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Abstract

Transmissibility operators are mathematical objects that characterize the relationship between
two subsets of responses of an underlying system. The importance of transmissiblity operators
comes from the fact that these operators are independent on the system inputs. This work
develops the transmissibility theory for nonlinear systems for the first time. The system
nonlinearities are assumed to be unknown, which gives a wide range of possible engineering
applications in different disciplines. Four different methods are developed to deal with these
nonlinearities. The first method is by re-constructing the system nonlinearities as independent
excitations on the system. This method handles the inherent unmodeled nonlinearities within
the system. The second method is by designing a transmissibility-based sliding mode control.
This method rejects unwanted nonlinearities such as system faults. The third method is by
constructing the system as time-variant linear system, and use recursive least squares to solve
it. This method can handle nonlinear systems with time-variant dynamics. The fourth method
is by designing a new robust estimation technique called high-gain transmissibility (HGT)
that is inspired by high-gain observers. This estimator has the ability to robustly estimate the
system states in a high-gain form.

The majority of modern fault detection, control systems, and robots localization depend on
mathematically estimating the system states and outputs. Transmissibility-based estimation
is incorporated in this work with these three theoretical applications. For fault detection,
transmissibility operators are used along a set of outputs to estimate the measurements of
another set of outputs. Then faults are detected by comparing the estimated and measured
outputs with each other. Control approaches use the transmissibility-based estimation to
construct the control signal, in which is injected back to the original system. Robots
localization fuses the transmissibility-based estimation with real-time sensor measurements
to minimize the error in determining the robot displacements.

These three theoretical applications are applied on four different systems. The first
system is Connected Autonomous Vehicles (CAV) platoons. A CAV platoon is a network
of connected autonomous vehicles that communicate together to move in a specific path
with the desired velocity. Transmissibilities are proposed along with the measurements from
sensors available in CAV platoons to identify transmissibility operators. This will be then
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developed to mixed autonomous and human-driven vehicle platoons. Besides the wide range
of physical and cyber faults in such systems, this is also motivated by the fact that on-road
human-drivers’ behaviour is unknown and difficult to be predicted. Transmissibility operators
are used here to handle both cyber-physical faults as well as the human-drivers’ behaviour.
The platoon faults are then proposed to be mitigated using a transmissibility-based sliding
mode controller. Moreover, transmissibilities are integrated with Kalman filter to localize
CAV platoons while operating under non-Gaussian environment as unknown nonlinearities.

The second system is a multi-actuator micro positioning system that is used in the
semi-conductors industry. Transmissibility operators are applied on this system for fault
detection and fault-tolerant control. Fault detection is represented in applying the proposed
developments to actuator fault detection. Some of the most common actuator faults such as
actuator loss of effectiveness and fatigue crack in the connection hinges will be considered.
Transmissibilities then will be used for fault detection without knowledge of the dynamics of
the system or the excitation that acts on the system. Next, a transmissibility-based sliding
mode control will be implemented to mitigate common actuator faults in multi-actuator
systems.

The third system is flexible structures subjected to unknown and random excitations.
Structures used in applications subjected to turbulent fluid flow such as aerospace and
underwater applications are subjected to random excitations distributed along the struc-
ture. Transmissibility operators are used for the purpose of structural fault detection and
localization during the system operation. The fourth system is robotic manipulators with
bounded nonlinearities and time-variant parameters. Both parameter variation and system
nonlinearities are considered to be unknown. Transmissibility operators are integrated with
Recursive Least Squares (RLS) to overcome the unknown variant parameters. RLS identifies
transmissibilities used in the structure of noncausal FIR (Finite Impulse Response) models.
While parameter variation can be treated as system nonlinearities, the RLS algorithm is used
to optimize what time-variant dynamics to include in the transmissibility operator and what
dynamics to push to the system nonlinearities over time. The identified transmissibilities
are then used for the purpose of fault detection in an experimental robotic arm with variant
picked mass.
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Chapter 1

Introduction

The evolution in automation science and its wide implementation in different life disciplinari-
ans are promising a highly automated future. Without any doubt, control systems engineering
and control theory play crucial role in the existence of this automated future. This will
therefore be reflected in many aspects, including but not limited to, aerospace applications,
robotics, and semiconductor manufacturing. Increasing the level of automation promises
with lower operating/products costs, higher work efficiency, less work times, ...etc. Lending
machines a higher level of automation with all the advantages it carries, however, carries out
trade-offs that always rises. The main two challenges arise are: i) More complicated control
systems are required, and ii) Safety.

The first step in most modern control systems is signal estimation. Signal estimators are
mathematical relationships that implement sets of time-signals recorded during the system
operation to estimate other signals. For example, the system’s mathematical model can be
used along with the input signals to estimate the system outputs. This approach is the most
classical output estimation. Another approach is using the input and the measured output
signals to estimate the system states, which is widely used and known as State Observer. The
estimated signals can then be fed into different controllers. Imagine for example a system
operating under high temperature where placing inertial sensors is not possible. Signal
estimators can be used to estimate the sensors’ measurements in this case, in which they are
fed back to the controller. This approach is known as Soft Sensing.

The second challenge is represented in the safe operation of automated systems. Most
automated systems are designed with strict aspects to guarantee safe operation. However,
systems might diverge from the designed safe operating conditions to other conditions that
can lead to fatal consequences. This divergence is regarded as a system fault. The designed
operating conditions are known as Healthy Conditions, while any other operating conditions
the system diverge to are known as Faulty Conditions. Signal estimation is used in this
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case to estimate the healthy operating conditions, which is used after for the purpose of
fault detection and mitigation. For example, consider a ground vehicle with simple cruise
control system. A failure in one of the system components such as the velocity sensor leads
to inabilities in maintaining the vehicle desired velocity. Signal estimation can be used to
estimate the vehicle response under healthy conditions to detect these faults and maintain the
desired velocity.

It is evident that as the technology and complexity of automated systems evolve, more
signals are required to be estimated. The availability of some required signals for the esti-
mation such as system’s inputs might not be available. Consider for example an aerospace
structure, where the excitations (inputs) are resultant of turbulent fluid flow that is difficult to
be determined. Another limitation comes from the difficulty modeling some dynamic be-
haviours such as actuators nonlinearities and ground friction (unknown system nonlinearities
and unmodeled dynamics). Moreover, mathematical models are derived while assuming ideal
environment, which might be different than the operation environment (external disturbances).
These limitations confine the applicability of classical estimators and state observers, which
requires new comprehensive estimators that count for unknown inputs, unmodeled dynamics,
and external disturbances.

1.1 Transmissibility Operators

Transmissibilities are mathematical relationships between two subsets of outputs in the same
system. The inputs and outputs of transmissibilities are both outputs of the underlying
system. Transmissibility operators have been used in a variety of applications, including fault
detection and output prediction when the dynamics and inputs of the underlying system are
unknown. [8, 5, 7, 68, 64]. These operators became extremely important when dealing with
systems with distributed inputs. For example, in aerospace structures or structures immersed
in fluids where the inputs are a combination of turbulent fluid flow distributed around the
structure. For these systems, transmissibilities have high capabilities to detect faults in such
systems, as highlighted in [79]. Also, transmissibilities were used in multiagent systems to
allow agents to control each other instead of using centralized control algorithms for the
entire system, see for example [64]. When dealing with systems with distributed inputs,
transmissibilities became extremely important. Transmissibilities have been shown to be the
most effective method for detecting faults in these systems, as shown in [85]. Because of their
simplicity and ability to identify the modal parameters, frequency-domain transmissibilities
are commonly used in the literature [73, 78] [33]. Frequency-domain transmissibilities are
simply the ratio of frequency responses of two linear system outputs. The frequency-domain
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transmissibilities, on the other hand, were found to be dependent on the excitation signal
under nonzero initial conditions [8].

Time-domain transmissibilities were introduced in [8] by using the differentiation operator
p = d

dt instead of the Laplace variable s to count for non-zero initial conditions. In [5], least-
squares identification was used with noncausal FIR (Finite Impulse Response) models to
identify transmissibilities with noncausal and unstable components under unknown dynamics
of the underlying system. Identified models of transmissibility operators were also used in
[7] to reconstruct the underlying system dynamics from output-only measurements. These
studies assumed a linear and time-invariant underlying system. In [68], transmissibilities
were applied to systems with bounded unknown nonlinearities by considering the nonlinear
terms as independent excitations on the system. This work extends the applicability of
transmissibility operators to systems with time-varying parameters.

1.2 Connected Autonomous Vehicle Platoon

Connected autonomous vehicles (CAV) platoons represent a new technology where a network
of vehicles communicates together using wireless communication to achieve the desired
speed and position of the vehicles in the network. This new technology represents an
emerging cyber-physical system (networking, computation, and physical processes) with
significant potential to enhance traffic safety, ease congestion, and positively impact the
environment through autonomous platoon control.

1.3 Multi-actuator Systems

Recently, the design and control of motion systems with multi-actuators have received con-
siderable efforts and attention from different fields that require high-precision motion control.
For example, optical lithography machines include different types of actuators including
lorentz and piezoelectric actuators that provide the necessary high-precision motions for mi-
crochips fabrication. Lorentz actuators are electromagnetic actuators provide motions within
the range of millimetres, while piezoceramic actuators are smart material-based actuators that
provide motions within micrometers. For example, due to the severe operating conditions,
these actuators may partially or fully lose the ability to follow-up with the desired trajectory,
which is known as loss of effectiveness.
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1.4 Flexible Structures

Fault detection in flexible beams can be difficult to achieve due to the complexity of their
dynamics, and a measurement of the excitation that acts on the beam might not be available.
For example, the structures of transportation vehicles that are immersed in a fluid such as an
aircraft or an underwater vehicle where the excitation signals on the structure are distributed
along the structure. Moreover, these structures are highly subjected to external disturbances
such as turbulent fluid flow. The problem that arises here is that it is not possible to measure
the level of an individual component’s excitation due to the multiple sources of its excitation.
This work proposes a solution to this issue by using a technique that assumes unknown
excitations and can provide model-free fault detection.

1.5 Dissertation Organization

This dissertation is organized as illustrated in Figure 1.1, and as follows: A literature survey is
conducted in Chapter 2. Section 3.1 extends transmissibility operators to a class of nonlinear
systems. Section 3.2.1 presents an algorithm to identify transmissibility operators. The
obtained transmissibility operators are implemented for fault detection in Section 3.2.2. Next,
the transmissibility-based fault detection algorithm is applied to CAV platoons in Section
3.3, detecting drunk drivers in Section 3.4, structural health monitoring in Section 3.5, and
actuator fault detection in section 3.6.

Chapter 4 represents transmissibility-based fault mitigation using transmissibility-based
sliding mode control. The controller is designed in Section 4.1, and the stability is investigated
in Section 4.2. This fault mitigation algorithm is applied to CAV platoons in Section 4.3 and
multi-actuator systems in Section 4.4.

Chapter 5 extends transmissibility operators to systems with time-variant dynamics.
Section 5.1 derives transmissibility operators for time-variant systems. Section 5.2 introduces
a recursive algorithm to identify time-variant transmissibilities. Section 5.3 distinguishes
normal dynamic variation from abnormal dynamic variation, allowing fault detection in
systems with time-variant dynamics. This technique is applied to connected autonomous
robots in Section 5.4, Flexible structure in Section 5.5, robotic manipulators in Section 5.6,
and Section 5.7 discusses the superiority of the claimed contributions.

Chapter 6 introduces a new transmissibility-based state estimator called High-gain Trans-
missibility (HGT) to estimate the system states while the states are fully or partially subjected
to unknown nonlinearities. This problem is formulated in Section 6.1 and derived for systems
with single nonlinearities in Section 6.2. Section 6.3 shows the relationship between HGT
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and high-gain observers. This technique is generalized on systems with multiple unknown
nonlinearities in Section 6.4 and verified numerically in Section 6.5.

Chapter 7 incorporates transmissibility operators with a Kalman filter to filter measure-
ment noise in systems subjected to non-Gaussian process noise. This problem is formulated
in Section 7.1 and applied to systems with single noisy output to be filtered in Section
7.2. The technique is then generalized to systems with multi-noise outputs and unknown
nonlinearities in Section 7.3. Section 7.4 shows the convergence analysis and derives the
optimal filtering gain. This approach is tested numerically in Section 7.5, and experimentally
on connected autonomous robots in Section 7.6.
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Fig. 1.1 Flow diagram of the work presented in this dissertation. Chapter 3 defines transmis-
sibility operators and implements them in fault detection. Chapter 4 presents fault mitigation.
Chapter 5 implements transmissibility to systems with time-variant dynamics. Chapter 6
implements transmissibility in state estimation. And Chapter 7 incorporates transmissibility
with Kalman filter in filtering noise.
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Chapter 2

Literature Survey

2.1 Soft Sensing and State Observers

Soft sensing is a model-based approach of estimating unmeasured outputs from the inputs.
As referred to in [58], soft sensing techniques have some challenges including minimizing
the assistance of human experts, such as in the model selection, and filling the gap between
the laboratory outcome and the industrial practice. Considering the soft sensing techniques
in [58], some of these techniques require building a special hardware for the soft sensor that
is used for fault detection [54, 2, 82], where other require knowledge of the excitation signal
or the dynamics of the system [129, 10, 34], or some information about the system like the
impulse response parameters [35, 45].

System state estimation is the most essential tool in modern control systems. State
estimation was referred to as the hottest issue in the field of control in [86]. State observers
are mathematical models that use the system inputs along with the measured outputs to
estimate the system states. Linear state observers showed superiority in state estimation,
see the following survey [140]. Aside from the fact that most state observers require the
knowledge of the system input, some difficulties raised when the system is subjected to more
nonlinearities. Estimating the states of nonlinear systems with unknown nonlinearities is
one of the most challenges in the estimation theory, see for example [24, 145]. Robust state
estimators such as high-gain observers showed ability to overcome unknown nonlinearities
while the system is on the canonical form, see the survey [70]. In the literature of high-gain
observers, the system model is typically reformulated as a chain of integrators, where the
first state is always directly measured and all the uncertainties/unknown dynamics are pushed
to the last state.
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2.2 Fault Detection and Mitigation

Fault detection techniques can be categorized into three categories: model-based techniques,
data-driven techniques, and hybrid techniques [14]. Model-based fault detection methods,
such as analytical redundancy and observer-based techniques as in [31, 36], can detect
actuator faults. However, these methods require knowledge of the actuator input, actuator
dynamics, and the underlying dynamics of the system. Data-driven techniques that include
methods based on machine learning need an excessive amount of machine learning training
[87]. In [72], a data-driven method for fault diagnosis of a multi-functional spoiler system
based on signal processing techniques. Hybrid techniques integrate model-based techniques
with data-driven techniques. See for example [28] where a particle filter is integrated
with recurrent neural networks for the purpose of fault detection in gas turbine engines.
These techniques also require knowledge of the actuator input and the underlying dynamics
[81, 107].

Model-based techniques have attained the most attention in the literature. These tech-
niques compare available measurements with a model-based estimate of the output. The
discrepancy between the measured and estimated outputs is considered a fault indicator.
According to [114] most of the model-based techniques use the following: (a) analytical
estimation, (b) parity space, (c) parameter estimation, (d) graph-theoretic approaches, and
so on. The analytical estimation includes analytical redundancy, observer-based techniques,
and filtering techniques. Analytical redundancy is achieved by obtaining an input-output
mathematical model of the system, which is used along with the input to obtain an estimate
of the output. The difference between the measured and estimated outputs is considered as a
health indicator [137]. Observer-based fault detection is widely used, for example, in [23] an
adaptive observer is designed to obtain a set of residuals that are used to detect and isolate
actuator faults, then an observer is used to estimate the variation in the model parameters.
The linear observer theory was developed in [132] to include a class of nonlinear systems for
the purpose of fault detection. A two-stage Kalman filter was proposed in [9] to detect and
estimate different faults in a quadrotor helicopter. In [13], a nonlinear adaptive estimation
technique scheme is introduced for actuator fault detection, isolation, and accommodation.
Nevertheless, observer-based techniques require knowledge of the excitation input. Parity
space techniques are also model-based techniques that require knowledge of the excitation
input. In [52], an integrated parity space method with a recursive least squares algorithm was
introduced to detect faults in quadrotor helicopters and estimate their severity.

Parameter estimation techniques represent another class of model-based techniques [114],
where the healthy estimated parameters are set as a reference and continuously compared to
an online estimation of the same parameters. The discrepancy between the reference values
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and the estimated ones obtained is considered as a fault indicator, see for example [116, 57].
Another class of model-based techniques is graph-theoretic approaches, such as bond graphs
[114], which model the power propagation within a dynamic system as a schematic graph.
Bond graphs merge information from different domains in one complete model due to their
causal and structural features that enable to deduce directly a set of fault indicators, see for
example [104]. Other techniques use a mixture of a system model and a non-parametric
model to detect and isolate actuator faults [122]. The system model is used to isolate the
faulty channel, and then the non-parametric model is used to isolate the specific variable in
the faulty channel. However, most of the model-based techniques require knowledge of the
actuator inputs and the system dynamics.

A class of data-driven techniques is based on machine learning [114]. Supervised
approaches define the observations with labels and train a network to classify similar data.
Supervised techniques can use Bayesian networks [22, 11, 118] and artificial neural networks
[53, 46]. Unsupervised data-driven techniques, which depend on classifying similarity
between data sets, include control charts and principal component analysis. Control charts
are used to monitor the quality characteristics of a process in order to identify special causes
of variability, see for example [130]. Principal component analysis is a multivariate statistical
analysis, which depends first on reducing the data dimensionality for easier analysis of the
essential data. Then it monitors the maximum variance and the correlation between the
process parameters, see for example [143]. Some other data-driven techniques such as that
based on multivariate statistical analysis and subspace aided approaches are more suitable
for stochastic systems [59]. Such model-free techniques consider a recursive timely update
of the system status to overcome the problem of external disturbances. This requires the
assumption that the system is healthy during these updates.

2.3 Connected Autonomous Vehicle (CAV) Platoon

Connected autonomous vehicles (CAV) platoons represent a new technology where a network
of vehicles communicates together using wireless communication to achieve the desired
speed and position of the vehicles in the network.

This new technology represents an emerging cyber-physical system (networking, com-
putation, and physical processes) with significant potential to enhance traffic safety, ease
congestion, and positively impact the environment through autonomous platoon control,
see for example [55, 16, 106]. The cyber component of such a system incorporates the
vehicle-to-vehicle (V2V) and vehicle-to-cloud (V2C) communication networks [27], while
the physical component includes physical vehicle dynamics and human-driver responses.
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Within CAV, communication networks enable opportunities for greater situational aware-
ness, collaborative decision-making, and improved control[113]. It is evident that as the
technology and complexity of connected autonomous vehicles evolve, several grand research
challenges need to be addressed. These include securing the connected autonomous vehicles
from malicious cyberattacks that can affect the actuators and sensors in the CAV platoon,
see for example [61, 76]. Other sources of failures include cyber-physical attacks, faults in
sensors and actuators, and unknown nonlinear dynamics in the CAV [105].

Connected autonomous vehicles faults can lead to catastrophic losses [110, 127, 84]. The
presence of cyberattacks can lead to faulty sensor measurements, faulty control signals, or
delayed control signals that appear as cyber-physical attacks on actuators [61]. Moreover,
disturbances can occur in the communication between two vehicles, as in [105]. Furthermore,
each system is subjected to system jamming, that is, time delay in one or more of the cyber-
physical components of the system [76, 43]. Time delay affects V2V communication and can
lead to instability in the control system [76]. Time delay requires a high management level
in a way that presents no significant effect on platoon string stability [42]. Therefore, there
is a critical need to provide fault mitigation for different uncertainties that may affect the
dynamics of the CAV. Since the CAV may include different uncertainties, then it is essential,
from a practical point of view, for the fault mitigation technique to be able to perform under
unknown dynamics of the CAV.

In CAVs, besides the reported failures within the vehicle such as sensor faults or the
vehicle’s controller failure as in [76], a wide range of cyber faults might occur. Each vehicle
will have the ability to communicate with other vehicles, infrastructure, and the cloud.
These communication channels will be open for any CAV to join, which makes it highly
vulnerable to cyber-attacks. Moreover, the vulnerability to other communication failures
such as communication time-delay and packet loss, see for example [105, 76, 98]. These
faults can lead to inaccuracies that will drop the CAVs efficiency, and more importantly,
instabilities in the control systems.

The existence of CAV platoons is basically related to the safe transition from on-road
human-driven vehicles to CAVs. This means CAVs have to adapt to the surrounding human-
driven vehicles and guarantee their safety and security. The main challenge that arises here
is the unknown human-drivers behavior that is due to different driving experiences and
sudden changes in decisions. However, combining these failures with the human effects
threatens the safety of on-road vehicles as well. Therefore, there is a critical need to provide
a fault mitigation algorithm to overcome faulty behaviors in CAV platoons. Moreover, since
CAV models may include different types of uncertainties, then providing a fault mitigation
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algorithm that is independent of the dynamics of the platoon helps in avoiding any faulty
behaviors in the fault mitigation algorithm due to modeling errors.

The first generation of CAVs will interact with the current on-road human-driven ve-
hicles. Since the current on-road vehicles are not supplied with adequate technology for
communication, CAVs will mainly depend on the onboard perception sensors to supervise
their surroundings and safely coexist with the human-driven vehicles. The novel work in-
troduced in [126, 125] showed the fatal consequences that can occur due to sensor faults.
Such faults in vehicle platoons can lead to an enormous loss in both lives and costs. This
is regarded as the fault degradation over time as explained in [125]. Indeed, in [138] the
authors showed the importance of dealing with unknown sensor fault degradation and the
necessity for health monitoring techniques that consider unknown fault dynamics. Therefore,
it is essential to consider methods that can mitigate different unknown fault dynamics, such
as transmissibility-based techniques.

An important issue that always arises when autonomy cooperates with humans is the
unknown human effect. More precisely, in mixed platoons the human-driver response
is unknown. Some studies have considered estimating the human-driver response such
as in [18, 91], however, such methods are not applicable in abnormal driving situations
such as careless and novice drivers. Moreover, estimating the human-driver response in
mixed platoons depends greatly on the CAVs’ perception sensors, and as was shown in
[126, 125, 138] sensors are highly subjected to fault degradation. Many other studies
considered the estimation of the driver’s behavior in human-driven vehicles to remain a
challenge [83, 32, 142, 109]. Therefore, the human-driver response is considered as unknown
bounded nonlinearities within the platoon, and the proposed health monitoring technique is
developed to be independent of the human-driver response.

Adapting autonomous vehicles with human-driven vehicles greatly depends on the per-
ception sensors on the autonomous vehicles. For example, in [47], an algorithm is introduced
to control mixed autonomous and human-driven platoons to harmonize traffic, improve
fuel-efficiency and reduce environmental impacts. A novel algorithm is introduced in [123]
to control mixed autonomous and human-driven platoons using deep reinforcement learning.
This algorithm assumes the resulting policies and emergent behaviors in mixed-autonomy
traffic to provide insight into the traffic through mixed platoons. However, these algorithms
mainly depend on CAVs to measure different information about human-driven vehicles and
share them through the V2V communication links. CAV failures will limit the availability of
useful information about human-driven vehicles, and therefore the failure of these control
algorithms. In this work, we aim to recover the healthy behaviour of the mixed platoon so the
designated control algorithms such as the ones introduced in [47, 123] are effective again.
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Many studies in the literature investigated the risk that can be carried by CAVs faults
in mixed autonomous and human-driven platoons. The study introduced in [17] shows that
supplying autonomous vehicles with cyber components increases the risk of the human-
driven vehicles significantly due to increasing the range of possible technological failures.
That is, in addition to the faults in the physical components of the current autonomous
vehicles, adding the cyber components will carry out more possible faults, and thus, higher
risk on the human-driven vehicles. The study in [133] proposed CAVs as a safety line for
human-driven vehicles. In such architectures, a failure in CAVs will directly impact the safety
of human-driven vehicles, which necessitate a health monitoring system for mixed platoons.
The study in [92] argues about the ethical aspects of increasing the on-road automation
without taking the autonomous vehicles’ faults into consideration.

2.4 Multi-actuator Systems Health Monitoring

Recently, the design and control of motion systems with multi-actuators have received
considerable efforts and attention from different fields that require high-precision motion
control, see for example [93, 49]. For example, optical lithography machines include different
types of actuators including lorentz and piezoelectric actuators that provide the necessary
high-precision motions for microchips fabrication. Lorentz actuators are electromagnetic
actuators provide motions within the range of millimetres, while piezoceramic actuators are
smart material-based actuators that provide motions within micromenetarsi. For example,
due to the severe operating conditions, these actuators may partially or fully lose the ability to
follow-up with the desired trajectory, which is known as loss of effectiveness [112]. Another
example in [100] where two dual stage actuators drive hard disk drivers, each comprising of a
voice coil motor actuator and a piezoelectric micro actuator operating on the same pivot point.
Both dual stages operate independently, however, the control forces and torques generated
by one affect the operation of the other. That is, the operation of each of them affects the
other with unknown disturbances, which can considered as unknown excitations. A similar
application was introduced in [15] for a multi-actuator hydraulic system, where a second
actuator is required to reject the disturbances from the first actuator due to throttling losses.
Therefore, due to the wide range of possible actuator faults and different actuator models, it
is required to develop a fault detection technique that can capture different types of faults in
different types of actuators.

Some studies introduced in the literature specified the problem of fault detection in appli-
cations with multi-actuators. In [75], sliding mode control is used to fault-tolerant control
actuator faults in quadcopters with multi-actuators. This method requires the knowledge of
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the input signal and is not robust against external disturbances.In [101], cracks in piezoelec-
tric beams are detected through monitoring the natural frequencies. An assumption is made
in [101] that the cracks are always assumed to reduce the natural frequencies of the piezo-
electric beam. Comparing to the proposed method, transmissibility-based fault detection can
detect different fault classes and unknown fault dynamics. In [51], an observer-based fault
tolerant control algorithm is introduced for actuator faults. This method not only requires
the knowledge of the input signals and the system dynamics, assumptions are also made
regarding input constraints in order to monitor the actuator health. In [120], the aircraft states
are modeled as hybrid states, then a modified observer-based health monitoring technique is
proposed for the aircraft actuators. Besides the required knowledge of the system inputs for
the observer, the knowledge of the switching mechanism is required and must be fed back to
the observer.

Transmissibility operators have been improved over the recent years, and have become
one of the most beneficial output estimators while the system inputs are unknown, see for
example [8]. In recent years, transmissibilities have been improved significantly, and the
applicability range was developed. Time-domain transmissibilities were introduced in [8] by
implementing the time differentiation operator p= d

dt instead of the Laplace complex variable
s to count for non-zero initial conditions. In [5], least-squares identification using noncausal
FIR models was introduced for transmissibilities to count for noncausal transmissibilities,
unknown underlying dynamics, and unstable transmissibility operators. The identified
models of the transmissibility operators are then used in [7] to reconstruct the original system
dynamics. All the studies mentioned earlier considered the original system to be linear.

On the application side, transmissibilities showed exceptional fault detection abilities in
systems subjected to distributed unknown inputs. This includes aerospace structures that are
immersed in turbulent fluid flow. This is highlighted in the literature survey in [79]. Another
class of systems that showed the importance of transmissibilities is systems multi-agent
systems where each agent adapts to its surroundings while staying within the system. The
inputs used within an agent for the adaptation are most likely not to be shared with other
agents, and only sensor measurements are shared. Transmissibilities were used in multiagent
systems to allow agents to control each other instead of using centralized control algorithms
for the entire systems, see for example [64, 67].

2.5 Structural Health Monitoring

Monitoring the health of flexible structures arises with the severe operating conditions that
some industrial applications are subjected to. A wide range of fault detection techniques
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introduced in the literature, including model-based techniques such as observer-based [80,
144], data-driven techniques such as techniques based on signal processing [60], and hybrid
techniques [28, 81]. However, the problem of fault localization within the structure remains
a challenge that becomes harder in large structures such as aerospace applications and wind
turbines. This challenge becomes harder if the faults are internal and don’t appear on the
structure surface. Commonly, non-destructive tests (NDT) are used to localize faults and
cracks in flexible structures. For example, in [134] ultrasonic waves were used to detect
weak bonds in composite-adhesive bonded structures. In [108], pulsed thermography was
used to estimate the thickness in fiber-reinforced composites. Infrared thermography testing
was used in [37] to estimate the corrosion defect characterization. In [30], radiographic
testing was used to detect and localize faults in low-carbon steel welded joints. In [139],
DC electromagnetic testing based on the drag effect was used to detect and characterize
cracks in high-speed moving ferromagnetic material. In [19], acoustic emission testing was
used to detect and localize material damages in glass fiber-reinforced plastics. However,
non-destructive tests require additional hardware, comprise human efforts to conduct the test,
and in most cases, require stopping the system operation till the test is done. This results in a
high cost of localizing faults in flexible structures.

