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Abstract

Synthetic data are artificially generated data that closely model real-world measure-

ments, and can be a valuable substitute for real data in domains where it is costly

to obtain real data, or privacy concerns exist. Synthetic data has traditionally been

generated using computational simulations, but deep generative models (DGMs) are

increasingly used to generate high-quality synthetic data.

In this thesis, we create a framework which employs DGMs for generating high-

quality synthetic transaction sequences. Transaction sequences, such as we may see in

an online banking platform, or credit card statement, are important type of financial

data for gaining insight into financial systems. However, research involving this type

of data is typically limited to large financial institutions, as privacy concerns often

prevent academic researchers from accessing this kind of data. Our work represents

a step towards creating shareable synthetic transaction sequence datasets, containing

data not connected to any actual humans.

To achieve this goal, we begin by developing Banksformer, a DGM based on the

transformer architecture, which is able to generate high-quality synthetic transaction

sequences. Throughout the remainder of the thesis, we develop extensions to Banks-

former that further improve the quality of data we generate. Additionally, we perform

extensively examination of the quality synthetic data produced by our method, both

with qualitative visualizations and quantitative metrics.
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Lay summary

In this thesis, we develop a framework for creating synthetic banking data. The main

reason we are interested in this goal, is to help minimize privacy risks for organizations

that use computational tools to analyze banking data. The basic idea of our work,

is to use a machine learning algorithm to generate new synthetic banking datasets,

which contain artificial data not linked to any real customer. In order to be useful

for a wide range of applications, we aim to create high quality synthetic data, which

have the same statistical properties of real banking data.

There is some limited existing work on this topic. The most common method

for generating data of this type is using a simulator, and there are some simulators

tailored to generating transaction sequences, however they are limited by their model

assumptions. Our work leverages recent research on deep generative models, which

are a type of AI model which can be used to generate data. Specifically, we modify

the transformer architecture, which is able to generate realistic text sequences, to

create Banksformer, the basis of our synthetic data framework. We choose to base

our model on the transformer, because it is able to model complex statistical patterns,

which previous simulator approaches could not. Further, as our model is data-driven,

it is able to automatically learn the statistical patterns from a target real dataset,

making it easier to adapt to different domains. For instance, many banks cater to

specific clients, based on geographic and socioeconomic factors. By adopting a data-

driven approach, we can create synthetic datasets tailored to specific customer groups,

without changing our model. Instead, we would just need to train our model on

whatever kind of customer data we wish to generate. Our work has produced a high

quality synthetic banking data generator, and a framework for evaluating this type of

synthetic data, which can be used to help preserve private user data, while enabling

machine learning solutions.
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Chapter 1

Introduction

The field of banking and finance has undergone a significant transformation with the

advent of digital technologies. The vast amount of data generated by these tech-

nologies presents unique opportunities for researchers to analyze and understand the

behavior of financial systems, and detect harmful or malicious behavior. However,

accessing real-world banking data for research purposes is often challenging due to

privacy concerns and regulatory restrictions. Additionally, banks and other finan-

cial institutions often have limited incentives to share their data, particularly with

third-party researchers.

As a result, there has been a growing interest in the use of synthetic banking data

for research purposes [6, 17, 79], which allows researchers to analyze and understand

the behavior of financial systems, without the need for direct access to real-world

data. Synthetic data is data that has been artificially created to mimic the statistical

characteristics of real-world data, as opposed to data created by measuring a real-

world process. This approach allows researchers to generate large volumes of data

that are representative of the real world, without relying on private information from

individuals and organizations.

Despite this growing interest, there are still many open problems limiting the

quality of modern synthetic banking data. Many types of banking data, are naturally

model as sequences, whether those sequences describe the price of an asset over time

or transactions on an account. Sequences of transactions are particularly interesting,

because transactions typically occur at irregular intervals, unlike prices of an asset,

which may vary continuously, but are measured at fixed intervals. A major challenge



of modeling transaction sequences, is that we must both when and what the next

transaction will be. While there are already many tools for modeling irregular inter-

vals, such as Poisson point processes [153], these make many simplifying assumptions,

such as events being independent, which prevent them from being useful in creating

high quality banking data, as there are often relationships between non-consecutive

items in these sequences.

The goal of this thesis is to develop a methodology for generating realistic synthetic

transactions sequences, which can mimic the statistical properties of real datasets.

In the remainder of this Chapter, we provide an extensive literature review on the

background work on which our framework is based, and provide an overview of the

contributions made by this thesis.

1.1 Synthetic Data

The term synthetic data has been used in many contexts throughout the literature.

Very generally, synthetic data can be defined as any data not obtained by direct

measurement of a real-world process. This broad definition includes data produced

by: simulation, data engineers, adding noise to real data, anonymising real data, and

learning a model of real data.

Synthetic data can be useful in many scenarios. Once we have a properly config-

ured synthetic data generator for a given domain, we can easily generate new samples

from the target domain as needed. In areas where it is difficult or expensive to

obtain data, such as medical imaging, synthetic data can be used to augment real

datasets [24, 45, 49], or completely replace real data [57, 31]. Using synthetic data

to augment real datasets is helpful when dealing with datasets that under-represent

certain classes, if we can obtain new samples from these under-represented classes.

Studies have shown that training machine learning classifiers on a combination of real

and synthetic data leads to greater classification accuracy on real data, particularly

when the datasets are small [45, 24], or contain rare classes [49]. However, as noted

in [24], in some cases it is difficult to obtain high-quality synthetic samples from under-

represented classes using deep generative models (DGMs). Completely replacing real

data with synthetic data is often motivated by privacy or legal concerns associated

with sharing data. In addition to medical data [57, 31], this use case is common in
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other domains with similar concerns, such as retail banking data [6].

The idea of creating altered versions of datasets to preserve privacy is not new.

It dates back to at least 1993 when Donald Rubin [142] used imputation techniques

to create a synthetic version of the American Decennial Census. Rubin’s method

aimed to mask sensitive info and then train multiple regression models to estimate

the masked information. This method, which he called multiple imputation, then

created the final dataset by using each regression model to compute an estimate of

the masked data and combining these predictions into the values used in the final

synthetic dataset.

Generally, modern approaches to generating synthetic data are grouped into two

categories: Hand-designed (simulators) and data-driven (models). Hand-designed ap-

proaches involve manually designing a simulator that simulates certain aspects of the

real world. This approach can be more labor-intensive than data-driven approaches,

as often domain experts are needed to develop simulators, and the simulators are

usually designed for specific tasks. Further, the quality of the simulated data depends

heavily on the simulator’s design and may not accurately characterize the true data.

The main benefit of hand-designed simulators is that they are not trained directly on

the private data and thus are not concerned with exposing it.

In data-driven approaches, a machine learning model learns from training data to

generate data from our target distribution, removing the need for a manually designed

simulator. While some effort is still required to select or design a suitable generative

model, this is a much simpler task than designing a simulator, and generative models

are less domain-specific. This allows us to create a single framework for generating

synthetic data, which is capable of mimicking various datasets. The main drawback

of using a data-driven approach is that if care is not taken, the model may learn to

‘memorize’ the training data and can risk exposing the private data.

Currently, the idea of personally identifiable information (PII) is commonly used in

legal frameworks addressing the sharing of private information in fields such as health

care and finance [12]. The idea behind these frameworks is to designate a set of

features (such as addresses, timestamps, ID numbers, first and last name, etc.), which

could be used to identify an individual associated with a data record, and prevent the

sharing of any data with these features, or other features which could lead to the re-

identification of individuals. While intuitive, it has been shown that this approach can
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be problematic, as it can be challenging to determine with certainty what information

can be used to identify individuals. In fact, there are many well-documented instances

of publicly released datasets that were later used to re-identify participants, including

a popular Netflix dataset [109] and data from the human genome project [12, 95]. In

general, when trying to release data without releasing private information, there is a

trade-off between how well privacy is preserved and the utility of the released data,

as methods to preserve privacy tend to remove information from the original data.

Another issue with PII-based definitions of privacy is that, in addition to not always

protecting privacy, they can also be overly strict and do not allow the user to make

trade-offs between privacy and utility [12].

k-anonymity and (ε, δ)-differential privacy (DP) are two more recent definitions of

privacy, which both have parameters indicating the degree of privacy [12]. The idea

behind k-anonymity [144] is to ensure that for every record in a dataset, there are

at least k indistinguishable copies. This is accomplished through a combination of

removing data fields with unique information (such as phone numbers or ID numbers)

and to achieve k-anonymity, two primary techniques are used. Suppression, which

involves removing some fields, particularly those with unique information such as

phone numbers or ID numbers, and generalization, which involves aggregating values

into ranges. For example, an age field may be transformed into an age range field,

where a 23-year-old is encoded as age ∈ [20, 25), as opposed to age = 23. DP [36]

instead relies primarily on randomization to preserve privacy. DP has two constants,

ε, δ, where ε controls the strength of the privacy guarantee and δ is the probability of

the privacy guarantee being violated. Essentially, DP works by adding random noise

to the private data each time it is accessed.

The idea of creating synthetic datasets as a way to increase the accessibility of

banking transaction data is not new. In fact, throughout the past decade, there have

been various attempts at creating this type of synthetic data, such as BankSim [99],

PaySim [98] and AMLSim [176, 156]. While each of these models are tailored to

unique goals, they share many of the same underlying limitations.

BankSim and PaySim were developed by the same research group, and thus share

many commonalities. Both simulators rely on agent based simulation, which models

a set of entities that produce transactions. For instance, in BankSim there are three
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types of entities – customers, merchants and fraudsters [99] – which interact through-

out the simulation, according to different behavior profiles. During the simulation, as

these entities interact they produce transaction records, similar to the type of trans-

action records stored by banks. PaySim uses a similar approach, but aims to model

mobile payment data, which consists of records of transactions between individuals,

as opposed to customers interacting with merchants [99].

In AMLSim, agents represent bank accounts, and agents interact by transferring

money to one another. Within this framework, there are a small number of agents

which aim to conduct fraudulent transactions. The behaviour of these fraudulent

agents was designed in consultation with experts [176]. AMLSim uses a graph repre-

sentation, which represents agents and their interactions as nodes and edges respec-

tively. However, the transactions data is generated using PaySim, and thus has some

of the same limitations.

One of the main limitations of these approaches is that they all rely on Markov

models to encode transaction probabilities. This means, if we are generating a se-

quence of transactions for a customer, each transaction only depends on the previous

transaction and the customers profile, and is independent of other prior transactions

in the sequence. However, this assumption is clearly a limitation when modeling bank-

ing sequences, as non-adjacent transactions can be related. Another limitation is that

if we want to produce data with realistic fraud patterns, then we must detail these

patterns when designing the simulator, as was done by AMLSim [176]. This may

introduce added costs to the simulator design. Further, fraud patterns may change

over time, and therefore the simulator would need to be manually updated in order

to emulate these patterns. Because of these limitation, we are interested in creating

a synthetic data generation framework based on deep generative models. While a

generative model may also have the be updated over time, these updates can be done

automatically, by retraining on more recent data.

1.2 Generative model use cases

The idea of generative modeling is ubiquitous in many areas of modern machine

learning. As we briefly introduced earlier, a generative model (GM) is a probabilistic

model which describes a process that produces observed data. In addition to sample
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generation, which is the focus of this thesis, GMs can also be used for a variety of

other tasks. This section provides an overview of the main use cases for GMs.

1.2.1 Sample generation

Arguably, the most straightforward use of a generative model is to generate new

samples from a target distribution. State-of-the-art generative models have produced

impressive synthetic samples in many difficult domains, including images [69], text

[21], speech [130], and many more. Related to the task of unconditional generation

(sampling p(x)) is the idea of conditional generation, where the synthetic data is

generated based on conditioning variables. Many other tasks fall under the conditional

generation framework, which essentially involves sampling the conditional distribution

p(x|conditions). Next, we discuss some other interesting examples of conditional

generation.

One such example is text-to-image synthesis [136, 187], where images are generated

conditioned on a text description of the image. In this application, an auxiliary model

is used to map the text descriptions to fixed-size vectors, which are then used as

conditioning variables for the model generating the image. In a similar vein, text-

to-speech synthesis [119, 169] generates audio signals conditioned on an embedding

of the input text, with the goal of the audio signals replicating a human reading the

text. Conditional generation is also used in the opposite direction – for example image

captioning [68, 173, 182], where the goal is to generate a text description of an image.

In this application, the model generating the text is conditioned on a representation of

the target image. There are actually many other uses for models which conditionally

generate text based on other inputs. Two common examples are translation (text

in the target language is generated conditioned on input text from a different source

language) and summarization (a short amount of text is generated conditioned on

a long amount) [96]. Denoising and imputation are two more related use cases for

sampling GMs. Denoising models are designed to take as input data (often images)

with some imperfections (noise) and output a new version of the input without the

imperfections [172]. Imputation is more commonly used with tabular or sequential

data, and its goal is to fill in missing data with generated data [43].

Another common use for data sampled from a GM is data augmentation. Data

augmentation is a set of machine learning techniques for increasing the amount of
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available training data. This is particularly important in modern deep learning appli-

cations – such as classification of medical images [148] – which often require massive

amounts of training data [50, 82]. Not all data augmentation relies on GMs, and

many methods create new samples by applying simple transformations – such as ro-

tations, translations, cropping, and adding noise [148] – to samples from the original

dataset. There are various ways to do data augmentation with GMs. Adversarial

data programming [121] employs a generative adversarial network (GAN) model to

generate new unlabeled samples and then a set of informative but imperfect labeling

functions to generate noisy labels for the samples. A more common approach is to

use a conditional GAN model [105, 117], which can generate samples conditioned on

the labels. This approach, taken in works such as [34] and [44], has the benefit of

allowing the user to control the label distribution.

1.2.2 Evaluating Data Likelihood

Some GMs allow us to evaluate the likelihood of samples according to the model. That

is, if we have an approximate model p̃θ(x) of a real probability distribution p∗(x), and

samples x1, x2, ..., xn from the sample space of p∗(x), we can compute the likelihood

of these samples occurring under p̃θ(x). The main use cases that require evaluating

the likelihood of GMs are anomaly detection and making predictions.

Anomaly detection is an unsupervised learning technique for detecting atypical

data points [160]. In theory, using GMs for anomaly detection is straightforward:

assuming we have a generative model p̃θ(x) which we can evaluate and that aims to

approximate a true distribution p∗(x) then by evaluating p̃θ(x) for a given sample x,

we get an approximation of the likelihood of the sample occurring under p∗(x). This

likelihood score can then be used for anomaly detection, as lower likelihood scores

indicate more anomalous data [14]. While this approach seems intuitive, more recent

work shows that in practice, it can be problematic [175]. The problem is that while

p̃(x) ≈ p∗(x) averaged over the state space of the variable x, there are often large

regions of the state space where these values differ significantly.

Generative models can also be used for supervised machine learning. In this con-

text, the generative model aims to learn an approximation of the joint distribution

p̃(x, y), where x are the features, and y is the label. To use a GM for this type of

predictive task, the GM must be implemented in a way that allows us to evaluate
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the conditional distribution p̃(y|x). One benefit of using GMs for supervised ML is

that when faced with limited or noisy training data, GMs may outperform traditional

discriminative models at predictive tasks [110, 172]. Some common machine learn-

ing classification models based on GMs are Naive Bayes [139] Linear Discriminate

Analysis [46] and Quadratic Discriminate Analysis [158].

1.2.3 Forecasting

The final task which we will mention is forecasting, or predicting future steps in

sequential data. Forecasting is a common use of GMs in applications which deal

with sequential data, such as predicting future trends in traffic and electricity usage

[88, 92, 40] and influenza rates [179]. This is particularly common in autoregressive

models, and is closely connected to how they generate new sequential data samples.

For a sequence of n elements s = (x1, ..., xn), an autoregressive models factors the

sequence probability as

p(s) =
∏
i=1..n

p(xi|x1, ..., xi−1), (1.1)

meaning the predicted distribution over the ith element depends on all previous se-

quence elements. To forecast a single step in the future, we can simply evaluate the

model on the current sequence to get a probability distribution over the next element.

However, forecasting further ahead is more complex. When we try to predict the

second next element in the sequence, we do not have the previous sequence element,

only a distribution over what it could be. One approach that has seen some success is

to use a model designed to make predictions multiple steps ahead, instead of relying

on a strict autoregressive approach [92, 179].

1.2.4 Dimensionality Reduction

Certain GMs, such as variational autoencoders (VAEs), can be used for dimensionality

reduction. VAEs are latent variable models, which operate on the assumption that

high-dimensional data are produced by a random process operating on a small set

of unobserved latent variables [74]. With VAEs, it is possible to estimate the latent

variables, and then use the latent variables in place of the original data in downstream

tasks. Originally, the main motivation for using VAEs for dimensionality reduction
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was their ability to learn complex non-linear relationships [74], unlike some traditional

dimensionality reduction approaches, such as principal component analysis. More

recent work has used GM based dimensionality reduction to learn more interpretable

representations [2, 32], as well as fairer representations, which can conceal information

about sensitive attributes such as race or gender [28].

In summary, there are many possible use cases for GMs, and improving the state-

of-the-art GMs in any domain can unlock improved results on a variety of tasks.

Recent work throughout the past decade has proposed many novel types of deep

generative models (DGMs), based on neural networks and other multi-layer archi-

tectures. As these models have proven very successful at generating many types of

complex data, they feature prominently in our work. In the following section, we give

an overview of DGM sub-types, focusing particularly on the DGMs used throughout

this thesis.

1.3 Deep Generative Models

1.3.1 GANs

Generative adversarial networks (GANs) – originally proposed by Goodfellow et al. [51]

– is a powerful generative modeling framework based on a game-theoretic approach.

The basic idea behind GANs is that there are two parameterized neural networks, a

generator network Gθ(·) which aims to transform samples from a simple noise dis-

tribution p(z) to the target distribution, and a discriminator network Dφ(·) which

attempts to distinguish real samples from samples generated by the generator. The

training of a GAN model can be framed as a competition between the two networks,

where the goal of the discriminator is to successfully determine which samples are real

and which are synthetic. The generator’s goal is to generate realistic samples that

fool the discriminator. This idea was originally implemented by alternately training

the generator and discriminator with the objective

min
Gθ

max
Dφ

V (Gθ, Dφ) = E
x∼p∗(x)

[logDφ(x)] + E
z∼p(z)

[log(1−Dφ(Gθ(x)))]. (1.2)
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The first term in this expression is the expected log probability the discriminator

assigns to real data points coming from the real distribution. The second term is

the expected log probability the discriminator assigns to synthetic samples from the

generator network. It has been shown that when training a GAN with the objective in

Equation 1.2, the discriminators objective is equivalent to minimizing a lower bound

on the Jensen Shannon divergence between the real distribution and the distribution

produced by the generator. This led to the proposal of a plethora of different GAN

models using objectives based on various metrics for comparing the real and gener-

ative distributions. Among these, Wasserstein GAN [5, 58] – which is based on the

Wasserstein or ‘earth movers’ distance – has been particularly impactful due to its

relatively stable training and high-quality results in many domains.

Another significant GAN model is the conditional GAN [105] and related variants

such as [117]. The motivation behind these models is to gain greater control over

the data generation, by training the generator to generate samples conditioned on

other information. The original conditional GAN (cGAN), proposed in [105], adopts

a straightforward approach to conditional generation. When generating data, the

generator receives a randomly generated conditioning information y in addition to

the random noise sample z ∼ p(z) and uses both to construct a new sample x̃. The

conditioning information may be simple, such as a single label, or much more com-

plex, such as the text-to-image synthesis application discussed in Section 1.2. The

cGAN discriminator is modified so that it also takes conditioning information as input

in addition to the input sample. cGAN can learn conditional generation under this

framework because there should be a strong relationship between the conditioning

information and samples in real data. The generator is forced to learn this relation-

ship, otherwise the discriminator can use inconsistencies between the conditioning

information and sample to identify the synthetic samples.

A related approach is auxiliary classifier GANs (ACGANs) [117], which also aim

to perform conditional generation. The main difference between cGAN and ACGAN

is that in ACGAN, the discriminator does not take the conditioning information as

input; instead, the discriminator aims to predict the conditioning information from

the samples, in addition to predicting which distribution they are from. The gener-

ator architecture is the same as in cGAN, however the training objective is modified

slightly to include a term that incentives the generator to create samples such that

the discriminator can identify their class, but not the distribution they are from. This
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modified generator objective is necessary for ACGAN to learn the relationship be-

tween conditioning information and samples, and empirical evidence shows it may

also help with stabilizing training of the model [117].

1.3.2 VAEs

Variational autoencoders (VAEs) – like GANs – are created by combining multiple

neural networks (usually 2, but some models use more). The VAE contains a network

called the decoder, and similar to the generator in GANs, the decoder learns to map

samples from a base distribution p(z) (often a multivariate isotropic Gaussian) to

samples from a target distribution. However, this is where the similarities between

GANs and VAEs end, and the role of the encoder network in VAEs is quite different

from the discriminator in GANs.

The main modeling assumption behind VAEs, is that while the distribution of the

data we observe, p∗(x), may be very complex, it can be modeled as a set of latent

features from a simple distribution p(z), which undergo a complex generative process

gθ(·) to produce the observed data. In VAEs, the generative process gθ(·) is modeled

by the decoder network, which is a neural network with parameters θ. Concretely,

the decoder does this modeling by learning to map samples from the latent space

to distributions in the original data space. That is, for gθ(z) = p̃(x|z). In practice,

this is often implemented by treating the outputs of gθ for each feature as means of

independent Gaussian distributions, with some constant variance. The learning of this

generative process requires the encoder portion of the VAE, which essentially learns

the inverse of the generative process. The goal of the encoder network – also known

as the inference model – is to infer the latent factors z which underlie observed data

x. Specifically, the encoder learns to map samples from the data distribution p∗(x)

to a distribution in the latent space qφ(z|x), which gives the likelihood of the latent

factors given the observed data. In practice, a common way to implement qφ(z|x) is

as follows; for a D dimensional latent space, the encoder network outputs 2D values,

representing means and variances of independent Gaussian’s for each latent feature.

