberg draft and subgouge soil features



 

825 
 

κ value determines the characteristic sampling strength; nonetheless, the strength of the averaged 

outcome noise is described by the ռ variable. It means that the κ and ռ variables will decrease the 

overfitting issue in the ETR methodology and improve the efficiency of the simulation (Hammed 

et al. 2021). It is worth remarking that the hyperparameters tuning of the ETR algorithm was 

accommodated through a trial-and-error process in the present task, which is presented in Table 9-

1. 

 

Table 9-1. Results of the hyperparameters tuning of the ETR algorithm in the current research 

Hyperparameter Value 

min_samples_leaf 1 

min_samples_split 8 

max_features 1 

random_state None 

max_depth None 

min_impurity_decrease 0 

max_leaf_nodes None 

min_weight_fraction_leaf 0 

ccp_alpha 0 

 

9.1.6.2. Iceberg draft 

The iceberg draft (D) was considered in terms of the physical features of the iceberg, such as the 

iceberg length (L), iceberg height (H), iceberg width (W), and iceberg mass (M). Azimi et al. (2023) 

introduced the dimensionless groups governing the iceberg draft in the following form: 
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𝐷

𝐻
= 𝑓6 (

𝐿

𝐻
,
𝑤

𝐻
,

𝑀

𝜌𝑖. 𝐻3
, 𝑆𝑓) 

(9-14) 

Hence, the iceberg draft ratio (𝐷 𝐻)⁄  is a function of the length ratio (𝐿 𝐻⁄ ), width ratio (𝑤 𝐻⁄ ), 

the mass ratio (𝑀 𝜌𝑖. 𝐻
3⁄ ), and iceberg shape factor (𝑆𝑓). In the present research, the ETR 

algorithm was fed with the dimensionless groups in equation (22-1) as input parameters to simulate 

the iceberg draft ratio.  

The iceberg-seabed interaction parameters (η) in a soil mass such as soil deformations (d/W) and 

reaction forces (F/γsW3) are a function of several parameters like the scour depth (Ds), the shear 

strength parameter of the soil (𝑐), the internal friction angle of soil (𝜑), the width of gouge (W), 

the attack angle (), the angle of the surcharged soil slope (ω), the height of the berm (h’), the 

horizontal load (Lh), the vertical load (Lv), the velocity of iceberg keel (V), and the specific weight 

of sand (𝛾𝑠) (Lach 1996, Azimi and Shiri 2020a, b): 

𝜂 (𝑠𝑜𝑖𝑙) = 𝑓1(𝐷𝑠, 𝑐, 𝜑,𝑊,, 𝜔, ℎ′, 𝐿ℎ , 𝐿𝑣, 𝑉, 𝛾𝑠) (9-15) 

Equation (9-15) can be written in the form of Equations (9-16) and (9-17) for the sandy and clay 

seabed as below (Azimi and Shiri 2020a): 

𝑑(𝑠𝑎𝑛𝑑)

𝑊
,
𝐹(𝑠𝑎𝑛𝑑)

𝛾𝑠𝑊3
= 𝑓3 (

𝑦

𝑊
,
𝐷𝑠

𝑊
,𝜑,,

ℎ′

𝑊
,

𝐿ℎ

𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(9-16) 
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𝑦

𝑊
,
𝐷𝑠

𝑊
,

𝑐

𝛾𝑠. 𝑊
,, 𝜔,
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𝑊
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𝛾𝑠𝑊3
,

𝐿𝑣

𝛾𝑠𝑊3
,
𝑉2

𝑔𝑊
) 

(9-17) 

 

9.1.6.3. Constructed dataset 

The observational measurements of various field explorations related to the iceberg draft were 

utilized to create a comprehensive dataset for the training and testing of the ETR algorithm. The 

key values of 12 field investigations documented were used (Azimi et al. 2023). The summary of 
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these field works to construct the iceberg draft dataset is provided in Table 9-2. To model the 

iceberg drafts utilizing the ETR algorithm, 60% of the applied data was employed to train the ETR 

model, while 40% of the rest data was allocated to test it.  

 

Table 9-2. Summary of the applied field works in the present research to construct the iceberg 

draft dataset 

Research Number of case studies 

El-Tahan et al. (1985) 38 cases 

Woodworth-Lynas et al. (1985) One case 

Løset and Carstens (1996) 52 cases 

Barker et al. (2004) 14 cases 

McKenna (2004) Two cases 

Sonnichsen et al. (2006) Nine cases 

Turnbull et al. (2015) Two cases 

McGuire et al. (2016) Eight cases 

Younan et al. (2016) 29 cases 

Talimi et al. (2016) One case 

Zhou (2017) Three cases 

Turnbull et al. (2018) Two cases 

 

The experimental values of six laboratory studies recorded by Paulin (1991, 1992) (P-1 to P-5), C-

CORE (1995, 1996) (C’-1 to C’-10), Hynes (1996) (H-1 to H-5), and Yang (2009) (Y-1 to Y-7) 

were employed to verify the ETR algorithm. The amount of the surcharged soil slope (ω) was not 
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mentioned in the previous works. The internal friction angle of sand (𝜑), the keel attack angle (), 

the gouge depth ratio (Ds/W), and the velocity ratio (V2/gW) in Paulin’s (1991) study (P-1) were 

reported at 18o, 15o, 0.093, and 0.00054, in turn. However, the berm height ratio (h’/W) was not 

provided in the P-1 case (Azimi et al. 2022a). 

A set of laboratory studies were also applied for the simulation of the iceberg-seabed interaction 

mechanism in clay seabed. This means that the key measurements of five experimental works 

documented by C-CORE (1995, 1996) (C-1 to C-12), Lach (1996) (L-1 to L-8), Schoonbeek et al. 

(2006) (S-1), and Been et al. (2008) (B-1 to B-5) were adopted to validate the ETR algorithm 

(Azimi et al. 2022b). To simulate the subgouge soil parameters, 70% of the built dataset was for 

the training of the ETR models and 30% of the remaining data was considered in the testing mode. 

The applied input combinations to develop different ETR models in this work are depicted in 

Figure 9-15. It is worth mentioning that the results from the testing phase were analyzed in the 

present research. 
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Figure 9-15. Input combinations for development of ETR models (a) iceberg draft (b) iceberg-

seabed interaction in the sand (c) iceberg-seabed interaction in clay 

 

9.1.6.4. Goodness of fit 

Different statistical indices like correlation coefficient (R), root mean square error (RMSE), mean 

absolute percentage error (MAPE), Willmott Index (WI), coefficient of residual mass (CRM), and 

Akaike Information Criteria (AIC) were employed to assess the accuracy, correlation, and 

complexity of the ETR models. The closeness of the R and WI criteria to one representing the ETR 

model had a high level of correlation with the observational values. The nearness of the RMSE, 

MAPE, and CRM criteria to zero indicates the ETR model had the lowest level of impreciseness, 

while the complexity of the ETR models was not evaluated using the indices introduced. Thus, the 

Akaike Information Criteria (AIC) was considered to cope with this challenge. This means that the 

less complex ETR model showed the lowest degree of AIC, hence the best ETR model could have 

the lowest amount of AIC criterion and error (RMSE, MAPE, and CRM), with the highest level of 

correlation (R and WI) (Azimi et al. 2021): 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1
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2
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1
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𝑖=1

2

) + 2𝑘 

(9-23) 

Here, Oi, Pi, �̅�, �̅�, n, and k are the observational value, the predicted amount, the average 

observational values, the average predicted amount, the number of observations, and the number 

of independent variables in the ETR models. 