The problem of fault and damage localization in flexible structures based on the dynamic
behaviour was investigated through some previous studies. In [71, 90], a frequency-based
damage detection and localization algorithms in flexible structures were proposed based
on the natural frequencies shifting. Apart from the fact that not all faults can be detected
based on the natural frequency shift, this technique requires the knowledge of the fault
dynamics. In [1], vibration measurements were used along with dynamic models to localize
faults. Similarly to [71, 90], this technique requires the knowledge of the fault dynamics,
limited robustness against external disturbances, and accurate dynamic models. In [38], the
frequency domain analysis along with the vibration measurements were aided with finite
element models. This approach requires accurate dynamic models and the knowledge of the
fault dynamics as well. In [117], a fault localization technique was introduced by identifying
the stiffness, and then based on the stiffness degradation the faults are detected and localized.
However, this technique requires knowledge of all excitations, sensitive to measurements
noise, and known fault dynamics.

Another set of common fault localization techniques was introduced in the literature to
localize faults in systems without physical connections. For example, in [94], a set of H∞

filters were designed to detect and isolate faulty sensors. The key in such techniques is the
fact that the output of the faulty sensor doesn’t have a physical connection with the structure.
The best way to observe the difference here is by following the energy propagation within the
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structure. External excitations supply the structure with kinetic energy, in which its delivered
and propagated to the sensors. However, sensors won’t supply the structure back with any
energy. A fault in the structure will have effects on all sensors, since the structure propagate
energy to all sensors. However, a fault in one of the sensors won’t affect the structure or
other sensors, thus localizing the fault is possible using such methods. Note that even if the
sensor measurements are used to control the structure, only the measurements’ information
will be delivered to the controller but no energy will be propagated from the sensor back to
the structure. See other similar sensor fault localization and isolation in [128, 44, 121, 12].

2.6 Robotic Manipulators Fault Detection

The main challenge in fault detection in robotic manipulators is the unknown parameter
variation. Observer-based techniques such as in [21] require the knowledge of the manipulator
inputs, knowledge of the parameter variations, and known nonlinearities. The knowledge of
the parameter variations highly limits the use of residual-based techniques, since the residual
can’t be distinguished if its due to parameter variation or system fault. Most techniques
consider a sensor to measure the parameter variation and feed it back to the detection
algorithm. Some work has been introduced to solve this problem as in [25] where neural
networks are used to aid the adaptive algorithm, which adds more complexity and cost to
the detection approach. Machine learning techniques such in [39] require intense models
training. For example, in [26] data from more than 5000 robotic manipulators are used to
detect faults.

2.7 Transmissibility Before This Thesis

This section presents the basic concept of transmissibility in its classical form that was
established before this thesis. All work on transmissibility operators before this thesis was
limited to linear systems only [102, 8, 3, 85]. Mainly, this thesis extends transmissibility
operators to a class of nonlinear systems and different robotic applications.

2.7.1 Single-input Single-output Frequency-domain Transmissibility

Consider the following single-input two-outputs state space system

ẋ(t) = Ax(t)+Bu(t), (2.1)

y(t) =Cx(t)+Du(t), (2.2)
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where u ∈ R and y ∈ R2, A ∈ Rn×n,B ∈ Rn,C ∈ R2×n, and D ∈ R2. Define the two outputs
such as

y(t) =

[
y1(t)
y2(t)

]
, (2.3)

where

y1(t) =C1x(t)+D1u(t) ∈ R, (2.4)

y2(t) =C2x(t)+D2u(t) ∈ R. (2.5)

Assume zero initial conditions and obtain the transfer functions from u to y1, and from u to
y2

Y1(s)
U(s)

=
C1adj(sI −A)B+D1

det(sI −A)
=

snay1,n + · · ·+ say1,1 +ay1,0

snbn + · · ·+ sb1 +b0
, (2.6)

Y2(s)
U(s)

=
C1adj(sI −A)B+D1

det(sI −A)
=

snay2,n + · · ·+ say2,1 +ay2,0

snbn + · · ·+ sb1 +b0
, (2.7)

where U,Y 1,Y 2 are u,y1,y2 in the frequency domain. Notice that since both transfer
functions share the same input u, then both transfer functions have the same denominator
(characteristic equation). Dividing (2.7) on (2.6) yields

Y2(s)
Y1(s)

=
C2adj(sI −A)B+D2

C1adj(sI −A)B+D1
=

snay2,n + · · ·+ say2,1 +ay2,0

snay1,n + · · ·+ say1,1 +ay1,0
, (2.8)

which is called the frequency-domain transmissibility operator from the output y1 to the
output y2. Notice that the shared input u was cancelled along with the shared denominator.
The importance of transmissibility operators is represented in the cancellation of the system
input u. This gives the ability to estimate y2 from y1 only while the system input u is
unknown.

2.7.2 Multi-input Multi-output Frequency-domain Transmissibility

Transmissibility operators started appearing for systems with multi degrees-of-freedom
around two decades ago [102, 85]. Consider the state space system in (2.1)-(2.2) with u ∈Rm

and y ∈ Rp, m is the number of independent inputs, and p > 1 is the number of sensor
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measurements, and split the output y into the two output subsets

yi(t)=Cix(t)+Diu(t) ∈ Rm, (2.9)

yo(t)=Cox(t)+Dou(t) ∈ Rp−m, (2.10)

where Ci ∈ Rm×n,Co ∈ R(p−m)×n,Di ∈ Rm×m, and Do ∈ R(p−m)×m, and

C =

[
Ci

Co

]
, D =

[
Di

Do

]
. (2.11)

Then transmissibility operator from the output subset yi to the output subset yo satisfies [102]

Yo(s) = T (s)Yi(s), (2.12)

where Yi,Yo are yi,yo in the frequency domain. The matrix T is the transmissibility matrix,
in which each entry is a ratio between two numerators similar to equation (2.8) and is given
by

T (s) ∆
= Γo(s)Γ−1

i (s), (2.13)

and

Γi(s)=Ciadj(sI −A)B+Diδ (s), (2.14)

Γo(s)=Coadj(sI −A)B+Doδ (s), (2.15)

δ (s)=det(sI −A). (2.16)

where adj is the matrix adjugate.

2.7.3 Time-domain Transmissibilities

Transmissibilities are developed in the time-domain to count for nonzero initial conditions in
[8]. For the system (2.1)-(2.2) with u ∈ Rm,y ∈ Rp, the transmissibility operator from the
output yi to the output yo in the time domain

yo(t) = T (p)yi(t), (2.17)
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where p = d
dt is the time differentiation operator. Note that p = s under zero initial conditions.

Similarly

T (p) ∆
= Γo(p)Γ−1

i (p), (2.18)

and

Γi(p)
∆
=Ciadj(pI −A)B+Diδ (p), (2.19)

Γo(p)
∆
=Coadj(pI −A)B+Doδ (p), (2.20)

δ (p) ∆
= det(pI −A). (2.21)
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Chapter 3

Transmissibility Operators

3.1 Transmissibility Operators for Smooth Nonlinear Sys-
tems

Consider the following smooth nonlinear system

ẋ(t) = Ax(t)+Buū(t)+B f f (t,x)+Bww(t), (3.1)

y(t) =Cx(t)+Duū(t), (3.2)

where ū ∈ R(m−2) is the system input, f ∈ R is an unknown bounded nonlinear function,
w ∈ R is external disturbances, y ∈ Rp is the system output, m is the number of independent
excitations on the system, and p > 1 is the number of sensor measurements, A ∈ Rn×n,Bu ∈
Rn×(m−2),B f ∈ Rn,Bw ∈ Rn,C ∈ Rp×n, and Du ∈ Rp×(m−2). Redefine the input vector u to
render f and w independent excitations on the system

u(t) =
[

ū(t) f (t,x) w(t)
]T

.

The input and feed-forward matrices then become

B =
[

Bu B f Bw

]
∈ Rn×m,

D =
[

Du 0 0
]
∈ Rp×m.
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Next, define

yi(t)
∆
=Cix(t)+Diu(t) ∈ Rm, (3.3)

yo(t)
∆
=Cox(t)+Dou(t) ∈ Rp−m, (3.4)

where Ci ∈ Rm×n,Co ∈ R(p−m)×n,Di ∈ Rm×m, and Do ∈ R(p−m)×m, and

C =

[
Ci

Co

]
, D =

[
Di

Do

]
. (3.5)

The transmissibility whose pseudo input is yi and whose pseudo output is yo, satisfies [8]

yo(t) = T (p)yi(t), (3.6)

where p = d
dt is the time differentiation operator. Note that p = s under zero initial conditions.

Moreover,

T (p) ∆
= Γo(p)Γ−1

i (p), (3.7)

and

Γi(p)
∆
=Ciadj(pI −A)B+Diδ (p), (3.8)

Γo(p)
∆
=Coadj(pI −A)B+Doδ (p), (3.9)

δ (p) ∆
= det(pI −A). (3.10)

Note that (3.35) can be interpreted as the differential equation

detΓi(p)yo(t) = Γo(p)adjΓi(p)yi(t), (3.11)

where adjΓi denotes the adjugate matrix of Γi. Notice from (3.11) that the relationship
between the two output sets yi and yo is independent on the system inputs u.

An estimation of the output yo can be estimated from the transmissibility operator T

along with the measurements of yi from equation (3.35) such that

ŷo(t) = T (p)yi(t), (3.12)

where ŷo is the estimation of yo. Since sensor measurements are in discrete time, the measured
and estimated outputs are considered in the discrete time domain. Define the residual in
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Fig. 3.1 Example 3.1.1: Two consecutive mass-spring system with two outputs yi,yo and
under unknown nonlinearities f . This example is presented to show the independence of the
transmissibility from f .

discrete time

e(k) = yo(k)− ŷo(k), (3.13)

Next, for all k ≥ 0, compute

E(k,w) ∆
=

√√√√w+k

∑
i=k

∥e(i)∥, (3.14)

which is the norm of the residual over a sliding window of size w steps.
To explain the formulation further, the following example shows how T can be con-

structed in an independent form of f , and then converted from the p operator to a chain of
integrators.

Example 3.1.1 In this example, we consider deriving the transmissibility operator be-
tween the displacements yi and yo of the system shown in Figure A.2 that is under the
unknown nonlinearities f . The system can be modeled as in (A.10) where

A =


0 0 1 0
0 0 0 1

−(k2+k1)
m1

k2
m1

0 0
k2
m2

−k2
m2

0 0

 ,
B =

[
0 0 1

m1
0
]T

,
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Next, the two displacements yi and yo can be written in the form (6.3)-(5.4) such that

yi(t) =Cix(t) =
[

1 0 0 0
]

x(t), (3.15)

yo(t) =Cox(t) =
[

0 1 0 0
]

x(t). (3.16)

Then define

Γi(p)
∆
=Ciadj(pI −A)B =

m2p2 + k2

m1m2
, (3.17)

Γo(p)
∆
=Cxpadj(pI −A)B =

k2

m1m2
. (3.18)

Accordingly, the transmissibility operator from the output yi to the output yo while the system
is under the nonlinear dynamics f is

T (p) =
Γo(p)
Γi(p)

=
k2

m2p2 + k2
. (3.19)

3.2 Transmissibility Identification and Fault Detection

Notice from (3.35) that if the output channel yo has more zeros than the output channel yi,
then the transmissibility operator T is noncausal. Moreover, if yi has a nonminimum phase
zero, then T is unstable despite the fact that the measurements of yo are bounded due to the
system stability. To this end, we consider identifying T in the structure of noncausal FIR
models since they are always stable and can capture the noncausal part.

3.2.1 Transmissibility Identification

Since sensor measurements are obtained in discrete time, we replace p in (3.36) by the
forward shift operator q [89]. Accordingly, we consider identifying T in the q domain [6].
A noncausal FIR model of T is given by

T (q) =
r

∑
j=−d

H jq− j, (3.20)

where r,d denote the order of the causal and noncausal parts of the FIR model of T ,
respectively, and H j ∈ R1×m is the jth coefficient of the transmissibility operator T . Let
Θ = [H−d, . . . ,Hr ]

T, then assume the system to be under healthy conditions for ε steps, then
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the least squares estimate of the transmissibility parameters Θ is given by

Θ̂ = (ΦΦ
T)−1

ΦΨ, (3.21)

Ψ =
(

yo(r) · · · yo(ε −d)
)T

, (3.22)

Φ =
(

φ(r) · · · φ(ε −d)
)
, (3.23)

φ(k) =
(

yi(k+d) · · · yi(k− r)
)T

. (3.24)

3.2.2 Fault Detection

Once T is constructed, either by the derivation in (3.36) or the identification in (3.21), T

can be used along with the measurements of yi to obtain an estimation of yo. Assume the
more general case where T is identified using (3.21), an estimation of the output subset yo

can be given at time step k as

ŷo(k) = T (q)yi(k)

=
r

∑
i=−d

Ĥiyi(k− i), (3.25)

where Θ̂ = [Ĥ−d, . . . , Ĥr ]
T. A high level of discrepancies between the measured output yo

and its estimation ŷo can be regarded as fault. Define the estimation residual at time step k

e(k) = yo(k)− ŷo(k). (3.26)

To avoid false alarms, we compute the norm of residual over a sliding window with width W
steps for all k ≥ 0

E(k,W )
∆
=

√√√√W+k

∑
i=k

∥e(i)∥. (3.27)

Assume ε ≥ W + d and let η be the signal-to-noise ratio, then define the fault detection
threshold

µ(W,ε)
∆
=

η

ε +1

ε

∑
i=d

E(i,W ). (3.28)
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Operator Pseudo Inputs Pseudo Output

T0 {v1
5,v

2
5, . . . ,v

m−1
5 } vm

5
T j {v1

5,v
2
5, . . . ,v

m−1
5 }\{v j

5} vm
5

Tm {v1
5,v

2
5, . . . ,v

m−2
5 } vm−1

5

T i
j̃ v j̃

i−1 v j̃
i

Table 3.1 Transmissibility operators T0, . . . ,Tm are used to detect and localize the faulty
platoon in the set of platoons. Next, the transmissibility operators T i

j̃ , where i = 2, . . . ,5 are
used to localize the faulty vehicle in the faulty platoon j̃. These transmissibilities are used in
Algorithm 1.

3.3 Experiment 1: CAV Platoons Health Monitoring

To ensure that the detected fault is in the structure not the sensor and to localize the faulty
sensor, we consider identifying multiple transmissibilities along the set of platoons. All
transmissibilities that use the faulty velocity as pseudo input/output will result in high level of
the norm of residual. For further explanation on how to localize the faulty vehicle, consider
a system of m platoons each with n vehicles, then for all j = 1, . . . ,m− 1, let T j denote
a transmissibility operator that relates the velocities of the fifth vehicle in each platoon as
defined in Table II that considers a set of m platoons. Moreover, T0 and Tm are as defined in
Table 3.1. Using Algorithm 1 and Table II, the location of the fault can be determined. If T0

is faulty and T j is healthy then platoon j is faulty. Next, to localize the faulty vehicle, let j̃
denote the number of the faulty platoon, and T i

j̃ denote the transmissibility from vi−1 to vi in
in platoon j̃. If T i

j̃ is faulty, then vehicle i in platoon j̃ is faulty.

Next, to mitigate faults in vehicle i in platoon j̃, we replace the faulty velocity signal ṽ j̃
i

with the estimated healthy signal obtained from the transmissibility operator T i
j̃ . Note that

since T i
j̃ represents a reflect of vehicle i dynamics, the causal assumption for T i

j̃ is possible.
The correction signal can be obtained for all k ≥ 0 as

vi,mit(k|Θ̂FIR
r,d,ℓ)

∆
=

vi(k), k < k̂,

v̂i(k|Θ̂FIR
r,d,ℓ), k ≥ k̂,

(3.29)

where k̂ is the time sample at which we start using the fault mitigation algorithm, v̂i is
obtained using the transmissibility operator T i

j̃ along with vi−1. The correction signal vi,mit

replaces the faulty velocity measurement of vehicle i in platoon j̃ and thus is used as a
reference for vehicle i+1 as shown in Figure 3.2.
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Fig. 3.2 Block diagram for the proposed transmissibility-based fault mitigation algorithm on
a three vehicles platoon portion. The platoon is operating under unknown driving conditions
and variable velocities. The middle vehicle is faulty. The velocity of the front vehicle is used
in the transmissibility to obtain the estimated healthy velocity. Then comparing the measured
and estimated velocities gives a fault indicator. If the fault is detected, then the measured
velocity is replaced with the estimated one to mitigate the faults effect transmitted to the next
vehicle.

3.3.1 Simulation Example

Consider four platoons, each with five identical vehicles with the parameters shown in Table
A.2. We model the platoons using the bond graph approach as shown in Appendix A.1. To
identify the transmissibility operators defined in Table 3.1 with m = 4 and n = 5, we set the
desired velocities of the platoons to Gaussian white noise with zero mean and unit variance.
Algorithm 1 is then used to detect and localize the fault based on the change in the level of
the residuals of the identified transmissibilities.

Figure 5.11 shows the estimated Markov parameters of T0 from each pseudo input to the
pseudo output obtained under healthy conditions. Then, the estimated transmissibility T0 is
used with the measurements of v1

5,v
2
5, and v3

5 to obtain an estimate of v4
5. Figure 3.4 shows a

plot of v4
5 and the estimate of v4

5, which are close to each other.
Next, we introduce the motor disturbances, motor delay, burst transmission, and DoS

faults to the system separately as introduced in Appendix B.1. To emulate the motor
disturbance fault, a band-limited white noise is added to the motor constant of the third
vehicle in the second platoon. To emulate a motor delay, a 1-second delay is introduced to
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if T0 is healthy then
All platoons are healthy;

else
if T j is healthy, where j = 1, . . . ,m, then

Platoon j is Faulty;
Set j̃ = j;

end
if T i

j̃ is faulty, where i = 2, . . . ,n, then
Vehicle i in platoon j̃ is faulty;

else
Vehicle 1 in platoon j̃ is faulty;

end
end

Algorithm 1: Fault localization algorithm for a set of m platoons, each with n autonomous
vehicles.
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Fig. 3.3 Estimated Markov parameters from each pseudo input to the pseudo output for the
transmissibility operator T0 defined in Table 3.1. The estimated Markov parameters were
obtained using least squares with a noncausal FIR model with r = 25 and d = 25.
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Fig. 3.4 The simulated output velocity v4
5 and the predicted output velocity v̂4

5, where the
predicted velocity is obtained using the identified transmissibility operator T0 and the
measurements of v5

1, v5
2, and v5

3.

the input current of the motor of the third vehicle in the second platoon. To emulate a burst
transmission fault, a band-limited white noise is added to the communication link between
the third and the fourth vehicles in the second platoon. Moreover, to emulate communication-
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link time delay, a time delay of 2 seconds is introduced in the communication link between
the third and fourth vehicles in the second platoon. Figures 5.10 and 3.6 show the norm
of the residuals of the transmissibility operators defined in Table 3.1, where each fault is
introduced separately at t = 80 seconds. The threshold limits are obtained by considering
a signal-to-noise ratio of 20. Note from Figure 5.10 that at t = 90 seconds the norm of the
residuals of the transmissibility operators T0,T1,T3, and T4 increased. Moreover, since the
level of the residuals of T2 in Figure 5.10 did not change, then it follows from the Algorithm
in 1 that platoon 2 is faulty, and thus j̃ = 2. Note that at t = 90 seconds the norm of the
residuals of the transmissibility operators T 2

2 ,T 4
2 , and T 5

2 did not change, where the norm
of residual of the transmissibility operators T 3

2 increased. Therefore, using the Algorithm in
1 we conclude that the third vehicle in the second platoon is faulty. Similar results are shown
for the motor delay, cyberattack, and time-delay faults in Figures 5.10 and 3.6.

Next, we use the fault mitigation algorithm shown in Figure 3.2 to replace the faulty
signal from the faulty vehicle i with a healthy signal that will be used as a reference for
the succeeding vehicle i+ 1. Figure 3.7 shows the estimated Markov parameters for the
transmissibility operator T 3

2 obtained using least squares with a noncausal FIR model with
r = 50 and d = 0. Figure 3.8 shows the velocity v2

3 and the estimated velocity v̂2
3 obtained

using the identified transmissibility T 3
2 along with the measurement of v2

2. We use the
estimate v̂2

3 to obtain the correction signal v3,mit. Figure 3.9 shows the fourth vehicle velocity
in the second platoon while the third vehicle is subject to a burst transmission. Note from
Figure 3.9 that after applying the proposed fault mitigation algorithm at time t = 160 sec, the
fourth vehicle in the second platoon starts to operate in a healthy manner again. The norm
of the residual of the identified transmissibility T0 is shown in Figure 3.10 for the motor
disturbances, motor delay, burst transmission, and DoS faults. Note from Figure 3.10 that at
t = 160, the level of the residuals decreased due to utilizing the proposed fault mitigation
algorithm.

3.3.2 Experimental Test

We consider the experimental setup shown in Figure 3.11 consisting of three autonomous
Quanser robots called Qbots. Each Qbot consists of two coaxial wheels, where each wheel is
driven by a DC motor. Qbots use closed-loop inverse kinematic controllers to obtain the DC
motors commands for both wheels based on the desired linear and rotational velocities of the
robot. Steering the robot leads to difference between the wheels’ velocities, and thus angular
motion of the Qbot. If the desired angular velocity is zero, then both wheels velocities
are equal and the Qbot moves forward or backward in a straight line. Qbot1 receives the
excitation signal from a computer through wireless communication, and Qbot2 is connected
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((a)) Motor disturbances.
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((b)) Motor delay.

Fig. 3.5 Norm of the residuals of the transmissibilities T0, . . . ,T4 and T 2
2 , . . . ,T 5

2 computed
using (5.30) with w = 100 steps for (a) Motor disturbances, and (b) Motor delay. We use
Algorithm 1 to determine the faulty platoon and faulty vehicle. All faults are introduced
separately at approximately t = 80 seconds.

with Qbot1 via a V2V communication channel. Similarly, Qbot3 is connected with Qbot2
via a V2V communication channel.

For health monitoring, we consider a one-dimensional motion for the platoon. We first
run the setup by sending a zero-mean, unit variance, Gaussian random excitation signal to
Qbot1. All Qbots run and move simultaneously depending only on V2V communications.
We use least squares with a noncausal FIR model with r = 25 and d = 25 to identify the
transmissibility operators T1 and T2 defined in Table 3.2, where v1,v2, and v3 denote the
velocities of Qbot1, Qbot2, and Qbot3, respectively. The estimated Markov parameters of
the transmissibility operator T1 is shown in Figure 4.9. Moreover, Figure 4.10 shows the
measured velocity v3 and the predicted velocity v̂3 of Qbot3, where the predicted velocity is
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((a)) Burst transmission.
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((b)) DoS.

Fig. 3.6 Norm of the residuals of the transmissibilities T0, . . . ,T4 and T 2
2 , . . . ,T 5

2 computed
using (5.30) with w = 100 steps for (a) Burst transmission, and (b) DoS. We use Algorithm
1 to determine the faulty platoon and faulty vehicle. All faults are introduced separately at
approximately t = 80 seconds.
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Fig. 3.7 Estimated Markov parameters for the transmissibility operator T 3
2 obtained using

least squares with a noncausal FIR model with r = 50 and d = 0.

obtained using the identified transmissibility and the measured velocities v1 and v2. Note
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Fig. 3.8 Simulated output velocity and predicted output velocity of v2
3, where the predicted

velocity is obtained using the identified transmissibility T 3
2 whose Markov parameters are

shown in Figure 3.7 along with the measurement of v2
2. The predicted output v̂2

3 is used in
the fault mitigation algorithm.
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Fig. 3.9 Plot of the fourth vehicle velocity in the second platoon, v2
4, before and after applying

the fault mitigation algorithm, where the third vehicle in the same platoon is subject to a
burst transmission. Note that, after applying the fault mitigation algorithm at t = 160, the
fourth vehicle in the second platoon starts to operate in a healthy manner again.
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Fig. 3.10 Norm of the residuals of the transmissibility T0 introduced in Table 3.1. Note that
at approximately t = 160 sec, the fault mitigation based on transmissibilities implemented,
which leads to a decrease in the norm of residuals for proposed faults.
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Fig. 3.11 The experimental setup of V2C communications: Qbot1 receives the desired
velocity from the computer while Qbot2, and third Qbot3 receive the desired velocity from
the preceding Qbot via V2V communication.

Operator Pseudo Inputs Pseudo Outputs

T1 v1 and v2 v3
T2 v1 v2

Table 3.2 Pseudo inputs and pseudo outputs of the transmissibility operators T1 and T2 used
for fault detection and localization in the experimental setup shown in Figure 3.11.

that neither the dynamics of the network nor the excitation signal of the network is used to
obtain the predicted velocity v̂3 of Qbot3.

Next, we identify causal models of the transmissibility operators defined in Table 3.2 to
use them for fault mitigation. Figure 3.13(a) shows the identified Markov parameters of the
estimated transmissibility from each pseudo input to the pseudo output of the transmissibility
operator T1 defined in Table 3.2. Figure 3.13(b) shows the measured velocity and the
predicted velocity of Qbot3, where the predicted velocity is obtained using the identified
transmissibility operator T1 shown in Figure 3.13(a) along with measurements of v1 and v2.

Disturbance fault

We consider injecting band-limited white noise in the command signal of the DC-motor that
drives the right wheel of Qbot3 as represented in Figure 3.14, which results in a physical
fault similar to the motor disturbances introduced in Appendix B.1. This makes the velocities
of the wheels in Qbot3 not equal, which results in a 2-D motion of Qbot3 (i.e. a physical
fault). Figure 3.15 shows the velocity of Qbot3 under healthy and faulty conditions. Figure
3.16 shows the norm of residual for the transmissibility operators E(k|Θ̂FIR

r,d,ℓ,w) defined in
Table 3.2. Note that at t = 80 sec, the norm of the residual of T1 increases, where the norm
of the residual of T2 remains on the same level. Therefore, we conclude that Qbot3 is faulty.
For fault mitigation, we use T2 and the measurements of v1 to obtain the correction signal,
which is used as a reference for Qbot3. Note from Figure 3.16 that after applying the fault
mitigation algorithm at approximately t = 180 seconds, the norm of residual of T1 decreased.
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Fig. 3.12 Experimental results: (a) estimated causal Markov parameters from each pseudo
input to the pseudo output for the transmissibility operator T1 defined in Table 3.2, and (b)
measured velocity and predicted velocity of Qbot3, where the predicted velocity is obtained
using the identified transmissibility operator T1 whose parameters are shown in (a) and
measurements of v1 and v2.
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Fig. 3.13 Experimental results: (a) estimated Markov parameters from each pseudo input
to the pseudo output for the transmissibility operator T1 defined in Table 3.2, and (b) the
measured velocity v3 of Qbot3 and the predicted velocity v̂3 obtained using the identified
transmissibility operator T1 whose parameters are shown in (a) and measurements of v1 and
v2.

Internal time delay

We emulate the internal mechanical delay by considering a transport time delay in both
command signals, which results in a similar fault to the motor delay introduced in Appendix
B.1. That is a constant time delay between the controller and both actuators. Figure 3.14
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Fig. 3.14 Experimental emulation of the platoon faults. Four faults are considered separately,
as represented by the red blocks. The physical faults include internal disturbances and
internal mechanical delay within the closed loop control. The cyber faults are represented by
injecting noise and delay to the information packet in the V2V communication link.

shows how the internal delay is emulated for the right actuator, which can be applied
similarly to the left actuator. Figure 3.15 shows the velocity of Qbot3 under healthy and
faulty conditions. Figure 3.16 shows the norm of residuals of the transmissibility operators
defined in Table 3.2. Note from Figure 3.16 that at t = 80 seconds, the norm of the residual
of T1 increases, where the norm of the residual of T2 remains on the same level. Therefore,
we conclude that Qbot3 is faulty. Such a fault is inherent in the robot and cannot be mitigated
using the proposed approach.