The overall training of a VAE follows this general recipe. First, draw a sample

x from the training data, and pass it through the encoder, to obtain a distribution

qφ(z|x) over the latent factors which are likely underlying x. Next, sample latent

features z from this distribution z ∼ qφ(z|x), and pass z through the decoder to
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obtain a probability distribution over the sample space p̃θ(x|z) = gθ(z). In the final

step we compute the loss, which for the original VAE [74] is computed as

Loss = log p̃θ(x|z)−DKL(qφ(z|x)||p(z)) (1.3)

and use this loss value to update the weights of both the encoder and decoder networks

with a gradient based optimizer, such as gradient descent. The loss function is usually

designed to encourage two objectives. The first term in the loss, log p̃θ(x|z), incen-

tives the VAE to output distributions with high probability of producing the original

sample x. The second term, DKL(qφ(z|x)||p(z)), encourages to encoder to produce

distributions in latent space that are close to the base distribution. The second term

may seem spurious, but it encourages the learned latent space to approximately follow

p(z), which is necessary if we wish to generate new samples from our trained models.

A more recent model called β-VAE introduced a modified loss function, which uses a

constant to control the weighting of these two terms [61].

Additionally, as with other DGMs, several other extensions and modifications have

been made to the original variational auto-encoder framework. One significant im-

provement – called Wasserstein auto-encoders [161] – has been shown to produce sig-

nificantly higher resolution images than previous VAEs. The main difference between

this method and a basic VAE, is the use of the Wasserstein distance as a metric for

judging sample quality, as opposed to the KL divergence used in the original model.

An interesting note here is that both variational auto-encoders and GANs have been

improved by using the Wasserstein distance as a metric [3, 5, 161].

Research into VAEs has seen significant attention focused on relaxing the assump-

tion that latent variables are independently normally distributed. This assumption

is made in the original work because it allows for straightforward computation of

DKL(qφ(z|x)||p(z)) in the loss and still produces good results on many datasets. One

technique for relaxing that assumption is to replace the normal distribution with

other distributions with useful properties, such as simple mixture [163] and hierarchi-

cal models [75]. Another set of methods is based on another DGM called normalizing

flows [137] (briefly discussed in Section 1.3.4), which allow users to define complex

probability models by combining a simple based distribution with a chain of param-

eterized simple invertible and differentiable transformations. In the novel VAEs that

use normalizing flows to model latent variables [73, 154, 164, 165], the VAE’s encoder
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network outputs parameters of the normalizing flow, as opposed to parameters of a

normal distribution.

1.3.3 Transformers

Transformers are a DGM architecture, first proposed in 2017 [171], which has had a

large impact on sequence modeling in general, and language modeling in particular.

There are many different models which have been proposed based on the transformer

design, so it can be hard to define exactly what constitutes a transformer. Originally

transformers were proposed as a sequence model for tasks involving mapping one

sequence to another (such as translation). Their main novelty was that they could

process sequences without recursion, instead relying on a multi-head attention (MHA)

mechanism combined with a positional encoding (PE) scheme to model sequences.

First, we will briefly introduce the idea of attention in the context of neural networks

and mention some early models which inspired the transformer’s design. Then we will

return to ideas of MHA and PE and discuss how these are used to replace the need

for recurrence in transformers.

In the following discussion, we will consider the task of translating sentences from

English to French. This is a typical sequence transduction task, meaning a task

where an input sequence is mapped to a target sequence. Sequence transduction is

a very generic task – in addition to translation, it also includes summarization and

question answering – and it was the goal of early transformers. Early work on neural

machine translation (NMT) [26, 155] – which is the name use for translation task which

rely solely on neural networks – used encoder-decoder models, with recurrent neural

networks (RNNs) used for both the encoder and decoder networks. In this approach,

the recurrent encoder learns to map English sentences to fixed-length vectors, and the

decoder learns to map the fixed-length encodings to target French sentences.

Soon after being proposed, the basic encoder-decoder approach to NMT was

greatly improved by the introduction of an attention mechanism in [9] and [100].

In [9], the encoder network is modified to output an encoding for each element in the

input sequence. When generating the target sentence, before each word is generated,

an alignment score is computed for each element in the input sequence, indicating how

relevant it is to the word which is currently being generated. These scores are then

normalized to sum to 1, and then a weighted sum of the encoded sequence is provided
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to the decoder, replacing the fixed-length vector used in the basic encoder-decoder

models. This weighted sum is also a fixed length vector (the dimension is the same

as the encoding dimension used by the encoder); however, the difference is that with

the attention model, the fixed-length vector provided to the decoder is different for

each word being generated. While the term attention is actually not used in [9], the

normalized weights from the alignment scores are a form of attention scores. This is

highlighted in [100], where the authors compare a novel type of attention they term

local attention to a version similar to that used in [9], which they call global attention.

In their local attention formulation, the main novelty is that only a fixed number of

positions in the input sequence are used for computing the attention vectors at each

step. These positions are either chosen based on the current position in the output

sequence, or by an additional predictive model [100]. Since these early works on at-

tention, many different variants have been proposed (for a comprehensive review of

attention mechanisms, see [116]). For sequential data, the main idea that ties together

the many variants of attention is computing a set of weights (which sum to 1) over

elements of the sequence, and then using the weights to compute a weighted sum of

the sequence.

The original transformer model [171] was an encoder-decoder model based on feed-

forward neural networks, unlike the encoder-decoder models above, which are based

on RNNs. The encoder and decoder are both deep neural networks and are composed

of stacks of N encoder layers and decoder layers respectively (Note: in [171] N = 6).

In addition to the encoder and decoder stacks, the transformer also has additional

layers for embedding the input and output data, which also perform the PE.

The embedding layer performs two steps. The first is to map the input vectors –

in [171] these are one-hot encodings of words – down to dmodel, which is the dimen-

sionality used for all intermediate representations. After embedding input vectors, a

PE vector is added to each embedded vector, which encodes the vectors position in

the input sequence. This is necessary because the transformer does not use recur-

rence and thus needs another way to learn the relevant positional information. While

there are many possible options for creating PE vectors, a standard choice for dmodel-

dimensional PE vectors is for the ith dimension, corresponding to input position t, to

be sin(t/10000i/dmodel) if i is even, and cos(t/10000i/dmodel) otherwise [171]. The output

from the embedding layer then feeds into the encoder stack.
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The encoder network maps an input sequence of length L to a sequence of encod-

ings also length L. Encoder layers are made of two sub-networks; the first implements

a multi-head self-attention mechanism, and the second is a basic fully connected feed-

forward neural network. In addition to these sub-networks, encoder layers also use

residual connections [60] and layer normalization [7] between sub-networks, which

helps with training deep models. In practice, this means they add the input to each

sub-network to its output and perform a normalization step afterward.

As we mentioned above, the first sub-network implements a mechanism based on

multi-head self-attention. Throughout the transformer, a novel form of attention –

called scaled dot product attention – is used in all attention mechanisms. Scaled dot

product attention is based on a system of queries, keys and values, and resembles

another variant known as dot product attention [100]. To implement scaled dot prod-

uct attention, we need to introduce 3 matrices with trainable weights WQ,WK ,W V ,

which are used to compute the queries, keys and values respectively. To show how

these work, consider an example where we wish to translate the sentence “Hello world”

to French. After passing through the embedding layer, this sentence will be repre-

sented as a sequence with length 2, because there are two words in the input, and

each sequence element has dimensionality dmodel. The next step is to transform the

representation of each element in this sequence into a set of queries, keys and values,

which is done by multiplying the vector representation of each element with the cor-

responding weight matrix, to produce vector queries, keys and values. As we have

already discussed, the key features of attention mechanisms are to get a weighted sum

over sequence elements. Here, the values which we want a weighted sum over are the

values produced from the multiplication with the weight matrix W V , and the weights

are a function of the queries and keys. Specifically, suppose we wish to encode the

first sequence element. In that case, we need to compute a set of 2 attention weights.

The first indicates how relevant the first element is to its encoding, and the second

indicates how relevant the second element is for encoding the first. In this simple

example, we would expect the first weight to be much higher than the second, and in

general, when encoding a single element in a length L sequence, L attention weights

are needed.

To obtain attention weights for a given query vector qi representing the ith element

in the sequence, we first take the dot product of qi and each key vector to obtain a set of

raw scores. The raw scores are then normalized by first dividing by the dimensionality
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of the keys dk and then performing a softmax operation to ensure the weights are non-

negative and sum to 1. In practice, if Q,K, V are matrices representing the queries,

keys and values for a sequence, with each row containing the values for a single

element, then scaled dot product attention can be computed as

Attn(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1.4)

This example of scaled dot product attention also serves as an example of self-

attention. The idea of self-attention is that our attention mechanism is directed at

data we are trying to encode instead of a different part of the computation. In self-

attention, keys, queries and values are all computed from the same input embedding.

In the example, we are using self-attention when we are trying to encode “Hello”

and can attend to either the current encoding of “Hello” or “World”. An example of

attention that is not self-attention would be in the decoder layers, where there is a

mechanism that attends to elements in the input sequence when words in the French

translation are predicted.

When designing the original transformer, [171] found that instead of simply making

the key, query and value vectors have dimensionality dmodel, it was beneficial to use

h different attention functions, called heads, with dimensionality bdmodel
h
c. This is

implemented by linearly projecting the matrices Q,K, V into h different sub-spaces,

using trainable weight matrices. Specifically, the attention function for the ith head is

Attn(QWQ
i , KW

K
i , V W

V
i ), where Attn(·) is Equation 1.4, and WQ

i ,W
K
i ,W

V
i are the

projection matrices.

The decoder stack takes two inputs, the encoding of the input sentence, which is

output by the encoder stack, and an encoding of the target output sentence. Because

each element output by the transformer is conditioned on all previous elements in

the output sequence, during training, we use the target sentence as input so that

the transformer can predict the entire sequence in parallel, using the target data as

previous elements for conditioning. This technique, known as teacher forcing [35], is

commonly used when training neural networks on sequential data. When using the

transformer to translate novel sentences, the decoder stack is called once for each word

generated in the output. In the translation example, the encoder stack would output

some sequence [e1, e2] encoding of the sentence “Hello world”. The first time we call

the decoder, the inputs would be [e1, e2] and an encoded symbol signifying the start
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of a sentence, and the network should output “Bonjour”, The second time we call the

decoder, the inputs are [e1, e2] and an encoding of “〈start〉 Bonjour”, and the output

should be “Bonjour le”, and so on.

The decoder layers of the transformer are similar to the encoder layers but contain

a third sub-network and a modified version of the self-attention layer. The additional

sub-network is inserted between the self-attention and the feed-forward sub-networks,

and it performs MHA on the encoding produced by the encoder stack. In the decoder

layers, self-attention refers to attention over the current output sequence. The reason

the self-attention needs to be modified is so that during training, the network cannot

“cheat” and attend to the whole input sequence. Instead, the modified self-attention

uses a masking approach to ensure that when processing the ith element of the output

sequence, only elements in positions less than i can be attended to.

One important modification to the original transformer design is known as the

transformer-decoder (TD), or decoder-only transformer [96]. As the name suggests,

the TD architecture is a transformer model built solely using decoder layers. The idea

behind the TD model is that we can convert a problem of the form input = “Hello

world”, target output = “Bonjour le monde”, to a single input sentence of the form

“Hello world 〈translate〉 Bonjour le monde”. Then, using sentences with this repre-

sentation, the TD is simply trained with the same objective as the basic transformer:

given the current elements, predict the next element. One significant benefit of this

approach is by getting rid of the encoder stack, the number of parameters in the

network is nearly cut in half. Another benefit is that this model can easily perform

unconditional generation – meaning generating new sequences from the training data

distribution – and conditional generation tasks such as translation and question an-

swering.

While originally designed for modeling language data, transformers have also been

applied to modeling other types of time series data, including influenza prevalence

[179], as well as electricity usage and traffic [88, 92, 40]. The only changes needed to

the original transformer model to handle these other data types are modifications to

the loss function and embedding layers.
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1.3.4 Other DGMs

Autoregressive (AR) DGMs are a class of DGMs that model data with a sequential

representation. The transformer model discussed above is an example of an AR model;

here, we highlight some other interesting and important AR models. AR models have

shown great success at modeling data that is naturally represented sequentially, such

as text [21] and audio [169]. Additionally, AR models have achieved strong results

on data that are not inherently sequential. For example, image AR models such

as PixelRNN [168] and PixelCNN [120, 143] model image data by first defining an

ordering of the pixels (such as top to bottom, left to right), and generating each

pixel sequentially, conditioned on all the previously generated pixels. And for basic

tabular data, AR models such as NADE [80] and RNADE [166] define an ordering

over features, and generate samples by conditioning the generation of each feature

on all previous features. Extensions to NADE and RNADE allow these models to

simulate being simultaneously trained on all possible feature orderings [48, 167].

A relatively new class of DGMs which have recently received much attention are

diffusion models. The original idea behind these models was to learn both a for-

ward process which maps data from the target data distribution to a simple noise

distribution, and a reverse process which inverts the mapping [151]. Experimentally

evidence suggests that in their current state, diffusion models are generally better im-

age generators than GANs, particularly when image diversity is important [30]. This

is further supported by the fact that current state-of-the-art image generators, such

as DALLE-2 [134] and Stable Diffusion [141], are based on diffusion models. Recent

work has also shown that models combining diffusion and transformers are able to

outperform other generative models at certain text generation tasks [89]. While the

work on diffusion models, particularly for sequential data, is still in its infancy, results

to date indicate it is a powerful paradigm for generative models.

The final class of DGMs we will discuss in this section, is normalizing flows (NFs).

NFs are a recently developed type of DGM [137] that models complex probability dis-

tributions by combining a simple base distribution p(z) with a chain of parameterized

functions which are invertible and differentiable. Learning in NFs is straightforward;

the parameters of the function chain are optimized with a gradient-based optimization

method (such as [71]) to maximize the likelihood of the observed data. Because all of

the functions in the NF chain are invertible, we can perform an exact mapping between
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the base distribution and the approximate data distribution. However, one drawback

of the invertibility condition is that it requires p(z) have the same dimensionality

as the data, unlike other DGMs, which can use base distributions with arbitrary di-

mensionality. In practice, the functions must be efficiently invertible, which led early

works to focus on very simple parameterized functions [137]. More recently, flow-based

models have been substantially improved and now can provide high-quality synthetic

samples in many domains [72, 130].

1.4 Evolutionary Computing

Evolutionary computing is a broad area of study in computer science, which studies

algorithms inspired by, and related to, natural evolution. Generally, evolutionary

computing is mainly used for one of two purposes; running simulations to study the

dynamics of evolution, or using evolution to solve application problems involving

optimization or learning. Many early thinkers in the field of evolutionary computing,

viewed natural evolution as a powerful optimization algorithm, which had produced

organisms optimally suited for a vast array of environments [37, 132]. Despite the

early hopes, as other techniques for optimization were refined, and new ones created,

evolutionary computing was overshadowed by methods which tended to perform better

in empirical studies, and was criticised for lacking empirical foundations by some [102].

Recently, some researchers have begun to argue that the true power of natural

evolution is not merely as an optimizer of performance in a set environment, but

that the power lies in its ability to jointly maximize the diversity of organisms, as

well as the fitness of organisms to their environment [86, 132]. The idea of evolution

favoring diverse populations, as opposed to populations where every individual is

maximally fit, may seem unintuitive at first. However, one major limitation of purely

maximizing fitness is that – both in natural evolution and evolutionary computing

applications – we cannot be sure that the fittest solution from the past will be the

fittest in the future. If the goal is to find a solution which will work well in the future,

and all the data we have collected has been from the past, then we must necessarily

have some uncertainty about which solution will be best in the future. Because of

this uncertainty about what the future may hold, natural evolution succeeds not by

placing all resources towards what seems best based on the current environment, but
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by allocating resources to maximize diversity, subject to constraints of the current

environment, and information about what worked best in the past. In Chapter 4 we

propose a novel evolutionary algorithm in the context of classification problems, and in

Chapter 5 we use a variant of this approach to improve our synthetic data generation

framework. The remainder of this section provides a broad overview evolutionary

algorithms, as well as details on the specific evolutionary computing techniques we

employ in this thesis.

1.4.1 Evolutionary Algorithms

The general schema for an evolution algorithm (EA) involves a population of indi-

viduals, each of which are considered candidate solutions to a target problem. The

population is initialized to contain an initial set of individuals, and throughout the

course of the EA new candidate solutions are created by applying variation operators

to create new individuals from the population. During each epoch of evolution, there

is a selection step, which selects a subset of the individuals to remain in the popu-

lation, and eliminates the remaining candidates. This general framework has been

used to create a wide variety of specific evolutionary algorithms for solving specific

problems. Next, we provide some addition details on these core EA components.

Individual

In the context of an EA, an individual represents a potential solution to the problem

we are attempting to solve. The representation of an individual depends on the

application, and there are many potential choices. For example, in Chapter 4, the

individuals in our EA are linear genetic programs, which are used as binary classifiers.

Whereas in Chapter 5, the individuals are parameter dictionaries, which encode hyper-

parameters for a neural network model. The encoding of individuals also effects how

we apply variation to create new individuals, and how we evaluate individuals.

Evaluation of individuals is also highly dependent on the problem. To evaluate

individuals, we use a fitness function, which maps individuals to a fitness score, which

is used during selection to determine which individuals remain in the population.
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Population

A population refers to a set of candidate solutions maintained throughout evolu-

tion. Traditionally populations are fixed-sized, and contain an unordered collection

of individuals. However, some more recent methods, including the quality diversity

algorithms described Section 1.4.2, use more complex population structures. Popula-

tions are often initialized by creating a random set of candidate solutions; however,

some applications may use problem-specific initialization schemes [37].

Variation

Variation operators are applied to existing candidate solution, to create new candi-

date solutions. There are two types of variation operators used in EAs. The first is

mutation, which takes as input a single candidate solution, and outputs a modified

version of the input solution. The other is crossover, which takes two individuals as

input, and outputs a new candidate solutions combining the two input solutions.

Selection

After creating a new batch of candidate solutions by applying variation to an existing

population of solutions, selection determines which solutions are kept in the popu-

lation, and which are eliminated. The simplest from of selection is elitist selection,

which combines the existing population and new batch of solutions, and selects the k

best solutions, where k is the population size. There are many variants of non-elitist

selection, which are designed to encourage greater diversity within a population.

1.4.2 Quality Diversity

Traditionally, the goal of EAs is to produce a single final solution, with the maximal

fitness score. Quality Diversity (QD) algorithms, in contrast, aim to produce a collec-

tion of solutions which are both highly fit and qualitatively diverse. There are many

benefits of this explicit focus on diversity. For example, optimization problems often

have search spaces filled with many local optima, and it has been shown that focusing
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on population diversification helps prevent evolution from getting stuck in these sub-

optimal parts of the solution space. Another benefit is that sometimes there are trade-

offs which can make determining the best solution ambiguous. QD algorithms can also

be used to visual trade-offs between different types of high-performing solutions, such

as neural networks with different levels of modularity and connectedness [108].

There are two main QD algorithms, Novelty Search with Local Competition

(NSLC) [85] and MAP-Elites [108]. NSLC employs a variable sized archive structure

as its population structure. New candidate solutions are added to the archive if they

are sufficiently novel. If a new candidate is not sufficiently novel, it may displace an

existing similar solution, if the new solution has higher fitness. MAP-Elites uses a

fixed-sized, structured population, which is typically structured as a two-dimensional

grid of cells. MAP-Elites uses a mapping function, which assigns candidate solutions

to specific cells, based on their behavior, so that similar solutions tend to be mapped

to the same cells. When a new candidate solution is created, it competes with the

existing solution in its corresponding cell based on fitness values, and the winner is

stored in the cell. If a new solution is assigned to an empty cell, it is always stored.

1.5 Sequential Data

To conclude this chapter, we give an overview of different types of sequential data and

highlight the unique challenges in generating sequences of transactions.

Non-Temporal Sequences

Non-Temporal sequences are sequences without time-based features. Typically, they

are represented as an ordered list of discrete symbols. One area where non-temporal

sequences are common is in textual data, such as sentences, paragraphs, or articles.

These types of data are naturally modeled as sequences of words and symbols, or at a

lower level, as sequences of characters [54]. Biology is another domain that deals with

non-temporal data. DNA strands are often represented as sequences of base pairs [70],

and proteins can be represented as sequences of amino acids [138, 180].
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Regular Time Series

The term time series generally refers to a sequence of measurements that involve

temporal data. Commonly, time series data refers to sequences of measurements made

at regular intervals, such as hourly electrical usage [88] or daily stock prices [149]. We

use the term regular time series to specify time series data with regular measurement

intervals. In the context of synthetic data generation, regular time series data are

more straightforward to model than time series data with irregular intervals because

there is no need to model the time between measurements.

Transaction Sequences

The final type of sequence we will mention here are transaction sequences, a type

of irregular time series in which sequence elements correspond to real-world interac-

tions. Each transaction in a transaction sequence contains information about when

the transaction occurred, in addition to what the transaction is. The information

about what the transaction is may be a simple categorical code, or it may be more

complex. Transaction sequences typically have some dependency between the tempo-

ral and non-temporal features, with certain types of transactions occurring more or

less often depending on temporal features, such as the time of day or the day of the

week.

Figure 1.1: Example of a transaction sequence (banking transactions). This example
shows a sequence of 7 transactions, which were performed on a bank account. The first
column (amount) shows the dollar value of the transaction. The next two columns
(flag, description) contain categorical codes, which give information about what type
of transaction is taking place. The type column is a binary variable, indicating if
money is being transferred to the account (Credit) or from the account (Debit). The
timestamp indicates when the transaction occurred.
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Throughout this thesis, we focus on modeling transaction sequences associated

with customer bank accounts, such as the transaction sequence shown in Figure 1.1.

