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Fibula free flaps (FFF) represent a working horse for different reconstructive 
scenarios in facial surgery. While FFF were initially established for mandible 
reconstruction, advancements in planning for microsurgical techniques have paved 
the way toward a broader spectrum of indications, including maxillary defects. 
Essential factors to improve patient outcomes following FFF include minimal donor 
site morbidity, adequate bone length, and dual blood supply. Yet, persisting clinical 
and translational challenges hamper the effectiveness of FFF. In the preoperative 
phase, virtual surgical planning and artificial intelligence tools carry untapped 
potential, while the intraoperative role of individualized surgical templates and 
bioprinted prostheses remains to be summarized. Further, the integration of novel 
flap monitoring technologies into postoperative patient management has been 
subject to translational and clinical research efforts. Overall, there is a paucity 
of studies condensing the body of knowledge on emerging technologies and 
techniques in FFF surgery. Herein, we aim to review current challenges and solution 
possibilities in FFF. This line of research may serve as a pocket guide on cutting-
edge developments and facilitate future targeted research in FFF.
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1. Introduction

Facial defects can be  caused by neoplasms, infection, trauma, or congenital anomaly. 
Patients experience a variety of functional sequels such as malocclusion and loss of teeth, 
swallowing and speaking difficulties, and airway obstruction (1). Besides functional 
impairments, facial disfigurement per se, and the resulting social and psychological effects, 
represent an additional patient burden (2, 3).
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Consequently, reconstruction of bony and soft tissue facial defects 
remains a persisting clinical challenge. Since its establishment in 1989, 
fibula free flap (FFF) became a reliable tool in the head and neck 
armamentarium representing the gold standard for the reconstruction 
of segmental defects of the mandible and maxilla (4). FFF unifies 
various clinical strengths such as low donor-site morbidity, bicortical 
bone structure, and reliable clinical outcomes. Currently, FFF is being 
used in over 45% of all mandible reconstruction cases, and has been 
gaining popularity (5, 6).

Typically, FFF is raised with a skin island, which enables composite-
tissue reconstruction and visual flap monitoring at the same time (7). 
In the era of virtual surgical planning (VSP), artificial intelligence (AI), 
computer-aided design (CAD), computer-aided manufacturing 
(CAM), three-dimensional (3D) printing, and novel molecular 
investigations, the technique of FFF underwent a series of refinements. 
Consequently, each working step of FFF reconstruction, including 
preoperative diagnostics and procedure planning, intraoperative 
workflow optimization, and postoperative monitoring has been 
impacted as a result of advancements in the field. However, there is a 
paucity of studies condensing the latest advancements in FFF surgery. 
Herein, we aim to provide a panoramic overview of the most recent 
innovations in FFF reconstruction and summarize the most promising 
research findings. Ultimately, this line of research may help generate 
novel research ideas and guide the way toward translational trials and 
clinical use of cutting-edge technology for advancing FFF surgery.

2. Preoperative planning – how to 
optimize procedure planning?

2.1. Virtual surgical planning

In the early phase of FFF surgery, the fibula was shaped in freehand 
technique by the surgeon, using the patient’s contralateral anatomic site 
as a template in order to guide the osteotomies and plate placements. 
However, this freehand molding of the straight fibula bone into the 
3D-curved mandible is challenging and failure in contouring the new 
mandible may cause malocclusion, mandible deformity, such as 
exorbitant gonial or mental projection, or torque on the condylar head. 
Further, mandibular dysfunction, as well as prosthetic failure can result 
from an unphysiological-shaped mandible. To overcome these hurdles 
the preplating technique was introduced. This method involves 
molding a reconstructive plate on the patient’s native mandible prior 
to bone resection, aiming to achieve an optimal mandibular shape 
(7–9). However, manual techniques of fibula modeling and positioning 
to achieve proper bone contact between the segments, as well as 
condylar placement, have proved to be imprecise or even unfeasible in 
cases of initially distorted or absent hemimandible due to trauma or 
pathology; although, there has been some evidence suggesting 
preplating may allow for appropriate condylar placement (10, 11). 
Therefore, the concept of VSP was introduced into the preoperative 
and perioperative workflow of mandibular reconstruction. By using 
digital surgical simulation and 3D stereolithographic models of the 
reconstructed mandible, VSP assists in preoperative planning. The 
concept of computer-generated imaging emerged in the 1990s (12, 13). 
As the technical possibilities, in particular 3D printing and CAD/CAM 
devices, have significantly developed over the last years, novel 
opportunities for intraoperative assistance tools have been proposed. 

