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ABSTRACT

A key feature of intelligent behaviour is the ability to learn abstract strategies that scale and transfer to unfamiliar problems.
An abstract strategy solves every sample from a problem class, no matter its representation or complexity — like algorithms
in computer science. Neural networks are powerful models for processing sensory data, discovering hidden patterns, and
learning complex functions, but they struggle to learn such iterative, sequential or hierarchical algorithmic strategies. Extending
neural networks with external memories has increased their capacities in learning such strategies, but they are still prone
to data variations, struggle to learn scalable and transferable solutions, and require massive training data. We present the
Neural Harvard Computer (NHC), a memory-augmented network based architecture, that employs abstraction by decoupling
algorithmic operations from data manipulations, realized by splitting the information flow and separated modules. This
abstraction mechanism and evolutionary training enable the learning of robust and scalable algorithmic solutions. On a
diverse set of 11 algorithms with varying complexities, we show that the NHC reliably learns algorithmic solutions with strong
generalization and abstraction: perfect generalization and scaling to arbitrary task configurations and complexities far beyond

seen during training, and being independent of the data representation and the task domain.

Introduction

A crucial ability for intelligent behaviour is to transfer strate-
gies from one problem to another, studied, for example, in
the fields of lifelong and transfer learning' . Learning and
especially deep learning systems have been shown to learn
a variety of complex specialized tasks®~'°, but extracting the
underlying structure of the solution for effective transfer is an
open research question”.

The key for effective transfer, and a main pillar of (human)
intelligence, is the concept of structure and abstraction' =13,
To study the learning of such abstract strategies, the concept of
algorithms like in computer science'* is an ideal example for
such transferable, abstract and structured solution strategies.

An algorithm is a sequence of instructions, which often
represent solutions to smaller subproblems. This sequence of
instructions solves a given problem when executed, indepen-
dent of the specific instantiation of the problem. For example,
consider the task of sorting a set of objects. The algorithmic
solution, specified as the sequence of instructions, is able to
sort any number of arbitrary classes of objects in any order,
e.g., toys by colour, waste by type, or numbers by value, by us-
ing the same sequence of instructions, as long as the features
and comparison operators defining the order are specified.

Learning such structured, abstract strategies enables the
effective transfer to new domains and representations as the
abstract solution is independent of both. In contrast, transfer
learning usually focuses on improving learning speed on a new
task by leveraging knowledge from previously learned tasks,
whereas algorithmic solutions do not need to (re)learn at all,
only the data specific operations need to adapt. In other words,

the sequence of instructions does not need to be adapted, only
the instructions, i.e., the solutions to smaller subproblems.
Moreover, such structured abstract strategies have built-in
generalization capabilities to new task configurations and
complexities, and can be interpreted better than, for example,
common blackbox models like deep end-to-end networks.

The Problem of Learning Algorithmic Solutions

To study the learning of such abstract and structured strategies,
we investigate the problem of learning algorithmic solutions
which we characterize by three requirements:

* R1 - generalization and scaling to different and unseen
task configurations and complexities

* R2 - independence of the data representation
* R3 - independence of the task domain

Picking up the sorting algorithm example again, R1 repre-
sents the generalization and scaling properties, which allow to
sort lists of arbitrary length and initial order, while R2 and R3
represent the abstract nature of the solution. This abstraction
enables the algorithm, for example, to sort a list of binary
numbers while being trained only on hexadecimal numbers
(R2). Furthermore, the algorithm trained on numbers is able
to sort lists of strings (R3). If R1 — R3 are fulfilled, the algo-
rithmic solution does not need to be retrained or adapted to
solve unforeseen task instantiations — only the data specific
operations need to be adjusted.

Earlier research on solving algorithmic problems was done,
for example, in grammar learning'>~!7, and is becoming a
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Figure 1. The neural harvard computer architecture. Information flow is divided into data (green) and control (orange) streams. The
modules inside the light grey area — the controller, the memory and the bus — are learning the algorithmic solution on the control stream,
whereas the data modules are either learned beforehand or hand-designed. The algorithmic solution operates solely on the control stream to
steer the data access and manipulation, whereas the learning signal can be provided on any connection in the architecture (data or control) due
to the evolution based training. Inside the memory module the learnable interfaces which control the data access to the two memory matrices
are shown. Sign and magnitude of vectors are shown as the colour and size of the boxes and circles.

more and more active field in recent years outside of it!8-32

with a typical focus on identifying algorithmic generated
patterns or solving algorithmic problems in an end-to-end
setup'®27, and less on finding algorithmic solutions*®=3? that
consider the three discussed requirements R1 — R3 for gener-
alization, scaling and abstraction.

While R1 is typically tackled in some (relaxed) form, as
it represents the overall goal of generalization in machine
learning, the abstraction abilities R2 and R3 are missing. Ad-
ditionally, most algorithms require a form of feedback, using
computed intermediate results from one computational step
in subsequent steps, and a variable number of computational
steps to solve a problem instance. Thus, it is necessary to be
able to cope with varying numbers of steps and determining
when to stop, in contrast to using a fixed number of steps>!'-33,
and to be able to re-use intermediate results, i.e., feeding
back the models output as its input. These features make the
learning problem even more challenging.

The Neural Harvard Computer

The proposed Neural Harvard Computer (NHC) is a modu-
lar architecture that is based on memory-augmented neural
networks!>—21:23:24.27-29.33-39 anq inspired by modern com-
puter architectures (see Figure 1 for a sketch of the NHC).

Memory-augmented networks add an external memory to a
neural network, that allows to separate computation and mem-
orization — in classical neural networks both is encoded in the
synaptic weights.

The external memory can be realized differently, e.g., as a
memory matrix20, tapf:23, stack!®, and the so called controller
network can write and read information through a defined
interface, that controls the memory access, e.g., moving the
head one step to the right for a tape memory, or pop the top
information in a stack memory. In the NHC the external mem-
ory is realized as a matrix and interaction with the memory
is done via write and read heads, similar to the Differential
Neural Computer’’. These heads interact with the memory by
writing or reading information into or from the memory ma-
trix, where each row corresponds to a memory location with a
specified word size, i.e., length of the information vector.

Information Split Learning algorithmic solutions requires
the decoupling of algorithmic computations from data depen-
dent manipulations and domain. Therefore, an abstraction
level is introduced by dividing the information flow into two
streams, data d and control stream c. Like the introduction
of external memories to neural networks helps to separate
computation and memorization, the information flow split
helps to separate algorithmic computations and data specific
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Figure 2. Overview of the learned algorithms. All considered algorithms to learn are shown with their pseudocode, how their curriculum
level complexity is defined, how the step complexity scales with the level, and examples from indicated levels. Note, the step complexity
indicates the runtime complexity and only considers the steps after the input data is shown, neither taking the complexity of the data
manipulation into account, nor the structure learning required while the input data is presented.

manipulations.