In this data, each transaction encodes details of a transfer of funds to or from a

customers account. These transactions record the amount transferred, as well as

multiple categorical features that give information about the transaction.

1.6 Thesis Contributions and Structure

Throughout this thesis, we make the following contributions:

1. Propose Banksformer (BF), a transformer-based generative model for generating

synthetic banking data, and demonstrate it improves over existing GAN models.

2. Develop ensemble and elite-ensemble variants of Banksformer, which improve

on our initial Banksformer results

3. Develop DP-BF as a way to produce lower quality synthetic data with provable

privacy guarantees, as a step towards creating high quality private synthetic

data.

4. Develop a suite of metrics to characterize the quality of synthetic banking data

5. Develop a novel evolutionary algorithm for creating diverse classifier ensembles

6. Adapt our evolutionary algorithm to produce populations of BF models, which

improved results on some metrics, and provides an efficient way to do parameter

tuning in future work.

The remainder of this thesis is structured as follows. In Chapter 2 we propose

Banksformer, a transformer-based generative model for creating synthetic banking

data. Chapter 3 explores methods for improving Banksformer, both by generating

higher quality data and adding formal privacy guarantees. Chapter 4 temporarily

diverges from the main thesis narrative, to develop a method for creating diverse sets

of models. In Chapter 5, we apply a modified version of the method developed in

Chapter 4, to further improve upon the quality of data we generate. Finally, Chapter

6 concludes this thesis by summarizing and reflecting on the impact of our work, and

outlining future research directions.

24



Chapter 2

Banksformer: A Deep Generative

Model for Synthetic Transaction

Sequences

In this chapter, we present our initial work on Banksformer. It includes informa-

tion on the motivation and design of Banksformer, the two banking datasets which

we used when developing Banksformer, and a comparison between Banksformer and

other state-of-the-art DGMs for sequential data. Results from this chapter highlight

Banksformers’ ability to capture the appropriate spacing between transactions and

date-based patterns.

This work was published and presented at the 2022 ECML PKDD conference, a

CORE-A ranked conference in the field of machine learning [114].

2.1 Introduction

Synthetic data are becoming an increasingly important component in machine learning

systems. Recent work has demonstrated the ability of deep generative models (DGMs)

to produce high-quality synthetic data in domains such as images [69], text [21],

and audio [39]. Each of these domains has presented unique challenges, which were

addressed by modifying model architectures from previous tasks to be more suited to

the target task. Success in these general domains has led to the creation of focused,



domain-specific models. One domain that has received considerable recent interest is

financial data.

Financial data is a broad category, however most existing work on DGMs in

finance focuses on modeling price sequences for stocks and other financial instru-

ments [87, 157, 178]. Another important type of financial data is transactional data;

that is, data that contains sequences of records or transactions recorded at arbitrary

intervals. Transactional data is common in finance but also occurs in other domains.

For example, both a sequence of purchase records from a credit card and a sequence

of entries in electronic health records are transactional. In general, modeling transac-

tional data is more challenging than other time-series data, as we must learn to model

the intervals between transactions in addition to the transaction features. This can

be particularly challenging in a domain such as banking, where the date and time of

a transaction can be strongly related to the transaction type and amount. Further,

certain types of dates, such as the weekends or the end of the month, can significantly

influence what transactions occur.

Evaluating the quality of synthetic data is a difficult problem without a single clear

solution [4, 66, 159]. Ideally, we would like to measure a distance between the real

and synthetic data distributions; however, this is not feasible for multidimensional

sequence data. A seemingly general approach would be to use the log-likelihood the

generative model assigns to validation data. Unfortunately, this approach is known to

have issues [159], and also depends on the model being able to assign likelihood scores,

which is possible for transformers but not generative adversarial networks (GANs) [51].

Existing work generating financial time series is limited but commonly evaluates the

quality of generated data by comparing univariate features distributions [87, 178].

However, these univariate metrics only give a rough picture of the synthetic data

quality. These metrics cannot measure how well the synthetic data captures feature

interactions and interactions between sequence elements.

The main goal of this work is to produce high-quality synthetic financial trans-

action sequence datasets, with the same statistical properties as real data upon

which they are based. We propose Banksformer, a novel transformer-based DGM

designed to model transactional data with date-based patterns. GANs have typically

been used as the generative model in previous work generating sequential financial

data [87, 157, 178]. To demonstrate the benefits of our approach, we compare BF
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against two high-quality GAN models – TimeGAN (TG) [185] and DoppelGANger

(DG) [94] – on two datasets of banking transaction sequences.

2.2 Datasets

We used two datasets of banking transactions to compare the quality of synthetic data

produced by BF with data produced by TG and DG. In this work, two datasets of

banking transactions are used. The first is a set of real banking data from the Czech

Republic in the 1990s1 (czech), and the second is a synthetic dataset of transactions

from the UK in 20172 (uk). We chose to include the synthetic dataset because we

could not find a second real dataset, and wanted to show the method we built while

focusing on the czech dataset would generalize.

Both datasets contain transaction records from many different bank accounts,

with the uk dataset containing 5 000 unique accounts, and the czech containing 4 500

accounts. Each transaction contains the dollar value of the transaction, multiple

categorical codes that have information about the transaction type, and a timestamp

indicating when the transaction occurred. To create a uniform representation between

datasets, we concatenate together all categorical codes into a single field called the

tcode (transaction code). In the czech data there are 16 unique tcodes, and the uk

dataset has 44 (Table 2.1). The timestamp in the czech dataset only contains the

transaction date, and not the specific time of day. Because of this, we do not use the

time of day information in the uk dataset and focus only on modeling the transaction

dates.

Table 2.1: Dataset Summary. Properties of the czech and uk data sets.

Accts Total Trans Trans per Acct Tcodes Date Range

count count min max mean count start end

czech 4500 1.06×106 9 675 235 16 01/01/1993 31/12/1998
uk 5000 105 2 50 20 44 01/04/2017 25/05/2017

We are primarily interested in the czech dataset, which was initially made available

1https://data.world/lpetrocelli/czech-financial-dataset-real-anonymized-transactions
2https://pub.towardsai.net/generating-synthetic-sequential-data-using-gans-a1d67a7752ac; this

blog post explores using DG to create synthetic data
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as part of the Discovery Challenge at the 1999 PKKD conference [126]. This dataset is

likely to lead to more meaningful results than the uk dataset for three main reasons.

First, the czech dataset contains real banking data. This is in contrast to the uk

dataset, which is a synthetic dataset. Second, the czech dataset contains over 1 M

transactions, making it over ten times larger than the uk dataset, which has only

100K transactions. Because the datasets have a similar number of unique accounts,

this means there are comparatively fewer transactions per account in the uk dataset

(Table 2.1). Finally, the uk data is also from a much smaller range of dates, containing

less than two months’ data, whereas the czech dataset spans five years.

Transactional banking data often contains date-based patterns, which can be diffi-

cult for DGMs to emulate. In the uk dataset, the most significant date-based patterns

are related to the day of the week. In that dataset, transactions never occur on Sun-

day. Further, certain types of transactions are related to the day of the week, and

happen more or less often on certain days. Because the uk dataset spans less than

two full months, we do not consider patterns related to the day of the month. In

contrast, the czech dataset does not contain any apparent relationships involving the

day of the week. However, in the czech data there are clear patterns related to the

day of the month, with certain types of transactions only occurring at the month’s

end, and others only happening early in the month.

We transform this dataset of transactions into transaction sequences by grouping

together transactions by account, and then sorting the transactions for each account

by date (and time in the uk dataset). In order to create more uniform datasets,

we filtered out sequences shorter than a minimum length parameter lmin (5 for uk

and 20 for czech), and split sequences longer than lmax (20 for uk and 80 for czech)

into multiple contiguous subsequences, so that all sequences used for training and

validation have length in the range [lmin, lmax]. In addition to the features present in

each transaction, there is also meta-data information associated with each sequence.

This meta-data contains the starting account balance, start date of the sequence, and

for the czech dataset, the customers’ age at the start of the sequence. To preprocess

the data for the generative models, continuous features are linearly scaled to have 0

mean and variance of 1, and categorical features are encoded with a one-hot encoding.

In the generic preprocessing step used by all models, we follow the method of [94] and

represent time information by providing the start date as meta-data and including a

time delta feature with each transaction that indicates the amount of time that has
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passed between transactions. When using BF, we perform a further preprocessing

step (detailed in Section 2.5.1) to create additional date-based features which BF

requires.

2.3 Methods

2.3.1 Generative adversarial networks (GANs)

GANs [51] are a commonly used generative model, and are capable of generating

high-quality synthetic data in many domains [21, 39, 69]. TimeGAN (TG) [185] and

DoppelGANger (DG) [94] are two GAN models that have been successful at generating

complex multivariate sequence data. Each of these models have unique innovations

that allow them to generate high-fidelity synthetic sequences. In TG, an embedding

scheme is used so that the generator and discriminator are operating in an embedded

space, and a supervised loss based on predicting the next sequence element is used

in addition to the standard GAN training objective. In DG, there are many minor

innovations, including batch generation to better capture long-term dependencies, a

conditional generation mechanism to deal with relationships between metadata and

sequences, and a custom auto-normalization scheme that reduces mode collapse, which

is the tendency for GAN models to focus on generating typical samples, which hurts

the diversity of data generated.

2.3.2 Transformers

The transformer architecture [171] was designed to perform sequence modeling tasks

without a recurrence, instead relying on an attention mechanism and positional en-

coding scheme to model sequence ordering. While originally proposed as a language

model [171], transformers have since been applied to modeling many types of se-

quences [88, 179]. In this work, we use the transformer-decoder (TD) [96] variant of

the transformer, as this is most appropriate for generating novel sequences. TD is

designed as an auto-regressive model that can model probability distributions over

sequences.
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The main innovations in the transformer and TD architectures are positional en-

codings (PEs) and multi-head attention (MHA). Since transformers do not use recur-

rence, and process all sequence elements simultaneously, the PEs are designed to allow

the model to learn ordered sequences by adding a PE vector to the initial embedding.

While there are many possible options for creating PE vectors, a standard choice for

d-dimensional PE vectors is for the ith dimension, corresponding to input position t,

to be sin(t/10000i/d) if i is even, and cos(t/10000i/d) otherwise.

The MHA mechanism allows the model to create multiple sequence representations

by projecting the encoded sequences into multiple sub-spaces. Scaled dot-product

attention [171] is then applied separately in each sub-space.

When TD models are applied to sequences of discrete symbols, including language,

they are trained using the maximum-likelihood objective of minimizing the negative

log-likelihood of observed sequences, −log(P (seq; Θ)), with parameters Θ. The prob-

ability of a length n sequence, s = (x1, ..., xn), is computed using the auto-regressive

factorization p(seq; Θ) =
∏n

i=1 p(xn|x1, ..., xn1 ; Θ), which is implemented by the TD.

In applications where transformers are used to model sequences of continuous data,

the auto-regressive factorization is still used. While a maximum-likelihood based

objective is used by some [40], a more common approach is quantile loss [88, 92].

2.4 Related work

There are several different approaches to creating and evaluating synthetic financial

time series. Here, we give a brief overview of the most relevant works.

2.4.1 Synthetic financial time series

Traditionally, agent-based simulation models were used to generate synthetic se-

quences of financial banking data [6, 97], similar to the type of data modeled in

our work, as well as for generating synthetic stock-market data [22, 81, 122].

Methods based on DGMs have recently been shown to generate more realistic,

univariate financial sequences than agent-based approaches [76, 150, 157, 178]. There

is less research on generating multivariate financial data. A GAN model for generating
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multivariate sequences of stock option prices was proposed in [177]. The work most

similar to ours is StockGAN [87], which generates synthetic stock-market order-stream

data, where each sequence item contains information about the order price, quantity,

type, and date. However, StockGAN is a GAN based approach which generates stock

market data, making it still quite different from our work.

A critical difference between the banking data we are interested in and the datasets

used in these works on financial time series is the transactional nature of our data.

The previously mentioned works all aim to model sequences where measurements

are taken at regular intervals, such as daily stock prices. In our transactional data,

the time between transactions varies, and the timing information plays a critical role

influencing the transactional properties. Existing work on modeling transactional

data with DGMs is limited, and we are not aware of other works which have solely

focused on this task. In the papers which introduced both TG [185] and DG [94],

the authors briefly discuss how their models can be used on data with irregular time

intervals. In both cases, the authors suggest adding a time delta feature to indicate the

time between elements and modeling this like a typical continuous feature. However,

neither of these works attempts to show that their models can learn patterns based

on dates or times.

To the best of our knowledge, transformers have not yet been applied to the task

of generating synthetic financial time-series data. Originally proposed as a language

model, transformer models such as GPT-3 can generate novel text with narrative

structure [21]. Transformers have also been applied to modeling other types of time

series data, including influenza prevalence [179], as well as electricity usage and traf-

fic [40, 88, 92].

2.4.2 Evaluation of synthetic sequence data

The evaluation of synthetic data depends upon its planned use. If synthetic data

is planned to augment training data, then one approach is to train the model on

synthetic data and evaluate its predictive performance on real data [94, 185]. If it

can achieve comparable accuracy on real data to a model trained on real data, then

this is taken as evidence of the quality of the synthetic data. This approach is less

valuable when the use of the synthetic data is not known a priori.
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Continuous data. A simple way to evaluate synthetic financial time-series data is

to compare univariate distributions, using metrics such as the 1-Wasserstein distance

[178] or Kolmogorov-Smirnov distance [6, 87]. For multivariate data, these distances

can be computed separately for each feature of interest [87]. A limitation is that

these metrics do not consider interactions between features, nor sequence order. Due

to the limited work in generating multivariate banking data, there are no domain-

specific metrics we are aware of. In works on financial sequences of asset prices,

such as [87, 178], domain-specific metrics were used that focused on well-documented

features that occur in real market data known as stylized-facts [27].

Categorical data. [87] studied synthetic financial time-series that generates

data with both categorical and continuous-valued features, however, their evaluation

only focused on continuous features. [186] use a randomly initialized LSTM model

to generate a dataset of discrete sequences that were used to train their sequence

generator. The LSTM model was then used to evaluate the likelihood of the data

produced by the generator. [90] adopt a similar approach, performing additional

validation experiments on real text sequences. To evaluate the quality of the generated

text, they use BLEU scores [124], which measure the proportion of N-grams in the

generated data that also occur in the real data.

2.5 Banksformer

We have created a modified TD model, called Banksformer (BF), to generate mul-

tivariate sequences of banking transactions. There are two main innovations in the

design of BF. First, a preprocessing step (described below) allows BF to model se-

quences of items that contain multiple features of different types, including continu-

ous and categorical features, as well as dates. Second, BF uses a novel method for

generating multivariate time series data, in which each field of a transaction is gen-

erated sequentially. Our results indicate that this allows BF to better learn the joint

distribution, such as p(amount, tcode) as the product of two simpler distributions

p(amount, tcode) = p(tcode)p(amount|tcode).
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2.5.1 Date Mechanism

The unique way Banksformer handles dates involves two parts – encoding and pre-

diction. In BF, we create multiple features based on the timestamp to facilitate

learning date-based patterns. Specifically, the day of the month (DoM), the num-

ber of days until the months’ end (DTME), the day of the week (DoW), and the

month of the transaction are each represented using two features. The two features

are f1 = sin (2πi/ni) and f2 = cos (2πi/ni), where i is and ordering index and ni is

the number of possible indices (e.g., i = 0 and ni = 12 when encoding the month of

January). Additionally, BF also models a time delta (∆t) feature, as is done in TG

and DG.

The way we have chosen to encode the date information helps BF learn date

patterns; however, it also clearly contains redundancy. When generating data with

BF, we first generate a probability distribution over the result for each date feature,

and then create a distribution over the transaction date as

p(date) =
∏

field∈{DoM,DTME,DoW,month,∆t}

pfield(date[field]). (2.1)

We implement this with the following approach. First, a maximum time between

transactions is set to make the approach feasible. The distribution over the time

delta feature is modeled with a truncated Gaussian distribution, covering the range

from 0 to the maximum time. Typically Gaussian distributions are used for modeling

continuous features in DGMs, and we use a truncated distribution to ensure the

time delta is non-negative. BF outputs two features for the time delta, which are

interpreted as the mean and variance to the truncated Gaussian. For each of the other

features, BF outputs a categorical distribution over the options, which is created by

a softmax layer. To compute the normalizing constant for the distribution, we sum

the normalized probabilities of all dates between 0 and the maximum number of days

from the current date. We then sample a date from this distribution, and then convert

the selected date back into the separate date features.
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Figure 2.1: An illustration of BF. (A) An overview of BFs architecture. (B) A zoomed-
in view of the output layers, showing how BF sequentially handles transaction parts.
When generating data, the * boxes indicate a sampling operation that samples a value
from the input distribution. During training, teacher forcing is used, and the * boxes
indicate the true value which should have been produced by the input distribution.
(C) A further zoomed-in view of the date layer, showing that each piece of date
information is predicted independently from the context, which encodes the sequence
of previous transactions and the true value of the tcode for the current transaction.

2.5.2 Architecture

Figure 2.1 outlines the architecture of BF, which is composed of 3 main parts. The

input layer takes a sequence of multivariate transactions and maps it to a dmodel di-

mensional sequence to which the positional encoding is added. The decoder stack

then processes the encoded sequence and emits a context sequence that encodes pre-

dictions about the next element in the sequence. Finally, the output layers process

each context and transform them into transaction predictions.

Input Layer. The input layer in BF is fully connected and simply maps the input

data with dimension dinput to a representation with dimension dmodel, which is used

throughout the decoder stack.

Decoder Stack. After the input layer, BF contains a stack of 4 identical decoder

layers, following a similar design as the decoder layers used in [171]. Each decoder

layer is composed of two sub-layers. The first is a masked multi-head self-attention

layer. This layer allows the network to attend to all sequence positions less than i

when predicting the ith element. This design follows the decoder stack in [96]. The

final decoder layer emits a vector with size dmodel. Our BF synthetic datasets were

created using dmodel = 128, which was chosen by cross validation.
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Output Layer. In BF, the output contains multiple important pieces of informa-

tion. This work focuses specifically on three: a categorical tcode, a transaction date,

and a real-valued amount. The output layer of BF contains a conditional genera-

tion mechanism, which generates each of these values sequentially, and conditions

each value on all previous ones. In the end, our model represents the probabil-

ity distribution of the kth transaction (transk) in a sequence as p(transk|hist) =

p(tcodek|hist) · p(date|hist, tcodek) · p(amount|hist, tcodek, date), where hist is the

transaction history up to the kth element of the sequence.

Loss Function.

The loss function used for training BF treats each piece of information within a trans-

action separately, with the overall loss a weighted sum of individual losses. Aside from

the continuous time delta, all the other date-based features are treated as categorical

variables, and BF outputs for each of these features are interpreted as probability dis-

tributions over the possible options. Mean-squared error is used as the loss function

for continuous features and categorical cross-entropy for categorical features.

2.5.3 Generating data

BF generates synthetic data in the following way. The first element of the sequence

contains the metadata, transformed into a vector with the same dimensionality as

the feature dimension of the training sequences. In the czech data, this is the age

of the main account holder, and in the uk data we simply use a vector of zeros to

indicate the sequence start, as no metadata exists for these sequences. A sequence

of l transactions is then iteratively generated. At each step, the current generated

sequence is passed as input, and the next element in the sequence is output. This

element is then concatenated to the existing generated sequence. When generating

a transaction, BF generates each attribute in a predefined order, conditioning each

attribute on all previous attributes. Each generated attribute is output by a unique,

fully connected layer. For categorical attributes, the raw output from the associated

layer is passed through a softmax function to create a probability distribution over

possible values, and the generated value is randomly sampled from this distribution.

For continuous attributes, BF outputs two features, which are treated as the mean

35



and variance of a normal distribution, and the generated value is sampled from this

distribution. The transaction date is sampled from the distribution in Equation 2.1,

following the method detailed in Section 2.5.1.

2.6 Results

In this section, we present a comparison of synthetic data generated by BF, TG, and

DG on both the czech and uk datasets. The figures in this section focus on results

from the czech dataset. For BF and TG, all synthetic sequences had an equal number

of transactions (20 for uk, 80 for czech), and the start dates (plus ages for the czech

data) were randomly sampled from the empirical distribution in the real datasets. In

contrast, DG generates sequence lengths and meta-data along with the transaction

sequences. To better understand the quality of our generated data, we use a set of

metrics to evaluate multiple aspects of our synthetic data.

2.6.1 Univariate distributions

The most straightforward metrics are based on comparing univariate feature distribu-

tions for the continuous and categorical features. We use the Wasserstein-1 distance

[133] for distributions of continuous variables and the Jensen Shannon divergence

(JSD) [115] for discrete variables to quantify the difference in univariate distribu-

tions. These both measure distances of univariate probability distributions (for more

information see [133] & [115]).

For continuous variables, we compare the distributions of transaction amounts

and monthly cash flow. The monthly cash flow of an account is simply the sum of all

credits and debits (positively and negatively-valued transaction amounts) in a given

month. We are interested in cash flow distributions because, unlike the transaction

amount, cash flow is not directly modeled as a variable in the training data. However,

cash flow is still an important facet of bank data. If synthetic data can capture the

cash flow patterns from the real training data, this will support the claim that the

model is learning the actual data distribution.