Cyber Attacks

Similar results can be obtained for the burst transmission and the DoS attacks as introduced
in Appendix B.1, which we apply individually. For the burst transmission, a band-limited
white noise signal is added to the velocity of Qbot2. The corrupted signal is then injected
into the communication link between Qbot2 and Qbot3. For the communication time-delay
fault, we consider individual cases of 1,2, and 3 seconds of time delay in the communication
link between Qbot2 and Qbot3. Figure 3.14 shows a block diagram on how these faults are
emulated. Figure 3.15 shows Qbot3 velocity under healthy and faulty conditions. Figure
3.16 shows the norm of the residuals for the transmissibility operators defined in Table 3.2.
Note that, for the proposed faults, at t = 80 seconds the norm of the residual of T1 increases,
whereas the norm of the residual of T2 remains on the same level. Since measurements
from Qbot3 were used to construct T1 but not T2, we can conclude that Qbot3 is faulty. For
fault mitigation, we inject the correction signal obtained using T2 and the measurements of
v1 in the communication link between Qbot2 and Qbot3. Note from Figure 3.16 that after
applying the fault mitigation algorithm at approximately t = 180 the norm of the residual of
T1 decreased.
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Fig. 3.15 Experimental results: The velocities of Qbot3 under healthy and faulty conditions,
where the proposed faults are injected disturbance, mechanical (internal time) delay, cyberat-
tack, and delay in the V2V communication link between Qbot2 and Qbot3.

Fig. 3.16 Norm of the residuals of the transmissibilities T1 and T2 defined in Table 3.2 under
the faults in Fig. 3.14. At t = 80 seconds, as T1 is faulty and T2 stays healthy, we conclude
Qbot3 is faulty. After applying the fault mitigation algorithm at t = 180 the norm of the
residual of T1 decreases. Note that since the mechanical delay is inherent in the robot, it
cannot be mitigated using the proposed fault mitigation algorithm.

3.4 Experiment 2: Drunk Driver Detection in Mixed CAV
Platoons

This section exploits the transmissibility estimation along CAV platoons in detecting drunk
and intoxicated drivers while they are sandwiched between two CAVs. The proposed drunk
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Table 3.3 The identified transmissibility operators used to detect drunk drivers from each
pseudo input to the human-driven output v3.

Operator Pseudo inputs Pseudo output

T1 v2,v4 v3
T2 v1,v4 v3
T3 v2,v5 v3
T4 v1,v5 v3

driver detection uses of CAVs’ velocities along with the transmissibility relations T to
estimate the human-driven vehicle’s velocity in the mixed platoon.

3.4.1 Numerical Example

This section tests the proposed approach numerically using the bond graph model in Appendix
A.1. We construct a five vehicles mixed platoon, where the third is human-driven and the
rest are autonomous. The autonomous vehicles follow the model in Figure A.1. The human-
driven vehicle follows the IDM model in (A.1)-(A.2). The platoon is set to move randomly
by setting the desired velocity of the first vehicle to Gaussian noise as well as the external
disturbances. We first run the platoon model under healthy conditions, and then implement
the transmissibility identification introduced in Section 3.2.1. The identified parameters Θ̂FIR

r,d

(Markov parameters) of the transmissibility operator that relates the output subset v2,v4 to v3

are plotted in Figure 4.2. To validate the identified transmissibility first before implementing
the drunk driver detection, we use the identified parameters in Figure 4.2 along with the
measurements of v2,v4 to estimate v3 while the platoon moves randomly. The measured
velocity v3 and its transmissibility-based estimation v̂3 are plotted in Figure 4.3. For further
testing, we identify the transmissibility operators defined in Table 3.3 on the same way that
is introduced in Section 3.2.1.

Next, we introduce the simulated drunk driver effects for BAC = 0.02,0.05, and 0.08
separately by setting δs∗,δs,δiH−1, and δiH to band limited white noise with a signal-to-noise
ratio (SNR) of 10, and tv = ts = 1 second. The driver response time coefficient λ is set to
3,2, and 1 for BAC = 0.02,0.05, and 0.08, respectively. To observe the norm of residuals,
we compute E using (5.30) with w = 100 samples for all operators in Table 3.3 as shown in
Figure 4.19 along with their thresholds using (5.31). The jump in the level of the norm of
residuals above the threshold limits in Figure 4.19 indicates that abnormal driving conditions
are detected.
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Fig. 3.17 Simulation results: (a) The identified parameters Θ̂FIR
r,d (Markov parameters) of

the transmissibility operator that relates the output subset v2,v4 to v3, and (b) A comparison
between the measurements of the velocity v3 and its transmissibility-based estimation v̂3 The
simulated output velocity of the third vehicle v3 and the predicted output velocity v̂3. The
estimation of v̂3 is obtained by implementing the identified transmissibility parameters in
Figure 4.2 along with the measurements of v2 and v4.

Fig. 3.18 Simulation results: Norm of the residuals of the transmissibilities T1, . . . ,T4
computed using (5.30) with w = 100 steps. The jump in the level of E above the threshold
limits around time t = 800 seconds indicates that abnormal driving conditions are detected.

3.4.2 Experimental Test

Autonomous vehicles are robotics applications that consist of actuators, gross mass, sensors,
and closed-loop tracking control. To test the proposed technique experimentally, the experi-
mental setup shown in Figure 7.7 is used. This setup consists of three autonomous laboratory
robots manufactured by Quanser called Qbot 2e. Qbot 2e is a differential mobile robot
that extracts control commands based on an internal inverse kinematics controller. Similar
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to any other differential robot, two control commands are generated from the controller
separately to drive each of the two axial wheels. The angular motion of the differential robots
is achieved by setting different velocities for each wheel. We construct the setup by setting
the desired velocity of the first robot to Gaussian noise. The second robot is controlled
remotely by a human to follow the first robot with level 0 automation. The third robot tracks
the velocity of the second robot which is measured through an onboard depth sensor in the
third robot. Moreover, the third robot receives the velocity signal of the first robot using a
V2V communication link.

#1

#3

#2

Human-
driven

Fig. 3.19 The first experimental setup: The first robot receives the excitation signal from a
computer through a wireless connection. The second robot is human-driven through the com-
puter keyboard. The third robot receives the first robot velocity v1 via V2V communication
and measures the second robot velocity v2 using an onboard depth sensor.

One-dimensional motion of the setup is considered to characterize the longitudinal motion
of the platoon. This is done by setting the velocities of both wheels in the same robot to
equal each other. Define two transmissibility operators, the first is T1 from v1 to v2, and the
second is T3 from v3 to v2. Both operators are identified as in Section 3.2.1. The identified
parameters Θ̂FIR

r,d (Markov parameters) of both transmissibilities T1,T3 are plotted in Figure
4.9. To validate the identified transmissibilities first before implementing the drunk driver
detection, we use the identified parameters of the operator T1 in Figure 4.9 along with the
measurements of v1 to estimate v2. The measured velocity v2 and its transmissibility-based
estimation v̂2 are plotted in Figure 4.10. To experience the drunk driver behavior, the effects
of BAC= 0.05 shown in Table B.1 were simulated to the interface of the second robot. The
reduced coordination and decline in the visual functions are simulated by adding parameters
uncertainties to the second robot model. The reduced ability to track moving objects is added
as a delay in the human command that is sent from the human to the robot. To simulate the
slower response, an equivalent damping was added to the controller of the second robot to
yield a higher settling time. To observe the norm of residuals, we compute E using (5.30)
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Fig. 3.20 Experiment 1 results: (a) The identified parameters Θ̂FIR
r,d (Markov parameters)

of the transmissibility operators T1,T3 used in the first experiment, and (b) A comparison
between the measurements of the velocity v2 and its transmissibility-based estimation v̂2.
The estimation of v̂2 is obtained by implementing the identified transmissibility parameters
of T1 in Figure 4.9 along with the measurements of v1.

with w = 100 samples as in Figure 4.15 along with their thresholds using (5.31). The jump in
the level of the norm of residuals above the threshold limits at time t = 50 seconds in Figure
4.19 indicates that abnormal driving conditions are detected.
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Fig. 3.21 Experiment 1 results: Norm of the residuals of the transmissibility operators T1,T3
used in the first experiment computed using (5.30) with w = 100 steps. The jump in the level
of E above the threshold limits around time t = 50 seconds indicates that abnormal driving
conditions are detected.
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Fig. 3.22 Block diagram of the proposed approach that summarizes the fault localization on
a structure with n segments.

3.5 Experiment 3: Structural Health Monitoring

3.5.1 Fault Localization in Flexible Beams

Assume a fault at segment i, and the state space model in (7.1)-(7.3) to be updated accordingly
as

˙̃x(t) =Ax̃(t)+B f (t, x̃,u,w)+BiF(t), (3.30)

ỹinp(t) =Cinpx̃(t), (3.31)

ỹo(t) =Cox̃(t), (3.32)

where x̃ are the faulty states, and ỹinp, ỹo are the faulty sensor measurements. The fault
is represented in the term BiF such that F represents the unknown fault dynamics on the
segment i, and Bi ∈ Rn represents the matrix index. F depends on the fault class and its
the same for the same fault (e.g. fatigue or creep cracks) regardless of the fault location.
The vector Bi determines the fault location within the structure. Bi can be defined for all
i ∈ {1, . . . ,n} as

B̄i =
[

0 . . . 0 1 0 . . . 0
]T

, (3.33)
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where the index that carries the number 1 differs according to the fault location. Although,
localizing the fault is possible by identifying Bi, the unknown excitations, and nonlinearities
f as well as the unknown fault dynamics F prevent implying typical identification algorithms.
Rearrange the faulty state equation in (3.30) to render F as an independent excitation, such
as

˙̃x(t) =Ax̃(t)+ B̄i f̄ (t, x̃,u,w,F), (3.34)

where

f̄ (t,x,u,w,F) =
[

f (t,x,u,w) F(t)
]T

,

B̄i =
[

B Bi

]
.

Next, for all i ∈ {1, . . . ,n} define the transmissibility operator

ỹo(t) = T̄i(p)ỹinp(t), (3.35)

where

T̄i(p)Γ̄o,i(p)Γ̄−1
inp,i(p), (3.36)

and

Γ̄inp,i(p)Cinpadj(pI −A)B̄i ∈ Rm×m[p], (3.37)

Γ̄o,i(p)Coadj(pI −A)B̄i ∈ R1×m[p]. (3.38)

Notice that the operator T̄i is robust against faults at segment i since T̄i is constructed using
B̄i, and regardless what the excitations collected in f . An estimation of the faulty output
subset ỹo while the fault is at segment i ∈ {1, . . . ,n} is computed using

ˆ̃yo,i(k) = T̄i(q)ỹinp(k). (3.39)

Define the residuals each segment

ēi(k) = yo(k)− ˆ̃yo,i(k). (3.40)
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Assume the beam to run for ℓ steps, then compute the norm of residual for all i ∈ {1, . . . ,n}

Ēi(k)
∆
=

√√√√ ℓ

∑
j=0

∥ēi( j)∥. (3.41)

Using T̄i along with the faulty measurements of ỹinp results in an accurate estimation of
the faulty output ˆ̃yo if the faulty segment is i. Since T̄i is independent on the fault F(t),
then regardless what the fault class is, T̄i will accurately estimate the faulty output ỹo if the
faulty segment is i. However, if the faulty segment is not i, then the estimation of T̄i is not
accurate. The proposed approach defines T̄i for all i ∈ {1, . . . ,n}. The operator with the
least estimation error level is considered to correspond to the faulty segment. Figure 3.22
summarizes the proposed fault localization algorithm.

3.5.2 Numerical Example

The cantilever beam modeled in Appendix A.3 was constructed with n = 10 segments,
and the parameters for all i ∈ {1, . . . ,10}, Ii = 0.001kg.m2,ki = 22N.m/rad, and bi =

0.01(N.m)/(rad/sec). We run the model by setting T1,T3,T5,T8,g,w to bounded white
noise with unit variance and zero mean. The least squares identification in (3.21) is then
implemented to identify the operator T under healthy conditions with r = d = 5, and the
identified parameters are plotted in Figure 4.2. Figure 3.24 validates the identified parameters
in Figure 4.2. To test the fault detection algorithm, the fatigue fault introduced in Section B.3
was emulated on the third segment at time t = 100 seconds. Figure 4.19 shows the norm of
residual E computed using (5.30) over a sliding window with width W = 100 steps. Notice
that the operator T was able to detect the fatigue crack effectively.

Next, to localize faults, the operators T̃1, . . . ,T̃10 were identified using (3.21) with all
orders r = d = 5. Figure 3.26 validates the faulty measurements’ estimation of ỹ10 using T̃3,
and while the fatigue crack was emulated at the third segment. Notice from Figure 3.26 that
the operator T̃3 was able to accurately estimate ỹ10 since the crack was at the same segment
that the transmissibility operator was identified on. The right upper part of Figure 3.27 shows
the norm of residual of all faulty operators T̃1, . . . ,T̃10 over a testing time of 100 seconds. It
can be observed that only the transmissibility operator that corresponds to the faulty segment
will be able to estimate the faulty measurements ỹ10. Thus, we conclude that the fault was in
the third segment. The same test was conducted by emulating the fault at the first, eighth,
and tenth segments separately. All the norm of residuals is plotted in Figure 3.27. Notice that
the proposed approach could even localize the fault at the tip and fixed ends of the cantilever
beam.
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Fig. 3.23 Simulation Results: Identified parameters of the operator T under healthy condi-
tions with r = d = 5.
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Fig. 3.24 Simulation Results: Comparison between the measured and estimated outputs of
the tenth segment under healthy conditions. This Figure validates the identified parameters
of the transmissibility operator T plotted in Figure 4.2.
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Fig. 3.25 Simulation Results: Norm of residual over a sliding window of the estimation of
transmissibility operator T . The fatigue crack was emulated at the third segment around
time t = 100 seconds.

3.5.3 Experimental Test

The proposed approach was tested on the setup shown in Figure 7.7. This setup consists
of a flexible cantilever beam that is excited randomly by hand at the free tip. The beam is
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Fig. 3.26 Simulation Results: Comparison between the measured and estimated outputs of
the tenth segment, while the third segment is faulty. This Figure validates the ability of
the operator T̃3 to accurately estimate the faulty measurements if the actual fault location
matches the fault location that T̃3 was constructed on.
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Fig. 3.27 Simulation Results: Norms of residual of the operators T̃1, . . . ,T̃10 for four separate
experiments. The fatigue fault was emulated at a different location during each experiment.
Notice that the purposed approach was able to localize the fault even at the free and fixed
ends.

divided into the seven segments shown in the Figure. Three laser Polytech IVS-500 laser
vibrometers are mounted and adjusted perpendicularly to the beam at stationary at three
different locations. The least squares identification in (3.21) is then implemented to identify
the operator T under healthy conditions with r = d = 50. The identified parameters of T

are plotted in Figure 3.29. Figure 3.30 validates the identified parameters in Figure 3.29.
An experimental fault was emulated by attaching a rigid strain to the beam. This fault will
increase the stiffness at the fault location. The fault was first emulated at the third segment
around time t = 100 seconds. Figure 4.15 shows the norm of residual E computed using
(5.30) over a sliding window with width W = 100 steps. Notice that the operator T was able
to detect the experimental fault effectively.

Next, to localize the experimental fault the operators T̃1, . . . ,T̃7 were identified using
(3.21) with all orders r = d = 50. Figure 3.32 validates the faulty measurements’ estimation
of ỹ3 using T̃3, and while the experimental fault was emulated at the third segment. Notice
from Figure 3.32 that the operator T̃3 was able to accurately estimate, ỹ3 since the fault is at
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Fig. 3.28 The experimental setup. A flexible cantilever beam with random excitations at
the tip. The beam is divided into seven segments. Three laser vibrometers are mounted to
measure the acceleration at three different locations.
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Fig. 3.29 Experimental Results: Identified parameters of the operator T under healthy
conditions with r = d = 50.
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Fig. 3.30 Experimental Results: Comparison between the measured and estimated outputs of
the third sensor under healthy conditions. This Figure validates the identified parameters of
the transmissibility operator T plotted in Figure 3.29.
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Fig. 3.31 Experimental Results: Norm of residual over a sliding window of the estimation
of transmissibility operator T . The experimental faulty was emulated at the third segment
around time t = 100 seconds.
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Fig. 3.32 Experimental Results: Comparison between the measured and estimated outputs
of the third sensor while the third segment is faulty. This Figure validates the ability of
the operator T̃3 to accurately estimate the faulty measurements if the actual fault location
matches the fault location that T̃3 was constructed on.

the same segment that the transmissibility operator was identified on. The right upper part of
Figure 3.33 shows the norm of residual of all faulty operators T̃1, . . . ,T̃7 over a testing time
of 100 seconds. It can be observed that only the transmissibility operator that corresponds to
the faulty segment will be able to estimate the faulty measurements ỹ3. Thus, we conclude
that the fault is in the third segment. The same test was conducted by emulating the fault at
the first, fifth, and seventh segments separately. All the norm of residuals is plotted in Figure
3.27.

3.6 Experiment 4: Actuator Fault Detection

3.6.1 Numerical Example

The parameters shown in Table A.2 are used to construct the system (A.10), (A.11) in
Figure A.3 with n = 12 actuators to characterize the reticle stage with multi-piezoelectric
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Fig. 3.33 Experimental Results: Norms of residual of the operators T̃1, . . . ,T̃7 for four
separate experiments. The experimental fault was emulated at a different location during
each experiment.

actuators. We consider a square rigid middle stage as the reticle stage with length l = 0.132
m and 3 actuators on each side of the middle stage, that is, mx = 3,nx = 6, and my = 9.
We consider actuators #1,#3,#4,#6,#7,#9,#10,#12 to be on the stage corners and actuators
#2,#5,#8,#11 to be aligned with the stage’s center of mass, that is, α1 = 45o,α2 = 0o,α3 =

315o,α4 = 135o,α5 = 180o,α6 = 225o,α7 = 45o,α8 = 90o,α9 = 135o,α10 = 315o,α11 =

270o,α12 = 225o. Moreover, l1 = l3 = l4 = l6 = l7 = l9 = l10 = l12 = 0.0934 m, and l2 = l5 =
l8 = l11 = 0.066 m. Furthermore, we set αa = 180o,αb = 45o, la = 0.06 m, and lb = 0.09 m.

We consider the first two transmissibility operators, Tbx,ax|4 that relates ax with bx while
actuator #4 is active, and Tby,ay|9 that relates ay with by while actuator #9 is active. The active
actuator excitation signal is set to Gaussian white noise with zero mean and unit variance
while considering the healthy conditions of the system.

Then, we use the least squares with a noncausal FIR model with r = 25 and d = 25 to
identify the transmissibilities Tbx,ax|4 and Tby,ay|9. Figure 3.34 shows the identified Markov
parameters of the transmissibilities Tbx,ax|4 and Tby,ay|9 obtained under healthy conditions.
For validation, Figures 3.35 and 3.36 show the simulated displacement and the predicted
displacement of bx and by, respectively, where the predicted displacements are obtained
using the identified transmissibility operators Tbx,ax|4 and Tby,ay|9, respectively, along with
the measurements of ax and ay.

We then obtain the transmissibility operators Tbx,ax|5 from ax to bx while actuator #5 is
active, Tby,ay|7 from ay to by while actuator #7 is active, Tbx,ax|1 from ax to bx while actuator
#1 is active, and Tby,ay|12 from ay to by while actuator #12 is active. Three transmissibility
operators, Tbx,ax|4,Tbx,ax|5, and Tbx,ax|1 are used to obtain three independent estimations of
b̂x based on the measurements of ax. Similarly, the operators Tby,ay|9,Tby,ay|7, and Tbx,ax|12

are used to obtain three independent estimations of b̂y based on the measurements of ay. Six
residuals are then computed for the six estimations by comparing them with the measured bx

and by. The norm of residuals over a sliding window for the six residuals are then computed
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using (5.30) with window width w = 100 steps (t = 10 seconds). The threshold limits for the
six residuals are computed using (5.31).
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Fig. 3.34 Estimated Markov parameters of the operators Tbx,ax|4 and Tby,ay|9. The estimated
Markov parameters are obtained using the least squares with a noncausal FIR model with
r = 25 and d = 25.

40 41 42 43 44 45 46 47 48 49 50

-1

-0.5

0

0.5

1
10

-5

Fig. 3.35 Simulated output and predicted output bx where the predicted output is obtained
using the identified transmissibility operator Tbx,ax|4 along with the measurements of ax.

Next, we apply both faults introduced in section B.1 to the six actuators that the trans-
missibility operators are constructed when they were active. We then use transmissibilities

Table 3.4 Simulation parameters for the multi-actuator system in (A.10)-(A.11).

Parameter Description Value
Mp Middle stage mass 2.45kg
J Middle stage moment of inertia 0.0997kg.m2

l Middle stage length 0.132m
Ma,i Actuator mass 0.028kg
ka,i Actuator stiffness 100×106N/m
Ca,i Actuator damping 2681.13N.s/m
kh,i Hinge stiffness 2×104N/m
Ch,i Hinge damping 500N.s/m
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Fig. 3.36 Simulated output and predicted output by obtained using the identified transmissi-
bility operator Tby,ay|9 along with the measurements of ay.

to detect these faults without the need to know the excitation signal or the system dy-
namics. To emulate the loss of effectiveness fault, we increase the actuator hinge stiff-
ness to kh,i,creep = 2.6 × 104N/m. For the fatigue crack, we set the hinge stiffness to
kh,i,crack = 1.33×104N/m while the crack is open, and keep it kh,i,crack = 2×104N/m while
the crack is closed. We run the system by setting actuators #4 and #9 to band-limited white
Gaussian noise. The system was kept healthy for the first 100 seconds. Figure 5.10 shows
the norm of residuals of the identified transmissibility operators for each fault computed
using (5.30) with w = 100 steps. The faults are then emulated individually, one at each run
at time t = 100 seconds. Note that these figures are computed using a sliding window with
width w = 100, where the sampling time is 0.1 second. This means the value computed at
time t seconds uses all the residual values within the time period from t to (t +10) seconds.
For example, in Figure 5.10, the x-Fatigue fault occurred at time t = 100 seconds. The
norm of residual started increasing at time t = 90 seconds as all values from time t = 90 to
t = 100 seconds are used to compute E at time t = 90 seconds. The fault was detected at
almost t = 92, which is two seconds after the fault actually occurred. The 2 seconds delay in
detecting the fault is in fact related to the assumed threshold limit to eliminate false alarms.

Similar to testing Tbx,ax|4 and Tby,ay|9, we test the transmissibility operators Tbx,ax|5,
Tbx,ax|7, Tbx,ax|1, and Tbx,ax|12 with the active actuator #5,#7,#1, and #12, respectively. We
apply the faults introduced in B.1 to the active actuator in each transmissibility operator
separately. Figure 3.38 shows the norm of residuals of the identified transmissibility operators
Tbx,ax|5 and Tbx,ax|7 for each fault computed using (5.30) with w = 100 steps, where the
faults occur at t = 100 seconds in each case. Figure 3.39 shows the norm of residuals of
the identified transmissibility operators Tbx,ax|1 and Tbx,ax|12 for each fault computed using
(5.30) with w = 100 steps, where the faults occur at t = 100 seconds in each case. Note from
Figures 5.10, 3.38, and 3.39 that the faults are detected in each case effectively.
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Fig. 3.37 Norm of the residuals of the transmissibilities Tbx,ax|4 and Tby,ay|9 shown in Figure
3.34 computed using (5.30) with w = 100 steps. Note that at t = 100 seconds the level of the
norm of the residual change, and thus we conclude that the active actuator is faulty.

Fig. 3.38 Norm of the residuals of the transmissibilities Tbx,ax|5 and Tby,ay|7 computed using
(5.30) with w = 100 steps. Note that at t = 100 seconds the level of the norm of the residual
change, and thus we conclude that the active actuator is faulty.

3.6.2 Experimental Test

We consider the experimental setup shown in Figure 7.7 consisting of twelve actuators to
move the middle stage parallel to the ground in the X-Y plane. Each actuator has an internal
spring and a rigid link connected to the middle stage with two screws. Every actuator operates
by pulling the link attached to it. Two 2-axis accelerometers, a and b, are attached to the
middle stage. The setup is mounted on an anti-vibration table to minimize the noise. The
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Fig. 3.39 Norm of the residuals of the transmissibilities Tbx,ax|1 and Tby,ay|12 computed using
(5.30) with w = 100 steps. Note that at t = 100 seconds the level of the norm of the residual
change, and thus we conclude that the active actuator is faulty.

maximum rotation angle of the middle stage is 10 degrees, and thus the coupling effect is
neglected.
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Fig. 3.40 The experimental setup consists of twelve actuators to move the middle stage. Two
two-axis accelerometers, a and b, are attached on the middle stage.

Then, we use least squares with a noncausal FIR model with r = 100 and d = 100 to
identify the transmissibilities Tbx,ax|i or Tby,ay|i, where x and y denote the direction of motion
and i ∈ {1, . . . ,12} is the active actuator. The input voltage applied to the active actuator
is a random signal that varies between 9−12 volts tuned by hand. Figure 3.41 shows the
estimated Markov parameters of the transmissibilities Tby,ay|1, Tbx,ax|4, Tby,ay|8, and Tbx,ax|12.
For validation, Figure 3.42 shows the measured acceleration and the predicted acceleration of
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by, where the predicted acceleration is obtained using the identified transmissibility operator
Tby,ay|1 and the measurement of ay.
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Fig. 3.41 Estimated Markov parameters from the pseudo input a to the pseudo output b,
where in each operator the active actuator is 1,4,8, or 12. The estimated Markov parameters
are obtained using the least squares with a noncausal FIR model with r = 100 and d = 100.
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Fig. 3.42 Simulated output and predicted output of by, where the predicted output is obtained
using the identified transmissibility operator Tby,ay|1 and the measurement of ay.

Loss of Effectiveness (Creep Fault)

All screws in the setup are relativity loosen so that the middle stage can move freely in
both directions. To implement this fault, we fasten the screws on the actuators #4 and #9 so
that they become harder to move. We run the setup by applying a random input voltage to
actuators #4 and #9 separately. The loss of effectiveness fault is introduced in both actuators
at time 80 seconds. Figure 3.43 shows the norm of residual for the operators Tax,bx|4 and
Tax,bx|9. Note from Figure 3.43 that at t = 80 seconds the level of the norm of the residuals
of Tax,bx|4 and Tax,bx|9 changes, and thus we conclude that the fourth and ninth actuators are
faulty. Similarly, the loss of effectiveness fault is applied to actuators #5, #7, #12 and #1, and
the norm of residuals are shown in Figures 3.44 and 3.45.
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Fatigue Crack

Fatigue cracks are difficult to implement in the experimental work without making permanent
defects. In this experiment, we consider the fatigue crack as a change in the stiffness only.
We fasten the spring rings with each others in actuators #4 and #9 so that the tension stiffness
increases and the compression stiffness remains the same. We run the setup by applying a
random input voltage to actuators #4 and #9 separately. Moreover, the fatigue crack fault
is introduced in both actuators at time 80 seconds. Figure 3.43 shows the norm of residual
for the operators Tax,bx|4 and Tax,bx|9. Note from Figure 3.43 that at t = 80 seconds the level
of the norm of the residuals of Tax,bx|4 and Tax,bx|9 changes, and thus we conclude that the
fourth and ninth actuators are faulty. Similarly, the fatigue crack is applied to the actuators
#5, #7, #12 and #1, and the norm of residuals are shown in Figures 3.44 and 3.45.

Actuator Delay

For further validation of the proposed method, we consider testing actuator delay faults
[77]. Actuator delay faults can be represented as an increase in the equivalent damping
coefficient Ca,i in the actuator dynamics, which results in a higher settling time of the actuator
response [77]. This fault is emulated experimentally by adding a viscous fluid (wet glue) to
the actuator rod, which leads to a higher friction. We run the setup by applying a random
input voltage to actuators #4 and #9 separately, and the actuator delay fault is introduced
in both actuators at time 80 seconds. Figure 3.46 shows the norm of the residuals for the
operators Tax,bx|4 and Tax,bx|9. Note from Figure 3.46 that at t = 80 seconds the level of the
norm of the residuals of Tax,bx|4 and Tax,bx|9 changes, and thus we conclude that the fourth
and ninth actuators are faulty.
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Fig. 3.43 Norm of the residuals of the transmissibilities Tbx,ax|4 and Tby,ay|9 of the experi-
mental setup computed using (5.30) with w = 100 steps. Note that at t = 80 seconds the level
of the norm of the residual change, and thus we conclude that the active actuator is faulty.

