
Management
Science/
Operations
Research

Seminar Paper: Optimized
Grouping in Educational
Activities
How to generate optimal groups of students algorithmically?
Lars Steffen März and Thomas Herde
February 26, 2023



Abstract

Grouping people to foster synergies has been an active field of research for decades, both in social sciences
and management science. But also from the viewpoint of mathematical modelling and optimization, it is a
challenging task due to its combinatorial and multi-objective nature. This paper focuses on the educational
context by specifically considering group and topic assignments rooted in social preferences, topic interests,
prior knowledge and other properties to an unprecedented extent. It provides highly customizable MIPs
to model and Java code to solve such problems relying on the Gurobi library. Initial numerical tests,
utilizing heuristically parameterized and randomly generated artificial user data, show computational
tractability and provide approximately Pareto-efficient solutions to the user for moderate instance sizes
of up to 30 students and 15 topics. Finally, the goal is to supply the chair for Management Science and
Operations Research at TU Darmstadt with the developed software for practical application and evaluation.
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1 Introduction and Problem Description

1.1 Task and Objectives

This paper is part of a Master’s seminar of Prof. Dr. Weidinger and M.Sc. Constantin Wildt at the faculty
for Operations Research and Management Science at the Technical University Darmstadt in the winter
term 2022/23. The original task for the participants reads:

Dividing students into groups in educational activities subject to specific requirements is a challenging
planning task. On the one hand, preferences regarding the topic to be dealt with must be taken into
account. On the other hand, students are interested in forming teams with certain other people. On the
part of the lecturer, it is important to ensure a balanced group size and a level of knowledge that is as
evenly distributed as possible. Thus, it is a multi-criteria optimization problem in a pedagogical context.
The goal of this seminar is to develop and formalize optimization approaches for the described problem
and to implement a prototype making use of an optimization tool of the student’s choice. The model, the
concept behind it, and the prototype will be presented in a seminar presentation and a seminar paper.

Hence, we identified three main groups of stakeholders with overlapping interests, for the sake of illustration
assigned as follows:

• The participating students are generally interested in collaborating with certain other participants
out of social motives. Simultaneously, they intend to deal with specific topics which might differ
from the ones of their befriended peers.

• The professor and potentially her or his assistants aim at similarly and specifically sized groups as ’the
size of a decision-making group influences what the group can achieve’ [3] and member satisfaction
[4], cf. Figure1 1. Besides this, a fair and balanced distribution of skills and knowledge among groups
with a certain degree of diversity within groups might be aspirational since ’task-related diversity,
was positively related to both quality and quantity of team performance’ [6] and ’cognitive distance
is a meaningful antecedent for group cognitive synergy’ [7].

• The chair looks for an universal, versatile, cost-efficient, performant and easy to use software to
compute groupings for future seminars. Therefore, only open-source or software with university
license should be needed to run the code and the running-time should be well below of one day for
moderate hardware. Operating the software shall not require prior experience in programming or
mathematics and be intuitive regardless of seminar size or topic.

Figure 1: Reported satisfaction with group size
(cf. [4], p. 48)

Ultimately, we aim to develop a practical
software application, solving such problems
by providing a sensible compromise between
aforementioned goals. More precisely, we
construct a mathematical optimization model
of described problem and implement a solu-
tion algorithm to find optimal solutions to
it, in order to support the grouping pro-
cess.

User data input and solution output will work from
Excel. All goals of the chair listed above will be
fulfilled by all models below. Thus, they will not
be mentioned explicitly going forward. Moreover,
all of them will implement some form of group
size limitation. Table 1 gives an overview over the
models discussed in this paper and which of the
remaining goals they address.

1The labels ’group too small’ and ’group too large’ tag the two graphs plotting how much (dis-)satisfaction resulted from the group
being too small or large for the given group size, respectively. They do not refer to the abscissa, despite 4.6 members per group turning
out to be empirically optimal.

3



Model Name Problem Social Sat. Topic Sat. Even Skill Distr. Skill Divers.
Basic Naive (P1) ✓
Basic Improved (P2) ✓
Extend. f. Topic Assign. (P3) ✓ ✓
Extend. f. Skill Distr. (P4) ✓ ✓ ✓ ✓
Efficient Frontier (P4) ✓ ✓ ✓ ✓

Table 1: Models and goals addressed

1.2 Notation

In the sequel, we will repeatedly make use of the following definitions.

N := {1, 2, 3, ...} S := number of students ∈ N S := [S] := set of all students s
N0 := {0} ∪ N G := number of groups ∈ N G := [G] := set of all groups g
[n] := {1, ..., n} ∀n ∈ N T := number of topics ∈ N T := [T ] := set of all topics t

Note that there is no loss of generality by identifying students, groups and topics with integers. It can be
understood as an arbitrary enumeration of the real counterpart.

2 Basic Model

2.1 Naive Implementation

The following optimization problem was provided by Prof. Dr. Weidinger and M.Sc. Constantin Wildt as a
starting point to our modelling journey.

max
x

1

S

∑︂
s∈S

∑︂
s′ ̸=s

qs,s′xs,s′ (P1)

s.t. m− 1 ≤
∑︂
s′ ̸=s

xs,s′ ≤ m− 1 ∀s ∈ S (1)

xs,s′ + xs′,s′′ ≤ xs,s′′ + 1 ∀(s, s′, s′′) ∈ S3 : pairwise distinct (2)

xs,s′ = xs′,s ∀(s, s′) ∈ S2 : s ̸= s′ (3)

xs,s′ ∈ {0, 1} ∀(s, s′) ∈ S2 : s ̸= s′

It makes use of the following parameters that need to be provided by the user.

Param. Range Quantifier Quantity Description
qs,s′ {0, 1} (s, s′) ∈ S2 : s ̸= s′ S(S − 1) how much student s likes student s′

ℓ0-normalized
m N0 1 minimum group size
m N0 1 maximum group size

The below decision variables are to be optimized.

Variable Range Quantifier Quantity Description
xs,s′ {0,1} (s, s′) ∈ S2 : s ̸= s′ S(S − 1) one iff students s and s′ share a group

The set of feasible solutions is restricted by these constraints.