 

9.1.7. Results and discussion 

The ETR models’ performance is evaluated through several analyses including sensitivity analysis, 

error analysis, and uncertainty analysis. Then, the superior ETR models in the estimation of the 

iceberg drafts and the subgouge soil parameters along wide the most influential inputs are 

distinguished, and additional analyses are performed for the best ETR models in the end. 

 

9.1.7.1. Sensitivity analysis 

The key statistical indices obtained from the developed ETR models are arranged in Table 9-3. 

Among the ETR models in the iceberg draft estimation, the ETR 1 model as a function of all input 

parameters comprising 𝐿 𝐻⁄ ,𝑤 𝐻⁄ ,  𝑀 𝜌𝑖 . 𝐻
3,   and ⁄ 𝑆𝑓 was known as the model with the highest 

degree of accuracy, signifying that the RMSE value was achieved as 1.081. The effect of the 

iceberg shape factor was ignored in ETR 2, where the lowest value of CRM was computed for this 

model (CRM=0.087). To predict the iceberg draft using the ETR 3, the mass ratio ( 𝑀 𝜌𝑖 . 𝐻
3⁄ ) was 

an eliminated input and the value of AIC for this model was 8.888. The correlation coefficient (R) 

and Willmott Index (WI) criteria for the ETR 4 were estimated as 0.923 and 0.926, where the 
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influence of the iceberg width ratio (𝑤 𝐻⁄ ) was omitted. The ETR 5 model showed the worst 

performance to approximate the iceberg draft as the impact of 𝐿 𝐻⁄  was removed from the ETR 5 

model’s inputs, with the RMSE, R, and AIC indices of 1.234, 0.887, and 11.837. 

Regarding the conducted sensitivity analysis, the iceberg length ratio (𝐿 𝐻⁄ ) was distinguished as 

the most influencing input to simulate the iceberg draft using the ETR algorithm; whereas, the 

iceberg width ratio (𝑤 𝐻⁄ ), the iceberg mass ratio ( 𝑀 𝜌𝑖. 𝐻
3⁄ ), and iceberg shape factor (𝑆𝑓) were 

ranked as the second-effective to the fourth-effective input parameters. 

The ETR 6 to ETR 14 models were defined to approximate the subgouge soil features in the sandy 

seabed. Among the ETR models in the estimation of the horizontal reaction force, the ETR 10 had 

the highest degree of precision, correlation, and simplicity, meaning that the value of RMSE, R, 

and AIC for this model was appraised to be 99805.670, 0.994, and 363.941, respectively. The ETR 

10 simulated the horizontal reaction forces using 𝑥 𝑊⁄ ,𝐷𝑠 𝑊⁄ ,𝜑, 𝛼,

𝐿ℎ 𝛾𝑠𝑊
3,⁄  𝐿𝑣 𝛾𝑠𝑊

3,⁄  𝑉2 𝑔𝑊 ⁄ , while the influence of ℎ′ 𝑊 ⁄  was removed from this model. The 

performed sensitivity analysis proved that the position of the iceberg along the scour axis (x/W), 

the attack angle (α), and the shear strength parameter of the sand seabed (φ) were recognized to be 

the most significant inputs. 

The ETR 8 model showed up to be the best ETR model in the estimation of the vertical reaction 

forces in the sandy seabed when the AIC and WI values for such model were obtained as 104.364 

and 0.985. The ETR 8 model simulated the vertical reaction forces regarding 

𝑥 𝑊⁄ ,𝐷𝑠 𝑊⁄ ,𝜑, 𝛼, ℎ′ 𝑊,⁄  𝐿ℎ 𝛾𝑠𝑊
3,⁄  𝑉2 𝑔𝑊 ⁄  inputs and the 𝐿𝑣 𝛾𝑠𝑊

3 ⁄  was dropped from the 

model’s inputs. Additionally, the 𝑥/𝑊, 𝛼, and 𝐿ℎ 𝛾𝑠𝑊
3 ⁄ were detected to be the most effective 

input parameters to model the vertical reaction forces. The value of RMSE and AIC for the superior 

ETR model to predict the subgouge horizontal deformation in the sand, the ETR 8 model, was 
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equal to 0.079 and -39.618. These horizontal deformations approximated in terms of 

𝑦 𝑊⁄ ,𝐷𝑠 𝑊⁄ ,𝜑, 𝛼, ℎ′ 𝑊,⁄  𝐿ℎ 𝛾𝑠𝑊
3,⁄  𝑉2 𝑔𝑊 ⁄  using the ETR 8 model, where the influence of 

𝐿𝑣 𝛾𝑠𝑊
3 ⁄  was taken away from the input combinations. The soil depth ratio (y/W) was found as 

the most important input to simulate the horizontal deformations in the sand, 

whilst ℎ′ 𝑊, 𝐿ℎ 𝛾𝑠𝑊
3,⁄⁄  𝛼, 𝐷𝑠 𝑊⁄ ,𝜑, 𝑉2 𝑔𝑊, and 𝐿𝑣 𝛾𝑠𝑊

3⁄  ⁄  were identified in the second-

significant to eighth-significant inputs in terms of effectiveness. The ETR 9 model surmised the 

vertical deformation in sand using 𝑦 𝑊⁄ ,𝐷𝑠 𝑊⁄ ,𝜑, 𝛼, ℎ′ 𝑊,⁄  𝐿𝑣 𝛾𝑠𝑊
3,⁄  𝑉2 𝑔𝑊⁄  inputs and the 

impact of 𝐿ℎ 𝛾𝑠𝑊
3⁄  was disregarded for this model, with the R and WI indices of 0.905 and 0.916. 

The soil depth ratio (y/W) and the berm height ratio (h’/W) were the most important input 

parameters in the vertical deformation estimation in the sand. In order to estimate the horizontal 

reaction forces in clay seabed, the ETR 18 model as a function of 𝑥 𝑊⁄ ,𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠𝑊,⁄ 𝛼,

𝐿𝑣 𝛾𝑠𝑊
3,⁄  𝑉2 𝑔𝑊 ⁄  had the best performance, with WI and AIC values of 0.995 and 653.553. The 

effectiveness degree of the iceberg along the scour axis (x/W), attack angle (α), and the iceberg 

dynamic factor (V2/g.W) was much higher than other input parameters to model the horizontal 

forces in clay. It is worth mentioning that 𝐿𝑣 𝛾𝑠𝑊
3,⁄ 𝑐 𝛾𝑠𝑊,⁄ 𝐷𝑠 𝑊⁄ ,  𝐿ℎ 𝛾𝑠𝑊

3 ⁄  were placed in 

terms of significance in the fourth to seventh positions. The AIC and RMSE criteria for ETR 20, 

as the superior model for the vertical reaction force simulation in clay, were surmised as 225.289 

and 472.658. The ETR 20 model was inputted with 

𝑥 𝑊⁄ ,𝐷𝑠 𝑊⁄ , 𝛼,  𝐿ℎ 𝛾𝑠𝑊
3,⁄  𝐿𝑣 𝛾𝑠𝑊

3,⁄  𝑉2 𝑔𝑊 ⁄ parameters but the clay shear strength parameter 

(𝑐 𝛾𝑠.𝑊⁄ ) was a removed input in this model. According to the presented sensitivity analysis, x/W, 