Fig. 3.44 Norm of the residuals of the transmissibilities Tbx,ax|5 and Tby,ay|7 of the experi-
mental setup computed using (5.30) with w = 100 steps. Note that at t = 80 seconds the level
of the norm of the residual change, and thus we conclude that the active actuator is faulty.
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Fig. 3.45 Norm of the residuals of the transmissibilities Tbx,ax|12 and Tby,ay|1 of the experi-
mental setup computed using (5.30) with w = 100 steps. Note that at t = 80 seconds the level
of the norm of the residual change, and thus we conclude that the active actuator is faulty.

Fig. 3.46 Norm of the residuals of the transmissibilities Tbx,ax|4 and Tby,ay|9 of the experi-
mental setup with actuator delay fault. Note that at t = 80 seconds the level of the norm of
the residual change, and thus we conclude that the active actuator is faulty.
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Chapter 4

Transmissibility-based Sliding Mode
Control

4.1 Controller Design

Consider a fault in the system (3.1)-(3.2) that diverge the measured output yo from the
estimated output ŷo. This causes an increase in the norm of residual to a level higher. Assume
that the system operates in a healthy manner for the first M steps, where M ≥ w, and let η be
the signal-to-noise ratio, then define the threshold

µ(Θ̂,w,M)
∆
=

η

M+1

M

∑
i=0

E(i,w). (4.1)

If the norm of residual exceeds the threshold limit the system is considered to be faulty. The
proposed control technique then mitigates the fault effects and derive the residual back to
zero. Let the following represents the discrete form of the system model in (3.1)-(3.2)

x(k+1) = A x(k)+Bu(k), (4.2)

yi(k)
∆
=Cix(k)+Diu(k), (4.3)

yo(k)
∆
=Cox(k)+Dou(k), (4.4)

where A and B are the equivalent state and input matrices in the discrete time. The controlled
system model can then be described by

x(k+1) = A x(k)+B(u(k)−ϑ(k)), (4.5)
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Fig. 4.1 An example of the implementation of sliding mode controller on Connected Au-
tonomous Vehicle (CAV) platoons.

where ϑ is the control signal. The control signal is designed to force the residual e to
go into the sliding band, which is a quasi-sliding mode. To align with the sliding mode
control literature such as, the condition e(k)∆e(k) < 0 has to be satisfied, where ∆e(k) =
e(k+1)− e(k). To satisfy the condition e(k)∆e(k)< 0, the control law ϑ should be defined
as

ϑ(k) =

ϑ+(k), e(k)> 0,

ϑ−(k), e(k)< 0,
(4.6)

where ϑ+ is a control law that ensures ∆e < 0 , and similarly ϑ− is a control law that ensures
∆e > 0. A super-twisting sliding mode control to recover the performance of the system
is considered. The super-twisting sliding mode control allows to deal with perturbations
growing linearly in e. For all k > 0,E ≥ µ , i.e. system is faulty, the control signal is defined
as

ϑ(k) = sat
[
−P |e(k)|

1
2 sgn(e(k))− 1

2
M

k

∑
i=0

sgn(e(i))
]
, (4.7)

where M and P are constants that indicate how the states will go into the sliding band.
The control signal ϑ is saturated to eliminate the chattering effect. The stability analysis
will further be discussed in the final thesis. Figure 4.1 shows an example of applying the
sliding mode controller on a platoon of mixed Connected Autonomous Vehicle (CAV) and
human-driven vehicles.

56



4.2 Stability

This section investigates stability after the actuator faults are mitigated using the control
signal in (6.43) as explained in the following proposition.

Proposition 1. Consider the system (A.10)-(A.11) with Hurwitz A, and assume that
Assumption 2 holds. Then, under bounded actuator faults and the faults being mitigated
using the control law in (6.43), the designed control system always holds stability.

Proposition 1 Proof. Define the relationship from the active actuator input fi to the
output ax

G (p) =Cax(pI −A)−1B̄i. (4.8)

Note that G is stable since A is Hurwitz. The actuator input fi can be obtained from the
output ax by discretizing the inverse of G , that is, fi(k) = G−1(q)ax(k). The relationship
from the output ax to the output subset b can be represented as

x̂(k+1) = A x̂(k)+B(G−1(q)ax(k)), (4.9)

b̂(k) ∆
=Cbx̂(k). (4.10)

Note that (4.9), (4.10) is a representation of the transmissibilty from ax to b. Thus, using
Assumption 2, (4.9), (4.10) is stable and thus b̂ is bounded.

Subtracting (4.9) from (6.42) yields the error model

ε(k+1) = A ε(k)−Bϑ(k), (4.11)

where ε(k) =
[

ε1(k) . . . εs(k)
]T

, and for all j ∈ {1, . . . ,s}, ε j is the error in the jth state.
The plant stability can be directly be investigated from (4.11) since the system is linear. From
the right-hand-side of the error model in (4.11), A is stable since the system holds stability
by the design of the Hurwitz state matrix A in (A.10), and thus A ε is bounded. Moreover,
the control signal ϑ is bounded since it is saturated to eliminate the chattering effect, and
thus, the term Bϑ is bounded. Therefore, the estimation residual e can be represented as

e(k) ∆
= b(k)− b̂(k)
∆
=Cb[x(k)− x̂(k)] =Cbε(k), (4.12)

which indicates the linear relation between ε and e, i.e. e is stable as long as ε is stable. □
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It was shown and proved in [29, 40] based on Lyapunov stability analysis that the super-
twisting algorithm in (6.43) will force the states to go into the sliding band as long as the
system attain the plant stability. That is, the residual will exponentially decay to zero in finite
time.

4.3 Experiment 1: CAV Platoons Fault-tolerant Control

4.3.1 Numerical Example

To test the proposed approach numerically, we construct a platoon with five vehicles where
the third iH = 3 is human-driven, and the rest are CAVs. We consider all CAVs to follow the
bond graph model shown in Figure A.1 along with the parameters in Table A.2. The unknown
human-driver behavior is emulated by considering the IDM model in Appendix A.1.2. The
desired velocity of the platoon was set to band-limited white noise with zero mean and unit
variance, and an initial condition of 5m/s for all vehicles. For j ∈ {3,4,5} let T j denote the
transmissibility operator with the pseudo inputs v j−2,v j−1 and the pseudo output v j. Note
that v j occurs in a timely-manner after v j−1 and v j−2, thus we can consider T j causal. Figure
4.2 shows the estimated Markov parameters of the operator T4 identified with r = 50 and
d = 0. The operator T4 is then implemented along with the measurements of v2 and v3 to
obtain an estimation of the velocity v4 under healthy conditions as shown in Figure 4.3. Note
from Figure 4.2 that the simulated output velocity of the identified causal transmissibility is
accurate, which confirms that the noncausal part of the model can be neglected.
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Fig. 4.2 Simulation results: Estimated Markov parameters of the transmissibility operator T4
obtained using least squares with a causal FIR model with r = 50 and d = 0.

We introduce next the three fault examples from Appendix B.1 to the system separately.
The sensor fault by setting δs,iH to a pulse signal with random amplitude and sampling time
Ts with t∗ = 70 and the constants in Table A.2. In a similar way, we emulated the burst
transmission and DoS attacks in the communication link between the second and fourth
vehicles. The burst transmission was emulated by setting s̃2 to band-limited white noise,
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Fig. 4.3 Simulation results: The simulated output velocity v4 and the predicted output velocity
v̂4. The predicted velocity is obtained using the identified transmissibility operator T4 with
the estimated Markov parameters shown in Figure4.2 and measurements of v2 and v3.

ε1 = ε2 = 1, ζ1 = 0, and ζ2 = 1. The DoS attack was emulated by setting τv,2 = 2 seconds.
All faults are introduced separately at time t = 70 seconds. The presence of faults in the
platoon leads to higher estimation error as shown in the top part of Figure 4.18. Notice the
jump in the cost function Figure 4.18 around time 70 when the the faults occurred. The cost
then drops down to zero as the faults are being mitigated. Figure 4.19 shows the norm of the
residuals of the transmissibilities T4 and T5 computed using (5.30) with w = 100 steps. Note
that at approximately t = 75 seconds, the norm of the residuals exceeds the threshold limit,
which activates the sliding mode controller. At time t = 70 seconds, the norm of the residuals
of the operators drops below the threshold limit due to using the sliding mode control.
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Fig. 4.4 Simulation results: Measured and predicted values of v4. At t = 70 seconds the fault
scenarios are introduced, which led to the deviation from the healthy signal. At time t = 75
seconds, the sliding mode controller is activated which forced the faulty responses to slide
along the healthy prediction.

4.3.2 Experimental Test

We consider the experimental setup shown in Figure 7.7 consisting of three autonomous
Quanser QBot2e robots. Each robot consists of two coaxial wheels (driven by DC motors).
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Fig. 4.5 Simulation results: Prediction residuals and the fault mitigation control signals. At
t = 70 seconds the faults were introduced separately, which led to the shown prediction
residuals. At time t = 75 seconds, the sliding mode controller is activated and the shown
control signals are produced. Notice the jump in the cost function of around time 70 when
the faults occurred. The cost then drops down to zero as the faults are being mitigated.

Fig. 4.6 Simulation results: Norm of the residuals of the transmissibilities T4 and T5
computed using (5.30) with w = 100 steps. Note that at approximately t = 55 seconds, the
norms of the residuals of T4 and T5 exceed the threshold limit, which activates the sliding
mode controller. Moreover, note that after activating the sliding mode controller the norm of
the residual drops below the threshold value.

The variance between the wheels’ velocities gives angular velocity for the robot. The first
robot receives the excitation signal from a computer through a wireless connection. The
second robot is human-driven through a wireless controller. The third robot receives the first
robot velocity v1 via V2V communication and measures the second robot velocity v2 using
an onboard depth sensor.
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Fig. 4.7 Experimental setup: The first robot receives the excitation signal from a computer
through a wireless connection. The second robot is human-driven through a computer
keyboard. The third robot receives the first robot velocity v1 via V2V communication and
measures the second robot velocity v2 using an onboard depth sensor.
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Fig. 4.8 Experimental emulation of the platoon faults. Three faults are introduced individually,
as represented by the red blocks. The sensor noise is a physical fault that is represented by
adding disturbances to the measured human-driven velocity. The cyber faults are represented
by injecting noise and delay to the information packet in the V2V communication link that is
recieved by the third robot.

For health monitoring, we consider a one-dimensional motion for the platoon. We first
run the setup by sending a zero-mean, unit variance, Gaussian random excitation signal to the
first robot. Note that using a noncausal FIR model of the transmissibility results in a delay
in the predicted output of the transmissibility. Therefore, to avoid delays in the closed-loop
system due to using a noncausal model of the transmissibility, we use causal FIR models
to identify the transmissibilities. We use least squares with a causal FIR model with r = 50
and d = 0 to identify the transmissibility operator T3, which is the transmissibility from
robots 1 and 2 to robot 3. The estimated Markov parameters for the transmissibility operator
T3 are shown in Figure 4.9. Then, the estimated transmissibility is used along with the
measurements of v1 and v2 to obtain an estimate of the velocity v3 as shown in Figure 4.10.

Sensor fault

We consider injecting the band-limited white noise signal shown in Figure 4.11 in the depth
sensor (radar) of the third robot as shown in Figure 4.8. Next, the estimated transmissibilities
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Fig. 4.9 Experimental results: Estimated Markov parameters for the transmissibility operator
T3 obtained using least squares with a causal FIR model with r = 50 and d = 0.

70 75 80 85

-0.2

-0.1

0

0.1

0.2

Fig. 4.10 Experimental results: The measured output velocity of the third robot v3 and the
predicted output velocity v̂3, where the predicted velocity is obtained using the identified
transmissibility operator T4 whose Markov parameters are shown in Figure 4.9 and measure-
ments of v1 and v2.

are used with the measurements of v1 and v2 to obtain an estimate of the velocity v3 as shown
in Figure 4.12 before t = 50 seconds. At t = 50 seconds, the noise is injected, which results
in the residual shown in the first part of Figure 4.13. At t = 53 seconds, the cumulative
error exceeds the threshold limit as shown in Figure 4.15. This activates the sliding mode
controller, which produces the control signal shown in the second part of Figure 4.13. Note
that after t = 53 seconds, the controller is activated and the measured velocity is close to the
predicted velocity.

30 35 40 45

-0.05

0

0.05

Fig. 4.11 A noise signal that is used to emulate the sensor fault experimentally. This noise
signal is injected in the radar measurements and the V2V noise in Figure 4.8.
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Cyberattack and time-delay faults

Similar results can be obtained for the cyberattack and time-delay faults, which we apply
individually. For the cyberattack, a noise signal is injected into the communication link
between robot 1 and robot 3 as shown in Figure 4.8. For the time-delay fault, we consider
the case of 2 seconds of time delay applied to the communication link. Next, the estimated
transmissibility is used with the measurements of v1 and v2 to obtain an estimate of the
velocity v3 as shown in the first part of Figure 4.12 for t < 50 seconds. At t = 50 seconds, the
cyberattack and time delay faults are introduced, which leads to the prediction error shown
in the first part of Figure 4.13. At t = 53 seconds, the cumulative errors for the cyber-attack
and time delay exceed the threshold limits as shown in Figure 4.15. This activates the sliding
mode controller, which produces the control signals shown in the second part of Figure 4.13.
Note that after t = 53 seconds, the controller is activated and the measured velocity is close
to the predicted velocity. Figure 4.14 shows the cost function of the experimental residuals
under the three proposed faults. We can see that the cost function before time 50 seconds
when the setup was healthy had a low level. After introducing the system faults 50 seconds,
the three costs jumped to a high level. The sliding mode controller is then activated, and
forced to cost to slide back to zero.

Fig. 4.12 Experimental results: Measured and predicted values of v3. At t = 50 seconds
the fault scenarios are introduced, which led to the deviation from the healthy signal. At
time t = 53 seconds, the sliding mode controller is activated, which recovers the healthy
performance of the vehicle.
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Fig. 4.13 Experimental results: Prediction residuals and the fault mitigation control signals.
At t = 50 seconds the faults were introduced individually, which led to the jump in the shown
prediction residuals. At time t = 53 seconds, the sliding mode controller is activated and the
shown control signals are produced.

Fig. 4.14 Experimental results: Cost function of the experimental residuals under the three
proposed faults. The cost function levels are low before time 50 seconds while the setup is
healthy. The faults at time 50 seconds led to jumps in the costs. The sliding mode controller
is then activated and forced the cost to slide back to zero.

4.4 Experiment 2: Application on Multi-Actuator Systems,
Numerical Example

4.4.1 System Model and Transmissibility Construction

The parameters shown in Table A.2 are used to construct the system (A.10), (A.11) in
Figure A.3 with n = 12 actuators to characterize the reticle stage with multi-piezoelectric
actuators. We consider a square rigid middle stage as the reticle stage with length l = 0.132
m and 3 actuators on each side of the middle stage, that is, mx = 3,nx = 6, and my = 9.
We consider actuators #1,#3,#4,#6,#7,#9,#10,#12 to be on the stage corners and actuators
#2,#5,#8,#11 to be aligned with the stage’s center of mass, that is, α1 = 45o,α2 = 0o,α3 =
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Fig. 4.15 Experimental results: Norm of the transmissibility residuals of T3 computed using
(5.30) with w = 100 steps. Note that at approximately t = 50 seconds, the norm exceeds
the threshold limit, which activates the sliding mode controller. The figure shows that after
activating the sliding mode controller the norm drops below the threshold value.

315o,α4 = 135o,α5 = 180o,α6 = 225o,α7 = 45o,α8 = 90o,α9 = 135o,α10 = 315o,α11 =

270o,α12 = 225o. Moreover, l1 = l3 = l4 = l6 = l7 = l9 = l10 = l12 = 0.0934 m, and l2 = l5 =
l8 = l11 = 0.066 m. Furthermore, we set αa = 180o,αb = 45o, la = 0.06 m, and lb = 0.09 m.

We start by identifying the transmissibility operator, Tb,a|3 which is the transmissibility
operator from point b to point a with r = 25. Note that the model (A.10)-(A.11) along with
the parameters in Table A.2 satisfies Assumption 1, and thus the causal transmissibility is
valid. Figure 5.11 shows the Markov parameters of the causal transmissibility operator Tb,a|3.
To validate the accuracy of the identified parameters of the transmissibility operator Tb,a|3,
Figure 4.16(b) shows the measured and estimated displacements of point b. Notice that the
identified transmissibility operator Tb,a|3 along with the measured displacement at point a
results in a good estimation of b̂.

Table 4.1 Simulation parameters for the multi-actuator system in (A.10)-(A.11).

Parameter Description Value
Mp Middle stage mass 2.45kg
J Middle stage moment of inertia 0.0997kg.m2

l Middle stage length 0.132m
ma,i Actuator mass 0.028kg
ka,i Actuator stiffness 100×106N/m
Ca,i Actuator damping 2681.13N.s/m
kh,i Hinge stiffness 2×104N/m
Ch,i Hinge damping 500N.s/m
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Fig. 4.16 Simulation results: (a) Estimated Markov parameters from the pseudo input b to the
pseudo output a used for fault mitigation. The estimated Markov parameters were identified
using noncausal FIR model with r = 25. (b) Measurements of b and its transmissiblity-based
estimation under healthy conditions to validate the identification of Tb,a|3.

4.4.2 Health Monitoring

Next, the estimated transmissibility is used along with the displacement measurements at the
point b to obtain an estimate of the displacement at a as shown in Figure 4.17. At t = 100
seconds, the loss of effectiveness was introduced, which led to the prediction error shown
in the upper part of Figure 4.18. Figure 4.19 shows the norm of residual E of the posteriori
error (after the fault is mitigated) over a moving window with width w = 100. Note that,
the time in Figure 4.19 is delayed by 100 steps (10 seconds) due to the moving window. As
shown in Figure 4.19, at t = 103 seconds the error norm exceeded the threshold limit and
thus the sliding mode controller was activated. The controller parameters P = 77000 and
M = 12 were tuned such that the controller has a sufficient convergence rate to the sliding
surface and the control signal is within the actuator capability. The sliding mode controller
injected the control signal shown in the lower part of Figure 4.18, which led to the drop in
the error norm below the threshold limit.
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Fig. 4.17 Simulated output displacement and predicted output displacement at point a. At
time t = 100 seconds the loss of effectiveness was emulated and this led to the error e shown
in Figure 4.18. At time t = 103 seconds, the sliding mode controller is activated and the
control signal ϑ shown in Figure 4.18 is produced.
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Fig. 4.18 The prediction error e and the control signal ϑ produced from the sliding mode
controller. A loss of effectiveness fault is emulated in actuator 3 at time t = 100 seconds.
The prediction error reached the threshold limit at time 103 seconds, which activated the
sliding mode controller and produced the control signal ϑ .
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Fig. 4.19 Norm of the residuals of the transmissibility Ta,b|3 computed using (5.30) with
w = 100 steps for the simulations of loss of effectiveness and fatigue crack in actuator 3. Note
that at approximately t = 100 seconds, the norm of residual of both reached the threshold
limit, which activates the sliding mode controller. Moreover, note that after activating the
sliding mode controller, the norm of the residual dropped below the threshold value for both
faults.
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Chapter 5

Time-variant Transmissibility

5.1 Time-variant Transmissibility Operators

Consider the following time-varying state space model

ẋ(t) =A(t)x(t)+Bu(t)u(t)+B f (t) f (t,x), (5.1)

y(t) =C(t)x(t)+Du(t)u(t)+Dh(t)h(t,x), (5.2)

where A(t) ∈ Rn×n is Hurwitz, Bu(t) ∈ Rn×(m−2),B f (t) ∈ Rn×1,C(t) ∈ Rp×n, Du(t) ∈
Rp×(m−2),Dh(t) ∈ Rp×1,n is the system order, m is the number of excitation signals, and
p > m is the number of measured outputs. All nonlinearities and unmodeled dynamics are
pushed to the unknown bounded functions f (·, ·) and h(·, ·). Let B(t) = [Bu(t) B f (t) 0]T,
and D(t) = [Du(t) 0 Dh(t)]T, then define the two independent output subsets

yi(t) =Ci(t)x(t)+Di(t)ū(t,x), (5.3)

yo(t) =Co(t)x(t)+Do(t)ū(t,x), (5.4)

where ū(t,x) = [u(t) f (t,x) h(t,x)]T,

y(t) =

[
yi(t)
yo(t)

]
,C(t) =

[
Ci(t)
Co(t)

]
,D(t) =

[
Di(t)
Do(t)

]
,

and Ci(t) ∈ Rm×n,Co(t) ∈ R(p−m)×n,Di(t) ∈ Rm×m, and Do(t) ∈ R(p−m)×m. Note that the
definitions of B,Di, and Do here consider the functions f (·, ·) and h(·, ·) as independent exci-
tation signals that act on the system. This renders the transmissibility operator independent
of the input signal u and the unmodeled dynamics f (·, ·),h(·, ·).
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Assumption. The parameter variation in equations (7.1)-(5.2) is assumed to vary ran-
domly within known lower and upper limits.

This assumption is most likely to be satisfied in most systems. For example, consider a
robot arm that picks objects with different mass values. The robot arm in this case will have
a maximum allowable mass due to the structural design of the arm, the material of the arm,
and the limited actuator effectiveness.

In [8], frequency domain transmissibilities were shown to depend on the input signal u in
case of non-zero initial conditions. On the other hand, time-domain transmissibilities were
obtained in [8] by replacing the Laplace variable s with the differentiation operator p, and
were shown to be independent of the input signal u and the initial conditions. Following [8],
we consider time-varying transmissibility operators in the p domain. Define,

Γi(t,p)
∆
=Ci(t)adj(pI −A(t))B(t)+Di(t)δ (t,p), (5.5)

Γo(t,p)
∆
=Co(t)adj(pI −A(t))B(t)+Do(t)δ (t,p), (5.6)

δ (t,p) ∆
= det[pI −A(t)]. (5.7)

Γi and Γo are two matrices of polynomials of p whose zeros are zeros of the two output
channels yi and yo, respectively. δ is the characteristics equation in terms of p, whose zeros
are the poles of the original system (7.1)-(5.2). Then the transmissibility operator from yi to
yo satisfies [8]

yo(t) = T (t,p)yi(t), (5.8)

where

T (t,p) ∆
= Γo(t,p)Γ−1

i (t,p).

Note that T is independent of the input signal u and the unmodeled dynamics f ,h. This
renders the proposed approach robust against any effects that can be included in f or h such
as system nonlinearities, system noise, or external disturbances. However, the uncertainties
that can be included in f and h are limited to the number of available independent output
measurements in yi. The total number of signals that the proposed approach can be robust
against is the same as the number of signals included in yi. That is, the number of signals in
u, f , and h combined should equal the number of signals in yi. This is required to ensure the
invertability of Γi. The number of rows in Γi is the same as the number of signals in yi, while
the number of columns in Γi is the same as the number of signals in u, f , and h combined.

69



This indicates that the more available sensor measurements in the system, the more robust
the developed approach is.

If the variation in the underlying system’s parameters is small, then a time-invariant
model of the transmissibility operator in (5.8) can give an acceptable approximation of T

since T is robust against f ,h. However, for significant changes in the underlying system’s
parameters, a time-varying model of the transmissibility operator in (5.8) is required.

Since sensor measurements are obtained in discrete time, we consider discrete-time
transmissibility operators in the forward-shift operator q, that is, we replace p in (5.8) by the
forward shift operator q [89]. Replacing p in (5.8) with q yields, for all k ≥ 0,

yo(k) = T (k,q)yi(k), (5.9)

where

T (k,q) = Γo(k,q)Γ−1
i (k,q) (5.10)

=
1

detΓi(k,q)
Γo(k,q)adjΓi(k,q). (5.11)

Note that if the transmissibility output channel has more zeros than the transmissibility
input channel, then T (k,q) is noncausal. Moreover, if the transmissibility output channel
has a non-minimum phase zero (unstable zero), then T (k,q) is unstable. Furthermore, in
most cases, the variation in the system’s parameters A,B,C,D is unknown. To this end and
following [6], we consider identifying the transmissibility operator T (k,q) using noncausal
FIR models. A noncausal FIR model of T is a truncation of the Laurent expansion of T in
an analytic annulus that contains the unit circle. Noncausal FIR models are always stable,
independent of the system order, and can simulate unstable and noncausal transmissibilities.
In the next section, we extend the least-squares identification introduced in [6] to recursive
least squares to count for the unknown varying parameters in A,B,C,D.

5.2 Transmissibilities Recursive Least Squares Identifica-
tion

The time-varying noncausal FIR model can be given for all k ≥ 0 by

T (k,q) =
r

∑
i=−d

Hi(k)q−i, (5.12)
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where r,d denote the order of the causal and noncausal parts of the FIR model of T , respec-
tively, and are further explained in Section 5.2.1. Hi(k) ∈ R(p−m)×m is the i-th coefficient of
the Laurent expansion of T in the annulus that contains the unit circle. Hi can be derived
from Γi,Γo that are obtained from the system coefficients A,B,C,D. However, the variation in
the system parameters is unknown. Accordingly, the variation in Γi,Γo is unknown, and thus
the coefficients Hi are unknown. q is forward shifting operator, which is the discrete form of
p. q is equivalent to the discrete complex frequency variable z when all initial conditions
are zero. The forward shifting operator can be directly substituted when multiplied by any
discrete time signals, such that q−iyi(k) = yi(k− i).

5.2.1 FIR Model Order Selection

It is evident that increasing the FIR model order allows the ability to capture more system
dynamics. Unlike the typical implementation of the FIR models where the input-output
of the FIR are the same as the system’s input-output, both the input and output of the FIR
model are outputs of the underlying system in the proposed approach. That is, the FIR
model is used to represent the relationship from an output yi to another output yo. Due to the
unknown change in the system parameters A,B,C,D, the relationship between yi and yo is
unknown. The relationship from yi to yo might be noncausal. The physical interpretation of
this noncausality is that yi might occur before or after yo. If yi occurs after yo, then the input
of the used FIR model occurs after the output of the FIR model. Accordingly, the estimation
of yo at the current time step k, depends on the future measurements of yi.

Noncausal FIR models consist of two high-order terms, the typical causal order that is
denoted by r and the noncausal order that is denoted by d. The casual order r refers to how
many previous steps of yi are included in the estimation of yo, while the noncausal order
d refers to how many future measurements of yi are included in the estimation of yo. This
results in a time-delay in the estimation of yo till the required future measurements of yi are
available. Increasing the noncausal FIR order captures more dynamics, however, will result
in a higher time-delay in the estimation of yo. Therefore, the orders of the FIR model are
selected according to the application such that the FIR captures enough dynamics while the
estimation time-delay is negligible.
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5.2.2 RLS Identification

An estimate of yo can be obtained from yi using

ŷo(k)
∆
=

r

∑
i=−d

Hi(k)yi(k− i). (5.13)

Define the estimation residual

e(k|ΘFIR
r,d (k)) ∆

= yo(k)− ŷo(k),

∆
= yo(k)−

r

∑
i=−d

Hi(k)yi(k− i), (5.14)

where

Θ
FIR
r,d (k) ∆

=[H−d(k), . . . ,Hr(k)] ∈ R[p−m]×[m(r+d+1)].

ΘFIR
r,d is called Markov parameters of the transmissibility operator T .

Note that (5.14) can be interpreted as

yo(k) = Θ
FIR
r,d (k)v(k)+ e(k|ΘFIR

r,d (k)), (5.15)

where

v(k)[yi(k+d), . . . ,yi(k− r)]T ∈ Rm(r+d+1)×1.

Remark. The variation in ΘFIR
r,d is unknown due to unknown variation in A,B,C,D.