Constr. Quantifier Quantity Description
(1) s ∈ S 2S bounds for group size
(2) (s, s′, s′′) ∈ S3 : pairw. dist. S(S − 1)(S − 2) transitivity of being in same group
(3) (s, s′) ∈ S2 : s ̸= s′ S(S − 1) symmetry of being in same group
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2.2 Improved Implementation

By removing the lower left half of the matrix (xs,s′)s ̸=s′ we save about half of the variables without loss of
information due to its symmetry. The dominating number of transitivity constraints is also reduced by a
factor of 1/2 when remodelling as follows.

max
x

1

S

∑︂
s∈S

∑︂
s′>s

(qs,s′ + qs′,s)xs,s′ (P2)

s.t. m− 1 ≤
∑︂
s′>s

xs,s′ +
∑︂
s′<s

xs′,s ≤ m− 1 ∀s ∈ S (4)

xs,s′ + xs′,s′′ ≤ xs,s′′ + 1 ∀(s, s′, s′′) ∈ S3 : s < s′ < s′′ (5)

xs,s′′ + xs′,s′′ ≤ xs,s′ + 1 ∀(s, s′, s′′) ∈ S3 : s < s′ < s′′ (6)

xs,s′ + xs,s′′ ≤ xs′,s′′ + 1 ∀(s, s′, s′′) ∈ S3 : s < s′ < s′′ (7)

xs,s′ ∈ {0, 1} ∀(s, s′) ∈ S2 : s < s′

The parameters remain invariant.

Param. Range Quantifier Quantity Description
qs,s′ {0, 1} (s, s′) ∈ S2 : s ̸= s′ S(S − 1) how much student s likes student s′

ℓ0-normalized
m N0 1 minimum group size
m N0 1 maximum group size

The amount of variables is halved as motivated above.

Variable Range Quantifier Quantity Description
xs,s′ {0,1} (s, s′) ∈ S2 : s < s′ S(S − 1)/2 one iff students s and s′ share a group

Due to the reduction in decision variables we have to mind the ordering of indices in the transitivity
constraints. Adding being a commutative operator, the ordering of summands does not need to be permuted.
The symmetry constraint becomes redundant since the improved model is intrinsically symmetric by design.

Constr. Quantifier Quantity Description
(4) s ∈ S 2S bounds for group size
(5) (s, s′, s′′) ∈ S3 : s < s′ < s′′ S(S − 1)(S − 2)/6 transitivity of being in same group
(6) (s, s′, s′′) ∈ S3 : s < s′ < s′′ S(S − 1)(S − 2)/6 transitivity of being in same group
(7) (s, s′, s′′) ∈ S3 : s < s′ < s′′ S(S − 1)(S − 2)/6 transitivity of being in same group

2.3 Performance Comparison

Hence the naive model has of order

2S + S(S − 1)(S − 2) + S(S − 1) = S3 + o(S3)

many non-integrality constraints and about

S(S − 1) = S2 + o(S2)

many binary variables. Whilst the improved model has of order

2S +
3

3!
S(S − 1)(S − 2) =

1

2
S3 + o(S3)

many non-integrality constraints and about

1

2!
S(S − 1) =

1

2
S2 + o(S2)

many binary variables. This represents an improvement of the leading Landau term by a factor of 1/2 over
the naive construction, respectively. As the numerical results in Figure 2 demonstrate, this improvement
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also translates into a running time speed up by almost the same factor across varying problem sizes and
instances.

(a) S = 10 (b) S = 30 (c) S = 50

Figure 2: Runtime comparison of naive and improved implementation across N = 100 random instances

We not only notice an improvement regarding the average runtime but even an almost strict dominance of
the improved version across the board. The few outliers might be attributable to a Gurobi heuristic or
branch rule turning out to be unsuitable to those instances. The underlying distribution of the random
instances and more information on the results are stated in Chapter 5.

3 Extended Model for Topic Assignment

3.1 Derivation

Building up upon the previous idea of social preferences to accommodate for peer groups and friends to
work together, we now augment the functionality to also assign topics to groups rooted in topic interests
of the participants as they are vital for providing a motivated work atmosphere. Concretely, besides the
students S, we explicitly model the set of groups G and additionally allow for an assignment of topics T to
said groups.

In contrast to before, we now admit scalar social preferences qs,s′ ∈ [−1, 1] for all (s, s′) ∈ S2 : s ̸= s′,
as well as individual topic preferences ps,t ∈ [−1, 1] for all (s, t) ∈ S × T . Beyond that, there might be
students indifferent to either their group members or the topics offered, for instance if all participants are
strangers or all topics seem equally satisfactory. In order to take account of this, we introduce parameters
λs ∈ [0, 1] to allow each student to split his or her ℓ1-normalized vote (cf. Section 5.2 for explanation on
vote normalization) between social and topic preferences as demonstrated in Figure 3.

Figure 3: Vote split

To execute all assignments, we fundamentally change the model struc-
ture compared to (P1) and (P2). Namely, instead of an student-to-
student approach, we now employ a three-layer student-to-group-to-
topic approach. This means replacing the inter-social variables xs,s′ by
binary variables

xsg :=

{︄
1 if person s is in group g,

0 else
∀(s, g) ∈ S × G

to model the student-to-groups assignment and similarly

ygt :=

{︄
1 if group g has topic t,
0 else

∀(g, t) ∈ G × T .

to encode the group-to-topic assignment. Besides these explicit variables, we need two sets of implicit
variables, derived from the ones above. Firstly, we need to decide whether two students s and s′ are in the
same group, i.e. if

∃g ∈ G : xsg = xs′g = 1. (8)
For that, we use binary variables

as,s′,g :=

{︄
1 if s and s′ are both in group g,

0 else
∀(s, s′, g) ∈ S2 × G : s < s′
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in constraint (14) to ensure
(8) ⇐⇒

∑︂
g∈G

as,s′,g = 1

to hold. Secondly, for translating student-to-group and group-to-topic assignments into student-to-topic
assignments, we again aim to model a condition of the form

∃g ∈ G : xsg = ygt = 1. (9)

Demanding (15) gives

bsgt :=

{︄
1 if s has topic t by being in group g,

0 else
∀(s, g, t) ∈ S × G × T .

and therefore by analogous arguments to before

(9) ⇐⇒
∑︂
g∈G

bsgt = 1.

As an extension to the initial model, we want to reconsider the group size constraints. More specifically,
some topics might be more labour-extensive than others. In recognition of this fact, the user may now
enter topic-specific lower and upper bounds on the group size, i.e. integers mt ≤ mt for constraint (16).