As we can see from Figure 2.2, the synthetic data generated by BF best captured

the monthly cash flow patterns from the real data. This is supported quantitatively as

36



Figure 2.2: Comparison of univariate distributions in czech data. This figure shows a
comparison of the distributions for the tcode (top), log amount (middle), and monthly
cash flow (bottom) in the synthetic datasets produced by BF, DG, and TG.

well (Table 2.2). The amount distribution produced by BF was quantitatively worse

than both TG and DG on the czech data (Table 2.2). However, when viewed on a log

scale, BF appears to better capture the three modes of the real amount distribution

2.2. On the uk dataset, BFs’ amount distribution was closest to the original data.

The data generated by BF also performs best at emulating the tcode distribution in

the czech data, which can be seen in Figure 2.2 and Table 2.2. DG does nearly as

well as BF at capturing the tcode distribution on the czech data, and slightly better

than BF on the uk data.

2.6.2 N-gram Distributions

An N-gram is a length N sequence of N symbols, and these symbols may represent

categorical values, such as the tcode. Comparing N-gram distributions allows us to

measure the models’ ability to capture sequence orderings. Here we focus on 3-grams,

and use the JSD to quantify differences in these distributions. We experimented with

other values of N and the results did not change significantly. However, the JSD be-

comes harder to estimate as N increases because the empirical N-gram distributions
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Table 2.2: Full Results Summary. The first 2 score columns are the Wasserstein-1
distances comparing the univariate amount (AMT) and monthly cash flow (CF) distri-
butions respectively. The next two columns are JSD results comparing the univariate
distributions of the tcode (Tcode) and transaction day of the month (DoM). The fi-
nal columns are also JSD results. The Tcode 3G column show the JSD between the
distributions of tcode 3-grams. And finally, the (Tcode, Date*) column compares the
joint distributions of tcode and the most significant categorical date feature, which
is DoM for the czech data, and DoW for the uk data. For each dataset, the bottom
three rows show the results of ablation experiments (Section 2.6.4).

Data Model Amt CF Tcode DoM Tcode 3G Tcode, Date*

czech

BF 2102 2738 0.004 0.011 0.042 0.251
DG 1939 57800 0.007 0.090 0.132 0.660
TG 1931 4980 0.075 0.059 0.337 0.638

BF-ND 3705 4191 0.009 0.059 0.059 0.595
BF-NC 3580 4775 0.158 0.006 0.411 0.542
TF-V 4726 4138 0.185 0.059 0.445 0.674

uk

BF 42.6 541.8 0.015 0.024 0.156 0.008
DG 179.0 1051 0.011 0.034 0.135 0.061
TG 116.0 1460 0.237 0.087 0.622 0.077

BF-ND 64.1 814.8 0.002 0.048 0.112 0.062
BF-NC 258.0 1418 0.013 0.041 0.176 0.024
TF-V 236.0 1402 0.004 0.047 0.139 0.063

become worse estimates of the true N-gram distributions due to the curse of dimen-

sionality. We attempted to mitigate this with additive smoothing [103], however this

did not significantly change the results, so the results we present are based solely on

comparing empirical distributions.

Figure 2.3 compares the distributions of the most common N-grams, and shows

both BF and DG produce more accurate N-gram distributions on the czech data than

TG. This is supported by quantitative results in Table 2.2, which also show that BF

outperforms DG in terms of the JSD metric on the czech dataset. This metric also

shows DG performs slightly better than BF on the uk dataset.

2.6.3 Joint distributions

One limitation of the previous metrics is that they do not account for how well feature

interactions are modeled in the synthetic data. To get a sense of the overall joint
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Figure 2.3: 3-gram frequency comparison. This figure compares the frequency of the
25 most commonly occurring 3-grams in the real czech data, for each of the synthetic
datasets.

Figure 2.4: PCA visualization of czech data. The two principal components of the
data distributions obained using PCA. The generated data are projected using the
PCA model that was fit to the real data.

distribution, we can visually compare the distributions of two-dimensional projections

of the datasets (Figure 2.4). To create this visualization, we follow the approach

of [185], The sequences were first flattened along the temporal dimension and then a

PCA model was fit to the real data. All data sets are projected into 2D using this

PCA fit. Figure 2.4 shows that are multiple peaks in the real czech data, and that

BF reproduces these peaks on the whole. DG only poorly reproduces the real data,

yielding a bimodal distribution, and TG focuses on a single mode.

Figure 2.5 shows the distribution over the day of the month for two specific tcodes

that only occur at specific times of the month. The top row is for interest credited to

the account, which only happens on the last day of the month, and the bottom row is

a type of debit transaction that only occurred between the 5th and 14th of the month.

BF is the only model able to learn the date pattern associated with these tcodes. In

particular, our model can correctly generate transactions at the end of the month,

even though the last day of the month may occur on days 28 to 31.

39



The JSD may be used to quantify how well the relationship between tcodes and

categorical date features were learned in general. Table 2.2 shows the JSD for the

czech data, using the joint (tcode, DoM) distributions, and the uk data, using joint

(tcode, DoW) distributions. For both data sets, BF significantly outperforms both

DG and TG.

Figure 2.5: Date, tcode relationship in czech data. This figure shows the conditional
distribution of the transaction day of the month, given the tcode, for two tcodes that
are strongly related to the date. This figure shows that BF (left) is the only model
which has learned the relationship between these tcodes and the date.

Different transaction types also have different associated amount distributions.

In Figure 2.6, we compare the conditional amount distributions for the two most

common tcodes in the czech dataset. In this figure, we can see that BF, TG and

DG all appear to have approximately learned the relationship between amount and

tcode. Additionally, this figure also shows qualitative differences in the conditional

amount distributions produced by the different models. BF tends to produce narrower,

symmetric distributions, which are centered near the mean of the real data; whereas

both DG and TG tend to produce much wider, asymmetric distributions.

2.6.4 Ablation

To illustrate the impact of the innovations behind BF, we perform ablation exper-

iments on conditional generation and date generation mechanisms. Specifically, we

create the following three ablated versions of BF:

• A version without the date mechanism (BF-ND). In this implementation, we
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Figure 2.6: Amount, tcode relationship in czech data. This figure shows a comparison
of the conditional distributions p(log(amount)|tcode) produced by BF, DG and TG,
against real data for the two most common tcodes in the real data.

model the date using only the time delta feature, as is done in TG and DG.

• A version without conditional generation (BF-NC). In this implementation, we

generate all transaction fields simultaneously.

• A basic transformer model with neither mechanism (TF-V).

The results from these experiments are shown in Table 2.2, which validate that

both mechanisms introduced to the architecture of BF led to improved performance

on most metrics. This was particularly true for the metrics that measured joint

distributions, as well as metrics related to the amount, where BF scored much better

than the ablated versions, and TF-V scored noticeably worse. For other metrics,

different ablations had different impacts. The BF-NC version did worse than BF-ND

on comparisons of both the tcode and tcode 3-gram distributions, with BF-NC being

comparable to TF-V on these metrics. Similarly, BF-ND does worse than BF-NC

and is comparable to TF-V on the DoM metric, which compares the distributions of

transaction day of month. BF-ND does outperform BF on the tcode related metrics

for the uk data, however this is not surprising, as dates are not needed to generate

data which captures these patterns.

Overall, these results are in line with expectations. It is somewhat surprising that

the conditional generation mechanism improved the distributions of tcodes and tcode
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3-grams, as the tcode is the first feature produced when generating conditionally. It

may be that without conditional generation, the other features become more difficult

to model, causing the model to spend more effort learning those relationships, and

less on the tcodes. We plan to investigate this further in future work.

2.7 Discussion

Our experiments show that the design of BF led to a clear improvement over TG and

DG in modeling financial transactional sequences. Qualitatively, the most significant

area of gain is in modeling the joint relationship between dates and transaction types,

as only BF was able to learn these. Quantitatively, BF also created data that bet-

ter matched the statistical properties of real data, according to the majority of the

metrics we considered. Through ablation experiments, we demonstrated that both of

BFs’ innovations, the date mechanism and conditional generation for the individual

transaction fields, improved synthetic data quality.

We believe a promising future direction for this work is to explore hybrid models

and combine innovations from BF, TG, and DG. There are multiple approaches we

have in mind to explore this idea, including adapting the date mechanism from BF to

GAN models based on TG and DG, and adding an adversarial training step to BF.

Another critical area for future work is to examine the privacy implications of

these models. One major motivation for studying synthetic banking transaction data

is to minimize reliance on real private data. However, before these models can be used

to generate synthetic data to replace real data with genuine privacy concerns, users

must be aware of any potential information which could be leaked through synthetic

datasets.
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Chapter 3

Enhancing Banksformer:

Additional Analysis, Ensemble

Methods, and Differential Privacy

In this chapter we extend the work of the previous chapter by introducing new data

quality metrics and visualizations, exploring privacy implications, and proposing an

ensemble approach to further improve upon previous results.

3.1 Introduction

As we have discussed throughout the previous chapters of this thesis, synthetic data

has many important use cases, particularly in privacy-sensitive domains such as per-

sonal finance. While the work presented in Chapter 2 represents an important step

towards generating high-quality synthetic banking data which can replace real user

data, our synthetic data is still not a perfect substitute for real data. Further, while

we have succeeded at creating synthetic sequences which are not tied to any real

customers, the synthetic data we produce does not have any formal guarantees of

protecting user privacy.

In this chapter, we work towards three goals. First, we aim to better understand

how the structure of our synthetic data differs from the real data on which we train.

To this end, we conduct a qualitative analysis of the real czech dataset in Section 3.2,



and develop a quantitative evaluation framework in Section 3.3. Our second goal is to

improve upon the quality of synthetic data we generate, by creating ensemble datasets

which combine synthetic data from multiple BF models, which we describe in Section

3.4. And finally, in Section 3.5 we aim to determine the feasibility of creating a BF

model which can give formal privacy guarantees on the synthetic data we generate.

3.2 Qualitative Analysis

In this section, we begin by performing an in-depth qualitative analysis of the real

czech dataset, described in Section 2.2 of the previous chapter, and how it compares

to the synthetic data we have generated. Based on this analysis, we then propose

additional metrics to quantify the quality of synthetic data.

When generating synthetic images or text sequences, one important form of quality

analysis is manually inspecting samples. Since most humans encounter a large amount

of image and textual data, we are naturally suited to recognize real data from these

domains. However, we observe that visually inspecting transaction sequences, to

determine if they ‘appear realistic’, is a much more difficult task. In Figure 3.1, we

show a comparison of snippets from real and synthetic sequences. While it is possible

to pick out some differences visually between this pair – such as the fact that real

transactions tend to have rounder amount values – visually inspecting accounts is of

limited value.

One limitation of the metrics used in Chapter 2 is that they evaluate the data at the

transaction level as opposed to the account level. The n-gram based metric described

in Section 2.6.2 is the only one of these metrics which accounts for the sequential

nature of the data; however, it only considers length three subsequences, and thus

is of limited use for understanding if our synthetic data has the same structure as

the real data. As a concrete example of this limitation, we describe the distribution

of pension payment transactions in the real czech dataset described in Section 2.2.

Overall, pension payments account for about 2.9% of transactions in the czech dataset.

However, these pension payments are not evenly distributed among accounts. In

fact, over 83% of accounts have zero pension payments, whereas pension payments

constitute over 25% of the transactions from the remaining 16.4% of accounts with

at least one pension payment. Ideally, we would like our synthetic data to have a
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Figure 3.1: Example transaction sequences from real and synthetic datasets.

similar distribution of pension payments. Unfortunately, our existing set of metrics

only quantifies how well the overall tcode frequencies in synthetic data match the real

data at the transaction level.

In order to get a better understanding of the data structure, we first devised an

approach to visualize accounts behavior. As described in Section 2.2 of the previous

chapter, transactions in the czech dataset have three categorical features that contain

information about the transaction and can be combined to create the tcode. Though

the tcode is the most informative categorical feature, there are 16 options, making

it difficult to visualize. Therefore, we focus on the the operation feature for our

visualization in this section, as this feature has only six options, but is still informative

about the transaction type. Additionally, in Section 3.3.1 we propose a new metric

based on the intuition developed in this section, which uses the tcode.

Figure 3.2 compares six groups of accounts, which are based on the six options

of the operation variable. Specifically, each row contains the 50 accounts from each

dataset with the highest proportion of each type of transaction, such as “cash with-

drawal” or “collection from another bank”. Our visualization is similar to a stacked

bar chart. Each bar in our plot corresponds to an account, and we normalize the bar

height, so each bar shows the proportion of different transaction types in the account.
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Figure 3.2: Visual comparison of real and synthetic accounts with respect to the
operation feature. Each row is based on a different option for the operation and shows
the 50 real and 50 synthetic accounts with the highest proportion of that option.

The goal of our approach is not to directly compare accounts, rather, it is to compare

groups of accounts with similar behaviors.

Figure 3.2 shows that generally, the real and synthetic accounts appear to have

similar structure. Particularly in the second and fourth rows, we see that the types

of transactions and their relative proportions in accounts are very similar between

both datasets. However, there are also noticeable differences between the real and

synthetic data. The synthetic accounts tend to have more ‘cash withdrawal’ transac-

tions than real accounts in most rows. Another difference is the synthetic accounts

tend to have more unique transaction types than real accounts. This is particularly

noticeable in the 5th row of Figure 3.2, which has the accounts sorted by ‘credit in
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cash’. Many of the real accounts only have two types of transactions (‘credit in cash’,

‘credit withdrawal’; indicated by blue and purple respectively); whereas the synthetic

accounts all have at least three types.

3.2.1 Behavior Patterns

Figure 3.2 suggests that it may be possible to group accounts by behavior patterns, as it

appears as though each row shows sets of accounts which are used in different manners.

In order to determine the significant behavior patterns which occur in the real data, we

apply a method called Latent Dirichlet Allocation (LDA). LDA is a versatile method,

which has been applied to a wide range of tasks, including language modeling [15],

population genetics [131], and many more [91, 135]. Within the machine learning

community, this method was popularized in the context of language modeling by [15],

and therefore most of the literature on LDA uses terminology from this domain.

LDA is applied to a set of documents, each document is defined by a sequence of

words, and LDA aims to find a set of underlying topics on which the documents are

based. LDA assumes that each document is a mixture of a small number of topics,

and each topic defines a distribution over words. Given a set of N documents, and a

number k indicating the number of topics, LDA outputs a set of k topic prototypes

and a N × k matrix indicating the topic distribution for each document. While

each document is represented as a mixture of multiple topics, we say a document’s

primary topic is the topic that has the highest weight in the document. In the context

of banking data, we apply LDA to a set of accounts. Each account is defined by

a sequence of transactions, and we use LDA to find a set of underlying behavior

patterns on which the account sequences are based. When applying LDA, we represent

transactions with a single categorical value, such as the operation or tcode.

We begin by applying LDA to the real czech data with respect to operation feature.

We use the operation here because it is easiest to visualize. An important preliminary

step before applying LDA is determining the number of topics for the model to use.

Using cross-validation, we determined that when considering the operation feature,

k = 4 is the most likely number of behavior patterns in the real data.

To get a sense of these behavior patterns, we visualize 40 randomly selected ac-

counts for each of the four primary behavior patterns in Figure 3.3. Visually, the
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behaviors in the synthetic data are quite similar to those from the real data, with a

few noticeable differences. For one, the synthetic data has a much lower proportion of

sequences with pattern #1 as their primary pattern (11.38% vs. 35.00%) and a much

higher proportion with pattern #3 (75.88% vs. 52.80%). The other main noticeable

difference between real and synthetic data is that real sequences tend to have fewer

unique types of transactions, as was the case in Figure 3.2.

Despite these minor differences, for each of the four distinct patterns shown in

Figure 3.3, real and synthetic accounts tend to exhibit very similar behaviors. Ac-

counts which fall under the first behavior pattern typically have about 40% of their

transactions as ‘cash withdrawal’, and they also have significant proportions of ‘col-

lection from another bank’, ‘nan’ and ‘remittance to another bank’ transactions. In

pattern #2, there are a large proportions of both ‘cash withdrawal’ and ‘remittance

to another bank‘ transactions, and also significant proportions of ‘nan’ and ‘credit in

cash’. The third pattern captures accounts with significant proportions of ‘cash with-

drawal’, ‘credit in cash’, and at least one of ‘collection from another bank’ or ‘nan’.

Finally, pattern #4 is similar to #3, with the difference that accounts falling under

pattern #4 have significantly more ‘credit card withdrawal’ transactions. Overall,

all four patterns have a significant amount of ‘cash withdrawal’ transactions, which

makes sense, as 41% of all transactions are ‘cash withdrawal’.

One limitation of LDA is that it is a randomized algorithm, and depends on the

user specifying the number of topics. While using this method to visualize accounts

provides us with insight into the different types of account behaviors that exist in

the real data, we should recognize that it is based on a random algorithm, and the

exact patterns found may be different if the algorithm is run multiple times with

different random seeds. For a user who is interested in applying this visualization to

understand account behaviors in a transaction sequence dataset, we would recommend

running this procedure multiple times, and observed which patterns are typical. In

our experiments, we found that if we re-ran the cross-validation process to choose the

number of topics, we sometimes found different values, ranging from three to eight.

However four was the most common value, and the results in Figure 3.3 are fairly

typical. Overall, we primarily use this analysis to see if the behavior patterns in the

synthetic data are similar to those in the real data, and not to determine a set of

ground-truth patterns for describing the real data, so this randomness is not a major

issue for our application. Further, in Section 3.3.1, we propose a novel metric for
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Figure 3.3: Visual comparison of real and synthetic accounts with respect to the
operation feature. Each row shows a random 50 real and 50 synthetic with a different
primary behavior pattern, as determined by a 4 topic LDA model fit to the real data.

synthetic data quality based on this intuition.

3.3 Quantitative Evaluation Framework

In Chapter 2, we relied on a useful, but imperfect, set of metrics to evaluate the quality

of the synthetic data we produced. As was discussed, there is no single metric which

can quantify ‘how good’ a synthetic dataset is; in fact has been argued that often

the best metrics take into account the type of data and how it will be used [65, 159].

However, in Chapter 2, our metrics were all based on comparing feature distributions.

While it is important that the feature distributions in synthetic data are similar to the

distributions from the target real data, this is only one facet of data quality. In this

section, we propose a suite of additional metrics, and describe the overall framework

we use for comparing the quality of datasets.
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3.3.1 LDA metric

One limitation of the visualization approach used above is that it is only useful for

visualizing account behavior with respect to a categorical feature with a small num-

ber of options. In this section, we propose an LDA-based metric for evaluating the

structure of synthetic banking data. The metric is still based on a single categorical

feature, however it can be used with features with many options. In our experiments,

we use the tcode feature when computing this metric, as the tcode contains informa-

tion from the three unique fields. The idea behind our metric is that an LDA model

fit to real account data should be a good model for synthetic accounts and vice versa.

To this end, we are interested in the following two quantities:

score(ldasynth, real)− score(ldareal, real) (3.1)

score(ldareal, synth)− score(ldasynth, synth) (3.2)

While there are various methods for scoring an LDA model, we define

score(ldaX , Y ) as the perplexity score of an LDA model fit to data X and evaluated

on Y . The quantity in Equation 3.1 shows the increase in the perplexity score of

encoding real data with a model fit to synthetic data, as opposed to a model fit

to real data. Similarly, Equation 3.2 shows the increase in the perplexity score of

encoding synthetic data with a model fit to real data, as opposed to a model fit to

synthetic data. As we view each of these quantities as equally important, our LDA

based metric is the mean of these values:

score(ldasynth, real)− score(ldareal, real) + score(ldareal, synth)− score(ldasynth, synth)

2
(3.3)

Figure 3.4 shows a typical example of LDA scores for models using real and syn-

thetic data. The significant takeaway from this figure is that the test data has a much

greater impact on the perplexity score than the training data. We see that within

each column, the values are quite close, indicating that whether we train on real or

synthetic data, the test performance will only change minimally. Conversely, within

each row, the difference in values is much larger, with models tested on real data

always achieving lower perplexity than models tested on synthetic data, regardless
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Figure 3.4: LDA score matrix example, showing the perplexity scores (lower is bet-
ter). This figure demonstrates that LDA models trained on either real or synthetic
data perform similarly, evidenced by the small difference between values within each
column. The relatively larger differences within each row, and the fact that both
models score worse on the synthetic data, imply that the synthetic data has higher
entropy.

of whether the model was fit to real or synthetic data. The fact that the perplexity

values when testing on synthetic data are always higher than the values when testing

on real data implies that the synthetic data distribution has greater entropy than the

real data. This is in line with our qualitative analysis, which found that in the real

data many accounts only have a small number of transaction types; whereas, in the

synthetic data, accounts typically perform more types of transactions, making their

transaction sequences harder to predict. This can be seen in both Figure 3.2 and

Figure 3.3.

3.3.2 Distinguishability

One critical aspect of synthetic data quality in many applications is that synthetic

samples should be indistinguishable from samples from the target distribution [4].

In order to test this property, we perform a set of experiments using machine learn-

ing classifiers to try and distinguish between real and synthetic samples. We then

conducted a set of distinguishability experiments using a fixed-sized account repre-

sentation and various standard machine-learning classifiers.

To create the fixed size representation, we first apply the method described in Sec-

tion 2.2 to encode a batch of sequences into a 3D tensor with shape (nsequences, nsteps+

1, dimfeatures), with the first step encoding sequence meta-data. We then remove the

meta-data and take the mean of the remaining data over the nsteps dimension to
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create a dimfeatures dimensional representation for each sequence. In the 3D tensor

encoding, categorical features are represented with one-hot encodings, and continuous

features are represented with a single value, scaled so each feature has a variance of

1. After flattening the sequence, the representation encodes the mean of continuous

features, and the proportion of each option for categorical features. We experimented

with concatenating the meta-data together with the flattened sequence to create a

2 · dimfeatures dimensional representation, but found that on average this hurt the

classifier performance. A possible reason for this is that we only have a single meta-

data feature, the customers’ age, which may not be useful for distinguishing between

real and synthetic sequences.

For our distinguishability experiments, we create a binary classification problem by

combining real and synthetic data into a merged dataset, and training binary classifiers

to distinguish between real and synthetic samples, using the flattened representations.