𝐷𝑠 𝑊⁄ , and  𝐿ℎ 𝛾𝑠𝑊
3⁄  possessed the highest degree of effectiveness and other inputs including 𝛼, 

𝐿𝑣 𝛾𝑠𝑊
3⁄ , 𝑉2 𝑔𝑊 ⁄ , and 𝑐 𝛾𝑠𝑊⁄  were ranked in the fourth to seventh places, respectively. The 

ETR 20 model represented the premium model for the estimation of the horizontal deformations 
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in the clay seabed, with the WI and AIC value of 0.999 and -56.264. The 𝑦 𝑊⁄ ,  𝐿ℎ 𝛾𝑠𝑊
3⁄ , 𝐷𝑠 𝑊⁄ , 

𝐿𝑣 𝛾𝑠𝑊
3⁄ , 𝑉2 𝑔𝑊 ⁄ , 𝛼, and 𝑐 𝛾𝑠𝑊⁄  were identified as the most important to the less important 

inputs to forecast the horizontal deformations in clay. ETR 16 was the excellent model for the 

simulation of the vertical subgouge deformations in clay seabed, with the highest level of 

correlation, precision, and lowest degree of complexity (R=0.983, RMSE=0.009, AIC=-57.192). 

The ETR 16 model was fed with 𝑦 𝑊⁄ ,𝐷𝑠 𝑊⁄ , 𝑐 𝛾𝑠𝑊,⁄ 𝛼,  𝐿ℎ 𝛾𝑠𝑊
3,⁄  𝐿𝑣 𝛾𝑠𝑊

3⁄  inputs to 

approximate the vertical deformations and the iceberg dynamic factor (V2/g.W) was an eliminated 

factor. The sensitivity analysis exhibited that the soil depth ratio (y/W), the keel attack angle (𝛼), 

and the gouge depth ratio (Ds/W) were the most remarkable input parameters in the prediction of 

clay vertical deformations. 

 

Table 9-3. Key statistical indices calculated for the ETR models 

Parameter Model R RMSE AIC CRM WI 

D
ra

ft
 

ETR 1 0.920 1.081 10.165 0.101 0.943 

ETR 2 0.906 1.150 9.882 0.087 0.933 

ETR 3 0.917 1.109 8.888 0.108 0.940 

ETR 4 0.923 1.161 10.138 0.107 0.926 

ETR 5 0.887 1.234 11.837 0.102 0.926 

S
an

d
-H

o
ri

zo
n
ta

l 

re
ac

ti
o
n

 

ETR 6 0.985 154280.556 379.182 -0.030 0.992 

ETR 7 0.983 167992.998 379.770 -0.035 0.991 

ETR 8 0.982 168842.614 379.924 -0.033 0.991 

ETR 9 0.983 165178.002 379.257 -0.035 0.991 



 

834 
 

ETR 10 0.994 99805.670 363.941 0.004 0.997 

ETR 11 0.982 171349.321 380.372 -0.040 0.991 

ETR 12 0.982 169286.105 380.003 -0.038 0.991 

ETR 13 0.986 150379.199 376.403 -0.033 0.993 

ETR 14 0.880 439271.280 408.991 -0.058 0.938 

S
an

d
-V

er
ti

ca
l 

re
ac

ti
o
n
 f

o
rc

e 

ETR 6 0.970 46.348 107.632 -0.059 0.983 

ETR 7 0.973 44.818 104.830 -0.066 0.984 

ETR 8 0.974 43.953 104.364 -0.079 0.985 

ETR 9 0.972 45.123 104.992 -0.059 0.984 

ETR 10 0.973 44.460 104.638 -0.065 0.984 

ETR 11 0.972 45.189 105.027 -0.062 0.984 

ETR 12 0.972 44.911 104.880 -0.064 0.984 

ETR 13 0.972 45.027 104.941 -0.061 0.984 

ETR 14 0.926 70.017 115.486 -0.044 0.959 

S
an

d
-H

o
ri

zo
n
ta

l 
d
ef

o
rm

at
io

n
 

ETR 6 0.739 0.187 -18.256 -0.094 0.849 

ETR 7 0.980 0.073 -39.551 0.180 0.974 

ETR 8 0.984 0.072 -39.618 0.193 0.973 

ETR 9 0.982 0.079 -37.901 0.197 0.968 

ETR 10 0.981 0.079 -37.872 0.211 0.968 

ETR 11 0.981 0.078 -38.078 0.199 0.968 

ETR 12 0.982 0.074 -39.172 0.204 0.972 

ETR 13 0.981 0.074 -39.015 0.179 0.972 
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ETR 14 0.278 0.245 -14.719 0.416 0.307 

S
an

d
-V

er
ti

ca
l 

d
ef

o
rm

at
io

n
 

ETR 6 0.828 0.009 -28.827 -0.001 0.913 

ETR 7 0.826 0.009 -30.733 -0.012 0.912 

ETR 8 0.818 0.009 -30.560 0.147 0.879 

ETR 9 0.905 0.011 -29.462 -0.227 0.916 

ETR 10 0.818 0.011 -29.495 -0.313 0.849 

ETR 11 0.828 0.010 -30.027 -0.230 0.897 

ETR 12 0.828 0.009 -30.699 -0.089 0.911 

ETR 13 0.828 0.009 -30.776 0.056 0.912 

ETR 14 0.277 0.016 -25.467 0.329 0.207 

C
la

y
-H

o
ri

zo
n
ta

l 
re

ac
ti

o
n
 f

o
rc

e
 

ETR 15 0.988 57795.569 656.856 0.011 0.994 

ETR 16 0.988 57521.716 656.577 0.004 0.994 

ETR 17 0.988 56914.968 655.956 0.006 0.994 

ETR 18 0.989 54630.154 653.553 -0.003 0.995 

ETR 19 0.988 58744.465 657.811 0.011 0.994 

ETR 20 0.988 56624.436 655.656 0.012 0.994 

ETR 21 0.989 55408.261 654.383 0.010 0.994 

ETR 22 0.794 227462.840 737.183 -0.020 0.899 

C
la

y
-V

er
ti

ca
l 

re
ac

ti
o
n
 

fo
rc

e 

ETR 15 0.995 475.567 225.500 -0.005 0.997 

ETR 16 0.996 478.300 225.696 -0.005 0.997 

ETR 17 0.996 478.067 225.680 -0.004 0.997 

ETR 18 0.996 473.733 225.367 -0.006 0.997 
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ETR 19 0.996 476.092 225.538 -0.008 0.997 

