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ABSTRACT 

This research investigated applying Artificial Intelegence (AI) and Machine Learning (ML) 

to renewable energy through three studies. The first study characterized and mapped the recent 

research landscape in the field of AI applications for various renewable energy systems using 

Natural Language Prcoessing (NLP) and ML models. It considered published documetns at Scopus 

database in the period (2000-2021). The second study built hybrid Catboost-CNN-LSTM 

architecture pipeline to predict an industrial-scale biogas plant’s daily biogas production and 

investigate the feedstock components importance on it. The third study investigated prediciting 

biogas yield of various subtrates and the significance of each organic component (carbohydrates, 

proteins, fats/lipids, and legnin) in biogas production using hybrid VAE-XGboost model.  

The first study showed seven main metatopics and  ascent of "deep learning (DL)" as a 

prominent methodology led to an increase in intricate subjects, including the optimization of power 

costs and the prediction of wind patterns. Also, a growing utilization of DL approaches for the 

analysis of renewable energy data, particularly in the context of wind and solar photovoltaic 

systems. The research themes and trends observed in the first study signify substantial recent 

investments in advanced AI learning techniques. The developed Catboost-CNN-LSTM pipeline 

achived a significant results and presented a superior approach when compared to previous 

relevant studies by eliminating the requirement for feature engineering, enabling direct prediction 

of biogas yield without the need for converting it into a classification task. The VAE-XGboost 

pipeline could ovcercome data limitation in the field and produced significant results. It has shown 

that the "fats" category is the most influential group on the methane production in biogas plants, 

however, “proteins” illustrated the lowest impact on biogas production.  
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CHAPTER ONE 

INTRODUCTION 

1.1. BACKGROUND AND MOTIVATION 

Renewable energy systems have become important with the ever-increasing demand for 

energy, limitations of fossil fuel resources, and concerns about sustainability. On the other hand, 

Artificial Intelligence (AI) is a booming sector. AI-based models are leveraged into renewable 

energy areas at an increasing rate due to their capability to handle complicated problems and high 

dimensional data (Jha et al., 2017).  

AI is the study of how to build or program computers to enable them to do what human 

minds can do (Boden, 1996). Developments in AI methods, increasing the available dataset, and 

computer hardware have led to significant growth in leveraging AI modeling in renewable energy. 

Researchers and scientists in related areas have started to employ various AI techniques in different 

renewable energy systems for different purposes such as optimization, prediction, etc. One of the 

AI subfields that is mainly used in renewable energy systems is Machine Learning (ML). In 

general, classification modeling estimates a mapping function (f) from inputs to discrete output. 

However, regression modeling estimates a mapping function from input variables to a continuous 

output variable (Loh, 2011). 

ML can be divided into three main categories: supervised, unsupervised, and semi-

supervised learning (Figure 1.1). The term “supervised” is the learning system based on labels 

corresponding to training instances (Cunningham et al., 2008) and is suitable for classification and 

regression tasks. On the other hand, unsupervised learning does not need an annotated dataset; 
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thus, it is used of an unlabeled dataset and is suitable for clustering and dimension reduction 

(McAlpine and Michelow, 2022; Miorelli et al., 2021). Semi-supervised learning is a category 

between supervised and unsupervised where many unlabeled samples and a small number of 

labeled instances are considered together to build a better model (Ashfaq et al., 2017). Deep 

Learning (DL) is an advanced subfield of ML that is leveraged into complicated problems, like 

accurate Time Series Forecasting (TSF), and their results mostly are considerably outperforming 

their conventional ML counterparts (Sezer et al., 2020).  

 

Figure 1.1. Main categories of the machine learning (ML) methods (Lim et al, 2021). 

The purpose of using TSF is to predict the output variables at a future time point, considering 

the learning from historic time points. Various Deep Neural Network (DNN) architectures have 

been developed to fit a broad range of time series datasets within the different domains (Lim and 

Zohren, 2021), due to their capabilities in handling nonlinear features and data structures with 

high-level of invariance (Wang et al., 2019). One of the common types of deep learning 

architecture employed in renewable energy TSF tasks is Recurrent Neural Network (RNN) based 

models considering their ability to process sequential time series inputs (Hu and Chen, 2018). RNN 

is a class of Artificial Neural Networks (ANN) (Yu et al., 2018) in which the unit takes the current 
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and last step input data point at the same time, and the output depends on the previous data points 

(Sezer et al., 2020). Vanilla RNN is the simplest RNN algorithm that has limited application since 

the gradient vanishes during the training part of this method (Chung et al., 2014). Hence, there are 

types of RNN-based models such as Long Short Term Memory (LSTM) (Hochreiter and 

Schmidhuber, 1997), Gated Recurrent Unit (GRU) (Cho et al., 2014), bidirectional RNN (BiRNN), 

bidirectional LSTM (BiLSTM) (Schuster and Paliwal, 1997), and bidirectional GRU (BiGRU) 

(Zhao et al., 2018), have been developed to mitigate the drawback. These developed models are 

leveraged into a wide variety of areas, like tool wear prediction, stress–strain behavior of soil, fog 

forecasting, stock price prediction, etc. (Wang et al., 2019; Zhang et al., 2020; Miao et al., 2020; 

Sethia and Raut, 2018). 

Due to the increasing availability of data in renewable energy systems, improved quality of 

computational hardware, and development in AI techniques, academic and industrial researchers 

in various fields, including renewable energy systems, have begun to apply these techniques to 

enhance the results of their research. For instance, Bach-Andersen et al. (2017) leveraged 

Convolutional Neural Network (CNN) into large-scale wind turbine drivetrain monitoring. The 

results proved that deep learning algorithms outperformed human analysis and can provide robust 

fault detection on rotor bearings and planetary and helical stage gearbox bearings. Agga et al. 

(2022) leveraged a hybrid deep learning architecture, CNN-LSTM, to forecast short-term power 

production of a photovoltaic (PV) plant considering various look-back and look-forward time 

windows. The hybrid model gained a Mean Absolute Error (MAE) of 4.97 and outperformed 

conventional machine learning models and other solely deep learning models like multi-layer 

perception (MLP) with an MAE of 6.88. 
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Similarly, DL has various applications in power systems, such as online energy scheduling 

(Ji et al., 2021), power systems resilience improvement (Kamruzzaman et al., 2021), and adaptive 

power system emergency control (Huang et al., 2020). Cinar et al. (2022) employed several ML 

methods, like Support Vector Machine (SVM), and decision tree (DT), to optimize the biogas 

system considering the temperature feature. They used a lab-scale dataset and achieved an R2 score 

of 0.93 by SVM. Hansen et al. (2020) used Gomptez, an ML model, and a blending of an ML-

Gomptez model to predict the yield of biogas systems based on a laboratory dataset. They found 

that hybrid model performance is better than each single model with a Mean Absolute Precision 

Error (MAPE) of 4.52%, which is 53% more accurate than the Gomptez model. Similarly, 

Mahmoodi-Eshkaftaki and Ebrahimi (2021) used a lab dataset with DL algorithms with a feature 

selection method to enhance biogas system purification and find the optimal range for different 

reaction parameters such as biological oxygen demand/chemical oxygen demand ratio 

(BOD/COD), carbon/ nitrogen ratio (C/N), total solid (TS), and total volatile solids (TVS). 

Despite the industrial application of ML and DL in a broad range of renewable energy 

systems, such as wind, power, solar energy, and other renewable energy fields, most research in 

biogas-related fields is focused on the experimental dataset. Considering the increasing need for 

renewable energy resources, more examples and case studies of how ML and DL can benefit and 

enhance industrial-scale biogas systems. Biogas production is a waste-based technology mainly 

for generating renewable energy and valorizing organic residues (Kougias and Angelidaki, 2018). 

The biogas systems process protects the air, water, and soil by recycling organic waste such as 

animal manure, food scrapes, wastewater biosolids, and organic by-products into renewable 

energy and soil products while decreasing greenhouse gas (GHG) emissions. According to the 

American Biogas Council, the U.S.A. has 2,300 sites producing biogas in 50 states, including more 
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than 300 farms, 1,200 water resource recovery facilities, 66 stand-alone systems that digest food 

scraps, and nearly 650 landfills. The U.S.A. has significant potential to build more than 15,000 

new biogas industrial facilities, creating considerable economic, environmental, and energy 

benefits. American biogas council illustrated that building out the U.S. biogas infrastructure could 

produce approximately 100 trillion kilowatt-hours of electricity annually (sufficient to meet the 

electricity needs of 9.3 million homes), 33 trillion BTU of renewable heat per hour (4.3 million 

homes), or fuel for vehicles equivalent to 15.4 billion gallons per year (32 million vehicles). 

Mentioned biogas infrastructure would generate at least $45 billion in new capital deployment for 

the construction industry resulting in 375,000 short-term construction-related jobs and 25,000 

permanent jobs. 

Biogas is produced through anaerobic digestion (AD), where microorganisms carry out 

different sequences of biological reactions to degrade organic substrates and convert them to 

biogas. The AD process is a complex process occurring within four main steps (Adekunle and 

Okolie, 2015) (Figure 1.2). First, insoluble organic and higher molecular mass compounds, 

including but not limited to carbohydrates, fats, and proteins, are decomposed under the enzyme-

mediated transformation to their smaller soluble parts. This step is called hydrolysis, and it is 

carried out by different types of microorganisms, such as Bacteroides, Clostridia, and facultative 

bacteria, such as Streptococci, etc. (Merlin et al., 2014). The next step is acidogenesis in which 

decomposed monomers are converted into organic acids such as butyric, propanoic, acetic, and 

alcohol (Gerardi, 2003). The next step is acetogenesis, where products that cannot be directly 

converted to methane by methanogenic microorganisms are converted into methanogenic 

substrates. In acetogenesis, volatile fatty acids (VFA) and alcohols are oxidized into intermediate 

compounds substrates like acetate, hydrogen, and carbon dioxide. VFAs with longer than one unit 
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of carbon chains are oxidized into acetate and hydrogen (Al Seadi et al., 2008). The final stage is 

methanogenesis, where produced intermediate compounds from the previous step are converted 

into biogas by methanogenic bacterial under strict anaerobic conditions (Aslanzadeh, 2014). 

 

 

Figure 1.2. Steps of the anaerobic digestion (AD) process. 

The anaerobic reactions generate biogas containing 55%-75% CH4 (Kunatsa et al., 2022) 

.More than 17,400 biogas power units have been built in EU member states (Scarlat et al., 2018), 

reaching almost 20000 in 2022 (Bumharter et al., 2023). As a sustainable energy development in 

Indonesia, it has started to develop biogas units to generate electricity by converting animal manure 

to biogas (Khalil et al., 2019). China has recently adopted anaerobic digestion technology (Chen 

et al., 2017). China has 26576 biogas plants, 18000 small units, and 8576 large-scale units, 

generating approximately 9 billion m3 of biomethane annually. However, the production of biogas 

facilities in China is impacted negatively by operational issues, such as maintaining optimum 

temperature and mixing ratio. 

Moreover, Deng et al. (2017) found that most AD treatment plants had shut down because 

of the process complexity, understaffing, improper management, and reduced biogas production. 

Different parameters cause this reduction. For instance, maintaining suitable temperature and pH 
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for the microorganisms in each process step is necessary since they are sensitive to parameter 

changes. Obtaining optimum biogas production with reasonable cost cannot be achieved without 

a well-planned organic loading rate (OLR). Maintaining the OLR low can cause a reduction in the 

biogas production efficiency. 

On the other hand, a high OLR can be a reason for process inhibition (Li et al., 2015; Sun et 

al., 2017). To obtain the optimum conditions for the specific biogas plant, OLR should be 

determined based on the feed substrate (Montingelli et al., 2015). Hydraulic retention time (HRT) 

determines the size of the biogas system, particularly the digester volume. Optimum biogas 

production can be obtained at different HRTs, depending on the used substrate (Ezekoye et al., 

2011). Averagely, HRT should be between 10 and 25 days to prevent washouts of microorganisms 

from the digester (Schmidt et al., 2014). Also, using a combination of various substrates improves 

the content of nutrients, supplements, and phosphorus, and at the same time, it provides a balanced 

C/N ratio. The increase in the C/N ratio results in rapid nitrogen consumption before carbon 

digestion. Therefore, methane potential reduces (Al-Addous et al., 2017; Hills, 1979). However, 

the decrease in the C/N ratio results in ammonium accumulation, inhibiting the microorganisms 

(Al-Addous et al., 2017).  

China is not the only region with issues related to biogas facility performance. Similar 

problems have also been found in countries such as South Korea (Kim et., 2012) and Brazil (De 

Clecq et al., 2017). Therefore, leveraging suitable ML and DL models is required to empower the 

path of reaching more sustainable biogas industrial facilities. 

Due to the importance of replacing fossil fuels with renewable energy resources, they are 

increasingly gaining attention from governmental, industrial, and academic sectors worldwide. 

Hence, creating a clear technology roadmap is critical to integrate science and technology with a 
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business perspective in line with market movement and goals (Amer and Daim, 2010). Conducting 

intelligence investigations on forthcoming technologies and clear technology roadmaps will help 

governments and industries take smart investment steps and maintain their competitive advantage 

(Angelo et al., 2017). The sharp rise of employing AI in renewable energy systems has resulted in 

many scientific documents. Poege et al. (2019) stated that there is a high correlation and 

correspondence between scientific papers and patents. In other words, the quality of the patents 

can be determined by considering the referenced academic papers (Coupé, 2003). Therefore, 

analyzing the information in these textual datasets is beneficial for developing a technology 

roadmap. Natural language processing (NLP) is a subfield of AI and has a broad application in 

different domains, i.e., audio, text, video, picture, bioinformatic, etc. (Shukla and Kakkar, 2016; 

Gu et al., 2022; MacFarlane et al., 2022; Boorugu et al.,2020). With the powerful NLP methods in 

text analysis, an intellectual framework can be built to detect an informative pattern in the hidden 

layer of these texts over the timeline and provide an insightful perspective on renewable energy 

systems.  

1.2. STATEMENT OF THE PROBLEM 

This study aims to address three main problems in the field of renewable energy domain, 

namely, lack of comprehensive information management system, efficient time series-based 

pipeline, and data limitation, with a particular focus on biogas system leveraging AI-based 

methods. 

1)  Unstructured textual datasets are created in different forms of documents and are 

available in different clouds and online databases. The significant growth of the 

application of AI modeling in the renewable energy domain creates a massive amount of 

data and information within research papers, registered patents, reports, etc. A problem 
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in this domain is that investors and policymakers in governmental and industrial sectors 

can become uncertain about and among various generated information, specifically in AI 

with various techniques and approaches. Hence, analyzing these documents is necessary 

to develop clear and feasible technology road mapping. However, considering the 

tremendous amount of generated data daily at the intersection of computer science and 

renewable energy systems, manual analysis is time-consuming, labor-intensive, 

sometimes can be erroneous, and biased in final results. Humans may not consider some 

information deliberately or evaluate things differently, considering our knowledge and 

understanding. NLP techniques become valuable in providing insightful patterns and 

information from an extensive textual dataset with significant coherence for humans. 

2)  Biogas systems are complicated, and their power generation needs a significant reaction 

time (Chiu et al., 2022). However, researchers in this domain have begun to leverage AI 

models to analyze the input and process parameters and develop predictive models to 

forecast the performance of biogas systems. One of the missing points in the research 

conducted so far is the analysis of key input and intermediate factors, resulting in biogas 

or methane yield instability (Chiu et al., 2022). Considering the dimension of datasets in 

this field, especially industrial datasets, and the high degree of non-linearity and 

correlation between their features, finding the effect of key factors and forecasting the 

system's performance require complex calculations. Conventional mathematical and 

statistical modeling usually makes some errors and requires significant time. Hence, 

developing ML/DL algorithms that can analyze critical factors in industrial biogas 

reaction targeting optimizing output can result in developing more accurate TSF 

predictive models. Powerful AI techniques can be employed to enhance decision-making 
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in the operational sector of biogas plants and make them more economically sustainable. 

This will also positively impact the popularity of biogas plants in industry and make them 

one of the most privileged environmental-friendly approaches to generating electricity or 

heat worldwide. 

3) As mentioned erlier there is a high level of uncertainty in biogas systems and ML 

models can play a significant role in predicting the system’s yield. However, experimental 

and lab-scale data limitation in this domain considering measuring parameters can be 

challenging. Consequently, supervisded ML models usually cannot produce significant 

and generalized results for lab-scale biogas problems, since they require sufficient amount 

data points to be trained on to learn and capture the pattern of the data, enabaling them to 

make accurate predictions. An effective way to overcome this limitation is leveraging 

data augmatation techniques. More specifically, powerful AI-based techniques such as 

Variational Auto Encoder (VAE) can generate dummy datapoints that have the similar 

statistical charactrestics to the original data. Design engineers attempting to forecast the 

experimental methane yield during the initial phases of biogas project development can 

benefit from this solution.  

1.3. RESEARCH OBJECTIVES 

The research set the following objectives to help solve the research problems, 

1) Developing a model to detect the trend of AI application in renewable energy systems and 

identify the most frequent computational algorithms in related domains from 2000 until 2021 

from published English books and papers in Elsevier’s Scopus database. 
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2) Leveraging Dynamic Topic Modeling (DTM) and NLP algorithms to characterize and map 

the recent AI applications landscape in renewable energy systems and investigate the evolution 

of this field over the considered 20-year timeframe. DTM and NLP will be used to analyze 

scientific publications (from Elsevier’s Scopus) focusing mainly on AI applications in 

renewable energy systems. 

3) Analyzing key input and intermediate factors of the industrial biogas plants by taking a case 

study of an industrial biogas plant in Shenzhen, China, over 440 days. A feature selection by 

ensemble learning methods, i.e., XGboost and random forest, will be conducted to determine 

the impact of key factors on the biogas system’s production, aiming at optimizing output, 

resulting in the development of more accurate TSF models.  

4) Developing hybrid DL-based TSF models such as LSTM, CNN-LSTM, and GRU for the 

industrial dataset to predict the yield of the biogas system. This method provides robust results 

without intensive feature engineering and can help other researchers in academia and industry 

develop more sustainable biogas systems.  

5) Developing a hybrid approach to overcome data limitation in biogas domain via leveraging 

vertical autoencoder model and generating augmented data following the similar statectical 

charactrestics of real data.  

6) Predicting bio methene potentional (BMP) using machine learning models. 
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1.4. STRUCTURE OF THE THESIS 

This thesis consists of six chapters. Chapter 1 outlines the general research background, 

motivation, problem statement, research objectives, and thesis structure. Chapter 2 provides the 

literature reviews of the relevant topics, including (1) current widely used ML/DL algorithms in 

supervised learning and unsupervised learning and the challenges and limitations they face, (2) 

related research and challenges of biogas, (3) potential application of ML/DL on the challenges in 

biogas and bio hydrogen domains, (4) NLP methods with a focus on text mining domain, (5) image 

processing applications in biogas domain. Chapter 3 presents the development of DTM and NLP 

techniques, including a transfer learning model and feature extraction method, to intellectually 

investigate the AI application in renewable energy systems. Chapter 4 is a study to leverage AI in 

a biogas industrial plant to investigate the importance feedstock and did TSF of the systems' output 

via a hybrid DL model. Chapter 5 is a study which applied DL-based data augmatation method to 

address the data limitation facing ML modeling of biogas datasets. Specifically, it tried using ML 

to predict the biogas yield of various feedstocks using their organic components. Finally, Chapter 

6 presents the conclusions of this research and recommendations for future work. The structure of 

the thesis is depicted in Figure 1.3. 
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Figure 1.3. The research roadmap 
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1.5. CONTRIBUTION OF THIS THESIS 

This research generated two journal papers that are under review:  

Kamran Niroomand, Noori M. Cata Saady, Carlos Bazan,; Sohrab Zendehboudi, Amilcar 

Soares, Talib M. Albayati  (2023) Smart Investigation of Artificial Intelligence in Renewable 

Energy System Technologies by Natural Language Processing: Insightful Pattern for Decision-

Makers. International Scientific Journal Engineering Applications of Artificial Intelligence. 

Reference number: EAAI-22-3885R1. I developed the proposed approach, built the case study 

model, analyzed results, and wrote the draft of the paper. 

Kamran Niroomand, Noori M. Cata Saady, Carlos Bazan, Sohrab Zendehboudi (2023) 

Hybrid Catboost-CNN-LSTM Model for Biogas Feedstock Analysis and System Performance 

Forecasting: Industrial-Scale Biogas Planet Application. Journal of Energy for Sustainable 

Development. Reference number: ESD-S-23-01172 (under review). I developed the proposed 

approach, built the case study model, analyzed results, and wrote the draft of the manuscript. 

REFRENCES 

Bumharter, C., Bolonio, D., Amez, I., Martínez, M. J. G., & Ortega, M. F. (2023). New 

opportunities for the European Biogas industry: A review on current installation development, 

production potentials and yield improvements for manure and agricultural waste mixtures. Journal 

of Cleaner Production, 135867. 

Kunatsa, T., & Xia, X. (2022). A review on anaerobic digestion with focus on the role of 

biomass co-digestion, modelling and optimisation on biogas production and 

enhancement. Bioresource technology, 344, 126311. 



33 
 

Jha, S. Kr., Bilalovic, J., Jha, A., Patel, N., & Zhang, H. (2017). Renewable energy: Present 

research and future scope of Artificial Intelligence. In Renewable and Sustainable Energy Reviews 

(Vol. 77, pp. 297–317). Elsevier BV. https://doi.org/10.1016/j.rser.2017.04.018 

Boden, M. A. (Ed.). (1996). Artificial intelligence. Elsevier.  

Loh, W. Y. (2011). Classification and regression trees. Wiley interdisciplinary reviews: data 

mining and knowledge discovery, 1(1), 14-23. 

Cunningham, P., Cord, M., & Delany, S. J. (2008). Supervised learning. In Machine learning 

techniques for multimedia (pp. 21-49). Springer, Berlin, Heidelberg. 

Miorelli, R., Kulakovskyi, A., Chapuis, B., D’almeida, O., & Mesnil, O. (2021). Supervised 

learning strategy for classification and regression tasks applied to aeronautical structural health 

monitoring problems. Ultrasonics, 113, 106372. 

McAlpine, E. D., Michelow, P., & Celik, T. (2022). The utility of unsupervised machine 

learning in anatomic pathology. American Journal of Clinical Pathology, 157(1), 5-14 

Ashfaq, R. A. R., Wang, X.-Z., Huang, J. Z., Abbas, H., & He, Y.-L. (2017). Fuzziness based 

semi-supervised learning approach for intrusion detection system. In Information Sciences (Vol. 

378, pp. 484–497). Elsevier BV. https://doi.org/10.1016/j.ins.2016.04.019 

Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting 

with deep learning : A systematic literature review: 2005–2019. In Applied Soft Computing (Vol. 

90, p. 106181). Elsevier BV. https://doi.org/10.1016/j.asoc.2020.106181 

Lim, B., & Zohren, S. (2021). Time-series forecasting with deep learning: a survey. In 

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering 



34 
 

Sciences (Vol. 379, Issue 2194, p. 20200209). The Royal Society. 

https://doi.org/10.1098/rsta.2020.0209 

Wang, H., Lei, Z., Zhang, X., Zhou, B., & Peng, J. (2019). A review of deep learning for 

renewable energy forecasting. In Energy Conversion and Management (Vol. 198, p. 111799). 

Elsevier BV. https://doi.org/10.1016/j.enconman.2019.111799 

Hu, Y.-L., & Chen, L. (2018). A nonlinear hybrid wind speed forecasting model using LSTM 

network, hysteretic ELM and Differential Evolution algorithm. In Energy Conversion and 

Management (Vol. 173, pp. 123–142). Elsevier BV. 

https://doi.org/10.1016/j.enconman.2018.07.070 

Yu, C., Li, Y., Bao, Y., Tang, H., & Zhai, G. (2018). A novel framework for wind speed 

prediction based on recurrent neural networks and support vector machine. In Energy Conversion 

and Management (Vol. 178, pp. 137–145). Elsevier BV. 

https://doi.org/10.1016/j.enconman.2018.10.008 

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated 

Recurrent Neural Networks on Sequence Modeling (Version 1). arXiv. 

https://doi.org/10.48550/ARXIV.1412.3555 

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. In Neural 

Computation (Vol. 9, Issue 8, pp. 1735–1780). MIT Press - Journals. 

https://doi.org/10.1162/neco.1997.9.8.1735 

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the Properties of 

Neural Machine Translation: Encoder–Decoder Approaches. In Proceedings of SSST-8, Eighth 

Workshop on Syntax, Semantics and Structure in Statistical Translation. Proceedings of SSST-8, 



35 
 

Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation. Association for 

Computational Linguistics. https://doi.org/10.3115/v1/w14-4012 

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. In IEEE 

Transactions on Signal Processing (Vol. 45, Issue 11, pp. 2673–2681). Institute of Electrical and 

Electronics Engineers (IEEE). https://doi.org/10.1109/78.650093 

Zhao, W., Han, S., Hu, R. Q., Meng, W., & Jia, Z. (2018). Crowdsourcing and Multisource 

Fusion-Based Fingerprint Sensing in Smartphone Localization. In IEEE Sensors Journal (Vol. 18, 

Issue 8, pp. 3236–3247). Institute of Electrical and Electronics Engineers (IEEE). 

https://doi.org/10.1109/jsen.2018.2805335 

Wang, J., Yan, J., Li, C., Gao, R. X., & Zhao, R. (2019). Deep heterogeneous GRU model 

for predictive analytics in smart manufacturing: Application to tool wear prediction. In Computers 

in Industry (Vol. 111, pp. 1–14). Elsevier BV. https://doi.org/10.1016/j.compind.2019.06.001 

Zhang, N., Shen, S.-L., Zhou, A., & Jin, Y.-F. (2021). Application of LSTM approach for 

modelling stress–strain behaviour of soil. In Applied Soft Computing (Vol. 100, p. 106959). 