We consider a small set of binary classifiers with different types of decision boundaries

and create a metric for each classifier using their area under the receiver operator

curve (AUC) score on held-out data. Specifically, we employ the scikit-learn [125]

implementations of Random Forest, Logistic Regression, and K-Nearest Neighbours

classifiers, with the default parameters, as well as shallow (depth ∈ {1, 2}) Decision

Trees.

3.3.3 Transferability

Another important property of good synthetic data is that inferences made from the

synthetic data should also be valid for real data. For example, a machine learning

classifier or regressor trained on synthetic data should perform similarly to a model

trained on real data. In the context of the czech banking data, we devised a set

of experiments that involve either predicting the transaction type (classification) or

transaction amount (regression) from the other features.

To quantify this, we use a similar approach as the LDA-based metric. Specifically,

we compute

score(RFsynth, real)− score(RFreal, real) + score(RFreal, synth)− score(RFsynth, synth)

2
,

(3.4)

which is the average of the difference in test scores between models trained on real
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versus synthetic data when scored on real data and the difference in test scores when

scored on synthetic test data.

3.3.4 Coverage

Another aspect of good synthetic data is coverage. The general idea, as shown in

Figure 3.5, is that if we have a dataset of N real samples and N synthetic samples,

then the nearest k neighbors of any sample should be roughly half real and half

synthetic. Based on this idea, we implement two related metrics to quantify how well

our synthetic data cover the real data.

Figure 3.5: Coverage intuition. A synthetic dataset achieves good coverage with the
synthetic samples (S) are interspersed among real samples (R). In the left panel, three
of the eight samples shown have poor coverage with respect to their 3-neighbourhood.
That is, all of their three nearest neighbors are from the same dataset. In the right
panel, all samples have at least one real sample and one synthetic sample in their 3-
neighbourhood, making this an example of a synthetic dataset with perfect coverage
with respect to the 3-neighbourhood.

In both metrics, we define the neighborhood of a sequence as follows. First, we

flatten sequences over the time dimension, using the same method used for the clas-

sifier metrics. Then, we compute the neighborhood of the flattened sequence using

Euclidean distance. The first metric,

(# samples with all 3−NN real) + (# samples with all 3−NN synthetic)

# samples total
,

(3.5)
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considers the 3-neighbourhood of samples in a combined real-synthetic dataset. Specif-

ically, we first select N sequences from both the real and synthetic data, where

N = min(n sequencesreal, n sequencessynthetic), and combine them into a combined

dataset C. We then compute the three nearest neighbors in C for all sequences in

C. The first metric is the proportion of samples from C with all 3-neighbors coming

from the same dataset. The second metric,

E
x∼S

[proportion kneighbours real(x)], (3.6)

is also based on a balanced combined dataset C, however in this metric, we consider

the 5-neighborhood of only the synthetic samples. Specifically, we take the average

over synthetic samples of the proportion of real samples in the 5-neighborhood.

3.3.5 Non-memorization

An orthogonal aspect of data quality is that we do not want our model to simply

generate copies of the real data. For many of the other metrics we consider, one way

to create a high-scoring ‘synthetic’ dataset is to simply copy the real training data.

This would create an indistinguishable dataset with the same distribution as the real

data. However, the true value of synthetic data comes from being able to synthesize

novel samples.

One way to check if the model has memorized the training data, is to look for

‘identical’ transactions occurring in both the real and synthetic data. In order to

conduct this test, we first need to determine exactly what constitutes identical trans-

actions. Suppose we use an overly stringent definition, such as ‘identical transactions

must have the same type, exact same amount, and be on the same date’. In that

case, we find that identical transactions are quite rare, with only 0.09% of synthetic

transactions being identical to real transactions. Simply considering this number by

itself is not particularly informative about the quality of the synthetic data. If we

want our synthetic data to not simply copy the training data, we might argue that

synthetic data with fewer transactions identical to real transactions are better; how-

ever, since we want our synthetic data to look like real data, having some identical

transactions may be desirable. For example, if we consider only transactions with
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the tcode ‘credit nan interest credited’, which corresponds to transactions indicat-

ing interest payments, we see that 0.59% of synthetic transactions are exact duplicates

of real transactions. While this is significantly higher than the overall proportion of

duplicate transactions, closer examination reveals this has a reasonable cause. Trans-

actions with this tcode account for 17% of the entire real dataset, typically have small

amounts (median amount is $133.00), and only occur on the last day of the month.

Therefore, it is expected that a large synthetic dataset that follows the real data dis-

tribution will have some duplicate transactions. By making assumptions about the

distributions of amount and date values, we could compute an estimate of the ex-

pected number of duplications, and use this in evaluation criteria. However, we adopt

a different approach, which makes no assumptions about feature distributions.

Our approach is based on [129]; the central idea is to use a validation set of real

data to determine what number of duplications is suitable. Specifically, before training

our BF model, we partition the real czech data into training and validation sets. We

train BF using only the training set, then during evaluation we compare the number

of duplications between the synthetic data and training data, with the number of

duplications between the synthetic data and validation data. Because the training

data typically contains more sequences than the validation data, we use a random

sample of the training data, which is the same size as the validation data for this

analysis. Overall, 0.09% of the transactions in the synthetic data are exact duplicates

of samples from the real training data, and 0.09% of the transactions in the synthetic

data are exact duplicates of samples from the real validation data. Therefore, it does

not appear that the model memorizes the training data.

We consider two additional relaxed definitions for identical transactions. First, we

use a definition that ignores the date features, and defines duplicates as transactions

with the same amount and tcode. Then, we consider a further relaxed criteria, un-

der which transactions are identical if they have the same tcode and their amounts

are within 1% of each other. As we show in Table 3.1, the number of duplications

increases with each relaxation of the criteria; however, there is always a similar level

of duplication between the training data and validation data, suggesting we have not

overfit the training data. Table 3.1 also shows a breakdown of the duplications by

tcode. As discussed above, duplications may be more or less common for different

tcodes. Across all tcodes, the number of duplications is similar for the training and

validation data, strengthening the claim that we did not overfit the training data.
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Table 3.1: Comparison of duplication percentage between training and validation
data. Each row shows the percent of synthetic transactions which have a duplicate
in the real data, according to different criteria. Each row shows the result based on
a specific transaction type, with the last row showing the result over all types. We
consider three different criteria for determining if transactions are duplicates, and for
each criterion compare the duplication rate with training samples from the real data
against the duplication rate with validation samples.

Amount within 1% Exact Amount Exact Amount & Date
Matches in train val train val train val

Tcode #1 67.11% 66.56% 0.08% 0.08% 0.00% 0.00%
Tcode #2 47.26% 47.40% 0.08% 0.08% 0.00% 0.00%
Tcode #3 59.34% 59.58% 5.77% 5.69% 0.57% 0.59%
Tcode #4 0.90% 0.90% 0.02% 0.02% 0.02% 0.02%
Tcode #5 42.01% 43.88% 0.04% 0.04% 0.00% 0.00%
Tcode #6 40.38% 40.39% 0.08% 0.09% 0.01% 0.00%
Tcode #7 24.39% 26.46% 0.00% 0.00% 0.00% 0.00%
Tcode #8 19.70% 19.70% 0.10% 0.09% 0.00% 0.01%
Tcode #9 22.32% 24.06% 0.01% 0.00% 0.01% 0.00%

Tcode #10 19.03% 20.19% 0.00% 0.00% 0.00% 0.00%
Tcode #11 8.71% 8.91% 0.00% 0.01% 0.00% 0.01%
Tcode #12 32.52% 31.74% 3.16% 3.25% 0.19% 0.09%
Tcode #13 6.97% 8.07% 0.03% 0.00% 0.00% 0.00%
Tcode #14 25.13% 27.62% 0.00% 0.00% 0.00% 0.00%
Tcode #15 3.98% 13.88% 0.00% 0.00% 0.00% 0.00%
Tcode #16 2.33% 0.00% 0.00% 0.00% 0.00% 0.00%

Overall 46.22% 46.37% 0.93% 0.92% 0.09% 0.09%

Holdout metric

The idea that the appropriate number of duplications can be determined using a

validation set is powerful, and useful for more than just determining how many du-

plications to expect. Generally, for any metric we compute comparing a synthetic

dataset against a real dataset, the value of the metric should be the same whether

it is computed using the same real data which the synthetic data model was trained

on, or on held-out data from the real distribution [129]. If the synthetic data scores

significantly better when compared to the training data than when compared to the

validation data, then this can be taken as evidence of overfitting. In Chapter 2,

we computed all metrics based on comparing synthetic data to the full real dataset.

However, in the interest of quantifying how much our model is overfitting the training
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data, we now compute each metric with three different options for what we use as

the real data: the full real dataset, the portion of the real dataset used to train our

model, and the held-out portion of the real dataset not used to in training.

Computing these three values is straightforward for most metrics, such as those

that compare distributions. We start with the split of the real data R into training

data used for training BF, Rtr, and validation data Rval. Given a synthetic dataset S,

we simply compute metric(R, S),metric(Rtr, S), and metric(Rval, S). However, for

metrics that involve training predictive models, such as the classifier-based metrics,

there is added complexity to computing these three values because we also need to

consider what data is used to train and evaluate the classifier. We adopt the following

approach. First, we partition the synthetic data S into training Str and validation

Sval sets. To compute the metric based on the full real dataset, we use samples from

{Str, Rtr} to fit the models and samples from {Scv, Rcv} for scoring. To compute

metrics based on training and validation sets, we further partition the data used to

train BF (Rtr) into (Rtr,tr), (Rtr,val). When computing the training value, we use

samples from {Str, Rtr,tr} to fit the models and samples from {Scv, Rtr,cv} for scoring

(only real samples from Rtr). For the validation value, we use the same samples to fit

the models and samples from {Scv, Rcv} for scoring. Our holdout metric is defined as

the mean percentage difference between the training and validation scores, averaged

over all metrics.

3.3.6 Distribution metrics

The final set of metrics are based on the idea of comparing feature distributions

between real and synthetic datasets. These metrics were described in detail in Chapter

2. Specifically, we use the metrics comparing univariate distributions for the amount,

tcode and day of the month feature, described in Section 2.6.1, the N-gram metric

from Section 2.6.2, and the joint (tcode, day of the month) distribution metric from

Section 2.6.3.

3.3.7 Overall Framework

As has been made clear, the overall quality of a synthetic dataset is not a well-defined

concept, and it depends on how the data will be used. However, when trying to
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determine the effect of a modeling decision – such as the number of models to include

in an ensemble – having some sense of overall quality is crucial. Because of this, we

define a flexible framework for determining the overall quality of a synthetic dataset

relative to other synthetic datasets based on the same real data. The basic idea

behind our framework is to aggregate the results from the various metrics described

throughout this section.

Specifically, given a set of synthetic datasets, and a set of metrics, we compute a

ranking of the datasets according to each metric, and use the mean rank over metrics

as the overall quality score. The decision to base the aggregation on ranks was made

for two reasons. First, some metrics have vastly different scales, so using ranks allows

us to translate all metrics to a common scale. Second, unlike linear scaling, using a

ranking minimizes the impact of outliers. Depending on the application, the second

point may or may not be desirable. It depends upon the answer to the question, ‘If a

dataset is extremely bad on a single metric but very good on all other metrics, how

should it be ranked?’ With a ranking approach, the dataset will likely be scored quite

well, despite any extreme outliers. Conversely, if a single score was significantly poor,

then a linear scaling approach would cause the synthetic dataset to receive a very

bad score. Our framework can easily be adapted to various specific applications by

adding, removing, or reweighing metrics based on their relevance to the application,

as well as changing the aggregation method. In Section 3.4.2, we experiment with

using different subsets of the metrics to create datasets tailored to different purposes.

3.4 Ensembles

Recent work on GAN-based generative modeling has shown that ensembles of GANs

tend to be better data generators than non-ensembled GANs [174, 162, 56, 101, 38].

There are various ways in which GAN ensembles can be implemented. The most

straightforward approach is to train multiple copies of the same model, using different

random seeds [174]. Other approaches include bagging [38], boosting [162, 56], and

training multiple copies of a model on different subsets of the training data [174, 38].

In the context of GANs, experimental evidence suggests that the optimal number

of models to include in an ensemble depends on the problem and model design [38].

Inspired by this success, we conduct a series of experiments using various methods to

58



construct ensembles of BF models, with the aim of improving our synthetic data.

In these experiments, we adopt a similar approach as [174], and build our ensembles

with multiple copies of Banksformer, which were trained using different random seeds.

Specifically, we begin by training 30 randomly initialized copies of BF, and then use

each trained model to generate a single-model synthetic dataset of 10554 sequences.

We create ensemble datasets by combining sequences from two or more single-model

datasets. To generate a synthetic dataset of N sequences from an ensemble of k

models, we select bN
k
c sequences from each model’s dataset, and if needed select an

additional sequence from N−k ·bN
k
c randomly selected models. Using this framework

for ensemble dataset construction, we experiment with different selection criteria for

selecting which k models to include. As a baseline, we consider random selection,

where we select which models to include in the ensemble randomly. This random

selection criteria is logically equivalent to using no selection, as we simply create the

ensemble from k randomly chosen models. In Section 3.4.2, we also consider six elitist

selection criteria, which select the k models deterministically, according to different

criteria.

3.4.1 Number of models

First, we are interested in the impact of the ensemble size on synthetic data quality.

After some preliminary experiments, we decided to focus on ensembles containing

between 2 to 20 models, as considering bigger ensembles did not lead to improvements.

To study the impact of the number of models, we randomly created and evaluated

10 ensemble datasets for each ensemble size in this range, according to the random

selection criteria. We compare these ensemble datasets with the 30 single model

datasets.

In Figure 3.6, we show the overall impact of the number of models included in the

ensemble. The results in Figure 3.6 are somewhat mixed. If we look at the overall

mean rank across metrics, there doesn’t appear to be a strong main effect of the

number of models. However, there does appear to be some reduction in variance as the

number of models increases. This is likely due to the two-step method for constructing

ensemble datasets; first selecting the models to include and then selecting the samples.

If there are a small number of models which each contribute a large number of samples,

then there will be higher variance than if a small number of samples where chosen
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Figure 3.6: Effect of the number of models in ensemble dataset. As the number of
models k used to create the ensemble dataset increases, there is a slight improvement
in the average quality of a dataset created with a k model ensemble, up to 14. The
variance in dataset quality decreases with k. The best dataset was created by a four
models ensemble and achieved mean rank of 30.4 across all metrics. The worst dataset
was created by a single model ensemble and achieved mean rank of 206.0 across all
metrics

from a larger number of models.

Another interesting finding from Figure 3.6 is that the best dataset comes from an

ensemble of four models; however on average, datasets produced by larger ensembles

scored better than those produced by ensembles of four of fewer models. This led us

to consider elitist methods for creating ensemble datasets, which select the k models

to include according to a selection criteria.

3.4.2 Elitist Ensembles

In these experiments, we consider six potential selection criteria for deterministically

selecting k of m models (k < m) to include in ensembles. The first criterion we

considered is to choose the k models which achived the best validation loss during

training, as it is a generic indicator of the model quality and not tied to any particular

metric. We also consider the overall quality metric, which was defined in Section 3.3.7.

While these two criteria are meant to be generic, we also consider four specialized

criteria, which aggregate different subsets of related metrics. In Table 3.2, we detail

the individual metrics included in each criteria.

In Figure 3.7, we show the interaction between the selection criteria and the num-

ber of models included in the ensemble. This figure shows ensembles constructed
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Elitist Criteria Included Metrics

Distribution amount-wasser, td-wasser, tcode-jsd, tcode-3g-jsd, day-jsd,
tcode day-jsd

Classifier RF auc, DT-1 auc, DT-2 auc, LR auc, KN3 auc, KN7 auc
Coverage cover3, cover5
Holdout Metric holdout val

Table 3.2: Specialized Elitist Selection Criteria. This table describes the set of indi-
vidual metrics used in each of the elitist selection criteria.

using the mean rank on classifier metrics, or the mean rank on all metrics tend to be

the best. Again, there does not appear to be an obvious optimal number of models to

include; however, datasets constructed from more than 12 models tend to outperform

those with 12 of fewer models.

Figure 3.7: Effect of selection criteria and number of models on mean rank. Using
the classifier selection criteria with a 17 model ensemble produced the best results,
achieving a mean rank of 308.5.

One limitation of Figure 3.7 is that we only consider the overall data quality when

comparing methods. This raises a question: does selecting models based on their

performance on a subset of metrics (such as classification metrics), create ensembles

that will perform well on those metrics? We investigate this in Figure 3.8, where

we visualize the the impact of selection criteria on different metric subsets. Overall,

the classifier-based selection produces the best data judged by all metrics, which is

consistent with what we saw in Figure 3.7. Unsurprisingly, for each of the specialized

metric sets (Classifier, Coverage, Distribution, Holdout), the best ensemble dataset
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Figure 3.8: Effect of selection criteria and on metric subsets. Each column shows the
quality score computed on a different subset of the metrics, while each row shows
results for different ensemble selection criteria. Overall, the classifier based selection
criteria performs quite well across a broad range of metric subsets. However, when
judged using specific metric subsets, such as coverage or distribution metrics, using
the corresponding selection criteria produces the best results.

according to that set was created using the corresponding selection criteria. Inter-

estingly, classifier-based selection also performs quite favorably across most metric

subsets, and is the best or second-best on all metric subsets besides the distribution

metrics. The ensembles created randomly, using no selection criteria, performed worse

than ensembles created with any of the other selection criteria, which is also consistent

with Figure 3.7.

3.4.3 Comparison to previous results

Throughout this section, we have explored various methods for constructing BF en-

sembles, with the goal improving the quality of the synthetic banking data we gener-

ate. Table 3.3 compares the best datasets from this chapter against the best datasets

produced by Banksformer and DoppelGANger in Chapter 2. In Table 3.3 we see

the data produced by ensemble methods is better than the best Banksformer dataset

from Chapter 2, across all metrics. Table 3.3 also shows that while both elitist and

non-elitist ensembles improve on prior results, the elitist ensemble performs best on

significantly more metrics. However, none of the Banksformer based approaches were

able to outperform DoppelGANger with respect the amount-wasser metric. This may
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suggest that DoppelGANger is best for modeling single features without dependen-

cies, as the amount-wasser metric is based on the amount feature and is independent

of other features.

Table 3.3: Quality comparison of synthetic banking data generated by various meth-
ods. The first two columns show the comparison between data generated by Doppel-
GANger (DG) [93], and the first iteration of Banksformer (BF), which was detailed
in Chapter 2. The 3rd column shows results from the best ensemble model, created
by our experiments in this chapter.
*The holdout metric was not computed for the DG and BF datasets, as we do not
have information on the training/validation split used for these earlier models.

DG BF ensemble-r ensemble-e

amount-wasser 1544 3004 2622 2495
td-wasser 5.275 0.8514 0.7261 0.6649
tcode-jsd 0.0103 0.0116 0.0016 0.0019
day-jsd 0.1614 0.0159 0.0052 0.0043
tcode day-jsd 0.4111 0.0435 0.0164 0.0153
RF auc 1.0 0.993 0.9287 0.9023
DT-1 auc 1.0 0.6483 0.5988 0.5808
LR auc 1.0 0.8197 0.7499 0.7059
KN7 auc 1.0 0.9474 0.8645 0.7974
lstm auc 0.9998 0.9932 0.9786 0.8667
tcode num consist 0.2035 0.1991 0.1461 0.1335
log amount sc consist 0.6914 0.3528 0.3235 0.2961
cover3 1.0 0.8402 0.6128 0.5522
cover5 1.0 0.8466 0.7014 0.6716
lda 0.2081 0.13 0.0475 0.0594
tcode-3g-jsd 0.19 0.0954 0.0186 0.0194
holdout val NA* NA* 2.031 0.5254

3.5 Privacy and Synthetic Data

One of the major motivations for working on synthetic data is to facilitate data sharing

while minimizing the risks of exposing private information. It might appear that if

we share synthetic data which are not tied to any specific customer, then we do not

need to worry about exposing private information about the customers; however, this

is not the case. In fact, there are many historical examples (such as [95, 109, 12]) of
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‘anonymized’ data being released and then later being used by others to infer private

information about the original data. There are many different formal definitions

of privacy, such as: ε-identifiability [184], k-anonymity [12], and (ε, δ)-differential

privacy [36].

Differential privacy (DP) is a common privacy criteria within the machine learning

community. As opposed to many other notions of privacy, (ε, δ)-DP is a property of

a randomized algorithm, not only a dataset. There are various ways (ε, δ)-DP can

be used to create private synthetic data, however, methods generally follow the same

procedure. First, learn an approximate model of the data using an (ε, δ)-DP algorithm,

then use the approximate model to generate synthetic data. One useful property of

(ε, δ)-DP is that it is robust to post-processing, meaning that any data generated from

a model trained with a method that is (ε, δ)-DP, will also be (ε, δ)-DP.

Intuitively, an algorithm is (ε, δ)-DP if and only if there is a high probability

that changing any single record in the input data will not significantly change the

algorithm’s output. The parameter ε indicates the strength of the guarantee to ‘not

significantly change the algorithm’s output’, and δ indicates the probability that this

guarantee will be violated. Formally, a randomized algorithm A which maps datasets

to an output space O is (ε, δ)-DP if and only if, for any pair of input datasets D1, D2

which differ on only a single sample:

∀S ∈ O, p(A(D1) ∈ S) ≤ eεp(A(D2) ∈ S) + δ

.

3.5.1 Differentially Private Banksformer

In this section, we create a differentially private version of Banksformer, by using

a modified training algorithm, based on a differentially private version of stochastic

gradient descent (DP-SGD) [1]. Essentially, this approach modifies the training pro-

cedure by using gradient clipping to limit the sensitivity of the gradients and adding

noise to the gradients.