ETR 20 0.996 472.658 225.289 -0.006 0.997 

ETR 21 0.996 473.307 225.336 -0.006 0.997 

ETR 22 0.951 1512.420 265.194 0.002 0.959 

C
la

y
-H

o
ri

zo
n
ta

l 
d
ef

o
rm

at
io

n
 

ETR 15 0.999 0.091 -36.939 0.007 0.999 

ETR 16 0.999 0.043 -53.137 -0.032 0.999 

ETR 17 0.999 0.046 -51.624 -0.043 0.999 

ETR 18 0.999 0.066 -43.745 -0.057 0.999 

ETR 19 0.999 0.038 -55.679 -0.027 0.999 

ETR 20 0.999 0.037 -56.264 -0.036 0.999 

ETR 21 0.999 0.057 -46.891 -0.045 0.999 

ETR 22 0.999 0.529 0.463 0.221 0.973 

C
la

y
-V

er
ti

ca
l 

d
ef

o
rm

at
io

n
 

ETR 15 0.963 0.012 -53.633 0.098 0.962 

ETR 16 0.983 0.009 -57.192 0.035 0.977 

ETR 17 0.974 0.011 -54.854 0.122 0.968 

ETR 18 0.971 0.011 -54.597 0.118 0.967 

ETR 19 0.920 0.015 -49.616 0.137 0.933 

ETR 20 0.980 0.010 -56.382 0.073 0.974 

ETR 21 0.936 0.014 -51.091 0.138 0.946 

ETR 22 0.432 0.033 -37.753 -0.417 0.521 

 

Figure 9-16 depicts the error analysis results for the ETR models to estimate the iceberg drafts and 

subgouge soil characteristics. Approximately one-third of the iceberg draft simulated by the ETR 
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1 model showed an error of less than 8%, whilst this amount for the ETR 2, ETR 3, ETR 4, and 

ETR 5 models equaled almost 26%, 32%, 21, and 29%, respectively. Roughly half of the horizontal 

reaction forces in the sandy seabed predicted using the ETR 10 model possessed an error of smaller 

than 12%, whereas about 70% of the vertical reaction forces in the sand modeled by ETR 8 

demonstrated an error of less than 16%. Moreover, nearly one-fourth of the horizontal 

deformations and one-third of the vertical deformations in the sandy seabed estimated by the ETR 

8 and ETR 9 models had an error of smaller than 12%. In the clay seabed, just about 85% of the 

horizontal reaction forces reckoned by the ETR 18 model contained an error of lower than 18% 

but it was around 95% for the ETR 20 model in the estimation of the vertical reaction forces. 

Virtually 45% of the horizontal deformations and 37% of the vertical deformations modeled by 

ETR 20 and ETR 16 provided an error of smaller than 20. 
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Figure 9-16. Results of error analysis for the ETR models to simulate (a) iceberg draft (b) 

horizontal reaction force in the sand (c) vertical reaction force in the sand (d) horizontal 

deformation in the sand (e) vertical deformation in the sand (f) horizontal reaction force in clay 

(g) vertical reaction force in clay (h) horizontal deformation in clay (i) vertical deformation in 

clay 
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9.1.7.2. Uncertainty analysis 

The study performed an uncertainty analysis (UA) to further evaluation of the ETR models' 

performance. In other words, the ETR model's error (𝑒𝑗) were computed as the difference between 

the predicted value (𝑃𝑗) through this model and the observed value (𝑂𝑗), as follows: 

𝑒𝑗 = 𝑃𝑗 − 𝑂𝑗 (9-24) 

The mean (Mean) and the standard deviation (StDev) of such error values were calculated by the 

equations below: 

Mean =
1

𝑛
∑ 𝑒𝑗

𝑛

𝑗=1
 

(9-25) 

StDev = √∑ (𝑒𝑗 − �̅�)
2

(𝑛 − 1)⁄
𝑛

𝑗=1
 

(9-26) 

An individual ETR model underestimated the subgouge soil parameters or iceberg draft if the sign 

of the Mean value was negative; however, the positive sign of the Mean meant that the ETR model 

overestimated the target parameter. Hence, a confidence interval (CI) was produced near the error 

counted using the Mean, StDev values, and the "Wilson score technic" by omitting the continuity 

correction. A normal distribution interval corrected as an asymmetric normal distribution, named 

the Wilson score interval, was employed to adjust the CI bounds. Next, a ±1.96Se yielded a 95%CI. 

It should be remarked that the width of uncertainty bound (WUB) of each ETR model was achieved 

below (Azimi et al. 2022c): 

WUB = ±
(Lower bound − upper bound)

2
 

(9-27) 

In Table 9-4, the results of the performed uncertainty analysis for the ETR models are tabulated. 

Regarding the conducted uncertainty analysis, all ETR models developed to simulate the iceberg 
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drafts, e.g., ETR 1 to ETR 5, represented an overestimated performance, where the ETR 1 model 

had the narrowest bound of uncertainty (WUB=±0.254). Likewise, the horizontal reaction forces 

in the sandy seabed were overestimated by the ETR 6 to ETR 14 models and the narrowest WUB 

belonged to the superior model (ETR 10) in this case. The best ETR model for the vertical reaction 

forces estimation in the sandy seabed had an underestimation performance, with a Mean and WUB 

of -2.060 and ±8.700. The horizontal deformations in the sandy seabed were overestimated by the 

ETR 6 to ETR 14 models. To model the horizontal reaction forces in clay, the smallest value of 

Mean and the narrowest WUB was obtained for ETR 18, with an overestimation performance; 

however, the best ETR model in the prediction of vertical reaction forces (ETR 20) underestimated 

the target parameter. The uncertainty analysis revealed that the ETR 20 and ETR 16 models, the 

premium models, were biased towards underestimation and overestimating the horizontal and 

vertical subgouge deformations in the clay seabed. 

 

Table 9-4. Results of uncertainty analysis for the ETR models 

Parameter Model Mean StDev 95%CI WUB 

D
ra

ft
 

ETR 1 0.39 1.016 0.136 0.644 ±0.254 

ETR 2 0.335 1.109 0.059 0.612 ±0.277 

ETR 3 0.415 1.037 0.156 0.674 ±0.259 

ETR 4 0.411 1.094 0.137 0.684 ±0.274 

ETR 5 0.395 1.178 0.1 0.689 ±0.295 

S
an

d
-

H
o
ri

zo
n
ta

l 

re
ac

ti
o
n
 

fo
rc

e 

ETR 6 7010.948 94635.970 -16823 30845 ±23834 

ETR 7 6948.011 98479.210 -17854 31750 ±24802 
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ETR 8 8940.125 92871.530 -14449 32330 ±23389.500 

ETR 9 7094.299 95202.510 -16882 31071 ±23976.500 

ETR 

10 

12830.91 85894.21 -8801 34436 ±21618.500 

ETR 

11 

5328.068 97348.02 -19189 29845 ±24517 

ETR 

12 

6038.568 97902.03 -18618 30695 ±24656.500 

ETR 

13 

4120.492 98780.39 -20757 28998 ±24877.500 

ETR 

14 

38833.970 238386.700 -21203 98871 ±60037 

S
an

d
-V

er
ti

ca
l 

re
ac

ti
o
n
 f

o
rc

e
 

ETR 6 0.453 33.726 -8.940 9.840 ±9.390 

ETR 7 -0.586 32.718 -9.690 8.520 ±9.105 

ETR 8 -2.060 31.235 -10.760 6.640 ±8.700 

ETR 9 0.195 32.835 -8.950 9.340 ±9.145 

ETR 

10 

-0.472 32.171 -9.430 8.480 ±8.955 

ETR 

11 

-0.167 32.783 -9.290 8.960 ±9.125 

ETR 

12 

-0.278 32.495 -9.330 8.770 ±9.050 
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ETR 