Furthermore, in larger seminars, there might be the need to pass out the same topic to multiple groups. Or
there could be some fundamental and therefore mandatory topics which are required as prior knowledge
to understand the other ones. To implement such cases into our model, the user can bound the number of
occurrences of topics via integral parameters M t ≤ M t in constraint (17).

3.2 Binary Program

The result of aforementioned modelling is the following linear binary program. It maximized the sum of
the average social and topic satisfaction. As both summands are normalized on [−1, 1], the objective value
will be in [−2, 2].

max
a,b,x,y

1

S

∑︂
s∈S

∑︂
s′>s

(︄
(λsqs,s′ + λs′qs′,s)

∑︂
g∈G

as,s′,g

)︄
+

1

S

∑︂
s∈S

∑︂
t∈T

(︄
(1− λs)pst

∑︂
g∈G

bsgt

)︄
(P3)

s.t.
∑︂
g∈G

xsg = 1 ∀s ∈ S (10)

∑︂
t∈T

ygt ≤ 1 ∀g ∈ G (11)

∑︂
t∈T

ygt ≤
∑︂
s∈S

xsg ∀g ∈ G (12)

xsg ≤
∑︂
t∈T

ygt ∀(s, g) ∈ S × G (13)

xsg + xs′g − 1 ≤ as,s′,g ≤ 1

2
xsg +

1

2
xs′g ∀(s, s′, g) ∈ S2 × G : s < s′ (14)

xsg + ygt − 1 ≤ bsgt ≤
1

2
xsg +

1

2
ygt ∀(s, g, t) ∈ S × G × T (15)

mtygt ≤
∑︂
s∈S

bsgt ≤ mtygt ∀(g, t) ∈ G × T (16)

M t ≤
∑︂
g∈G

ygt ≤ M t ∀t ∈ T (17)

as,s′,g ∈ {0, 1} ∀(s, s′, g) ∈ S2 × G : s < s′

bsgt ∈ {0, 1} ∀(s, g, t) ∈ S × G × T
xsg ∈ {0, 1} ∀(s, g) ∈ S × G
ygt ∈ {0, 1} ∀(g, t) ∈ G × T
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This is a comprehensive list of all parameters used.

Param. Range Quantifier Quantity Description
qs,s′ [−1, 1] (s, s′) ∈ S2 : s ̸= s′ S(S − 1) how much student s likes student s′

ℓ1-normalized
pst [−1, 1] (s, t) ∈ S × T ST how much student s likes topic t

ℓ1-normalized
λs [0, 1] s ∈ S S bias of s towards social over topic satisfaction
mt N0 t ∈ T T minimum group size for topic t
mt N0 t ∈ T T maximum group size for topic t
M t N0 t ∈ T T minimum number of groups with topic t
M t N0 t ∈ T T maximum number of groups with topic t

The decision variables x, y and their implied internal variables a = a(x), b = b(x, y) are presented here.

Variable Range Quantifier Quantity Description
as,s′,g {0,1} (s, s′, g) ∈ S2 × G : s < s′ S(S − 1)G/2 one iff students s and s′

share group g
bsgt {0,1} (s, g, t) ∈ S × G × T SGT one iff s is in group g

having topic t
xsg {0,1} (s, g) ∈ S × G SG one iff s is in group g
ygt {0,1} (g, t) ∈ G × T GT one iff group g has topic t

Similarly, the below table gives an overview of all the employed constraints. Note that constraints (14) to
(17) contain two inequalities each, resulting in double the quantity compared to the quantifiers.

Constr. Quantifier Quantity Description
(10) s ∈ S S everyone is in exactly one group
(11) g ∈ G G every group has at most one topic
(12) g ∈ G G empty groups have no topic
(13) (s, g) ∈ S × G SG non-empty groups have a topic
(14) (s, s′, g) ∈ S2 × G : s < s′ S(S − 1)G as,s′,g = 1 ⇐⇒ xsg = xs′g = 1
(15) (s, g, t) ∈ S × G × T 2SGT bs,g,t = 1 ⇐⇒ xsg = ygt = 1
(16) (g, t) ∈ G × T 2GT bounds for group size
(17) t ∈ T 2T bounds on topic occurrences

Supposing 1 ≤ T ≈ G ≪ S < ∞, problem (P3) has of order

S +G+G+ SG+
2

2!
S(S − 1)G+ 2SGT + 2GT + 2T = S2G+ o(S2G)

many non-integrality constraints and about

1

2!
S(S − 1)G+ SGT + SG+GT =

1

2
S2G+ o(S2G)

many binary variables. For G ≤ S/2, we asymptotically reduced the number of non-integrality constraints
and only increased the asymptotic number of variables by a factor of G.

4 Extended Model for Skill Distribution

4.1 Derivation

As motivated in the introduction, we also want to promote skill diversity within groups and skill equality
among groups. To this end, we distinguish between two types of personal characteristics: First, such skills
i ∈ I := [I] that one either has or not and can therefore be represented by a binary variable

hi
s ∈ {0, 1} ∀(s, i) ∈ S × I

with hi
s = 1 if and only if student s possesses property i. For instance, one might encode whether or not the

participants originate from a specific faculty, department or a set of them to ensure some degree of group
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interdisciplinarity. This might be useful since from experience, participants often look for fellow students
they relate with from previous courses. However, this is often the case if they are enlisted in a similar
major. In fact, this phenomenon could be observed at this seminar itself, with the participants splitting into
a group of industrial engineering plus business informatics students and a group of mathematics majors.
This led to vastly different focuses of the respective presentations, indicating that a more diverse group
assignment might have yielded richer discussions during the group project stage. Therefore, the lower
bound hi or upper bound hi for the number of students with property i per group could have been used to
avoid such clustering. Secondly, there might also be properties j ∈ J := [J ] that one can possess to some
continuous extent, quantified by

ejs ∈ [0, 1] ∀(s, j) ∈ S × J .

Such data might me useful for equal distribution of prior knowledge and relevant skills among different
groups or intentionally uneven levels of leadership within the groups. For instance, at the chair for
operations research and management science, it seems reasonable to pick a skill set similar to the choice on
their thesis application homepage [8]. There, one is asked for a self-assessment regarding prior experience
with optimization solvers, statistics software and general programming abilities. With these thoughts in
mind, we augment Problem (P3) by technical hidden decision variables cj and cj to measure the lowest
and highest cumulative group skill with respect to skill j.