Since the variation in ΘFIR
r,d is unknown, ΘFIR

r,d needs to be identified overtime. The
following theorem shows how to recursively estimate the transmissibility parameter Θ̂FIR

r,d

in the FIR format. The recursive estimation of ΘFIR
r,d estimates the evolution in the system

parameters between the last and current steps. This is rather than re-identifying ΘFIR
r,d since

the beginning at each time step, which is intense and might not be possible as k −→ ∞.
The following Lemma, which is used in the proof of Theorem 1, is an indirect implemen-

tation of the Woodbury matrix identity [103].
Lemma 1. Let F ∈ Rc×c be nonsingular and let G ∈ Rc×1 and ℓ ∈ R, then

(F+ℓGGT)−1 =

F−1 −F−1ℓG(1+GTF−1ℓG)−1GTF−1,
(5.16)
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Lemma 1 Proof. Define L(1+GTF−1ℓG), then multiply

(F + ℓGGT)(F−1 −F−1ℓGL−1GTF−1)

= I+ ℓGGTF−1 − ℓGL−1GTF−1

− ℓGGTF−1ℓGL−1GTF−1

= I+ ℓGGTF−1

− ℓG(1+GTF−1ℓG)L−1GTF−1

= I+ ℓGGTF−1 − ℓGLL−1GTF−1

= I. □

Theorem 1. For the transmissibility operator T that relates yi to yo in (7.1)-(5.4), an
estimation of the transmissibility parameters Θ̂FIR

r,d can be recursively estimated at time step k
from

Θ̂
FIR
r,d (k) = Θ̂

FIR
r,d (k−1)+ e(k|Θ̂FIR

r,d (k−1))κT(k), (5.17)

where

κ(k) = λ (k)V(k−1)v(k)
(
1+λ (k)vT(k)V(k−1)v(k)

)−1
,

V(k) = V(k−1)−κ(k)vT(k)V(k−1),

e(k|Θ̂FIR
r,d (k−1)) ∆

= yo(k)− Θ̂
FIR
r,d (k−1)v(k),

and λ ∈ (0,1] is the forgetting factor.

Theorem 1 Proof. Define the cost function

C (k|Θ̂FIR
r,d )

k

∑
j=0

λ ( j)||e( j|Θ̂FIR
r,d (k))||2. (5.18)
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Substituting e( j|Θ̂FIR
r,d ) from (5.15) yields

C (k|Θ̂FIR
r,d )

k

∑
j=0

λ ( j)
[

yo( j)yT
o ( j)

− Θ̂
FIR
r,d (k)v( j)yT

o ( j)

− yo( j)vT( j)(Θ̂FIR
r,d (k))T

+ Θ̂
FIR
r,d (k)v( j)vT( j)(Θ̂FIR

r,d (k))T
]
.

(5.19)

Next, taking the derivative of (5.19) with respect to Θ̂FIR
r,d and setting the obtained expression

to zero yields,

−
k

∑
j=0

λ ( j)
[
v( j)yT

o ( j)− v( j)vT( j)(Θ̂FIR
r,d (k))T]= 0. (5.20)

Solving (5.20) for Θ̂FIR
r,d (k) yields

Θ̂
FIR
r,d (k) = (Φ−1(k)Ψ(k))T, (5.21)

where Φ(k) is the weighted sample covariance matrix for yi(k), and Ψ(k) is the equivalent
estimate for the cross-covariance between yi and yo, that is, Φ(k) and Ψ(k) are given by

Φ(k) =
k

∑
j=0

λ ( j)v( j)vT( j) ∈ R[m(r+d+1)]×[m(r+d+1)],

Ψ(k) =
k

∑
j=0

λ ( j)v( j)yT
o ( j) ∈ R[m(r+d+1)]×[p−m].

Estimating the transmissibility parameters at time k from (5.21) might seem possible,
however, computing (5.21) at each time step is intense and might not be possible as k −→ ∞.
Therefore, we consider determining the transition from Θ̂FIR

r,d (k−1) to Θ̂FIR
r,d (k). Define

Θ̂
FIR
r,d (k) = Θ̂

FIR
r,d (k−1)+∆Θ̂

FIR
r,d (k−1), (5.22)
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where ∆Θ̂FIR
r,d (k−1) is the evolution in the transmissibility parameters from time step k−1

to k. Reformulating Φ(k) in terms of Φ(k−1) yields

Φ(k) =
k−1

∑
j=0

λ ( j)v( j)vT( j)+λ (k)v(k)vT(k)

= Φ(k−1)+λ (k)v(k)vT(k), (5.23)

and similarly

Ψ(k) = Ψ(k−1)+λ (k)v(k)yT
o (k). (5.24)

Using Lemma 1, Φ−1(k) can be written as

Φ
−1(k) = Φ

−1(k−1)−Φ
−1(k−1)λ (k)v(k)

(1+ vT(k)Φ−1(k−1)λ (k)v(k))−1vT(k)Φ−1(k−1).
(5.25)

For convenience, let V(k) = Φ−1(k) and recall the definition of κ(k) defined in the Theorem,
then (5.25) becomes

V(k) = V(k−1)−κ(k)vT(k)V(k−1), (5.26)

which is the definition of V(k) in the Theorem. From the definition of κ in the theorem we
can write

κ(k)[1+λ (k)vT(k)V(k−1)v(k)] = λ (k)V(k−1)v(k),

which can be interpreted as

κ(k) = λ (k)[V(k−1)−κ(k)vT(k)V(k−1)]v(k),

moreover, substitute (5.26) yields

κ(k) = λ (k)V(k)v(k). (5.27)

Substitute (5.24) in (5.21) yields

Θ̂
FIR
r,d (k) = [V(k)Ψ(k−1)+λ (k)V(k)v(k)yT

o (k)]
T. (5.28)
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Fig. 5.1 An example on constructing the forgetting factor λ with k∗ = 2000 samples, k0 =
1000 samples, and the current time step is 3500. The defined forgetting factor gives enough
time to detect faults first, then activate the identification algorithm in case no faults are
detected.

Next, substitute (5.26) and (5.27) in (5.28)

Θ̂
FIR
r,d (k) =

[
V(k−1)Ψ(k−1)+κ(k)yT

o (k)

−κ(k)vT(k)V(k−1)Ψ(k−1)
]T
,

note that Θ̂FIR
r,d (k−1) = (V(k−1)Ψ(k−1))T, then

Θ̂
FIR
r,d (k) = Θ̂

FIR
r,d (k−1)+ e(k|Θ̂FIR

r,d (k−1))κT(k). □

5.3 Application on Fault Detection

The main challenge in using the residual computed in (5.14) for the purpose of fault detection
is to distinguish if the changes in e are due to parameter change or system faults. The
recursive identification in (5.17) is not urgent at each time step. Then we consider detecting
the faults first, then updating the transmissibility parameters if no faults are detected. For this
purpose, we define the forgetting factor λ around a time step k∗ to be λ (k∗)≈ 1 where the
system is known to be healthy for k0 steps and the variant parameters reached the upper and
lower bounds, such as

λ (k) = exp
(
−(k− k∗)2

(0.5k0)2

)
. (5.29)

Note that k0 is picked to guarantee that (5.17) has enough time to optimize Θ̂FIR
r,d .

Remark 2. The forgetting factor λ is designed to detect faults first, and then update the
estimated transmissibility parameters Θ̂FIR

r,d if no faults are detected.
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The system is considered to start operating in a healthy manner, and the variant system
parameters oscillate between the upper and lower bounds for k0 steps. The initial value for k∗

is set to k∗ = 0. As explained in the last paragraph of Section 5.2, the parameters Θ̂FIR
r,d (k0)

need to be updated overtime. However, after a period of time the forgetting factor λ ≈ 0.
The update is here done by updating the constant k∗ overtime. Let k̄∗ be a time step after k∗,
assume that no faults are detected between k∗ and k̄∗, and the variant system parameters are
known to reach the upper and lower bounds within this time interval. Then k∗ can be updated
to k̄∗, which will set the forgetting value to λ (k̄∗)≈ 1, and thus activating the RLS algorithm
around the time step k̄∗.

It is worth mentioning here that if the fault happens before the time step k0 while k∗

is still k∗ = 0, the fault might be detected. This is because of the exponential formula of
the forgetting factor λ . When k = k∗ = 0,λ (k) = 1, the RLS will force the transmissibility
parameters to adapt to the dynamics change whether it’s due to parameters change or system
fault and the fault will not be detected. However, as k −→ k0,λ (k)−→ 0, the RLS algorithm
becomes less sensitive to the parameter change, and the likelihood to detect faults increases.
In the next two sections, we present two different experiments, one with faults that occur after
k0, and one with the fault that occurs before k0. Figure 5.1 shows an example on constructing
the forgetting factor λ with k∗ = 2000 samples, k0 = 1000 samples, and the current time step
is 3500. The defined forgetting factor gives enough time to detect faults first, then activate
the identification algorithm in case no faults are detected.

The faults are assumed to be within different parameters than the variant parameters in
the system. For the level of the residual e to be more obvious and readable, we define for all
k ≥ 0

E(k|Θ̂FIR
r,d ,w) ∆

=

√√√√w+k

∑
i=k

∥e(i|Θ̂FIR
r,d (i))∥, (5.30)

which represents the norm of residual over a sliding window with width w steps. Let η be
the signal-to-noise ratio, then define the threshold [135]

µ(Θ̂FIR
r,d,ℓ,w,k

∗)
η

k0 +1

(k∗)

∑
i=(k∗−k0)

E(i|Θ̂FIR
r,d,ℓ,w), (5.31)

where for k < 0 (before running the system), E(k|Θ̂FIR
r,d,ℓ,w) = 0.
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Qbot 1Qbot 2
Qbot 3

Water

flow

Water tank

Fig. 5.2 Experiment 1 setup: Three connected autonomous robots in a longitudinal platoon
formulation. Two varying parameters in the system, which are the mass of Qbot2 due to the
water flow, and the friction coefficient which depends on where the robot is moving (i.e. on
the blue mats or the floor).

5.4 Experiment 1: Connected Autonomous Robots

This experiment considers a connected autonomous robotic system with two variable param-
eters in the state matrix A. The faults are emulated after the time step k0. Three different
common faults are considered in this experiment.

5.4.1 Experimental Setup

The experimental setup shown in Figure 5.2 consists of three Quanser autonomous differential
robots called Qbots 2e. Each Qbot consists of two coaxial wheels, where each wheel is
driven by a DC motor that is controlled using a closed-loop inverse kinematic controller. The
robots are connected with V2V communication links to emulate Connected Autonomous
Vehicle (CAV) platoons. The velocity of both wheels in each robot is set to be equal to have
longitudinal motion only. Qbot1 receives the excitation signal from a computer through
wireless communication, and Qbot2 velocity tracks Qbot1 velocity v1. Similarly, Qbot3
is connected with Qbot2 via a V2V communication channel, and Qbot3 velocity v3 tracks
Qbot2 velocity v2. Two parameters are considered to vary over time within the setup. The
first parameter is the second robot’s mass, where a water tank is attached to the robot body
and the water flows randomly in and out the tank during the entire experiment. That is, the
variation in the water level of the tank is unknown. The second variant parameter is the
ground friction, where all robots move randomly on the soft blue mats shown in Figure 5.2
and the ground during the entire experiment.

5.4.2 RLS Transmissibility Identification

We start the setup by sending band-limited white noise with zero mean and unit variance to
the first robot as the desired velocity of the platoon. The transmissibility inputs are defined
as yi(k) = [v1(k) v2(k)]

T, and the transmissibility output is defined as yo(k) = v3(k). We set
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Fig. 5.3 First experiment results: The identified Markov parameters Θ̂FIR
r,d and their variance

over time. The identified parameters are optimized approximately at time t = 60 seconds.
The z-axis is the Figure’s legend where the ith Markov parameter is Hi.

Fig. 5.4 First experiment results: Comparison between the measured and estimated velocities
of Qbot3 using the Markov parameters in Figure 5.3. Note that measured and estimated are
close to each other after the Markov parameters are optimized at time t = 60 seconds.

k∗ = 0 for the entire experiment, and k0 is set to be k0 = 1000 steps where the sampling time
is 0.1 second. The RLS algorithm in (5.17) starts at k = 0 with the FIR orders r = d = 10.
Figure 5.3 shows the identified Markov parameters Θ̂FIR

r,d and its variation with time. The
z-axis (Markov Parameter Index) is the legend of this Figure. Such that, the ith Markov
parameter is the parameter Hi defined in Equation (5.12). From Figure 5.3 we can see that all
the transmissibility parameters started settling on specific values at approximately k = 600
steps (at time t = 60 seconds). Figure 5.4 shows the measured and estimated velocities of the
third robot between time steps k = 2500 and k = 2900 (i.e from t = 250 to t = 290 seconds),
which is a time interval after the RLS has optimized the transmissibility parameters and
before emulating the faults. We can see from Figure 5.4 that while the system parameters
varies randomly and the system is under random excitation u, the measured and estimated
signals of the third robot are close to each other.
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Fig. 5.5 First experiment results: Norm of residual over a sliding window with width w = 100
steps, where this experiment considers faults after the time step k0. Three different faults
occurred individually, which resulted in increasing the norm of residual over the threshold
limit, and the faults are then detected.

5.4.3 Faults Emulation and Fault Detection

Next, at time step k = 3000 (t = 300 seconds) the first fault was emulated. The first fault
is represented in 1 second communication time delay between the second and third robots.
At time step k = 4000 (t = 400 seconds) the delay fault was removed, and the second fault
was emulated. The second fault is False Data Injection (FDI), which is represented as
injecting bounded noise to the velocity signal v2 that is transmitted through the wireless
communication channel. At time step k = 5000 (t = 500 seconds) the FDI fault was removed,
and the third fault was emulated. The third fault is actuator disturbances, which is represented
in injecting bounded noise to the left wheel control signal of Qbot2 to result in 2D motion.
The norm of residual defined in (5.30) is then computed for all 0 ≤ k ≤ 6000 with width
w = 100 steps as shown in Figure 5.5. We can see from Figure 5.5 that between k = 1000
and k = 3000 (t = 100 - t = 300 seconds) even while the system parameters are varying,
the residual e was minimized. At time step k = 3000 (t = 300), the level of the norm of
residual increased with emulating the first fault. The level of the norm of residual stayed high
for the second and third faults as well. Note that in Figure 5.5 the level increase started at
time step k = 2900 (t = 290 seconds) as computing the norm of residual in (5.30) uses the
front w = 100 steps to compute E at step k = 2900. Figure (5.30) compares the proposed
technique with the typical RLS identification. Notice that in the typical RLS as k −→ ∞, the
identification becomes more aggressive and forces the residual always to converge to zero
regardless if its a fault or parameter variance. Therefore, the faults were not detected using
the typical RLS.
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Fixed

end

Fig. 5.6 Experiment 2 setup: Quanser’s flexible link structured as a cantilever flexible beam
under random excitation with variant location. The excitation location changes randomly
between F1 and F2. Three laser vibrometers are mounted to measure the acceleration at
a1, . . . ,a3.

Fig. 5.7 Second experiment results: the identified Markov parameters Θ̂FIR
r,d and their variance

over time. The identified parameters are optimized approximately at time t = 1100 seconds,
however, the fault occured before k0 at time t = 3000 seconds where the RLS identification
is still active.The z-axis is the Figure’s legend where the ith Markov parameter is Hi.

5.5 Experiment 2: Flexible Beams

This experiment considers random excitations on a class of flexible structures with the
variable parameter being the excitation location in the input matrix B. The fault is emulated
in this experiment before the time step k0. Transmissibility-based fault detection in time-
invariant flexible beams was tested successfully in [65, 67].

5.5.1 Experimental Setup

This experiment uses Quanser’s flexible link setup shown in Figure 5.6, which consists of a
flexible beam with one end fixed and the rest of the beam is free to oscillate (cantilever beam).
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Fig. 5.8 Second experiment results: Norm of residual over a sliding window with width
w = 100 steps, where this experiment considers a fault before the time step k0. The forgetting
factor λ is plotted to show how active the identification is. Three comparisons between the
measured and estimated accelerations are plotted at three different time intervals.

Three Polytech IVS-500 laser vibrometers are mounted and adjusted perpendicularly to the
beam at stationary. The laser vibrometers measure the acceleration in the laser direction at
three different locations a1(k), . . . ,a3(k). Two random forces generated by hand are acting
on the beam, F1 at approximately 8cm from the fixed end, and F2 at the free end. The beam
bending angle was < 5o for the entire experiment to avoid any nonlinearities due to the
beam deflection, and be able to observe the parameters change. The variant parameters in
this experiment are related to the input matrix B by changing the input location, such that
changing the excitations from F1 to F2 will change the states that the excitation is injected to.

5.5.2 RLS Transmissibility Identification

The transmissibility inputs are defined as yi(k) =
[

a1(k) a2(k)
]T

, and the transmissibility
output is defined as yo(k) = a3(k). k∗ is set to k∗ = 0 for the entire experiment, and k0 is
pushed too high k0 = 60000 steps where the sampling time is 0.1 second, to investigate
faults before k0 while k∗ = 0. We start the setup by setting both F1 and F2 to random forces
by hand within the range of the maximum forces we wish to apply (bounded noise). The
RLS algorithm in (5.17) starts at k = 0 with the FIR orders r = d = 25. The active forces
switch randomly every 1000 seconds between F1, F2, or both F1,F2 are active at the same
time. Figure 5.7 shows the identified Markov parameters Θ̂FIR

r,d and its variation with time.
The z-axis (Markov Parameter Index) is the legend of this Figure. Such that, the ith Markov
parameter is the parameter Hi defined in Equation (5.12). From Figure 5.3 we can see that
all the transmissibility parameters started settling at approximately k = 11000 steps (at time
t = 1100 seconds). Note that the variation in Θ̂FIR

r,d after time t = 3000 seconds is due to the
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system fault while the identification is still active, as will be explained further in the next
subsection.

5.5.3 Faults Emulation and Fault Detection

The fault was emulated by attaching a rigid body between a2 and a3. This fault is related to a
change in the mass and stiffness of the beam portion that the rigid body was attached to. The
rigid body was attached at time step k = 30000 (t = 3000) seconds, while the setup is still
running to avoid any initial conditions effect. The norm of residual defined in (5.30) is then
computed for all 0 ≤ k ≤ 60000 with width w = 200 steps as shown in Figure 5.8.

The norm of residual starts high at k = 0 and drops gradually with time. For the first
1000 seconds both forces are active to satisfy the assumption of reaching both upper and
lower bounds in B around k∗ = 0. We can see from Figure 5.8 that at time t = 1000 and
t = 2000 seconds switching the forces didn’t result in increasing the level of residual. This is
because the transmissibility parameters were already adapted with both forces during the
first 1000 seconds of the experiment. The bottom-left plot of Figure 5.8 shows a comparison
between the measured and estimated acceleration at the third location a3, which are very
close to each other. After applying the fault at time t = 3000 seconds, the change in the
system dynamics led to increasing the level of the norm of residual. Since the transmissibility
parameters are known to adapt with all possible variant parameters before approximately
t = 1500 seconds, the increase in the level of residual at time t = 3000 can be regarded
as a system fault. Note that switching the active forces after t = 3000 doesn’t result in
increasing E. This is because the change in parameters (switching the forces) is still within
the boundaries that the transmissibility adapted with during the first 1000 seconds. Figure
(5.8) compares the proposed technique with the typical RLS identification. Notice that in the
typical RLS as k −→ ∞, the identification becomes more aggressive and forces the residual
always to converge to zero regardless if its a fault or parameter variance. Therefore, the faults
were not detected using the typical RLS.

Another important observation from Figure 5.8 is the relation between the norm of
residual E and the forgetting factor λ . At the time t = 0, the forgetting factor was at
maximum λ = 1, which means the RLS works completely to identify the transmissibilities
and drop down the high level of E. Since λ decreases exponentially, it becomes more difficult
to adapt with the dynamics change as t −→ 6000. The bottom-middle and bottom-right plots
of Figure 5.8 show comparisons between the measured and estimated accelerations after the
fault happened and around λ ≈ 0, respectively. This explains why it was difficult for the
RLS to adapt to the system fault at t = 3000. Note that if the fault happened in the first 500
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Fig. 5.9 Experiment 3 setup: Quanser’s Robotic arm (QArm) with four joints and a gripper.
Four DC motors control the four joints. The arm is considered to move randomly and pick
random masses.

seconds, it will be difficult to detect it and the fault effect will disappear quickly. However,
the closer the fault occurs to k0, the higher likelihood to detect it.

5.6 Experiment 3: Robotic Manipulators

5.6.1 Experimental Setup

For this experiment, we consider Quanser’s robotic arm (QArm) shown in Figure 7.7 consists
of a robotic arm with fixed base and four joints. The rotation range of the first and fourth
joints is 360 degrees, and the second and third joints are 180 degrees. Four DC motors
control the four joints. A gripper with five contact points is attached to the free end of the
arm. The gripper is controlled through the computer’s keyboard to two positions, hold or
release. Six different objects are picked separately, one at a time, with maximum mass of
500g. A random operation of the arm is considered to emulate the unknown input on the
system. The desired angular velocity of the first joint θ ∗

1 is set to white Gaussian noise with
zero mean and unit variance. The second joint’s desired angular velocity is set to track the
velocity of the first joint θ ∗

2 = θ1, and similarly, the third to track the second θ ∗
3 = θ2, and

the fourth to track the third θ ∗
4 = θ3. Notice that this technique is applicable regardless of

what Euler-Lagrange dynamical structure the manipulator is following due to the robustness
against unknown nonlinearities. Throughout the operation, the picked mass was changed
manually while the arm is moving every approximately 40 seconds.
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Fig. 5.10 Third experiment results: Norm of residual over a sliding window with width
w = 100 steps. The forgetting factor λ is plotted to show how active the identification is.
Two comparisons between the measured and estimated angular velocities are plotted at two
different time intervals before and after the fault.

Fig. 5.11 Third experiment results: the identified Markov parameters Θ̂FIR
r,d and their variance

over time. The identified parameters are optimized approximately at time t = 300 seconds.
The z-axis is the Figure’s legend where the ith Markov parameter is Hi.

5.6.2 RLS Transmissibility Identification

The transmissibility inputs are defined as yi(k) =
[

θ̇1(k) θ̇2(k) θ̇3(k)
]T

, and the trans-

missibility output is defined as yo(k) = θ̇4(k). k∗ is set to k∗ = 0 for the entire experiment,
and k0 is pushed too high k0 = 1000 steps where the sampling time is 1 second. The RLS
algorithm in (5.17) starts at k = 0 with the FIR orders r = d = 50. We manually switch
the picked mass every 40 seconds to another one of the six masses. The six masses are
180g,260g,290g,380g,430g, and 500g. Figure 5.11 shows the identified Markov parameters
Θ̂FIR

r,d and its variation with time. The z-axis (Markov Parameter Index) is the legend of
this Figure. Such that, the ith Markov parameter is the parameter Hi defined in Equation
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(5.12). From Figure 5.11 we can see that all the transmissibility parameters started settling at
approximately t = 300 seconds.

5.6.3 Faults Emulation and Fault Detection

The fault was emulated by attaching rubber bands on the third joint. This fault is related to
change in the stiffness of the third joint. The fault was emulated at time t = 1500 (t = 1500)
seconds, while the setup is still running to avoid any initial conditions effect. The norm of
residual defined in (5.30) is then computed for all 0 ≤ k ≤ 3000 with width w = 100 steps as
shown in Figure 5.10.

The norm of residual starts high at k = 0 and drops gradually with time. For the first
300 seconds all masses were picked to satisfy the assumption of reaching both upper and
lower bounds. We can see from Figure 5.10 that switching the picked mass didn’t result in
increasing the level of residual. This is because the transmissibility parameters were already
adapted with all masses during the first 300 seconds of the experiment. The bottom-left plot
of Figure 5.10 shows a comparison between the measured and estimated angular velocities
of the fourth joint θ̇4, which are very close to each other. After applying the fault at time
t = 1500 seconds, the change in the system dynamics led to increasing the level of the norm
of residual. Since the transmissibility parameters are known to adapt with all possible variant
parameters before approximately t = 300 seconds, the increase in the level of residual at
time t = 1500 can be regarded as a system fault. Note that switching the picked mass after
t = 1500 doesn’t result in increasing E. This is because the change in parameters (switching
masses) is still within the boundaries that the transmissibility adapted with during the first 300
seconds. Figure (5.10) compares the proposed technique with the typical RLS identification.
Notice that in the typical RLS as k −→ ∞, the identification becomes more aggressive and
forces the residual always to converge to zero regardless if its a fault or parameter variance.
Therefore, the faults were not detected using the typical RLS.

Another important observation from Figure 5.10 is the relation between the norm of
residual E and the forgetting factor λ . At the time t = 0, the forgetting factor was at maximum
λ = 1, which means the RLS works completely to identify the transmissibilities and drop the
high level of E. Since λ decreases exponentially, it becomes more difficult to adapt with the
dynamics change as t −→ 1000. The identification after time t = 1000 seconds is inactive,
and k∗ wasn’t updated since a fault was detected. The bottom-right plot of Figure 5.10 shows
a comparison between the measured and estimated angular velocities of the fourth joint after
the fault happened λ ≈ 0, respectively. This explains why the RLS didn’t adapt to the system
fault at t = 1500. Note that if the fault happened in the first 800 seconds, it will be difficult
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to detect it and the fault effect will disappear quickly. However, the closer the fault occurs to
k0, the higher likelihood to detect it.

5.7 Discussion of the Superiority of the Claimed Contribu-
tions

The first contribution is related to count for unknown nonlinearities while the system parame-
ters are varying. In the first experiment, the system was mostly linear with some nonlinearities
due to the robots’ communications, while the second robot’s mass and the ground friction
vary. Similarly, the flexible beam in the second experiment was mostly linear with some
nonlinearities due to the deflection. In both experiments, setting the transmissibility input yi

to two sensor measurements gave enough robustness against the unmodeled nonlinearities
while the systems are healthy since the systems are mostly linear. This can be seen from
Figures 5.4 and the bottom left plot of Figure 5.8. However, in the third experiment the level
of nonlinearities was higher than in the first two experiments due to the 3D motion and many
degrees of freedom of the system. Therefore, yi was set to three sensor measurements to give
robustness against the system nonlinearities.

Regarding the second contribution, the transmissibility parameters are updated recursively
overtime in the three experiments as shown in Figures 5.3, 5.7, and 5.11. Accordingly, the
norm of residual at the beginning of the experiments in Figures 5.5, 5.8, and 5.10 converges
to zero under healthy conditions over time regardless of the parameter variations. The third
contribution can also be claimed in the three experiments. Different cyber and physical faults
were emulated in the three experiments while the system parameters vary. All faults were
detected as can be seen in Figures 5.5, 5.8, and 5.10.

87



Chapter 6

High-gain Transmissibility (HGT)

6.1 Problem Formulation

Consider the following nonlinear state space model

ẋ(t) = Ax(t)+B f (t,x,u), (6.1)

y(t) =Cx(t), (6.2)

where A ∈ Rn×n is Hurwitz, B ∈ Rn×m, C ∈ Rp×n, n is the system order, m is the number
inputs, p ≥ m is the number of measured outputs, and f : Rn → Rm is a bounded nonlinear
function.

We consider the following assumptions:
Assumption A1) All zeros of (A.10), (A.11) are minimum phase.
Assumption A2) All uncertainties in (A.10) are included in the nonlinear function f .
Assumption A3) C is known and the pair (A,C) is observable.

Considering Assumptions A1)–A3), the objective of this work is to asymptotically
estimate the state x of the system (A.10), (A.11) only using measurements of y.

Notice that a high-gain observer cannot be directly applied to the realization (A.10),
(A.11) since the it is not in a canonical form, and cannot be transformed to a canonical form
since f is unknown [69]. In addition, it is challenging for high-gain observers to use noisy
output measurements for state estimation as high-gain observers are sensitive to measurement
noise.

The technique proposed in this work assumes a virtual set of signals to establish a set
of pseudo states, in which the system states x are computed from after. The virtual set of
signals will take the shape of a set of outputs. The mathematical relationship between the
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virtual set of signals and y is called transmissibility. The measurements of y are fed into the
transmissibility in a high-gain form to robustly estimate the pseudo states, then the system
states x are computed from the pseudo states. Further developments of this direction this
carry out similar effects as high-gain observers such as peaking phenomenon.

For clarification, the following motivating example demonstrates the proposed methodol-
ogy for the case of m = 1, that is, the nonlinear function f is a scalar. Section 6.4 generalizes
the proposed approach to the case of m > 1.