DP-SGD has many parameters which affect both the privacy guarantee and the al-

gorithm’s performance, including the amount of noise added to gradients, the strength
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of gradient clipping, the batch size, and the total number of batches used during train-

ing. Generally, it is expected that adding stronger privacy guarantees will cause some

degradation in performance [1, 8, 67], however in some cases adding more privacy may

act as a regularizer and improve performance [123]. For a specific privacy level, there

are trade-offs between the other parameters that impact the algorithm’s performance.

Our original goal was to study the trade-offs between these other parameters and the

trade-off between stronger privacy guarantees and the quality of synthetic data.

3.5.2 Privacy results

After extensive experimentation with DP-SGD, and other similar tools provided by

the TensorFlow Privacy library [53], we found that adding even an extremely weak

privacy guarantee caused a substantial degradation in the quality of the synthetic data

produced. Typically, values of ε > 10 are not considered to offer significant privacy

protection. We present results of a (1019, 10−5)-DP version of Banksformer, that is,

with ε = 1019 and δ = 10−5. While δ = 10−5 is an appropriate setting, choosing

ε = 1019 essentially offers zero privacy guarantee. We will demonstrate that even

this absurdly low level of privacy protection significantly degrades the quality of the

synthetic data generated. In our experiments, we found that with stronger privacy

guarantees, the model fails to learn both date-based patterns and appropriate amount

distributions.

Figure 3.9: Date, tcode relationship in BF and DP-BF data versus real czech data.
Each row shows a different tcode with a date-based pattern. We include the BF results
from the previous chapter on the left side, and show DP-BF results on the right.
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Figure 3.9 shows a comparison of the day of the month frequencies for two tcodes

with date-based patterns. For reference, we also include the BF results from Figure

2.5 of the previous chapter. From Figure 3.9, we see that while our DP-BF model is

able to learn date-based patterns significantly better than the GAN models considered

in Chapter 2, it is significantly worse than the non-private BF. The results for the

tcode in the top row are similar between BF and DP-BF, however the DP model

creates more transactions on the 5th-8th days of the month than it should. The DP-

BF model makes further errors on the tcode shown in the second row, producing a

significant proportion of these transactions after the 15th of the month, which does

not occur in real data or data generated by the non-private BF.

Figure 3.10 shows the synthetic data contains some transactions with amount

values orders of magnitude larger than are appropriate based on their tcode. If we

compare this to the result from the previous chapter (Figure 2.6), we see that DP-BF

is significantly worse than the GAN models, as well as the basic BF implementation.

Figure 3.10: Conditional amount distributions for DP-BF. This figure shows a com-
parison of the conditional distributions p(log(amount)|tcode) produced by BF against
real data, for the two most common tcodes in the real data.

These results with DP-SGD are in line with previous research [93], which also

found that generative models trained with DP-SGD failed to capture important data

patterns in time-series data. Given that using ε = 1019 yields a noticeable degrada-

tion in synthetic data quality, and this provides virtually no privacy protection, we

conclude that any level of usable privacy (ε ≈ 10) would make the generated data

unusable in practice. This is further supported by our preliminary experiments with
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lower ε values which yielded very poor quality synthetic data. However, experiments

with other types of data have found that for particular datasets, such as MNIST [83],

it is possible to achieve a reasonable level of privacy and synthetic data quality simul-

taneously [181].

3.6 Discussion

The tools we developed in this chapter have allowed us to better understand the

quality of our synthetic data, both through qualitative visualizations and quantitative

metrics. By visualizing account behavior in Figures 3.2 and 3.3, we found that overall

the behaviors are similar between real and synthetic accounts; however, synthetic

accounts tend to have more unique types of transactions than real accounts. The

additional metrics were then used in Section 3.4, to evaluate different approaches to

ensemble construction.

Results from Section 3.4 demonstrate that adopting an ensemble approach with

our Banksformer model produces better synthetic data than relying on a single model.

Further, in Section 3.4.2, we investigated different methodologies for selecting which

models to include when creating ensembles. We found that selecting models based

on their performance on classifier-based metrics lead to the best quality data overall.

However, our results from Figure 3.8 also suggest that if a certain facet of data qual-

ity is particularly important, such as the feature distributions being accurate, then

selecting models based on that facet can lead to better results.

The key takeaway from our privacy experiments is that adding even a minute

amount of privacy to BF via DP-SGD severely corrupts the quality of generated

data. However, our analysis in Section 3.3.5 does suggest that we are not memorizing

training data, as the synthetic data we produced was not significantly more similar to

the data used to train BF than it was to held-out data, which was not used in training.

While this is not a substitute for a formal privacy guarantee, it is still an encouraging

finding. Further, throughout our experiments, we have gained a better understanding

of the limitations of DP-SGD, and have identified some potential directions of future

research, which could add privacy to Banksformer.

One promising future direction would be to modify the DP-SGD framework to

allow users to designate certain aspects of the training data as public information,
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which is not privacy sensitive. For instance, in the czech banking data, account

fees are always paid on the last day of the month, and over 90% of transactions

corresponding to account fees have an amount value of $14.60. If we could designate

this information as non-sensitive, we may be able to learn these patterns better and

under stronger privacy guarantees. Our work is also limited by data availability;

the czech dataset only contains 4500 accounts. Because DP quantifies the impact of

changing a single training sample, increasing the amount of training data would likely

improve results.

Another potential direction is to explore other methods for creating differen-

tially private data without DP-SGD, such as private aggregation of teacher ensembles

(PATE) [123], which has been successfully applied in the context of GANs [67]. The

PATE approach requires partitioning the training data into k disjoint subsets, train-

ing a unique teacher model on each subset, and then training a final student model

by making differentially private queries to the teacher models. We did not explore

this method extensively due to the small size of our dataset. We conducted some

preliminary experiments training copies of BF on disjoint subsets of the training

data. However, we found that with even two subsets, the reduction in training data

led to significantly worse synthetic data being produced, before adding any privacy

mechanism. While PATE was not useful in our work, it is a promising direction for

researchers with access to larger training datasets.

3.7 Conclusion

Throughout this chapter we introduced novel qualitative and quantitative approaches

for evaluating synthetic banking data, and in Section 3.3.5 we proposed a flexible

framework for evaluating the overall quality of the synthetic data we produce. Us-

ing this framework, we explored multiple approaches to ensemble construction, and

determined that generally elitist approaches to ensemble construction outperformed

random ensembling. While there are different notions of what constitutes ‘high qual-

ity’ synthetic data, we demonstrate that for a wide range of quality metrics, we can

create ensemble datasets that perform well on these metrics by using the metrics to

pre-filter which models to include in the ensemble. Finally, we demonstrated that

adopting an ensemble approach allows us to generate better synthetic banking data
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than our best results from Chapter 2.

69



Chapter 4

Creating Diverse Ensembles for

Classification with Genetic

Programming and

Neuro-MAP-Elites

In this chapter, we explore evolutionary computing methods for constructing diverse

ensembles. Our focus in this chapter is on classification tasks, as opposed to synthetic

data generation, as ensembles have been better studied in the context of classification.

In Chapter 5, we employ a diversifying evolutionary algorithm based on this work to

further boost the quality of synthetic banking data we create.

This work was published and presented at the 2022 EuroGP conference, a CORE-

B ranked conference in the field of evolutionary computing [113]. It built upon the

work, which was the basis for a short paper and poster presented at the 2021 Genetic

and Evolutionary Computation Conference, a CORE-A ranked conference in the field

of evolutionary computing [112].



4.1 Introduction

Ensemble classifiers, which make predictions by combining multiple simple models,

outperform single model classifiers for many supervised learning tasks. The impor-

tance of diversity in ensemble classifiers is well documented, however in general it

can be challenging to create diverse ensemble classifiers in a principled way. While

there may be various notions of diversity, for ensemble classifiers it is specifically error

diversity - meaning that individual classifiers make errors on different samples - which

matters most [20].

To see the benefit of error diversity, consider a toy problem consisting of only three

samples and a set of limited classifiers, each of which can only classify two of the three

samples. In this scenario, we can construct an optimal ensemble from three limited

classifiers, as long as they are maximally diverse with respect to the errors they make.

Conversely, if even two of the three classifiers make the same error, then the ensemble

will not be correct in all cases (see Figure 4.1).

Figure 4.1: Benefit of ensemble diversity. In this toy example, each classifier can only
achieve a maximum accuracy of 67%. However, as long as there is diversity in the
errors made, a majority vote classifier constructed from these imperfect classifiers will
achieve perfect accuracy.

The fact that evolutionary algorithms (EAs), such as genetic programming, pro-

duce populations of solutions makes them seemingly ideal for ensemble creation. How-

ever, many standard EAs for evolving classifiers lose diversity as evolution proceeds,

causing the predictions of the individuals in the final population to be strongly cor-

related. This limits our ability to create an effective ensemble classifier directly from

a final population. In practice, we can run an EA many times and create a diverse

ensemble by selecting the best individual from each run to be in the final ensemble,

however there are drawbacks to this method. In addition to being wasteful by not us-

ing all models from each run, there are other issues with this approach. For example,
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it is possible that if the standard algorithm is run too long that independent trails

will converge to the same or similar solutions, and if it is not run long enough, the

individuals will not be fit enough to be useful in an ensemble.

Within the field of evolutionary computing, there are many examples of the utility

of creating diverse sets of solutions as opposed to focusing on a single best solution,

such as evolving adaptable robot controllers [29], playing card games [23, 42], and

generating video game content [55]. Many of these results rely specifically on the

MAP-Elites algorithm, a niching EA, which represents the population as a discrete

grid of cells and assigns solutions to cells based on their behaviors [108].

The MAP-Elites algorithm essentially provides a structured population, which

aims to increase population diversity in a user defined behaviour space. In MAP-

Elites, candidate solutions only compete with other candidates assigned to the same

cell, which allows the population to maintain diversity as evolution proceeds. The

mapping from solutions to cells is facilitated by behavior descriptors, which maps

solutions to a low dimensional behavior space. The behavior space is then partitioned

into cells, and solutions are assigned to the cells in which their behavior descriptors lie.

This partitioning of the behavior space helps prevent MAP-Elites populations from

converging to a set of highly similar solutions by preserving diversity in the behavior

space [108].

Defining effective behavior descriptors is an essential aspect of MAP-Elites, as

they determine the sorts of diversity which will be produced. As mentioned above,

when creating ensemble classifiers, we are particularly concerned about diversity with

respect to the classification errors made. Given a fixed set of samples to be classified,

error information can be represented naturally as a high dimensional binary indicator

vector, with length equal to the number of samples. Our method relies on a variational

autoencoder (VAE) to learn a low-dimensional representation of the high dimensional

error vectors.

The main contribution of this work is Neuro-MAP-Elites (NME), a novel frame-

work based on MAP-Elites, for evolving ensembles of classifiers with greater error

diversity. Using linear genetic programs (LGPs) as our classification model, we show

that NME can be used to create diverse populations of classifiers and further that

these more diverse populations make more effective ensemble classifiers.
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4.2 Background

In this section, we provide some brief background on the techniques upon which NME

is based.

4.2.1 Linear Genetic Programming

In general, genetic programming (GP) seeks to evolve computational models for mak-

ing predictions [18]. There are many variants of GP, based on different representations

for the computational models being evolved, such as tree GP [77], Cartesian GP [104]

and linear GP (LGP) [18]. In this work, we use LGP for our genetic programming

model, as it provides good performance on a wide range of classification tasks [18, 147];

however, any GP variant can be used with our method. In this section, we give a

general overview of LGP, and in Section 4.3, we provide more specific details on the

specific LGP implementation used in this work.

Simply put, LGP is a type of GP where computational models (i.e., programs)

are represented as sequences of instructions, often resembling imperative programs

[18]. Generally, programs have access to a number (nregisters) of writable computa-

tion registers used when executing their instruction sequences. Programs also have

some registers designated as input registers, which, as their name suggests, contain

input values to the program. In the context of classification tasks, these input values

are the features of the samples that we are classifying. The input registers may be

implemented by designating a subset of the writable computation registers as input

registers or as a separate set of read-only registers. Instructions typically involve

mathematical operations on values stored in registers and result in either information

being written to registers, or changes to the program execution (such as skipping in-

structions). Programs perform classification of samples as follows: first, the samples’

features are loaded into the input registers, next the instructions are executed, and

finally the final state of the computation registers is then transformed to a prediction.

The transformation of the final state of the computation registers may be done in

many ways and is dependent on the problem. In the simple case of binary classi-

fication tasks, a common approach is to designate a single computation register as

the output register, and then compare the value of the final register to a predefined

threshold to obtain the prediction (i.e., if output > threshold predict class 1, else
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predict class 2). In this work, we combine LGP with the MAP-Elites algorithm to

help create diverse populations.

4.2.2 Map-Elites

Map-Elites is an EA designed to evolve diverse populations of solutions in a single

run [108]. More specifically, Map-Elites falls under the umbrella of quality diversity

algorithms, which are EAs designed to evolve populations of high-performing solutions

which are also diverse. The way Map-Elites works is fairly straightforward – instead of

using an unstructured population, as is typical in EAs, MAP-Elites used a structured

grid population to maintain diversity. The structured grid contains a number of cells

equal to the maximum population size. Each cell begins empty and may contain no

more than one solution during the execution of the algorithm. When a new candidate

solution is created, there is a two-step process to determine if the candidate solution is

added to the population. First, a behavior function maps the candidate solution to a

single cell. The candidate solution then competes with the current solution in this cell,

or if no solution currently occupies the cell, the candidate solution is automatically

added. The simplest way to implement the competition is by simply selecting the

solution with the highest fitness and breaking ties randomly.

An essential part of MAP-Elites is determining the mapping from solutions to

cells. To this end, when evaluating a possible solution, a behavior descriptor is pro-

duced, in addition to a fitness score. The behavior space is a low-dimensional vector,

typically 2D, used to represent a solution in the behavior space. The behavior space is

partitioned into (usually equal sized) cells so that a program is assigned to the cell in

the behavior space in which its descriptor lies. The reason for using low-dimensional

descriptors is that higher dimensional descriptors lead to problems stemming from

the curse of dimensionality. Specifically, the problem is that if we divide each di-

mension into k regions (boundaries for the cell), then the total number of cells for

a d-dimensional descriptor will be kd. If we instead try to fix the max population

size at N , then there can only be blogdNc regions per dimension. In practice, we

typically want at least ten regions per dimension, so we must stick to low-dimensional

descriptors or use other variants of MAP-Elites, such as MAP-Elites-CVT [170].
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4.2.3 Variational Autoencoders (VAEs)

VAEs are a powerful probabilistic modeling framework for representation learning [74].

The VAE framework assumes that high dimensional observed data are generated by

a random process acting on unobserved latent factors. VAEs are composed of two

feed-forward neural net models, often called the encoder and decoder networks. The

encoder network learns to infer a distribution over low-dimensional representations

of the high dimensional data, and the decoder learns a generative model from latent

factors to the samples from the original high dimensional space.

To train a VAE, the weights of both the encoder and decoder are optimized to-

gether, using an unsupervised objective. During training, the high-dimensional origi-

nal data x are passed through the encoder, which outputs a probability distribution

over encodings of x. Specifically, this is done by outputting a mean vector µx, and

variance vector σx, which are interpreted as parameters to a Normal distribution with

a diagonal only co-variance matrix. A sample is then drawn from this distribution,

and the sample is fed into the decoder, which aims to reconstruct the original sample

x by outputting x̂. The loss function used to train a standard VAE is known as the

evidence lower bound (ELBO), and contains two terms. The first is the reconstruc-

tion error ||x− x̂||2, which measures the reconstruction quality. In the loss function,

this term incentivizes the VAE towards learning low-dimensional encodings, which

are informative about the high dimensional representation. The other term is the KL

divergence between the distribution output by the encoder, and a standard Normal

distribution DKL(N(µx, σx)||N(0, I)). This term encourages representations that are

approximately normally distributed.

While it may seem beneficial to only focus on the first objective — which is

essentially what is done in basic autoencoders [62] — the second objective provides

regularization and encourages the encoder to learn smoother encodings. This means

small changes in the latent features produce small changes in the high dimensional

space, and similar high dimensional vectors are encoded to nearby locations in the

low dimensional space. Further, it also produces latent spaces in which the samples

are approximately normally distributed, which is useful for some downstream tasks.

There have been many modifications made to VAEs since their original proposal.

Here we briefly mention a VAE variant called β-VAE [61], which is used in this work.

β-VAE follows the original VAE design but employs a modified version of the ELBO
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loss function. In β-VAE, the loss contains a constant β, which controls the relative

weight of the two terms in the standard VAE loss. The benefit of β-VAE is that it

allows us to control the trade-off between the two terms in the ELBO. Specifically,

the β-VAE loss function is: loss = ||x− x̂||2 + βDKL(N(µx, σx)||N(0, I)).

4.2.4 Ensemble Classifiers

Traditionally, GP approaches to classification rely on outputting the single best pro-

gram as the final predictive model. However, it has been argued that since these

algorithms produce populations of programs that are all adapted to the target task,

it is logical to make use of the entire population in the final model [47, 140]. One

major issue which must be addressed when evolving ensembles is the maintenance of

diversity amongst the individual solutions, as predictive diversity has been shown to

be crucial in ensemble creation [20].

In work from the GP community on evolving ensembles, there are generally two

approaches; offline approaches, which construct the ensemble directly from a final

population, and online approaches, which gradually build the ensemble during evo-

lution [47]. With offline approaches, it is necessary to actively design the population

structure to encourage diversity and prevent convergence to a population of identical

or similar individuals. In online approaches, while not strictly necessary, diversity

preserving populations can be beneficial [140].

More recently, others have used EAs with explicit diversity mechanisms to create

ensemble classifiers. Boisvert and Sheppard [16] use an approach based on novelty

search [84], to evolve diverse ensembles of decision trees. In this work, the population

is represented as a variable-sized archive, and new candidate solutions are added to

the archive if they meet a criterion based on novelty and fitness. Cardoso et al. [25]

also used novelty search in the space of neural network architectures to create diverse

ensembles. In their work, the novelty metrics were based explicitly on error diversity.

To the best of our knowledge, our work is the first to apply MAP-Elites and GP to

create ensemble diversity.
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4.3 Our LGP implementation

In this section we describe the specific details of the LGP implementation used in this

work. In our implementation of LGP, all instructions have the format

destination = source1 < op > source2

where op is one of the functions in the operator set {ADD, SUBT, MULT, PDIV,

SNIG, QUIT}, and destination, source1, source2 refer to registers which store

floating point values (see Table 4.1 for information on the operators).

Table 4.1: Operators from LGP system. dest refers the destination register and src1,
src2 refer to source registers.

Operators Description

ADD dest = src1 + src2
SUBT dest = src1− src2
MULT dest = src1 ∗ src2
PDIV if scr1 6= 0 dest = src1/src2

else dest = src1
SNIG if src1 > src2, skip next instruction

(skip next if greater)
QUIT do not execute any more instructions

In our system, all registers are writable, including the input registers. Programs

have access to a total of 10+nfeatures registers, where nfeatures is the number of features

in the dataset. This setting was determined empirically and worked well with the

variety of datasets we tested. Others have advocated using a constant multiple of the

number of features [18], however we found that for datasets with many features, this

method provides too many registers, and evolution takes much longer to find good

solutions. For initialization, the first register is set to 0.0, the following nine are set

to constant values, and the remaining nfeatures registers are set to the feature values

of the sample which is being classified. Any binary features are represented using

1.0 to represent true and 0.0 for false. A program’s prediction is based on the final

value of the first register; values greater than 0 are interpreted as a prediction that

the class label is “1”, values less than 0 are interpreted as a prediction that the class

label is “0”. Programs that end execution with 0 in the first register are interpreted
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as not having made a prediction; when computing a program’s fitness, no prediction

is always scored as an incorrect prediction.

Variation

In our LGP algorithm, we produce variation in programs through both micro and

macro mutations. Our macro mutation operator replaces a randomly selected in-

struction with a new randomly generated instruction, and our micro mutation oper-

ator randomly changes either the operator, destination register, or one of the source

registers of a randomly selected operation.

When generating random instructions, new instructions obey the following rules,

which allows for efficient evolution and ensures all mutations result in legal programs.

The first rule simply ensures all instructions refer to valid registers and operators by

enforcing bounds on their range. This second rule is that when generating a random

value for a destination register of a program, the maximum value is one greater than

the current maximum value of a destination register in that program. This rule is

inspired by the progressive complexification proposed in NEAT [152] and is designed

to encourage mutations to have a higher chance of being effective.

Table 4.2: Rules for random instruction creation. Rule 1 ensures that generated
instructions are always legal and meaningful. Rule 2 encourages mutations to have
a higher change of being effective. In rule 2, max dest refers to the largest integer
representing a destination register in the program for which the instruction is being
generated, and is taken to be 0 in the case of a program with no instructions.

Rule Description

Rule 1 op ∈ {0, 1, ..., 5}
src1, src2, dest ∈ {0, 1, ..., 9 + nfeatures}

Rule 2 dest ∈ {0, ...,max dest+ 1}

Fitness

A program’s fitness is its balanced accuracy score on the training data, which is

computed from the number of true positives (TP), true negatives (TN), false positives

(FP) and false negatives (FN): fitness = 0.5TP
TP+FN

+ 0.5TN
TN+FP

. The balanced accuracy
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score provides a good dataset agnostic measure of the accuracy of a classifier, as it is

normalized to account for imbalanced classes [118].

Behaviors

To use MAP-Elites with LGP, we must define suitable behavior descriptors for the

LGP programs. Previously there has been only limited work using MAP-Elites to-

gether with LGP, such as [33]. In our experiments using basic MAP-Elites with LGP,

we use three behavior descriptors to categorize program behaviors: the number of

features, instructions, and registers used by the program. The number of instructions

counts only instructions that affect the final output of the program, and the num-

ber of registers counts the number of unique destination registers used in effective

instructions, both of which of indicative of a programs complexity (see Table 4.3 for

information on the descriptors used with each variant).

Table 4.3: Behavior descriptors used with each variant of MAP-Elites.