4.2 Mixed-Integer Program

All of the aforementioned ideas are modelled in the subsequent inequalities.

hi ≤
∑︂
s∈S

hi
sxsg + S(1− zg) ∀(g, i) ∈ G × I (18)

hi ≥
∑︂
s∈S

hi
sxsg ∀(g, i) ∈ G × I (19)

zg ≥ xsg ∀(s, g) ∈ S × G (20)

cj ≤
∑︂
s∈S

ejsxsg + S(1− zg) ∀(g, j) ∈ G × J (21)

cj ≥
∑︂
s∈S

ejsxsg ∀(g, j) ∈ G × J (22)

Note that adding S deactivates the constraints (18) and (21) for precisely the empty groups, i.e. where
zg = 0. The reasons behind empty groups are explained in answer A1 to question Q1 of Section 6.1.
Summarizing, we added the following constraints.

Add. constr. Quantifier Quantity Description
(18) (g, i) ∈ G × I GI lower hard skill bound for non-empty groups
(19) (g, i) ∈ G × I GI upper hard skill bound for groups
(20) (s, g) ∈ S × G SG zg = 1 ⇐⇒ group g non-empty
(21) (g, j) ∈ G × J GJ lower exper. skill bound for non-empty groups
(22) (g, j) ∈ G × J GJ upper exper. skill bound for groups

Now, the high level idea to combine the objective of (P3) with the equality and diversity goals from this
chapter is not to simply optimize a linear combination as all of the nuances, strength, weaknesses and
trade-offs of different solutions are lost when condensing them into a single number. In fact, remembering
the stakeholders and goals analysis from the introduction, we see an alignment of the topic and social
objectives with the students’ interests and the skill distribution objectives with the professor’s interests.
Hence, the one bailing out the other would not be a fair compromise. So, for the two parties concerned,
we have two separate objectives.

max
(x,y)

fpref(x, y) :=
1

S

∑︂
s∈S

∑︂
s′>s

(︄
(λsqs,s′ + λs′qs′,s)

∑︂
g∈G

as,s′,g

)︄
+

1

S

∑︂
s∈S

∑︂
t∈T

(︄
(1− λs)pst

∑︂
g∈G

bsgt

)︄

max
(x,y)

fskill(x, y) :=
∑︂
j∈J

(︄
σj(cj − cj) + µj

∑︂
s∈S

∑︂
s′>s

(︄⃓⃓⃓
ejs − ejs′

⃓⃓⃓∑︂
g∈G

as,s′,g

)︄)︄
(23)

Note that for reasons of spacing, we omitted the variables a = a(x), b = b(x, y), c = c(x, z) and z = z(x)
on the left-hand side of (23) since they are fully determined by x and y. Within fskill, the equality and
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diversity interests are represented in a weighted manner using scalars σj and µj for all skills j ∈ J . The
former accomplishes this by punishing (or rewarding if one intends) large discrepancies between the lowest
and highest cumulative group skill and the latter by rewarding (or punishing if one intends) individual
skill differences between group members. In conclusion we added the following parameters

Add. param. Range Quantifier Quantity Description
hi
s {0, 1} (s, i) ∈ S × I SI one iff student s has hard skill i

hi N0 i ∈ I I lower bound for hard skill i per group
hi N0 i ∈ I I upper bound for hard skill i per group
ejs [0, 1] (s, j) ∈ S × J SJ how much student s has exper. skill j
σj (−∞, 0] j ∈ J J penalty for inequality w.r.t. group skill j
µj [0,∞) j ∈ J J reward for diversity within groups w.r.t. skill j

and decision variables.

Add. var. Range Quantifier Quantity Description
cj [0,∞) j ∈ J J lowest group competence w.r.t. exper. skill j
cj [0,∞) j ∈ J J highest group competence w.r.t. exper. skill j
zg {0,1} g ∈ G G one iff group g is non-empty

In total, we added SG+ 2GI + 2GJ = SG+ 2G(I + J) many constraints and only G binary variables z,
as well as 2J continuous variables c. Assuming 0 ≤ I ≈ J ≪ T ≈ G ≪ S < ∞, they add comparatively
little complexity to the model despite transforming the IP (P3) to a MIP.
Now, the idea is to maximize both fpref and fskill simultaneously whilst still providing a couple of solution
options - with key statistics attached to them - for the tutor to make an educated semi-automated decision.
For the time being, we denote this idea via the non-rigorous notation

max
(a,b,c,x,y,z)

s.t. (10),...,(22) hold

(︂
fpref(a, b, x, y) and fskill(a, b, c, x, y, z)

)︂
. (P4)

To make this more rigorous, we first generalize the concept of optimization problems with multiple
objectives by providing two essential definitions.

Definition. (Multi-Criteria Optimization Problem - cf. [2], p. 16). A multi-criteria optimization problem is
a problem of optimizing multiple maps fk from a set K on a single feasible set X , i.e.

max
x∈X

fk(x) ∀k ∈ K. (MC)

Definition. (Pareto-dominated/efficient/optimal - cf. [5], p. 343). A feasible solution x ∈ X to a multi-
criteria optimization problem (MC) is called Pareto-dominated if there exists another feasible solution x∗ ∈ X
with

fk(x) ≤ fk(x
∗) ∀k ∈ K ∧ ∃k′ ∈ K : fk′(x) < fk′(x∗).

Feasible solutions which are not Pareto-dominated are called Pareto-efficient or alternatively Pareto-optimal.
The set of all Pareto-optimal solutions is called the efficient frontier.

Knowing what we are looking for, we will now derive two methods to find Pareto-optimal solutions.

4.3 Approximating the Efficient Frontier

Our goal is to locate Pareto-optimal points of problem (P4). However, finding all such points is compu-
tationally expensive, still matter of research [5] and does not yield much added value to the end user
in comparison to a small collection of representative solutions. Hence, we try to design parameterized
methods that yield such points and, if possible, distinct ones for varying parameters.

Blended Approach
The first approach optimizes a weighted sum of the objectives

max
x∈X

∑︂
k∈K

wkfk(x) (MCB[X , w,K])
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depending on weights ω := (ωk) ≥ 0. Conveniently, Gurobi provides this option natively via the
ObjNWeight attribute. By using different weights, we expect different solutions with diverse trade-offs.