Elsevier BV. https://doi.org/10.1016/j.asoc.2020.106959 

Miao, K., Han, T., Yao, Y., Lu, H., Chen, P., Wang, B., & Zhang, J. (2020). Application of 

LSTM for short term fog forecasting based on meteorological elements. In Neurocomputing (Vol. 

408, pp. 285–291). Elsevier BV. https://doi.org/10.1016/j.neucom.2019.12.129 

Sethia, A., & Raut, P. (2018). Application of LSTM, GRU and ICA for Stock Price 

Prediction. In Information and Communication Technology for Intelligent Systems (pp. 479–487). 

Springer Singapore. https://doi.org/10.1007/978-981-13-1747-7_46 



36 
 

Bach-Andersen, M., Rømer-Odgaard, B., & Winther, O. (2017). Deep learning for 

automated drivetrain fault detection. In Wind Energy (Vol. 21, Issue 1, pp. 29–41). Wiley. 

https://doi.org/10.1002/we.2142 

Agga, A., Abbou, A., Labbadi, M., Houm, Y. E., & Ou Ali, I. H. (2022). CNN-LSTM: An 

efficient hybrid deep learning architecture for predicting short-term photovoltaic power 

production. In Electric Power Systems Research (Vol. 208, p. 107908). Elsevier BV. 

https://doi.org/10.1016/j.epsr.2022.107908 

Cinar, S. Ö., Cinar, S., & Kuchta, K. (2022). Machine Learning Algorithms for Temperature 

Management in the Anaerobic Digestion Process. In Fermentation (Vol. 8, Issue 2, p. 65). MDPI 

AG. https://doi.org/10.3390/fermentation8020065 

Hansen, B. D., Tamouk, J., Tidmarsh, C. A., Johansen, R., Moeslund, T. B., & Jensen, D. 

G. (2020). Prediction of the Methane Production in Biogas Plants Using a Combined Gompertz 

and Machine Learning Model. In Computational Science and Its Applications – ICCSA 2020 (pp. 

734–745). Springer International Publishing. https://doi.org/10.1007/978-3-030-58799-4_53 

Mahmoodi-Eshkaftaki, M., & Ebrahimi, R. (2021). Integrated deep learning neural network 

and desirability analysis in biogas plants: A powerful tool to optimize biogas purification. In 

Energy (Vol. 231, p. 121073). Elsevier BV. https://doi.org/10.1016/j.energy.2021.121073 

Kougias, P. G., & Angelidaki, I. (2018). Biogas and its opportunities—A review. In Frontiers 

of Environmental Science &amp; Engineering (Vol. 12, Issue 3). Springer Science and Business 

Media LLC. https://doi.org/10.1007/s11783-018-1037-8 



37 
 

Scarlat, N., Dallemand, J.-F., & Fahl, F. (2018). Biogas: Developments and perspectives in 

Europe. In Renewable Energy (Vol. 129, pp. 457–472). Elsevier BV. 

https://doi.org/10.1016/j.renene.2018.03.006 

Khalil, M., Berawi, M. A., Heryanto, R., & Rizalie, A. (2019). Waste to energy technology: 

The potential of sustainable biogas production from animal waste in Indonesia. In Renewable and 

Sustainable Energy Reviews (Vol. 105, pp. 323–331). Elsevier BV. 

https://doi.org/10.1016/j.rser.2019.02.011 

Chen, L., Cong, R.-G., Shu, B., & Mi, Z.-F. (2017). A sustainable biogas model in China: 

The case study of Beijing Deqingyuan biogas project. In Renewable and Sustainable Energy 

Reviews (Vol. 78, pp. 773–779). Elsevier BV. https://doi.org/10.1016/j.rser.2017.05.027 

Scarlat, N., Dallemand, J.-F., & Fahl, F. (2018). Biogas: Developments and perspectives in 

Europe. In Renewable Energy (Vol. 129, pp. 457–472). Elsevier BV. 

https://doi.org/10.1016/j.renene.2018.03.006 

Deng, L., Liu, Y., Zheng, D., Wang, L., Pu, X., Song, L., Wang, Z., Lei, Y., Chen, Z., & 

Long, Y. (2017). Application and development of biogas technology for the treatment of waste in 

China. In Renewable and Sustainable Energy Reviews (Vol. 70, pp. 845–851). Elsevier BV. 

https://doi.org/10.1016/j.rser.2016.11.265 

Shukla, H., & Kakkar, M. (2016). Keyword extraction from Educational Video transcripts 

using NLP techniques. In 2016 6th International Conference - Cloud System and Big Data 

Engineering (Confluence). 2016 6th International Conference - Cloud System and Big Data 

Engineering (Confluence). IEEE. https://doi.org/10.1109/confluence.2016.7508096 



38 
 

Gu, W., Yang, X., Yang, M., Han, K., Pan, W., & Zhu, Z. (2022). MarkerGenie: an NLP-

enabled text-mining system for biomedical entity relation extraction. In C. Arighi (Ed.), 

Bioinformatics Advances (Vol. 2, Issue 1). Oxford University Press (OUP). 

https://doi.org/10.1093/bioadv/vbac035 

MacFarlane, H., Salem, A. C., Chen, L., Asgari, M., & Fombonne, E. (2022). Combining 

voice and language features improves automated autism detection. In Autism Research (Vol. 15, 

Issue 7, pp. 1288–1300). Wiley. https://doi.org/10.1002/aur.2733 

Boorugu, R., & Ramesh, G. (2020). A Survey on NLP based Text Summarization for 

Summarizing Product Reviews. In 2020 Second International Conference on Inventive Research 

in Computing Applications (ICIRCA). 2020 Second International Conference on Inventive 

Research in Computing Applications (ICIRCA). IEEE. 

https://doi.org/10.1109/icirca48905.2020.9183355 

Adekunle, K. F., & Okolie, J. A. (2015). A Review of Biochemical Process of Anaerobic 

Digestion. In Advances in Bioscience and Biotechnology (Vol. 06, Issue 03, pp. 205–212). 

Scientific Research Publishing, Inc. https://doi.org/10.4236/abb.2015.63020 

Merlin Christy, P., Gopinath, L. R., & Divya, D. (2014). A review on anaerobic 

decomposition and enhancement of biogas production through enzymes and microorganisms. In 

Renewable and Sustainable Energy Reviews (Vol. 34, pp. 167–173). Elsevier BV. 

https://doi.org/10.1016/j.rser.2014.03.010 

Gerardi, M. H. (2003). The microbiology of anaerobic digesters. John Wiley & Sons. 

Al Seadi, T., Ruiz, D., Prassl, H., Kottner, M., Finsterwaldes, T., Volke, S. and Janssers, R. 

(2008) Handbook of Biogas. University of Southern Denmark, Esbjerg. 



39 
 

Aslanzadeh, S. (2014). Pretreatment of Cellulosic Waste and High Rate Biogas Production. 

Doctoral Thesis on Resource Recovery, University of Borås, Borås, 1-50. 

Li, D., Liu, S., Mi, L., Li, Z., Yuan, Y., Yan, Z., & Liu, X. (2015). Effects of feedstock ratio 

and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and pig 

manure. Bioresource technology, 187, 120-127. 

Sun, M. T., Fan, X. L., Zhao, X. X., Fu, S. F., He, S., Manasa, M. R. K., & Guo, R. B. (2017). 

Effects of organic loading rate on biogas production from macroalgae: Performance and microbial 

community structure. Bioresource technology, 235, 292-300. 

Montingelli, M. E., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal 

biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961-972. 

Ezekoye, V. A., Ezekoye, B. A., & Offor, P. O. (2011). Effect of retention time on biogas 

production from poultry droppings and cassava peels. Nigerian Journal of Biotechnology, 22, 53-

59. 

Schmidt, T., Ziganshin, A. M., Nikolausz, M., Scholwin, F., Nelles, M., Kleinsteuber, S., & 

Pröter, J. (2014). Effects of the reduction of the hydraulic retention time to 1.5 days at constant 

organic loading in CSTR, ASBR, and fixed-bed reactors–performance and methanogenic 

community composition. biomass and bioenergy, 69, 241-248. 

Al-Addous, M., Alnaief, M., Class, C., Nsair, A., Kuchta, K., & Alkasrawi, M. (2017). 

Technical possibilities of biogas production from olive and date waste in 

Jordan. BioResources, 12(4), 9383-9395. 

Hills, D. J. (1979). Effects of carbon: nitrogen ratio on anaerobic digestion of dairy 

manure. Agricultural wastes, 1(4), 267-278. 



40 
 

Chiu, M.-C., Wen, C.-Y., Hsu, H.-W., & Wang, W.-C. (2022). Key wastes selection and 

prediction improvement for biogas production through hybrid machine learning methods. In 

Sustainable Energy Technologies and Assessments (Vol. 52, p. 102223). Elsevier BV. 

https://doi.org/10.1016/j.seta.2022.102223 

 

 

 

 

 

 

 

 

 

 



41 
 

CHAPTER TWO 

LITERATURE REVIEW 

2.1. BASIC PRINCIPLES OF ANAEROBIC DIGESTION 

Anaerobic digestion is a widely used biological process for treating industrial organic waste 

and wastewater (Jadhav et al., 2019). It involves the degradation of organic materials in the absence 

of oxygen to produce biogas, which consists of 60% methane, 40% carbon dioxide, and other 

gases. This process is also used for generating bioenergy from agricultural residue and animal 

manure (Jadhav et al., 2019). Removing carbon dioxide from biogas produces biomethane, which 

can be used as a fuel for heating or transportation. The process is carried out by microorganisms 

that convert organic matter into biogas through four steps: hydrolysis, acidogenesis, acetogenesis, 

and methanogenesis. The importance of these microorganisms in the degradation of organic 

materials and the production of methane/carbon dioxide has been well-established in the literature 

(Yuan and Zhu, 2016; Sonakya et al., 2001). 

2.1.1. Hydrolysis 

Anaerobic digestion process starts with hydrolysis, the critical step of converting complex 

polymer organic materials such as carbohydrates, lipids, and proteins into simpler monomers and 

substances (Menzel et al., 2020). Hydrolytic bacteria release extracellular enzymes that catalyze 

the parallel degradation processes of carbohydrates into simple sugars, proteins into amino acids, 

and lipids into long-chain fatty acids (Shrestha et al., 2017). Hydrolysis is considered the rate-

limiting step when the substrate is complex, for instance, lignocellulosic biomass. Thus, the step 

significantly influences the rate of the biogas production process. Enzymes, including cellulase, 
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amylase, protease, and lipase, play the primary role in hydrolysis, breaking down the complex 

organic matter into smaller units. 

2.1.2. Acidogenesis 

During the hydrolysis step of the anaerobic digestion process, some of the large molecules 

are converted into hydrogen and acetate that methanogens can directly use to produce methane. 

However, most of the hydrolysis products remain relatively large and require further conversion 

into smaller molecules, such as acetic acid. Acidogenesis is the next step, where acidogenic 

bacteria transform the hydrolysis products into usable forms for methanogens. Simple sugars, 

amino acids, and fatty acids undergo degradation to produce acetate, carbon dioxide, and 

hydrogen. This step also generates short-chain volatile fatty acids (VFAs) and alcohols. The 

acidogenesis reactions are provided in Table 2.1. 

2.1.3. Acetogenesis 

After acidogenesis, the next step in the anaerobic digestion process is acetogenesis, where 

acetogenic bacteria convert the acidic products of the previous step into acetic acid, hydrogen, and 

carbon dioxide, which methanogens can utilize for methane production. The reactions that occur 

during acetogenesis are outlined in Table 2.1. 

2.1.4. Methanogenesis 

The last stage in the anaerobic digestion process is methanogenesis, where methane (CH4) 

is produced from volatile fatty acids (VFAs) or hydrogen and carbon dioxide directly. Methane is 

a desirable end product in AD, as it is rich in electrons, making it an excellent energy source, and 

is not very soluble in water. Once it is produced, it leaves the liquid phase as a gas and does not 

have any further impact on the microbial community. The reactions that take place during 

methanogenesis are given in Table 2.1. 
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Table 2.I. The anaerobic digestion’s biochemical reactions (Hajizadeh, 2021) 
Step Biochemical reaction 

Acidogenesis 𝐶+𝐻+𝑂+ + 2𝐻* → 2𝐶𝐻,𝐶𝐻*𝐶𝑂𝑂𝐻 + 2𝐻*𝑂 
𝐶+𝐻-*𝑂+ → 2𝐶𝐻,𝐶𝐻*𝑂𝐻 + 2𝐶𝑂* 

Acetogenesis 𝐶𝐻,𝐶𝐻*𝐶𝑂𝑂. + 3𝐻*𝑂 → 𝐶𝐻,𝐶𝑂𝑂. +𝐻/ +𝐻𝐶𝑂,. + 3𝐻* 
𝐶+𝐻-*𝑂+ + 2𝐻*𝑂 → 2𝐶𝐻,𝐶𝑂𝑂𝐻 + 2𝐶𝑂* + 4𝐻* 
𝐶𝐻,𝐶𝐻*𝑂𝐻 + 2𝐻*𝑂 → 𝐶𝐻,𝐶𝑂𝑂. + 2𝐻* +𝐻/ 
2𝐻𝐶𝑂,. + 4𝐻* +𝐻/ → 𝐶𝐻,𝐶𝑂𝑂. + 4𝐻*𝑂 

Methanogenesis 2𝐶𝐻,𝐶𝐻*𝑂𝐻 + 𝐶𝑂* → 2𝐶𝐻,𝐶𝑂𝑂𝐻 + 𝐶𝐻0 
𝐶𝐻,𝐶𝑂𝑂𝐻 → 𝐶𝐻0 + 𝐶𝑂* 
𝐶𝐻,𝑂𝐻 → 𝐶𝐻0 +𝐻*𝑂 
𝐶𝑂* + 4𝐻* → 𝐶𝐻0 + 2𝐻*𝑂 
𝐶𝐻,𝐶𝑂𝑂. + 𝑆𝑂0*. +𝐻/ → 2𝐻𝐶𝑂,. +𝐻*𝑆 
𝐶𝐻,𝐶𝑂𝑂. +𝑁𝑂. +𝐻*𝑂 + 𝐻/ → 2𝐻𝐶𝑂,. +𝑁𝐻0/ 

 

2.2. BIOGAS PRODUCTION 

The generation of biogas through anaerobic digestion (AD) offers a viable means of 

producing energy. AD is particularly popular among livestock farmers as it allows them to offset 

their electricity bills and reduce their carbon footprint. The end products of AD are biogas and 

digestate. Biogas is utilized to produce electricity and heat, while digestate is commonly used as a 

fertilizer, soil amendment, and/or bedding source. Various organic wastes can be utilized in AD 

for biogas production, including lignocellulosic wastes from agricultural and municipal activities, 

animal manure and slurry, sewage sludge and municipal solid waste, and food waste. Table 2.2 

presents the typical energy production quantities from different waste sources. 

Table 2.2 Biogas production from various substrates. 

Substrate 
Biogas production per ton  

VS) 1-kg 4CH 3(m 
Ref. 

Municipal and industrial 
Mechanically recovered organic 
fraction of municipal solid waste 

0.344 Zhang and Banks (2010) 

Food waste 0.461 Lu et al. 2017 
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Table 2.2 Continued. 

Substrate 
Biogas production per ton  

VS) 1-kg 4CH 3(m 
Ref. 

Banana peel 
Cassava peels 
Sugarcane bagasse 
Maize silage 
Sewage sludge 
Cheese whey 

0.227 
0.205-0.25 
0.075 
0.2-0.25 
0.2-0.4 
0.35-0.45 

Zheng et al. (2013) 
Ghosh et al. (2020) 
Nwokolo et al. (2021) 
Okonkwo et al. (2018) 
Selormey et al. (2022) 
Bumbiere et al. (2020) 

Agricultural waste 
Cattle manure 0.30-0.51 Lu et al. (2017) 

Cow manure 0.15-0.30 
Angelidaki and Ellegaard 
(2003) 

Poultry manure 
Chicken manure 
Pig manure 
Grass silage 
 

0.33 
0.05-0.12 
0.02-0.05 
0.2-0.4 

Johannesson et al. (2020)  
Nwokolo et al. (2021) 
Bumbiere et al. (2020) 
Ahmed & Kazda (2017) 

Animal and slaughterhouse waste 
Animal waste 0.38 Selormey et al. (2022) 
Rumen content 0.35 Selormey et al. (2022) 
Stomach and gut contents 
Fish waste 

0.40-0.46 
0.45-0.60 

Limeneh et al. (2022) 
Ijoma et al. (2021) 

  

 

2.3. OVERVIEW OF DESIGN AND OPERATION PARAMETERS OF 

BIOGAS PLANTS 

An anaerobic digester's successful design and operation depend on various parameters that 

should be considered. These parameters include the total solids content, volatile solids content 

(which refers to the organic matter amount), the Carbon-to-Nitrogen (C/N) ratio of the substrate, 

pH and alkalinity, temperature, hydraulic retention time, organic loading rate, and inoculum-to-
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substrate ratio. Proper management of these parameters is crucial for optimizing biogas production 

and ensuring a stable operation of the digester. 

2.3.1. pH and alkalinity 

The pH level is an important factor affecting the performance of microorganisms in the AD 

process. Methanogens are particularly sensitive to low pH levels, while high pH levels can form 

toxic substances such as free ammonia. The pH inside the digester changes continuously 

throughout the AD process, and each group of microorganisms has an optimal pH range for 

maximum reaction rates (Liu et al., 2008). Hydrolytic bacteria and acidogens can operate within a 

wide pH range of 4-8.5, while methanogens require a narrow pH range of 6.5 to 7.2. Alkalinity is 

another crucial parameter in AD, as it determines the medium's resistance to pH changes (Zhai et 

al., 2015). Alkalinity is the equilibrium of CO2 and bicarbonate ions, and it is more reliable than 

direct pH measurement in assessing digester imbalance. VFAs produced during acidogenesis can 

decrease the pH, but methanogens produce alkalinity as CO2 and bicarbonate to neutralize this 

reduction. The concentration of CO2 in the gas phase and bicarbonate in the liquid phase 

determines the pH value inside the digester. Low alkalinity can be addressed by reducing the OLR, 

adding salt to convert CO2 to bicarbonate, or adding bicarbonate directly. Generally, the 

recommended alkalinity level for optimum methane production is between 1000 and 5000 mg 

CaCO3/L (Issah et al., 2020). 

2.3.2. Temperature 

Temperature is a crucial factor that significantly impacts various parameters in the AD 

process. It influences the growth rate of microorganisms, diversity, thermodynamic equilibrium, 

stability, process kinetics, and methane yield. The minimum and maximum temperature range 

suitable for operating an anaerobic digester is between 20 ºC and 60 ºC. Based on the operation 
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temperature, the AD process is categorized as psychrophilic (20 ºC), mesophilic (35 ºC), and 

thermophilic (60 ºC) (Angelidaki et al., 2005). Temperature-phased AD is another configuration 

that utilizes the benefits of each temperature range.  

2.3.3. Carbon to Nitrogen (C/N) ratio 

Co-digestion is adding multiple substrates to the digester to adjust the C/N ratio and enhance 

the performance of the AD process. Co-digestion has several advantages such as balancing the 

nutrients, increasing the methane yield, reducing the hydraulic retention time (HRT), and 

enhancing the stability of the process. Co-digestion can also improve waste management by 

utilizing various organic waste streams unsuitable for single digestion (Rajendran et al., 2012). 

However, carefully selecting the co-substrates is necessary to avoid any potential inhibition or 

toxicity to the microorganisms in the digester (Wijesinghe et al., 2019). 

2.3.4. Total solids content 

The substrate's total solids (TS) content indicates the amount of moisture in the AD process. 

Moisture plays a crucial role in the AD process as it helps in the diffusion of soluble substrates 

and nutrients into microbial cells. There are two types of AD processes based on the total solids 

content: dry AD with 15-40% total solids and wet AD with 10-15% total solids (Orhorhoro et al., 

2017). Dry AD has some advantages such as smaller reactor volume, less energy and water 

consumption, and fewer moving parts, and more than 60% of installed AD in Europe in 2005 were 

dry AD. However, in terms of specific methane production and process kinetics, wet AD is more 

efficient than dry AD. 

2.3.5. Hydraulic retention time 

The digester's hydraulic retention time (HRT) is the average duration taken by a water 

particle to travel between the digester's inlet and outlet, while the solid retention time (SRT) is the 
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average duration that microorganisms spend in the digester. Retention time is a vital parameter in 

the AD process because it directly influences the number of microorganisms (Qyyum et al., 2020). 

Methanogens, for example, double every 2-4 days. To have an effective SRT, process kinetics, 

substrate type, temperature, and OLR must be optimized (Westerholm et al., 2012). Low HRT 

raises the risk of biomass washout from the reactor, which may negatively impact the whole 

process. Low SRT, on the other hand, causes VFA accumulation and increases alkalinity, in 

addition to the issues associated with low HRT (Ioannou-Ttofa et al., 2021). 

2.4. BASIC PRINCIPLES OF MACHINE LEARNING 

ML uses data and analyzes them based on computational algorithms, producing 

understandable results for human beings. ML is one of AI's principal subfields and has grown since 

the early 1990s (Carleo et al., 2019). The short but accurate definition of ML is that it is one of the 

AI branches, a powerful tool to find insightful patterns in big data with high dimensionality 

(Biamonte et al., 2017). ML models learn like humans and aim to decrease human labor works. 

One way to categorize datasets for ML algorithms is based on their labels; labeled and unlabelled 

datasets. Labeled datasets are those with each instance accompanied by a target value (Wang et 

al., 2021), while unlabelled datasets only include features (Vinothkumar et al., 2022). In data 

science, two ML types are mainly applied, supervised and unsupervised learning (Chen, 2022). 

Supervised learning is one of the primary ML categories used in broad domains, from fake news 

detection (Alsubari et al., 2022) to laser machining (Behbahani et al., 2022). A part of the whole 

labeled dataset is split as a training part, and supervised learning algorithms are built upon that 

(Nasteski, 2017). In this regard, the model is trained firstly based on each target value and its 

corresponding features, and it gains informative knowledge about the data, such as the correlation 

between provided features. Eventually, the model can build a connection between different 
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variables within the labeled dataset (Zuranski et al., 2021). Other supervised learning models are 

widely leveraged in different such as linear regression, K-Nearest Neighbors (KNN), Support 

Vector Machine (SVM), and logistic regression. Linear regression tries to fit data by a linear 

equation with coefficients w = (w1,…, wp) to minimize the sum of squares of the distance between 

predicted and real values (Bourguignon and de Medeiros, 2022). Figure 2.1 illustrates how a 

simple regression model works and its decision boundary. 

 
Figure 2.1. Linear regression decision boundary (Zuranski et al., 2021).  

KNN is another supervised learning based on proximity (Yamac, 2021). KNN algorithm 

considers the distance (the method for distance measurement can be modified as a hyperparameter) 

of the quarry and all other instances based on determined local neighbors (a hyperparameter, K) 

(Mishra et al., 2021). Afterward, for the classification task, the model votes for the major class or 

average of the target value in terms of the regression task. KNN has a wide variety of applications 

in solving real-life data-driven projects, such as soil parameters estimation (Garg et al., 2020), 

adaptive thermal comforts (Xiong et al., 2021), dental fluorosis in groundwater prediction (Ataş et 

al., 2022), etc. Figure 2.2 shows how KNN can handle ML tasks. 
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Figure 2.2. KNN algorithm functionality. Figure 2.3. SVM algorithm functionality. 

 

In the SVM algorithm, each instance is illustrated in an n-dimensional space, where n 

denotes the number of features. Following that, a decision boundary is built to distinguish classes 

(Noble, 2006). The constructed boundary, called the margin, attempts to increase the support 

vector’s distance. If support vectors are in the margin zone, it can be considered noise and will 

subsequently reduce the model's generalization (Suthaharan, 2016). This model can be used for 

regression and classification tasks but is mainly considered a powerful classifier. It is especially 

useful in those datasets that have more features comparing instances. SVM significantly saves 

memory since the algorithm builds its decision boundary by considering a part of the training 

dataset. However, it negatively affects the computational efficiency of big datasets since the 

training time increases (Tanveer et al., 2022). Figure 2.3 illustrates how maximizing the margin 

between support vectors will build SVM’s decision boundary. 

Logistic regression is one of the main algorithms for binary classification tasks. This model 

is built upon a logistic function (equation 2.1), a sigmoid function, and log odds. As seen from Eq. 

2.1, this model takes integer values and generates outputs ranging between 0 and 1 (Huang, 2022). 

𝑦 = 1/1 + 𝑒!"                                                                                                                           (2.1) 

where x and y denote the input and output values, respectively. 
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Figure 2.4. Logistic regression algorithm functionality (Verma et al., 2022). 

 
Despite supervised methods, unsupervised learning algorithms do not need human forces 

to build the machine-readable dataset (labeling the dataset). Labels in the dataset help the machine 

to understand the connection and the mathematical relationships between each two data points 

(Alsubari et al., 2022). Unsupervised learning algorithms build structures based on hidden 

information from a dataset without human interference and will categorize similar data points 

based on built structures. Another characteristic of unsupervised learning models is that they can 

dynamically adapt to the data points by modifying built structures (Lee et al., 2022). This capability 

enables them to provide better deployment development comparing the supervised-based 

algorithms (Verma et al., 2022). Unsupervised learning has different tasks, such as clustering, 

association rules, and dimensionality reduction. Clustering is a data mining method that 

categorizes unlabeled data based on their similarities or differences. Clustering models are applied 

to process raw, unclassified data objects into groups based on structures or patterns in the 

information. Clustering models can be categorized into a few groups: exclusive, overlapping, 

hierarchical, and probabilistic. An association rule is a rule-based method that is used to find 

relationships between features in a given dataset. These methods are widely employed for market 
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basket analysis, enabling businesses to better perceive relationships between different products. 