ME Type # of features # of registers # of instructions VAE encoder

Basic ME 0 X X
Basic ME 1 X X
Basic ME 2 X X
Neuro ME X

4.4 Neuro MAP-Elites

This section details the Neuro MAP-Elites (NME) algorithm, an offline approach to

evolving diverse GP populations, which can be used as accurate predictive ensembles.

We begin by outlining an ideal high-dimensional behavior descriptor appropriate for

any classifier, particularly linear genetic programs. We then propose a low-dimensional

approximation that can be used with MAP-Elites to create accurate ensemble classi-

fiers.

The primary motivation behind our behavior descriptors is that classifiers are

designed to make predictions on samples coming from some distribution. When we

describe the behavior of a classifier, what really matters is how it behaves on samples
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from this target distribution. This is similar to the idea of program semantics, which

has previously been studied in the context of GP [10, 11, 78, 106, 111]. The main

innovation in this work is proposing a methodology for creating a low-dimensional

encoding that captures this notion of behavior.

If we consider a simplified case in which the target distribution is uniform over a

finite dataset, we can create a high dimensional descriptor of a classifier behavior by

recording its predictions on all samples. In this case, the high dimensional descriptor

gives a complete description of the classifier behavior. The question of whether it is

possible to obtain a complete low dimensional description of the behavior is equivalent

to the question of whether it is possible to compress the high dimensional descriptors to

a fixed low dimension without loss - which in general is not possible. This means that

for any low dimensional behavior descriptor, some programs with different prediction

behaviors will be mapped to the same point in the low dimensional space. The

goal of our method is to provide a low dimensional approximation to the ideal high

dimensional descriptor. To this end, we employ a VAE which learns to compress the

high dimensional ideal descriptors into low dimensional approximations.

The proposed NME algorithm can be divided into 3 phases; mining solutions,

VAE training, and a final MAP-Elites run using the encoder to generate behavior

descriptors (see Figure 4.2 for an overview of the algorithm.)

Figure 4.2: Overview of Neuro-MAP-Elites. (Phase 1) Create an archive of classifiers
and record their predictions on training samples. In our implementation, we create
this archive by running MAP-Elites multiple times using various simple descriptors.
(Phase 2) A VAE is trained to compress the prediction vectors (inputs) to a two-
dimensional descriptor (outputs) which can be used to map programs to cells in MAP-
Elites. (Phase 3) Run MAP-Elites, using the encoder network to produce behavior
descriptors when mapping programs to cells.
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4.4.1 Mine Solutions

The goal of the first phase of NME is to draw a sample from the distribution of errors

produced by ‘good’ programs, which can be used in phase two to train the VAE. In

general, and depending on the specific problem, what constitutes a ‘good’ solution may

vary. In this work, we consider any solution which is present in a final population and

obtains a balanced accuracy score greater than 0.5 on the training data. To create the

sample, we run a basic version of MAP-Elites using various descriptors (Basic ME0,

Basic ME1, Basic ME2), and record the predictions made by each individual in the

final populations on all training samples.

4.4.2 VAE Training

The goal of the second phase is to learn a low-dimensional representation of samples

from the distribution of errors produced by ‘good’ programs. To this end, we use

the prediction vectors from solutions produced in the first phase as training data and

train a β-VAE to encode these vectors into a 2-dimensional representation to be used

as a behavior descriptor in MAP-Elites.

Initially, when training the VAE, we used cross-validation to select the optimal β

values for each dataset from values in the range {0.1, 0.2, ..., 1.5}. We found for all

datasets that the optimal β was in {0.2, 0.3, 0.4}, so when running final experiments,

we reduced the range of β values tested to only those ≤ 1.0. For each β, we repeat

fitting the VAE five times, using different random seeds, as we found that the random

initialization impacted the VAEs’ ability to learn good representations. The VAE that

created the highest entropy distribution in the latent space was selected from these

five fitting trials. We experimented with using two and three dimensions for the latent

space; however, all experiments in this work are based on two dimensions, as we did

not find better performance from increasing the latent space to three dimensions.

The VAE that created the highest entropy distribution in the latent space was

selected from these five fitting trials.
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4.4.3 MAP Elites with encoder

In the final phase, we rerun MAP-Elites, however instead of using the basic descriptors

(as in phase 1), we now use the encoder network of the VAE (trained in phase 2) to

produce the descriptors. The encoder takes as input a binary prediction vector made

by a program on the training data and outputs a 2-dimensional real-valued encoding

of the prediction vector. As the encoder was trained as part of a VAE, the distribution

of encodings should be approximately a unit normal distribution. We take advantage

of this fact when partitioning the latent space into bins to use with MAP-Elites, and

set the bin boundaries so that each bin has equal probability mass under a normal

distribution.

4.5 Experiment Setup

To test the efficacy of our method, we compared the predictive accuracy of our method

against other standard supervised learning techniques across a diverse set of datasets.

4.5.1 Dataset Selection

In this work, we use a subset of datasets from the Penn Machine Learning Benchmarks

(PMLB) repository [118] which contains a large collection of curated datasets for

machine learning evaluation and comparison. PMLB contains a wide assortment of

datasets suitable for various machine learning tasks. In this work, we considered

datasets that contain a binary classification task. As our algorithm produces an

ensemble classifier, we are particularly interested in how it performs relative to other

ensemble classifiers. To this end, we selected the datasets based on the performance

of a standard ensemble classifier: random forest [19]. Specifically, we selected two

datasets where random forest performs much better than other standard classifiers,

two datasets where random forest performs much worse, and finally two datasets

where all the tested standard algorithms do poorly (See Table 4.4).

For all classifiers, the datasets were first partitioned into a “full training’ and a

test set (75%-25% split). The “full training’ set is further partitioned into training

and validation sets (75%-25% split). The training sets are used to fit the models, the
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validation sets are used to determine model hyperparameters, and the test sets are

used to compute the final metrics.

Table 4.4: Datasets used for classifier comparison. See [118] for dataset details.

Dataset Difficult for RF Difficult for other ML

Breast X
Monk2 X

HV without noise X
HV with noise X

GAMETES Epistasis X X
Parity5+5 X X

To demonstrate the efficacy of our method, we compare the performance achieved

by classifiers generated with NME against the performance of standard machine learn-

ing classifiers, as well as genetic programming classifiers evolved using a classic version

of MAP-Elites.

4.5.2 Standard Machine Learning Classifiers

All experiments using standard classifiers used the classifier implementations from

scikit-learn [125], as well as scikit-learn utilities for tuning their parameters1. Specif-

ically, we considered the following five standard machine learning classifiers (scikit-

learn names in parentheses); random forest (RandomForestClassifier) [19], k -nearest

neighbors (KNeighborsClassifier), logistic regression (LogisticRegressionClassifier) [13]

, Gaussian naive Bayes (GaussianNB) [59] and support vector machine classifiers

(SVC) [128].

4.5.3 Map-Elites Classifiers

For both basic MAP-Elites and NME, we tested two methods of creating a final

classifier from the final population. In the first method, the final classifier is simply the

single program with the best fitness from the final population. If multiple programs

are tied for the best fitness, the program with the fewest effective instructions is

1see github.com/BigTuna08/nme for the code to tune parameters of all models
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selected (if there is still a tie, the winner is chosen randomly). In the second method,

an ensemble is created by combining all programs in the final population with fitness

above a threshold t (t is chosen to maximize the accuracy of the majority vote classifier

on the training data). The ensemble classifier outputs the prediction of the majority

of the programs, with ties broken randomly. We also considered other methods of

combining programs to create the final classifier, such as weighting the programs by

their fitness, but this did not improve results.

All runs of MAP-Elites used a 20×20 grid for the population and ran for 1 million

evaluations.

4.6 Results

In this section we present results comparing NME with the variants of basic MAP-

Elites described in Table 4.3. In addition to our results on ensemble accuracy (Section

4.6.3), we show results supporting our methods in Sections 4.6.1 and 4.6.2.

4.6.1 VAE Efficacy

One possible concern with this methodology is how well the learned encoding captures

the information from the original high dimensional descriptors. To investigate this, we

examine the decoders’ ability to reconstruct the original high dimensional descriptor

from the 2-dimensional encoding. Averaged across all datasets, the decoders were able

to correctly reconstruct over 88% of the predictions, with the reconstruction ability

varying from just below 80% to nearly 100% on the various datasets (see Table 4.5).

4.6.2 Diversity Comparison

Here, we compare the predictive diversity of ensembles of LGP programs created

by basic variants of MAP-Elites, as well as our proposed NME method. We define

the predictive diversity as the average Euclidean distance between prediction vectors

within the ensemble. To obtain these results, we conducted 50 independent runs of

each MAP-Elites variant (Table 4.3).

The results from comparing predictive diversity (Table 4.6) support our claim
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Table 4.5: Accuracy of VAE at reconstructing predictions. Percent scores indicate
the percentage of bits in the error vectors correctly reconstructed by the VAE. Higher
scores indicate that the learned descriptors are more informative about the ideal high
dimensional descriptors.

Dataset VAE prediction reconstruction

Breast 98.88%
HV without noise 90.25%

HV with noise 89.66%
Monk2 89.19%

Parity5+5 84.94%
GAMETES Epistasis 79.67%

Mean 88.76%

that NME produces more diverse populations. We found that across all datasets, the

average diversity produced by NME in a single run was greater than both (1) the

diversity of an ensemble created by combining all final populations created from the

three variants of basic MAP-Elites and (2) the diversity of the single best run of basic

MAP-Elites. Further, these results show that for four of the six datasets tested, the

least diverse single run of NME was still more diverse than the most diverse run of

basic MAP-Elites (Table 4.6).

4.6.3 Ensemble Accuracy

Measured across all datasets, our method compares favorably against both the tradi-

tional machine learning classifiers and LGP classifiers evolved using MAP-Elites with

basic LGP descriptors.

However, no method is a clear winner across all of the datasets (see Table 4.7).

On the two datasets which were selected for being easy for random forest (Breast and

Monk2), random forest was the most accurate. On one of the datasets, which was sig-

nificantly harder for random forest than other standard classifiers (HV without noise),

multiple methods achieved perfect accuracy, including NME partial vote; on the other

(HV with noise), multiple standard methods outperform all evolved classifiers. Fi-

nally, on the datasets which were difficult for standard methods (Parity5+5 and GA-

METES Epistasis), evolved classifiers outperformed the standard ones, although in
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Table 4.6: Comparison of LGP prediction diversity with top 2 scores in bold. Here we
show the diversity scores obtained from running basic ME 120 times and combining
the final populations (Multi), the highest diversity score obtained in a single run (Best
Single), the average diversity score from a single run (Mean Single), and the lowest
diversity score from a single run (Worst Single). Across all datasets, NME produced
populations with the the most diversity. For many datasets, the least diverse single
run of NME was more diverse than all variants using basic MAP-Elites.

Basic ME NME
Dataset Multi Best Single Mean Single Mean Single Worst Single

GAMETES 4.67 5.74 3.85 7.64 5.78
HV noise 7.62 7.54 6.27 8.69 7.93
HV 4.83 5.18 4.26 7.11 5.66
Breast 3.28 3.74 2.97 4.29 3.58
Monk2 3.51 4.21 3.29 4.64 4.11
Parity5+5 3.98 4.64 3.76 6.85 5.34

only one of these (GAMETES Epistasis) was the NME classifier the best.

Another finding evident from Table 4.7 is that of the methods tested that evolve

ensembles, those created with NME significantly outperform ensembles created with

the basic variants of MAP-Elites. This is despite the fact that basic MAP-Elites

can produce high-quality single solutions, sometimes better than the single solutions

produced by NME. This result supports our hypothesis that NME generates popula-

tions with more meaningful diversity and that this diversity is beneficial for creating

ensembles.

Table 4.7: Comparison of balanced accuracy scores of common machine learning
classifiers and evolved classifiers. Best scores for each dataset are indicated in bold.

Classic ML MAP-Elites NME
Dataset RF KNN LR GNB SVC ME-Best ME-Vote NME-Best NME-Vote

Breast .950 .564 .500 .949 .500 .939 .579 .913 .943
Monk2 .987 .709 .447 .456 .697 .729 .502 .642 .785

HV .646 .637 1.00 .523 .949 1.00 .426 .986 1.00
HV noise .575 .520 .974 .526 .854 .687 .495 .709 .802

GAMETES .499 .515 .486 .513 .486 .495 .516 .510 .569
Parity5+5 .594 .601 .463 .463 .473 1.00 .494 .891 .986

Mean .709 .591 .645 .572 .660 .808 .502 .775 .848
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4.7 Discussion

Using representation learning techniques in combination with quality diversity meth-

ods provides a promising avenue for creating diverse classifier ensembles. In this work,

we have provided a method for extending MAP-Elites for use with high dimensional

descriptors by learning low dimensional approximations to the true descriptors. Here,

we focused on diversity with respect to the errors made, but there are other possible

high dimensional descriptors that could be used with our method.

One in particular, is information about features used by each classifier. In a similar

manner as the high dimensional binary error vectors, information about the features

used by a classifier can naturally be represented as a binary indicator vector, which

could be compressed by a VAE. There are two main reasons why it may be beneficial

to use this methodology with feature information; the first is for working with data

with missing or noisy features, and the second is to improve our understanding of

what features tend to co-occur in effective classifiers. This second use is perhaps the

most interesting and relies on the generative model portion of the VAE (sometimes

called the decoder), as opposed to the encoder portion used in NME. If we use a

simple generative model, such as a single-layer neural network, we can inspect the

model to gain insight into the relationships amongst features.

Another possible direction for this work is to explore other methods for compress-

ing the ideal high-dimensional descriptor outlined in this work. The design of VAE

models has recently received much attention from the representation learning com-

munity, and it is possible that novel architectures may be more suitable for use in

our algorithm. In our experiments, we limited the VAE latent dimension to two, as

we found that was sufficient for encoding most of the information in the prediction

vectors for most datasets. Clearly, this may be limiting, particularly when the num-

ber of samples used for creating the prediction vectors is large. In future work, we

plan to examine the relationship between the number of samples included in the high

dimensional descriptor, the dimensionality of the encoding, and the performance of

NME.

One limitation of our current work is NME requires greater computational re-

sources than traditional GP methods, as it requires us to create an initial set of

solutions and train a VAE, before evolving the final population with MAP-Elites. In

87



our current implementation, we create the initial set of solutions by running basic

variants of MAP-Elites multiple times, which is a major cause of inefficiency. In fu-

ture work, we plan to experiment with more efficient ways to create the initial solution

set; in particular by using more efficient machine learning classifiers in this step. We

also plan to implement a cyclical version of NME, which can continuously alternate

between phase two (training VAE) and phase three (MAP-Elites with encoder), until

a stopping condition is met. This will hopefully reduce the amount of effort needed in

phase 1, as the solution set used to train the VAE will be updated as NME proceeds.

By improving the efficiency of NME, we can make it more practically competitive

with non-evolutionary classifiers and lead to greater adoption of GP by the larger

machine learning community.
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Chapter 5

Improving Synthetic Banking Data

with MAP-Elites and Banksformer

In this chapter, we return to our core objective of generating high-quality synthetic

banking data. Our previous findings in Chapter 3 revealed that ensembles of Banks-

former models produce superior data quality when compared to datasets generated by

a single model. Chapter 4 explored the idea of using a diversity promoting evolution

algorithm to evolve a population of models which can be used as an ensemble. In this

chapter, we implement a diversity-promoting method to evolve a diverse ensemble of

Banksformer models, which achieves further improvements in data quality.

The contents of this chapter are being prepared for submission to the 2024 EuroGP

conference

5.1 Introduction

Over the past decade, there has been an explosion of work on generative models in the

machine learning community, which was in part fueled by novel neural network-based

generative models, such as variational autoencoders [74] and GANs [52]. More recent

generative models, including Transformers [171] and diffusion-based models [141], are

currently able to generate high-quality synthetic data in many domains.

Creating systems to automate content generation has long been an interest of

the evolutionary computing community. Evolutionary algorithms have been used



successfully in the past to generate art [146], music [63], video game levels [107], and

many more types of content. In this work, we combine innovations from evolutionary

computing with recent deep learning architecture innovations to create high-quality

synthetic banking data.

Banking data is an area where there is a massive amount of data collected; however,

due to privacy concerns, banking data is very rarely publicly available. Synthetic

data is a potential method for increasing the availability of sensitive data. Generating

realistic bank transaction sequences is challenging; there are many different types of

customer behavior, and each transaction contains an amount value, a categorical code

indicating the type of transaction, and a timestamp. For synthetic data to appear

realistic, both the sequence ordering and the fields of each transaction must follow

similar patterns as the real data.

In addition to each sequence appearing realistic, good synthetic data should be

as diverse as real data from the target distribution. In this chapter, we implement a

MAP-Elites [108] based evolutionary algorithm, inspired by the work of the previous

chapter, to improve upon the quality of synthetic banking data we generate.

5.2 Synthetic Banking Data

The specific type of banking data we use for our experiments are sequences of trans-

actions from non-business customer accounts. The basis for our synthetic data is a

dataset consisting of real bank transactions from the Czech Republic [127], which was

also used in Chapters 2 and 3 of this thesis. This dataset contains records of trans-

actions from 4500 accounts, over a period of 5 years, spanning 1993 to 1998. Each

transaction record has an amount value, a date, and three categorical fields which

provide information about the transaction type.

5.2.1 Banksformer

Throughout this chapter, we use Banksformer [114] as the base model for generating

synthetic banking data. Banksformer is based on the recently proposed transformer

neural network architecture, and has been shown to be state-of-the-art for generating

synthetic data based on the czech dataset used in this work. The Banksformer model
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has many hyper-parameters, which can impact its performance; however, the relation-

ship between hyper-parameters and model performance is complex and non-linear.

Because it takes significant computational effort to fit a single copy of Banksformer to

a dataset, and the relationship between hyper-parameters and model performance is

stochastic, it is not feasible to exhaustively search the hyper-parameter space. There-

fore, we adopt an evolutionary approach for parameter tuning, allowing us to explore

the parameter space more efficiently. Inspired by our results from the previous chapter,

we propose using a diversifying EA to create a high-quality ensemble of BF models.

However, in this chapter we aim to diversify with respect to notions of data quality,

as opposed to classifier behavior.

5.2.2 Quality of Banking Data

As we have discussed throughout the previous chapters, it is difficult to quantify the

quality of synthetic data as a single number. In fact, it is generally agreed that there

are multiple independent factors that affect synthetic data quality [159, 4]. Ideally,

we want to produce synthetic data which is good with respect to all factors; however,

there can sometimes be a tension between factors. For instance, we want our synthetic

data to ‘look like real data’, but we do not want it to create exact copies of the training

data. The approach we take in this chapter is to evolve an ensemble of Banksformer

models, where diversity is defined with respect to a set of quality metrics, which we

detail in Section 5.4.1.

5.3 Evolutionary Algorithm

The basis of our method is the MAP-Elites algorithm [108], which we described in

Section 4.2.2 of the previous chapter. In Chapter 4, we built upon MAP-Elites, by

introducing a variational autoencoder (VAE) for mapping raw high-dimensional de-

scriptors to a two-dimensional space. As we discuss below, this exact method is not

suitable for evolving a population of Banksformer models, due to amount of compu-

tational effort required to evaluate a single BF model. In this section, we propose a

novel MAP-Elites based algorithm, tailored to evolving Banksformer ensembles, which

is inspired by our approach in the previous chapter.

91



Population structure

We structure our population as a 3 × 3 grid-shaped archive, following MAP-Elites

[108]. We are restricted to a significantly smaller population than we used in Chapter

4, because the time to evaluate a single BF individual is many orders of magnitude

greater than the evaluation time in Chapter 4 (seconds vs hours). To initialize the

population, we first create and evaluate an initial set of 90 individuals. After the

initial selection step we are left with a maximum population size of 9 because of the

grid structure. After initialization, we run evolution for 29 additional epochs, where

each epoch involves creating and evaluating nine new individuals, by applying the

variation to randomly selected individuals from the current population. In prelimi-

nary experiments, we experimented with up to 50 epochs, but found that the results

stabilized by the 20th epoch.

Encoding of individuals

In our EA, each individual defines a set of hyper-parameters for a Banksformer model.

We represent each individual with a dictionary, which encodes the value for each

hyper-parameter. There are four types of hyper-parameters; categorical, integer,

integer2, and float. The integer2, type is an integer that must be a power of 2.

In Table 5.1, we describe the set of hyper-parameters which define an individual.

Fitness

The fitness of an individual should indicate the quality of a Banksformer model trained

using the hyper-parameters defined by the individual. As we have discussed exten-

sively, there are many ways in which this can be measured. Initially, we conducted

experiments using the validation loss during training of the model as the fitness value,

but found this did not produce better data than the ensemble experiments from Chap-

ter 3. We found that instead, using the mean rank of a synthetic dataset produced

by the model led to significantly better results.

One significant difference between our method here and our method from Chapter

4 is the computational effort required for evaluating an individual. The time to train

and evaluate a Banksformer model varies based on the specific hyper-parameters used,

92



Table 5.1: Hyper-parameters defining an individual. In this table, we list the pa-
rameters which define an individual in our evolutionary algorithm, and give a brief
description of each.

Parameter Type Initial Range Description

learning rate float [10−5, 0.09] Controls the learning rate of the op-
timizer

clipnorm float [0.75, 4.0] Controls the strength of gradient
clipping

dropout rate float [0.1, 0.75] Controls the dropout rate of Banks-
former during training

num layers dec integer [1, 7] Number of decoder layers

batch size integer2 [8, 128] Number of samples to use per batch

num heads integer2 {1, 2, 4, 8} Number of attention heads

d model integer2 [32, 512] Number of hidden units per layer

opt name categorical {adam, rms} Name of the optimizer used for
training, either Adam [71] or RM-
SProp [54]

use clip categorical {true, false} Controls if gradient clipping is used.
If false the clipnorm parameter is ig-
nored

use custom lr categorical {true, false} Controls if custom learning rate
schedule is used. If true, the learn-
ing rate parameter is ignored

but typically takes at least 4 hours on a cloud computing node using 2 CPUs with

12GB of memory per CPU. We set a maximum time limit of 12 hours for evaluation,

and if no dataset was produced within this time, then the individual is discarded.