Hierarchical Approach
For the second approach, we use Gurobi’s so-called Multi-Criteria Degradation environment to
find said collection of solutions. For some general multi-criteria problem (MC) it solves the sequence of
problems

max
x∈X

fk(x) (MCH[X , τ,≺, k,K])

s.t. fk′(x) ≥ fk′(x∗
k′)− τk′ |fk′(x∗

k′)| ∀k′ ≺ k

for all k ∈ K in a given hierarchical order ≺ defined by ObjNPriority, e.g. k′ ∈ [k − 1] for ≺ being <.
Here, x∗

k denotes the optimal solution to (MCH[X , τ,≺, k,K]) and τ := (τk) ≥ 0 are tolerances to be
specified by ObjNRelTol.

Concatenating both approaches and running them for different choices of weights ω, orderings ≺ and toler-
ances τ almost results in Algorithm 1. Namely, the next natural question is if all the solutions collected inX ∗

are actually Pareto-optimal. In fact, on their own, only the blended approach gives Pareto-optimal solutions
whilst we need to put more thought into the hierarchical one: Since (w.r.t. ≺) later objectives only receive
the optimal values of the previous maps as hard constraints, they are indifferent regarding the amount of
reduction as long as it is within the tolerance. Consequently, free potential might be lost when multiple solu-
tions provide the same fk(x

∗
k) but different fk′(x∗

k′) for k′ ≺ k, either by unfortunately choosing one with
low fk′(x∗

k′) values or by simply not optimizing otherwise untangled variables like cj or cj in the first place.

We solve this by fixing the optimal values after all objectives have been looped through in line 10 and
asking the previous objective in reverse order if they wasted potential given the current fk(x∗

k) values.
Having squeezed out all this otherwise lost head room, we finally add the solution to X ∗. That the above
considerations are valid, is the statement of the following theorem.

Algorithm 1 −Efficient Frontier Approximation
1: //Initialization
2: X := {(a, b, c, x, y, z) s.t. (10), ..., (22) hold}
3: K := {pref, skill}
4: X ∗ := ∅
5:
6: //Hierarchical Approach
7: for different ≺ and τ ≥ 0 do
8: for k ∈ K ascending in ≺ do
9: solve (MCH[X , τ,≺, k,K]) to get (a, b, c, x, y, z)∗k

10: end for
11: for k ∈ K descending in ≺ do
12: solve (MCH[X , 0,≻, k,K \ {max≺(K)}]) to get (a, b, c, x, y, z)∗k
13: end for
14: X ∗ := X ∗ ∪ (a, b, c, x, y, z)∗min≺(K)

15: end for
16:
17: //Blended Approach
18: for different w > 0 do
19: solve (MCB[X , w,K]) to get (a, b, c, x, y, z)∗
20: X ∗ := X ∗ ∪ (a, b, c, x, y, z)∗

21: end for
22:
23: //Visualization
24: Plot fk(X ∗) ∀k ∈ K

Theorem. After running Algorithm 1, X ∗ only contains Pareto-optimal solutions.

Proof. We have to distinguish between the hierarchical approach (MCH[X , τ,≺, k,K]) in lines 7-15 and
the blended approach (MCB[X , w,K]) in lines 18-21.
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• By contradiction, assume (a, b, c, x, y, z)∗ ∈ X ∗ to be Pareto-dominated by some (a, b, c, x, y, z) ∈
X . Then, due to wk > 0 for all k ∈ K, we see that (a, b, c, x, y, z)∗ would not be optimal for
(MCB[X , w,K]) in line 19 either. Hence (a, b, c, x, y, z)∗ ̸∈ X ∗ holds, yielding a contradiction.

• For contradiction, suppose (a, b, c, x, y, z)∗ ∈ X ∗ to be Pareto-dominated by some (a, b, c, x, y, z) ∈ X
and let k ∈ K be the largest index w.r.t. ≺ such that fk(a, b, c, x, y, z) > fk((a, b, c, x, y, z)

∗). Then,
(a, b, c, x, y, z)∗ would not have been optimal for (MCH[X , 0,≻, k,K] in line 12 and therefore been
overwritten before reaching line 14. Consequently, we derive (a, b, c, x, y, z)∗ ̸∈ X ∗ again.

Since X ∗ is empty initially and only Pareto-efficient solutions get added, we have shown the claim.

Our choice of weights ω, orderings ≺ and tolerances τ in lines 7 and 18 is shown in the next chapter. There,
we will also take a look at the visual approximation of the efficient frontier created in line 24.

5 Numerical Tests

In this section, we take a look at some initial numerical tests. The underlying implementation can be
accessed via https://github.com/lsmaerz/optimized_grouping.git. We start by explaining
the distribution of the artificial user data before motivating a normalization to impede strategic voting. In
the end, we state our success metrics utilized to assess the computed group and topic assignments.

5.1 Distribution Assumptions

For a precise description of our parameter distribution, we need some concepts from probability theory.

Definition. (Properties of Random Variables - c.f. [1]). (a) A family (ξi)i∈F of random variables (RVs)
ξi : (Ω,Σ,P) → (Ξ,Θ) is called identically distributed if it holds

P[ξi ∈ θ] = P[ξj ∈ θ] ∀θ ∈ Θ, i, j ∈ F .

In this case, we write ξi ∼ ξj for all i, j ∈ F .

(b) A family (ξi)i∈F of RVs ξi : (Ω,Σ,P) → (Ξ,Θ) is said to be independent if

P[ξi ∈ θi ∀i ∈ S] =
∏︂
i∈S

P[ξi ∈ θi] ∀S ⊆ F , |S| < ∞, θi ∈ Θ.

(c) A family (ξi)i∈F of RVs ξi : (Ω,Σ,P) → (Ξ,Θ) is called independent, identically distributed (i.i.d.) if it
satisfies (a) and (b).

(d) Let U [R] denote the uniform distribution for some measurable set R, especially R ⊆ Rn or R ⊆ N.

(e) Define 1Λ : Ω → {0, 1} with 1Λ(ω) = 1 if and only if ω ∈ Λ as the indicator function of a set Λ ⊆ Ω.