Dimensionality reduction is a learning process used when the dataset has many features or 

dimensions. It decreases the number of data inputs to a reasonable size while preserving 

informative data. Often, this method is applied in the cleaning data section, such as when 

autoencoders remove noise from visual data to improve picture quality. Based on neural networks, 

Autoencoders compress data and then rebuild a new representation of the primary data points. As 

can be seen in Figure 2.5, the hidden layer is responsible for compressing the input layer before 

reconstructing it in the output layer. The step from the input layer to the hidden layer is called 

“encoding” while the step from the hidden layer is “decoding.” 

 

 

Figure 2.5. Autoencoders algorithm functionality (Alsubari et al., 2022). 

Unsupervised learning models have a wide range of applications, such as anomaly detection, 

computer vision, customer personas, recommendation engines, medical imaging, etc. The main negative 

points of unsupervised learning models are that they can have wildly inaccurate results and require human 

intervention to validate the output variables (Su et al., 2022). 
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2.4.1. Data preprocessing 

 Data preprocessing is an important step in the data mining and analysis process that takes 

raw data and transforms it into a suitable format that machines can analyze. Raw, real-world data 

in various text types, images, videos, etc., are messy. Not only they may have several errors and 

inconsistencies, but they are often incomplete and unstructured. If the data do not have good 

quality, the model cannot provide significant results. Kubik et al. (2022) indicated the importance 

of data quality evaluation before machine learning deployment. There are four metrics to evaluate 

the data quality, completeness, validity, timeliness, and consistency (Jain et al., 2020). Figure 2.6 

illustrates the four sections of data preprocessing: data reduction, data integration, data 

transformation, and data cleaning (Hameed and Naumann (2020)). 

 

 

Figure 2.6. Significant steps of data preprocessing (Hameed and Naumann (2020)). 

 

Data reduction cuts down the data size and the required storage space, and results in an 

simpler analysis while producing accurate results. Data reduction has different approaches, 

namely, numerosity reduction, dimensionality reduction, and data compression (Patel et al., 2015). 

Dimensionality reduction decreases the required storage space and computation time. Numerosity 

reduction puts smaller form of data representation instead of original data, without data loss, 
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aiming to reduce the data amount. Data compression compresses the data which by either 

encoding, reconstructing, or modifying data (Salomon and Motta, (2010)).   

Data transformation process changes the format or the data structure and can be simple or 

complex considering the requirements and task. There are different methods in data 

transformation, namely, smoothing, aggregation, discretization, and normalization. Smoothing 

removes the noise from the dataset, and important features of the dataset can be identified (Gautam 

et al., 2015). Aggregation summarizes the data; it is an important section since the data quantity 

and quality play a key role in the results accuracy and significance (Korableva et al., 2018). 

Discretization process splits the continuous data into intervals. For instance, instead of indicating 

the class time, we can set an interval like (1-3 pm, 4-6 pm). Normalization is one the most famous 

method of scaling the data where data can be represented in a smaller range of -1.0 to 1.0. Data 

cleaning removes incomplete, inaccurate, and incorrect data, from the given dataset, and it also 

handles the missing values. There are different methods in terms of handling missing values. For 

example, while decision tree-based or regression models are leveraged, missing values can be 

replaced by the most probable value. Another solution for getting rid of missing values is to use 

attribute’s mean value to replace the missing value when the dataset follows Gaussian distribution 

(Balakrishnan et al., 2009). There are three main solutions to handle noisy data: binning, 

regression, and clustering (Derczynski et al., 2013). Binning method sorts all data points, separates 

them, and stores them in the form of bins. Binning method accomplishes smotting through three 

approaches: smoothing by mean, median, and boundary. The first two methods replace the values 

in the bin with the bins mean and median, respectively (Evans and Grefenstette, 2018). Smoothing 

by bin boundary considers the minimum and maximum values of the bin values, and replaces them 

with the closest boundary value. Ridge Regression is employed to identify the suitable variables 
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for analysis. Clustering, an unsupervised learning technique, is leveraged to detect the outliers and 

group the data points (Mousavi et al., 2015).  

Data integration is one of the main parts of data management where multiple data sources 

are merged into a single dataset. Data integration has three problems that should be taken into 

account during the process; schema integration, entity identification problem, and detecting and 

resolving data value concepts (Argelaguet et al., 2021). The problem of entity identification is to 

detect entities from a number of databases. Regarding detecting and resolving data value concepts, 

the difference between data taken from multiple databases should be considered during the 

merging process (Pang et al., 2022). 

2.5. MACHINE LEARNING APPLICATIONS IN ENVIRONMENTAL 

FIELDS 

ML has proven to be effective in handling complex data patterns or formats due to its strong 

predictive capabilities. As a result, ML, particularly deep learning, has seen widespread growth in 

various applications over the past decade, such as image classification and machine translation. 

Researchers in the field of environmental science and engineering have also embraced ML in 

various applications, including identifying environmental hazards (Tollefson et al., 2021), 

evaluating the health of water and wastewater infrastructure (Granata et al., 2017), enhancing 

treatment methods (Inoue et al., 2017), habitat stability modeling (DŲeroski (2009)),  real-time 

decision support system for air quality (Masih, 2019) and species detection (Wäldchen and Mäder, 

2018). ML is particularly well-suited for solving uncertain and dynamic environmental issues for 

several reasons. One of the key benefits of ML is its capability to consider a large number of factors 

that may have weak or nonlinear correlations with the desired outcome. Additionally, in cases 

where the important information is not contained in a single input variable and the essential 
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variables are not known beforehand, ML can be more effective than traditional statistical models 

at handling various data formats, such as text, images, and graphs, where some previously 

unknown combination of features is necessary to determine the outcome (Sarker, 2021). This 

makes ML particularly useful in situations where the data may be complex or multifaceted. Figure 

2.7 illustrates different overall ML application in environmental domains. 

 

 

Figure 17. Schematic of the ML applications in environmental fields (Zhong et al., 2021). 

2.5.1. Characterization of recent research landscape of AI applications in renewable 

energy systems 

The number of publications and their diverse writing on AI applications has grown 

significantly recently (Kim et al., 2021). Stakeholders and researchers of each field can benefit 

from a comprehensive understanding of that domain's past and recent trends. It enables us to gain 

a more accurate insight into what topics researchers have been focusing on and how they evolved. 

A comprehensive insight into any research domain also empowers us to identify and work on 

essential problems (Johri et al., 2011). Conventional empirical efforts, such as surveys and 
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interviews to understand a research domain are challenging and produce unreliable results with a 

bias (Johri et al., 2011). Due to the inefficiency of conventional analysis methods for this large 

number of publications data, researchers have started applying data mining to unwrap the hidden 

information of scientific documents (Nie and Sun 2017). Text mining is a subfield of data mining 

focusing on analyzing and processing textual data (Choudhary et al., 2009).  Text mining emerged 

in the late ‘80s and aims to discover hidden information and research trends by analyzing massive 

amounts of textual data (Hearst, 1999; Kostoff et al., 1999; Kostoff et al., 2000). Therefore, 

researchers can apply text mining techniques and bibliometric data to extract research trends in 

various domains (Viator and Pestorius 2001).  

There have been many studies in which researchers have employed text-mining techniques 

to identify research trends in various fields. Viator and Pestorius (2001) used the Technology 

Opportunities Analysis of Scientific Information System (TECH OASIS) software to analyze text 

data from scientific papers on acoustic research from 1970 to 1999. TECH OASIS can be used for 

various text mining tasks, such as counting the term frequency, detecting the most frequent authors, 

and categorizing research topics. The purpose of their study was to identify trends in acoustic 

research. After using the software to analyze the scientific papers, they identified shifts in four 

areas of acoustic research between 1970 and 1999, including the proportion of US versus non-US 

affiliations, research areas by year, research areas by world region, and the Journal of the 

Acoustical Society of America's (JASA) coverage of three acoustic areas in 1999. Perez-Iratxeta 

et al. (2007) leveraged text mining techniques to investigate research trends in bioinformatics. 

They extracted papers on bioinformatics from the Medline database using a custom query that 

included various bioinformatics keywords from 1996 to 2005 and only considered the abstracts of 

the papers for text analysis. They analyzed and compared the frequency of bioinformatics terms in 
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the literature and found that microarray analysis was a popular topic among the bioinformatics 

community from 1996 to 2005.  

Researchers have increasingly employed various topic modeling approaches for text 

mining, considering the development of AI and NLP techniques, including topic modeling. Topic 

modeling is a recent area of research that researchers have employed to find and investigate hidden 

topics in text documents (Vayansky and Kumar, 2020). Researchers have applied topic modeling 

to investigate research topics and trends in various fields, such as management research (Hannigan 

et al., 2019), transportation (Sun and Yin, 2017), marketing (Reisenbichler and Reutterer, 2019), 

communication research (Maier et al., 2018), hydropower (Jiang et al., 2016), renewable energies 

(Niroomand et al., 2022) and smart factories (Yang et al., 2018). For example, Johri et al. (2011) 

applied topic modeling methods to detect emerging and growing topics in engineering education 

from 2000 to 2008. They used the Latent Dirichlet Allocation (LDA) approach (Blei et al. 2003) 

to extract topics and the top 20 keywords associated with each topic in engineering education. 

They also extracted key phrases based on their frequency values to track their trends over time. 

Ayele and Juell-Skielse (2020) investigated the evolution of topics and trends in automated-driving 

vehicles. Their data includes 5425 publications on automated-driving vehicles research extracted 

from the Scopus database from 2000 to 2019. They leveraged the Dynamic Topic Model (DTM), 

since it considers the temporal aspect of topics, unlike LDA. Their results pointed out the evolution 

of twenty topics related to self-driving cars, including software system architecture and design, 

brake system and safety, and navigation in self-driving cars.  

Researchers have carried out systematic studies investigating the direction of different types of 

renewable energy systems (Ding et al., 2021; Trappey et al., 2020; De Clercq et al., 2019; Ranjbari 

et al., 2021; Eldeeb and Mohamed, 2022). De Clercq et al. (2019) investigated the trend of biogas 
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invention and technology over time via leveraging text mining methods. They extracted 3186 

biogas, waste management, and anaerobic digestion patents from the US patent database from 

1990 to 2017. They applied LDA to calculate the term frequency-inverse document frequency (TF-

IDF) score for unigrams, bigrams and trigrams. They showed the technologies' emergence 

annually by considering the top ten keywords based on the TF-IDF score. They identified 20 topics 

that domain experts could understand. However, identified topics were not labeled, which can be 

considered as one of the drawbacks of this study. Also, they have done some graph analysis, which 

showed the relation of different technologies. For example, they conducted a co-occurrence 

analysis of technology keywords with the most frequent groups of terms. Their results showed the 

characteristic technology concepts for the food waste corpus in 2016 and 2017 included “inhibitory 

secondary products”, “hydrothermal low temperature”, “Fenton reaction catalyst”, “biomass 

pyrolyzing zone”, and “concentrated organic waste”, among others. Characteristic technology 

concepts for the biogas patent corpus in 2016 and 2017 included: “free nitrous acid”, “hydrogen 

sulfide adsorbent”, “biological treatment unit”, “nanocarbon production method”, “oxygen 

transport membrane”, “pressure synthesis gas”, and “micro turbine assembly”. Characteristic 

technology concepts for the anaerobic digestion patent corpus in 2016 and 2017 included: 

“separation composite membrane”, “waste processing tank”, “polar biomass solution”, “waste heat 

energy”, “gas separation composite”, and “gas separating layer”. 

Although many researchers investigated AI applications for different types of renewable energy 

systems (Dellosa and Palconit, 2021; Jha et al., 2017; Shin et al., 2021; AlShabi and Assad, 2021), 

they did not consider the temporal aspect in analyzing AI in renewable energy systems. To clarify, 

they did not show how these research topics have evolved. Investigating topic evolution is essential 

to accelerate research and development in renewable energy systems. It gives researchers a more 
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accurate insight into what methodologies and techniques were utilized within previous research at 

different periods. Moreover, researchers did not use an automatic or semi-automatic framework to 

characterize AI in renewable energy research, which might cause a less comprehensive 

understanding of this field, some biases, and human errors (Tao et al., 2020). 

2.5.2. Machine learning applications in biogas systems 

 Renewable energy is becoming increasingly important in addressing the world's energy 

demands and mitigating the impact of climate change (Akadiri and Adebayo, 2022). Biogas 

systems, which produce energy from organic waste material, are crucial in the renewable energy 

mix (Mancini and Raggi, 2022). They have multiple benefits, such as reducing the amount of 

organic waste disposed in landfills and helping decrease methane emissions and other GHGs 

(Kougias and Angelidaki, 2018; Pöschl et al., 2010). Therefore, there is a significant potential to 

replace biogas as one of the main energy resources worldwide. However, biogas systems are 

complex due to various factors that influence the production and optimization of biogas, including 

feedstock composition, process parameters, microbial community, etc. The interplay between 

these factors, especially in large-scale systems, creates a challenge for maximizing biogas 

production (Hu et al., 2018) and ensuring the sustainability and efficiency of biogas system (Xu et 

al., 2018; Matuszewska et al., 2016; Westerholm et al., 2019; Mainardis et al., 2019). For instance, 

the availability of multiple feedstock for a biogas system often leads to anaerobic co-digestion 

(AcoD). While co-digestion has advantages, it can trigger a range of unwanted chemical reactions 

that can negatively impact the performance of the biogas system. (De Clercq et al., 2019). ML can 

help address these complexities in biogas systems since it offers various advantages in optimizing 

biogas production, leading to improved energy efficiency and increased biogas yield. ML 

algorithms can be used to analyze large amounts of data related to the biogas production process, 
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including process parameters, feedstock composition, and operational conditions. They can 

accurately predict future biogas production, allowing operators to make informed decisions about 

optimizing the production process to maximize the system’s yield. Moreover, ML approaches can 

be utilized to predict and prevent potential system failures by providing real-time data analysis and 

process control, ensuring the stability and sustainability of biogas systems. Therefore, academic 

and applied researchers in the biogas domain have started applying AI to biogas systems to 

optimize the system and improve the yield. For example, le et al. (2022) used five different ML 

techniques: LR, RF, SVM, ANN, and XGBoost; the RF outperformed others with an R2 score of 

0.74. They measured the importance of three categories of routine monitoring indicators (feed 

amount, feedstock properties, and digester properties), individually or collectively. Feature 

importance analysis showed that the significance descended in the order of feed amount (45.9%), 

digester properties (38.6%), and feedstock properties (15.4%). In Xiao et al. (2021)’s study, a new 

two-stage model called NARX-BP hybrid neural networks was created to predict CH4 production 

from in-situ biogas upgrading in biocathode microbial electrolysis cells through direct electron 

transfer. This model outperforms traditional one-stage models as it provides more accurate 

methane production predictions and insight into the mechanisms of biogas upgrading. The versatile 

model can be applied in various scenarios thanks to its ability to incorporate important intermediate 

variables. Furthermore, the model can support long-term predictions and optimal operation for 

anaerobic digestion or complex microbial electrolysis cells systems. In another study, Long et al. 

(2021) evaluated the effectiveness of 6 machine-learning algorithms to predict methane yield using 

genomic data and operational parameters from 8 research groups. For the classification models, 

RF showed the highest accuracy of 0.78 when using genomic data at the bacterial phylum level 

and 0.82 when operational parameters and genomic data were used. The regression models had a 
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low root mean square error of 0.04 using only genomic data at the bacterial phylum level. The 

feature importance analysis performed by RF indicated that Chloroflexi, Actinobacteria, 

Proteobacteria, Fibrobacteres, and Spirochaeta were the top 5 most significant phyla despite their 

relative abundances ranging from only 0.1% to 3.1%. The results of this study provide important 

information that can be used for early warning and proactive management of microbial 

communities. Ge et al. (2023) introduce the M-Anaerobic Digestion Model No.1 (ADM1) model 

for simulating anaerobic digestion, which employs a machine learning approach to predict the 

kinetic parameters of ADM1. Seventy-five biomass samples were used to develop the machine 

learning model, which considers the contents of C, H, O, N, S, and the digestion temperature. The 

sensitivity of 17 kinetic parameters was analyzed, and the seven parameters with the highest 

sensitivity were chosen as the model outputs. After optimization, the average R2 for predicting the 

seven kinetic parameters was 0.92, and the root mean square error was 0.167. The overall accuracy 

of the M-ADM1, as expressed by Theil inequality coefficient, was 0.0163, 0.0327, and 0.0361 for 

municipal solid waste, kitchen waste, and sludge, respectively. These results support the 

hypothesis that incorporating machine learning models to predict crucial intermediate parameters 

can improve the performance of traditional ADM1. Baek et al. (2023) built AI pipelines using 

three algorithms - ANN, SVM, and RF - to predict the efficiency of AD in Direct Interspecies 

Electron Transfer (DIET)-stimulated environments. They focused on two key outputs: COD 

removal efficiency and methane production rate, which are important AD efficiency and stability 

indicators. The constructed ML models had high prediction efficiencies for both outputs 

(correlation coefficient > 0.934) as they utilized three operational time-based input parameters to 

capture the acclimation of microbial communities following changes in operating conditions. The 

results from the random forest model showed that the most important input variable was the time-
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based parameter, which was recorded from the time of magnetite addition. Kowalczyk-Juśko et al. 

(2020) used a prediction model based on ANN to estimate methane production from various silage 

substrates using basic silage parameters. The model used input data such as silage type, pH, dry 

matter, dry organic matter, conductivity, and fermentation time, and the output data consisted of 

cumulative methane production. The resulting optimal prediction model was a Radial Basis 

Function (RBF) with 5 inputs, 2 neurons in a hidden layer, and 1 output. The model showed 73% 

quality of the network with a Root Mean Square Error (RMSE) of less than 3%, which is 

considered a satisfactory result. However, the model can be improved by adding a new analysis of 

silages. This prediction model can quickly estimate the energy value of different silages without 

the need for expensive, long-term analysis.  Table 2.3. provides more research that applied ML 

techniques in the biogas domain. 

Table 2.3. Previous scientific works at the intersection of AI and biogas. 
Objective Model(s) Result Reference 

Peredicting daily biogas 
output from A set of waste 
inputs (municipal fecal 
residue, kitchen food waste) 

Logistic 
regression, 
SVM, RF, 
XGBoost, 
and kNN 

KNN showed the best results with accuracy 
of 0.87. 

Clercq et al. (2019) 

Predicting biogas 
production rate of food 
waste dry anaerobic 
digestion considering HRT, 
SRT, soluble chemical 
oxygen demand, total VFA, 
total solids and ammonia 
features. 

RNN Solid retention time and water content are 
important features in biogas reactions. 
Increasing intermediate materials, like 
VFAs, were easily converted into methane 
at higher water contents. 

 

Seo et al., 2020 

Modeling chemical 
processes within a biogas 
production system 

SNN Considering ten days of data points, the 
model can predict chemical processes up to 
the 100th  day with significant accuracy 
based on lab-scale data. 

Capizzi et al., 2020 

Predicting biogas 
production of fruits and 
vegetable waste considering 
different operational 
parameters 

ANN Predicted the performance with 85% 
accuracy 

Gonçalves et al., 2021 
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Table 2.3. Previous scientific works at the intersection of AI and biogas. 
Objective Model(s) Result Reference 
Identifying important 
operational parameters and 
predicting the biogas 
systems production rate 

RF 
KNN        
SVM 
GLMNET 

Total carbon was identified as the most 
important feature. KNN performed well in 
the regression task with a root mean square 
error of 26.6, and the logistic regression 
multiclass model gained an accuracy of 
73%. 

Wang et al., 2020 

Predicting biogas systems 
performance of vegetables, 
fruits waste 

ANFIS 
LSSVM 

LSSVM performed better than ANFIS. 

LSSVM had a mean relative error (MRE 
%) and a mean squared error (MSE) of 
2.951 and 0.0001, respectively, compared 
to 29.318 and 0.0039 for ANFIS. 

Yang et al., 2021 

Predicitng the Daily 
biomethane production 
considering Waste type 
and daily input volume, 
electricity and water 
consumption, and 
auxiliary chemical inputs 
of 4 years of operational 
data from an AcoD 
facility 

Elastic net, 
RF, 
XGBoost 

XGBoost outperformed with R2 = 0. 88,  Clercq et al. (2020) 

Predicting biogas 
production of spent 
mushroom compost in 
thermophilic and 
mesophilic laboratory 
conditions  

ANN 
ANFIS  

Root mean square error and r2 in mesophilic 
condition: ANFIS are 0.1940 and 0.9998, 
ANN are 0.780 and 0.9981, and logistic 
model are 0.5111 and 0.9992, respectively. 
In the thermophilic condition, the Root 
mean square error and R2 values were 
indicated as 0.3033 and 0.9997 for ANFIS, 
0.3430 and 0.9992 for ANN, and 0.5506 
and 0.9991 for the logistic model, 
respectively. 

Najafi and Faizollahzadeh 
Ardabili, 2018 

Predicting biogas 
production rate based on 
industrial data and finding 
important operation 
parameters  

ACO 
GA 
ANN 

R2 = 0.9 and prediction error = 6.24%. Beltramo et al., 2019 

Note: DNN = Deep neural networks; RNN = Recurrent neural network; SNN = Spiking neural network; ANN = 
Artificial neural networks; RF = Random forest; KNN = K- nearest neighbor; SVM = Support vector machine; 
GLMNET =  Generalized linear models fitting package via penalized maximum likelihood; LSSVM = Least square 
support vector machine; ML = Machine learning; HML = Hybrid of machine learning and Gompertz; ANFIS = 
Adaptive neuro-fuzzy inference system (ANFIS); ACO = Ant colony optimization (ACO); GA = Genetic algorithms 
(GA); AcoD: Anaerobic co-digestion. 
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TSF is a method used in statistical analysis based on analyzing a time-ordered sequence of 

data points to identify patterns and trends that can be used to make predictions about future values. 

It plays a critical role in the effective planning and operation of renewable energy and has become 

significantly important in industrial-scale projects in recent years, considering increasing the 

amount of time series data in renewable energy domains. AI-based architectures have 

demonstrated strong capability in TSF-related tasks and are widely employed in various renewable 

energy problems, such as energy production (Zheng et al., 2023), energy demand (Wang et al., 

2023; Benali et al., 2019), resource availability (Victoria et al., 2021), etc. For example, 

Rahimilarki et al. (2023) developed a new deep learning-based method for fault detection and 

classification in wind turbine machines, utilizing time-series analysis and convolutional neural 

networks (CNNs). The method aims to address certain types of faults that are difficult to identify, 

such as those causing less than a 5% reduction in the performance of two actuators or four sensors 

of both inshore and offshore wind turbines in the presence of sensor noise. 

Despite other renewable energy domains, the potential of AI has not been fully discovered 

in the biogas domain so far, especially within industrial-scale biogas systems. Considering the 

significant improvement in IoT equipment, the quality and quantity of industrial data have been 

increased considerably, and data-driven solutions can enhance the performance of industrial biogas 

units. Recently, researchers have started to leverage ML techniques toward industrial biogas 

systems. For example, De Clercq et al. (2019) aimed to improve biogas production in industrial 

settings by developing ML models, namely, LR, KNN, SVM, RF, and XGBoost that can predict 

biogas output based on specific waste inputs. The study involved using predictive algorithms on 

daily production data from two prominent biogas facilities in China to identify the key inputs that 

impact biogas production. Since biogas systems are so uncertain, authors had to conduct intensive 
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feature engineering, which is time-consuming and inflexible. More specifically, this inflexibility 

can be challenging in dynamic environments, like the biogas domain, where the nature of the data 

and the requirements of the machine learning model are constantly changing. Developing efficient 

end-to-end data-driven solutions for industrial biogas systems can benefit stakeholders, investors, 

and decision-makers before developing a biogas unit or enhancing the performance of existing 

biogas facilities. Moreover, they can help conserve resources and protect the environment by 

evaluating the impact of various factors on the system's performance and delivering reliable 

forecasting outcomes. In this regard, AI can significantly contribute to the popularity of biogas 

systems and make them more sustainable and reliable for societies. 

2.5.3. Machine learning applications in biohydrogen systems 

Biohydrogen systems are a promising renewable energy technology that can reduce GHG 

emissions by providing a cleaner alternative to fossil fuels and help mitigate the adverse effects of 

climate change. They are based on biological processes to produce hydrogen gas from organic 

materials such as biomass or wastewater (Li et al., 2022). Biohydrogen can be generated through 

different methods, namely, dark fermentation, photo fermentation, photo-dark fermentation, and 

microbiological electrolysis cells (Sharma et al., 2022). All biohydrogen systems use 

microorganisms such as bacteria and algae to break down organic materials and produce hydrogen 

gas as a by-product. For example, through dark fermentation process, anaerobic bacteria use 

glycolytic pathways to convert glucose into pyruvate, a process that involves the synthesis of 

adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and the reduction of 

nicotinamide adenine dinucleotide (Chong et al., 2009). Pyruvate ferredoxin oxidoreductase and 

hydrogenase enzymes then convert pyruvate into acetyl coenzyme A, carbon dioxide, and H2. 

Acetyl coenzyme A may also be converted to acetate, butyrate, and ethanol (Ntaikou et al., 2010). 
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The standard products during dark fermentation are acetate, butyrate, formate, and hydrogen, with 

a theoretical yield of 4 mol of hydrogen per mole of glucose (Sharma et al., 2022) (Table 2.3). 

However, the actual yield varies between 2 and 4 mol of H2 per mole of glucose depending on the 

culture conditions (Sharma et al., 2022). Various types of anaerobic bacteria, including obligate 

anaerobes such as Clostridium sp. and facultative anaerobes such as E. coli, Enterobacter, and 

Citrobacter, have shown effectiveness in BioH2 production. Spore-forming microbes like C. 

butyricum, C. acetobutyricum, C. beijerinckii, C. thermolacticum, C. tyrobutyricum, C. 

thermocellum, and C. paraputrificum have been studied in-depth due to their potential for scaling 

up the process (Chong et al., 2009; Sharma et al., 2022). Figure 2.8. illustrates the dark 

fermentation process for producing bioH2. 