This information split induces two major features of the
NHC: (1) the split into data modules that operate on the
data stream d and algorithmic modules that operate on the
control stream ¢, and (2) the introduction of two coupled
memories. The algorithmic modules operate on the control
stream c, i.e., AlgModule(c) — ¢, whereas the data mod-
ules Input and ALU are operating on the data stream d, i.e.,
DataModule(d,c) —> d,c. They create an abstract interface
and separation between algorithmic computation and data
specific processing. While the Input module receives the ex-
ternal data and provides algorithm specific control signals,
the ALU receives data and control information to manipulate
the data to create new data — hence the name arithmetic logic
unit — that is fed back to Input to be available in the next
computation step. These two modules are data specific and

need to be adapted for a new data representation or domain.

Algorithmic Modules The algorithmic modules consists of
the Controller, Memory and Bus. These modules form the core
of the NHC (see Figure 1) and are responsible for encoding
and learning the algorithmic solution based on the control
stream c.

The Controller receives the control signals from the Input
and the information read from the memory in the previous step
— depending on the task to learn, it can also receive feedback
from the Bus and ALU. It learns an internal representation
of the algorithm state that is send to the Memory and Bus
modules.

The Memory module uses this representation in addition
to the control signals from the Input to learn a set of inter-



faces for interacting with the memory matrices. These learned
interfaces control the write and read heads and hence, what in-
formation is accessed. First the locations read in the previous
step are potentially updated (prev), then new information is
written via the write heads (write), and finally the read heads
read information (read) that is send back to controller and the
Bus. Write and read heads are using hard decisions, i.e., each
head interacts with one memory location.

The abstraction introduced by the information split also
creates the necessity to store data and control information
separately. Therefore, the Memory module uses two memory
matrices M€ : N x C and M? : N x D to store the control and
data information respectively, with N locations, and C and D
the word size accordingly. The two memories are coupled
such that in each step the same locations are accessed. This
allows to store algorithmic control information alongside the
data information. New information is written via the write
heads to unused memory locations, and locations can be freed
by free gates to be reused. For reading information from the
memory, there are several read modes to steer the read heads.

The HALT modes move the read head to the previously
read location of the associated head. For example, with two
read heads, each head can use the modes HI and H2 to move
to the location previously read by the corresponding head.

To read data in the order of which it was written, the DNC
introduced a temporal linkage mechanism that keeps track of
the order of written locations. The NHC uses a simplified ver-
sion of this temporal linkage. This temporal linkage provides
two read modes, one to move the read head forward to the
location that was written next (F), and one to move the head
backwards to the location that was written before (B).

Algorithms often require hierarchical data structures or de-
pendencies. To provide such dependencies, the NHC employs
an ancestry linkage mechanism. This mechanism keeps track
for each written location, which location was read before.
Therefore, this mechanisms provides two read modes, one to
move the read head to the parent (P), the location that was
read before, and one to move the read head to the child (C),
the location that was written.

The Bus combines the representation learned by the Con-
troller with the information read out from the Memory to
produce the control signal that is send to the ALU, indicating
which operation to apply on the read data. By using the infor-
mation read from memory, the Bus can incorporate this new
information in the same computational step.

Learning Algorithmic Solutions

For evaluating the proposed NHC on the three algorithmic
requirements R1 — R3, a diverse set of algorithms was learned
and the solutions were tested on their generalization, scaling
and abstraction abilities.

The 11 learned algorithms solve search, plan, addition, sort-
ing, evaluating arithmetic expressions, and sequence retrievals
problems. In Figure 2 all 11 algorithms are sketched with their

pseudocode and examples (more details can be found in the
Supplementary Information).

Learning is done in a curriculum learning setup*’, where
the complexity of presented samples increases with each cur-
riculum level. During learning, samples up to curriculum
level 10 are considered, with an additional level 11 that sam-
ples from all previous levels. Generalization and scaling is
tested on complexities up to level 1000. The direct transfer is
tested by transferring the learned solutions to novel problem
representations.

Learning Procedure Overview
The algorithmic modules, encoding the algorithmic solution,
are learned via Natural Evolution Strategies (NES)*!. In each
iteration ¢, a population of P offspring (altered parameters 6,)
is generated, and the parameters are updated in the direction of
the best performing offspring. Parameters are updated based
on their fitness, a measurement that scores how well the off-
spring perform. Such optimizers do not require differentiable
models, giving more freedom to the model design, e.g., using
non-differentiable hard memory decisions®* and instantiating
the modules freely and flexible.

An update at iteration ¢ + 1 of the parameters 6 with learn-
ing rate & and search distribution variance ¢ is performed as
6;+1 = 6; + Vg, with the sampled NES gradient given as

P

1 0
Vo Eenon [f(0: +08)] ~ Po Y f(6)si .
o=1

Hence, parameters are updated based on a performance-
weighted sum of the offspring. Here, the fitness function
f () scores how many algorithmic steps were done correctly —
if the correct data was manipulated in the correct way at the
correct step. These binary signals for each step are averaged
over all steps and all samples in the minibatch to get a scalar
fitness value. This results in a coarse feedback signal and
harder learning problem in contrast to gradient based training,
where the error backpropagation gives localized feedback to
each parameter.

For all algorithms, generalization and scaling (R1) was
tested in two ways. First, testing for scaling to more complex
configurations is integrated into our learning procedure, and
second, the solutions were tested on complexities far beyond
those seen during training.

A curriculum level is considered solved after a defined
number of subsequent iterations with maximum fitness, i.e.,
with perfect solutions where every bit in every step is correct.
When a new level is unlocked, samples with higher complexity
are presented and hence, if the fitness stays at maximum, the
acquired solution scaled to that new complexity. Learning
is only performed in iterations which do not have maximum
fitness.

In addition to this built-in generalization evaluation, the
learned solutions were tested on complexities far beyond seen
during training, i.e., corresponding to curriculum levels 100,
500 and 1000, while being trained only up to level 10.
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Figure 3. Learning overview of all 11 learned algorithms. (7op) The last curriculum level that triggered learning, i.e., where the last
mistake occurred, is shown as the median (black line), the interquartile range (box) and outliers (plus). The shaded area shows the probability
density of the data. All algorithms are learned within the first few levels and the solution generalizes to higher levels. (Bottom) The number of
training iterations per curriculum level is shown. The coloured numbers indicate the percentage of runs that triggered learning in each level.
Learning occurs in the first levels, mostly within the first two, and subsequent levels only need a small amount of iterations to adapt, if at all.
The total iterations show median and distances to the interquartile range of the total number of learning iterations. Results are obtained over

15 runs for each algorithm.

Learning Results

Learning results on all 11 algorithms are presented in Fig-
ure 3, Table 1 and the Extended Data Figure Ex.1, where all
results are obtained over 15 runs of each configuration, and
Figure 5 illustrates the learned algorithmic behaviour for four
algorithms.

In Figure 3, we illustrate in which curriculum levels learn-
ing was triggered. The top row shows the last level in which
training was triggered, the last level were an error occurred,
indicating that learning only occurs in the first levels and
solutions generalize to subsequent levels, i.e, to higher com-
plexities. This can be observed for all 11 algorithms reliably
over all runs. In the bottom row, we investigated in how many
iterations learning was observed in each level and in total.
This highlights the fact that most training happens in the first
levels, and subsequent levels only need a few iterations to
adapt, if at all. The total number of learning iterations high-
lights the efficient training in terms of samples. This measure
provides an indicator for the task complexity, i.e., for sorting
9016 iterations caused network updates, whereas copying is
less challenging and only required 814 iterations of network
updates.