13 

0.087 32.607 -8.990 9.160 ±9.075 

ETR 

14 

5.049 56.605 -10.710 20.810 ±15.760 

S
an

d
-H

o
ri

zo
n
ta

l 
d
ef

o
rm

at
io

n
 

ETR 6 0.019 0.084 -0.007 0.045 ±0.026 

ETR 7 0.016 0.074 -0.007 0.040 ±0.024 

ETR 8 0.018 0.074 -0.006 0.041 ±0.024 

ETR 9 0.018 0.081 -0.007 0.043 ±0.025 

ETR 

10 

0.019 0.081 -0.006 0.045 ±0.026 

ETR 

11 

0.018 0.080 -0.007 0.043 ±0.025 

ETR 

12 

0.018 0.075 -0.005 0.042 ±0.024 

ETR 

13 

0.016 0.077 -0.008 0.040 ±0.024 

ETR 

14 

0.038 0.258 -0.042 0.119 ±0.081 

S
an

d
-v

er
ti

ca
l 

d
ef

o
rm

at
io

n
 

ETR 6 0.001 0.008 -0.002 0.005 ±0.004 

ETR 7 0.001 0.008 -0.003 0.005 ±0.004 

ETR 8 0.003 0.008 -0.0003 0.007 ±0.004 

ETR 9 -0.004 0.010 -0.009 0.0007 ±0.005 
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ETR 

10 

-0.004 0.008 -0.008 -0.0006 ±0.004 

ETR 

11 

-0.003 0.008 -0.006 0.0008 ±0.003 

ETR 

12 

-0.0003 0.008 -0.004 0.003 ±0.004 

ETR 

13 

0.002 0.008 -0.001 0.006 ±0.004 

ETR 

14 

0.006 0.015 -0.001 0.013 ±0.007 

C
la

y
-H

o
ri

zo
n
ta

l 
re

ac
ti

o
n
 f

o
rc

e 

ETR 

15 

6936.124 53473.540 -2271 16143 ±9207 

ETR 

16 

4131.597 53311.010 -5048 13311 ±9179.500 

ETR 

17 

4786.232 52530.400 -4259 13831 ±9045 

ETR 

18 

1655.058 50082.490 -6968 10278 ±8623 

ETR 

19 

6782.686 54190.590 -2548 16113 ±9330.500 

ETR 

20 

7050.163 52443.450 -1980 16080 ±9030 
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ETR 

21 

6556.398 50604.960 -2157 15270 ±8713.500 

ETR 

22 

8330.371 202623.600 -26558 43219 ±34888.500 

C
la

y
-V

er
ti

ca
l 

re
ac

ti
o
n
 f

o
rc

e
 

ETR 

15 

-71.925 473.101 -

177.900 

34 ±105.950 

ETR 

16 

-66.530 476.6775 -

173.300 

42.200 ±107.750 

ETR 

17 

-55.842 477.829 -

162.900 

51.200 ±107.050 

ETR 

18 

-78.119 470.233 -

183.400 

27.200 ±105.300 

ETR 

19 

-106.604 466.960 -

211.200 

-2 ±104.600 

ETR 

20 

-86.388 467.666 -

191.100 

18.400 ±104.750 

ETR 

21 

-80.068 469.467 -

185.200 

25.100 ±105.150 

ETR 

22 

35.192 1521.672 -306 376 ±341 

C
la

y
-

H
o
ri

zo
n
ta

l 

d
ef

o
rm

at
io

n
 

ETR 

15 

0.007 0.098 -0.023 0.038 ±0.031 
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ETR 

16 

-0.007 0.040 -0.019 0.006 ±0.012 

ETR 

17 

-0.012 0.045 -0.026 0.002 ±0.014 

ETR 

18 

-0.017 0.068 -0.039 0.004 ±0.022 

ETR 

19 

-0.006 0.037 -0.017 0.005 ±0.011 

ETR 

20 

-0.009 0.034 -0.019 0.002 ±0.011 

ETR 

21 

-0.011 0.056 -0.028 0.006 ±0.017 

ETR 

22 

0.092 0.570 -0.085 0.270 ±0.177 

C
la

y
-V

er
ti

ca
l 

d
ef

o
rm

at
io

n
 

ETR 

15 

0.003 0.012 -0.001 0.007 ±0.004 

ETR 

16 

0.001 0.009 -0.002 0.004 ±0.003 

ETR 

17 

0.003 0.010 -0.0003 0.007 ±0.004 

ETR 

18 

0.003 0.011 -0.0005 0.007 ±0.004 
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ETR 

19 

0.004 0.015 -0.001 0.009 ±0.005 

ETR 

20 

0.002 0.010 -0.001 0.006 ±0.004 

ETR 

21 

0.004 0.013 -0.0009 0.008 ±0.004 

ETR 

22 

-0.011 0.032 -0.022 -0.0003 ±0.011 

 

9.1.7.3. Superior ETR models 

The performed analysis disclosed that ETR 1, ETR 10, ETR 8, ETR 8, ETR 9, ETR 18, ETR 20, 

ETR 20, and ETR 16 were the excellent models to simulate the iceberg draft, horizontal reaction 

forces in clay, vertical reaction forces in clay, horizontal deformations in clay, vertical 

deformations in clay, horizontal reaction forces in the sand, vertical reaction forces in the sand, 

horizontal deformations in the sand, and vertical deformations in the sand, respectively. To assess 

the performance of these superior models, a discrepancy analysis was conducted for them. The 

results of the discrepancy analysis for the ETR models are depicted in Figure 9-17. The efficiency 

of the ETR models was examined using the discrepancy ratio (DR) as below: 

𝐷𝑅 =
𝑃𝑖

𝑂𝑖
 

(9-28) 

where, 𝑃𝑖 and 𝑂𝑖 are the predicted and observed values. The closer the magnitude of DR is to the 

unity, the higher performance shows the ETR model. The value of the maximum (DR(max)), 

minimum (DR(min)), and average (DR(ave)) discrepancy ratio for these models was computed. For 
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instance, the DR(max), DR(min), and DR(ave) values for the ETR 1 model equaled 1.778, 0.493, and 

0.960. Moreover, the DR(ave) criterion for the subgouge soil features in sandy seabed predicted 

by the ETR 10, ETR 8, ETR 8, and ETR 9 models was acquired to be 1.273, 0.897, 1.463, and 

1.206, respectively, and this index for ETR 18, ETR 20, ETR 20, and ETR 16 models to estimate 

the subgouge soil parameters in clay seabed was at 1.062, 1.078, 1.455, and 1.458. 
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Figure 9-17. Results of discrepancy analysis for the simulation of (a) iceberg draft by ETR 1 (b) 

horizontal reaction force in the sand by ETR 10 (c) vertical reaction force in the sand by ETR 8 

(d) horizontal deformation in sand by ETR 8 (e) vertical deformation in sand by ETR 9 (f) 
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horizontal reaction force in clay by ETR 18 (g) vertical reaction force in clay by ETR 20 (h) 

horizontal deformation in clay by ETR 20 (i) vertical deformation in clay by ETR 16 

 

ETR 10 was the premium model in the estimation of the horizontal reaction forces in the sandy 

seabed. Figure 9-18 compares the horizontal reaction forces predicted by ETR 10 with the 

laboratory reports. The lowest amount of horizontal reaction force was recorded at the 

commencement of the scouring process and then it grew along the scour axis. Despite some 

oscillatory behavior in the laboratory measurements (C’-2, C’-4, and H-2), ETR 10 attempted to 

model this parameter with its high level of performance. ETR 4 overestimated the horizontal 

reaction forces utilizing a nonlinear pattern (e.g., C’-3, C’-5, and H-4). 
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Figure 9-18. Horizontal reaction force profiles in sandy seabed simulated by ETR 10 (a-e) C’-1 

to C’-5 (f-j) H-1 to H-5 (k) Y-1 

 

Figure 9-19 compares the vertical reaction forces estimated by ETR 8 and the laboratory values. 