 

Table 2.4. Associated reactions in the Ethanol, Butyrate, and Acetate pathways. 
Step Reaction 

Ethanol pathway 𝐶+	𝑂-*	𝑂+ → 2𝐶𝐻,	𝐶𝐻*𝑂𝐻+ 2𝐶𝑂* + 2𝐻* 

Butyrate pathway 𝐶+	𝑂-*	𝑂+ + 2𝐻*𝑂 → 2𝐶𝐻,	𝐶𝐻*𝐶𝐻*𝐶𝑂𝑂. + 2𝐶𝑂* + 5𝐻* 

Acetate pathway 𝐶+	𝑂-*	𝑂+ + 2𝐻*𝑂 → 2𝐶𝐻,𝐶𝑂𝑂.  + 4𝐻* + 2𝐶𝑂* 

 

 

However, similar to biogas systems, biohydrogen systems have high uncertainty 

(Katakojwala et al., 2022). For example, one of the key complexities associated with biohydrogen 

systems is the complexity of the biological processes involved. These processes are influenced by 

many factors, including temperature, pH, and nutrient availability (Ramírez-Díaz et al., 2022). 

Additionally, the microorganisms involved in biohydrogen production can be sensitive to 

environmental changes, making it challenging to maintain stable and consistent hydrogen 
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production over time (Cho et al., 2021). ML techniques can be used to analyze and interpret large 

datasets generated during the biohydrogen production process, enabling more accurate predictions 

and more efficient production process optimization. By leveraging advanced algorithms and 

computational power, ML can efficiently help identify patterns and correlations in data that might 

not be readily apparent through traditional statistical analysis. This can help researchers better 

understand the complex biological and environmental factors that impact biohydrogen production, 

leading to more effective strategies for improving yield and efficiency (Shen et al., 2022) (Figure 

2.9). 

 

Figure 2.8. Biohydrogen production by dark fermentation pathway (Tapia-Venegas et al., 2015). 
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Figure 2.9. Artificial Intelligence application in biohydrogen domain (Liu et al. 2020). 

 

Besides, ML can also be used to support real-time monitoring and control of biohydrogen 

production systems. By analyzing the data generated from Internet of Thing (IoT) equipment and 

other sources, ML models can detect and prevent potential faults, improving the overall reliability 

and stability of the production process (Hosseinzadeh et al., 2022). Therefore, researchers in 

biohydrogen domain have started leveraging AI-based methods to enhance the scope of their work. 

For instance, Sydney et al. (2020) examined the effectiveness of three different artificial neural 

network (ANN) models, which were based on the production and categorization of volatile fatty 

acids (VFA), in predicting the following three outcomes, accumulated hydrogen (H2) production, 

hydrogen production rate, and H2 yield. The study used data from a previous investigation that 

focused on the kinetics of biohydrogen and VFA production in a lab-scale setting, using this 

information to train and validate the models. The input variables included time and varying 

concentrations of acetate and butyrate (model 1), lactate, acetate, propionate, and butyrate (model 

2), the sum of all VFA (model 3), and butyrate/acetate (model 4). All four models demonstrated 

high accuracy in predicting the aforementioned outcomes with R2 score of greater than 0.987. They 
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suggested that using VFA as an input parameter is ideal for processes that uses pure cultures, 

whereas a model based on acetate and butyrate is recommended for more complex/mixed cultures. 

Hosseinzadeh et al. (2022) used ML approaches, SVM, GBM, AdaBoost, and RF, to measure the 

importance of parameters in the process and predict hydrogen production in the dark fermentation 

process from wastewater. They considered different key parameters including Fe, Ni, biomass 

proportion, acetate (A), butyrate (B), A/B, ethanol, pH, HRT and COD to predict hydrogen 

production from wastewater. The R2 values obtained were 0.893, 0.902, 0.885, and 0.889 for GB, 

RF, SVM, and AdaBoost, respectively. Among these models, the RF approach was the most 

effective.  By using permutation variable importance method, the relative importance of the 

effective factors in the process was determined. Figure 2.10. illustrates the relative importance of 

considered factors using mentioned ML models. Table 2.5. provides different ML models applied 

to the biohydrogen domain. 

 

 

Figure 2.10. Permutation variable importance using ML algorithm (Hosseinzadeh et al. 2022). 
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Table 2.5. Application of ML in biohydrogen studies 
Models No of Data Points Input(s)/ Features Output(s) No of 

hidden 
layers 

Total 
Neurons 

Results References 

ANN Points = 205 
Training  =70.37% 
Testing  = 19.44%  
Validation  = 10.19%    

Reactor/feed type; 
volatile solid; pH; 
OLR; HRT; 
temperature; 
reactor volume 

Cumulative; 
biogas 
production 

1 5 to 8 Among 24 networks tested; 
net10 shows best accuracy; 
R2 = 0.9929 

(Neto et al., 2021) 

ANN Points = 280  
Training = 140  
Testing = 140  

Time; COD; 
effluent pH; VFA 

HPR; 
maximum 
COD removal 
rate 

2 12; 4 COD removal = 99% 
H2 production = 
6570 mL/d 
R2 = 0.994 

(Yogeswari et al., 
2019) 

ANN Points =120  
Training = 50%  
Testing = 25%  
Validation = 25%  

Concentrations of 
COD, ALK, 
VFAs, and HRT, 
pH, and ORP 

COD removal 
efficiency 

1 4; 12; 
20 

Among the ten training 
algorithms, Levenberg-
Marquardt algorithm was 
the best 
R2 = 0.9704 MSE = 0.0150 

(Yi-Fan et al., 
2017) 

ANN (Back 
Propagation) 

Points = 313  
Training = 60%  
Testing = 20%  
Validation = 20%  

Initial substrate 
concentration, 
biomass 
concentration, 
temperature,  
initial pH, time 

HPR 2 6; 4 R2 = 0.988, 0.987, and 
0.996 for each dataset 

(Nasr et al., 2013) 

ANN  Number of points not 
specified;  
Training = 70%  
Testing = 15% 
Validation = 15%  

Not indicated OLR; HPR; 
COD 

1 5; 6; 9 Average R2 = 0.92 (Ghasemian et al., 
2019) 

ANN Points = 231  COD, pH, Dark 
fermentation time; 
VFAs 

HPR, COD 
removal 
efficiency 

1 20 R2 = 0.607/0.907; 
0.823/0.870 

(Sridevi et al., 
2014) 
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Table 2.5. Continued  

Models No of Data Points Input(s)/ Features Output(s) No of 
hidden 
layers 

Total 
Neurons 

Results References 

ANN Points = 50  
Training = 41  
Validation = 9   

Concentration of 
substrate; Applied 
voltage; pH; 
temperature; 
reactor 
configuration 

H2 Yield 1 6; 8; 11; 
12; 14 

R2 = 0.70–0.90 (Sewsynker et al., 
2015) 

MLP-ANN Points =182   inoculum type; 
substrate type; 
substrate 
concentration; 
temperature; pH 

H2 yield 
(volume/g 
substrate) and 
(moles/mol 
substrate) 

2 7; 7 volume/g  
MSE = 0.004; 0.42; 
R2 = 0.90;  

(Sewsynker and 
Kana, 2016) 

mol/mol  
MSE = 0.006; 0.08; 
R2 = 0.46 

ANN-
ANOVA-RSM 
hybrid 

Experimental samples from 
29 batch experiments that 
are duplicated;  
Training = 80% 
Validation  = 20% 

Concentration of 
substrate 
containing sugar 
cane molasses; 
inoculum size; 
fermentation 
temperature; initial 
pH 

Cumulative H2 
Production 

1 6 to 10 
neurons 

12 generations;  
29 population size; 
60 % cross-over rate;  
30 % parent size;  
10 % mutation rate;  
R2 = 0.91;  
Prediction Error = 15.12 

(Whiteman and 
Gueguim Kana, 
2014) 

Generalization 
potential of 
ANN against 
RSM and other 
mechanistic 
models 

Points = 30  
Calibration = 80%  
Validation =20%  

pH; concentrations 
of vanadium, iron, 
molybdenum, and 
light intensity  

H2 production 1 9 R2 = 0.939 (Monroy et al., 
2018) 
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Table 2.5. Continued 

Models No of Data Points Input(s)/ Features Output(s) No of 
hidden 
layers 

Total 
Neurons 

Results References 

Hybrid ANN 
with fuzzy 
logic 

 
Acidification pH; 
acidification time; 
COD of urban 
organic waste in 
the absence of 
inoculum 

H2 percentage 
in biogas; daily 
production 

1 10 R2 = 0.8485 (Moreno-
Cárdenas et al., 
2015) 

ANN and 
ANFIS models 

Points = 119  
Training = 70%  
Testing = 15% 
Validation = 15%  

OLR; effluent pH; 
mixed liquid SS; 
mixed liquid VSS 

H2 production 1 9 ANFIS  
R2 = 0.93 
MSE = 0.0073 
 
ANN  
R2 = 0.88  
MSE = 0.00802 

(Taheri et al., 
2021) 

Comparison 
between SVM; 
RF; GBM; 
AdaBoost 

Points = 210  
Training = 80%  
Testing = 20%  

metal based 
catalysts (iron; 
nickel); biomass 
(inoculum) 
proportion; acetate 
to butyrate ratio; 
concentration of 
butyrate; acetate 
and ethanol; pH; 
COD; HRT 

H2 production - Doesn't 
specify: 

MSE = 0.002–0.023; 
0.023–0.032;  
R2 = 0.853–0.985; 0.734–
0.805 

(Hosseinzadeh et 
al., 2022) 

ANN = Artificial neural networks; RF = Random forest; SVM = Support vector machine; ANFIS = Adaptive neuro-fuzzy inference system; GA = Genetic 
algorithms; RSM = Response surface methodology ; ANOVA = Analysis of variance; MLP = Multilayer perceptron; GBM = Gradient Boosting Machines; ORP 
= Oxidation-reduction potential COD = Chemical oxygen demand; HRT: Hydraulic retention time; HPR = hydrogen production rate ; OLR = Organic loading rate; 
SS = suspended solid; VSS = Volatile suspended solid; MSE = Mean Square Error; VFA= Volatile fatty acids. 
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Genetic Algorithm (GA) is another useful model was used to optimize H2 production process 

and can efficiently combine with other predictive ML methods (Kormi et al., 2018). A GA is a 

search technique that imitates natural selection and genetics to find optimal solutions. GA begins 

with a population of randomly generated potential solutions, called chromosomes, which are 

collections of symbols, often binary bits (Mirjalili and Mirjalili, 2019). Chromosomes are 

evaluated for fitness and then combined through crossover or mutated to produce the next 

generation of children (Mirjalili and Mirjalili, 2019). This process repeats, with physically fitter 

chromosomes having a higher probability of being selected. GA's significant nodes for 

optimization include the chromosome code, fitness function, selection, reproduction, crossover, 

and mutation mechanism (Kormi et al., 2018). Fig. 2.11. presents these critical features. GA 

ultimately aims to find the ideal chromosome that represents the best answer to the problem.  

 

 

Figure 2.11. The optimization process in a Genetic Algorithm 

 

For instance, Mahata et al. (2020) investigated the production of BioH2 from organic waste, 

specifically starchy wastewater supplemented with groundnut de-oiled cake. They used 

mathematical tools such as response surface methodology (RSM) and AI, including ANNs and 
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SVM, to analyze the experimental results. The study found that SVM had better prediction abilities 

than ANN and RSM. The researchers then integrated these AI-based models with GA and particle 

swarm optimization (PSO) to determine the optimal process parameters. The ideal parameter value 

was found to be similar for both GA and PSO. However, PSO was discovered to be quicker than 

GA. Using an SVM-based model, the H2 yield increased by 2.1 times compared to the unoptimized 

condition. 

In 2014, Whiteman and Gueguim Kana conducted a study on hydrogen production and 

investigated four input variables: substrate concentration, temperature, inoculum size, and initial 

pH. They used the Box-Behnken design to collect data through 29 runs, which involved individual 

variations of the input variables. The study aimed to assess the importance of the mutual interactive 

contour plot, which should have high values of R2, F-value, and signal-to-noise ratio, by evaluating 

the accuracy of the polynomial function of RSM using ANOVA. They also used five proposed 

topology models with different neuron densities in a single hidden layer to train the RMSE and 

reflect the predictability of ANN. The best ANN model was integrated into GA, and after 13 

generations, a population size of 30, a cross-over rate of 65%, a parent size of 32%, and a mutation 

rate of 12%, the hybrid ANN-GA method significantly reduced the overestimation of RSM from 

a 119.08% error difference to 15.15%. 

Prakasham et al. (2011) developed a hybrid model that combines an ANN architecture 

consisting of four input layers, ten hidden layers, and one output layer (GA), to predict the yield 

of the fermentation process and optimize it. They had sixteen experimental data points, 80% of 

which was used as the train part, and the rest was considered the test part. Their chosen ANN 

topology showed promising results with 𝑅# of 0.99 and very small error for both the training and 

testing parts. Their results are shown in Table 2.6. 
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Table 2.6. Prakasham et al. (2011)’s Artificial Neural Networks results 
 

 

MSE: Mean Square Error; MAE: Mean Absolute Error; MAPE: Mean Absolute Precision Error 

 

GA later optimized their ANN’s results to get the most efficient amount of pH, inoculum 

aging, glucose to xylose ratio, and inoculum concentration (Table 2.7).    

 

Table 2.7. Selected optimum fermentation conditions predicted by GA and experimental 
verification of biohydrogen yield. 

  pH  Glucose: 
Xylose  

Inoculum 
size 
(mg) 

Age of 
inoculum 

(h) 

Biohydrogen production 
(ml g−1 substrate) 

GA-predicted Experimental 
1 6 2:3 80 12 350.12 357.43 
2 5.8 2:3 84 13 380.35 378.29 
3 5.5 3:2 90 11 360.35 334.18 
4 6 2:3 83 15 370.58 329.37 

 

2.5.4. Image Processing applications in biogas systems 

Image processing is a useful method used in the biogas industry to identify the area's 

potential for producing biogas systems’ substrate. It can also be used for real-time monitoring of 

the process to ensure optimal conditions for the microorganisms, which maximizes biogas 

production. Image processing approaches can also be used to monitor the quality of the biogas 

produced by analyzing images of the gas to detect impurities or changes in composition 

(Wiedemann et al., 2017). Dinova et al. (2018) used image processing to control of biogas 

production process. They analyzed the biogas production process at the 'Kubratovo, Bulgaria, 

wastewater treatment plant in two different seasons, and a correlation was established between the 

control parameters using various methods, including aerobic and anaerobic dehydrogenase 

Part MSE MAE MAPE 
Train 9.1 × 10−8 3.38 × 10−8 2.81 × 10−10 
Test 3.33 × 10−8 1.3 × 10−7 5.7 × 10−8 



76 
 

activities, chemical and technological indicators (temperature, pH, COD, PO43−, NH4+ , dry organic 

matter, the ratio of volatile fatty acids to the total alkalinity) and fluorescent image analysis. The 

fluorescent indicative system works by introducing a fluorescent dye into the anaerobic digestion 

process. As the microorganisms in the system consume the dye, it emits a fluorescent signal that 

can be measured and monitored over time. This signal provides information about the activity and 

health of the microbial community, which can be used to optimize the system's performance. The 

correlation analysis results indicated that the fluorescent image analysis parameters, such as 

clusters' number/mean size, fluorescence intensity, and area, were highly correlated with biogas 

production (Figure 2.12).  

 

 

Figure 2.12. Fluorescent indicative system for assessment of the effectiveness of anaerobic 

digesters (Dinova et al., 2018). 

 

This system measures the effectiveness of digester performance using two factors: the 

brightness of the biological system's fluorescence and the ratio of the number of clusters formed 

by the microbial consortium to their average size. The four digesters at the wastewater treatment 
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plant of Kubratovo were highly effective during two sampling periods, indicating that the entire 

facility generates 111% of the electricity it requires through AD. High fluorescence intensity 

suggests high biological activity and a low ratio of cluster number to average size indicates strong 

synergistic and syntrophic relationships within the microbial consortium. During the autumn 

sampling period, the performance of the third digester was marginally effective, falling between 

highly effective and satisfactorily effective. Satisfactorily effective zones are defined as areas 

where parameters are not within their optimal values but where the process can be monitored 

carefully. Ineffective zones are those with low fluorescence intensity and weak synergistic and 

syntrophic relationships in the biological system. Consequently, a fluorescent indicative system 

was suggested for controlling biogas production technologies, which would serve as a quick 

assessment tool for the effectiveness of anaerobic digestion.  

Valenti et al. (2017) aimed to evaluate the availability of olive pomace (OP), the main waste 

produced by the olive oil industry, for use as a resource in biogas production. A geographic 

information system (GIS)-based model was used to compute indicators that describe the potential 

production of OP in specific geographic areas. Initially, the study focused on analyzing the spatial 

distribution of olive-producing areas in Sicily, a region that is highly representative of olive oil 

production in the Mediterranean Basin. The GIS-based model was applied to estimate the potential 

production of OP using data collected through surveys about olive oil industries. This included 

indicators such as the amount of olive oil produced and the amount of OP obtained. 

The study's second phase focused on quantifying the amount of OP available for biogas 

production at a provincial level in areas with the highest potential for OP production. The results 

indicated a theoretical potential for producing 1.9 million Nm3 of biogas from OP, demonstrating 

that it could be a valuable resource for renewable energy production. This finding could help 
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address the environmental burden of OP disposal and contribute to the sustainability of the biogas 

sector. The GIS-based model used in this study could also be used to build an information base for 

improving the sustainability of the biogas sector by identifying the best locations for new biogas 

plants in terms of optimizing the logistics of biomass supply. The study focused on utilizing 

information such as rural and livestock populations, land-use maps, and GIS to develop a model 

for evaluating biogas production from livestock manure and rural household waste in Iran. The 

model can identify suitable locations for constructing biogas production plants. This study's 

analysis process was more detailed than previous studies in Iran, allowing for a more accurate 

assessment of available biomass and suitable sites for biogas plant construction. The study showed 

that biogas production from livestock manure and rural waste could produce 2740 million m3/year 

of methane. Lovrak et al. (2020) proposed a method for assessing the spatial distribution of biogas 

production potential, considering the seasonal variation in biomass production. The method 

combines statistical and spatial explicit methods, and uses a GIS approach. The case study is 

conducted in Croatia, and the results show that the proposed approach is more effective than 

current approaches. Their results demonstrate the importance of considering seasonality when 

assessing biogas potential for agricultural residues and show that the proposed approach can result 

in significant savings in storage facility capacity.  
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CHAPTER THREE 

SMART INVSTIGATION OF ARTIFICAL INTELIGENCE 
IN RENEWABLE ENERGY SYSTEM TECHNOLOGIES BY 

NATURAL LANGUAGE PROCESSING: INSIGHTFUL 
PATTERN FOR DECISION-MEKARES  

 

3.1. ABSTRACT 

This study aims to provide a framework which enables decision-makers and researchers to 

identify AI technology patterns in renewable energy systems from a massive data set of textual 

data. However, the study was challenged by the Scopus database limitation users to retrieve only 

2000 documents per query. Therefore, we developed a search engine based on the Scopus 

application programming interface (API) that enables us to download an unlimited number of 

documents per query based on our desirable settings. The total number of 5661 renewable energy 

systems-related publications were extracted from Scopus database and Natural Language 

Processing (NLP) and unsupervised algorithms were leveraged to identify the most frequent 

computational science models and dense meta-topics and investigate their evolution throughout 

the period 2000-2021. The findings showed 7 meta-topics based on the class-based Term 

Frequency-Inverse Document Frequency (c-TD-IDF) score and term score decline graph. 

Emerging advanced algorithms, such as different deep learning architectures, directly impacted 

growing meta-topics involving problems with uncertainty and dynamic conditions.  

Keywords: Natural language processing; Artificial intelligence; Text mining; Topic modeling; 

Pattern identification; Renewable energy. 
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3.2. INTRODUCTION 

With the ever-increasing demand for energy, limitations of fossil fuel resources, and concerns 

about sustainability, renewable energy systems are increasingly gaining attention from 

governments, businesses, and research institutes worldwide. Hence, developing a clear technology 

roadmap is important to integrate science and technology with business planning meaningfully 

based on medium to long-term market direction and goals (Amer and Daim, 2010). Performing 

intelligence investigation on upcoming technologies and clear technology roadmaps will assist 

governments and industries in making smart investing decisions and maintaining their competitive 

edge (Angelo et al., 2017). This study focuses on the research direction of applying AI text 

modeling techniques for identifying the most common strategies employed by renewable energy 

systems literature, aiming at establishing a technology selection and research perspective in this 

domain. The significant growth of the application of AI modeling in the renewable energy domain 

creates a massive amount of data and information within research papers, registered patents, 

reports, etc.  

In this regard, some researchers have focused on leveraging AI in biogas systems. Tufaner and 

Demirci (2020) employed a three-layer artificial neural network on lab-scale data to forecast 

biogas production rate by considering different features such as effluent alkalinity, organic loading 

rate, effluent chemical oxygen demand, etc. Chiu et al. (2022) applied a hybrid machine learning 

model, random forest, and long short-term memory by analyzing important feeds for biogas 

production for optimization based on a biogas plant dataset in China. They gained significant 

performance without conducting intensive feature engineering. 

Table 3.1 presents recently published similar research leveraging various AI models for optimizing 

and forecasting biogas systems' performance.  
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Table 3.1. Previous scientific works at the intersection of AI and biogas. 
 

Objective Model(s) Result Reference 
Optimizing biogas 
purification 

DNN The optimum ranges of: 
C/N (15.04–18.95),  
BOD/COD (0.763–0.818),  
TS (8.1–10.6%) and  
T.VS (38.19–49.46%).  
Large BOD/COD impacts biogas 
purification. pH > 7 can improve biogas 
purification. 

Mahmoodi-Eshkaftaki and 
Ebrahimi, 2021 

Predicting biogas 
production rate of food 
waste dry anaerobic 
digestion considering HRT, 
SRT, soluble chemical 
oxygen demand, total VFA, 
total and ammonia features. 

RNN Solid retention time and water content are 
important features in biogas reactions. 
Increasing intermediate materials, like 
VFAs, were easily converted into methane 
at higher water contents. 

 

Seo et al., 2020 

Modeling chemical 
processes within biogas 
production system 

SNN Considering ten days data points, model can 
predict chemical process up to the 100th 
day with significant accuracy based on lab-
scale data. 

Capizzi et al., 2020 

Predicting biogas 
production of fruits and 
vegetables waste 
considering different 
operational parameters 

ANN Predicted the performance with 85% 
accuracy. 

Gonçalves et al., 2021 

Identifying important 
operational parameters and 
predicting the biogas 
systems production rate 

RF 
KNN        
SVM 
GLMNET 

Total carbon was identified as a most 
important feature. KNN performed well in 
the regression task with RMSE of 26.6 and 
logestic regression multiclass model gained 
accuracy of 73%. 

Wang et al., 2020 

 

Predicting biogas systems 
performance of vegetables, 
fruits waste 

ANFIS 
LSSVM 

LSSVM performed better than 
ANFIS.LSSVM had MRE % and MSE of 
2.951 and 0.0001 respectively, compared to 
29.318 and 0.0039 for ANFIS. 

Yang et al., 2021 

Predicting methane 
production in a biogas plant  

Gompertz 
ML 
HML  
and  
Gompertz 

HML was the best in predicting next-day 
biogas production and reduced the error by 
53%. MAPE of HM (4.52%) < ML (4.84%) 
< the Gompertz model (9.61%).  

Hansen et al., 2020 

Building a predictive model 
of biogas yield and 
establishing optimal 
conditions for cow manure 
and maize straw biogas 
process  

ANFIS R2 = 0.99 and the model suggested 
conditions increased the production by 8%. 

Zareei and Khodaei, 2017 
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Table 3.1. Continued. 

Objective Model(s) Result Reference 
Predicting biogas 
production of spent 
mushroom compost in 
thermophilic and 
mesophilic laboratory 
conditions  

ANN 
ANFIS  

RMSE and R2 in mesophilic condition: 
ANFIS are 0.1940 and 0.9998, ANN are 
0.780 and 0.9981, and logistic model are 
0.5111 and 0.9992, respectively. In 
thermophilic condition, the values of 
RMSE and R2 were indicated as 0.3033 and 
0.9997 for ANFIS, 0.3430 and 0.9992 for 
ANN, and 0.5506 and 0.9991 for the 
logistic model, respectively. 

Najafi and Faizollahzadeh 
Ardabili, 2018 

Predicting biogas 
production rate based on 
industrial data and finding 
important operation 
parameters  

ACO 
GA 
ANN 

R2 = 0.9 and prediction error = 6.24%. Beltramo et al., 2019 

Note: DNN = Deep neural networks; RNN = Recurrent neural network; SNN = Spiking neural network; ANN = 
Artificial neural networks; RF = Random forest; KNN = K- nearest neighbour; RMSE = Root mean square error; 
mean relative error = MRE ; Mean squared error = MSE; Mean absolute percentage error = MAPE; SVM = Support 
vector machine; GLMNET =  Generalized linear models fitting package via penalized maximum likelihood ; 
LSSVM = Least square support vector machine; ML = Machine learning; HML = Hybrid of machine learning and 
Gompertz; ANFIS = Adaptive neuro-fuzzy inference system (ANFIS); ACO = Ant colony optimization (ACO); GA 
= Genetic algorithms (GA). 
 

Like other domains, a problem that investors and decision-makers in governmental and 

industrial sectors face is that they can get confused among various generated information,  

specifically in the field of AI with a wide variety of techniques and approaches. Developing an 

almost automatic framework that can be employed to address the mentioned problem is crucial. 