In Table 1 more details of the learning, the generalization
and scaling evaluation for R1, and comparison methods are
shown. The last level entry shows the last level triggering
learning alongside the last level that was solved successfully,

highlighting that all runs for all algorithms were able to solve
all 11 training levels while triggering learning only in the
first levels. Next, the table shows the results on testing the
solutions on complexities far beyond those seen during train-
ing. Each run was presented 50 samples from the associated
level (20 samples for sort levels 500 and 1000 due to runtime
scaling).

For the majority of algorithms, all runs generalized per-
fectly to complexities up to level 1000. In the harder tasks,
like sorting, some runs fail for perfect generalization, still
performing well and the majority of runs also shows perfect
generalization. Note that, a sample from level 1000 in the sort
task requires over 1 million perfect computational steps to be
considered solved. The performances below 100% for some
runs can be explained with the mechanisms of the previous
write head. The model has to learn if the previously read loca-
tion should be updated and with which information, without
explicit feedback on these signals. Thus, an update mech-
anism that learned to slightly update the previous location
works fine on shorter sequences (like seen during training),
but the small changes accumulate on longer sequences and
may result in wrong behaviour. A possible solution would
be to add feedback to this signals during training if it can be
provided.

Overall, the results summarized in in Figure 3 and Table 1
show that the solutions learned by the NHC fulfil the algorith-
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Table 1. Evaluation and Comparison. Shown are results over 15 runs for each algorithm and model. Triplets like 5 *} show median and
distances to the interquartile range. Iterations refers to the number of learning iterations. The two last level triplets show the last learning
level (left) and the last solved level (right). The two percentages in /level X indicate the amount of perfect runs (left), i.e., runs that solved
all presented samples, and the amount of solved samples over all runs (right). All NHC variants and the DNC+is+ha model are using the
information split and data modules, and are trained with NES. The original DNC is trained in a supervised setting with backpropagation.

mic requirement R1 of generalization.

Comparison For comparison we trained four additional
models. First, the DNC2? model as a state-of-the-art memory-
augmented neural. This model is trained in a supervised
setting with backpropagation, i.e., having a much richer and
localized learning signal. It was able to learn some of the base-
line algorithms up to level 5, like addition, copy and reverse,
but failed in earlier levels in the remaining tasks, despite being
trained for 500k iterations. Notably, the DNC struggled with
those tasks requiring to reuse intermediate results or iterating
over the data multiple times.

Second, we integrated the DNC into the NHC architecture
by replacing the algorithmic modules of the NHC — controller,
memory, bus — with the original DNC. This DNC+is+ha
model uses the same data modules and is trained like the
NHC with NES. It performs notably better than the DNC,
indicating the help of the proposed abstraction mechanisms
and the evolutionary training. Nevertheless, it still is not able
to generalize comparable to the NHC and struggles with the
same algorithms as the DNC. More details on these com-
parisons and their learning are given in the Supplementary
Information.

Next, we removed the proposed ancestry linkage (NHC-
anc) and the previous location update (NHC-prev) to evaluate
their influence. To counter the removed update head, the
NHC-prev model uses two write heads, enabling it to learn
a similar update mechanism. Both models perform better

than the DNC+is+ha and are able to learn the majority of
algorithms and even achieve perfect generalization in some,
strengthening the importance of the evolutionary training and
highlighting the influence of the proposed mechanisms. The
performance of the two ablation models depends on the algo-
rithm to learn, i.e., if the algorithm requires the hierarchical
knowledge provided by the ancestry linkage or the updating
of previously read locations. Notably, both mechanisms are
required to learn the search and plan algorithms.

These results suggest that the evolutionary training with
the proposed abstraction mechanisms and the new memory
module are key ingredients for reliably learning algorithmic
solutions that generalize and scale, and hence, fulfilling R1.

Transfer of the Learned Algorithmic Solutions

Next, we evaluated the ability to generalize the learned solu-
tions to new problem instantiations, testing the requirements
R2 (independence of the data representation) and R3 (inde-
pendence of the task domain). Therefore, the algorithmic
solutions were tested on unseen data representations and task
domains. For these transfers, the learned algorithmic modules
were used with adapted data modules for the new setups.

In Figure 4 all transfers are illustrated, showing the training
setup and the successful transfers. The transferred solution
solved all 11 curriculum levels in the new setup without trig-
gering learning once, i.e., no single error occurred.

For search and plan, we investigated if the strategy learned
in sokoban could be transferred to bigger environments, to a
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Figure 4. Overview of the transfers of the learned algorithms. To show the abstract nature of the learned algorithms, each learned
algorithm was transferred and tested on at least one different data representation or domain. All transfers were successful, i.e., the learned
algorithm solved all samples in the new domain without triggering learning of the algorithmic modules, indicating the fulfilment of R2-R3.

different data representation, to a sliding puzzle problem, and
to arobot manipulation task. The solutions were learned in 6 x
6 environments, and could perfectly solve 8 x 8 environments
and a changed encoding of the environment, e.g., the penguin
represents a wall instead of the agent (see Figure 4). In the
3 x 3 sliding puzzles, the white space represents empty space
on which adjacent tiles can be moved to. In the robotic setup,
the task is to rearrange the four stacks of boxes from one
configuration into another.

The addition, sort and the baseline algorithms — copy, re-
peatCopy, reverse, duplicated — were trained on binary num-
bers and were successfully transferred to decimal numbers.

The arithmetic algorithm was trained on decimal arithmetic
and was transferred to a boolean algebra. As the atomic
operations [+, —, *, /] are part of the data input sequence, the
solution is independent from the number of atomic operations,
shown by having only two atomic operations AND & OR in
the boolean algebra setup.

Limitations and Assumptions In our transfer experiments,
we assumed the same number of operations available for the
ALU and adapted data modules. The number of operations
needs to be the same as these, together with the control signals
from the Input, form the abstraction interface between data
and algorithmic modules. This can be relaxed either by includ-
ing the domain specific operations into the data sequence, as
shown with the arithmetic transfer, or by extending the inter-
face between Bus and ALU. The learned algorithmic solution
is represented by the Controller, Memory, and Bus, which
encode the abstract strategies fulfilling R1-R3, building on
the data modules implementing the abstract interface. As the
data modules are domain and representation dependent, they
need to be relearned or handcrafted for new setups. Typically
learning these modules is less complex than learning a new
algorithm as they solve smaller subproblems (and often can
be hardcoded), and is a benefit of the modular architecture
with its abstraction mechanism and the evolutionary training.
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Figure 5. Learned algorithmic behaviour of the NHC. The learned behaviour for four algorithms solving the examples shown at the top
is illustrated. Shown are the written and read memory locations, the used read mode for each read head, and the operation signal sent to the
ALU. First an example from the (plan+) task. The algorithm first builds the search tree by applying all applicable operations in a state and
then shifts reading to the next state until the goal is found, then it backtracks the solution. Next an example from the (addition) task. First, the
two numbers to be added are presented after each other and are just stored. Then the two numbers are traversed from the low to the high end
in parallel, adding the corresponding digits including possible carry bits. Next an example from the (sort) task. After reading the unsorted list,
the algorithm iterates over the list, finding and outputting the smallest element in each iteration. Lastly an example from the (arithmetic) task.
In the arithmetic task, the free gates were activated and the model learned to reuse memory locations in order to emulate the behaviour of a
stack. The read heads always keep track of the head of the stack and when an arithmetic operation should be applied, it pops the two top
elements from the stack, which are then combined by the ALU according to the read operation.