In the following, all RVs will be assumed to be independent and (pseudo) randomly generated with the
generic java class java.util.Random in a seed-based approach. The seed being determined by the
instance number, uniformity and comparability between the tested models is provided. The table below
summarizes the main assumptions employed in our NumericalTests class. They have been validated to
be realistic through Mr. Wildt’s experience as scientific assistant from previous courses at TU Darmstadt.

Param. Range Quantifier Distribution
pst [−1, 1] (s, t) ∈ S × T Ust · 1[−1,−0.5)∪[0.5,1)(Ust)

for Ust ∼ U [−1, 1) ∀(s, t) ∈ S × T
λs [0, 1] s ∈ S U [0, 1)
mt N0 t ∈ T 3
mt N0 t ∈ T 6
M t N0 t ∈ T 1[0,0.7/T )(U [0, 1))
M t N0 t ∈ T M t + 2
hi
s {0, 1} (s, i) ∈ S × I 1[0,pi)(U [0, 1])

for pi ∼ U [0.5, 0.6) ∀i ∈ I
hi N0 i ∈ I U{0, 1}
hi N0 i ∈ I U{3, 4, 5}
ejs [0, 1] (s, j) ∈ S × J U [0, 1)
σj (−∞, 0] j ∈ J U(−0.08, 0]
µj [0,∞) j ∈ J U [0, 0.05)
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The initialization of the matrix (qs,s′)s ̸=s′ is a process involving multiple steps that are stated in Algorithm
2. Intuitively speaking, it ensures that about 65% of participants already know somebody else prior to
the course. Such students are clustered in peer groups of sizes two, three or four and like each other
with qs,s′ ∼ U [0.5, 1). Additionally, for every non-befriended ordered pair of students there is a 3%
chance that the first feels averse towards the second. This is expressed in a negative social evaluation of
qs,s′ ∼ U(−1, 0.5].

Algorithm 2 −Initialization of Social Preferences
1: //Parameters
2: hateProb := 0.03
3: socialShare := 0.65
4: maxPeerSize := 4
5: pos := 1
6:
7: //Antipathy
8: for (s, s′) ∈ S2 : s ̸= s′ do
9: qs,s′ ∼ U(−1,−0.5] · 1[0,hateProb)(U [0, 1))

10: end for
11:
12: //Sympathy
13: while pos ≤ ⌊S · socialShare⌋ do
14: groupSize ∼ U{2, ...,maxPeerSize}
15: for (s1, s2) ∈ {0, ..., groupSize− 1}2 : s1 ̸= s2 do
16: qpos+s1,pos+s2 ∼ U [0.5, 1)
17: end for
18: pos := pos + groupSize
19: end while

Figure 4 illustrates a matrix instance constructed by Algorithm 2. It also depicts one exemplary initialization
of the topic preferences.

(a) Matrix (qs,s′ ) (b) Matrix (pst)

Figure 4: Instances of random matrices (qs,s′) and (pst) for S = 20 and T = 10

As for the orderings ≺, tolerances τ weights ω in Algorithm 1, we loop through both possible orderings,
pick τ ∈ {0.5, ..., 0.9} and

ω = (ωpref, ωskill) ∈ {(1, 2r) : r = 0, ..., 3} ∪ {(2r, 1) : r = 0, ..., 3}.

In addition, we set I := 2 and J := 3 as motivated in Section 4.1. This sums up to 17 combinations for
one frontier approximation, representing one ’Frontier’ instance in Figure 5. Summarizing them across
different problem instances instead, results in the numerical results for (P4) called ’Multi’ in Figure 5.

5.2 Normalization of User Input

Looking at the parameter choices above, we implicitly suppose all participants to provide honest topic and
social preferences. However, this might not be case for individuals voting strategically. In that case, one
might exaggerate preferences by setting the q-values to one for friends and minus one for everyone else.

13



To discourage such behaviour, we employ the following ℓ1-normalizations.

q̃s,s′ ↦→ qs,s′ :=

{︄ q̃s,s′∑︁
s′ ̸=s |q̃s,s′ |

if
∑︁

s′ ̸=s |q̃s,s′ | > 0,

0 else
∀(s, s′) ∈ S2 : s ̸= s′

p̃st ↦→ pst :=

{︄
p̃st∑︁

t∈T |p̃st|
if
∑︁

t∈T |p̃st| > 0,

0 else
∀(s, t) ∈ S × T .

So, more extreme ratings in absolute terms get encountered by antiproportional dilution effects. This
results in everybody having one vote in absolute terms which is distributed according to λs between
social and topic preferences. Also be aware that the basic models (P1) and (P2) were run with binary
qs,s′ ∈ {0, 1} which were obtained by the translation

qs,s′ ↦→

{︄
1 if (qs,s′)s′ ̸=s ̸⊆ (−∞, 0] and s′ = max (argmaxi(qs,i)) ,

0 else
∀(s, s′) ∈ S2 : s ̸= s′.

However, for the numerical evaluationmetrics, we assume the students to have continuous social preferences
qs,s′ ∈ [0, 1] but being forced to make a binary decision by using the above method. Therefore, we will
apply the success metric (24) to the assignment results computed by (P1) and (P2) on the basis of binary
qs,s′ ∈ {0, 1}. Doing so, we include possible information losses from the smaller user input range into our
considerations.

5.3 Success Metrics

The four metrics considered aim to measure our success at reaching our introductory goals listed in Table
1. Note that for the two basic models (P1) and (P2), we equivalently replace

∑︁
g∈G as,s′,g by xs,s′ in the

quantities below, respectively. We distinguish average social satisfaction

1

S

∑︂
s∈S

∑︂
s′>s

(︄
(qs,s′ + qs′,s)

∑︂
g∈G

as,s′,g

)︄
∈ [−1, 1], (24)

average topic satisfaction
1

S

∑︂
s∈S

∑︂
t∈T

(︄
pst
∑︂
g∈G

bsgt

)︄
∈ [−1, 1], (25)

skill distribution gaps
cj
cj

∈ [0, 1] ∀j ∈ J , (26)

and skill diversity value∑︁
s∈S

∑︁
s′>s

(︂⃓⃓
ejs − ejs′

⃓⃓∑︁
g∈G as,s′,g

)︂
∑︁

s∈S
∑︁

s′>s

∑︁
g∈G as,s′,g

∈ [0, 1] ∀j ∈ J . (27)

Note that (24) and (25) measure the exact quantity maximized in (P3) and (P4) whilst (26) and (27)
measure their respective goals differently to the objective in (P4). There are multiple reasons for this:

• Both (26) and (27) are normalized to the unit interval, making comparisons between different
solutions easier. Despite these advantages, we chose the linear representation in (P4) to profit from
the lower complexity of MILPs compared to MINLPs.