More specifically, such a method can provide accurate insights quickly for various research 

domains, even complex areas, to empower decision-makers to better perceive the research 

dynamics and assist them in determining research and development (R&D) strategies. This study 

aimed to build a research landscape and give decision-makers and researchers in related domains 

an accurate insight into implementing AI algorithms in renewable energy systems from a scientific 

standpoint. There is a high level of correspondence between scientific papers and patents; in other 

words, patent quality can be measured by academic papers referenced (Poege et al., 2019; Coupé, 
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2003). Besides, the World Intellectual Property Organization specified that more than 90% of 

inventions are observed in patent papers (Souili et al., 2015). Hence, texts of scientific papers are 

beneficial resources for investigating technology development throughout a timeline and 

understanding it will benefit research and development. However, analyzing the vast textual 

literature and data is time-consuming and prone to mistakes. A powerful solution for this problem 

is using NLP techniques (Chowdhary, 2020). NLP techniques have various applications, such as 

information extraction, automated text summarization, question-answering systems, and speech 

recognition (Jusoh, 2018). Topic modeling is an unsupervised strategy that is a subfield of NLP, 

which is a valuable technique for achieving a high level of understanding of a large amount of 

unstructured text data (Hannigan et al., 2019). The basis of NLP is considering co-occurrences of 

a word in similar corpora (Daenekindt and Huisman, 2020). Co-occurrence rules empower 

machines to discover and group related concepts within the set of documents or records. This idea 

implies that when concepts are often found together in documents and records, that co-occurrence 

illustrates a hidden relationship that is probably of value in categorizing definitions. Various topic 

modeling methods have emerged in previous years, such as Latent Dirichlet Allocation (LDA), the 

most frequently leveraged algorithm in topic modeling (Jockers and Thalken, 2020). Also, there 

are other less frequent methods like Bidirectional Encoder Representations from Transformers 

Topic (BERTopic) (Grootendorst, 2021), Top2Vec (Angelov, 2020a), Structural Topic Modelling 

(STA) (Lindstedt, 2019), Correlation Explanation (CorEX) (Gallagher et al., 2017), Non-Negative 

Matrix Factorisation (NMF) (Wei et al., 2003), and Latent Semantic Analysis (LSA) (Landauer et 

al., 1998).  

Previous research applied NLP models to scientific papers for topic modeling and trend 

identification. Mosallaie et al. (2021) employed NLP techniques to investigate the application of 
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AI in scientific papers on cancer-related domains. Tran et al. (2019) employed LDA in scientific 

papers between 1991 and 2018 to perfume topic modeling and provided static insight into the 

pattern of AI in the cancer domain. Jallan et al. (2019) applied the LDA model to detect current 

patterns in “construction-defect litigation cases.” Lee et al. (2019) performed an accurate NLP-

based model to extract contract risk, systematically detecting “poisonous” terms to help related 

companies manage their contracts. It performed well, achieving 81.8% area under the precise recall 

curve. Other studies utilized NLP approaches for technology forecasting. Kyebambe et al. (2017) 

clustered similar technologies considering patent characteristics and predicted new technologies 

one year forward. Lee et al. (2018) investigated the value of patents by leveraging feed-forward 

artificial neural networks and performed an evaluation analysis system for emerging technologies. 

Johri et al. (2011) applied topic modeling techniques to investigate emerging topics in engineering 

education between 2000 and 2008. More specifically, they leveraged LDA, an unsupervised 

learning method (Blei et al., 2003), as a topic modeling method to extract topics and their top 20 

keywords correspondence in engineering education. They also extracted key phrases and their 

corresponding frequency values to quantitatively analyze their trends. Based on their results, some 

topics, like the “global and interaction aspect of engineering education,” observed a considerable 

increase, while other topics remained almost constant over the period. Other researchers leveraged 

topic modeling in other domains like transportation (Sun and Yin, 2017), hydropower (Jiang et al., 

2016), communication research (Maier et al., 2018), smart factory (Yang et al., 2018), marketing 

(Reisenbichler and Reutterer, 2019). To the best of the author’s knowledge, this study is the first 

to comprehensively investigate the trend of AI topics in the renewable energy systems domain 

using NLP techniques. Although some studies appeared on trend analysis with limited scope to 
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only one area, such as solar energy or anaerobic digestion, they did not employ NLP techniques 

(Dong et al., 2012; Ren et al., 2018).    

3.3. METHODOLOGY 

Figure 3.1 presents the methodology employed in this study. First, a dataset has been built by 

collecting raw data from Scopus. This raw dataset contains all renewable energies scientific papers 

in which AI modeling has been used for 2000-2021. The collected dataset has been preprocessed 

within three steps specified in the “Preprocessing dataset” section. The next step is conducting 

different exploratory analyses on the preprocessed dataset. The preprocessed dataset was used as 

input for the BERTopic model to generate topics. Finally, the created topics have been merged 

into dense meta-topics by domain experts, and their evolution has been investigated over time by 

the dynamic topic modeling (DTM) method. 

3.3.1. Collecting raw dataset 

Scopus database has been chosen since its one of the most comprehensive databases for 

published papers. The Scopus database contains more than 22000 journals and books in renewable 

energy and computer science sectors, more specifically, 335 journals and 6699 books for 

renewable energies, and 1337 journals and 14111 books for computer science. The dataset has 

been extracted from the Scopus database by developing a search engine in Python and querying 

using keywords such as “Artificial Intelligence,” “Machine Learning,” “Deep Learning,” and 

“Neural Network,” in addition to “Renewable Energy,” and “Green Energy” within the period 

2000-2021. This study has focused on journals, conference papers, books, and book chapters in 

English. Scopus allows users to receive only 2000 per query. However, the developed search 

engine can retrieve the required data without any limitations. The developed search engine breaks 
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the dataset to a number of chunks; each can contain up to 25 documents. In this case, there are 226 

chunks containing 25 documents and one chunk containing 11 documents. Another common 

method for data acquisition is employing SQL queries to search related keywords (Venugopalan 

and Rai, 2015; De Clercq et al., 2019). The extracted data and developed search engine are 

accessible on KamranNiroomand’s GitHub account 

at: https://github.com/KamranNiroomand/Scopus-Search-Engine.git. The developed search 

engine can be used in future research, using the Scopus database, in various areas such as 

scientiometrics, intelligent decision support systems, etc.  

3.3.2. Pre-processing dataset 

The extracted raw dataset was then prepared for the all-MiniLM-L6-v2 algorithm, a 

sentence-based pre-trained model. Three features have been selected for this study: data, title, and 

abstract. Since each title has useful information about the context, the title, and abstract have been 

merged into a new feature for the analysis. Besides, the BERTopic model has been employed, and 

unlike other topic modeling algorithms, it does not require an intensive preparation BERTopic 

(Grootendorst, 2021). Given the nature of BERTopic, the sentence’s primary structure is necessary 

(Egger and Yu, 2022). Finally, the required features have been converted from a “string” type to a 

“list” type for the next steps. However, conventional models like LDA need comprehensive data 

preparation steps like removing stop words, lemmetazion, tokenizing, etc. (Kadhim et al., 2014).   

3.3.3. Data analysis 

3.3.3.1. Exploratory data analysis (EDA) 

Before building the BERTopic model, several data exploratory analyses have been 

conducted, such as the rate of renewable energy systems publications in which AI has been 

leveraged throughout the period to investigate the trend of AI in renewable energy systems (Figure 
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3.2). In Figure 3.2., the rate has been measured by dividing the number of publications that 

employed AI by the total number of publications in the renewable energies domain. Additionally, 

the most frequent modeling approaches used in renewable energy research have been detected and 

depicted over the specified period (Figure 3).  

 3.3.3.2. BERTopic model 

This study employed BERTopic modeling algorithm (Grootendorst, 2020) to extract topics 

at the intersection of AI modeling and renewable energy systems and investigate them throughout 

2000-2021. BERTopic is built based on Top2Vec (Angelov, 2020) and is an embedding-based 

model. The BERTopic model has been built in three steps. The first step vectorized the textual 

dataset to group close semantical terms (Egger, 2022) using a pre-trained sentence-based 

transformer algorithm (Reimers and Gurevych, 2019). Then, due to the high degree of sparsity 

within the generated vectors, a uniform various approximation and projection (UMAP) were 

utilized (McInnes et al., 2018) to reduce the dimensionality of vector space and keep global and 

local data structures. The vector space was reduced to 20 dimensions to create dense regions and 

employed Hierarchical Density-Based Spatial Clustering of Applications with Noise algorithm 

(hDBSCAN) (Campello et al., 2013; McInnes and Healy, 2017) as a clustering measure to identify 

these areas in the documents. Finally, this study considered the c-TD-IDF algorithm to create 

topics, where documents in a cluster are considered one document. Then TD-IDF score is 

calculated to show the importance of each word in a cluster. We considered the default parameters 

and algorithms of the BERTopic since they gave us the best results. For example, We tried different 

amounts of “n_neighbors” for UMAP algorithm, 15, which is the default value, 18, and 13. The 

result was almost the same. Also, we tried RoBERTa, a BERT-based model,  instead of the all-
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MiniLM-L6-v2 algorithm, which is the default algorithm of BERTopic, but the results were not 

satisfying. The TD-IDF (Joachims, 1996) can be calculated using Eq. 3.1: 

𝑊$,& = 𝑡𝑓$,& . log	(𝑁/𝑑𝑓$)                                                                                                                       (3.1) 

where the term frequency, ft,d, models the frequency of term t in document d. The inverse document 

frequency indicates the amount of information that a term gives to a document and is measured by 

the logarithm function of the number of documents in a corpus that is denoted by N divided by the 

total number of documents that include t. The adjusted class-based TD-IDF  (Grootendorst, 2022) 

can be expressed as in Eq. 3.2: 

𝑊$,' = 𝑡𝑓$,' 	. log	(1 + A/𝑡𝑓$)                                                                                                             (3.2) 

where the term frequency,  ft,c, models the frequency of term t within a class c. The higher the 

value of the c-TD-IDF, the more important the words in the clusters are. In addition, we merged 

topics to reduce their number from 98 to 7 dense and semantic meta-topics considering the result 

of the hierarchical clustering measured by the cosine distance matrix between clusters (Figure 3.4) 

and the domain expert’s knowledge. Because of the limited capability of quantifying algorithms 

to provide sufficient contextual comprehension (Egger and Yu, 2022), topic modeling 

interpretation certainly needs human judgment (Hannigan et al., 2019) and domain expert 

knowledge (Egger and Yu, 2022). For the domain expert to choose interpretable labels for meta-

topics, the top ten words of each meta-topic (Figure 3.5) and the “Term Score” graph (Figure 3.6), 

which shows the number of words representing each topic, have been taken into account. This 

study also includes DTM in which the identified topic fluctuation throughout the period has been 

investigated and evolved to ascertain emerged technologies by considering unigram (one world). 

Blei and Lafferty (2006) first employed the DTM method, built upon LDA, to solve the static 

concept of topic modeling. One of the BERTopic model functions is performing DTM based on 
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c-TD-IDF by creating global topics without considering their temporal nature (Grootendorst, 

2022). To implement this, it was fitted to the whole textual dataset to create a global view of topics. 

Following that, local topics’ representation can be generated by Eq. 3.3: 

𝑊$,',( = 𝑡𝑓$,',( 	. log	(1 + A/𝑡𝑓$)                                                                                                            (3.3) 

where the documents’ term frequency is multiplied at timestep “i” considering the pre-calculated 

value of global IDF. 

3.3.4. Computation  

This study’s programming parts was developed using the Python 3.10.2 language within the 

Google Colab notebook environment. 

3.4. RESULTS AND DISCUSSION 

3.4.1. Exploratory Data Analysis (EDA) 

The proportion of leveraging AI toward renewable energy research is illustrated in Figure 

3.2. Renewable energy research has experienced an increasing trend over the considered period. It 

is noticeable that from 2016 the slope of the graph has increased, which shows the power of AI 

modeling in this sector. However, the slope became almost flat in 2019-2020, likely due to the 

impact of the COVID-19 pandemic and its associated restrictions (Harper et al., 2020). During that 

year, most of the research was focused on treating methods for covid-19 or the effects of this virus 

on different aspects of our life (Verma et al., 2020; Herrera (2020)). Afterward, it started to grow 

with a sharper slope from 2020; the proportion of renewable energy research that employed AI 

peaked at 0.075 of total research within this domain, nearly double its 2015 value. 
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Figure 3.1. Schematic of the methodology  

 

Figure 3.2. Trend of AI modeling in renewable energy systems publication. 
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Figure 3.3. Most frequent computational algorithms in renewable energy systems 

 

This study detected and investigated the most frequent computer science methods employed 

in renewable energy research over the specified period. The artificial neural network has been used 

from the beginning of the period (Figure 3.3). However, with time, researchers started to use other 

algorithms as well. For instance, from 2007, supervised and unsupervised methods using principal 

components analysis and support vector machine, respectively, emerged in renewable energy-

related works. Gradually, various models appeared, such as deep learning methods in the research 

domain capable of handling dynamic situations like wind and wave energies with a high 

performance (Gu and Li, 2022). Also, deep learning algorithms, especially deep reinforcement 

learning) algorithms are utilized for complex renewable energy problems such as smart grid 

systems with uncertainty and nonlinearity and/or large structure datasets (Widodo et al., 2021). By 

2016, the decision tree emerged alongside the random forest. The latter is an ensemble learning 

method with several advantages over the decision tree (Ahmad et al., 2018); thus, its usage rate 

exceeded that of the decision tree in 2016 and increased significantly throughout the rest of the 

period. Besides, XGBoost, a boosting model based on a decision tree, appeared in 2017 and grew 
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considerably from 2018 to 2021. Likewise, deep learning and convolutional neural network 

emerged in 2015 and 2016, respectively, and grew noticeably until the end of 2021. 

 

 Figure 3.4. Hierarchical clustering to decrease the number of topics 

 

3.4.2. Technology direction based on c-TD-IDF 

Using the BERTopic model, similar topics have been merged due to clustering algorithms 

and a hierarchical graph. For instance, topics 12, 32, 44, 91, 58, 82, 14, 90, 10, 7, and 15 overlap, 

covering different angles of “solar energy as a renewable energy resource.” Therefore these topics 

have been merged, and seven meta-topics (Prediction in Wind Systems, Power Systems 

Optimization, Biogas, Wind Turbine Fault Detection, Bio Hydrogen, Solar Energy and 
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Photovoltaic Cells, Biomass) have been identified. Figure 3.5 shows the top 10 words 

corresponding to each meta-topic based on their c-TD-IDF scores. Domain experts have chosen a 

human-interpretable label for each topic, considering the top-ten words of each meta-topic in terms 

of c-TD-IDF (Figure 3.5) and term rank graph (Figure 3.6). We had three domain experts, two 

professors from environmental engineering and one process engineering professor. Their opinions 

on how to merge topics to create meta-topics and how to choose a name for each meta-topic were 

almost in line with each other. To choose the interpretable name for each meta-topic, they rewrote 

the most useful keywords meaningfully. For example, Figure 3.5 shows all ten words of meta-

topic 5 have a high level of relevancy to their cluster. Figure 3.5 also illustrates that meta-topic 4 

includes words with high scores of c-TD-IDF, such as “turbine,” “fault,” “wind,” and “detection,” 

implying that this meta-topic is related to wind turbine fault detection. Besides, meta-topic 3 

contains “biogas,” “methane,” “anaerobic,” and “waste,” illustrating that this meta-topic should be 

related to leveraging AI modeling in the biogas process. Words of Meta-topic 2 that have top ranks 

in terms of c-TD-IDF score contain “optimization,” ”microgrid,” and “algorithm,” implying power 

systems optimization by leveraging AI modeling techniques like deep reinforcement learning 

(Domínguez-Barbero et al., 2020; Ji et al., 2019). The seven identified meta-topics are 1) 

Prediction in Wind Systems, 2) Power Systems Optimization, 3) Biogas, 4) Wind Turbine Fault 

Detection, 5) Bio Hydrogen, 6) Solar Energy and Photovoltaic Cells, and 7) Biomass. One of the 

powerful features of BERTopic is that it does not need the preprocessing of raw data since it is an 

embedding-based algorithm, but this generates a large number of topics and merging them needs 

knowledge and significant attention. 
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Figure 3.5. c-TD-IDF for each term in 7 identified meta-topics. 
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Figure 3.6. Term score decline per topic. 

Figure 3.7. shows the evolution of identified meta-topics from 2000 to 2021. AI modeling 

emerged in renewable energy research in 2005. Afterward, leveraging computational algorithms 

increased at a similar rate in different types of renewable energy systems. The year 2014 was a 

turning point when researchers began to utilize more advanced techniques, such as different deep-

learning algorithms. From 2014, the prediction in complicated systems like wind systems, solar 

energy and photovoltaic cells, and power systems optimization meta-topics experienced 

considerable growth. This aligns with our statement about implementing different deep learning 

algorithms, such as deep reinforcement learning, long short-term memory, and convolutional 

neural networks for dynamic and uncertain systems. Wind systems have been found to be a 

dominant and most attractive technology where deep learning models have been applied for wind 

speed prediction (Noorollahi et al., 2016; Moustris et al., 2016; Wang et al., 2015; Huang et al., 

2021; Yeghikian et al., 2021; Shamshirband et al., 2019) and wind power prediction (Wu et al., 

2016; Zameer et al., 2017; Dong et al., 2017). State-of-the-art AI techniques are vital in optimizing 

and controlling photovoltaic and solar energy technologies (Ghannam et al., 2019) and making 

them more economical (Youssef et al., 2017). For instance, photovoltaic systems damages can be 
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detected by deep convoluntinal neural network (Pierdicca et al., 2018), and their energy can be 

forecasted by a novel deep learning architecture (Abdel-Basset et al., 2021). 

Similarly, deep learning has various applications in power systems, such as online energy 

scheduling (Ji et al., 2021), power systems resilience improvement (Kamruzzaman et al., 2021), 

and adaptive power system emergency control (Huang et al., 2020). Biogas is generated from 

wastethrough anaerobic digestion technology mainly for producing renewable energy and 

valorizing organic residues (Kougias and Angelidaki, 2018; Appels et al., 2011). Chen et al. (2017) 

mentioned that the optimal design of biogas plants depends on local conditions, namely, substrate 

supply and local infrastructure. Hence, developing machine learning/ deep learning algorithms that 

can determine optimal conditions for industrial reaction, the value of each feedstock (Chiu et al., 

2022), and predicting the outcome of biogas reaction is necessary from an economic point of view. 

In other words, improving biogas plant economic sustainability will decrease operational costs. 

Considering the increasing importance of industrial biogas facilities, the significant growth of 

available data in this, and the capability of AI-based techniques in enhancing the economic 

sustainability of biogas facilities and, therefore, this area will probably emerge as one of the main 

prevalent domains of renewable energy systems. Biohydrogen is one the most environmentally 

friendly fuels since its combustion produces H2O as a carbon-free by-product and is also generated 

under anaerobic conditions and without consuming fossil fuels (Brentner et al., 2010). However, 

this process has several challenges, such as the cost of hydrogen as fuel, infrastructure facilities, 

distribution, and storage, etc. (Kamaraj et al., 2019). Despite optimizing AI modeling in 

biohydrogen systems (Wang et al., 2021; Khaleghi et al.,  2021; Lian et al., 2021; Liu et al., 2021), 

these challenges showed their impact on the prevalence of biohydrogen topic. Continuous research 

and collaboration of data scientists and engineers would improve bio hydrogen technology and 
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utilize it in hydrogen-based vehicles (Manoharan et al., 2021). Regarding biomass, alongside 

forecasting biomass characteristics, process outcome, and performance of bio-energy end-use 

systems, one of the primary usages of AI is to generate synthetic datasets (Liao, and Yao, 2021). 

Data augmentation will increase the amount of labeled data and enhance performance of 

supervised machine learning algorithms (Bowles et al., 2018). The generative datasets in biomass 

are particularly useful regarding biomass properties, biofuel properties, kinetic parameters, engine 

performance, and Life Cycle Inventory (LCI) (Liao and Yao, 2021). Considering the fast pace of 

development of AI as well as growing sustainable systems data scientists, it can be predicted that 

analytic measures and AI-integrated models would significantly overcome the challenges like lack 

of sufficient high-quality data in the biomass domain, which leads to comprehensive assessment 

and optimization of biomass systems. The AI-based feature of this study that extracts topics 

automatically diminishes subjectivity from the exercise and enables consistent and comprehensive 

comparisons between topics and between time intervals. Seven extracted meta-topics provide 

comprehensive and logical coverage of the research field and have a high level of similarity to the 

topics being used to produce review paper studies (Lateef et al., 2022) or scientometirc research 

(Sohail et al., 2022) in renewable energy domains. DTM is a probabilistic time-series-based model 

capable of analyzing the evolution of topics over timeframes (Blei and Lafferty, 2006). DTM has 

various applications in different disciplines. For instance, Ayele and Juell-Skielse (2020) 

investigated the evolution of self-driving cars' topics and trends from 2000 to 2019.  They chose 

DTM since, unlike LDA, DTM considers the temporal aspect of each topic (how topics have 

evolved over the period). Their results illustrated the evolution of twenty topics in the self-driving 

car domain, including software system architecture and design, brake system and safety and 

navigation in self-driving. Lee et al. (2016) applied dynamic topic modelling to toxicogenomics 
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data. It was used as an alternative technique to discover underlying patterns in time-series gene 

expression profiles which results in gaining a perception of the dynamic behavior of genes in the 

related systems. Besides, Morimoto and Kawasaki (2017) utilized dynamic topic modeling as a 

forecasting method for financial market volatility, which enhanced forecasting accuracy. Linton 

et al. (2017) used dynamic topic modeling into cryptocurrency community forums to investigate 

the evolution of different topics related to big events in the cryptocurrency society. Tabassum et 

al. (2021) used dynamic topic modeling to analyze social media by focusing on hashtags. Guldi 

(2019) applied a dynamic topic modeling algorithm to build a history record of British 

infrastructure. 

Because the gap between scientific literature and commercialization is narrowing, text 

mining of academic papers can play a significant role for stakeholders intending to invest in 

renewable energy sectors and data-driven start-ups working on renewable energy systems. 

Notably, the most realistic technology read mapping with a broad scope can be achieved by 

validating the findings of text mining with the results of existing scientific publications and patent 

documents under the supervision of domain experts.   

 

Figure 3.7. Topics evolution over the period 
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This current study is limited to scientific publications from the Scopus database from 2000 to 2021 

to characterize the landscape of AI in renewable energy systems research. Future studies could 

consider other databases, such as the Web of Science, PubMed, IEEE Xplore, ScienceDirect or 

other data sources, such as patents, to perform complementary exploration. Besides, in the current 

study, we only analyzed uni-grams. Future studies can also consider the whole body of the paper 

for their analysis; particularly, the methodology section should contain informative text regarding 

methodological evolution. Additionally, we only considered English documents, and future studies 

can expand their scope by analyzing published documents in other languages and using other NLP 

techniques, such as GPT3 and WuDao 2.0, for their analyses and their results can be compared to 

current study’s results.  

3.5. SUMMARY 

In this study, a capable search engine based on Scopus API  has been developed, which 

can break the limit of the Scopus database and retrieve unlimited documentation per query. 

Besides, the study investigated AI in renewable energy systems publications throughout the 21’s 

century from two points of view. First, by analyzing term frequency, the study investigated the 

trend of most frequent computational algorithms in renewable energy systems papers. The result 

showed that, within recent years, researchers started leveraging more diverse and complicated 

methods like deep learning techniques. However, still, conventional models like random forest are 

more popular. the study also uncovered the latent research topics of AI in renewable energy 

systems and considered their temporal aspect of them by employing the DTM method. Our DTM’s 

results demonstrated the role of AI-based models in overcoming uncertainty and enhancing risk 

management in solar and wind systems (Tawn and Browell,  (2022)). Besides, generated results 

reveal particular attention to modeling and simulation research projects. Matching and comparing 
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the results of both employed computational models and DTM analyses demonstrate that recent 

advancements in computational science have built new pathways for complicated renewable 

energy systems problems. Some examples can be energy storage optimization of wind, solar, and 

photovoltaic systems (Abualigah et al., 2022), monitoring and anomaly detection of wind turbines 

(Xiang et al., 2022), etc.   

This feature that most steps of the proposed pipeline are automatic is significant. In other words,  

insights can be produced quickly, even for complex research fields involving a large number of 

papers annually, to assist policymakers and decision-makers in understanding the research 

dynamics better and help with research and development (R&D) strategies. This is of particular 

importance for R&D that needs high pace progress (Ebadi et al., 2022), for instance, disruptive 

technology development that can affect strategic stability (Sechser et al., 2019), national security 

(Ebadi et al., 2022), and economic development (Rifkin, 2011). Therefore, organizations that can 

better understand and monitor the research landscape will have a competitive edge. 

3.6. CONCLUSIONS 

The research characterized and mapped AI applications in renewable energy systems by 

leveraging a text mining technique to build semantic and dense structure clusters in a semantically 

continuous space. It used an unstructured dataset of 5661 scientific works between 2000 and 2021. 