Conclusion

A major challenge for intelligent artificial agents is to learn
strategies that scale to higher complexities and that can be
transferred to new problem instantiations. We presented a
modular architecture for representing and learning such algo-
rithmic solutions that fulfil the three introduced algorithmic
requirements: generalization and scaling to arbitrary task con-
figurations and complexities (R1), as well as independence
from both, the data representation (R2) and the task domain
(R3). Algorithmic solutions fulfilling R1 — R3 represent strate-
gies that generalize, scale, and can be transferred to novel
problem instantiations, providing a promising building block
for intelligent behaviour.

On a diverse set of 11 algorithms with varying complexities,
the proposed NHC was able to reliably learn such algorithmic
solutions. These solutions were successfully tested on com-
plexities far beyond seen during training, involving up to over
1 million recurrent computational steps without a single bit er-
ror, and were transferred to novel data representations and task
domains. Experimental results highlight the importance of the
employed abstraction mechanisms, supporting the ablation
study results of prior work*?, providing a potential building
block for intelligent agents to be incorporated in other models.

Discussion The modular structure and the information flow
of the NHC enable the learning and transfer of algorithmic so-
lutions, and the incorporation of prior knowledge. Using NES
for learning removes constraints on the modules, allowing for
arbitrary instantiations and combinations, and the beneficial
use of non-differentiable memories>*. As the complexity and
structure of the algorithmic modules need to be specified, it is
an interesting road for future work to learn these in addition,
utilizing recent ideas>*38. To speed up computation, parallel
models like the neural GPU?? may be incorporated into the
NHC architecture.

The presented work showed how algorithmic solutions with
R1 —R3 can be represented and learned. Based on this foun-
dation, a challenging and interesting research question is how
such algorithms can be learned with less feedback. The usage
of NES allows to provide different kinds of feedback on any
connection in the architecture, and on different timescales.
This opens the opportunity to discover new and unexpected
strategies, novel algorithms, and may be achieved by incorpo-
rating intrinsic motivation*>** to explore the space of hidden
algorithmic solutions in the model.



Data availability
Data is generated online during training and the generating
methods are provided in the source code.

Code availability
The source code of the NHC is available via Code Ocean at
https://doi.org/10.24433/C0.6921369.v1.
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Methods

In this section a detailed description of the NHC architecture
and its modules is given, the learning procedure is described,
the task specific data module instantiations are discussed, and
details about the comparison methods are given.

All modules are described with their formal functionality,
i.e., the input signals they receive and the output signals they
produce, in the form of Module(inputs) — output. The in-
formation flow is split into data and control signals, denoted
with d and c respectively. In addition to this high level descrip-
tion, details how the output signals are generated are given for
each module.

The Algorithmic Modules

The algorithmic modules consists of the Controller, Memory
and Bus module and form the core of the NHC architecture.
These modules are learning the algorithmic solution on the
control stream and are responsible for the data management in
the memory and steer the data manipulation done by the ALU
module. They share similarities with the original DNC?°,
like the temporal linkage and usage vector, but with major
changes, e.g., hard decisions for the heads and read modes,
two coupled memories, simplified and additional attention
mechanisms and more, described in detail next.

Controller

The controller module receives input from the Input and the
signals read from Memory from the previous step. Addition-
ally feedback signals from the Bus and ALU from the previous
step can be activated if desired. It produces one output signal
going to the Memory and Bus modules. Formally given by

i—c b a m c
Ctr(c; ™, Ci—15 Ci—15 szl) > Cf -

Here we use a single layer of size L¢ to learn ¢¢ € (—1,1)k¢
at step ¢, given by

¢f =tanh(Wex. +b,) ,

with x, = [c¢i7¢; clbil; c!_;; ", ]. Depending on the task to

learn, the feedback signals cf_l and ¢f_| can be activated, and
more complex instantiations can be used for the controller,
like more layers or recurrent networks.

Memory

The memory module receives signals from the Input and the
Controller and is responsible for storing and retrieving infor-
mation from the two memories. Therefore it produces two
output signals, a data and a control signal, give by

Mem(d;, ¢, ¢f) — (d]".c]") .

The memory module has two coupled control and data memo-
ries, M€ and M9, which are matrices of size N x C and N x D
with N locations, C the control memory word size and D the
data memory word size. Multiple write and read heads can
be used, where the number of write and read heads is set task
dependently to h,, and A, respectively.

Learnable Interfaces As input for all learned layers only
the concatenated control signals are used, i.e., x,, = [ci™™; ¢¢],
and the weight matrices W and biases b are the parameters
that are learned.

The write vectors vi € RE at step ¢ are the control signals

that are stored in M¢ via the write heads and given by
vi = Wi + by

with v, split into {v! | Vi : h,,} for each write head.
The previous write vectors 9/ € RC at step ¢ are the con-
trol signals that are used to update M and given by

Vr = Woxy, + by

with 0, split into {9/ | Vj : h,} for each read head.
The previous erase vectors &/ € (0,1)C at step  are the
control signals used to erase values in M and given by

é = G(Wéxm +bé) ,

where o () is the logistic sigmoid function and &, is split into
{&/ | Vj: h,} for each read head.

The previous write gate §, € {0, 1}/ at step ¢ determines
if the memory M€ is updated with ﬁtj and étj , given by

& = H(Wax, +bg)

where H(-) is the heavyside step function.

The read modes m; € {0, 1} 74w at step ¢ are the control
signals that determine which attention mechanism is used to
read from the memory, and is given by

my = mem + bm )

with m, split into {onehot(m/) | Vj : h,} and onehot(x) =
{x = 1 if x4 = max(x) , xx = 0 else}.

The free gates £ € {0,1} and f" € {0,1} at step ¢
determine if locations written to and read from can be freed
after interaction, and are given by

ftw = H(waxm + bfw) and ftr = H(Wfrxm + bfr> .

These are all learned parameters of the memory module
that define the interfaces to manipulate the memory.

Writing and Reading  Given the learned interface described
before and the write wi and read r;/ head locations, information
is stored and retrieved from memory as follows.
Writing v/ to location wi in M€ at step ¢ is done via
ME =M o (E—wil )i

where o(-) denotes element-wise multiplication and E is a
matrix of ones of the same size as M°.
Writing d; to location w; in M' < at step ¢ is done via

M =M o (E—wi1T)+wid]
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here E is a matrix of ones of the same size as M?. Note that
the same write location w! is used to couple the control and
data memories.