• In the case of the skill distribution gaps, the non-linear ratio in (26) again seems to be more telling
than the difference cj − cj since it disregards absolute levels of cumulative competence.

In contrast, the modifications done to obtain (27) solely serve normalization purposes as the quotient is still
difficult to relate to a tangible real life quantity. At best, it can be interpreted as the achieved share of the
maximum theoretic diversity. It reaches its theoretical maximum value of one if and only if

⃓⃓
ejs − ejs′

⃓⃓
= 1

for all group members of any group w.r.t. to skill j. Hence, as soon as a group contains more than two
members, one cannot obtain a skill diversity value of one by the triangle inequality.
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5.4 Numerical Results

We applied these metrics to randomly generated problem instances of (P1) to (P4) according to Sections
5.1 and 5.2. The tests ran on these hardware and software specifications:

• MIP-Solver: Gurobi Optimizer version 10.0.0 build v10.0.0rc2 (win64)

• CPU model: AMD Ryzen 5 5600X 6-Core Processor, instr. set [SSE2|AVX|AVX2]

• Thread count: 6 physical cores, 12 logical processors, using up to 12 threads

• Coded in Java (JDK 19) on Eclipse Editor 2022-12

We made sure that Gurobi made use of all available threads. The following table gives an overview over
the results.

Figure 5: Numerical results for Problems (P1) to (P4) and Algorithm 1 across N iterations

Moreover, the plots below showcase the efficient frontier approximations computed by Algorithm 1.

(a) S = 20, T = 10, Seed = 0 (b) S = 30, T = 10, Seed = 1

Figure 6: Efficient frontier approximations (fpref, fskill)(X ∗) from Algorithm 1

There are multiple interesting conclusions to be drawn from Figures 5 and 6:

• The runtime of all models grows in T and more dramatically in S which came to be expected when
looking at the scaling of the number of variables and constraints w.r.t. to them. Additionally, each
model takes much more time than its respective predecessor to an extent where it throws off the
conditional coloring which is why we omitted it for (P4) and Algorithm 1. However, all instances of
all models terminated after at most 7.12 hours, as demanded in the introduction.
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• The social satisfaction consistently falls as S increases. This arguably comes from our distribution
assumptions on (qs,s′) in Algorithm 2. There, we established everybody to have between zero and
three friends and a probability of 3% to dislike each of the others. Consequently, the number of
people a given student has no preference to or even hates, grows proportionally in S whilst the
number of peers remains bounded above in a constant manner.

• The topic satisfaction appears to correlate positively with the ratio S/T . This is possibly rooted in
our assumption that social preferences are clustered in peer groups but topic preferences do not
correlate with them. Hence, simply having less topics to choose from causes a larger topic preference
overlap within friend groups.

• The skill gap values, quantifying distributional fairness among groups, shrink even faster with S
than the social satisfaction. This can be attributed to the increasing number of groups, seemingly
making it harder to keep all of them around an average cumulative skill level. Penalizing unfair skill
gaps dampens this reduction when comparing (P1) to (P3) with (P4).

• Conversely, diversity must be rewarded to be increased as the same comparison as before shows.

• These equality and diversity benefits come at the cost of reduced social and topic happiness, as
comparing (P1) to (P3) with (P4) again, indicates.

The last three bullet points insinuate that our extensions to obtain (P4) are to some degree effective in
terms of finding a compromise between improving equality and diversity while keeping social and topic
preferences. The precise trade-off is depended on the parameter choices made.

5.5 Problems During Testing

To obtain the previously discussed results, we had to overcome numerous problems over the course of our
numerical tests. The three most significant ones and our counter measures are explained here.

Infeasible Random Instances
The distribution assumptions from Section 5.1 sometimes yielded infeasible instances since there was no
assignment obeying the given bounds on the size (16) and number of occurrences (17) whilst simultane-
ously fulfilling the hard skill constraints (18) and (19). We fixed this by slightly loosening the parameters
in the aforementioned constraints and slightly modifying instances with extreme distributions in hi

s by
increasing or reducing the number of students with hi

s = 1.

Tuning of Parameters
During testing, we faced to problems described in Q4 of Section 6.1 regarding σj and µj . We coped with
them by a simple trial-and-error procedure, i.e. iteratively solving instances, analyzing success metrics on
the efficient frontier and adapting the parameters until reaching satisfactory trade-offs in the results as
described in A4.

Long Runtime for Frontier Approximation
As we recognized in Section 5.4, the runtimes for (P4) as stand-alone and as part of Algorithm 1 explode
even for moderate S and T . Tracking the computation process revealed that the majority of that time gets
spend on the third and therefore last step of the pyramid approach of Algorithm 1. The console output
showed that this problem has very few feasible solutions as the non-degradation constraint (due to τk = 0)
from the previous step is very restricting. As a consequence, Gurobi heuristically finds good solutions
quickly and fails to improve them significantly later. Instead, mostly the dual bound is reduced while the
primal one stays still.

As counter measures, we set time limits proportional to the maximum running time provided by the user for
each of the three pyramid steps and forced Gubrobi to solely focus on finding better feasible solutions after
65% of the total time has elapsed by setting the ImproveStartTime parameter accordingly. Additionally,
we vastly increased the duality gap to 10% as the dual bound remained high due to the strategy change.
Despite these radical measures, the efficient frontier approximation remained in large parts convex and
smooth as can be seen in Figure 6. Asking Gurobi for other tuning suggestions via the tune method,
resulted in different recommendations for different instances. Since none of them provided significant or
universal improvements, we did not incorporate them permanently into the final code.
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6 Discussion and Outlook

In this chapter, we want to answer possible questions that might occur and take a step back to consider
which modelling choices we made that deserve reconsideration.

6.1 Discussion

Q1 Why not merge topics and groups to reduce models (P3) and (P4), i.e. why does the intermediate
group layer exists and how is G chosen?