This work comprehensively identified technologies at the intersection of AI and renewable energy 

systems and enhanced previous scientific works in pattern detection by leveraging novel 

algorithms for the NLP and the BERTopic method, resulting in a high level of coherency and 

efficiency. More specifically, BERTopic does not require time-consuming parts such as intensive 

data preprocessing and hyperparameter tuning to analyze textual datasets. The study investigated 
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technology trends by considering c-TD-IDF, annual analyses of topic evolution, most frequent AI 

algorithms, and the number of renewable energy systems papers that employed AI. BERTopic 

showed seven dense meta-topics covering all aspects of various renewable energy systems. The c-

TD-IDF score and term score decline graphs provide insightful information to discriminate meta-

topics and label them interpretably. For instance, meta-topics 7  is associated with terms such as 

biomass, microalgae, algae, and cellulose, which gained the highest c-TD-IDF. Additionally, the 

term score decline graph proves the previous statement as the first four terms of this meta-topics 

are reliable for labeling. The analysis showed that the development of AI modeling significantly 

impacted areas associated with high uncertainty, such as wind and microgrid systems. Future 

studies can expand their scope by considering other databases like US Patent or Science Direct 

and considering published documents in other languages. Also, they can analyze bi-gram and tri-

gram instead of considering only uni-gram. Besides, instead of focusing only on the abstract and 

title, they can consider the whole body of the paper. 
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CHAPTER FOUR 

HYBRID CATBOOST-CNN-LSTM MODEL FOR BIOGAS 
FEEDSTOCK ANALYSIS AND SYSTEM PERFORMANCE 
FORECASTING: INDUSTRIAL-SCALE BIOGAS PLANET 

APPLICATION  
4.1. ABSTRACT  

Biogas plants are among the most environmentally friendly renewable energy-producing 

systems because they treat waste, generate energy and reduce greenhouse gas emissions. However, 

they suffer from unforeseen disruptions and lack of adequate production due to the variation in the 

feedstock characteristics and the complexity of Anaerobic Digestion (AD).  Artificial Intelligence 

(AI)-based methods can provide insightful information about biogas systems and ways to optimize 

them. This study analyzes industrial-scale biogas plant’s feedstock and predicts biogas production 

by developing end-to-end Machine Learning (ML) pipelines to benefit domain experts, 

stakeholders and decision-makers. I developed four ML models to analyze the effect of eleven 

substrates on the system’s performance. The Catboost algorithm has been chosen among all 

models since it showed the least error and the most stable performance in 10-fold cross-validation. 

Afterward, we built three different deep learning algorithms, namely, Long Short Term Memory 

(LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Network (CNN)-LSTM. The 

hybrid architecture fitted the best with the time series dataset with a normalized mean square error 

(NMSE) of 0.006. Feature importance results revealed that acid and oil waste contribute more in 

generating biomethane, while kitchen waste and fruit and vegetable waste significantly contribute 

to final production. The proposed approach benefits from large-scale quantitative analysis 

capabilities employable in other renewable energy time series problems. 
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Keywords: Artificial Intelligence; biogas systems; Machine learning; Time series Forecasting; 

long and short-term memory  

4.2. INTRODUCTION 

Relying on fossil fuels jeopardizes energy security and the well-being of communities 

because these fuels are nonrenewable and unsustainable, and their combustion produces 

greenhouse gases (GHG) and other emissions. These emissions cause health problems in humans, 

animals and plants, while GHG exacerbates global warming and negatively affects ecosystems 

worldwide. Therefore, many countries have started developing and utilizing various green, low-

carbon and sustainable energies (Heydari et al., 2021). Biogas production is a waste-based 

recycling system mainly for producing renewable biofuel and bioenergy while valorizing organic 

residues (Kougias and Angelidaki, 2018; Pöschl et al., 2010). Biogas is produced through 

anaerobic digestion (AD), where microorganisms carry out a network of biological reactions to 

degrade and decompose various organic substrates such as animal manure, food scrapes, 

wastewater biosolids and organic by-products, and convert them to biogas (Naroznova et al., 

2016). The AD process produces biogas usable to generate sustainable energy, such as electricity 

or heat, and can be used directly as vehicle fuel after enriching its methane content. At the same 

time, the GHG emission and storage need for organic waste decrease (Chiu et al., 2022; Islam 

et al., 2017). This process aligns with the definition of circular economy and sustainable 

development (Geissdoerfer et al., 2018; Daly, 2006).  

Currently, biogas systems are gaining attention in different countries. For instance, according 

to the American Biogas Council, the US has around 2,300 biogas plants, and there is a potential to 

build more than 15,000 new biogas plants. The American Biogas Council indicated that focusing 
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on the US potential biogas infrastructure could produce up to approximately 100 trillion kilowatt-

hours of electricity annually. Within EU countries, almost 17,400 biogas power plants have been 

utilized until 2018 (Scarlat et al., 2018), reaching more than 20,000 in 2022. Also, biogas energy 

production in the EU countries has grown to the equivalent of 6 million tonnes of oil, with a more 

than 20% annual growth rate (EurObserv, 2013). AD biogas production process contains four main 

steps: hydrolysis, acidogenesis, acetogenesis and methanogenesis (Appels et al., 2011; Adekunle 

and Okolie, 2015). The AD process is highly dynamic and complex because the various technical 

design and operation parameters and composition of the organic inputs affect the microorganisms’ 

life cycle in each step (Li et al., 2021). The most influential technical parameters in biogas systems 

are indicated in Table 4.1. It has been found that the efficient control of the industrial-scale AD 

process is difficult, or sometimes the optimal conditions differ from lab-scale to industrial-scale 

process (Xu et al., 2018; Matuszewska et al., 2016; Westerholm et al., 2019; Mainardis et al., 

2019). This difference is due to the complex interaction among the systems’ inputs, 

microorganisms, and operation parameters, resulting in a nonlinear behavior and uncertainty of 

these systems’ outputs. This behavior may negatively affect biogas plants’ performance (Hu et al., 

2018). For instance, the existence of different substrates within the feed of the biogas system 

usually leads to anaerobic co-digestion (AcoD), in which different unwanted reactions occur (De 

Clercq et al., 2019). Therefore, this system must monitor and control the feeds to achieve the 

desired efficiency and optimum production. However, optimizing such a system requires intensive 

mathematical calculation, and there is potential for significant errors resulting in poor results. 

Various conventional optimization methods can be applied to lab-scale biogas systems but 

optimizing industrial-scale biogas systems differ, and it is more complicated considering the 

technical and economic parameters involved (Westerholm et al., 2019; Mainardis et al., 2019). For 
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instance, Matuszewska et al. (2016) found that the optimum ratio of the biogas system’s feed in a 

laboratory is different from the industrial scale due to longer retention time in the industrial unit. 

Table 4.1. Important operational parameters in biogas systems.  
Parameters Description 

Temperature There are three different temperature zones: 
1) Psychrophilic fermentation: < 20 °C (Dębowski et al., 2021). 

2) Mesophilic fermentation: 20 to 40 °C (Huang et al., 2021). 

3) Thermophilic fermentation: 40 to 70 °C (Shao et al., 2020). 

The highest biogas production rate is usually obtained at thermophilic 
fermentation (Yilmaz et al., 2018). 

Carbon-to-nitrogen 
ratio (C/N ratio) 

C/N ratio indicates the AD reactions stability, and it has a significant impact 
on the biogas yield (Xue et al., 2020). 

pH The optimal pH ranges from 6.6 to 7.6 (Budiyono et al., 2013). 

HRT HRT is the average time that the feed of the biogas system is kept in the 
digestors (Dong et al., 2022). Optimal HRT depends on the OLR and type of 
culture (pure or mixed culture) (Sravan et al., 2021). 

OLR OLR is equal to the mass of the feed substrate per unit of time and reactor 
volume (Dong et al., 2022). 

Type of process Dry or wet fermentation (Stolze et al., 2015). 
 

In recent years, computer technologies such as the Internet of Things (IoT) and cloud 

applications have been developed, and researchers used them to enhance sustainable management 

systems of renewable energy (Alhasnawi et al., 2022; Bhoi et al., 2022; Tran et al., 2022; Bouali 

et al., 2021).  AI is another powerful computational tool leveraging different fields of renewable 

energy systems such as wind systems (Sachit et al., 2022; Lee et al., 2021; Chatterjee and Dethlefs, 

2021) and photovoltaic cells (Mellit and Kalogirou, 2021; Kurukuru et al., 2021; Serrano-Luján et 

al., 2022) to solve various complicated problems such as uncertain systems optimization’s 

problems efficiently. AI has shown promising results in biogas systems, especially by developing 

Deep Learning (DL); thus, it has played a crucial role in biogas in recent years. For instance, 
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Tufaner and Demirci (2020) employed a three-layer Artificial Neural Network (ANN) architecture 

to build a predictive model for biogas systems performance considering different technical and 

operational parameters. They considered influent pH,  effluent pH, influent alkalinity, effluent 

alkalinity, OLR, effluent COD, effluent total suspended solids (TSS), and effluent volatile 

suspended solids (VSS). Another study used ANN as a predictive model to predict the performance 

of a lab-scale biogas system. Their result shows that 333.4 NL/kgVS of biogas can be obtained by 

AcoD of agricultural waste and cow manure mixed at a ratio of 7 to 3 (Almomani and Bhosale, 

2020). Cinar et al. (2022) employed ML algorithms such as Support Vector Machine (SVM) and 

Decision Tree (DT) for optimizing the AD process considering the temperature feature. They used 

a lab-scale dataset and obtained an R2 score of 0.93 by SVM. Despite the large number of 

industrial-scale biogas plants, few studies use industrial-scale biogas data (Chiu et al., 2022). Two 

main characteristics of industrial-scale biogas datasets are being multivariate and time series. Sezer 

et al. (2020) indicated that Recurrent Neural Network (RNN)-based deep learning algorithms 

usually provide more significant and robust results than their conventional ML counterparts for 

time series forecasting problems. Since LSTM can learn patterns from sequential information, it 

suits any sequential dataset, including time series. Hybridizing LSTM with a one-dimensional 

CNN can enhance the performance of the proposed DL architecture, especially in processing long 

sequential data. It is because CNN provides more useful information for LSTM architecture by 

extracting informative features and learning knowledge from internal time-series instances. To our 

best knowledge, despite the high potential of hybrid CNN-LSTM algorithm in processing large-

scale biogas systems’ data, it has rarely been leveraged in biogas studies. However, researchers in 

other renewable energy domains, such as wind systems, solar energy and PV cells, have benefited 

from its capability. For instance, Shen et al. (2022) leveraged the CNN-LSTM model to predict 
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wind speed in wind power plants. Agga et al. (2022) employed the same model to forecast short-

term photovoltaic power generation.  

In this study, the study aim to provide an efficient end-to-end data-driven solution for 

industrial biogas systems that can benefit stakeholders, investors, and decision-makers before 

developing a biogas unit or enhancing the performance of existing biogas facilities. Furthermore, 

the studyaccurate and reliable method can prevent wasting resources and improve the environment 

by analyzing the effect of various factors on the system’s performance and providing robust 

forecasting results. 

 4.3. MATERIALS AND METHODS 

Conducting this study requires multiple steps, explained in detail within this section. The 

first part is collecting the raw data, followed by preprocessing them. We normalized the dataset to 

decrease the noise effect. We leveraged Catboost into the dataset to select features based on their 

importance on the system’s performance to reduce the dimensionality of the dataset. Also, we 

employed deep learning models that required specific input shapes. Therefore, we made the 

models’ input data points in a compatible format. Afterward, single deep learning models, namely 

LSTM and GRU, and hybrid deep learning architecture, CNN-LSTM, were built, and the selected 

features were fed to them. Finally, after evaluating all the models, the CNN-LSTM algorithm was 

chosen to forecast the performance of the Shenzhen industrial biogas plant. Figure 4.1 depicts the 

overall overview of this study. 



149 
 

 

Figure 4.1. The overall methodology of the proposed data-driven pathway. 

4.3.1. Raw data collection 

The dataset of this study is from the Shenzhen biogas facility (Shenzhen, China), and it is 

publicly accessible through GitHub; Victoria 3467 BioDigest: Biogas Project, created in 

November 2018. 80% of the data has been used for training to measure the weights and biases of 

the hybrid deep learning model, while the remaining 20% has been used for testing (validating) 

the model performance. 

4.3.2. Data preparation  

The extracted dataset must be preprocessed and cleaned before being fed into AI models. 

The dataset included features for the inputs and outputs of two separate tanks. Since this study 

aims to analyze the Shenzhen biogas system, the study created five features: acid feed, acid 

discharge, anaerobic feed, anaerobic cumulative, and daily system output. Each feature is the sum 

of that feature for each tank. Moreover, although the dataset is a time series dataset considering its 

daily output target value, the date for each data point has not been indicated. Therefore, the study 

turned it into a time series dataset by utilizing built-in functions of the Pandas package in Python. 

A feature selection was conducted by leveraging the Catboost model, explained in section 2.2.1, 

to reduce the dimensionality of the dataset and remove unnecessary information. One of the main 
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differences between this study and that of De Clercq et al. (2019) is that the study has directly and 

efficiently calculated regression tasks’ errors without performing intensive feature engineering and 

making regression to classification tasks by labeling target values. These errors included 

Normalized Root Mean Square Error (NRMSE), normalized mean square error (NMSE), and 

Normalized Mean Absolute Error (NMAE). In addition, the study considered a normalized error to 

facilitate the comparison among calculated errors. Finally, it created a three-dimensional input 

shape since our CNN-LSTM architecture requires a specific input shape.  

4.3.2.1. Ensemble models  

Ensemble learning is a fusion of a set of trained models aiming to enhance the predictive 

performance of a single model (Mendes-Moreira et al., 2012; Zhang and Ma, 2012; Rokach, 2016). 

Catboost, unbiased gradient boosting with categorical features (Dorogush et al., 2018; 

Prokhorenkova et al., 2018), is an improved gradient-boosted decision tree that prevents overfitting 

the model, a significant drawback of boosting-based models (González et al., 2020). This 

algorithm builds oblivious trees, called decision tables, which have the same splitting criterion for 

the whole level of the tree (Lou et al., 2017). These trees are symmetric, balanced, more resistant 

to overfitting, and learn faster in prediction (González et al., 2020) . A useful capability of the 

Catboost algorithm is measuring feature importance where the input variables’ effect on a target 

value is quantitatively assessed (Long et al., 2021; Wang et al., 2020; Xu et., 2021).  

4.3.3. Proposed method 

Figure 4.2 illustrates the overall architecture of leveraged CNN-LSTM model to forecast the 

Shenzhen biogas facility biogas production. This study considered the time series data of the 

biogas facility inputs composed of different types of waste. It trained the hybrid DL architecture 

on daily input data by the sliding window algorithm (Kim and Cho, 2018). Since CNN networks 
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are specialized in extracting spatial features (Ketkar and Santana, 2017), our CNN architecture's 

convolutional layer extracted spatial characteristics of multivariate time series datasets and passed 

it to LSTM networks. On the other hand, LSTMs are specialized for temporal feature extraction, 

and LSTM networks model the temporal time series information employing the extracted spatial 

features. Hence, CNN-LSTM can be employed as a robust predictive model to forecast biogas 

production in a hierarchical, fully connected architecture. The performance of the model is 

evaluated by using different loss functions. 

 

Figure 4.2. The overall proposed hybrid deep learning architecture.  

4.3.3.1. CNN-LSTM  

The proposed CNN-LSTM predictive model comprises a series of connections of deep 

learning architectures, with CNN placed at the upper layer. The CNN architecture receives 

different variables affecting biogas production, such as kitchen waste, acid feed and bread paste, 

alongside the date. The CNN architectures specialize in modeling obvious grid-like topology 

datasets (Brownlee, 2018).  The CNN architectures are compatible with input formats like 1D, 2D, 
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and nD (Ketkar and Santana, 2017). The 1D CNN architectures can provide robust results in time 

series problems (Hussain et al., 2020). They consist of an input layer that receives the biogas 

measured variables in the Shenzhen biogas facility, an output layer extracting features to LSTM 

architecture, and hidden layers. The typical hidden layer structure consists of one Fully Connected 

Layer (CL), a specific type of linear operations, an activation function layer, usually Relu, and a 

Pooling Layer (PL). CL reads sequential time series multivariate inputs, generates feature maps, 

and passes them to the next layer. Within the process of linear operation, each neuron in the 

network processes biogas production data just for the receptive field. Also, this linear operation 

will result in parameter reduction and deepening of the CNN-LSTM hybrid architectures. 

Considering 𝑥() = {𝑥*, 𝑥#, … , 𝑥+} is the biogas production input vector, and 𝑛 is the number of 

scaled daily units per sliced window; Equation 4.1 shows the output of the first CL: 

𝑦(,*  = 𝜎	<𝑏,* + ∑ 𝑤-.*,,*/
-.* 𝑥(0-!*,,) @	       (4.1) 

where  𝑦(,*   is the result of the first CL, calculated by the vector 𝑥(,*  from the previous layer, 𝑏,* 

denotes the bias of  𝑗$1 of the feature map, 𝑤 represents kernels’ weight by the index value of m, 

and 𝜎 shows the activation function. Equation 4.2 is the general formula for the result of 𝑛$1 layer 

of the CL. 

𝑦(,+  = 𝜎	<𝑏,+ + ∑ 𝑤-.*,,*/
-.* 𝑥(0-!*,,) @	       (4.2) 

PL is employed to make a single neuron by combining the neuron’s output of the previous layer. 

It enhances computational efficiency by reducing the representation’s space size by using the 

maximum value of each neuron in the previous layer. Equation 4.3 shows the max PL process. 

𝑝(,+  = 𝑚𝑎𝑥2∈4 𝑦(×602,,+!*           (4.3) 
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where T denotes the stride deciding the input data area, and y is the input size, which is greater 

than R, which is the pooling size. The last layer of the CNN network is a Fully Connected Layer 

(FCL), which flattens distilled feature maps into a single long vector (Géron, 2019; Pal and 

Prakash, 2017). 

LSTM stores the main features of time series information of biogas production extracted by 

the CNN architecture. Within the LSTM network, the previous hidden state is updated by units, 

which leads to preserving long-term memory. Hence, LSTM is effective in understanding temporal 

features in the long-term sequence. LSTM network can provide robust performance in prediction 

biogas production since it overcomes vanished and explosive gradient problems controlling over 

new input and deciding how to update its memory. There are three gate units, input, output, and 

forget gate, enabling the network to control input and output information. The gating mechanism 

stores the memory by employing continuous values between 0-1. The mathematical process of 

LSTM input, forget, and output gates are explained in Equations 4.4, 4.5, and 4.6, respectively. 

Equations 4.7 and 4.8 explain the mathematics of the cell states and hidden states through the 

gating mechanism. 

𝑖$ = 𝜎	<𝑊7(𝑝$ 	+ 	𝑊1(ℎ$!* +	𝑊'( ∘ 	𝑐$!* +	𝑏(@	      (4.4) 

𝑓$ = 𝜎	<𝑊78𝑝$ 	+ 	𝑊18ℎ$!* +	𝑊'8 ∘ 	𝑐$!* +	𝑏8@		      (4.5) 

𝑓$ = 𝜎	<𝑊79𝑝$ 	+ 	𝑊19ℎ$!* +	𝑊'9 ∘ 	𝑐$!* +	𝑏9@		      (4.6) 

𝑐$ = 𝑓$ ∘ 	𝑐$!* +	𝑖$ ∘ 𝜎	<𝑊7'𝑝$ 	+ 	𝑊1'ℎ$!* +	𝑏'@		      (4.7) 

ℎ$ =  𝑜$ ∘ 	𝜎	(𝑐$)          (4.8) 
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where 𝜎 is the employed activation function with non-linearity and accepts input ranges between 

-1 to 1, 𝑊 shows the matrix weight, and 𝑏 is the bias. Biogas production features, represented by 

𝑝$, that are extracted by PL of the CNN architecture at the time window of 𝑡 and are employed as 

the input of the LSTM network. Leveraging the LSTM model results in significant performance 

in terms of time series modeling of signals and provides robust results in the Shenzhen biogas 

facility production. The last layer of CNN-LSTM architecture is a fully connected layer (dense 

layer) that predicts biogas production over a specific period. A dense layer connects neurons to 

every single neuron in the previous layers. It uses the output of LSTM as its input. The proposed 

CNN-LSTM model predicts biogas production daily. Equation 4.9 illustrates the mathematical 

mechanism of this part of the leveraged deep learning architecture.   

𝑑(+	= ∑ 𝑊,(+!*, 	(	𝜎	(ℎ(+!*) 	+	𝑏(+!*)	        (4.9) 

where 𝜎 denotes a nonlinear activation function such as tanh, 𝑛 represents the number of 

LSTM units, 𝑊 is 𝑖$1 node weight of the 𝑛 − 1 layer, 𝑗$1 denotes the layer 𝑛 node, and finally 

𝑏(+!* represents the bias. 

4.3.3.2. Model architecture 

Choosing the correct and efficient deep learning architecture is critical in deploying deep 

learning models (Karnuta et al., 2019). The typical structure of this hybrid architecture includes 

CL, PL, FCL, LSTM and a dense layer (Zhou et al., 2015). These layers have adjustable 

parameters, such as kernel size, filter size, and the number of units. Changing these parameters can 

affect the model's performance (He and Sun, 2015). The dataset’s characteristics should be 

considered to develop the most efficient and robust model for biogas production. After the feature 

selection, the network’s input is 440 × 8, 8 features consisting of a daily time series. The CL of 

the model has 64 feature maps with the kernel size of three-time steps to read sequences. The PL 
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simplifies the generated feature maps by maintaining the ¼ highest signal. After flattening feature 

maps by FC, two LSTM layers, with 50 units, processed the time-series information. Afterward, a 

dropout layer is responsible for better model generalization, with a rate of 20%. Finally, a fully 

connected layer connects its neurons to each AI unit of the preceding networks. I designed 

architecture and selected parameters for the CNN-LSTM hybrid topology are illustrated in Table 

4.2.  

Table 4.2. Proposed architecture, layers configuration. 
CONV 1D Filter 64 

- Kernel size 3 
 Activation 

function 
Relu 

Max Pooling - 2 
Flatten - - 

TimeDisterbuted - - 
LSTM Hidden nodes 50 

 Activation 
function 

tanh 

LSTM  Hidden nodes 50 
 Activation 

function 
sigmoid 

Dropout Rate 0.25 
Dense - 1 

 

4.3.3.3. Evaluation metrics 

Three different metrics were considered to measure the performance of our leveraged 

models: NMSE, NRMSE, and NMAE. The study used the normalized errors to facilitate the 

comparison among them. Equations 4.10-4.15 describe the mathematics behind these errors. 

𝑀𝑆𝐸 = 	 *
+
	× ∑ (𝑜(	 −	𝑝(	)	#+

(.*         (4.10) 

𝑅𝑀𝑆𝐸 = O∑ (9!	!	7!	)#$
!%&

+
          (4.11) 

𝑀𝐴𝐸 =	∑ |9!	!	7!	|
+

+
(.*           (4.12) 
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𝑁𝑀𝑆𝐸 = /?@
9'()!	9'!$

          (4.13) 

𝑁𝑅𝑀𝑆𝐸 = 4/?@
9'()!	9'!$

          (4.14) 

𝑁𝑀𝐴𝐸 = /A@
9'()!	9'!$

          (4.15) 

where n denotes the number of instances; 𝑝(	; is the predicted value, 𝑜(	 is the actual value; 𝑜-B" 

and 𝑜-(+ are the maximum and minimum actual values, respectively. 

4.4. CASE STUDY 

4.4.1. Shenzhen biogas facility dataset 

Figure 4.3 depicts the overall structure of the Shenzhen biogas facility considering the raw 

dataset available on the public repository on GitHub (De Clercq et al., 2019). We did not employ 

imputation methods for this dataset since it has no missing values. The original dataset contains 

18 variables where some inputs and outputs of tanks were measured separately. Since the study 

aimed to analyze the whole system, it considered some features and created new ones. For instance, 

the study summed both the “1_acidification_hydrolysis tank feed” and 

“2_acidification_hydrolysis tank feed” features to create a new feature, acid feed (Figure 4.4).  

4.4.2. AI-based process optimization  

Another advantage of the proposed method is that it can be used to enhance biogas system 

performance on an industrial scale. In this regard, the importance of different feed components 

was measured by Catboost. The study used Catboost since it showed more robust performance and 

stability than other employed machine learning models (the study elaborated more on this within 

section 4.3.4). Figure 4.4 depicts the importance of each component within the feed. As can be 

seen, cumulative anaerobic products (VFAs) and acid feed are the most important because 
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methanogens (methane-producing microorganisms) can use them as substrates directly. Besides, 

waste oil showed one of the highest ranks. Theoretically, the stochiometric methane yield per gram 

of volatile solids (VS) for fat, proteins, and carbohydrate is 1014, 496, and 415 NL CH4 kg−1 VS, 

respectively. Obviously, fats and oils produce 2.44 methane compared to carbohydrates (Saady 

and Masse, 2015). Acid can be used as an effective chemical pretreatment in biogas production 

(Sarto et al., 2019; Syaichurrozi et al., 2019). The study’s analysis illustrated that the critical factors 

of the complicated industrial-scale anaerobic digestion (biogas production) process could be 

identified. Industrial and academic researchers can benefit from the proposed method since it 

provides reliable insight into the process and allows them to avoid conducting comprehensive 

laboratory experiments or complex mathematical calculations. This model can optimize technical 

parameters in industrial anaerobic digestion, such as biological oxygen demand to chemical 

oxygen demand ratio, pH, temperature, etc. 

 

Figure 4.3. Shenzhen biogas plant overall process. 
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Figure 4.4. Identifying the feed categories’ importance using Catboost feature importance. 

4.4.3. Deep learning algorithms training and performance comparison 

4.4.3.1. Learning curves 

Figure 4.5 shows each algorithm’s learning curves for training and test datasets. The learning 

behavior of each model is based on monitoring and recording the training and test loss, which is 

NMSE, in this case, per epoch. From a statistical point of view, there is a concept called overfitting, 

which means employing many parameters while adjusting a statistical model. The main 

consequence of overfitting is that it decreases the model’s predictive capability. Therefore, the 

study used an early stop mechanism to optimize the number of epochs. This mechanism prevents 

overfitting and makes the model more efficient (Raskutti et al., 2014). This process prevents 

overfitting and contributes to the model’s generalization (Chollet, 2021). 
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Figure 4.5. A,B, and C Learning curves for (a) CNN-LSTM, (b) LSTM, and (c) GRU 

architectures, respectively.  