The simulation results showed that these reaction forces were almost zero at the starting point of 

the ice-gouging process and the amount of this parameter enhanced along the scouring axis. There 

were several fluctuations in the experimental value but ETR 8 could predict the vertical reaction 

forces utilizing a nonlinear pattern with acceptable performance. 
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Figure 9-19. Vertical reaction force profiles in sandy seabed simulated by ETR 8 (a-e) H-1 to H-

5 (f-i) Y-1 to H-4 

 

Figure 9-20 depicts the horizontal deformation profiles in sandy seabed simulated by ETR 8. The 

maximum horizontal deformation was observed solely underneath the iceberg keel and it 

decreased in deeper soil depth. The ETR 8 model simulated the horizontal deformations as an 

exponential distribution through the soil depth beneath the iceberg contact point and the shear 

resistance in the seabed soil extended the soil displacement much deeper than the iceberg tip (P-1, 

P-2, P-3, P-4, P-5, H-3, and Y-1). The ML model overestimated the target parameter with the 

nonlinear trends (C’-5, H-5, and Y-1). 
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Figure 9-20. Horizontal deformation profiles in sandy seabed simulated by ETR 8 (a-e) P-1 to P-

5 (f-j) C’-1 to C’-5 (k-o) H-1 to H-5 (p) C’-6 (q-r) Y-1 to Y 2 
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The vertical deformation profiles in sandy seabed simulated by ETR 9 are demonstrated in Figure 

9-21. This ML model simulated the vertical deformation through both linear (H-2) and nonlinear 

(P-1, P-3, C’-1, and C’-2) patterns although many fluctuations have been seen in the experimental 

reports (P-2, P-3, and H-1). A few discrepancies between the observational values and simulation 

results were documented (P-1, P-2, P-4, C’-1, and C’-2) but ETR 9 tried to model the vertical 

deformations with the best performance. 

 

Figure 9-21. Vertical deformation profiles in sandy seabed simulated by ETR 9 (a-d) P-1 to P-4 

(e) C’-1 (f-g) H-1 to H-2 (h) C’-2 
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Figure 9-22 compares the horizontal reaction forces in clay seabed modeled by ETR 18 with 

laboratory values. Similar to the horizontal reaction forces in the sand, the lowest amount of 

horizontal reaction force in clay seabed was predicted at the primary location of the scouring 

mechanism (x=0.0), where this parameter was augmented along the scouring axis. Even though 

some oscillatory behavior were in the experimental reports (L-1, L-2, and L-7), ETR 18 simulated 

the horizontal reaction forces in clay seabed with the maximum precision, correlation, and 

simplicity (C-5 and L-4). 
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Figure 9-22. Horizontal reaction force profiles in clay seabed simulated by ETR 18 (a-h) C-1 to 

C-8 (i-o) L-1 to L-7 

 

The vertical reaction force profiles in clay seabed simulated by ETR 20 are compared with the 
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amount by developing along the scouring axis. The ETR 20 model underestimated the objective 

function using a nonlinear pattern (L-3 and L-4). This ML model strived to approximate the 

vertical reaction forces with its best performance despite several alterations observed in the 

laboratory reports. 

 

Figure 9-23. Vertical force profiles in clay seabed simulated by ETR 20 (a-h) L-1 to L-8 

 

Figure 9-24 presents the comparison between the test results and the horizontal deformation in 

clay seabed modeled by ETR 20. The obtained results signified that the maximum horizontal 
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it reduced at greater soil depth. The ETR 20 model demonstrated excellent performance in the 

prediction of the horizontal displacements (C-1, C-2, C-3, C-7, L-4, L-5, and L-7), rather a small 

number of differences were seen during the simulation process (C-4, L-2, C-9, C-10, C-11, and C-

12). 
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Figure 9-24. Horizontal deformation profiles in clay seabed simulated by ETR 20 (a-h) C-1 to C-

8 (i-p) L-1 to L8 (q-t) C-9 to C-12 (u) S-1 (v-z) B-1 to B-5 

 

The comparison between the vertical ice-scoured displacements in the clay seabed simulated by 

the ETR 16 model and the test results is depicted in Figure 9-25. A high correlation was recorded 

between the experimental values and the modeling outcomes (C-1, C-2, C-3, C-7, L-1, L-3, and 

C-8), rather some discrepancies took place in C-4, C-6, L-4, L-5, L-7, L-8, and C-9, and B-1 cases. 

The ETR 16 model forecasted the C-1, C-2, C-3, C-7, L-1, L-2, L-3, L-6, C-8, C-9, C-10, and C-

11 using the nonlinear trend, while the C-5 and C-6 cases were modeled by the linear behavior. 
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Figure 9-25. Vertical deformation profiles in clay seabed simulated by ETR 16 (a-g) C-1 to C-7 

(h-o) L-1 to L-8 (p-s) C-8 to C-11 (t) B-1 

 

The ETR algorithm modeled the iceberg draft with acceptable performance and the subgouge soil 

parameters in the sandy and clay seabed including the reaction forces and deformations predicted 

by this method when the iceberg tip collided with the ocean floor. The best ETR models alongside 

the most significant input parameters were identified. The best ETR models had a good capability 
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to estimate the objective function appropriately, with the highest degree of accuracy and 

correlation as well as the lowest level of complexity. 

 

9.1.8. Conclusion 

The development of an ETR model to simulate the iceberg draft and subgouge soil features at the 

same time was the major goal of the present investigation. The study modeled simultaneously the 

iceberg draft and subgouge soil parameters in sand and clay seabed using the extra tree regression 

(ETR) algorithm for the first time. Using the parameters affecting the iceberg draft modeling and 

subgouge soil features estimation, 22 ETR models were defined. Two comprehensive datasets 

were built to train and test the ETR models. By conducting different analyses, the best ETR models 

and the most significant inputs were known. The most important outcomes of this investigation 

are summarized as follows: 

 ETR 1 predicted the iceberg drafts utilizing all inputs and demonstrated the best 

performance in the iceberg draft estimation. 

 The iceberg length ratio (L/H) was the most influential input to simulate the iceberg draft 

through the ETR algorithm. 

 The highest degree of accuracy, correlation, and simplicity was obtained for the best ETR 

models to predict the subgouge soil parameters in both clay and sandy seabed. 

 The best ETR model was biased toward underestimation with the narrowest bound of 

uncertainty to approximate the horizontal deformations in the clay seabed. 

 The performed error analysis showed roughly one-third of the vertical displacements in 

clay seabed simulated by the superior ETR had an error of less than 16%. 
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The present outcomes, which were the first application of the ML technology to model 

simultaneously the iceberg drafts and subgouge soil parameters, revealed that the ML advancement 

can pave to develop of more cost-effective and quick solutions to protect offshore structures 

against iceberg attacks, especially in the primary steps of the iceberg management systems and 

offshore infrastructures designs. The achieved results in the present research were promising as 

the first step toward the development of an alternative methodology to predict the iceberg drafts 

and subgouge soil characteristics at the same time. However, there were several challenges in the 

current investigation, e.g., the need for more field and experimental data to enhance the 

performance and versatility of the ML algorithms and the ETR algorithm was not able to give an 

explicit model for the estimation of the objective parameters in the daily engineering practices. 