Updating the previously read location r,
via

_, in M¢ is done

i T
Mi=M; o (E— gt; 1@ )+gt; Ve

where E is a matrix of ones of the same size as M°. If the
previous write gate g/ = 0 no update is performed, and with
&/ =1 the previously read location r]_, is erased with ¢/ and
] is written to it.

Reading from memory is done via the read locations r}
used on both memories to obtain the data and control output
of the memory module via

dmi = Md rloand =M
and are concatenated for the final memory module output
m _ [l gmhy m, 1 . mhy
d"=1[d"";..;d""  and " =[]
Next, how to obtain the head locations is described in detail.

Head Locations The write and read heads locations, w§ IS
{0,1}" and r/ € {0,1}", are hard decisions, i.e., onehot en-
coded vectors, where exactly one location is written to or read
from respectively. To determine the write head locations w,
i.e., the memory locations for writing to, a simplified dynamic
memory allocation scheme from the DNC is used. It is based
on a free list memory allocation scheme, where a linked list
is used to maintain the available memory locations. Here, a
usage vector i, € {0,1}" indicates which memory locations
are currently used, with ug = 0 and updated in each step with
the written w! and read r/ locations via
w=u1+(1— tw')wﬁ and w, =u,_1(1—£r]),

with the free gates "' and f;*/ determining if the write loca-
tion is marked as used and if the read location can be freed
respectively. Due to this dynamic allocation scheme, the
model is independent from the size of the memory, i.e., can
be trained and later used with different sized memories. To
obtain the write location wf, the memory locations are ordered
by their usage u,, and w' is set to the first entry in this list —
the first unused location is used to write to.

Read head locations 7/ are determined by the active read
mode given by m] € {0,1}+4 ie, only one mode can
be active. There are three main attentions implemented for
reading from memory, HALT, temporal linkage and ancestry
linkage. The total number of available read modes is h, + 4h,,
as HALT is depended on the number of read heads and both
linkages can be used in two directions for each write head.

The HALT attentions are used to read the previously read
locations again. When multiple read heads are used, each
head can read its own last location or the locations from the
other read heads, e.g., with three read heads, each head has
three HALT attentions (H1,H2,H3).

The temporal linkage attention is used to read locations in
the order they were written, either in forward or backward
direction. This mechanism enables the architecture to retrieve
sequences, or parts of sequences, in the order they were pre-
sented, or in reversed order. Here, we use a simplified version
of the mechanism from the DNC. As our architecture uses
hard decisions for the heads locations, the linkages can be
stored more efficiently in N-dimensional vectors, in contrast
to a N x N matrices in the DNC. Each temporal linkage vector
LT+ stores the order of write locations for one write head,
updated at step ¢ via

L =L o (1= wi_p) +Wiwl_y ,
where ! = argmax(w!). The temporal linkage mechanism
can be used in two directions. Either move the read head in the
order of which the locations were written, or in reversed order
— resulting in two read modes, backward (B) and forward (F),
per write head for each read head, given by

B:rl =1L, ¥ )

t 1

F : r/ = onehot(L

and

t J or, tjfl ) 9
where r _, is the previously read location, ftjfl =
argmax (r 171) and I(x,y) ={xx = 1if x;, =y, x = 0 else}.
When a location is freed through the free gates, the location is
removed from the linkage such that it remains a linked list.
The ancestry linkage also uses N-dimensional vectors to
store relations between memory locations. While the temporal
linkage stores information about the order of which locations
were written to, the ancestry linkage stores information about
which memory locations were read before a location was
written — captures a form of usage or hierarchical relation
instead of temporal relation. Each ancestry linkage vector
LA stores which location r/_| was read before location w/
was written, and is updated at step ¢ via

L;A,i,j:LAzJ (1_Wz)+”; 1Wt7

where r’ | is the previously read location and th | =

argmax(r] ;). The ancestry linkage mechanism can also be
used in two dlI‘eCthIlS, to either move the read head to parent
(P) location or the child (C) location. This results in two
modes per write head for each read head, given by

J

P: r,j = onehot(L/ or/_,) and

)Oht) 9

where h; is a N-dimensional vector storing for each location
the step # when it was written. A location can be read multiple
times, thus it can have multiple children. But as we need a
single location to read, the C mode returns the location that
was written to the latest when r _, was read, i.e., the newest
child. This is implemented with the history vector h;. When a
location is freed through the free gates, the location is removed
from the linkage and its children are attached to its parent.

C: 1} = onehot(I(L}"™ | 7/
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Bus

The Bus module is responsible to generate the control signal
that indicates how the ALU module should manipulate the
data stream, i.e., which action or operation to perform. There-
fore, it receives the control signal from the Controller and the
Input as well as the output from the memory signal, given by

Bus(c; i—b , ¢, —>c£’.

Here we use a single layer of size Lp to learn ¢ € {0,1}3
at step t, given by

cf’ = onehot(Wpx;, + bp) ,
with x;, = [ci70; ¢ ).

Learning Procedure

Learning the algorithmic modules, and hence the algorithmic
solution, is done using Natural Evolution Strategies (NES)*L.
NES is a blackbox optimizer that does not require differ-
entiable models, giving more freedom to the model design,
e.g., the hard attention mechanisms are not differentiable and
the data modules can be instantiated arbitrarily. Recent re-
search showed that NES and related approaches like Random
Search® or NEAT*® are powerful alternatives to gradient
based optimization in reinforcement learning. They are eas-
ier to implement and scale, perform better with sparse re-
wards and credit assignment over long time scales, have fewer
hyperparameters*’ and were used to train memory-augmented
networks’+38:3%,

NES updates a search distribution of the parameters to be
learned by following the natural gradient towards regions of
higher fitness using a population P of offspring o (altered
parameters) for exploration. The performance of an offspring
o is measured with one scalar value summarized over all
samples N in the mini-batch and over all computational steps
Thax of each sample, with sparse binary signals for each step
— framing a challenging learning problem albeit given the
sequence. Let 6 be the parameters to be learned — the weight
matrices and biases in the three algorithmic modules 6 =
(Wes bes Wy by Wess by Wes bas Was bgs W by s Wew s b pws Wr
b fr;Wb;bb] — and using an isotropic multivariate Gaussian
search distribution with fixed variance o2, the stochastic
natural gradient at iteration ¢ is given by

P

1
76 Z M(B,”)S,’ ,

o=1

Vo Eeno, [u(0 +o8)] =~

where P is the population size and u(-) is the rank transformed
fitness f(-)*'. With a learning rate o, the parameters are
updated at iteration ¢ by

6 +

Zu (67)¢

01 =

For all experiments the fitness function is defined for N sam-
plesas £(67) = 1/NYY £,(67) with

£:(67) = 26 i —di") + 8(c} — &)m(cy)

max k=

to evaluate the offspring parameters 6, on one sample s. Here,
S6(x) ={1if x=0,0 else} gives sparse binary reward if the
two signals are equal or not, where ;" is the data output from
the memory, cz the control output from the Bus, and d_,z” and EZ
the true values respectively. Thus, reward is given for choos-
ing the correct data and operation for the ALU in each step.
Note, there is no feedback on memory access, only on the
output, i.e., where, when and how to write and read has to
be learned without explicit feedback. The stepwise signals
are summed up until the first mistake occurs (7,) or until the
maximum length of the sample Ti,.x, and is normalized with
1/Tinax, i-€., £(6°) measures the fraction of subsequently cor-
rect algorithmic steps. To encourage strong operation choices,
the operation reward is multiplied with the margin penalty

&/ -1

Mmax

m(cb) :clip( , 0, 1) ,

where ¢!, &2 are first and second largest values of c?, i.e., the
chosen operation and the runner up, and mp.x iS a chosen
percentage indicating how much bigger the chosen action
should be. Note that this penalty is only considered if the
operation is already correct.