As shown in Figure 4.5, CNN-LSTM, LSTM, and GRU required 120, 100 and 113 epochs, 

respectively, determined by the early stop mechanism. The first two models were trained more 

stably compared to GRU. Moreover, our models did not experience overfitting since the learning 

graphs of training and test datasets are stable and close to each other (Figure 4.5).  

4.4.3.2. Performance comparison between deep learning architectures 

The studyhas applied different deep learning algorithms to the Shenzhen biogas dataset to 

ensure that the proposed architecture outperforms other models. Table 4.3 shows the performance 

of leveraged deep learning models for biogas production forecasting. LSTM, CNN-LSTM, and 

GRU were employed for time series prediction, and three metrics (NMSE, NRMSE and NMAE) 

were considered to evaluate the performance of algorithms. Computational results demonstrate 

that the proposed hybrid CNN-LSTM architecture outperformed conventional deep learning 

algorithms. Hence, the study selected the CNN-LSTM architecture for biogas production 

forecasting.  

Table 4.3. Performance comparison of deep learning architectures. 
Model  NMRSE NMSE NMAE 
LSTM 0.089 0.008 0.065 
CNN-

LSTM 
0.078 0.006 0.060 

GRU 0.085 0.006 0.063 
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Figure 4.6 includes three time-series plots showing the predicted and actual Shenzhen biogas 

facility production performance. The blue line shows the actual amount of biogas produced, and 

the solid red line shows the predicted biogas production. The result of the leveraged CNN-LSTM 

model is more accurate than the other two deep learning-based models. 

 

Figure 4.6. Comparison of actual and predicted values for (a) CNN-LSTM, (b) LSTM and, (c) 

GRU models respectively. 

4.4.4. Performance comparison with convolutional machine learning models 

The study applied different machine learning techniques to the dataset and compared their 

results to this study developed CNN-LSTM’s result to prove the proposed model’s efficiency and 

usefulness. The developed hybrid deep learning architecture showed the lowest error compared to 

all leveraged machine learning algorithms: RF, Extreme Gradient Boosting (XGBoost), Catboost, 

and KNN. This study used 10-fold cross-validation for performance comparison. Within a 10-fold 

cross-validation, the dataset is partitioned into 10 equal parts. Then, 10 iterations of training and 

testing are performed, where each fold will be the test dataset once (Refaeilzadeh et al., 2016). As 

a result, this study developed hybrid deep learning model gained the lowest NMSE followed by 

Catboost, XGBoost, RF, and KNN. The boxplot (Figure 4.7) illustrates the machine learning 
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methods' measured errors (NMSE) and stability. Moreover, the settings of leveraged machine 

learning models are indicated in Table 4.4 which were determined by gridsearch cross validation 

method.  

  

Figure 4.7. Comparison of machine learning models performance and stability 

Table 4.4 Hyperparameters for machine learning models. 
Model Hyper parameters 

Random Forest No of estimators = 170, max depth = 4 
Catboost Grow policy = symmetric tree, max depth = 6 
XGBoost No of estimators = 1400, max depth = 5 

KNN No of neighbors = 6 

4.5. DISCUSSION 

The study built a hybrid ML-DL method for optimizing and forecasting the performance of 

an industrial-scale biogas system. Compared to ML or DL algorithms that are only focused on 

predicting the final production, The current study’s proposed method provides generalized 

forecasting results with computational efficiency. It enables us to identify and investigate effective 

parameters in the system. Adjusting input parameters (feedstocks in our case) enhances the process 

and, subsequently, the final production (biogas yield). The dataset in this study was first used by 

De Clercq et al. (2019), who employed different ML algorithms alongside intensive feature 
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engineering to predict biogas system production. In this study, the Catboost part of the model 

identifies important parameters, and then the CNN-LSTM part predicts the system production. 

Figure 4.8 compares this study’s proposed method and that of Clercq et al. (2019)’s AI-based 

method that focused on the same biogas systems.  

Figure 4.8 shows that this study’s developed pipeline is significantly smaller than Clercq et 

al. (2019)’s; thus, it is more flexible for different time series tasks. The drawback of this study is 

that operational and technical parameters have not been included in the Shenzhen biogas dataset 

which has been used in this study to build the model. However, it is vital to consider different 

operational parameters since biogas system production depends on the performance of the biogas 

digester, which is affected by different variable parameters (pH, temperature, OLR, HRT, mixing 

ratio, etc.). Future studies can benefit from combining IoT and AI to enhance biogas systems. 

Considering recent development in IoT, operational parameters, such as pH, OLR, HRT, 

temperature, etc., and microbiological features of the microorganisms of the biogas system can be 

measured with high accuracy on an hourly or daily basis by cutting-edge sensors. Expanding the 

biogas dataset by adding the mentioned variables with precisely recorded data will enhance data-

driven analyses and make them more reliable in solving real-world problems. Besides, I can obtain 

more significant results and reduce the model bias by compiling more data points and increasing 

the dataset size. This study’s proposed model can be utilized in various fields of time series 

forecasting, from different renewable energy systems to medical domains.  
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Figure 4.8. Comparison between Clercq et al. (2019) and my methods and results.  

4.6. CONCLUSIONS 

This research aimed to empower industrial-scale biogas systems’ optimization and 

forecasting performance by developing a hybrid AI model based on time series data measured over 

more than one year. This study trained different ML algorithms, RF, Catboost, XGBoost, and 

KNN, to investigate the importance of each parameter on the system performance. This study 

chose Catboost since it showed more stability and the lowest error. Following the feature selection 

part, this study leveraged hybrid CNN-LSTM DL architecture to forecast system performance. It 

gained significant results with an NMSE of 0.078, compared to the other two single DL 

architectures, LSTM and GRU, with NMSEs of 0.089 and 0.144, respectively. Leveraging AI in 

the biogas plant domain can increase stakeholders’ benefits by improving the system and reducing 

operational costs. Also, Future studies can consider a more comprehensive dataset and develop a 

user-friendly platform that can benefit decision-makers and investors. In this regard, stakeholders 
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can identify the pros and cons of their investments before constructing a biogas facility considering 

different environmental, economic and technical parameters.  
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CHAPTER FIVE 

BIOGAS PREDICTION USING A HYBRID APPROACH OF 
VARIATIONAL AUTO ENCODER AND MACHINE LEARNING 

MODELING  
 

5.1. ABSTRACT  

This study aims to predict bio methene yeild of diverse subsrtrates considering their organic 

components (carbohydrates, protein, fat, and lignin) using machine learning models. In this regard, 

75 data points from previous litretures were compiled. However, considering lack of sufficient 

data for training supervised machine leanring models, the study leveraged a deep-learning based 

data augmatation techniqe to build a dataset, with 500 data points, which has similar statistical 

charactrestics to the original dataset. To predict biogas yeild, the study used three ensamble 

models, XGboost, Catboost, and Random Forest that were hyper-tuned using nested cross-

validation method. XGboost outperformed others with Root Mean Square Error (RMSE) of 0.165 

and R2 of 0.75. The study also investigated the effect of each organic component of substrates on 

the the biogas production. The results show that “fats” has the highest impact on biogas production 

while “protein” has the lowest effect. The developed pipeline can be used in other domains dealing 

with data limitation.  

Keywords: Machine Learning, Data Augmatation, enasmble learning, biogas production 
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5.2. INTRODUCTION 

Renewable energy is booming with growing importance because it can address several 

global challenges. Biogas is a renewable fuel that can supply energies (heat and electricity) that 

can replace those derived from fossil fuels (Heiker et al., 2021). Anaerobic digestion (AD) is a 

process in which bacteria break down organic substrates in the absence of oxygen to grow and 

produce biogas, which usually contains 50-70% methane (CH4) and 30-50% carbon dioxide (CO2) 

(Xu et al., 2018).  

AD technology has been successfully applied in various sectors, including wastewater 

treatment plants, livestock farming, and treating the organic fraction of municipal solid waste 

(OFMSW). AD offers an effective solution for treating sludge in wastewater treatment plants, 

reducing its volume, eliminating pathogens, and producing biogas. Additionally, AD is a 

sustainable approach for managing and treating manure in livestock farming, minimizing 

emissions while simultaneously generating biogas for on-site energy needs. Moreover, applying 

AD in treating the OFMSW enables the diversion of organic waste from landfills, reducing 

methane emissions, and generating biogas that can be utilized for energy production, fostering a 

more sustainable waste management approach (Cruz et al., 2022).  

According to the United States Environmental Protection Agency, 146 million tons of 

municipal and non-hazardous solid waste were landfilled in 2019, which was almost 50% of total 

generated solid. However, the recovery ratio for food waste was 11.8 % which accounted for 

almost 35 million tons of municipal and non-hazardous solid waste. Methane emissions from 

organic waste in landfills are a critical environmental issue (Nordin et al., 2022). Due to methane’s 

25-fold higher global warming potential compared to CO2, landfills are significantly contributing 

to global warming (Sabour et al., 2020). Accordingly, interest is a growing in diverting organic 
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food waste from landfills to AD facilities, which are considered the most environmentally 

favorable option (Jaunich et al., 2020). The biogas generated through AD offers versatile 

applications, including electricity generation and household heating, serving as a sustainable 

alternative to traditional energy sources. Additionally, it can viably substitute fossil fuels in 

vehicles, further promoting the adoption of renewable energy in transportation. It is worth 

mentioning that AD exhibits comparatively lower capital, operational, and managerial costs (Mulu 

et al., 2021), while effectively addressing organic waste management, climate change mitigation, 

and bioenergy production (Bekchanov et al., 2019).  

The AD process involves four primary stages (Figure 5.1): hydrolysis, acidogenesis, 

acetogenesis, and methanogenesis (Zabed et al., 2020). Hydrolytic bacteria release enzymes that 

break down particulate and colloidal biomass into soluble forms during hydrolysis. Carbohydrates, 

proteins, and lipids are enzymatically degraded into monosaccharides, amino acids, and long-chain 

fatty acids, respectively (Naik et al., 2021). In the acidogenesis stage, specific microorganisms 

metabolize hydrolysis products, producing hydrogen (H2), CO2, alcohols, and volatile fatty acids 

(VFAs). An excessive amount of VFA decreases pH and inhibits microorganisms’ activities 

(Akbay et al., 2022). Acetogenesis is a transitional stage, where acetogenic bacteria oxidize VFAs 

and long-chain fatty acids to generate acetic acid, CO2, H2, and water (Deschamps et al., 2022). 

This stage facilitates the breakdown of long-chain VFAs into short-chain VFAs, such as acetic 

acid and butyric acid, which are readily utilized by methanogenic archaea (Deschamps et al., 

2022). Methanogenesis, the final stage of AD, involves two types of microorganisms: acetoclastic 

methanogens, which convert acetate to methane, and hydrogenotrophic methanogens, which 

convert H2 and CO2 to methane (Kougias and Angelidaki, 2018). 
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Figure 5.1. The Anaerobic digestion stages. 

 

The biochemical methane potential (BMP) test shows the ultimate methane potential of 

substrates (Filer et al., 2019). The BMP test involves triplicate sets of serum bottles, including 

blank, control, and substrate-fed, to ensure the test accuracy and reliability. Substrate bottles 

contain inoculum, the substrate, and basal medium, while the blank bottle includes inoculum and 

a medium or water without a substrate to account for residual organic matter (Filer et al., 2019). 

Within control bottles, there are inoculum, a control substrate, usually a pure substrate such as 

glucose, and a nutrient medium. Biogas production is monitored over thirty or more days using 

the syringe method, liquid displacement, manometric measurement, mass loss, or biogas 

composition monitoring until biogas production ceases (Filer et al., 2019). The BMP results 

accurately indicate the quantity of methane generated from the substrate (Calabrò et al., 2018). 
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However, the BMP outcomes are influenced by different parameters such as microbial culture 

adaptation, organic loading, carbon-to-nitrogen ratio, pH, temperature, and other variables. 

Furthermore, the BMP test is time-consuming and does not provide immediate results (Argiz 

et al., 2020). Thus, there is a need for a faster and smarter method to predict methane yield 

(Tsapekos et al., 2015). In order to overcome the conventional BMP test method limitations, new 

instruments have been developed, such as the automatic methane potential test system (AMPTS). 

The AMPTS removes CO2 and other acid gas in the biogas before estimating the CH4 yield; the 

instrument functionality is based on principles of the conventional BMP test (Shi, 2012). 

Therefore, in such a system, generated methane is directly measured on line using the liquid 

displacement and buoyancy method. Although the AMPTS can produce high-quality data and 

require minimum labour resources, it needs sound systems (Shi, 2012). There are also other 

methods to determine BMP, like, spectroscopy methods. These methods are employed to analyze 

how radiation interacts with matter in the ultraviolet (UV), visible, and infrared (IR) regions. These 

techniques assess properties such as absorbance, transmission, diffusion, or fluorescence. There 

are two main types of spectroscopy: atomic spectroscopy, which measures substances in a gaseous 

state after volatilization, and molecular spectroscopy, which directly analyzes substances in liquid 

form (Spanjers and van Lier, 2006; Esteves et al., 2012). Infrared (IR) spectroscopy techniques 

primarily focus on the interactions between chemical bonds. Two common examples of IR 

spectroscopic instruments are near-infrared spectroscopy (NIR) and Fourier transform mid-

infrared spectroscopy (FTIR).   

In determining BMP, the Envital® kit utilizes a fluorescence redox indicator. It is worth 

noting that this tool is still in its early stages of development and refinement (Bellaton et al., 2016). 

Researchers have utilized NIR spectroscopy in conjunction with chemometric modeling to predict 
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BMP values for a wide range of feedstocks, considering its ability to quantify compounds within 

the NIR radiation range (12,821 to 3,959 cm-1) makes it well-suited for BMP estimation. This 

method is sensitive to interactions involving C-H, N-H, and O-H bonds, which are prevalent in 

many organic compounds. While NIR method has shown promising results for BMP prediction, 

there are challenges to address, particularly regarding the standard error of the laboratory reference 

method (Ward, 2016). The initial attempts to measure BMP using FTIR spectroscopy were 

conducted by Bekiaris et al. (2015). This technology has proven to be suitable for in-line 

determination of various parameters such as VFA, alkalinity, chemical oxygen demand (COD), 

and total organic carbon (TOC) (Spanjers and van Lier, 2006). FTIR spectroscopy requires only a 

small amount of the sample for analysis. However, it is costly and interpreting the obtained spectra 

can be more challenging than NIR spectroscopy due to overlapping overtones and combination 

bands (Bekiaris et al., 2015). Analyzing the chemical composition of the substrates provides an 

alternative approach for predicting its BMP, as it is influenced by the ’biomass’s chemical 

characteristics (Godin et al., 2015). Buswell and Mueller (1952) developed elemental composition 

analytical equations (C, H, O, and N) of the substrate that have proven to predict  stoichiometric 

methane production effectively. These stoichiometric equations exhibit high accuracy when 

applied to easily biodegradable substrates such as cellulose (Jingura et al., 2017). However, their 

reliability decreases when predicting the BMP of complex and slowly degradable compounds such 

as lignocellulosic biomasses (Thomsen et al., 2014). Consequently, these equations are mainly 

used to measure substrate biodegradability by comparing the methane yield from experimental 

BMP batch tests to the theoretical stoichiometric value.  

 Different studies used mathematical models to predict BMP; for instance, Hu et al. (2017) 

used two modeling methods as alternatives to the time-consuming BMP test for estimating the 
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ultimate specific methane yield. They considered elemental content and organic composition to 

calculate the theoretical methane yield of various leafy vegetables. Similarly, Zheng et al. (2013) 

investigated the biochemical composition of biodegradable solid wastes and predicted methane 

yield by BMP tests. Since BMP test showed slow results, they used a modified Gompertz equation 

to build a predictive model to estimate cumulative methane yield potential. These methods require 

intensive resources or cannot be used for various substrates.  

Artificial intelligence techniques can be leveraged into this domain to build a generalized 

capability of predicting the methane yield of a wide range of substrates. However, there are not 

sufficient data points to train machine learning models in this domain. Therefore, data 

augmentation techniques can be a viable solution. In this research, we aim to overcome data 

limitations in the biogas domain and build a generalized model capable of predicting the 

biomethane yield of substrates based on their organic components by machine learning models. 

5.3. METHODOLOGY  

5.3.1. Data collection 

The dataset used in this study is from Hegazy et al. (2023); a manuscript submitted to 

energies . This dataset contains 75 data points, including a wide range of substrates associated with 

their organic fractions of carbohydrate (cellulose, hemicellulose), protein, and fat, theoretical and 

experimental methane yields, and biodegradability collected from previously published papers. 

5.3.2. Data preprocessing and augmentation 

In this step, two features were dropped from the original dataset: “biodegradability” and 

“theoretical methane yield”. Afterward, the data input shape was made suitable for the variational 

autoencoder (VAE) model (Sønderby et al., 2016). Since we had a limited number of data points 
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for training the machine learning model, we utilized a high-level neural network API from Keras 

library to leverage the VAE model, a deep learning-based data augmentation technique. 

Autoencoders are a type of neural network that can learn a compressed representation or encoding 

of input data, which is then utilized to reconstruct the original input data (Bank et al., 2020). On 

the other hand, generative models can generate new samples that resemble the training data 

(Shaham et al., 2019). VAEs combine both architectures by learning to encode input data into a 

lower-dimensional latent space and then decoding it back into the original data space. During the 

training process, the model regularizes the encoding distribution to make that the latent space is 

regular enough and avoid overfitting (Sønderby et al., 2016). VAEs have been shown to be 

effective in generating complex generative models of data and have yielded state-of-the-art 

machine learning results in image generation and reinforcement learning. In a VAE, the encoding 

process involves mapping the input data to a distribution of latent variables, typically modeled as 

a multivariate Gaussian distribution (Sønderby et al., 2016). The encoding network learns the 

parameters of this distribution, including the mean (µ), and variance (σ	#), which represent the 

latent space (Akrami et al., 2022). Mathematically, the encoder takes an input x and produces a 

distribution q(z|x) over the latent variable z. This distribution is parameterized by the ’encoder’s 

output, which is composed of the mean vector μ and the diagonal covariance matrix Σ (Akrami et 

al., 2022). The latent variable 𝑍 is sampled from this distribution using the reparameterization 

trick, where 𝑍 = 	µ	 + (ε × 	σ)	 with ε sampled from a standard Gaussian distribution. During 

training, the VAE encourages the learned distribution to approximate a standard Gaussian 

distribution by minimizing the Kullback-Leibler (KL) divergence between q(z|x) and the standard 

Gaussian distribution p(z). This is represented by Eq. 5.1: 

KL(q(z|x) || p(z)) = -0.5 × Σ (1 + log(σ	#) – µ#- σ	#)      (5.1) 
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Within the decoding process, samples are taken from the latent space and are mapped back 

to the original data space to reconstruct the input data. The decoder network generates a conditional 

distribution p(x|z) over the input data, which models the reconstruction of the original data given 

the latent variable (Akrami et al., 2022). This distribution models the reconstruction of the original 

data given the latent variable, and the parameters of this distribution are learned during training. 

VAE aims to maximize the log-likelihood of the data under the decoder distribution while also 

minimizing the KL divergence between the encoder distribution and the prior distribution over the 

latent space. The objective function that combines these two components is called the evidence 

lower bound (ELBO) (Eq. 5.2).  

ELBO(x) = E[log p(x|z)] – KL(q(z|x) || p(z))       (5.2) 

where E is the average value of the expression inside the square brackets with respect to a certain 

distribution. The first part of Eq. 5.2 denotes the reconstruction term and measures how well the 

VAE can reconstruct the input data x given a latent variable 𝑍. It computes the expected log-

likelihood of the data under the decoder distribution p(x|z). The second term, KL(q(z|x) || p(z)), 

represents the regularization term and measures the divergence between the encoder distribution 

q(z|x) and the prior distribution p(z) over the latent space. It measures how much information is 

lost when approximating the true posterior distribution with the encoder distribution. Figure 5.2 

shows the general architecture of VAE models. 

The developed VAE’s architecture consists encoded layer, defined as a dense layer with 

three units and a ReLU activation function, one latent space layer with two dense layers, and a 

decoded layer that is also a dense layer with seven units and a sigmoid activation function. 
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Figure 5.2. The architecture of variational autoencoder. 

 

The VAE is trained using a combination of the mean squared error (MSE) loss for reconstruction 

and the divergence loss to regularize the latent space distribution (K). The study also leveraged 

early stopping techniques to enhance the model generalization. Afterward, the generated data were 

added to the original data, and the final dataset was standard scaling of generated data points.  

5.3.3. Machine learning algorithms 

This study used three ensemble models, Catboost, Random Forest (RF), and Extreme 

Gradient Boosting (XGBoost), to predict methane yield based on substates’ chemical components 

and investigate the importance of components on each substate methane yield. According to 

Dorogush et al. (2018), Catboost is a boosted decision tree algorithm that effectively handles 

categorical features. It addresses a significant drawback of traditional boosting models, such as 

overfitting by utilizing decision tables, also known as oblivious trees (González et al., 2020) 

(Figure 5.3). These decision tables maintain the same splitting criterion for each level of the tree, 

resulting in symmetric and balanced trees. This approach enhances the model’s resistance to 

overfitting and facilitates faster learning during prediction (Lou et al., 2017).  



185 
 

 

Figure 5.3. Catboost algorithm schematic. 

 

XGBoost is a powerful algorithm for predicting the target value by comparing the 

predictions of a set of weaker models (Chen and Guestrin (2016)). To address the issue of 

overfitting, XGBoost incorporates LASSO and Ridge techniques. A notable characteristic of the 

XGBoost algorithm is its built-in cross-validation solution applied during each iteration. This 

feature helps assess the model’s performance and prevents overfitting. XGBoost employs the 

gradient descent method and is categorized as an ensemble tree method.  

Random Forest (RF) is an ensemble learning algorithm that combines the predictions of 

multiple decision trees to generate results (Badillo et al., 2020). It leverages the power of multiple 

algorithms by evaluating several decision trees simultaneously and then aggregating their results 

to obtain an optimal prediction. The RF algorithm begins by randomly selecting samples from the 

given dataset, where a decision tree is constructed for each sample, and the predictions of these 

individual trees are then averaged. This averaging process results in improving the robustness of 

the final prediction.  

5.2.4 Optimizing hyperparameters 
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To hyper-tune and generalize the developed models, the study conducted nested cross-

validation on each model (Figure 5.4). In nested cross-validation, there are outer and inner cross-

validation loops (Cawley and Talbot, 2010). The outer loop divides the data into multiple folds 

where each fold acts as a holdout set for evaluating the model’s performance. On the other hand, 

the inner loop, nested within each outer fold, performs cross-validation again to tune the model’s 

hyperparameters. During the inner loop, the data within the outer fold is further divided into 

multiple folds, known as the inner folds. The inner loop is responsible for hyperparameter tuning, 

where different combinations of hyperparameters are tested using the inner folds. Once the optimal 

hyperparameters are determined, the model is trained on the entire outer fold to compute the 

model’s performance. The mentioned process is repeated for each outer fold, and the evaluation 

metrics from all the folds are aggregated to provide an overall assessment of the model’s 

performance (Cawley and Talbot, 2010). 

 

Figure 5.4. Nested cross-validation. 
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5.3.5. Model evaluation 

The models were evaluated using  three different metrics, 𝑅	#, normalized mean square error, 

and normalized root mean square error Calculated using Eqs. 5.3 to 5.5. 

𝑅	#= C*+,-	
C

           (5.3) 

𝑀𝑆𝐸 = 	 *
+
	× ∑ (𝑜(	–	𝑝(	)	#+

(.*          (5.4) 

𝑅𝑀𝑆𝐸 = O∑ (9!	–	7!	)#$
!%&

+
          (5.5) 

where n denotes the number of instances; 𝑝(	; is the predicted value, 𝑜(	 is the actual value; 𝑜-B" 

and 𝑜-(+ are the maximum and minimum actual values, respectively. 

5.4. RESULTS AND DISCUSSION 

5.4.1. Augmented data via VAE 

The VAE generated 500 data points out of 56 given data points. In total, 556 data points, 

divided to train and test sections with a ratio of 0.8, were used for building machine learning 

pipelines. Table 5.1 provides the main statistical characteristics of the real and augmented dataset.  

Table 5.1. Main statistical characteristics of the real and augmented data  
Real Augmented 

Features Mean Standard  
deviation 

Mean Standard  
deviation 

Carbohydrate 0.579661 0.236489 0.627699 0.199740 
Protein 0.394000 0.167689 0.404619 0.148129 

Fats 0.478964 0.162360 0.467246 0.147769 
Cellulose 0.409964 0.197420 0.429572 0.168087 

Hemicellulose 0.425929 0.202125 0.466284 0.177735 
Lignin 0.486875 0.101977 0.443058 0.090414 

Experimental methane 
yield 

0.528732 0.118915 0.534889 0.103239 
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As it can be seen, real and augmented data had similar mean and standard deviation. Figure 

5.5 shows the performance of the developed VAE model. Considering the improvement of the 

model and the closeness of both graphs to each other, the model has been generalized. 

 

Figure 5.5. Training and loss validation of proposed variational autoencoder 

5.4.2. Performance compression of machine learning models  

In this study, three ensemble learning techniques were employed to predict the potential 

methane yield of each substrate. As mentioned earlier, the study conducted nested cross-validation 

to prevent the models from overfitting and improve their generalization. Table 5.2 provides the 

most important optimal tuned hyperparameters for each model.  

 

Table 5.2. The most important tuned hyperparameters in developed machine-learning models 

Model Random Forest Extreme Gradient Boosting Catboost 

Hyper 
parameters 

Number of 
estimators 

Max 
depth 

Min sample 
split 

Max 
depth Min child weight Depth Learning 

rate 

 150 15 4 4 8 6 0.01 
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Table 5.3 illustrates the performance of each employed machine learning technique. 