Hence, these challenges can be tackled in upcoming studies. 
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10.1.1. Conclusions 

Developing a reliable and cost-effective solution to predict iceberg drafts and the subgouge soil 

displacement resulting from ice-gouging is a crucial task to assess the serviceability and structural 

integrity of subsea assets and offshore structures since the estimation of iceberg drafts can assist 

to evaluate the risk of ice-gouging events, which can threaten the operational and physical integrity 

of subsea structures and other infrastructures in the Arctic and non-Arctic offshore regions. 

Moreover, the prediction of iceberg-seabed interaction parameters helps to estimate the seabed 

response to ice scour, which can affect the stress-strain behavior of the soil, the plastic shear 

strains, and the developed dead wedge underneath the ice keel. In other words, the subgouge soil 

characteristics determine the optimal design of subsea assets, such as the required burial depth, the 

physical protection, and the cost-effectiveness of the project. 

Artificial intelligence (AI) and machine learning (ML) algorithms are undoubtedly changing the 

trends of the modern world and have wide applications in a range of fields. The current research 

project applied ML advancements for the first time to address the challenges associated with the 

cost-effective prediction of seabed response to ice-gouging. A series of investigations were 

conducted to address the key objectives of the study. Using the π-Buckingham theory and the 

sensitivity analysis, the most influencing dimensionless groups of parameters have been identified 

to model the iceberg drafts alongside subgouge soil characteristics in sand and clay. The iceberg 

draft, subgouge soil displacements, and reaction forces have been predicted using 14 ML 

algorithms comprising LR, ANN, MLPNN, GEP, ELM, SAELM, GMDH, GS-GMDH, DTR, 

RFR, ETR, GBR, SVM, and KNN.  
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This research has provided a fast and accurate ML-based solution for the iceberg draft prediction, 

which is vital for assessing the collision risk of deep keel icebergs with offshore facilities and 

subsea assets in ice-prone areas. 

The applied methodology assists to overcome the limitations and uncertainties of the existing 

methods for measuring iceberg drafts, such as side scan sonar, remote sensing, and empirical 

formulas. It may be used as an additional source of information for operational iceberg 

management and drift forecasting, complementing the conventional dynamic models. 

The ML-based solutions can design guidelines for iceberg management programs and subsea 

design projects. These ML models are able to predict the iceberg draft using iceberg length, width, 

mass, and shape factor; hence, it is useful for iceberg management programs that aim to monitor 

and track the movement and behavior of icebergs in navigable waters. For example, the Canadian 

Ice Service (CIS) is the leading authority for ice and iceberg information in Canada's navigable 

waters. This organization provides accurate and timely information on ice and icebergs to protect 

Canadians, their property, and their environment, by warning of dangerous ice conditions.  

Hence, this intelligent tool provided in the current research potentially enhances the accuracy and 

timeliness of the CIS's information by predicting the iceberg draft based on available data. 

Additionally, iceberg-seabed interaction modeling using ML technology can aid to evaluate the 

seabed response to ice scour, which is an important aspect of a safe and cost-effective design of 

subsea pipelines and other infrastructures in the ice-prone regions. 

The proposed methodology in the current research may help to determine the required burial depth 

for the physical protection of the subsea assets against ice-gouging, which can significantly reduce 

operating expenses and downtime. 
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In other words, the prediction of subgouge soil features, e.g., deformations and reaction forces 

using ML advancement can improve the understanding of the stress-strain behavior of soil under 

an ice keel, which can affect the simple direct shear and the plastic shear strains. 

The ML-based methods can be valuable for subsea design projects that involve the installation, 

operation, and recovery of subsea pipelines, structures, and facilities for companies that provide 

subsea project solutions for deep-water subsea installations and field developments. It may 

potentially improve the safety and efficiency of subsea project solutions by predicting the 

subgouge soil deformations and reaction forces based on relevant parameters. 

The superior ML models for the estimation of the iceberg drafts as well as subgouge soil 

displacements and iceberg keel reaction forces have been introduced by performing different 

analyses such as sensitivity analysis, error analysis, discrepancy analysis, uncertainty analysis, and 

partial derivative sensitivity analysis. 

The performed sensitivity analysis using different ML algorithms has provided a profound 

understanding of the influence of various input parameters such as iceberg length, iceberg width, 

iceberg mass, and iceberg shape factor on the iceberg draft prediction as well as attack angle, gouge 

depth, seabed soil properties, ice dynamics, etc., on the iceberg-seabed interaction mechanisms. 

Several key observations were made throughout the study that can be summarized as follows: 

 The GEP algorithm could automatically generate mathematical expressions from data to 

predict the horizontal subgouge soil deformations in the sandy seabed, which are 

important for assessing the potential damage to subsea pipelines and structures. 

 The best MLPNN model was able to accurately predict the horizontal subgouge 

deformations in the sandy seabed, which were linearly related to the gouge depth and 

inversely related to the soil friction angle in this case. 
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 The MLPNN model was an applicable and reliable algorithm for simulating the 

horizontal subgouge sand deformations, which could help engineers and designers to 

optimize the burial depth and physical protection of subsea pipelines and structures. 

 A new approach was applied to model the iceberg-seabed interaction process using 

dimensional analysis and Buckingham’s π theorem, which was a powerful and simple 

technique that could reduce the complexity and dimensionality of the problem. 

 A systematic and rigorous methodology was utilized to identify the dimensionless groups 

of parameters governing the iceberg-seabed interaction process, which was able to 

facilitate proposing potential new solutions and improving existing ones. 

 The research demonstrated the applicability and reliability of the LR models for 

simulating the subgouge soil deformations, which could assist engineers and designers to 

optimize the burial depth and physical protection of submarine infrastructures. 

 A new dimensionless parameter, the frontal berm height ratio, was recognized as a 

significant input parameter on horizontal and vertical subgouge deformations in the sandy 

seabed predicted by the GMDH algorithm. 

 Several explicit GMDH and GS-GMDH equations were provided to estimate the 

horizontal and vertical soil deformations, which could support the decision-making and 

planning of subsea pipeline installation, operation, and maintenance in the Arctic and 

non-Arctic offshore regions. 

 A set of ELM-based matrices, as simple and reliable tools, were derived to approximate 

the iceberg-seabed interaction parameters, e.g., subgouge deformations and reaction 

forces, in sandy and clay seabed for engineering applications. 
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 The ELM algorithm found that the soil depth was the most influential input factor 

affecting the subgouge soil deformations, while the vertical component of load alongside 

the attack angle parameter was the most effective for the simulation of the iceberg keel-

seabed reaction forces. 

 SaE-ELM algorithm identified the sand shear strength parameter and gouge depth ratio as 

influential input parameters in the prediction of the subgouge reaction forces and 

displacements. 

 A non-tuned extreme learning machine algorithm could detect the soil depth as the most 

effective input factor affecting the subgouge soil deformations, and the vertical 

component of load and attack angle parameter were the most important factors for the 

simulation of the iceberg-seabed reaction forces. 