For robustness and learning efficiency, weight decay for
regularization®® and automatic restarts of runs stuck in local
optima are used*'. This restarting can be seen as another level
of evolution, where some lineages die out. Another way of
dealing with early converged or stuck lineages is to add intrin-
sic motivation signals like novelty, that help to get attracted by
another local optima, as in NSRA-ES*’. In the experiments
however, we found that within our setting, restarting — or hav-
ing an additional survival of the fittest on the lineages — was
more effective in terms of training time.

The algorithmic solutions are learned in a curriculum learn-
ing setup®® with sampling from old lessons to prevent unlearn-
ing and to foster generalization. Furthermore, we created bad
memories, a learning from mistakes strategy, similar to the
idea of AdaBoost>’, which samples previously failed sam-
ples to encourage focusing on the hard cases. This can also
be seen as a form of experience replay®>!, but only using
the initial input data to the model, not the full generated se-
quences. Bad memories were initially developed for training
the data-dependent modules to ensure their robustness and
100% accuracy, which is crucial to learn algorithmic solu-
tions. If the individual modules do not have 100% accuracy,
no stable algorithmic solution can be learned even if the al-
gorithmic modules are doing the correct computations. For
example, if one module has an accuracy of 99%, the 1% error
prevents learning an algorithmic solution that works always.
This problem is even reinforced as the proposed model is an
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output-input architecture that works over multiple computa-
tion steps using its own output as the new input — meaning the
overall accuracy drops to 36.6% for 100 computation steps.
Therefore using the bad memories strategy, and thus focus-
ing on the mistakes, helps significantly in achieving robust
results when learning the modules, enabling the learning of
algorithmic solutions.

Experimental Setup In all experiments, the hyperparame-
ters were set to: batch size N = 32, population size P = 20,
learning rate oo = 0.01, search distribution exploration ¢ =
0.1, weight decay A = 0.9995, action margin mmax = 0.1, max
iterations = 20.000, restart iterations = 2.000. In each batch,
33% of the samples were drawn from previous levels and an-
other 33% were drawn from the bad memories buffer, which
stores the last 200 mistakes. A curriculum level is considered
solved when 750 subsequent iteration are perfectly solved,
i.e., no single mistake in any sample, any step, any bit, that
is 24.000 perfectly solved samples. In levels were training
was triggered, the required subsequent perfect iterations are
doubled, i.e., 48.000 perfectly solved samples. Whenever an
iteration achieves maximum fitness, no learning is triggered,
i.e., no parameter update is performed.

The Modules Instantiations

The preceding sections described the design and functionality
of the algorithmic modules in general. Here, the used instantia-
tions and parameters for the experiments are presented as well
as the data modules and their task-dependent instantiations.

Algorithmic Modules In all experiments, the Controller
size was set to Lc = 6 and the control memory word size
C = 4. All tasks use one write head, 4,, = 1, and the number
of read heads is &, = 1 for the four search & plan, and the
four copy tasks, h, = 2 for addition and sort and &, = 3 for
the arithmetic task. The data memory word size D and the
Bus size Lp are set by the task, as each task has a different
data representation (D) and a different amount of available
operations for the ALU (Lg). In all tasks the ALU to Con-
troller feedback (cf_;) was activated, except for the four copy
tasks as the ALU has no functionality there. The free gates
were activated for the four copy tasks and the arithmetic task.
In total, depending on the algorithm to learn, this results in
300-650 trainable parameters in the algorithmic modules.

Input The first data dependent module is the Input module.
That is the interface to receive data and provide control signals.
It receives the data input from the outside d” as well as the
data output from the ALU from the previous computational
step d*,, formally given as

in out i i—c Ji—m _i—b
In(dy", &™) — (d;, ¢; ¢ ", ¢ 77)

The main functionality is to generate task related control sig-
nals, data preprocessing if applicable and determining to stop.
The control signals ¢i ¢, ¢/, ¢i~*b can be different to provide

different signals to the Controller, Memory and Bus, but can

also share the same information. The data d! is forwarded to
the memory module with or without preprocessing, depending
on the task.

ALU The arithmetic logic unit (ALU) module is responsible
for data manipulation. It receives the read data from the
memory and the operation to apply on these from the Bus to
produce the next data output alongside control signals via

ALU(d™, ¢b) — (d™,cf) .

This module implements elemental operations for each task
such that the algorithmic solution can be learned by applying
the correct operation on the correct data in the correct step.

Both data modules can be instantiated arbitrarily due to the
NES approach for learning the algorithmic solution. They
can also be trained from data beforehand or be hardcoded if
possible. In the experiments, we tested both variations and
details for each algorithm are given in the Supplementary
Information.
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Supplementary Information to the paper Evolutionary Train-
ing and Abstraction Yields Algorithmic Generalization of Neu-
ral Computers.

Algorithms to Learn

In this section additional information for the different algo-
rithms that are learned and the modules instantiations are
given.

Search & Plan

In the Search & Plan tasks, the goal is to reach a given
goal from a starting state (search), and to generate a path
between them utilizing the search result (plan). Therefore, a
breadth-first-search algorithm with additionally backtracking
is learned. Given a start and goal state (so and g), the model
has to learn to implicitly build a search tree by applying all
available actions on a state and then move on to the next un-
explored state until the goal state is reached. For the planning
tasks, after reaching the goal state, the model has to output the
sequence of states from goal to start, encoding the sequence
of actions to solve the given planning problem. For the ex-
tended versions (search+ and plan+), the available actions for
each state are state dependent such that only actions that have
an effect in this state should be applied. This increases the
complexity of the learned algorithm, but the resulting search
trees after learning are smaller and, hence, search+ and plan+
more efficient.

As training domain, the gridworld game sokoban is used,
where an agent can move in four directions — move up
(U), right (R), down (D), left (L) — and an additional nop
operation(N) that leaves the data unchanged, resulting in 5
operations. The world consists of empty spaces that can be
entered, walls that block movement and boxes that can be
pushed onto adjacent spaces. Figure 5 shows a learned solu-
tion, where the agent is visualized as a penguin, empty space
is water, boxes are icebergs and walls are ice floes.

The curriculum level complexity is the number of fully ex-
plored nodes, i.e., for level 3, three nodes have to be explored.
See Figure 2 for an example for the extended version from
level 3 alongside the pseudocode of the algorithm to learn.