XGBoost outperformed other developed models with MSE and RSME of 0.027, and 0.165, 

respectively. Moreover, Figure 5.6 shows the results of the developed predictive models in this 

study where XGBoost fits the data better than other models. 

 

Figure 5.6. Predictive results versus actual values for (A) Extreme Gradient Boosting, (B) 
Random Forest, and (C) Catboost 

Table 5.3. Models’ performance comparison 
Model Error 

MSE RMSE R2 
Extreme Gradient Boosting 0.027 0.165 0.75 

Random Forest 0.13 0.36 0.69 
Catboost 0.1 0.32 0.71 

MSE = Mean Square Error; RMSE = Root Mean Square Error 

5.4.3. AI-based investigation of chemical components importance 

Considering that XGBoost performed better on the dataset in predicting the methane yield, 

the study considered its results to investigate the effect of each chemical component on the 

substrates’ methene yield. Figure 5.7 illustrates the relative importance of each component of the 

substrate. As it can be seen in the Figure 5.7, the fat group is the most important in producing 

biomethane. This is because fats have more electrons, resulting in higher biomethane production 

(Saady and Masse, 2015). More specifically, methanogenic microorganisms such as lipolytic 
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bacteria and archaea can break down fats into simpler compounds, such as fatty acids, glycerol, 

and ultimately, methane (He et al., 2018). On the other hand, proteins undergo a more complex 

degradation process involving hydrolysis into amino acids and subsequent conversion into volatile 

fatty acids and ammonia. Moreover, the results show that fats contribute more than carbohydrates 

in producing biomethane, which is confirmed by previous studies’ results. For instance, Saady and 

Masse (2015) indicated that the stochiometric methane yield per gram of volatile solids for fat and 

carbohydrate is 1014 and 415 NL CH4 kg−1 VS, respectively, which means that fats can produce 

more than double the quantity of methane compared to carbohydrates. 

 

Figure 5.7. The relative effect of different chemical components in producing methane 

The developed AI method in this study exhibits versatility beyond the biogas domain and 

holds potential for application in various environmental domains dealing with data limitations. The 

proposed method demonstrates adaptability across various industrial and laboratory scale tasks, 

from time series analysis to computer vision problems. 
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5.4.4. Application of AI-based models in the anaerobic digestion process 

Previous studies employed different data augmentation techniques to overcome data 

limitations in the AD domain for laboratory- and industrial-scale problems. For example, Asadi 

and McPhedran (2021) aimed to determine GHG emission rate estimates from a cold-region 

biological nutrient removal municipal wastewater treatment plant (MWTP) using a hybrid 

approach combining a generative adversarial network (GAN) with regression modeling. The 

nonlinearity and complexity of the biological processes involved and limited data availability 

challenged them in modeling GHG emissions. To address these issues, they developed artificial 

data generation algorithms using GAN, which had not been previously applied to MWTP 

modeling. Laboratory-scale reactors and facility-monitored operating parameters were utilized to 

predict emission rates through the GAN and regression models. They achieved the best result by 

generating 100 data points where the RMSE was 3219. Their CH4 and N2O emission rate estimates 

modeling RMSE values were 1.35 and 0.588, respectively. Xu et al. (2020) applied hybrid random 

standard deviation sampling and a deep learning model to predict volatile fatty acids through the 

anaerobic fermentation. A random standard deviation sampling method was developed for virtual 

data augmentation using the mean values (x) and standard deviations (a) derived from multiple 

experimental determinations. Subsequently, deep learning models were established to acquire 

knowledge from the virtual data and make predictions regarding VFA production. The findings 

revealed that training the deep learning model with 16 hidden layers, 100 hidden neurons in each 

layer, and 20,000 virtual samples (comprising five input variables of the anaerobic fermentation 

process) resulted in improved outcomes. The model achieved an impressive correlation coefficient 

of 0.998 and a minimum mean absolute error of 3.28%. Table 5.4 provided several previous studies 

that used data-driven methods to overcome their data limitation in environmental fields. 
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Table 5.4. Application and performance efficiency of various AI-based models for the determination of biogas. 

AD process Input parameters Output 
parameters 

Compared ML 
algorithms 

Most 
accurate 
model 

Prediction performance Reference 

R2 RMSE 

AD of spent mushroom 
compost with wheat straw 

C/N ratio, temperature, 
and retention time 

Biogas 
production 

Logistic model, 
ANN, and ANFIS 

ANFIS 0.9996 0.1940 Najafi & Ardabili (2018) 

Data from two AD facilities 
in south China (Hainan and 
Shenzhen) 

A set of waste inputs 
(municipal fecal residue, 
kitchen food waste) 

Biogas 
production 

Logistic regression, 
SVM, RF, 
XGBoost, and kNN 

kNN 0.87 – Clercq et al. (2019) 

4 years of operational data 
from an AcoD facility 

Waste type and daily input 
volume, electricity and 
water consumption, and 
auxiliary chemical inputs 

Daily 
biomethane 
production 

Elastic net, RF, 
XGBoost 

RF and 
XGBoost 

0.88 – Clercq et al. (2020) 

17 samples with the same 
AD configuration from 
published works 

Total carbon, total 
nitrogen, C/N ratio, 
cellulose, xylan, lignin and 
glucan content, and 
temperature 

Methane 
yield 

RF, SVM and kNN GLMNET 
and KNN 

0.73 
(GLMNET) 

26.6 (kNN) Wang et al. (2020) 

29 sets of experimental data 
from 9 published works on 
ZVI-based AD reactors 

TSf, VSf, sCOD, ISR, Tsi, 
Vsi, pH of feedstock and 
inoculum, temperature, 
ZVI dosage, and ZVI 
particle size 

Methane 
production 

RF, XGBoost, and 
DL 

XGBoost – 21.09 Xu et al. (2021) 

50 samples of data-sets from 
lab-scale  

Genomic data, VFAs, 
temperature, OLRs, HRT, 
and waste types 

Methane 
yield 

RF, kNN, ANN, 
and XGBoost 

RF 0.82 0.043 Long et al. (2021) 

360 days data from a lab-
scale reactor with food 
waste  

pH, alkalinity, COD, VFA Methane 
yield 

RF, Xgboost, SVR, 
RNN 

RNN 0.9731 0.023 Park et al. (2021) 

VFA: Volatile fatty acids; ZVI: Zero-valent ion; ANFIS: Adaptive network-based fuzzy inference system; ANN: Artificial neural networks; C/N: Carbon-to-nitrogen ratio; COD: 
Chemical oxygen demand; GMLET: Logistic regression multiclass; HRT: Hydraulic retention time; kNN: k-nearest neighbors; OLR: Organic load ratio; RF: Random forest; RMSE: 
Root mean squared error; RNN: Recurrent neural network;  SVM: Support vector machine; TAN: Total ammonia nitrogen; TVS: Total volatile solids; AcoD: Anaerobic co-digestion; 
AD: Anaerobic digestion; XGBoost: Extreme gradient boosting.
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The dataset in this study has a small number of data points and has a sparse nature since data 

points have been compiled from different sources without considering the similarity between their 

chemical components or their reaction conditions. To clarify, each of the substrates can be protein-

rich or fat-rich, or they can be converted to methane through different reaction pathways 

(thermophilic or mesophilic) or different types of reactors (anaerobic sequencing batch reactors, 

tubular reactors, baffled digesters, up-flow anaerobic sludge blanket), etc. Therefore, capturing the 

pattern of this dataset is difficult via machine learning models. However, by leveraging the VAE 

technique, this study achived a promising results with an RMSE of 0.165. While Xu et al. (2021) 

used data points that all are based on zero-valent ion AD reactions and chose the same machine 

learning model (XGBoost) as their best model,  this study’s result is way better than Xu et al. 

results with an RMSE of 21.09.  Moreover, Wang et al. (2020) considered 17 samples with only 

the same AD configuration, and they achieved an RMSE of 26.6 with K nearest neighbor model. 

On the other hand, Park et al. (2021) and Clercq et al. (2020) modeled time seris dataset. Clercq et 

al. (2020) applied intensive feature engineering techniques and turned the task from regression to 

classification to achive a better results. Unlike Clercq et al. (2020) , Park et al. (2021) did not go 

through intensive data preprocessing and feature engineering leveraged Recurrent Neural Network 

(RNN) architecture and several machine learning models. They chose RNN since this model is 

more suitable for time seris tasks rather than other applied machine learning models and may not 

require that intensive feature engineering process. 

Future studies could expand the scope and enhance the work by incorporating two key 

approaches. First, increasing the size of the initial dataset can provide broader coverage of 

substrates, thus facilitating a more robust analysis and ensuring the model’s generalizability. 

Second, further investigation is warranted to consider the synergistic effects of mixed waste 
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substrates in real anaerobic digestion scenarios. Accounting for these interactions will enhance the 

accuracy and applicability of the pipeline for real-world applications. 

5.5. CONCLUSION  

This study employed XGBoost, Random Forest, and CatBoost models to predict the biogas 

yield of various substrates based on their chemical components. Additionally, it investigated the 

significance of each organic component in determining the methane yield of the biogas. Due to the 

limited availability of data in the biogas domain for AI modeling, a deep learning-based approach 

known as VAE was employed to generate synthetic data that mimicked the statistical 

characteristics of the original dataset. Following a meticulous hyperparameter tuning process using 

gridsearch cross validation, the XGBoost model outperformed all other models, achieving an MSE 

of 0.027 and an RMSE of 0.165. Notably, the feature importance analysis conducted by XGBoost 

revealed that the “fats” category emerged as the most influential group of chemical components in 

methane production in biogas while “proteins” group showed the lost effect on bio methene 

production.  

REFERENCES 

Heiker, M., Kraume, M., Mertins, A., Wawer, T., & Rosenberger, S. (2021). Biogas Plants 

in Renewable Energy Systems—A Systematic Review of Modeling Approaches of Biogas 

Production. In Applied Sciences (Vol. 11, Issue 8, p. 3361). MDPI AG. 

https://doi.org/10.3390/app11083361 

Xu, F., Khalaf, A., Sheets, J., Ge, X., Keener, H., & Li, Y. (2018). Phosphorus Removal and 

Recovery From Anaerobic Digestion Residues. In Advances in Bioenergy (pp. 77–136). Elsevier. 

https ://doi.org/10.1016/bs.aibe.2018.02.003 



195 
 

Cruz, I. A., Chuenchart, W., Long, F., Surendra, K. C., Andrade, L. R. S., Bilal, M., … & 

Ferreira, L. F. R. (2022). Application of machine learning in anaerobic digestion: Perspectives and 

challenges. Bioresource Technology, 345, 126433. 

Levis, J. W.; Barlaz, M. A.; Themelis, N. J.; Ulloa, P., Assessment of the state of food waste 

treatment in the United States and Canada. Waste Management 2010, 30, (8), 1486-1494. 

Nordin, N. H., Kaida, N., Othman, N. A., Akhir, F. N. M., & Hara, H. (2020, June). Reducing 

Food Waste: Strategies for Household Waste Management to Minimize the Impact of Climate 

Change and Contribute to Malaysia’s Sustainable Development. In IOP Conference Series: Earth 

and Environmental Science (Vol. 479, No. 1, p. 012035). IOP Publishing. 

Sabour, M. R., Alam, E., & Hatami, A. M. (2020). Global trends and status in landfilling 

research: a systematic analysis. Journal of Material Cycles and Waste Management, 22, 711-723. 

Jaunich, M. K., Levis, J. W., DeCarolis, J. F., Barlaz, M. A., & Ranjithan, S. R. (2019). Solid 

waste management policy implications on waste process choices and systemwide cost and 

greenhouse gas performance. Environmental science & technology, 53(4), 1766-1775. 

Mulu, E.’ M'Arimi, M. M., & Ramkat, R. C. (2021). A review of recent developments in 

application of low cost natural materials in purification and upgrade of biogas. Renewable and 

Sustainable Energy Reviews, 145, 111081. 

Bekchanov, M., Mondal, M. A. H., de Alwis, A., & Mirzabaev, A. (2019). Why adoption is 

slow despite promising potential of biogas technology for improving energy security and 

mitigating climate change in Sri Lanka?. Renewable and Sustainable Energy Reviews, 105, 378-

390. 



196 
 

Zabed, H. M., Akter, S., Yun, J., Zhang, G., Zhang, Y., & Qi, X. (2020). Biogas from 

microalgae: Technologies, challenges and opportunities. Renewable and Sustainable Energy 

Reviews, 117, 109503. 

Naik, G. P., Poonia, A. K., & Chaudhari, P. K. (2021). Pretreatment of lignocellulosic 

agricultural waste for delignification, rapid hydrolysis, and enhanced biogas production: A 

review. Journal of the Indian Chemical Society, 98(10), 100147. 

Akbay, H. E. G., Deniz, F., Mazmanci, M. A., Deepanraj, B., & Dizge, N. (2022). 

Investigation of anaerobic degradability and biogas production of the starch and industrial sewage 

mixtures. Sustainable Energy Technologies and Assessments, 52, 102054. 

Deschamps, L., Imatoukene, N., Lemaire, J., Mounkaila, M., Filali, R., Lopez, M., & 

Theoleyre, M. A. (2021). In-situ biogas upgrading by bio-methanation with an innovative 

membrane bioreactor combining sludge filtration and H2 injection. Bioresource Technology, 337, 

125444. 

Kougias, P. G., & Angelidaki, I. (2018). Biogas and its opportunities—A review. Frontiers 

of Environmental Science & Engineering, 12, 1-12. 

Filer, J., Ding, H. H., & Chang, S. (2019). Biochemical methane potential (BMP) assay 

method for anaerobic digestion research. Water, 11(5), 921. 

Argiz, L., Reyes, C., Belmonte, M., Franchi, O., Campo, R., Fra-Vázquez, A., ... & Campos, 

J. L. (2020). Assessment of a fast method to predict the biochemical methane potential based on 

biodegradable COD obtained by fractionation respirometric tests. Journal of Environmental 

Management, 269, 110695. 



197 
 

Tsapekos, P., Kougias, P. G., & Angelidaki, I. (2015). Biogas production from ensiled 

meadow grass; effect of mechanical pretreatments and rapid determination of substrate 

biodegradability via physicochemical methods. Bioresource technology, 182, 329-335. 

Bekiaris, G.; Triolo, J. M.; Peltre, C.; Pedersen, L.; Jensen, L. S.; Bruun, S., Rapid estimation 

of the biochemical methane potential of plant biomasses using Fourier transform mid-infrared 

photoacoustic spectroscopy. Bioresource Technology 2015, 197, 475-481. 

Godin, B., Mayer, F., Agneessens, R., Gerin, P., Dardenne, P., Delfosse, P., & Delcarte, J. 

(2015). Biochemical methane potential prediction of plant biomasses: comparing chemical 

composition versus near infrared methods and linear versus non-linear models. Bioresource 

Technology, 175, 382-390. 

Buswell, A. M., & Mueller, H. F. (1952). Mechanism of methane fermentation. Industrial & 

Engineering Chemistry, 44(3), 550-552. 

Jingura, R. M., & Kamusoko, R. (2017). Methods for determination of biomethane potential 

of feedstocks: a review. Biofuel Research Journal, 4(2), 573-586. 

Thomsen, S. T., Spliid, H., & Østergård, H. (2014). Statistical prediction of biomethane 

potentials based on the composition of lignocellulosic biomass. Bioresource technology, 154, 80-

86. 

Doublet, J.; Boulanger, A.; Ponthieux, A.; Laroche, C.; Poitrenaud, M.; Cacho Rivero, J. A., 

Predicting the biochemical methane potential of wide range of organic substrates by near infrared 

spectroscopy. Bioresource Technology 2013, 128, 252-258. 



198 
 

Calabrò, P. S., Catalán, E., Folino, A., Sánchez, A., & Komilis, D. (2018). Effect of three 

pretreatment techniques on the chemical composition and on the methane yields of Opuntia ficus-

indica (prickly pear) biomass. Waste Management & Research, 36(1), 17-29. 

Yan, H., Zhao, C., Zhang, J., Zhang, R., Xue, C., Liu, G., & Chen, C. (2017). Study on 

biomethane production and biodegradability of different leafy vegetables in anaerobic 

digestion. AMB Express, 7, 1-9. 

Zheng, W., Phoungthong, K., Lü, F., Shao, L. M., & He, P. J. (2013). Evaluation of a 

classification method for biodegradable solid wastes using anaerobic degradation 

parameters. Waste management, 33(12), 2632-2640. 

Bank, D., Koenigstein, N., & Giryes, R. (2020). Autoencoders. arXiv preprint 

arXiv:2003.05991. 

Shaham, T. R., Dekel, T., & Michaeli, T. (2019). Singan: Learning a generative model from 

a single natural image. In Proceedings of the IEEE/CVF International Conference on Computer 

Vision (pp. 4570-4580). 

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., & Winther, O. (2016). Ladder 

variational autoencoders. Advances in neural information processing systems, 29. 

Akrami, H., Joshi, A. A., Li, J., Aydöre, S., & Leahy, R. M. (2022). A robust variational 

autoencoder using beta divergence. Knowledge-Based Systems, 238, 107886. 

Cawley, G. C., & Talbot, N. L. (2010). On over-fitting in model selection and subsequent 

selection bias in performance evaluation. The Journal of Machine Learning Research, 11, 2079-

2107. 



199 
 

He, J., Wang, X., Yin, X. B., Li, Q., Li, X., Zhang, Y. F., & Deng, Y. (2018). Insights into 

biomethane production and microbial community succession during semi-continuous anaerobic 

digestion of waste cooking oil under different organic loading rates. AMB Express, 8(1), 1-11. 

Saady, N. M. C., & Massé, D. I. (2015). Impact of organic loading rate on psychrophilic 

anaerobic digestion of solid dairy manure. Energies, 8(3), 1990-2007. 

Asadi, M., & McPhedran, K. N. (2021). Greenhouse gas emission estimation from municipal 

wastewater using a hybrid approach of generative adversarial network and data-driven 

modelling. Science of The Total Environment, 800, 149508. 

Xu, R. Z., Cao, J. S., Wu, Y., Wang, S. N., Luo, J. Y., Chen, X., & Fang, F. (2020). An 

integrated approach based on virtual data augmentation and deep neural networks modeling for 

VFA production prediction in anaerobic fermentation process. Water Research, 184, 116103. 

Long, F., Wang, L., Cai, W., Lesnik, K., & Liu, H. (2021). Predicting the performance of 

anaerobic digestion using machine learning algorithms and genomic data. Water Research, 199, 

117182. 

Xu, W., Long, F., Zhao, H., Zhang, Y., Liang, D., Wang, L., ... & Liu, H. (2021). 

Performance prediction of ZVI-based anaerobic digestion reactor using machine learning 

algorithms. Waste Management, 121, 59-66. 

Cata Saady, N. M., & Massé, D. I. (2015). Impact of Organic Loading Rate on Psychrophilic 

Anaerobic Digestion of Solid Dairy Manure. Energies (19961073), 8(3). 

Shi, C. (2012). Potential Biogas Production from Fish Waste and Sludge. 



200 
 

Bellaton, S., Guérin, S., Pautremat, N., Bernier, J., Muller, M., Motellet, S., ... & Rocher, V. 

(2016). Early assessment of a rapid alternative method for the estimation of the biomethane 

potential of sewage sludge. Bioresource Technology, 206, 279-284. 

Spanjers, H., & van Lier, J. B. (2006). Instrumentation in anaerobic treatment–research and 

practice. Water Science and Technology, 53(4-5), 63-76. 

Esteves, S., Miltner, M., & Fletch, S. (2012). Monitoring review and guide for the 

optimisation of anaerobic digestion and biomethane plants. Full Report. 

Najafi, B., & Faizollahzadeh Ardabili, S. (2018). Application of ANFIS, ANN, and logistic 

methods in estimating biogas production from spent mushroom compost (SMC). In Resources, 

Conservation and Recycling (Vol. 133, pp. 169–178). Elsevier BV. 

https://doi.org/10.1016/j.resconrec.2018.02.025 

 

 

 

 

 

 

 

 

 

 

 

 



201 
 

CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

 
6.1. SUMMARY  

In this study, for the first time, AI applications in renewable energy systems were 

comprehensively investigated using machine learning and natural language processing methods. 

In this regard, An algorithm was developed to retrieve unlimited documents from the Scopus 

database and preprocess them for analysis. total number of 5561 documents for time interval of 

2000-2021 were extracted and BERTopic was utilized to perform DTM and extract the main 

research themes. The temporal evolution of extracted 7 metatopics were assessed where wind and 

photovoltatic systems gaind the frist and second rank respectively while . biohydrogen gained the 

last rank. Also, the industrial scale biogas plant’s daily output was predicted using a hybird deep 

learning architecture (CNN-LSTM) and the impact of each input on daily biogas production was 

determined using an ensemble learning model (Catboost). The original daily-based dataset 

consisted of 18 variables, including separate measurements of inputs and outputs from tanks 

measured over 441 days. To analyze the entire system, certain features were considered, and new 

ones were created. For example, "1_acidification_hydrolysis tank feed" and 

"2_acidification_hydrolysis tank feed" features were summed to create a new feature called "acid 

feed". In total, 12 featuers were extracted out of 18 features. Different machine learning 

algorithms, including RF, Catboost, and XGBoost, were trained to assess the importance of each 

parameter on the system’s performance. Catboost was selected due to its stability and low error 

(NMSE= 0.015). The results revelead th“t "Acid Feed" had the greatest impact on the biogas 
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system and it followed by “waste oil” and “anaeroic feed” . Finally, six key features were selected 

out of twelve features. After the feature selection process, a hybrid CNN-LSTM deep learning 

architecture was utilized to forecast system performance. It achieved significant results with a 

normalized mean squared error (NMSE) of 0.078, outperforming the other single DL architectures, 

LSTM (NMSE of 0.089) and GRU (NMSE of 0.144). Moreover, a pipeline was developed to 

predict biomethen potetnional of various substrates. The original dataset was obtained from Chen 

and Saady (2023) study that contains 75 substrates with their chemical component and 

experimental methene yeild. Considering data limitation in this problem for training a supervised 

machine learning model, a deep learning approach called Variational Autoencoder (VAE) was 

employed to overcome data limitation. The generated dataset with 500 synthetic data points has 

the similar statistical characteristics to the real dataset. XGBoost, Random Forest, and CatBoost 

models were utilized in this study to predict the biogas yield of different substrates based on their 

organic components. The XGBoost model outperformed the other models, achieving a Mean 

Squared Error (MSE) of 0.027 and a Root Mean Squared Error (RMSE) of 0.165. 

6.2. CONCLUSIONS  

The major results obtained in this study are listed below:  

• Most frequent emoloyed algorthims in renewable energy systems’ publications were 

investigated during the stuied preiod. The emergence ‘deep learning’ as a major technique 

was followed by a rise in complex topics with a high level of uncertanity such as power 

cost optimization and wind prediction. 

• The results revealed the increasing use of machine/deep learning techniques in analyzing 

renewable energy data, specifically in wind and solar photovoltaic systems. 
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• The employed pipeline in this research, BERTopic, does not require an intensive data 

preproccessing which makes it more efficient than conventional models such as LDA. 

• The research themes and trends reflected significant recent investment in advanced AI 

learning techniques, marking a shift from conventional methods. 

• This systematic investigation can enhance the strategic decesion making in renewable 

eneryg systems. 

• The utlized hybrid Catboost-CNN-LSTM pipeline achieved significant results in 

forecasting the system’s performance. The developed method successfully predicted the 

industrial-scale biogas plant’s yield and effectively identified the importance of each 

system input. This pipeline can handle time series problems in various environmental fields 

such as water, air, or soil. 

• The developed pipeline introduced an improved method compared to previous relevant 

studies by eliminating the need for feature engineering and allowing direct prediction of 

biogas yield without conversion to a classification task.  

• Developed prototype can be scaled to be utlized in production by consdiering more 

environmental and technical parameters in real-time using IoT devices. 

• A deep learning approach called VAE was employed to overcome data limitation by 

generating synthetic data replicating the statistical characteristics of the original dataset of 

various substrates. 

• The XGBoost model outperformed the other empployed enasmble models, The 

significance of each organic component in determining the methane yield of biogas was 

investigated. The analysis of feature importance revealed that the category of "fats" 
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emerged as the most influential group of chemical components in methane production in 

biogas. 

• The developed pipeline can be used for different studies dealing with data limitation. 

• The main limitation of this study was lack of d 

6.3. RECOMMENDATION FOR FUTURE STUDIES  

The current study investigated AI applications in renewable energy. It investigated the 

importance of daily inputs to an industrial biogas plant, predicted its daily biogas production, and 

predicted the potantional mehtene yeild of diverese substates using machine learning models based 

on their organic components. To increase the scope of each study and get more comprehensive 

and realistic results, future studies are recommended to:  

• Explore other scientific databases, including Web of Science, PubMed, IEEE Xplore, 

ScienceDirect, or even consider additional data sources, such as patents, to complement 

the exploration of the research landscape. 

• Consider the entire body of the accessible documents, focusing on the methodology section 

to gain insights into methodological evolution instead of only using abstract and title. 

• Analyze published documents in other languages and incorporate other natural language 

processing (NLP) techniques such as GPT3 and WuDao 2.0 for their analyses. 

• Consider the automatic topic labeling process by pre-trained models such as T5 or other 

encoder-decoder architectures. 

• Consider operational parameters such as pH, Organic Loading Rate (OLR), Hydraulic 

Retention Time (HRT), temperature, and microbiological features of the microorganisms 
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into the dataset with precise and recorded data to enhance data-driven analyses and make 

it more reliable in addressing real-world problems. 

• Use optimization algorithms such as GA (genetic algorithm) to find the most values for 

each feature to achieve the highest performance. 

• Increase the size of the initial dataset to provide broader coverage of substrates, enabling a 

more comprehensive and robust analysis and enhancing the model's generalizability. 

• Explore the synergistic effects of mixed waste substrates in real anaerobic digestion 

scenarios to make the pipeline applicable for real-world applications. 

 