This is many orders of magnitude slower than the evaluation in Chapter 2, which

took under a second per individual. However, because we use back-propagation –

as opposed to evolution – to learn the models’ weights, we should be able to find

high-performing solutions much faster.
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Variation

Variation operators are used to create new individuals from existing individuals in the

current population. We use three variation operators in our EA: mutation, arithmetic

crossover, and discrete crossover. The exact implementation of each depends on the

type of parameter. Generally, the mutation operator changes a parameter to a similar

value, and the crossover operators combine two individuals into a new individual.

In arithmetic crossover, the individuals are combined by averaging the values of the

numeric parameters. In discrete crossover, for each parameter, we randomly select

one parent, and use that parent’s value. Unlike the other variation methods, discrete

crossover does not depend on the parameter type, as it always randomly chooses a

value from the parents.

For categorical parameters, variation is straightforward. The mutation operator

simply randomly selects a new value from the possible options. Both crossover oper-

ators are the same for categorical parameters; they simply randomly choose between

the parents’ values.

The mutation operator changes floating point values by a random amount, between

−15% and +15%. The arithmetic crossover takes the mean of the parent’s values,

and discrete crossover randomly chooses a single parent’s value.

For integers, mutation adds or subtracts 1 or 2, and a condition prevents integers

from mutating to values less than 1. The arithmetic crossover takes the average of

the two parents and randomly rounds the result if it is not an integer.

With integer2 values, mutation will either randomly double or half the value of

these parameters, ensuring it does not go below 1. For arithmetic crossover, we

first compute the log2 of the values for each parent, and then average these values,

randomly rounding to an integer if necessary. The new value is 2 to the power of this

integer.

5.4 Behavior Space

When using the MAP-Elites algorithm, the behavior space defines the type of diversity

we produce. In Chapter 4, our goal was to create error diversity with respect to

samples. That is, we aimed to create a set of classifiers with high predictive accuracy,
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which tend to make errors on different samples.

Our goal in this chapter is to create synthetic data which is deemed high quality,

with respect to a set of quality metrics. As we have a large set of metrics, we adopt

an approach similar to the Neuro-MAP-Elites method employed in the previous chap-

ter, and begin with a high-dimensional raw descriptor which is then compressed into

a two-dimensional descriptor. However, the heightened demands on our evaluation

process necessitated reconsidering our approach to compressing raw behavior descrip-

tors. Previously, our Neuro-MAP-Elites method employed a variational autoencoder

(VAE) for this purpose, given its capability to learn complex, non-linear relationships.

Unfortunately, the inherent flexibility of VAEs can result in overfitting when there is

a shortage of training data [50]. Given our constraint of evaluating significantly fewer

individuals when evolving BF models, we opted to employ Principal Component Anal-

ysis (PCA) to reduce the dimensionality of the raw descriptors, as opposed to a VAE.

PCA is deterministic, and performs dimensionality reduction via a linear mapping,

making it much less prone to overfitting [50].

Another motivation for using PCA is that it is well suited for data with strong

linear correlations among features. This is beneficial, as our set of raw metrics contains

some highly correlated metrics. As we discuss below, there are a few aspects of data

quality we are particularly interested in; however, for each of these intuitive aspects,

there are various ways we could create concrete metrics. We aim to take a balanced

approach, including multiple metrics for each criteria, while still keeping the total

number of metrics to a reasonable level. We hypothesize that many of our metrics will

exhibit strong linear correlations, and therefore PCA is well suited to compressing the

raw descriptors. The following section details the complete set of metrics that define

the raw behavior space.

5.4.1 Metrics for raw behavior descriptors

The individual metrics used to define the behavior descriptor can be grouped based

on what facet of data quality they are designed to measure. The number of metrics

in each category varies, as some categories contain many highly correlated metrics.

Because we use PCA-based dimensionality reduction, including additional metrics

which are highly correlated with existing metrics will only have a minor impact on

the compressed behavior descriptor.
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Closeness of marginal distributions

The univariate and bi-variate distribution of individual features should be similar

between the synthetic data and the original data used for training. To measure the

closeness of the marginal distributions, we use the metrics defined in Chapter 2, which

compare univariate and bi-variate distributions. Specifically, we use the metrics which

compare the univariate distributions for the amount, tcode, day of the month features

defined in Section 2.6.1, and the joint tcode, day of the month distribution, defined in

Section 2.6.3.

Sequence structure

One limitation of comparing the marginal distributions is they do not capture any

information about the sequence structure. We employ two approaches for quantifying

how well the sequence structure of the synthetic data conforms to the structure of real

sequences. The first is with the 3-gram metric described in Section 2.6.2, which com-

pares the frequencies of length three tcode sequences, to ensure transaction ordering

is similar between both datasets. The second is the LDA metric described in Section

3.3.1, which compares the behavior patterns between real and synthetic sequences.

Indistinguishability from real data

Given a mixed dataset, containing real and synthetic samples, it should be difficult

to distinguish if any given sample is real or synthetic. There are many potential

ways to implement a metric based on the notion of indistinguishability. The two

components required for an indistinguishability metric are (1) a binary classifier, and

(2) a scoring criteria. We use the same set of binary classification algorithms described

in Section 3.3.2, and additionally, we include a single-layer LSTM neural network. We

added the LSTM because it can classify variable sequences directly, without needing

to convert them into fixed-sized representations. For each classifier, we consider two

scoring criteria; the accuracy and the area under the receiver operator curve (AUC).

Accuracy is an intuitive score, as it simply reports the proportion of samples correctly

classified. AUC is a more robust but less intuitive measure, which factors in both the

true positive and false positive rates [41]. In total, we have 12 metrics (6 classifiers ×
2 scoring criteria) that measure distinguishability.
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Consistency

We also want the relationships between all features to be consistent between our syn-

thetic data and data from the real distribution. The approach we take to measuring

this is to create a set of supervised learning tasks, where each task involves predicting

a different transaction feature based on all other features. We consider two such tasks,

namely, predicting the tcode (classification) and predicting the amount (regression).

For each task, we compute the metric described in Section 3.3.3 and defined in Equa-

tion 3.4, which captures how much performance at these tasks decreases when the

model is trained on one dataset (either real or synthetic), and evaluated on the other.

Coverage

Given a mixed dataset, containing an equal number of real and synthetic samples, the

nearest neighbors of each sample should be roughly half real and half synthetic. This

is measured with the coverage metrics, described in Section 3.3.4.

Non-memorization

The synthetic data we produce should be an unbiased sample from the real data

distribution, and not simply a copy of the real data we trained our model on. We

measure non-memorization using the holdout metric described in Section 3.3.5, which

quantifies the difference between how close synthetic data is to the training data, and

how close it is to held-out data from the same distribution.

5.5 Results

Table 5.2 compares the results from the best single-model (evo-s) and multi-model

(evo-mm) datasets produced by our evolutionary algorithm against the best datasets

produced in previous chapters. Specifically, we include the Banksformer and Doppel-

GANger results from Chapter 2 and results from the best ensemble dataset produced

in Chapter 3. Table 5.2 shows that while our evolutionary algorithm does not strictly

outperform the elite ensemble approach from Chapter 3, it does create better data

according to some metrics. One reason for the limited improvement provided by our
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EA versus the ensemble results from Chapter 3, is that in Chapter 3 we used hyper-

parameters which we spent a significant amount of effort tuning while developing BF

for use on the czech dataset in Chapter 2. A significant value of our evolutionary

algorithm is its ability to search for good hyper-parameter settings during the course

of the algorithm, while working towards producing a final ensemble dataset. An-

other takeaway from Table 5.2, is that datasets created by ensembles – that is, the

ensemble-e dataset from Chapter 3 and the evo-mm dataset from this chapter – tend

to outperform single model datasets. However, despite this general trend, there are

some metrics on which the single model dataset produced by our evolutionary outper-

form the best ensemble datasets. Interestingly, there is no clear connection between

the four metrics the single-model dataset performs best on, they include metrics based

on distributional closeness, classifiers and non-memorization.

Table 5.2: Quality comparison of synthetic banking data generated by different meth-
ods. Results are shown for DoppelGANger (DG), Banksformer (BF) as detailed in
Chapter 2, best performing Banksformer ensemble (ensemb) from Chapter 3, and best
single-model (evo-s) and multi-model (evo-mm) evolutionary methods.
*The holdout metric was not computed for the DG and BF datasets, as we do not
have information on the training/validation split used for these earlier models.

DG BF ensemble-e evo-s evo-mm

amount-wasser 1544 3004 2495 2392 2397
td-wasser 5.275 0.8514 0.6649 0.6627 0.7698
tcode-jsd 0.0103 0.0116 0.0019 0.0033 0.0003
day-jsd 0.1614 0.0159 0.0043 0.0066 0.0043
tcode day-jsd 0.4111 0.0435 0.0153 0.0199 0.0199
RF auc 1.0 0.993 0.9023 0.9798 0.9667
DT-1 auc 1.0 0.6483 0.5808 0.5734 0.5885
LR auc 1.0 0.8197 0.7059 0.6424 0.6766
KN7 auc 1.0 0.9474 0.7974 0.9154 0.8922
lstm auc 0.9998 0.9932 0.8667 0.9874 0.9857
tcode num consist 0.2035 0.1991 0.1335 0.1462 0.1248
log amount sc consist 0.6914 0.3528 0.2961 0.3011 0.4033
cover3 1.0 0.8402 0.5522 0.708 0.7054
cover5 1.0 0.8466 0.6716 0.7384 0.7239
lda 0.2081 0.13 0.0594 0.0699 0.0582
tcode-3g-jsd 0.19 0.0954 0.0194 0.0339 0.035
holdout val NA* NA* 0.5254 -0.8044 0.388

A likely explanation for the single-model dataset performing best at these metrics
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Figure 5.1: Comparison of datasets produced by single models and population of
models. This figure shows that typically, datasets generated with a population out-
perform datasets generated by a single model. However, despite this average trend,
the best datasets are produced by single models, due to the large variance in the
quality of single-model datasets.

is the fact that, as we discussed in Chapter 3, the single model datasets have a much

larger variance in quality. In Figure 5.1 we compare the overall quality of all the single

model datasets created while running our EA against that of the population datasets.

This figure shows that while on average the overall quality of multi-model datasets is

better than single-model datasets, the best single-model datasets are better than the

best multi-model datasets. This is due to the much higher variance in the quality of

single-model datasets compared to multi-model.

In order to study how the quality of synthetic data evolves over the course of

Figure 5.2: Quality of synthetic dataset produced by the population during evolution.
At the end of each evolutionary epoch, we generate an ensemble dataset with the
procedure defined in Section 3.4 of the previous chapter, using the current population
as the ensemble.
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our EA, at the end of each evolutionary epoch we create 10 ensemble datasets from

the current population. As we show in Figure 5.2, there was minimal improvement

during the first 18 epochs, after which a significant improvement occurred. However,

after this improvement, we found the data quality stabilized, and did not significantly

improve further. Between the 10th to 18th epoch, there is an increase in the variability

of data quality, however no lasting gains are made until the 18th epoch. While

developing this method, we ran the evolutionary algorithm multiple times, and found

the results generally followed this pattern. That is, minimal improvement during

the first 10-20 epochs, followed by a significant improvement slightly before the 20th

epoch. In these preliminary runs we experimented with up to 50 epochs, but found

that after a significant improvement between epoch 10 and 20 there were no further

clear improvements.

5.6 Conclusion

In this chapter, we have applied a variant of the quality-diversity (evolutionary) al-

gorithm developed in Chapter 4, to the task of generating synthetic banking data,

improving on our previous best results from Chapter 3. While this approach does

lead to improvements in data quality, it also introduces extra computational effort.

Whether the improvements are significant enough to justify the added computation

will depend on the specific use case of the synthetic data. For scenarios where having

the best possible synthetic data is crucial, the methods from this chapter provide a

pathway to improved results.

Another scenario where this method can be helpful is if a user plans to apply

Banksformer to a new dataset, and decides to tune the parameters based on the target

dataset. In this case, the effort to tune the parameters may be comparable to running

our evolutionary algorithm to optimize the hyper-parameters while simultaneously

constructing ensemble datasets. The models in the ensembles from Chapter 3 all used

the same hyper-parameter values, which were determined when creating the original

Banksformer model in Chapter 2.
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Chapter 6

Discussion

Throughout this thesis, we have made many contributions which have improved upon

state-of-the-art synthetic transaction sequence generation. In Chapter 2, we proposed

Banksformer, which is the basic model used in our synthetic data generation frame-

work. Banksformer is based on the transformer neural network architecture, and it

employs special conditional generation and date generation mechanisms, which were

designed to facilitate learning date-based patterns. In Chapter 2 we compared our

newly proposed Banksformer model against existing GAN models which could be used

to generate banking data, and found Banksformer to be a superior approach. We also

conducted a series of ablation experiments to demonstrate the benefits of both the

conditional generation and date generation mechanisms in Banksformer.

The work in Chapter 2 relies on a set of metrics based solely on comparing feature

distributions to evaluate our synthetic data. While these metrics do provide valuable

insights to data quality, they do not provide a complete picture. In Chapter 3 we

build upon the metrics from Chapter 2 and propose additional metrics to measure

other aspects of data quality missed by the previous metrics, as well as qualitative

analysis to compare the account structures between real and synthetic dataset.

Equipped with this enhanced evaluation framework, Chapter 3 aims to improve

upon the quality of synthetic data by creating ensemble datasets which combine sam-

ples from multiple copies of BF. Throughout Section 3.4, we explored different ap-

proaches to ensemble construction. We found that adopting an elitist approach, where

we trained N models and selected only k (k < N) of the models based on a scoring

criteria, led to the best ensemble results. Additionally, if there is a specific subset of



metrics of interest, such as metrics which compare feature distributions, it is possible

to create a scoring criteria tailed to those metrics.

In Chapter 3 we also developed a differentially private version of BF, based on dif-

ferentially private stochastic gradient descent. While this model was able to generate

synthetic data with a formal privacy guarantee, we found that adding even an ex-

tremely weak guarantee substantially degraded the quality of synthetic data. Despite

not being able to produce high quality private data, it is possible that our DP-BF

model may be useful in some limited scenarios where data quality does not matter.

In Section 3.3.5 we compared the rate of identical transactions between our synthetic

data and the real data used to train our model with the rate of identical transactions

between our synthetic data and held-out real data not used to train the model. This

analysis strongly suggested that our model does not simply memorize the training

data. However, while encouraging, it does not provide any formal guarantees.

Chapter 4 developed a quality-diversity evolutionary algorithm to improve ensem-

ble creation. We began Chapter 4 by discussing the benefits of diversity in ensembles.

Inspired by recent work in the field of evolutionary computing on quality-diversity

algorithms, which can create populations of models that are high-performing and

qualitatively diverse, we believed these algorithms could be powerful tools for ensem-

ble construction. In Chapter 4, we focused on a classification task, and therefore

we sought to create a population which was diverse with respect to the errors made

by individual models. Because of constraints on the existing MAP-Elites quality-

diversity algorithm, it could not be directly applied to create error-diverse popula-

tions. This lead us to propose Neuro-MAP-Elites, a novel quality-diversity algorithm

which extends the original MAP-Elites algorithm. In Section 4.6, we demonstrated

that Neuro-MAP-Elites performs favorably against other methods on a selection of

binary classification problems.

Finally, in Chapter 5, we adapted the Neuro-MAP-Elites algorithm proposed in

Chapter 4 to create a variant which can be used with Banksformer. In Chapter 5,

we were interested in creating diversity with respect to a set of metrics, as opposed

to the error diversity we sought in Chapter 4. Another significant difference between

these chapters, is that in Chapter 5, evaluation of an individual in the evolutionary

algorithm took many orders of magnitude longer than in Chapter 4. This led us

to create a significantly more efficient evolutionary algorithm, which was still able to
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create diverse populations of high-performing individuals while evaluating significantly

fewer individuals. As discussed in Chapter 5, it is possible to significantly reduce

the number of evaluations because we only used evolution to optimize the hyper-

parameters, while still relying on back propagation to optimize the model parameters.

We concluded Chapter 5 by comparing the quality of synthetic banking data pro-

duced by our evolutionary algorithm against the best synthetic datasets from Chap-

ters’ 2 and 4. Our analysis found mixed results, with the overall quality of the

synthetic data produced by evolution similar to that produced by the ensemble meth-

ods in Chapter 3. However, as discussed in Section 3.4, one reason why we only saw

limited gains from our algorithm is that the ensemble results from Chapter 3 were

obtained with parameters which had been tuned extensively in prior work.

6.1 Discussion of Impacts

Throughout this thesis, we have created a novel approach to synthetic banking data

generation and evaluation, which creates higher quality data than previous approaches.

The synthetic data we produced with the ensemble methods detailed in Chapters’ 3

and 5 outperforms GAN generated data across a broad spectrum of metrics.

One of the main motivations for creating synthetic banking data is to allow more

researchers and organizations to access banking data, without compromising the pri-

vacy of individuals and their transaction histories. Our framework is able to create

high quality synthetic transaction sequence data. Further, we have extensively re-

viewed the synthetic data we generate, and find no obvious leaks of user information

from the real data we trained our model on. However, the high quality data we gen-

erate is not guaranteed to protect user privacy. In Chapter 3, we created a variant of

our model which does offer a formal privacy guarantee, however that model produces

much lower quality data. It is worth reflecting on the progress made in this thesis,

the limitations of our work, and the ways these limitations can be overcome in the

future.

While in its current form, our framework is not able to create synthetic banking

data from real customer data which could be freely distributed to researchers and

others without fear of violating user privacy, it does represent significant progress

towards this goal. Further, our method in its current form can still be used to increase
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customer data privacy at institutions which work with financial transaction sequences.

As an example, currently there are private institutions, such as large banks, which

have access to large volumes of financial data, which they may use for research and

development. This involves the institution authorizing person(s) to access the private

data, under an agreement to not reveal any private user information. While this

approach often works perfectly well to protect user privacy, it depends on the person(s)

with data access abiding by the terms of their agreement. With our framework, the

institution could further protect the privacy of its customers, by providing persons(s)

who need to access the data from research and development with synthetic data, as

opposed to real customer data. As we have discussed, though we cannot formally

prove our synthetic data protects privacy, it is highly non-trivial (maybe not possible)

to try and make inferences about which customers or transactions were included in

the real data used for training. This approach adds to the customer data privacy,

because it eliminates the chance that a researcher will ‘accidentally’ learn private

information. Further, if a malicious researcher does want to try and reveal private

information, it will greatly increase the amount of effort they need to expend to obtain

this information.

6.2 Future Work

While our work represents an improvement over prior work, there is still further

work which can be done to improve upon both the quality and privacy of synthetic

banking data. One clear indication that data quality can be improved is the scores

on the classifier-based metrics shown in the final results Table 5.2 shows that various

classifiers are able to distinguish between real and synthetic samples significantly

better than by chance.

There are multiple directions which could be pursued to further improve data qual-

ity. One promising direction could be considering other types of generative models.

Since we began work on Banksformer, there has been a significant amount of work

on novel types of generative models, such as diffusion models [183], and combining

different types of generative models, such as training transformers using GAN meth-

ods [64]. Our work only considers GAN and transformer based models, which were

considered state-of-the-art when we began this research. Future work should consider
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other types of generative models as a possible way to improve data quality.

A related pathway to improvement is considering other approaches to ensemble

construction, such as boosting [145]. As we have argued throughout this thesis for the

benefits of ensemble diversity, future work should consider ensemble approaches that

are capable of incorporating models with different architectures. The elite ensemble

methods from Chapter 3 could be easily adapted to incorporate different architectures;

however the evolutionary approach in Chapter 5 would need to adapted, as many

hyper-parameters are model specific.

Privacy is important aspect of synthetic data, particularly when working with

sensitive data such as financial records. While our work developing a DP-BF model in

Chapter 3 was not able to produce high quality private data, in Section 3.5 we discuss

that creating a DP version of BF based on PATE might be a more promising path to

improvement. The best approach to creating private synthetic data depends on why

privacy is desired, as there are many different notions of privacy. For instance, while

differentially private methods such as DP-SGD and PATE are able to provide formal

mathematical guarantees which characterize the privacy level, these mathematical

frameworks often do not align with legal requirements around data privacy, which

exist in some domains.

Overall, the work in this thesis has created a state-of-the-art synthetic transaction

sequence generator, explored methods for boosting the performance of our generator

by combining multiple models, and provided a framework for evaluating synthetic

transaction sequences. Our focus was on creating synthetic banking data, and we

believe our work can be used to help reduce the need for real customer data when

developing tools to analyze and predict such data. As discussed, being able to produce

synthetic data which is both high quality and differentially private is still an open

challenge to be pursued in future work. While the high quality data we produce is not

mathematically guaranteed to be private, our analysis in Chapter 3 suggest that we

are not memorizing training data. One concrete application for our model is to create

synthetic data of financial transactions for internal use by financial organizations.

Employees of the organizations can work with synthetic data to develop or design

new tools, instead of real, private data. This improves the security of the private data

by limiting who has access or reducing the period of time access is needed. In the long

term, we hope that this work can be extended to create high quality banking data with
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formal privacy guarantees, which could facilitate data sharing between organizations

and with academics.

Code availability

• https://github.com/BigTuna08/Banksformer_ecml_2022 - Code for experi-

ments from Chapter 2.

• https://github.com/BigTuna08/banksformer-multi-model - Code for ex-

periments from Chapters 3 & 5.

• https://github.com/BigTuna08/nme - Code for experiments from Chapters 4.
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