6.2 Motivating Example

Define the following virtual design signal to be any function of the system states x and the
nonlinear dynamics f

v(t) =Cvx(t)+Dv f (t,x,u) ∈ R, (6.3)

where Cv,Dv are unknown matrices with appropriate dimensions. This signal will only
be used to mathematically design our estimator, but will not appear at the final estimator
equations.

6.2.1 Time-domain Transmissibility

Consider the model (A.10), (A.11) with m = 1. The transmissibility operator from v to y is
given by [4]

y(t) = T (p)v(t), (6.4)

where p = d
dt is the differentiation operator,

T (p) ∆
= Γy(p)Γ−1

v (p), (6.5)

Γv(p)
∆
=Cvadj(pI −A)B+Dvδ (p), (6.6)

Γy(p)
∆
=Cadj(pI −A)B, (6.7)

δ (p) ∆
= det(pI −A). (6.8)

The use of the differentiation operator in [4] came to count for non-zero initial conditions.
Since v is designed with the feed-forward term Dv f (t,x,u), the order of Γv equals to the
system order n. On the other hand, the order of Γy is always less than n. This ensures the
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operator T to always be causal. Notice that since m = 1, Γv and Γy are two polynomials
of p. The transmissibility operator T here is independent on the nonlinear function f in
(A.10)-(A.11).

High-gain observers showed great robustness against uncertain dynamics as shown in
[69]. Thus, we extend the transmissibility operator from the form in (6.4) to the form of
high-gain transmissibility. To align with the high-gain observers literature, this section
formulates the transmissibility operator T in the state-space format, and then relates y to the
system states x.

State Space Representation of Transmissibilities

By substituting (6.5) in (6.4), the operator T can be interpreted as

1
Γy

(p)y(t) =
1

Γv
(p)v(t). (6.9)

Note that Γv and Γy are polynomials of p, thus (6.9) can be written as

1
bn−1pn−1 + · · ·+b0

y(t) =
1

anpn + · · ·+a1p+a0
v(t), (6.10)

where a0, . . . ,an and b0, . . . ,bn are the parameters of Γv and Γy, respectively. Note that the
left hand side of (6.10) is certain by the definition of y in (A.11). The right hand side of
(6.10) represents unknown virtual dynamics (uncertain). This motivates splitting the certain
dynamics of T from the uncertain dynamics. To this end, define

ȳ(t) =
1

bnpn + · · ·+b0
y(t). (6.11)

Assumption 1 guarantees that the relation from y to ȳ is always stable. Substituting (6.11) in
(6.10) yields

ȳ(t) =
1

anpn + · · ·+a1p+a0
v(t), (6.12)

which represents the uncertain dynamics. The polynomial anpn+ · · ·+a0 plays a crucial role
here as it represents the characteristics equation of T and must be robustly obtained. Inspired
by the high-gain observer theory, we represent (6.12) as a chain of integrators. This allows
for the use of high gain in a way that makes the transmissibility operator a differentiator [69].
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Towards this goal, reformulate equation (6.12) as

pnȳ(t) =
−1
an

n−1

∑
j=0

a jp jȳ(t)+
1
an

v(t). (6.13)

Note that v is not available. For all i ∈ {1, . . . ,n}, let zi = pi−1ȳ and substitute the differentia-
tion operator p as the first derivative yields the chain of integrators

żi(t) = zi+1(t), i ∈ {1, . . . ,n−1}, (6.14)

żn(t) = Φ(t,z,v), (6.15)

ȳ(t) = z1(t). (6.16)

where

Φ(t,z,v) =
−1
an

n

∑
j=1

a j−1z j(t)+
1
an

v(t),

which collects the uncertain dynamics in (6.12). Note that Φ is linear, and therefore can be
considered to be always continuous. Note that the output ȳ in (6.16) comes from (6.11) that
is directly measured. The transmissibility states z are called pseudo states. The chain of
integrators in (6.14)-(6.16) follows the common canonical form in the literature of high-gain
observers, such that all uncertain dynamics are collected in the last state zn and the measured
certain output is the first state z1. The following section estimates the pseudo states z while
Φ is uncertain.

Output-State Relationships

Let, for all j ∈ {1, . . . ,n}, x j denote the jth state of the system in (A.10), then define x j as an
independent output of the system

x j(t) =
[

0 . . . 1 . . . 0
]

︸ ︷︷ ︸
Cx j

x(t), (6.17)

where the cell with number 1 is the jth index. Following the transmissibility definition in [4]
and similar to (6.4), the relationship from the output v to the output x j can be given as

x j(t) = Tx j(p)v(t), (6.18)
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where

Tx j(p) = Γx j(p)Γ
−1
v (p), (6.19)

Γx j(p)
∆
=Cx jadj(pI −A)B, (6.20)

and Γv is as defined in (6.6). Note that Γx j is also a polynomial of p.
Similar to the interpretation of T in (6.10), substitute (6.19) in (6.18), and then Tx j from

(6.18) can be interpreted as

x j(t) =
c j,n−1pn−1 + · · ·+ c j,1p+ c j,0

anpn + · · ·+a1p+a0
v(t). (6.21)

Notice that (6.12) and (6.21) have the same characteristic equation since both have the same
pseudo input v. Therefore, both (6.12) and (6.21) should share the same pseudo state vector
z. Substitute (6.12) in (6.21) yields

x j(t) = Γx j(p)ȳ(t) =
[
c j,n−1pn−1 + · · ·+ c j,1p+ c j,0

]
ȳ(t). (6.22)

Recall the definition of the pseudo states z as zi = pi−1ȳ for all i ∈ {1, . . . ,n}, thus interpreting
(6.21) in terms of z yields

x j(t) = c j,0z1(t)+ · · ·+ c j,n−1zn(t). (6.23)

Therefore, the complete transmissibility relationship between v,y, and x can be written as

żi(t) = zi+1(t), i ∈ {1, . . . ,n−1}, (6.24)

żn(t) = Φ(t,z,v), (6.25)

ȳ(t) = z1(t), (6.26)

x j(t) = C̄ jz(t), j ∈ {1, . . . ,n}, (6.27)

where

C̄ j =
[

c j,0 . . . c j,n−1

]
. (6.28)

6.2.2 High-gain Transmissibility

The aim of HGT is to obtain an accurate estimation of the pseudo state vector z based on
real-time measurements of y. Therefore, we add a high-gain term to the state-space model
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(6.24)-(6.27) such as

ˆ̇zi(t) = ẑi+1(t)+
αi

ε i (ȳ− ẑ1), (6.29)

ˆ̇zn(t) =
αn

εn (ȳ− ẑ1), (6.30)

x̂ j(t) = C̄ j ẑ(t), (6.31)

where ε is sufficiently small, and α1, . . . ,αn are chosen such that the polynomial

pn +α1pn−1 + · · ·+αn−1p+αn, (6.32)

is Hurwitz. The variable ¯̂̇zn in (6.31) is computed as the first derivative of the estimation of ẑn

not directly from (6.30). The boundedness of the estimation error of the pseudo states ẑ, and
accordingly, the boundedness of the estimation error of the states x̂ are investigated within
the general statement in Section 6.4.

6.2.3 Illustration Example

Consider the system in (A.10)-(A.11) with n = 2,m = 1, and the parameters

A =

[
1 2
−2 −3

]
, B =

[
2
1

]
, C =

[
2 1.5

]
. (6.33)

Such that, A is Hurwitz, B to let f act on all states, and C does not measure any states directly.
The system has one real zero −1.55. Next, to design the HGT in (6.29)-(6.31) we need to
obtain ȳ from y, and compute the coefficients C̄ j for j ∈ {1,2}. To compute ȳ, Γy can be
obtained from (6.7) as Γy(p) = 5.5p+8.5. Notice that the zeros of Γy are the same as the
original system zeros. Then ȳ can be computed from (6.11) as

ȳ(t) =
1

5.5p+8.5
y(t). (6.34)

Next, the coefficients C̄ j can be computed by computing Γx j from (6.20) for all j ∈ {1,2}.

Define Cx1 =
[

1 0
]
, and Cx2 =

[
0 1

]
. Then from (6.20) Γx1(p) = 2p+8 and Γx2(p) =

p−5. Thus, C̄1 =
[

8 2
]

and C̄2 =
[
−5 1

]
. Setting α1 = α2 = 1 satisfies (6.32). Then
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the designed HGT can be given as

ˆ̇z1(t) = ẑ2(t)+
1
ε
(ȳ− ẑ1), (6.35)

ˆ̇z2(t) =
1
ε2 (ȳ− ẑ1), (6.36)

x̂1(t) =
[

8 2
]

ẑ(t), (6.37)

x̂2(t) =
[
−5 1

]
ẑ(t). (6.38)

6.3 High-gain Observers - Special Case

This section illustrates the relationship between HGT and High-gain Observers (HGO). We
assume a linear system where both HGT and HGO are applicable, then shows how the
same HGO can be obtained using HGT. Assume the following linear chain of integrator that
follows the canonical form, all states being uncertain, and high-gain observers are applied
directly

ẋi = xi+1, (6.39)

ẋn =
n

∑
j=1

a j−1x j +u, (6.40)

y = x1. (6.41)

Design a high-gain observer

ˆ̇xi = x̂i+1 +
αi

ε i [x̂1 − x1] , (6.42)

ˆ̇xn =
αn

εn [x̂1 − x1] . (6.43)
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Next, design a HGT for the same system (6.39)-(6.41). Define the system’s state space
matrices such that

A =


0 1 . . . 0
...

. . .
. . .

...

0 . . . 0 1
a0 a1 . . . an−1

 , (6.44)

B =
[

0 . . . 0 1
]T

, (6.45)

C =
[

1 0 . . . 0
]
. (6.46)

Define the virtual signal v to match the observer input u such as

v =
[

0 . . . 0
]

︸ ︷︷ ︸
Cv

x+
[

1
]

︸ ︷︷ ︸
Dv

u. (6.47)

A question might arise here for the reader since v was mentioned earlier not to be required
in the proposed method. The definition of v in this section is to illustrate the connection
between HGT and HGO, and v will not be used in the final design of HGT. Following (6.6)
and (6.7) obtain

Γv(p) = pn +an−1pn−1 + · · ·+a0, (6.48)

Γy(p) = 1. (6.49)

Using the certain dynamics define the certain output as in (6.11)

ȳ =
1

Γy(p)
y = y. (6.50)

Then the transmissibility operator from v to y can be written as

ȳ = y =
1

Γv(p)
v =

1
pn +an−1pn−1 + · · ·+a0

v, (6.51)
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which can be interpreted to the chain of integrators

żi = zi+1, (6.52)

żn =
n

∑
j=1

a j−1zi + v, (6.53)

ȳ = y = z1. (6.54)

Design the HGT

ˆ̇zi = ẑi+1 +
αi

ε i [ẑ1 − z1] , (6.55)

ˆ̇zn =
αn

εn [ẑ1 − z1] . (6.56)

Recall the states definition as independent outputs

x j =
[

0 . . . 1 . . . 0
]

︸ ︷︷ ︸
Cx j

x. (6.57)

For all j ∈ {1, . . . ,n}, define Γx j from (6.19)

Γx j(p) = p j−1. (6.58)

Substitute (6.58) and (6.54) in (6.22) yields

x j = p j−1z1, (6.59)

which indicates that x j = z j for all j ∈ {1, . . . ,n}. Another way to obtain the relationship
between x and z for the system (6.39)-(6.41) is directly from (6.57) such as

x1 =
[

1 0 . . . 0
]

x = y = z1, (6.60)

x2 =
[

0 1 . . . 0
]

x = pz1 = z2, (6.61)

... (6.62)

xn =
[

0 0 . . . 1
]

x = pn−1z1 = zn. (6.63)
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Substitute z = x and v = u in the designed HGT in (6.55)-(6.56) yields

ˆ̇xi = x̂i+1 +
αi

ε i [x̂1 − x1] , (6.64)

ˆ̇xn =
αn

εn [x̂1 − x1] , (6.65)

which matches the HGO designed in (6.42)-(6.43). Notice that even the uncertain part that is
eliminated due to the high gain matches. The previous conclusion indicates that if HGOs are
applicable, the virtual design signal is set as the observer input, then both HGT and HGO are
identical.

6.4 General Statement

This section generalizes HGT on the system (A.10)-(A.11) with multiple nonlinearities acting
on the system at the same time, that is, f ∈ Rm where m ≥ 2. Recall the transmissibility
relation in (6.4)

y(t) = T (p)v(t), (6.66)

where

v(t) =
[

v1(t) . . . vm(t)
]T

∈ Rm, (6.67)

y(t) =
[

y1(t) . . . ym(t)
]T

∈ Rm, (6.68)

T (p) = Γy(p)Γ−1
v (p), (6.69)

Γv(p)
∆
=Cvadj(pI −A)B+Dvδ (p) ∈ Rm×m[p], (6.70)

Γy(p)
∆
=Cadj(pI −A)B ∈ Rm×m[p], (6.71)

δ (p) ∆
= det(pI −A). (6.72)

Note that Γv and Γy are square matrices with dimension m.

6.4.1 State Space Representation of Transmissibilities

By substituting (6.69) in (6.4), the operator T can be interpreted as

Γ
−1
y (p)y(t) = Γ

−1
v (p)v(t). (6.73)
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Define 
ȳ1(t)
...

ȳm(t)


︸ ︷︷ ︸

ȳ(t)

=


Γy,1,1 . . . Γy,1,m
...

. . .
...

Γy,m,1 . . . Γy,m,m


−1

︸ ︷︷ ︸
Γ
−1
y (p)


y1(t)
...

ym(t)


︸ ︷︷ ︸

y(t)

. (6.74)

Assumption 1 guarantees that the relation from y to ȳ is always stable. Substitute (6.74) in
(6.73) to get 

ȳ1(t)
...

ȳm(t)


︸ ︷︷ ︸

ȳ(t)

=


Γv,11 . . . Γv,1,m
...

. . .
...

Γv,m,1 . . . Γv,m,m


−1

︸ ︷︷ ︸
Γ
−1
v (p)


v1(t)
...

vm(t)


︸ ︷︷ ︸

v(t)

(6.75)

which represents the uncertain dynamics.

6.4.2 Output-State Relationships

Recall the definition of the states in (6.17) as independent outputs of the system (A.10) for
all j ∈ {1, . . . ,n}, similar to (6.66), the relationship from the virtual output v to the output x j

can be given as

x j(t) = Tx j(p)v(t), (6.76)

where

Tx j(p) = Γx j(p)Γ
−1
v (p), (6.77)

Γx j(p)
∆
=Cx jadj(pI −A)B ∈ R1×m[p]

=
[

Γx j,1(p) . . . Γx j,m(p)
]
, (6.78)

Γv is as defined in (6.70), and Cx j is as defined in (6.17) where the cell with number 1 is the
jth index. Thus for all j ∈ {1, . . . ,n}, the relationship from v to x j

x j(t) = Γx j(p)Γ
−1
v (p)v(t). (6.79)
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Substitute (6.75) in (6.79) yields for all j ∈ {1, . . . ,n}

x j(t) =
[

Γx j,1(p) . . . Γx j,m(p)
]

ȳ1(t)
...

ȳm(t)

 , (6.80)

which can be interpreted as

x j(t) =
m

∑
ℓ=1

[
c j,ℓ,n−1pn−1 + · · ·+ c j,ℓ,1p+ c j,ℓ,0

]
ȳ(t). (6.81)

Recall the definition of the pseudo states z as zℓ,i = pi−1ȳℓ for all i ∈ {1, . . . ,n} and ℓ ∈
{1, . . . ,m}, thus interpreting (6.81) in terms of z yields

x j(t) =
m

∑
ℓ=1

[
c j,ℓ,0zℓ,1(t)+ · · ·+ c j,ℓ,n−2zℓ,n−1(t)

]
. (6.82)

Therefore, the complete transmissibility relationship between v,y, and x can be written as the
following series of chains of integrators for all ℓ ∈ {1, . . . ,m}

żℓ,i(t) = zℓ,i+1(t), i ∈ {1, . . . ,n−1}, (6.83)

żℓ,n(t) = Φ(t,zℓ,vℓ), (6.84)

ȳℓ(t) = zℓ,1(t), (6.85)

x j(t) =
m

∑
ℓ=1

C̄ j,ℓzℓ(t), j ∈ {1, . . . ,n}, (6.86)

where Φ is as defined under (6.16),

zℓ =
[

zℓ,1 . . . zℓ,n
]
, (6.87)

C̄ j,ℓ =
[

c j,ℓ,0 . . . c j,ℓ,n−1

]
. (6.88)
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6.4.3 High-gain Transmissibility

Adding high-gain terms to the state-space model (6.83)-(6.84) such as

ˆ̇zℓ,i(t) = ẑℓ,i+1(t)+
αℓ,i

ε i [ȳℓ− ẑℓ,1], i ∈ {1, . . . ,n−1}, (6.89)

ˆ̇zℓ,n(t) =
αℓ,n

εn [ȳℓ− ẑℓ,1], (6.90)

x̂ j(t) =
m

∑
ℓ=1

C̄ j,ℓẑℓ(t), j ∈ {1, . . . ,n}, (6.91)

where ε is sufficiently small, and for all ℓ ∈ {1, . . . ,m} αℓ,1, . . . ,αℓ,n are chosen such that the
polynomial

pn +αℓ,1pn−1 + · · ·+αℓ,n−1p+αn, (6.92)

is Hurwitz. The next theorem investigates the boundedness of the estimation error of the
states x̂.

Theorem 2. There exists ε∗ such that for 0 < ε ≤ ε∗ the estimation error z̃ℓi = zℓi − ẑℓi , for
all 1 ≤ i ≤ n and ℓ ∈ {1, . . . ,m}, satisfies the bound

|z̃ℓ,i| ≤ max
{

b
ε i−1 ||z̃(0)||e

−at/ε ,εn−i+1cMmax

}
, (6.93)

for some positive a,b,c and Mmax = max{M1, . . . ,Mm}.
Theorem 2 Proof: Define the scaled estimation errors for all i ∈ {1, . . . ,n} and ℓ ∈

{1, . . . ,m}

ηℓ,i =
zℓ,i − ẑℓ,i

εn−i . (6.94)

Subtract (6.29)-(6.30) from (6.24)-(6.25) yields

ε
n−i

η̇ℓ,i = ε
n−i−1

ηℓ,i+1 −
αℓ,i

ε i ε
n−1

ηℓ,1, (6.95)

η̇ℓ,n = Φ(t,zℓ,vℓ)−
αℓ,n

εn ε
n−1

ηℓ,1. (6.96)

The error dynamics for the ℓth chain of integrators can then be written as

εη̇ℓ = Eℓηℓ+ εFℓΦ(t,zℓ,vℓ), (6.97)
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where

ηℓ =
[

ηℓ,1 . . . ηℓ,n

]T
,

Eℓ =



−αℓ,1 1 0 . . . 0
−αℓ,2 0 1 . . . 0

...
. . .

. . .

−αℓ,n−1 0 1
−αℓ,n 0 . . . 0


,

Fℓ =
[

0 . . . 0 1
]T

.

Note that Eℓ is Hurwitz by design based on the condition in (6.92). Assume Φ to be locally
Lipschitz in its arguments and

|Φ(t,zℓ,vℓ)| ≤ Lℓ||zℓ− ẑℓ||+Mℓ ≤ Lℓ

m

∑
ℓ=1

||ηℓ||+Mℓ, (6.98)

where for all ℓ ∈ {1, . . . ,m} Lℓ and Mℓ are positive constants. Define the Lyapunov function

V =
m

∑
ℓ=1

η
T
ℓ Pℓηℓ, (6.99)

where Pℓ is the solution of the Layaponov equation

PℓEℓ+ET
ℓ Pℓ =−I. (6.100)

Take the derivative of V

εV̇ =
m

∑
ℓ=1

[
−η

T
ℓ ηℓ+2εη

T
ℓ PℓFℓΦ(t,zℓ,vℓ)

]
. (6.101)

Then from (6.98) we obtain

εV̇ ≤
m

∑
ℓ=1

[
−||ηℓ||2 +2ε||ηℓ|| ||PℓFℓ||

(
Lℓ

m

∑
ℓ=k

||ηk||+Mℓ

)]
. (6.102)
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Define

ψ =
[
||η1|| . . . ||ηm||

]T
,

θ =
[
||P1F1|| . . . ||PmFm||

]T
,

and the symmetric matrix N, where for all k ∈ {1, . . . ,m}, l ∈ {1, . . . ,m} the (k, l) entry of N
is defined as

N(k,l) = ||PkFk||Lk + ||PlFl||Ll.

Then (6.101) can be written as

εV̇ =−ψ
T
ψ + εψ

TNψ +2εMmaxθ
T
ψ. (6.103)

For ε||N|| ≤ 1
2

εV̇ ≤−1
2
||ψ||2 +2εMmax||θ || ||ψ||. (6.104)

Let η = col(η1, . . . ,ηm)} and notice that ||ψ||= ||η ||, then

εV̇ ≤−1
2
||η ||2 +2εMmax||θ || ||η ||. (6.105)

Therefore, ||η || is ultimately bounded by εcMmax for c > 0, and

||η(t)|| ≤ max
{

be−at/ε ||η(0)||,εcMmax

}
, (6.106)

for some positive constants a,b. From (6.94) we can see that z̃ℓ,i = εn−iηℓ,i and ||η(0)|| ≤
||z(0)− ẑ(0)||/εn−1. Thus, (6.106) becomes

|z̃ℓ,i| ≤ max
{

b
ε i−1 ||z̃(0)||e

−at/ε ,εn−i+1cMmax

}
. □ (6.107)

6.5 Numerical Example

This example simulates a two vehicles portion of a connected autonomous vehicles platoon
shown in Figure 6.1 that is subjected to hysteresis nonlinearities as well as nonlinear ground
friction. The two vehicle share kinematics information through a wireless communication
link, which are used to control their velocities and spacing distance. The aim is to estimate
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the vehicles’ velocities (v1,v2) and spacing distances h1,h2 from outside the platoon. The
outputs considered from outside are the average velocity of both vehicles and the second
vehicle position p2.

6.5.1 System Model

Let the index κ ∈ {1,2} refer to the vehicle order, then vehicle κ can be modeled as

ḣκ(t) = vκ−1(t,v∗)− vκ(t), (6.108)

v̇κ(t) = ζκhκ(t)+βκvκ(t)+ τκvκ−1(t)+ γκ f2(t,v), (6.109)

where hκ = pκ − pκ−1, pκ is κth vehicle position, v∗κ is the κth vehicle desired velocity,
p0 = 0 is a reference point, and ζκ ,βκ ,τκ ,γκ are constants. v0 is set as the desired velocity
of the platoon such that v0 = f1(t,v∗) that changes randomly. f2(·, ·) is the friction force that
is given as (Dahl friction)

f2(t,v) =
∫

σ |1− f2(t,v)v(t)|

sgn(1− f2(t,v)v(t))v(t).dt,
(6.110)

where σ = 750, and v is the average velocity of both vehicles. Note that f2 is only defined
here to generate it numerically, and is not used after to estimate the states. The overall system

model then can be arranged by setting the state vector as x(t)=
[

h1(t) v1(t) h2(t) v2(t)
]T

and the output vector to y(t) =
[

v(t) p2(t)
]T

as in (A.10)-(A.11) where

A =


0 −1 0 0
ζ1 β1 0 0
0 1 0 −1
0 τ2 ζ2 β2

 , (6.111)

B =

[
1 τ1 0 0
0 γ1 0 γ2

]T

, (6.112)

C =

[
0 0.5 0 0.5
1 0 1 0

]
, (6.113)

f (t,x,v∗) =

[
f1(t,v∗)
f2(t,v)

]
. (6.114)
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Fig. 6.1 Numerical Example: A two autonomous vehicles portion of a platoon. The average
velocity and second vehicle’s position are used to estimate the vehicles’ velocities (v1,v2)
and spacing distances (h1,h2).

The constants are set to ζ1 = ζ2 = 0.33,β1 = β2 =−0.45,τ1 = τ2 = 0.25,γ1 = 0.0008, and

γ2 = 0.0006. For clarity, the notation of the states will be set as x(t)=
[

h1(t) v1(t) h2(t) v2(t)
]T

=[
x1(t) . . . x4(t)

]T
, and the outputs y(t) =

[
v(t) p2(t)

]T
=
[

y1(t) y2(t)
]T

.
The system (6.111)-(6.114) satisfy the assumptions on the system (A.10)-(A.11) such

that: the state matrix A is Hurwitz, the nonlinear functions in f are bounded and locally
Lipschitz, the number of measured outputs y is equal or greater than the number of signals in
f . Moreover, the system zeros are −0.35±0.738, which satisfies Assumption 1.

6.5.2 State Estimation using HGT

The system has two nonlinear functions acting on it m = 2, thus the general statement in
Section 6.4 will be used. To design the HGT in (6.89)-(6.91), we need to compute ȳℓ from
yℓ for all ℓ ∈ {1,2}. Moreover, we need to compute the coefficients C̄ j,ℓ for all for all
j ∈ {1, . . . ,4} and ℓ ∈ {1,2}.

To compute ȳℓ, we need to compute Γy from (6.71) and then implement (6.74). Using
(6.111)-(6.113), Γy can be computed as

Γy,1,1(p) = 0.125p3 +0.25p2 +0.2p+0.11, (6.115)

Γy,1,2(p) = 0.00073p3 +0.00043p2 +0.00038p, (6.116)

Γy,2,1(p) = p3 +0.9p2 +0.81p+0.13, (6.117)

Γy,2,2(p) =−0.00063p2 −0.00049p−0.00049. (6.118)

Next, the coefficients of C̄ j,ℓ are the same as the coefficients of Γx j computed from (6.78) but
with a flipped order. Cx j is as defined in (6.17) where the cell with number 1 is the jth index.
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Using A,B in (6.111)-(6.112) along with Cx j for all j ∈ {1, . . . ,4} we can obtain from (6.78)

Γx1,1(p) = p3 +0.65p2 +0.42p+0.067, (6.119)

Γx1,2(p) =−0.00083p2 −0.000375p−0.00028, (6.120)

Γx2,1(p) = 0.25p3 +0.45p2 +0.23p+0.11, (6.121)

Γx2,2(p) = 0.00083p3 +0.000375p2 +0.00028p, (6.122)

Γx3,1(p) = 0.25p2 +0.38p+0.067, (6.123)

Γx3,2(p) = 0.00021p2 −0.00011p−0.00021, (6.124)

Γx4,1(p) = 0.0625p2 +0.17p+0.11, (6.125)

Γx4,2(p) = 0.000625p3 +0.00049p2 +0.00049p. (6.126)

Then C̄ j,ℓ is a vector of the coefficients of the polynomial Γx j,ℓ but from right to left. For

example, from (6.123) we can obtain C̄3,1 =
[

0.067 0.38 0.25 0
]
. Note that the order

of C̄ j,ℓ must equal the order of the original system n, thus a third order differential operator p
is added with coefficient zero. The order of all polynomials in Γy and Γx j have less order
than the order of the system n = 4 due to the definition of the virtual signal v.

Next, we design the HGT in (6.89)-(6.91). Since m = 2, two chains of integrators are
needed, that is, ℓ∈ {1,2}. The high-gain terms’ coefficients are set according to the condition
under (6.92) as α1,1 = α2,1 = 4, α1,2 = α2,2 = 3, α1,3 = α2,3 = 2, and α1,4 = α2,4 = 1. The
sufficiently small coefficient is set to ε = 0.001 for the entire experiment.