For instance, the utilization of 3D-printed or CAD/CAM-constructed 
cutting guides for the mandible and fibula, along with patient-specific 
osteosynthesis plates (PSP), facilitate the shaping process and 
osteosynthesis of the fibula. Additionally, the inclusion of positioning 
templates and prepositioned screw holes in the fibula enhances the 
precision and efficiency of graft positioning.

VSP in combination with personalized CAD/CAM-produced 
devices was initially developed for saving time and assisting surgeons 
in mimicking the native mandibular morphology, Benefits of VSP in 
the setting of FFF reconstruction include: (i) decreased intraoperative 
time associated with reduced ischemic time of the FFF, (ii) improved 
accuracy of the reconstruction due to cutting guides and precalculated 
contact surfaces, (iii) enhanced cosmetic outcomes, (iv) preoperative 
simulation of postoperative results, reconstruction limitations, and 
possible complications, (v) presurgical visualization of patient-specific 
anatomical variations, (vi) clear margins at tumor resection (in cases 
of tumor resection before FFF reconstruction) (14–18). Among these, 
increased reconstruction accuracy and decreased intraoperative time 
proved to be  the most significant benefits for enhancing patient 
outcomes (17, 19–22).

Most studies evaluated accuracy by comparing measurements of 
preoperative VSP and measurements of postoperative images, 
assessing the intercondylar distance and gonion angle. A meta-
analysis from 2020 including six studies reported an increased 
accuracy of VSP compared to free-hand surgery. Moreover, the 
authors found a decreased total operation time of 291.8 min in VSP 
(vs. 457.6 min in free-hand) and ischemia time of 73.8 min in VSP (vs. 
109.9 min in free-hand) (23). Another systemic review of 2019 
including 13 studies, reported improved accuracy of VSP when 
compared to conventional FFF reconstruction techniques. Of note, 
two studies found no differences in preoperative and postoperative 
symmetry or functional outcomes (24, 25). Barr et al. described that 
the total operative time was reduced by 44.64 min in the VSP cohort 
(6). As operation time constitutes a crucial factor for patient safety and 
surgical outcome following FFF surgery, perioperative time saving is 
commonly considered an important surrogate parameter for enhanced 
patient outcomes (26, 27). Further, a more efficient flap shaping 
procedure may lead to increased free flap survival rates and overall 
reduced ischemic time (28, 29). Of note, overall operating time 
included surgical reconstruction time, as well as the amount of virtual 
planning time. Thus, saving operation time also strongly depends on 
the practical experience and skills of the surgeon performing the 
reconstruction (30). In cases of tumor resection before FFF 
reconstruction, VSP can help the surgeon understand the spatial 
relationship of the tumor to adjacent tissue and preserve valuable 
anatomic structures (e.g., branches of the facial and/or the trigeminal 
nerve) (14). Further, more individualized reconstructions with more 
frequent and complex osteotomies can be performed using CAD/
CAM-supported VSP (31). Common disadvantages in VSP involve (i) 
additional costs of VSP equipment, (ii) delay of high-priority surgery 
due to extended preoperative planning time (15, 16, 32). The extensive 
costs of VSP in addition to the surgery itself result from expensive VSP 
software and CAD/CAM or 3D printing devices, outsourcing of 
working steps to an external digital laboratory, and engagement of 
specialized personnel (32, 33). To this end, in-house CAD/CAM 
workflow is considered an alternative to current outsourcing practices 
(34–36). Here, obtaining adequate funding and the current European 
Union Medical Device Regulation (EU MDR) as some of the biggest 
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challenges in setting up an in-house 3D-printing core (35). However, 
once established, an in-house 3D-printing program may reduce costs 
with no differences in the accuracy of the reconstruction results (37).