For learning, we use a sokoban world of size 6 x 6 that is
enclosed by walls. A world is represented with binary vectors
and four-dimensional one-hot encodings for each position,
resulting in 144-dimensional data words, and thus D = 144.
The configuration of each world — inner walls, boxes and agent
position — is sampled randomly. Each world is generated by
sampling uniformly the number of inner walls from [0,2] and
boxes from [1,5]. The positions of these walls, boxes and the
position of the agent are sampled uniformly from the empty
spaces.

Input The Input module produces control signals indicating
in which phase the algorithm is — building the search tree, goal

reached and backtracking the solution. The signal is created

as c” = [l ;P Y], with

ctm =max(0,(1 —E) —cl[zjl) ,
ct[z] :min(l,E,+ct[2jl),

Ctm =(1 _Et)sz )

Ct[4] :Etpt[z,]l .
The signal E; is a learned equality function using differential
rectifier units as inductive bias>> and consists of a feedforward
network with 10 hidden units and 1eaky-ReLU activation,
trained in a supervised setting with cross-entropy loss. This
signal indicates if two given states are equal and is used to
identify the goal and initial state. The four signals clx] are
created using this information and represent the state of the
algorithms, where =1 during building the search tree,
¢ = 1 when the goal was found, Bl=1 during the back-
tracking, and ¢ =1 when backtracking reached the initial

state. The algorithm stops if c,[4]

and if cP] = 1 for the search tasks, as search only uses the two
first signals.

For the extended search and plan tasks, the Input module
additionally learned an action mask a. This binary action mask
indicates which operations are applicable in a given state and
which not, and is learned with a feedforward network with
256 hidden units and 1eaky—-ReLU activation.

Using these learned signals, the outputs of the Input module
are given by

= 1 for the planning tasks,

d=d" if t=0, d™ else,
i—c __ D
G =qc,
i—=b _  i—c
G =6

C;‘ﬁm — C;'%C or C;-‘”" = [a;cf] (extended) .

ALU The ALU learns to apply the available operations on
the data, i.e., it encodes an action model A by learning precon-
ditions and effects, and outputs the new data together. There
are four available operations in sokoban and the sliding block
puzzle domain, i.e., move up (U), right (R), down (D), left (L),
and a fifth nop operation is added that does not change the
data (N). In the robotic manipulation domain, the available
actions are the four locations on which objects can be stacked,
e.g., the action pos1 encodes to move the gripper to the posi-
tion and place the grasped object on top, or to pick up the top
object if no object is grasped. The maximum stacking height
is 3 boxes, resulting in a discrete representation of the object
configuration with a 3 x 4 grid. Thus, the ALU for the search
and plan algorithms has five operations and, hence, Lp = 5.
For this task, the ALU internally uses three submodules —
one does dimensional reduction on the data, one applies the
operation to manipulate the lower-dimensional data, and one
combines the manipulated and original data for the final out-
put. Each submodule consists of feedforward networks with



1:500,2: ([128,64],[64,64]), 3 : ([500,500], [500,250]) hid-
den units to produce the data and control stream respectively.
All networks use leaky-ReLU activation and are trained
with cross-entropy loss in a supervised setting. The output of
the ALU is therefore defined as

" =Ad", ),
& =L1-1n],

where d’" is the read state, c” the operation to apply, [ = 1 if
the applied operation was the last for this state, and n = 1 if
the nop operation was used.

A more detailed description of these submodules and the
search & plan specific data modules can be found in the pre-
decessor model*? used for symbolic planning tasks.

Addition

In the addition task, two numbers have to be added. The
two numbers a,b are presented subsequently in big-endian
order. To solve the task, the model has to learn to read the two
numbers correctly aligned, add the corresponding bits and
remember the carry for the next step. Therefore, 3 operations
are available, adding two given bits without (A) and with carry
bit (C), and a nop operation (N).

Curriculum level complexities are defined as the bit length
of the numbers a, b, i.e., in level 3 numbers of length 3 have to
be added, and a,b have an additional leading 0. For training,
a,b were randomly generated binary numbers and thus D = 1.

Input The Input module produces control signals indicating

if a or b is presented, or if addition should be done. Thus, the

module output is given by
di=d™ if 1<2T;, 0 else,

i—b __

i—c i—m __ c _ [Ca;Cb;Cs} ,

¢ =c¢
where 7 is the the length of a and b, ¢, = 1 and ¢, = 1 when a
or b are presented respectively, and ¢; = 1 during the addition
phase. The algorithm stops after 7; steps with ¢y = 1.

ALU There are 3 operations for the ALU module here,
adding two given bits without (A) and with carry bit (C),
and a nop operation (N), and hence, Lp = 3. The data input
consists of two bits d" = [v1;v], read from the memory with
the two read heads. The outputs of the ALU are given by

d* =vy+vy+carry,

C? = [C,l*C,I’l] )

where carry = 1 if the operation C is chosen, ¢ = 1 if the
current operation produced a carry bit, and n = 1 if the nop
operation was used.

Sort

In the sort task the model is given an unordered list of objects
and has to output the objects in order. There are 3 operations,
comparing two objects (C), skipping the current objects (S),

and outputting one object (O). To solve the task, the model
has to iterate over the sequence of objects and output the
smallest object in each iteration. Note, it does not need to be
the smallest, if the sequence should be ordered in descending
order for example, it outputs the largest. The order is defined
by the compare operation implemented in the ALU module,
the learned algorithm can therefore order any sequence in any
order.

Curriculum level complexities are defined as the length of
the sequence to order, e.g., in level 3 sequences of length
4 have to be sorted. For training, the sequences consist of
randomly generated 8 bit binary numbers (D = 8) and the
ALU uses lessEqual as compare function.

Input The Input module generates control signals indicating
if the unordered sequence is presented or if sorting should be
done. Thus, the module output is given by
di=d" if t<T,, 0 else,
o = M=o =lepcsane,
where T is the length of the sequence, ¢y = 1 if the first
object in the sequence is presented, ¢; = 1 for the last object,
c. = 1 for all other objects, and ¢y = 1 during the sort phase.
The algorithm stops if the output operation was used 7 times
during the sort phase.

ALU The ALU has 3 operations, a compare operation (C)
that compares two objects, a skip operation (S), and a output
operation (O) to mark one object for output, so Lg = 3. The
data input consists of two objects d/" = [01;02], read from the
memory with the two read heads. The outputs of the ALU are
given by

out __
dt =01,

C? = [C,l—C,S,O] )

where ¢ = 1 if compare(o1,0,) = true, s = 1 if the skip
operation was used, and o = 1 if the output operation was
used. For training, sequences consisted of binary numbers
and compare(01,02) = 01 < 03, i.e., sorting numbers in as-
cending order.

Arithmetic

In the arithmetic task the model is given a sequence that
encodes an arithmetic expression in postfix notation, e.g.,
3456 is presented as 5 6 x34-. There are 2 operations, a
calculation operation (C) that calculates a given atomic oper-
ation, and a read operation (R). To solve the task, the model
has to essentially learn to emulate a stack. It iterates over the
input sequence and learns that numbers need to be stored on
the stack, and if an atomic operation is presented, takes the
two most recent numbers from the stack to combines them ac-
cordingly until the input sequence has finished. As the atomic
operations [+, —, , /] are part of the input sequence, the so-
lution is independent from the amount of different atomic
operations, and the ALU has the two described operations.