We run the system by setting the desired velocity of the platoon f1(·, ·) to the nonlinear
function shown in upper part of Figure 6.2. The initial conditions of all states are set to 5.
The lower part of Figure 6.2 shows the friction force f2(·, ·) generated due to the vehicles
movements. Figure 6.3 shows the actual and estimated states of the system, while the
estimation errors on x are plotted in Figure 6.4. Notice from Figure 6.4 that the estimation
error on all states decay to zero. Moreover, non of the nonlinear functions in f is used to
estimated the states in Figure 6.3.
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Fig. 6.2 Numerical Example: The nonlinear functions used to simulate the system. f1 is the
desired velocity of the platoon that is set to a random smooth signal, and f2 is the unknown
friction generated on each of the vehicles. f1 acts on x1,x2, and f2 acts on x2,x4 at the same
time.
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Fig. 6.3 Numerical Example: The actual states and their HGT-based estimations of the
platoon shown in Figure 6.1. Note that the nonlinear functions in Figure 6.2 are not used to
estimated any of the states.
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Fig. 6.4 Numerical Example: The estimation error on each of the states x1, . . . ,x4 estimated
in Figure 6.3.
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Chapter 7

Transmissibility-based Kalman Filter for
Systems Under Non-Gaussian Process
Noise

7.1 Problem Formulation

Consider the following smooth nonlinear system

x(k+1) =Ax(k)+B f f (k,x,u)+Bww(k), (7.1)

yi(k) =Cix(k)+δi(k), (7.2)

yo(k) =Cox(k)+δo(k), (7.3)

where A ∈ Rn×n is Hurwitz, B f ∈ Rn×m1,Bw ∈ Rn×m2 , Ci ∈ R(m1+m2)×n,Co ∈ Rp×n, f (·, ·, ·)
is a vector of unknown bounded nonlinear functions where u is a set of unknown system
inputs, and w is a vector of non-Gaussian process noise (external disturbances).

yi and yo are two independent sets of outputs that are subjected to Gaussian measurements
noise δi ∈Rm1+m2 and δo ∈Rp, respectively. The aim of this work is to design a Kalman filter
that minimizes the noise at the output of interest yo. In this work, we consider the following
conditions where the typical Kalman filter cannot be applied on the system (7.1)-(7.3)

• Unknown inputs u. The estimation of Kalman filter requires full knowledge of the
system inputs.

• Unknown nonlinear dynamics in the system f (·, ·, ·). The nonlinear function f must
be known and can be linearized to apply the extended Kalman filter.
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• Non Gaussian external disturbances w. The computations of the estimation error
covarinace matrix necessitate w to have Gaussian distribution.

Multi-agent systems are great examples on systems subjected to the above three condi-
tions. The first condition might occur where each agent needs to adapt with it’s surrounding,
and thus internal controllers will feedback control signals within u. These control signals
are known by the agent itself and might be shared with it’s neighbours; however, it is most
likely to be unknown for the rest of the agents. An example on the second condition above
is where an agent is fully or partially controlled by a human driver. The human behaviour
is unpredictable due to many reasons such as sudden change in decisions and different
experience. Another example on the second condition above is the dynamics due to the
parameter uncertainties in the modeled dynamics Ax. We push all such unknown dynamics
to the unknown nonlinear function f . An example on the third condition above is where
the system is driving on slippery grounds. This external disturbance will bias the friction
coefficient with the road, and thus w will have a biased distribution. Define the noise-free
outputs

yi,0(k) =Cix(k), (7.4)

yo,0(k) =Cox(k). (7.5)

In this work, we obtain a less noisy estimation of the output yo,0 based on the output
yi only, and independent on the input signals u, unmodeled dynamics f , and the external
disturbances w. It is evident from [63, 8] that if yi,0 is available, then yo,0 can be directly
estimated. However, the measurements of yi,0 is corrupted with the noise δi, and thus the
estimation based on yi will have a level noise. This approach proposes fusing the estimation
based on yi along with the measurements of yo in the Kalman filter theme to obtain a less
noisy estimation of the output yo.

Assumption 1: All the measurements noise in δi and δo are assumed to have Gaussian
distribution.

Assumption 2. All zeros in the output channel yi are assumed to be inside the unity
circle, and less than the number of zeros in any output channel in yo.

Assumption 1 is is needed to compute the covariance matrices as will be explained
after. Assumption 2 ensures that the relationship from yi to yo is always causal and stable.
Assumption 2 is needed to emphasise the focus of this work. We leave the case of zeros
outside the unity circle (unstable zeros) to a future work.

For clarification, the following section demonstrates the proposed approach on a simple
system, and then the rest of the work generalizes the proposed approach on the class of
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systems in (7.1)-(7.3). The example in the following section considers a linear stationary
(no input) system m1 = 0 with zero initial conditions and certain parameters, subjected to a
scalar non-Gaussian process noise m2 = 1, and the output of interest yo being scalar p = 1.

7.2 Motivating Example

7.2.1 Transmissibility Operators

Given the simplified case with m1 = 0,m2 = 1, and p = 1, the system in (7.1)-(7.3) becomes
a linear plant with single input w and two outputs yi and yo. Then the relationship between
the process noise w and the noise-free outputs yi,0,yo,0 in the discrete frequency domain (z-
domain) under zero initial conditions can be given as

Yi,0(z)
W (z)

=
Ciadj(zI −A)Bw

det(zI −A)
, (7.6)

Yo,0(z)
W (z)

=
Coadj(zI −A)Bw

det(zI −A)
, (7.7)

where Yi,0,Yo,0,W are yi,0,yo,0,w in the frequency domain, respectively. Notice that since
both outputs Yi,0,Yo,0 share the same input disturbances W , then both transfer functions
(7.6)-(7.7) have the same denominator, which is the system’s characteristics equation. Next,
obtain the relationship from the output Yi,0 to the output Yo,0 by dividing (7.7) on (7.6)

T̄ (z) =
Yo,0(z)
Yi,0(z)

=
Coadj(zI −A)Bw

Ciadj(zI −A)Bw

=
aρ−1zρ−1 + · · ·+a1z+a0

zρ + · · ·+b1z+b0
. (7.8)

The operator T̄ (z) is called frequency-domain transmissibility. The main advantage of T̄

is the independency of non-Gaussian noise w. Please refer to [8] for more details about
this independency. Notice that T̄ in the frequency-domain shapes like a transfer function,
however, from one output to another. ρ is the number of zeros related to the output yi, which
is also the order of T̄ . Assumption 2 guarantees that T̄ is causal and stable. Since the
number of zeros associated with the output yi are more than the number of zeros associated
with the output yo, then the denominator order of T̄ is higher than the numerator order,
and thus T̄ is causal. Moreover, the stable zeros of the output yi become stable poles of
T̄ , thus T̄ is also stable. By applying the forward shifting theorem on (7.8) such that
Yi,0(k)z− j = yi,0(k− j) and similarly for yo,0, T̄ can be interpreted in the discrete time state
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Fig. 7.1 Example 7.2.1: Two mass-spring systems connected in series. This example derives
the transmissibility between the position of the first mass yi to the second mass yo.

space as

x̄(k+1) = Āx̄(k)+ B̄yi,0(k), (7.9)

yo,0(k) = C̄x̄(k), (7.10)

where x̄ is the transmissibility state vector, which is also called the pseudo states. Moreover,

Ā =


−bρ−1 . . . −b1 −b0

1 . . . 0 0
...

. . .
...

...

0 . . . 1 0

 ∈ Rρ×ρ ,

B̄ =
[

1 0 . . . 0
]T

∈ Rρ ,

C̄ =
[

aρ−1 . . . a0

]
∈ R1×ρ .

An estimation of yo,0 can be directly obtained from (7.9)-(7.10) if yi,0 is known. However,
only the noisy output yi is available. Replacing yi,0 with yi in the pseudo state equation (7.13)
yields

x̄(k+1) = Āx̄(k)+ B̄
[
yi,0(k)+δi(k)

]︸ ︷︷ ︸
yi

. (7.11)

Notice that the Gaussian measurement noise δi became process noise, and thus using (7.11)
we can obtain an estimation of yo,0 with Gaussian uncertainty distribution. Therefore, the
estimation based on (7.11) along with the noisy measurements yo can be used in the Kalman
filter theme [62] to obtain a less noisy estimation of yo,0.

Example 7.2.1 In this example, we consider deriving the transmissibility operator
between the displacements yi,0 and yo,0 of the system shown in Figure 7.1 that consists
of two mass-spring systems connected in series with w being unknowns. Considering
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k1 = k2 = M1 = M2 = 1 (springs and masses parameters), the system state space model
follows (7.1)-(7.3) with the parameters

A =


0 0 1 0
0 0 0 1
−2 1 0 0
1 −1 0 0

 ,Bw =


0
0
1
0

 ,
Ci =

[
1 0 0 0

]
,Co =

[
0 1 0 0

]
.

Then define

T̄ (z) =
Yo,0(z)
Yo,i(z)

=
Coadj(zI −A)Bw

Ciadj(zI −A)Bw
=

1
z2 +1

. (7.12)

Note that the transmissibility operator (7.12) is independent of w. Moreover, only (7.12) and
a measurement of yi,0 are required to obtain an estimation of yo,0. Transforming T in (7.12)
to the state space form yields

x̄(k+1) =

[
0 −1
1 0

]
x̄(k)+

[
1
0

]
yi,0(k), (7.13)

yo,0(k) =
[

0 1
]

x̄(k). □ (7.14)

A well known advantage of Kalman filter is that the estimation at time step k depends
only on the estimation at time step k−1 and not earlier time steps. This property is known as
recursive estimation. The recursive estimation works by alternating two phases, estimation
and update.

7.2.2 Kalman Estimation

We first use the measurements of yi to estimate x̄ from

ˆ̄x(k+1|k) = Ā ˆ̄x(k|k)+ B̄yi(k), (7.15)

where ˆ̄x(k+1|k) is the priori state estimation. Let Q be the covariance of the measurement
noise δi, then the estimation covariance is computed from

P(k+1|k) = ĀP(k|k)ĀT +Q, (7.16)
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Fig. 7.2 Block diagram of the proposed approach that summarizes the transition of the platoon
states and covariance from time step k to k+1.

where P is the estimate covariance matrix. The initial value of P can be set to the identity
matrix.

7.2.3 Kalman Update

The update phase is represented in incorporating the Kalman estimation in (7.15)-(7.16) with
the measurements of yo. Define the measurements innovation (measurements priori residual)

ỹo(k+1|k) = yo(k+1)−C̄ ˆ̄x(k+1|k), (7.17)

Next, define the covariance innovation (covariance priori residual)

P̃(k+1|k) = C̄P(k+1|k)C̄T +R, (7.18)

where R is the covariance of δo. The optimal Kalman gain is then updated as

K(k+1) = P(k+1|k)C̄TP̃−1(k+1|k). (7.19)

The convergence analysis on the optimal Kalman gain is investigated in Section 7.4. We then
update the priori estimation of x̄ as

ˆ̄x(k+1|k+1) = ˆ̄x(k+1|k)+K(k+1)ỹo(k+1|k), (7.20)
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where ˆ̄x(k + 1|k + 1) is the posteriori state estimation. Next, update the priori estimate
covariance as

P(k+1|k+1) = (I −K(k+1)C̄)P(k+1|k), (7.21)

where P(k+1|k+1) is the posteriori estimate covariance that will be derived and further
investigated in Section 7.4. The filtered output yo is then given by

ŷo(k) = C̄ ˆ̄x(k+1|k+1). (7.22)

The final residual on yo after the update is then given by

ỹo(k+1|k+1) = yo(k+1)− ŷo(k+1), (7.23)

where ỹo(k|k) is the posteriori residual that we aim to minimize. The transmissibility-based
Kalman filter is from time step k to time step k+1 is shown in Figure 7.2.

Although, intense research studies have been introduced in the literature to estimate the
noise covariances Q and R as in [41, 124], the estimation of Q and R remains a challenge.
To focus on the proposed approach, we consider constant noise covariances Q and R in this
work. The adaptive noise covariances will be assumed for future work. Following [48], we
define Q and R based on the noise standard deviation as

Q = TsT T
s σ

2
i ∈ Rρ×ρ , (7.24)

Ts =
[

1
ρ!t

ρ
s . . . 1

2t2
s ts

]T
, (7.25)

where ts is the sampling time and σi is the standard deviation of δi. The measurements
covariance is set to R = σ2

o , where σo is the standard deviation of δo.
The aforementioned motivating example considered a linear case with only with the

non-Gaussian process noise w and the output of interest yo being scalars.

7.3 General Statement

This section extends the technique introduced in 7.2 to the class of systems (7.1)-(7.3). In
the general sense, the system will be subjected to multiple independent nonlinearities and
multiple process noises. That is, f and w in (7.1) are vectors (m1 ≥ 2,m2 ≥ 2). Moreover,
the user might require to filter multiple outputs at the same time. That is, yo is also a vector
(p ≥ 2). Same procedure can be followed; however, the transmissibility operator T will
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be a MIMO mathematical model. Furthermore, the initial conditions in 7.2 were zero. To
extend to systems with nonzero initial conditions, transmissibilities will be constructed in
the feedforward shifting operator domain q instead of the discrete complex domain z. The
advantage of using q instead of the complex variable z is that q is time-domain. In case of
zero initial conditions, q can be replaced with the complex variable z directly q = z.

Let m̄ = m1+m2 be the total number of signals in f and w that are unknown and we wish
to construct transmissibilities independent on them. Then for yi,0 ∈Rm̄,yo,0 ∈Rp, m̄ ≥ 2, p ≥
2, the transmissibility operator from the pseudo input yi,0 to the estimation of the output yo,0

in the discrete forward shifting operator domain q satisfies [8]

yo,0(k) = T (q)yi,0(k), (7.26)

where

T (q) ∆
= Γo(q)Γ−1

i (q),

Γi(q)
∆
=Ciadj(qI −A)B,

Γo(q)
∆
=Coadj(qI −A)B,

B =
[

B f Bw

]
.

Note that, the transmissibility operator T is linear and independent on the input signals u,
unmodeled dynamics f , and the non-Gaussian disturbances w [8]. Assumption 2 guarantees
that T is always causal and stable. Define the elements of yi,0,yo,0, and T such as

T (q) =


T1,1(q) . . . T1,m̄(q)

...
. . .

...

Tp,1(q) . . . Tp,m̄(q)

 ,
yi,0(k) =

[
y(1)i,0 (k) . . . y(m̄)

i,0 (k)
]T

,

yo,0(k) =
[

y(1)o,0(k) . . . y(p)
o,0(k)

]T
,
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where for all ℓ ∈ {1, . . . , p} and j ∈ {1, . . . , m̄}, Tℓ, j is the (ℓ, j) entry of T , y( j)
i,0 and y(ℓ)o,0 are

the jth entry of yi,0 and the ℓth entry of yo,0, respectively. Thus (7.26) can be interpreted as

y(1)o,0(k) = T1,1(q)y
(1)
i,0 (k)+ · · ·+T1,m̄(q)y

(m̄)
i,0 (k), (7.27)

...

y(p)
o,0(k) = Tp,1(q)y

(1)
i,0 (k)+ · · ·+Tp,m̄(q)y

(m̄)
i,0 (k). (7.28)

Note that each entry of T has the form of a transfer function in the q domain. Define Tℓ, j

for all ℓ ∈ {1, . . . , p} and j ∈ {1, . . . , m̄} as

Tℓ, j(q) =
a(ℓ, j)

ρ−1qρ−1 + · · ·+a(ℓ, j)1 q+a(ℓ, j)0

qρ + · · ·+b(ℓ, j)1 q+b(ℓ, j)0

. (7.29)

Note that ρ is the highest order among all operators in T . Similar to (7.8), substitute the
forward shifting operator (i.e. y(k)q = y(k+1)), then Tℓ, j can be interpreted as

x̄ℓ, j(k+1) = Āℓ, jx̄ℓ, j(k)+ B̄ℓ, jy
( j)
i,0 (k), (7.30)

y(ℓ)o,0(k) =
m̄

∑
j=1

C̄ℓ, jx̄ℓ, j(k), (7.31)

where x̄ℓ, j is the pseudo state vector corresponding to the transmissibility operator Tℓ, j.
Moreover,

Āℓ, j =


−b(ℓ, j)

ρ−1 . . . −b(ℓ, j)1 −b(ℓ, j)0

1 . . . 0 0
...

. . .
...

...

0 . . . 1 0

 ∈ Rρ×ρ ,

B̄ℓ, j =
[

1 0 . . . 0
]T

∈ Rρ ,

C̄ℓ, j =
[

a(ℓ, j)
ρ−1 . . . a(ℓ, j)0

]
∈ R1×ρ .

By combining the transmissibility operators in (7.30)-(7.31) for all ℓ ∈ {1, . . . , p} and j ∈
{1, . . . , m̄}, the overall transmissibility model T can be interpreted in the state space from in
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(7.9)-(7.10) with order ρ̄ = pm̄ρ , yi,0 ∈ Rm̄ and yo,0 ∈ Rp where

x̄(k) =
[

x̄1(k) . . . x̄p(k)
]T

∈ Rρ̄ , (7.32)

Ā = diag(Ā1, . . . , Āp) ∈ Rρ̄×ρ̄ , (7.33)

B̄ =
[

B̄1 . . . B̄p

]T
∈ Rρ̄×m̄, (7.34)

C̄ = diag(C̄1, . . . ,C̄p) ∈ Rp×ρ̄ , (7.35)

where for all ℓ ∈ {1, . . . , p}

x̄ℓ(k) =
[

x̄ℓ,1(k) . . . x̄ℓ,m̄(k)
]T

∈ Rm̄ρ ,

Āℓ = diag(Āℓ,1, . . . , Āℓ,m̄) ∈ Rm̄ρ×m̄ρ ,

B̄ℓ = diag(B̄(ℓ,1), . . . , B̄(ℓ,m̄)) ∈ Rm̄ρ×m̄,

C̄ℓ =
[

C̄(ℓ,1) . . . C̄(ℓ,m̄)

]
∈ R1×m̄ρ .

After interpreting T into (7.9)-(7.10) the transmissibility-based Kalman filter introduced in
equations (7.11)-(7.23) can be directly applied for the case where f ,w, and yo are vectors.
The parameter matrices in (7.9)-(7.10) has to follow the definitions in (7.32)-(7.35) for the
general case. Notice that replacing yi,0 with the measured output subset yi renders δi process
noise for the general case as well.

Regarding the estimation of the noise covariance matrices, define the measurements noise
in (7.2)-(7.3) as

δi(k) =
[

δi,1(k) . . . δi,m̄(k)
]T

,

δo(k) =
[

δo,1(k) . . . δo,p(k)
]T

.

For all j ∈ {1, . . . , m̄} let σi, j be the standard deviation of the noise signal δi, j, and similarly
for all ℓ ∈ {1, . . . , p} let σo,ℓ be the standard deviation of the noise signal δo,ℓ. Then the
process noise covariance can be defined as

Q = diag(Q1, . . . ,Qp) ∈ Rρ̄×ρ̄ , (7.36)

R = diag(σ2
o,1, . . . ,σ

2
o,p) ∈ Rp×p, (7.37)
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where for all ℓ ∈ {1, . . . , p}

Qℓ = diag(Qℓ,1, . . . ,Qℓ,m̄) ∈ Rm̄ρ×m̄ρ ,

Qℓ, j = TsT T
s σ

2
i, j,

and Ts is as defined in (7.25). Notice that Q depends on the standard deviation of the noise δi

only, and thus Qℓ is identical for all ℓ ∈ {1, . . . , p} (same Qℓ for each output in yo).

7.4 Convergence Analysis and Optimal Kalman Gain

Define the estimation error of x̄ as

x̃(k) = x̄(k)− ˆ̄x(k|k). (7.38)

The following Theorem investigates minimizing the mean-square error of the estimated states
ˆ̄x.

Theorem 3. For the system (7.1)-(7.3) under Assumptions 1-2 and given the estimator
designed in (7.15)-(7.23), the optimal Kalman gain in (7.19) minimizes the estimation mean-
square error ||x̃||2.

Theorem 3 Proof. Define the updated estimate covariance

P(k+1|k+1) = cov
[
x̄(k+1)− ˆ̄x(k+1|k+1)

]
. (7.39)

Kalman filter is a recursive algorithm such that the estimation at time step k+ 1 depends
only on the time step k. Thus, we need to obtain P(k+1|k+1) as a function of P(k+1|k)
and show that the estimation error is minimizing from k to k+1. Substitute (7.20) and then
(7.17)

P(k+1|k+1) = cov
[
x̄(k+1)−

[
ˆ̄x(k+1|k)

+K(k+1)(yo(k+1)−C̄ ˆ̄x(k+1|k))
]]
.

(7.40)

Note from (7.3) and (7.10)

yo(k) = yo,0(k)+δo(k)

= C̄x̄(k)+δo(k). (7.41)
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Substitute (7.41) in (7.40) at time step k+1 and collect terms yields

P(k+1|k+1) = cov
[
[I −K(k+1)C̄][x̄(k+1)

− ˆ̄x(k+1|k)]−K(k+1)δo(k+1)
]
.

(7.42)

Since δo is independent noise

P(k+1|k+1) = cov
[
[I −K(k+1)C̄][x̄(k+1)

− ˆ̄x(k+1|k)]
]
− cov

[
K(k+1)δo(k+1)

]
.

(7.43)

Applying the vector covariance property [88] on the certain terms yields

P(k+1|k+1) =
(
I −K(k+1)C̄

)
cov
[
x̄(k+1)

− ˆ̄x(k+1|k)
](

I −K(k+1)C̄
)T

−K(k+1)cov
[
δo(k+1)

]
KT(k+1).

(7.44)

Note that

P(k+1|k) = cov
[
x̄(k+1)− ˆ̄x(k+1|k)

]
,

R = cov
[
δo(k+1)

]
.

Then (7.44) becomes

P(k+1|k+1) =
(
I −K(k+1)C̄

)
P(k+1|k)(

I −K(k+1)C̄
)T −K(k+1)RKT(k+1),

(7.45)

which can be interpreted as

P(k+1|k+1) = P(k+1|k)−K(k+1)C̄P(k+1|k)
−P(k+1|k)C̄TKT(k+1)

+K(k+1)P̃(k+1|k)KT(k+1).

(7.46)

The aim here is to minimize x̃, which is equivalent to minimizing the trace of P. Therefore

∂ tr(Pk+1|k+1)

∂K(k+1)
=−2

[
C̄P(k+1|k)

]T
+2K(k+1)P̃(k+1|k).

(7.47)
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Setting (7.47) to zero yields

K(k+1) = P(k+1|k)C̄TP̃−1(k+1|k). □ (7.48)

7.5 Numerical Example

To test the proposed approach numerically, we adopt the Connected Autonomous Vehicle
(CAV) platoon model in [63]. The state space model in (7.1)-(7.3) was constructed with two
vehicles. Following [63], the model parameters are set as

A =

[
A1 0
N A1

]
,N =

 C1

0
0

 ,
B =

[
1 0 . . . 0

]T
,

Ci =
[

C1 0 . . . 0
]
, Co =

[
0 . . . 0 C1

]
,

such that yi is set to the velocity of the first vehicle, and yo is set to the velocity of the second
vehicle. Moreover,

A1 =

 1.8 −0.85 0.0007
1 0 0
0 1 0

 , (7.49)

C1 =
[

0.034 −0.023 −0.0048
]
. (7.50)

We ran the platoon for 200 seconds. The process noise w was set to the non-Gaussian noise
signal shown in Figure 7.3, and the velocity measurements noises δ i,δo are set to the first
and second Gaussian noise signals in Figure 7.3, respectively. The standard deviation of the
noise signals was computed using

σ =

√
∑

k̄
k=0(αk −µ)2

k̄
, (7.51)

where k̄ is the total number of time samples, αk is the noise value at time step k, and µ

is the noise mean. The standard deviation was computed for the process noise σw = 4.16,
first velocity’s noise σv = 1.38, and second velocity’s noise σy = 1.4. Next, the probability
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Fig. 7.3 Numerical Results: Non-Gaussian process and Gaussian measurements noise signals
that are used to test the proposed approach numerically.

distribution was computed using

δ (αk,µ,σ) =
1

σ
√

2π
exp
[
−1

2

(
αk −µ

σ

)]
. (7.52)

The probability distribution for the three noise signals are plotted in Figure 7.4. It can
be noticed that w has a non-Gaussian distribution, while yi,yo have Gaussian distribution.
Next, the transmissibility operator T in Equation (7.8) was constructed using the simulation
parameters. The computed transmissibility parameters are b0 = 0.0001,b1 =−0.117,b2 =

−0.32,b3 = 1.962,b4 = −2.52,a0 = 0.0007,a1 = 0.0065,a2 = 0.0063,a3 = −0.047,a4 =

0.034.
Next, the transmissibility-based algorithm in equations (7.15)-(7.23) was then imple-

mented on the simulation model. Figure 7.5 compares the filtered and unfiltered velocities of
the second vehicle with the true noise-free velocity. The initial condition of the velocity was
set to 7m/s, and the estimation started with zero initial condition. Notice that the proposed
approach was able to estimate the true velocity and filter most of the noise, while the platoon
is subjected to the non-Gaussian process noise in Figure 7.3. Both velocity and position errors
before and after the filtering are plotted in Figure 7.6. Notice that the position error grows
with time since integrating the velocity noise accumulates it with time. Given the proposed
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Fig. 7.4 Numerical Results: Probability distribution of the noise signals plotted in Figure 7.3.
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Fig. 7.5 Numerical Results: Filtered and unfiltered velocities comparison of the second
vehicle with the true noise-free velocity.

approach, the second vehicle was localized very precisely while it drove in a non-Gaussian
environment.

7.6 Experimental Test

7.6.1 Experimental Setup

The proposed approach was tested on the experimental setup shown in Figure 7.7, which
consists of three Quanser autonomous differential robots called Qbots 2e. Each Qbot consists
of two coaxial wheels, where each wheel is driven by a DC motor that is controlled using a
closed-loop inverse kinematic controller. The robots are connected with V2V communication
links to emulate CAV platoons. The robots follow the red line path, then both wheels’
velocities are equal, and the Qbot moves forward or backward in a straight line. Qbot1
receives the excitation signal from a computer through wireless communication, and Qbot2
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Fig. 7.6 Numerical Results: Velocity and position errors before and after the filtering. Notice
that the proposed approach is able to precisely localize the second vehicle while the platoon
is in a non-Gaussian environment.

follows the velocity of the first robot v1. Similarly, Qbot3 is connected with Qbot2 via a V2V
communication channel and follows the velocity of the second robot v2. This experiment
aims to localize the third robot within the 1D path using the noisy velocity measurements
of the first robot, while the robots are under the effect of non-Gaussian process noise. In
each robot, each wheel is supplied with an encoder, and the measured robot velocity is the
average of the two encoder measurements. The measured position is computed by integrating
the robot’s velocity. As a reference, we measure the actual displacement of the third robot
through a Polytech IVS-500 laser micro-vibrometer that has a microscale accuracy.

7.6.2 Noise Filtering

The transmissibility operator was constructed from v1(k) to v3(k), that is, we set yi = v1(k)
and yo = v3(k). The robot’s mathematical model was provided by Quanser (the manufacturer).
The transmissibility operator in (7.8) was constructed based on the mathematical model with
the parameters b0 = 1076,b1 = 54.4,a0 = 1053,a1 = 53.31. We ran the setup for 20 seconds
by setting the desired velocity of the first robot to the noise signal in Figure 7.8. The
probability distribution of the process noise plotted in Figure 7.8 was computed using the
formula (7.52). The standard deviation of yi,yo was estimated to be σv = 1.39 and σy = 1.43,
and then Q,R were computed as in Section 7.5.

Next, the transmissibility-based algorithm in equations (7.15)-(7.23) was then imple-
mented on the experimental setup model. The encoder velocity measurements were recorded
before and after filtering, and are plotted along with the vibrometer measurements (true
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Fig. 7.7 The experimental setup consists of three connected autonomous robots. A laser
micro-vibrometer is mounted to measure the true position of the third robot.

velocity) in Figure 7.9. The initial condition of the third robot’s velocity was set to 0.53m/s,
and the estimation started with zero initial condition. Notice that the proposed approach was
able to estimate the true velocity and filter most of the noise, while the robots are subjected
to the non-Gaussian process noise in Figure 7.8. Both velocity and position errors before and
after the filtering are plotted in Figure 7.10. Given the proposed approach, the third robot
was localized very precisely while the setup is under the effect of non-Gaussian noise.
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Fig. 7.8 Experimental Results: Non-Gaussian process noise that is used to derive the experi-
mental setup in a non-Gaussian environment with its probability distribution.
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Fig. 7.9 Experimental Results: Filtered and unfiltered velocities comparison of the third robot
with the true velocity. The true velocity was measured using the laser micro-vibrometer.
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Fig. 7.10 Experimental Results: Velocity and position errors before and after the filtering.
Notice that the proposed approach was able to localize the third robot while the platoon is in
a non-Gaussian environment.
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Chapter 8

Conclusions

This dissertation extended the transmissibility literature and deployed it for fault detection,
fault-tolerant control, state estimation, and noise filtering. Transmissibility operators are
mathematical objects that characterize the relationship between two subsets of responses
of an underlying system. Transmissibility operators were shown to be independent of the
systems inputs, unknown nonlinearities, and robust against external disturbances. Transmis-
sibility operators were developed in this dissertation for the first time in the literature for
nonlinear systems. Transmissibility operators were incorporated with sliding mode control
to mitigate fault effects. Transmissibilities were extended to nonlinear time-variant systems,
and recursive least squares identification was used to solve it. Moreover, a new state estimator
was designed in a high-gain theme to robustly estimate the system states in a high-gain form.