2.2. The role of artificial intelligence in 
virtual surgical planning

To date, research efforts are underway to integrate AI into VSP for 
pattern detection and mean models. However, AI-designed 
mandibular grafts still play a minor role in everyday clinical work as 
the final design must be  adjusted and refined by surgeons and 
engineers (38, 39). Although AI is still undergoing a constant process 
of improvement with increasing data processing capacities for 
machine learning (ML), AI is already used in preoperative 
segmentation of the skull CT. While manual segmentation is time-
consuming and depends on the surgeon’s subjective setting of 
Hounsfield unit (HU) thresholds, AI allows for more objective and 
standardized reconstruction planning (40). Moreover, mandibular 
deformities caused by neoplasms or congenital anomalies can 
complicate the understanding and imaging of the patient’s mandibular 
morphology. In these cases, AI allows for capturing the key features 
and abnormalities of the mandible and generates authentic images of 
a typical mandible using generative adversarial networks (GANs) (41). 
However, the surgeon’s anatomical expertise remains a valuable skill 
to consider various anatomic key structures, such as the inferior 
alveolar nerve canal, teeth, condylar head, or glenoid fossa, during 
VSP. Further, metal artifacts in imaging, due to dental crowns, 
implants, or orthodontic appliances, can significantly increase the 
workload of image segmentation, therefore impacting surgical 
planning, and thus surgical outcomes (42). In this context, AI relies 
on refinements referring to dependable anatomical skills and image 
evaluation. Here, ML and deep learning (DL) allow AI to extract 
information from big data sets to autonomically develop AI’s capacities 
and enhance the use of AI in VSP (43). Clinical decision-making 
support (DCS) based on AI recommendations is an upcoming tool in 
radiology aiming to improve patient safety and value-based imaging 
(44). In this context, AI could play an important role in the detection 
and interpretation of incidental findings in radiologic imaging. AI, 
coupled with advancements in imaging, such as diffusion weighted 
MRI and radiomics, may lead to significant improvements in patient 
care, especially for tumor segmentation and perineural invasion, 
advancing the clinical impact on R0 resections. Further, DL-powered 
approaches for segmentation of imaging, particularly CT and MRI, 
were applied in other surgical and non-surgical specialties such as 
cardiology, neurosurgery, and oncology (45–47). In the field of 
maxillofacial surgery, current research efforts focus on training AI 
models in segmentation of the mandibular and maxillary bone, the 
mandibular canal, the mandibular condyle head, the maxillary sinus, 
native and treated teeth, as well as implants (48–50). To support 
accurate direct segmentation of high-resolution skull images 
regardless of limited graphics processing unit (GPU) memory, 
Verhelst et al. suggest a two-staged approach that combines one U-Net 
on a full-size low-resolution image with another U-Net segmenting 
high-resolution region of interests (51). While DL-supported 
mandibular segmentation is continuously advancing, technical 
enhancements in 3D imaging and anatomical accuracy are 
still required.

3. Intraoperative innovations – 
patient-specific osteosynthesis implants

3.1. Patient-specific topology-optimized 
osteosynthesis plates (TOPOS-implants)

Reconstruction plates are typically used in FFF reconstruction 
when increased stability is required due to a High load-bearing 
concept. In contrast to miniplates, adjusting reconstruction plates to 
the contour of the mandible seems to be more difficult due to higher 
volume and rigidity (11). Moreover, postoperative plate exposure 
persists as a common clinical challenge, which necessitates reoperation 
including plate removal and secondary reconstruction (5, 25, 52–54). 
Vice versa, miniplates are easily adjustable by the surgeon but are only 
indicated for load-sharing concepts due to their reduced material 
thickness (55–57). To improve clinical outcomes following FFF 
reconstruction and facilitate restoring the mandibular contour, VSP 
combined with patient-specific osteosynthesis plates have been 
introduced as a novel therapy concept. Along the preoperative 
planning process virtual osteosynthesis plates can be  fitted and 
adapted to the surface of the bone segments. 3D-printing techniques 
allow for on-time fabrication of patient-specific osteosynthesis 
implants. Thus, this approach results in reduced surgery time and 
costs, high accuracy levels, and reduction of postoperative 
complications (58–60). Although the utilization of patient-specific 
osteosynthesis implants may be expensive, they will reduce operating 
room time and postoperative complications, and thus, reduce overall 
healthcare costs for patients and the healthcare system. Current 
strategies to further improve patient-specific implant (PSI) application 
in FFF reconstruction describe a novel technique which uses a 
powerful mathematical tool, called topology optimization (61–63). 
The generation of an ideal structural design based on preset loading 
capacities, allows for decreased volume, optimized mechanics, and 
modular exchangeability of such TOPOS-implants. Thus, TOPOS-
implants unify the advantages of reconstruction plates and miniplates 
by using the material distribution method for topology optimization. 
The distributed loading of the fixation screws leads to stress shielding 
and prevents overloading of the screws. A reduced contact area 
between TOPOS-implant and bone improves the healing capacities 
due to the reduced periost irritation. Further, the geometric form of 
the implants also functions as a positioning guide for the bony 
segments (62). To this end, TOPOS implants represent a high-yield 
intraoperative approach, exploiting modern technologies and 
bioengineering concepts with the goal of time and cost efficiency in 
FFF surgery (64–66). However, topology optimization for designing 
osteosynthesis plates in maxillofacial surgery have only been described 
in low-number case series or case reports (67–69). Together with the 
fact that current research work is limited to biomechanical and 
cadaveric study designs, further studies are warranted before 
implementing this approach into the clinical workflow.