For training, the sequences consist of arithmetic expression
with the four atomic operations [+, —, %, /|, where a modulo
10.000 operation was applied to atomic results for numeric
stability, and numbers in the input sequence were drawn from
[1,10], and hence D = 1. Training sequences are generated
randomly, with uniformly sampled atomic operations and
numbers. Curriculum level complexities are defined as the
number of atomic operations, i.e., 5 6 * 34 is an example for
level 2.

Input The Input module provides controls signals indicating
if the current data word is a value or an atomic operation.
Therefore, the module outputs are given by

di=dm" if 7F=[1,0], else ,

i—c __ ji—m
G =G

out
a’
i—b .
= C; = [cv, Ca] )
where ¢, = 1 when dti is a value (e.g., a number), and ¢, = 1

is d! is an atomic operation. The algorithm stops if the last
atomic operation was presented.

ALU The ALU module has 2 operations, a calculation oper-
ation (C) that calculates a given atomic operation, and a read
operation (R), and hence Lg = 2. The data input consists of
three values d" = [d};d>;d3], read from the memory with the
three read heads. The module outputs are then given by

M =d,(da,d3)

b
o

if C, dp else,

a _
o =c

where cf’ is the signal coming from the Bus module, indicating
which operation to apply, i.e., here ¢? = [C;R] with C = 1 is
an atomic operation should be used, or R = 1 if not. If C =1,
the first data word d; read from the memory is interpreted as
the atomic operation and is applied on d» and d3, e.g., if /" =
[+:4;5] then &7 = d(d,d3) =4+ 5 =9. The four atomic
operations [+, —, *, /] are encoded as [—1,—2,—3,—4] in the
input, as the input sequence can only contain positive numbers
in the used setup — the learned algorithm is independent from
that choice.

Copy, RepeatCopy, Reverse, Duplicated

In the four baseline tasks — Copy, RepeatCopy, Reverse, Dupli-
cated — there is no data manipulation. For solving these tasks,
the model has to learn the proper data management. There are
2 ALU operations to mark the data (O and M), which do not
alter the data.

In the copy task, the model is presented a sequence of
objects L and has to output the same sequence of objects, i.e.,
L=[x,...,xn) — [x1,...,%,). Therefore, it needs to learn
to iterate over the data in the presented order.

In the repeatCopy task, the model is also presented a se-
quence of objects L and has to output the sequence c times,
ie, L=[x1,...,x],c —> [X1,. ., X, X1, -, Xn,...]. Here, it
needs to learn to iterate multiple times over the data, requiring
to jump back to the start of the sequence.

In the reverse task, the model is presented a sequence of
objects L and has to output the sequence in reversed order, i.e.,
L=[x,...,xy) — [xu,...,x1]. Solving requires to learn to
iterate over the data in reversed order of presentation.

In a remove duplicates (duplicated) task, the model is pre-
sented a sequence of objects L with duplicates of each object
and has to output the sequence without these duplicates, i.e.,
L= [x1,X1,X1,X0,X2,X2 « « « , Xp, Xpps Xn]| — [X1,- .., %p]. In order
to solve this task, the model has to learn during the presenta-
tion of the input sequence which data fo ignore, while getting
only feedback for outputting the sequence without duplicates.

Curriculum level complexities are defined as the number of
objects in the sequence, and as the number of copies or du-
plicates for the repeatCopy and duplicated tasks respectively.
For training, objects were random binary vectors of length 6
(D=6).

Input The Input module provides control signals indicating
if objects are presented or output should be done. For the
copy, repeatCopy and reverse tasks, the modules outputs are
given by

di=d™ if t<Ty, 0 else,

i—b __

i—c i—m __ e
=c; " = [cricisenco)

G =G
where Ty is the length of the sequence L, ¢y = 1 if the first
object is presented, ¢; = 1 for the last object, ¢; = 1 for the
remaining objects, and ¢, = 1 indicating the output phase.
The algorithm stops, if the M action was used c7; times in the
output phase, with ¢ = 1 for copy and reverse.

For the duplicated task, the outputs are given by

d=d™ if t<Ty, 0 else,

i—c i—m

_ i—b __
G =G

=¢ " =epicicol

, where T, is the length of the sequence L including the du-
plicates, ¢y = 1 when an object is presented the first time,
¢; = 1 for the remaining times, and ¢, = 1 indicating the out-
put phase. The algorithm stops, if the M action was used in
the output phase.

ALU The ALU has 2 operations, an output operation (O)
to mark data for output, and a mark operation (M), to mark
an output as the last, thus Lg = 2. In these four baseline
task, these operations signals are only indicating what the
algorithm is currently doing, but the ALU has no functionality,
i.e., there is no data manipulation. Hence, the output is just
the forwarded input, given by

out __ gm
dt _dt7
a__ b
t=c.

Details to the Comparison Methods

For comparison we used the original Differential Neural
Computer?’ (DNC), trained in a supervised setting with gra-
dient descent using the Adam>3 optimizer and cross-entropy



loss for each step. The loss is computed based on the cor-
rect algorithmic sequences created by the linear layer in the
DNC, similar like the fitness function for our architecture, but
the cross-entropy loss provides a much richer and localized
learning signal. The DNC is trained for considerable more
iterations (500k) to counter the pretrained data modules. It
also receives its own output as Input and the data input is
managed equally as in our model for each task (see Input
module descriptions). For the repeatCopy task, as in the origi-
nal implementation, the number of copies c is normalized in
the input. The controller network is a LSTM>* network with
64 hidden units except for the Search task, where it has 256
hidden units to counter the additional data modules. In the
arithmetic task, the modulo 10.000 operator for intermediate
results is replaced with a modulo 10 operator and the num-
bers are binary encoded with 4 bits. This is done as dealing
with decimal input adds an additional challenge and the re-
duction of the range of the numbers lets the DNC focus on
the algorithmic structure of the task, instead of data encoding
related issues. The same bad memories strategy and curricu-
lum schedule as for the NHC are used. The memory size as
well as the number of write and read heads is set to the same
values as in the NHC for each task.

As second comparison method, we integrated the DNC into
the NHC architecture, named DNC+is+ha. Therefore, we
replaced the NHC algorithmic modules — Controller, Memory
and Bus — with the original DNC. To enable this, the informa-
tion split including the second memory was added to the DNC
(+is), and the memory access was changed to hard attentions
(+ha), i.e., each head writes and reads one memory location
in each step, in contrast to the soft attention and weighted av-
eraged readouts in the DNC. This is enabled by transforming
the computed soft attention heads from the DNC just before
memory access into hard attention vectors. For training this
DNC+is+ha model, the exact same learning procedure and
parameters were used as for the NHC model.
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Figure Ex.1. Learning curves comparison. Shown are the mean and the standard error of the fitness during learning over 15 runs. Note
the log-scale of the x-axis. Solved X in the legend indicates the median solved level. The full NHC is the only model that successfully learns

all algorithms reliably. More details on these evaluations are given in Table 1.