 Tree-based ML algorithms were able to provide accurate and reliable predictions of the 

subgouge soil deformations with less computational cost and time than other solutions. 

These algorithms could capture the nonlinear and complex behavior of the soil-ice 

interaction process. 

 The RFR method showed better performance than other ML-based models such as the 

gradient boosting model (GBM) and support vector regression (SVR). 

 The RFR model revealed that the most important parameters influencing the iceberg-

seabed interaction process in the sandy seabed were the position of the iceberg along the 

scour axis and the berm height ratio to model the reaction forces; however, the soil depth 

ratio and the berm height ratio had a significant effect on the estimation of the subgouge 

displacements. 
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 A comparison of the performance of the ETR algorithm with other tree-based ML 

methods, e.g., DTR, RFR, and GBR, proved that the ETR method achieved the highest 

accuracy and correlation among the tree-based ML methods for both the keel reaction 

forces and the subgouge soil deformations. 

 A novel methodology for predicting the iceberg draft was developed using LR analysis 

based on four dimensionless groups of parameters governing the iceberg draft estimation. 

 The LR models could provide simple and reliable predictions of the iceberg draft with 

lower computational time and expenses than existing numerical and analytical methods. 

 A robust and systematic approach for conducting a sensitivity analysis of the iceberg 

draft estimation was implemented using neural network-based models, which could 

support identifying the most meaningful parameters and improve the accuracy and 

reliability of the predictions. 

 The SVR algorithm demonstrated higher precision, correlation, and lower complexity to 

approximate the iceberg draft than ANN and DTR models. 

It is worth noting that the iceberg-seabed interaction process and iceberg draft prediction are very 

complex and nonlinear phenomena involving a high level of uncertainty. Estimating the subgouge 

soil deformations and reaction forces as well as the iceberg drafts is essential for the design and 

management of the sea bottom-founded infrastructures. However, existing methods for estimating 

these quantities are either computationally expensive, data-intensive, or empirically based. To 

overcome these challenges, this novel ML-based methodology has been proposed in this 

dissertation that could predict the subgouge soil deformations and reaction forces using a set of 

dimensionless groups of parameters in clay and sandy seabed. Moreover, this intelligent model 

was able to predict the iceberg drafts by utilizing the length, width, mass, and shape factors of the 
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iceberg. According to the obtained results, this research has several advantages and benefits over 

existing methods, such as high accuracy, low complexity, fast computation, and wide applicability. 

The models have been validated using experimental and field data and compared their performance 

with existing empirical models. It was demonstrated that the model could provide reliable and 

robust predictions of the iceberg-seabed interaction process in different regions and conditions. 

For example: 

 The offered methodology could seize the nonlinear and complex behavior of the iceberg-

seabed interaction mechanism very well. It was applied to different soil types, attack 

angle geometries, and loading conditions. 

 This investigation contributed to the advancement of knowledge and understanding of the 

iceberg-seabed interaction process and iceberg draft prediction, which might improve the 

design and management of subsea assets in cold waters. 

 By evaluating the performance and applicability of different ML algorithms, the best ML 

models were introduced for the estimation of the iceberg draft and iceberg-seabed 

interaction process. 

 The most influential parameters for estimating the iceberg drafts and iceberg-seabed 

interaction mechanism were determined, which might reduce the uncertainty and 

variability of the predictions. 

 The comparison of the accuracy and reliability of the ML algorithms and existing 

empirical models might validate and improve the performance of the empirical methods. 

 Overall, the extra tree regression (ETR) algorithm was found to be the superior ML 

algorithm to predict the iceberg draft and subgouge soil characteristics. 
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The study has shown that the usage of ML algorithms for the prediction of iceberg drafts and the 

subgouge soil characteristics can be an attractive and cost-effective alternative to the current 

iceberg management systems and subsea structure designs. However, the accuracy and sufficiency 

of these approaches may be affected by the following aspects: 

 The MLPNN algorithm was not able to provide an explicit relationship to estimate the 

horizontal subgouge soil deformations. 

 Relationships between the dimensionless groups and the subgouge soil deformations 

were linearly considered. Although considering the nonlinearity between these 

dimensionless groups and subgouge soil deformations might increase the complexity of 

the solution, it could help to have more realistic conditions. 

 The seabed was assumed as homogeneous and isotropic soil to perform the dimensionless 

analysis of the iceberg-seabed interaction mechanism, and the effects of soil 

heterogeneity, strain rate effects, pore water pressure, and anisotropy on the subgouge 

soil deformations were not considered. 

 The iceberg keel shape was presumed rectangular and trapezoidal, and the effects of 

different ice keel shapes, such as triangular and irregular, were not assessed on the 

subgouge soil deformations. 

 It was presumed that the ice block moved horizontally on a uniform seabed at a constant 

velocity to analyze the iceberg-seabed interaction mechanism in the present study, 

whereas a realistic iceberg-seabed interaction process might be on a non-uniform seabed 

with non-constant velocity in nature. 
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 The iceberg-seabed interaction process was regarded quasi-static mechanism, and the 

influence of dynamic and transient factors like iceberg acceleration and iceberg inertia 

was not considered on the subgouge soil deformations. 

 The ML methods required a large amount of training data to achieve optimal results. 

 The uncertainty and variability of the environmental and operational factors, e.g., salinity, 

temperature, current, wind, ice crushing, and waves were not considered in the present 

investigation that might influence the iceberg draft estimation. 

 

10.1.2. Recommendations for future studies 

In this thesis, a novel ML-based methodology was developed to predict the subgouge soil 

deformations, reaction forces, and iceberg drafts. The model has shown high accuracy, low 

complexity, fast computation, and wide applicability in estimating the iceberg-seabed interaction 

process. However, there are still some possible ways to expand our work in future studies as below: 

 To improve the performance of ML algorithms, having a comprehensive and high-quality 

dataset is crucial. A combination of field measurements and surficial data including 

satellite images, aerial photography, etc., are recommended to be conducted to construct a 

strong dataset for training and testing of the ML algorithms. 

 More reliable predictions of the subgouge soil displacements need accurate identification 

of the advanced parameters that govern the iceberg-seabed interaction mechanisms 

including the rate effects, ice dynamics, etc., the better modeling of the physics of the 

problem, the more accurate and reliable outcome. 

 The study is recommended to be extended by the inclusion of the pipeline in the analysis. 

This will need coupled analysis and testing of the iceberg-pipeline-seabed interaction, 



 

878 
 

particularly the trenching and backfilling effects that may significantly affect the pipe 

response to the ice-gouging. 

 The effects of the mechanical properties of ice and iceberg crushing can be considered in 

the iceberg-seabed interaction process. 

 Other aspects of the iceberg-seabed interaction process, e.g., soil failure mechanisms can 

be evaluated in future studies. 

 Incorporating more parameters, e.g., the iceberg orientation, trajectory, and drifting to 

improve the precision and reliability of the simulation procedure, may affect the 

prediction of the iceberg-seabed interaction process and iceberg draft estimation. 

 The effect of other types of soils in different seabed conditions, such as silt, gravel, or 

mixed soils, can be evaluated on the performance and applicability of ML-based 

solutions. 

 The influence of other parameters, e.g., soil anisotropy, strain rate, pore water pressure, 

iceberg density, and water salinity, may be considered in the future works. 