Transmissibility-based estimation was incorporated in this work with three theoretical
applications. For fault detection, transmissibility operators were used along a set of outputs
to estimate the measurements of another set of outputs. Then faults were detected by
comparing the estimated and measured outputs with each other. Control approaches used
transmissibility-based estimation to construct the control signal that was injected back into
the original system. Furthermore, transmissibility-based estimation was used to localize
robots under non-Gaussian process noise.

These three theoretical applications (fault detection and localization, CAV control, and
CAV localization) were applied to four different systems. The first system was Connected
Autonomous Vehicles (CAV) platoons. Transmissibilities were used along with the measure-
ments from sensors available in CAV platoons to identify transmissibility operators. Next,
this was developed to mixed autonomous and human-driven vehicle platoons. Failure in a
physical component of a vehicle, or failure in the form of an internal delay, a cyber-attack, or
a communication time-delay affects the safety and security of the CAV platoons. This was
also motivated by the fact that on-road human-drivers’ behaviour is unknown and difficult
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to be predicted. Therefore, the transmissibility superiority was exploited to gain robustness
against the unknown human-driver behavior. The platoon faults were mitigated after using a
transmissibility-based sliding mode controller. The controller stability and the string stability
were investigated while the controller is active and the faults are mitigated. Moreover, trans-
missibilities were integrated with Kalman filter to localize CAV platoons while operating
under non-Gaussian environment as unknown nonlinearities. The three applications were
tested experimentally on a setup of three connected autonomous mobile robots.

The second system was a multi-actuator micro positioning system used in the semi-
conductors industry. Transmissibility operators were applied to this system for fault detection
and fault-tolerant control. Fault detection was represented in applying the proposed devel-
opments to actuator fault detection. Some of the most common actuator faults, such as
actuator loss of effectiveness and fatigue crack in the connection hinges were considered.
Transmissibilities were used for fault detection without knowledge of the dynamics of the
system or the excitation that acts on the system. Next, a transmissibility-based sliding mode
control was implemented to mitigate common actuator faults in multi-actuator systems. This
approach was tested numerically using an analytical simulation model and experimentally
using a setup constructed with several electromechanical actuators.

The third system was flexible structures subjected to unknown and random excitations.
Structures used in applications subjected to turbulent fluid flow, such as aerospace and
underwater applications, are subjected to random excitations distributed along the struc-
ture. Transmissibility operators were used for the purpose of structural fault detection and
localization during the system operation.

The fourth system was robotic manipulators with bounded nonlinearities and time-variant
parameters. Both parameter variation and system nonlinearities are considered to be unknown.
Transmissibility operators were integrated with Recursive Least Squares (RLS) to overcome
the unknown variant parameters. RLS identifies transmissibilities used in the structure of
noncausal FIR (Finite Impulse Response) models. While parameter variation can be treated as
system nonlinearities, the RLS algorithm was used to optimize what time-variant dynamics to
include in the transmissibility operator and what dynamics to push to the system nonlinearities
over time. The identified transmissibilities were then used for the purpose of fault detection
in an experimental robotic arm with variant-picked mass. The experimental results showed
the proposed approach to be used effectively to detect faults in robotic manipulators.

Future work is represented in three directions: (i) Extending the current work to mixed
platoons with longitudinal and lateral motion, (ii) Extended and detailed stability analysis
of the transmissibility-based sliding mode controller, and (iii) Developing a state feedback
controller that exhibits the robustness of the high-gain transmissibility state estimation.
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Appendix A

Appendix 1: Healthy Systems Modeling

A.1 Mixed Platoon Modeling

In this appendix, we introduce an analytical bond graph model of a mixed autonomous and
human-driven vehicle platoon. Although the proposed approaches do not require knowledge
of the platoon dynamics, this model is used to numerically apply the proposed approaches,
and then alter it to characterize the platoon fault dynamics.

A.1.1 Autonomous Vehicle Modeling Using the Bond Graph Approach

In this appendix, we model the electric powertrain topology introduced in [119] using the
bond graph approach. Following [119], we consider the drive motor as a Brushless DC
Motor that extracts power from the batteries based on the traction control signal. The
controller is assumed to be a PI controller to characterize the cruise-control traction with
proportional gain kP, j and integral gain kI, j. Figure A.1 shows the bond graph model of the
vehicle considered, while parameters description and their numerical values are defined in
Table A.2. Next, following [136] we introduce the uncertainties in the vehicle parameters
directly in the bond graph model. This is done by representing the bond graph model in
the linear fractional transformation form. The vehicle parameters are represented by two
decoupled parts, the first part is the nominal part ī ∈ {R̄ j, Ī j, S̄ j,M̄ j,M̄ jF̄j}, and the second
part is the uncertain part i ∈ {ρRR̄ j,ρI Ī j,ρSS̄ j,ρMM̄ j,ρFM̄ jF̄j}, where ρi is the multiplicative
uncertainty on the parameter i. The purpose of this form of uncertainties is to represent the
uncertainties by the fictive effort and flow MS f . The uncertain parameter i is then given by
i = ī(1+ρi). In practice, there are two methods to obtain the values of the multiplicative
uncertainties ρi values. The first method is related to the manufacturer design where the
manufacturer provides the nominal values such as R̄ j, Ī j, S̄ j and their range of uncertainties
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Fig. A.1 Bond graph model of an electric powertrain vehicle that is considered to characterize
CAVs.

ρR,ρI,ρS. The second method is associated with vehicle operation, such as vehicle gross
mass and ground friction coefficient M̄ j, F̄j. This method identifies ρi experimentally using
parameter identification techniques such as least squares identification as in Section 3.2.1.
As in [136], to calculate the nominal value of a parameter, the mean value of the parameter’s
observation window is treated as the nominal value, and the difference between the minimum
and maximum values is considered as the additive uncertainty. Following the formulation
procedure in

Table A.1 Simulation parameters of the platoon model.

Symbol Description Value

R̄ j Motor Resistance 18 mΩ

Ī j Motor Inductance 252 µH
C j Motor Constant 0.26 rad/s.A
S̄ j Shaft moment of inertia 0.2 kg.m2

G j Transmission Ratio 0.2
r j Wheel Radius 0.3 m
M̄ j Vehicle gross mass 1478 kg
F̄j Friction coefficient 0.6
ρR Uncertainty coefficient in R j 0.04
ρI Uncertainty coefficient in I j 0.05
ρS Uncertainty coefficient in S j 0.03
ρF Uncertainty coefficient in M jFj 0.04
ρM Uncertainty coefficient in M j 0.05
kP, j Controller proportional gain 2.5
kI, j Controller integral gain 0.6

amax Maximum acceleration in (A.1) 1m/s2

λ Constant in (A.1) 4
s0 Minimum spacing distance in (A.2) 2 m
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A.1.2 Human-driven Vehicle

For human-driven vehicles, we adopt the human Intelligent Driver Model (IDM) [115]

a(t) = amax

[
1−
(

v(t)
v∗(t)

)δ

−
(

s∗(t,v,∆v)
s(t)

)2
]
, (A.1)

where amax is the maximum acceleration, δ is a constant that indicates how slow the human
response is, s is the actual spacing distance and s∗ is the desired spacing distance and is given
by

s∗(t,v,∆v) = s0 +max

(
0,v(t)T +

v(t)∆v(t)

2
√

a(t)a∗(t)

)
, (A.2)

where s0 is the minimum allowed spacing distance, T is a time constant and ∆v is the velocity
difference between the vehicle and its preceding vehicle.

A.1.3 CAV Platoon with a Human-driven Vehicle

The communication topology considered each vehicle to receive the velocity from the vehicle
in front of it and track it. The vehicle in front of the human-driven vehicle is considered to
communicate with the vehicle that follows the human-driven vehicle. The minimal commu-
nication links that can be available is used in this word. Any additional communications (e.g.
V2V with the second vehicle that follows the human-driven vehicle and V2C) can be used
along with the proposed approach as redundant detectors. Note that if the distance between
vehicles iH−1 and iH+1 is longer than the V2V communication range, then this platoon is con-
sidered as two separate fully autonomous platoons. CAV vehicles send information regarding
the position, velocity, and acceleration to the following vehicle via V2V communication links.

According to [142], CAV iH +1 receives the information
[

siH−1 viH−1 aiH−1

]T
via the

V2V communication link. Moreover, vehicle iH +1 measures
[

siH viH aiH

]T
using the

perception sensors such as radar and LiDAR. For all j ∈ {1 . . .n}, the jth vehicle uses the
velocity of the preceding vehicle as the desired velocity, that is, v∗j = v j−1. Next, for all t ≥ 0,

let u(t) = v∗1(t), y(t) =
[

v1(t) . . . vn(t)
]T

, then a mixed platoon of n vehicles, where
vehicle iH is human-driven can be represented using the state space equations (A.10)-(A.11)
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where

A =



A1 . . . 0

B2C1
. . .

...
. . . AiH

...

BiH+1CiH AiH+1
. . .

. . .

0 . . . BnCn−1 An


, (A.3)

Bv =
[

B1 0 . . . 0
]T

, (A.4)

B f =
[

0 . . . 0 1 0 . . . 0
]T

, (A.5)

C = diag(C1, . . . ,Cn). (A.6)

For all j ∈ {1, . . . ,n}\{iH}, A j, B j and C j are given by

A j =

 0 1 0
0 0 1

−γ j −β j −α j

 ,B j =

 0
δ j

γ j −α jδ j

 ,
C j =

[
1 0 0

]
.

Without any loss of generality, the human-driven vehicle acceleration aiH can be written as

ẋiH(t) = aiH(t,xiH)

= AiHxiH(t)+BiHCiH−1xiH−1(t)+ f (t,x), (A.7)

such that the human behaviour is split into a linear and nonlinear parts. The IDM model in
(A.1) is used to obtain the measurements of the state xiH = viH , however, AiH,BiH, and f are
assumed to be unknowns. We also consider the rest of the platoon model (A.10)-(A.11) to
be unknown and only the outputs y(t) are measured from the bond graph model.

A.2 Multi-Actuator Systems

The following analytical model is for a precision motion system used in semiconductor
manufacturing and consists of twelve actuators. The proposed approach counts for unknown
dynamics thorough a system identification algorithm that will be introduced in the next
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Fig. A.2 Healthy actuator model. fi is the excitation signal, Ma,i,ka,i, and Ca,i, are the
equivalent mass, stiffness, and damping coefficients of the actuator, xa,i is the actuator output
displacement. The actuator moves the payload mass Mp with the displacement xp via a hinge
with equivalent stiffness kh,i and equivalent damping Ch,i.

section. This analytical model is used for: (i) Illustrate the applicability of the proposed
approach on multi-actuator motion systems, and (ii) Numerical validation and simulation
results.

A.2.1 Actuator Model

Although, the detailed model for each class of actuators highly varies, actuators can be
simplified into a general second order model for some theoretical investigations such as
system control [50]. In [50], the generalized actuator model is given as a second order
mass-spring-damper to characterize the dynamics of piezoelectric actuators as shown in
Figure A.2. In this model, fi(t), is the input to the actuator, Ma,i, Ca,i, ka,i are the equivalent
mass, damping coefficient, and stiffness of the actuator, respectively, xa,i(t), is the output
displacement of the actuator, Ch,i and kh,i are the hinge damping coefficient and stiffness,
respectively, and xp is the output displacement of the payload mass Mp. This actuator acts on
the payload mass with two forces, namely, Fk,i and FC,i, which are the forces in the hinge
stiffness and damping, respectively. Next, for all i ∈ {1, . . . ,n} the actuator output can be
written as Fi(t) = Fk,i(t)+FC,i(t). Then the state space representation of the ith actuator
dynamics can be written as

ẋi(t) = Aixi(t)+Bi fi(t), (A.8)

Fi(t) =Cixi(t), (A.9)

143



#1

#2

#3

#4

#5

#6

#7#8#9

#10#11#12

Fig. A.3 Linear time-invariant plant consists of n actuators that move the middle mass mp in
the X −Y plane. The actuators dynamics are shown in Figure A.2.

where

Ai =


0 0 1 0
0 0 0 1

−(kh,i+ka,i)
Ma,i

kh,i
Ma,i

−(Ch,i+Ca,i)
Ma,i

Ch,i
Ma,i

kh,i
Mp

−kh,i
Mp

Ch,i
Mp

−Ch,i
Mp

 ,
Bi =

[
0 0 1

Ma,i
0
]T

,

Ci =
[

kh,i −kh,i Ch,i −Ch,i

]
,

and Fi is the output of the actuator.

A.2.2 System Model

Consider a rigid stage that moves in the X −Y plane as shown in Figure A.3 with six
actuators in the X direction, three on each side, and six actuators are acting on the Y
direction, three on each side as well. The middle stage moves in the X −Y directions
and rotates around the Z axis with a small angle θ < 10o. Let a and b denote two sen-

sors located at two different locations on the rigid sage. Define u(t)
[

f1(t) . . . fn(t)
]T

,

y(t)
[

ax(t) ay(t) bx(t) by(t)
]T

, and x(t)
[

x1(t) . . . xn(t) Px(t) Py(t) Pθ (t)
]T

, where
(ax,ay) and (bx,by) are the velocities of points a and b, respectively, in the X and Y directions,
Px and Py are the middle stage momenta in the X and Y directions, respectively, and Pθ is
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the angular momentum around the Z axis. Then the state space representation of the system
shown in Figure A.3 can be written as

ẋ(t) = Ax(t)+Bu(t), (A.10)

y(t) =Cx(t), (A.11)

where

A =

 Ā 0
C̄ 0
G 0

 ,B =

[
B̄
0

]
,C =

[
0 E
0 E

L

]
,

where A ∈Rs×s,B ∈Rs×12,C ∈R4×s, s is the system order that is considered to be unknown,

Ā = diag(A1, . . . ,A12), B̄ = diag(B1, . . . ,B12),

C̄ = diag(C̄x,C̄y), E = diag(
1

Mp
,

1
Mp

),

C̄x =
[
−C1 . . . −C3 C4 . . . C6

]
,

C̄y =
[
−C7 . . . −C9 C10 . . . C12

]
,

G =
[

O1,3 −O4,6 −Q7,9 Q10,12

]
,

L =
[

la
J cos(αa)

lb
J cos(αb)

la
J sin(αa)

lb
J sin(αb)

]T
,

and for i, j ∈ {1, . . . ,n}, j > i,

Oi, j =
[

lisin(αg)Ci . . . l jsin(α j)C j

]
,

Qi, j =
[

licos(αi)Ci . . . l jcos(α j)C j

]
.

For all i ∈ {1, . . . ,12}, Ai,Bi, and Ci are as defined in (A.8)-(A.9), li is the distance from
actuator i to the middle stage’s center of mass, αi is the angle between li and the X axis, Mp

and J are the middle stage mass and moment of inertia around the Z axis, respectively, la, lb
are the distances between points a,b and the stage center of mass, respectively, and αa,αb

are the angles between la, lb and the X axis, respectively.
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Fig. A.4 Schematic diagram of a flexible cantilever beam modeled as n lumped segments.

A.3 Flexible Beams

Consider the flexible structure in Figure A.4 that is structured as a flexible cantilever beam.
This structure is modeled as a lumped mass-spring-damper system with n lumped segments.
Each segment is considered to be rigid and connected to the segment before with a torsional
spring and damper as shown in Figure A.4. With Ti being the input torque applied to segment
i, then taking the summation of torque on segment i ∈ {1, . . . ,n} yields

Iiθ̈i(t) =Ti(t)+ ki+1∆θi+1(t)+bi+1∆θ̇i+1(t)

− ki∆θi(t)−bi∆θ̇i(t),
(A.12)

where Ii,ki, and bi are the moment of inertia, torsional stiffness, and torsional damping
coefficients of the segment i, respectively. θi is the deflection angle of the segment i,
∆θi = θi−θi−1 where θ0 = θ̇0 = kn+1 = bn+1 = 0. The beam model can then be represented
on the following state space model,

ẋ(t) = Ax(t)+BT T (t)+B f f (t,x)+Bww(t), (A.13)

θ̇(t) =Cx(t), (A.14)

Table A.2 Simulation parameters for the multi-actuator system in (A.10)-(A.11).

Parameter Description Value
Mp Middle stage mass 2.45kg
J Middle stage moment of inertia 0.0997kg.m2

l Middle stage length 0.132m
Ma,i Actuator mass 0.028kg
ka,i Actuator stiffness 100×106N/m
Ca,i Actuator damping 2681.13N.s/m
kh,i Hinge stiffness 2×104N/m
Ch,i Hinge damping 500N.s/m
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Table A.3 Simulation parameters of the flexible beam shown in Figure A.4, where the beam
is divided into 10 segments.

Description Symbol Value
Segment moment of inertia Ii 0.001kg.m2

Segment bending stiffness ki 22N.m/rad
Segment bending damping bi 0.01(N.m)/(rad/sec)

where

x(t) =
[

θ1(t) θ̇1(t) . . . θn(t) θ̇n(t)
]T

T (t) =
[

T1(t) . . . Tn(t)
]T

,

θ̇(t) =
[

θ̇1(t) . . . θ̇n(t)
]T

A =


α1

1
I1

β2 . . . 0

1
I2

β2 α2
. . .

...
...

. . .
. . . 1

In−1
βn

0 . . . 1
In

βn αn

 ,
B = diag(γ1, . . . ,γn), C = diag(δ1, . . . ,δn),

αi =

[
0 1

−(ki+ki+1)
Ii

−(bi+bi+1)
Ii

]
, βi =

[
0 0
ki bi

]
,

γi =
[

0 1
Ii

]T
, δi =

[
0 1

]
.

The unmodeled dynamics such as shear and tensile deflections are pushed to the un-
known bounded nonlinear term f (·, ·), w presents the external disturbances, and B f = Bw =[

1 . . . 1
]
. x ∈R2n×1,T ∈Rn×1, θ̇ ∈Rn×1,A ∈R2n×2n,B ∈R2n×n, and C ∈Rn×2n. The

state vector x in (A.13) comprises all the deflection angles and angular velocities of the beam.
All excitations on the beam are modeled as external torques and collected in the term T .
All dynamics that can’t be included in the linear term Ax are pushed to f , which includes
unmodeled dynamics and parameter uncertainties. w captures the disturbances in the system.
Note that the difference between T and w is that T is required and designed (can be a control
signal), however, w are unwanted disturbances. Equation (A.14) maps the measured outputs
θ̇ , which are the segments angular velocities, to the systems states x through the structure of
the matrix C.
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Appendix B

Appendix 2: Faults Modeling

B.1 Fault Models

In this appendix, we introduce common physical and cyber fault models from the literature.
The proposed technique is independent of the fault dynamics and considers any fault to result
in the corrupted unknown velocity ṽi.

B.1.1 Sensor Fault

Perception sensors (radar and LiDAR) play a crucial role in the the autonomous vehicle that
follows the human-driven vehicle iH +1 as the velocity viH is measured directly from these
sensors. Following

B.1.2 Motor/Actuator Disturbances

Brushless DC motors that are used in electric vehicles are subjected to vulnerable operating
conditions including high magnetic force and severe weather conditions. Following [141],
we introduce an additive fault to the motor’s nominal value of the current-to-torque ratio Ci

after motor loss of effectiveness occurs. The faulty motor constant is then given by

C̃i(t) = 0.8Ci +δCi(t), (B.1)

where C̃i is the corrupted motor constant, and δCi is the deviation from the original motor
constant after the loss of effectiveness occurs.
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B.1.3 Motor Delay

Internal delay in actuators can lead to poor control performance and potential instability
[74, 20]. The motor internal delay can be modeled as a time delay between the motor
electrical current and the output torque, that is,

ρ̃i(t) = ρi(t − τe,i(t)), (B.2)

where ρ̃i is the delayed current, ρi is the original current and τe,i is the time-variant motor
delay.

B.1.4 False Data Injection (Burst Transmission)

Connected autonomous vehicles platoons have several spacing-distance policies as shown
in [111, 105]. One possible cyberattack is burst transmission that can affect the system
performance by adding bounded random disturbances to the spacing distance between two
preceding vehicles [97]. This fault can lead to instabilities, inaccuracies, and oscillations in
the system performance [99, 96, 95]. For all i = 1, . . . ,n, let hi denote the nominal spacing
value between vehicle i and vehicle i+1, then for all t ≥ 0,

h̃i(t) = hi(t)+δ f ,i(t), (B.3)

where h̃i denotes the corrupted spacing distance, and δ f ,i denotes the deviation from hi due
to a cyberattack. Spacing distance fault can occur due to corrupted measurements of the
velocities of the vehicles. Therefore, vi can be represented by

ṽi(t) = vi(t)+ ˙̃hi(t), (B.4)

where for all i = 1, . . . ,n, ṽi represents the corrupted measurements of the velocity of vehicle
i, ˙̃hi denotes the deviation from vi due to a cyberattack.

B.1.5 Denial-of-service

Time delays in connected autonomous vehicles platoons can yield fatal faults [76]. One of
the main malicious cyberattacks in vehicle platoons is the Denial-of-Service (DoS) attack
[97]. DoS attack increases the service time in the communication link, which makes it busier
and results in a communication time delay within the communication link. Note that, as the
service time increases, the packet transmitted fades, which is known as the packet loss. In
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this work, we consider small-time communication delays that cause the packet to arrive late.
For all i = 1, . . . ,n, consider the velocity of the i-th vehicle vi, then a delay in vi yields the
corrupted signal

ṽi(t) = vi(t − τv,i(t)), (B.5)

where τv,i is a relatively small time-variant communication delay in vi that does not cause
any packet loss.

Table B.1 Drunk driving conditions according to the alcohol concentration and the corre-
sponding mathematical models.

BAC (g/dL) Effects on driving Mathematical model

0.02 1) Decline in visual functions s̃∗iH(t) = s∗iH(t)+δs∗(t)
2) Decline in ability to perform two tasks at the same time λ = 3

0.05
1) Reduced coordination s̃iH(t) = siH(t)+δs(t)
2) Reduced ability to track moving objects ṽiH−1(t) = viH−1(t − tv)
3) Reduced response to emergencies λ = 2

0.08

1) Short-term memory loss ṽiH−1(t) = viH−1(t)+δiH−1(t)
2) Poor speed control ṽiH(t) = viH(t)+δiH(t)
3) Impaired perception s̃iH(t) = siH(t − ts)
4) Reduced information processing capability λ = 1

B.2 Drunk Driver Model

The human-driver behavior in human-driven vehicles is unknown and difficult to be predicted
due to many reasons such as different driving experiences and sudden changes in decisions.
The proposed approach considers unknown human-driver behavior and is independent of the
human effects. However, the alterations in the driver behavior due to increasing the BAC
level are known. For example, regardless of how slow or fast, the human-driver response is,
increasing the BAC level in the driver’s blood will always result in a slower response. The
proposed approach mission is capturing (identifying) the unknown healthy human-driver
behavior and then inspecting the existence of any drunkenness alterations. This section
inspects the drunk driving conditions and their alterations from the healthy driver behavior.
The next section shows how to capture healthy driver behavior.

B.2.1 Drunkenness Driving Conditions

In this section, we introduce the drunkenness alterations in the normal human drivers due to
increasing the BAC to different levels. The following alterations are related to the BAC levels
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and the drunken driving conditions and are independent of the healthy driver behavior. For
clarification purposes only, these alterations are applied to the healthy driver model example
introduced in section A.1.2. The BAC levels range from relatively low to relatively high and
are shown to have different effects on each level. This drunk driver model is then used to test
the drunk driver detection algorithm in section 3.4.

Increasing the BAC level results in several effects on the driving conditions, as listed in
Table B.1

Let s̃∗iH , s̃iH , ṽiH , and ṽiH−1, denote the corrupted measurements of s∗iH , siH , viH , and viH−1,
respectively. Moreover, let δs∗ , δs, δiH , and δiH−1, be the corruptions in the measurements
of s̃∗iH , siH, viH , and viH−1, respectively. For BAC value of around 0.02g/dL, a decline in
visual functions arises, which we model as inaccuracies added to the desired spacing distance,
that is, s̃∗iH(t) = s∗iH(t)+ δs∗(t). Losing the ability to perform two tasks at the same time
(i.e. tracking the vehicle ahead and following the road signs) leads to a delay in one task
to perform the other, which is modeled as a slight delay in the drivers response λ = 3. At
BAC = 0.02g/dL, the driver model in (A.1) becomes

ãiH(t,viH) = amax

1−

(
viH(t)
v∗iH(t)

)3

−
(

s̃∗iH(t,viH ,∆v)
siH(t)

)2
 . (B.6)

For BAC levels around 0.05g/dL, the reduced coordination effect is modeled as inaccuracies
added to the vehicle position s̃iH(t) = siH(t)+δs(t). The main moving object that the human-
driver is expected to track is the front vehicle, we model this effect as a time delay in the
velocity of the front vehicle, that is, ṽiH−1(t) = viH−1(t − tiH). Moreover, the drunk driver
loses the ability to respond to emergencies such as sudden brake which produces a slower
response such that λ = 2. Thus, (B.6) becomes

ãiH(t,viH) = (B.7)

amax

[
1−
(

viH(t)
viH−1(t − tv)

)2

−
(

s̃∗iH(t,viH ,∆v)
s̃iH(t)

)2]
.

For BAC around 0.08g/dL, losing the short-term memory is modelled as inaccuracies
added to the front vehicle velocity ṽiH−1(t) = viH−1(t)+δiH−1(t). The poor speed control
prevents the drunk driver to maintain an accurate speed for the vehicle, we model this
effect as inaccuracies added to the vehicle velocity ṽiH(t) = viH(t)+ δiH(t). The impaired
perception is modelled as losing the ability to maintain the vehicle position within the platoon
s̃iH(t) = siH(t − ts). The reduced information processing capability results in an even slower
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response, such as λ = 1 can be used. Thus, the drunk driver model in (B.7) becomes

ãiH(t,viH) = (B.8)

amax

[
1−
(

ṽiH(t)
ṽiH−1(t − tv)

)
−
(

s̃∗iH(t,viH,∆v)
s̃iH(t − ts)

)2]
.

Therefore, the driver model in (A.7) can be written as

ãiH(t,xiH) = ÃiHxiH(t)+ B̃iHCiH−1xiH−1(t)+ f̃ (t,x), (B.9)

where ÃiH, B̃iH, and f̃ characterize the human-driver model with AiH,BiH , and f while the
driver is drunk.

B.3 Fatigue Crack

Although the proposed approaches are independent of the fault dynamics, this section models
fatigue cracks in flexible beams for testing purposes only. Fatigue cracks are common in
flexible structures due to load-unload operation. Following [66], we model the initiation of
fatigue cracks as changes in the stiffness at the location of the crack. This change in stiffness
grows over time till a complete failure. Therefore, detecting and localizing the change in
stiffness is detecting and localizing structural cracks at the early stages. As shown in [66, 56],
fatigue cracks result in decreasing the bending stiffness at the location of the crack while
the crack is open, and they result in no effect on the beam while the crack is closed. Thus,
fatigue cracks are modeled as losses in tension stiffness only, while it makes no change in
compression. The stiffness of the segment i under a fatigue crack is given by

k̃i =

ki, for closed crack,
2ki
3 , for open crack,

(B.10)

where k̃i is the corrupted stiffness due to the fatigue crack.

B.3.1 Actuator Loss of Effectiveness (Creep Fault)

The creep fault as introduced in [131] is an increase in the stiffness of the structure and can
occur due to severe operating conditions. That is,

kh,i,creep = 1.3kh,i, (B.11)

152



where kh,i,creep is the hinge stiffness of the actuator i after the creep fault. The faulty actuator
needs higher excitation signal amplitude to achieve the desired actuator output force, and
thus this fault is referred to as loss of effectiveness.
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