A1 As motivated in Section 3.1, certain topics might require a larger head count than others. This was the
reason we introduced topic-specific bounds on the group size via integers mt and mt. Consolidating
groups and topics would not allow for that. In analogy, we gave reasons why setting a minimum or
maximum number of topic occurrences could be useful. A simplified two-layer model would actually
allow for replicating M t, by creating as many groups with that topic and making them mandatory
via zg = 1, and also M t by the same idea but not externally setting zg to some value. Omitting the
middle layer would also spare the need for calculating G which is done by G := S/mint∈T mt and
generally causes excessive groups to exists. So, simplifying the model is a reasonable idea yielding a
smaller model but with less customization options.

Q2 How to gather student data without subconsciously influencing the professor’s evaluation of their
assignments?

A2 One way to enable anonymous voting is via pseudonymized ballots. More concrete, the professor
hands out ballots with unique codes on them. After voting and calculating, the professor publishes
the results using the pseudonyms. Hence, all students know their respective group and topic via
their code they remembered. A more frictionless approach without anonymity would be to organize
voting via a software like Moodle, allowing a direct export of the results into Excel where the
models read in the parameters. Assuming the professor to be neutral, we advise using the latter for
simplicity reasons.

Q3 Does showing the optimization problem to the students enable strategic voting?

A3 Via the ℓ1-normalization technique of Section 5.2, we prevent strategic voting by the means of
exaggeration. However, showing Problem (P4) to the participants might allow them to deduce
a different manipulation idea: Peer group collusion, i.e. aligning social and topic preferences
within cliques, inclines the model to cluster them into the same group. Additionally and even more
undesirable, individuals could intentionally underestimate their skills ejs to promote solutions where
they have more experienced group members since the model is rewarded for that twofold: On the
one hand for cumulative skill equality and on the other hand via relative skill diversity between
the alleged unskilled and skilled. Consequently, we recommend keeping the optimization problem
largely private.

Q4 What are appropriate choices for the parameters σj and µj in fskill?

A4 To motivate this question, it is helpful to revise the definition fskill in (23) in contrast to fpref. We see
that in fpref one has a natural normalization 1/S of both summands and an individual weighting
λs between them. Neither of these two properties hold for fskill since - as discussed in Section 5.3 -
there is no obvious linear normalization in the objective and therefore the professors choice of σj

and µj is not trivial. Beyond that, the term punishing inequality scales less dramatic in the average
group sizes than the diversity term where each added group member provides

⃓⃓
ejs − ejs′

⃓⃓
values

relative to all the existing members. So one cannot simply copy parameter choices from one seminar
to another. All in all, problem instances are often alike w.r.t. desired group sizes and relevance of
equality versus diversity. Therefore, our tuned choices in Section 5.1 provide a rough magnitude
and good starting point for own tuning dedicated to a particular instance.

Q5 Which model to use in which use case?

A5 Building upon the previous answer, we clearly recommend Problem (P4) to users with some amount
of experience and patience for tuning σj and µj , for picking a solution from the efficient frontier
approximation and also for the runtime itself. If diversity and equality are particularly relevant, this
method is without alternatives as our numerical results demonstrated. On the flip side, models (P2)
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and (P3) are more straightforward. As runtimes remain below ten seconds either way, we universally
recommend using (P3) even if there are no topics to be assigned. In that case, providing one dummy
topic and λs = 1 for all s ∈ S boils the model down to the functionality of the basic one whilst still
enabling granular social preferences qs,s′ ∈ [0, 1].

Q6 How does the concrete workflow look like when applying the algorithms?

A6 The user enters all parameter choices into a preformatted Excel file. In the Java class StartHere,
one inserts the corresponding source path, destination path and chooses the model to be solved.
Then, a new Excel file with the results will be generated at the specified location. For running your
own numerical tests or checking the existing ones, we refer to the Java class NumericalTests.
Figure 7 visualizes this process and the involved software.

Figure 7: Schematized workflow for application and testing

6.2 Outlook

Beyond these questions, there are many other worth investigating in the future, among them:

Q7 How accurate are students’ self-assessments regarding prior experience ej in (P4)? Being a deeply
psychological question, further examining of pertinent literature is necessary.

Q8 How sensitive is the running time w.r.t. I and J? Preliminary results show a low dependence but
more thorough testing is necessary for validation.

Q9 Are there other important proxies of group performance that cannot be expressed appropriately in
the model frameworks we developed?

Q10 Does modifying fskill in (23) to

fskill(x, y) :=
∑︂
j∈J

(︄
σj(cj − cj) + µj

∑︂
s∈S

∑︂
s′>s

(︄⃓⃓⃓
ejs − ejs′

⃓⃓⃓r∑︂
g∈G

as,s′,g

)︄)︄

for some r > 1 yield different success metric values, especially diversity values?

Q11 Are there more telling or appropriate ways to measure skill equality and diversity, ideally in a linear
and possibly normalized manner?

Q12 Does applying our software in a real case yield satisfactory results for all stakeholders mentioned in
the introduction?

Despite surpassing the scope of this paper, all the above open questions deserve additional attention as
their answers might give additional insights and allow for prospective model improvements.

7 Conclusion

In this paper, we considered the problem of assigning participants into groups and topics to said groups in
an educational context. Doing so, we took social preferences, topic interests, prior experience, skills and
other properties into account. We strived for a maximization of social and topic satisfaction whilst ensuring
that the skills and experiences are distributed equally among and diverse within groups. To this end, we
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constructed a sequence of MIPs (P1) to (P4) of increasing functionality and customizability leading to
Algorithm 1 which approximates the efficient frontier of described multi-criteria problem. This gives the
user a concise collection of efficient trade-offs between the objectives entered.

We kept user friendliness in mind by keeping the majority of the user data input work within instructive
Excel sheets whilst all computations are managed via Java communicating with the Gurobi solver. This
reduces the user interaction with the programming code to a minimum. Initial numerical tests, utilizing
heuristically parameterized and randomly generated artificial user data, suggest computational tractability
and provide approximately Pareto-efficient solutions for moderate instance sizes. Practical testing and
evaluation of stakeholder feedback remains subject to the implementation of our software in a real world
educational environment.

A pre-recording of the accompanying seminar presentation to this paper can be accessed via https:
//youtu.be/xTif4Ucr4Cg with additional details on Chapter 6 under https://youtu.be/II4A_
9FQLZY.
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