3.2. How to bypass the need for 
double-barrel technique? – 
patient-specific plate

One of the main limitations of FFF reconstruction is the 
vertical height of the fibula. The fibula, harvested as a single barrel 
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bone, does not exhibit a sufficient diameter to restore the height of 
the native mandible. This implicates lowered positions of 
postoperative-inserted implants, and challenges in occlusion, 
prosthetics, and implantation, while maintaining a better esthetic 
outcome; on the other hand, higher positions postoperative-
inserted implants allow for adequate position of implants and 
maintenance, but is associated with poorer esthetic outcomes (70, 
71). Delayed onlay bone graft, iliac bone reconstruction, fibula 
distraction, and double-barrel fibula flap graft have been under 
investigation to address the height issue. Additionally, patient-
specific implants (PSI) can be  used to reconstruct the original 
height of the mandible for more extensive defects, such as lower 
mandibular borders (70). Given the high postoperative 
predictability, reliable implant outcomes, and conceptualization as 
a one-stage procedure, double barrel reconstruction is considered 
the surgical procedure of choice for vertical augmentation in FFF 
reconstruction, especially for anterior segment reconstruction (18, 
72, 73). The morbidity in these procedures is related to the amount 
of bone left proximally and distally, therefore, it is not advisable to 
reconstruct defects longer than 10 cm using the double barrel 
approach (which would require a graft length of about 24 cm), since 
it may increase the risk for high donor site morbidity (73–76). To 
overcome the limitation of vertical height in FFF and bypass the 
downsides of the double barrel approach, a novel technique using 
3D-printed PSI has been introduced recently. By modifying the 
design of a titanium PSI, the plate was intended to support the FFF 
at an alveolar bone level above the typical inferior mandibular 
border. A considerable advantage of this technique was the 
occlusion-derived design of PSI and FFF (i.e., preoperative 
simulation of an ideal occlusion in terms of VSP). In cases with 
unilateral edentulous areas, the teeth on the healthy side were 
mirrored on the defective side to simulate physiological occlusion. 
If both arches were edentulous, a radiographic guide, including 
radiopaque teeth, could be  used during CT examination to 
visualize teeth in their maxillomandibular relationship. For patients 
undergoing these procedures, dentists and maxillofacial surgeons 
assess occlusion height and determine optimal teeth position, and 
the FFF is positioned to optimize implant position and 
maintenance. The PSI plate was constructed with a containing deck 
to support the bony FFF in a higher position and equally distribute 
occlusal loading onto the bone screws and the PSI. This can also 
be used for esthetic purposes, while using miniplates for the fibula. 
In this study, the PSI-based approach could completely restore the 
mandibular contour of the inferior border and allowed the surgeon 
to position bony segments on the alveolar level. It is also possible 
to pre-plan and include simultaneous implants and immediate 
placement of dentures. Achieving a more esthetic and feasible 
contour of the mandible along with better prognosis for prosthetic 
rehabilitation, this novel technique represented a promising next 
step in PSI reconstruction. Of note, there were no statistical 
differences in mechanical properties between 3D-printed titanium 
plates and conventional surgical plates used in mandibular 
reconstruction (77). However, disadvantages of this approach were 
the cost itself, time to conduct surgery, paucity of data about ideal 
design of the implant, and the risk of exposure, especially after 
radiotherapy in an oncologic setting (70, 71). Given these 
limitations, further studies are needed to determine the clinical 
impact of this concept.

4. Back to the future? – augmented 
reality and bioprinting strategies

4.1. Virtual reality and augmented reality

VR is defined as the digitization of objects and environments. To 
interact with the virtual surgical environment handheld controllers 
and devices with haptic feedback are used. Currently, VR is applied in 
preoperative anatomical assessment, VSP, and intraoperative 
navigation. AR allows projection of 3D objects on the user’s eyesight 
to create a superimposition of digital content to the real field of view. 
Thus, additive information about anatomic visualization, preoperative 
planning, and measurements in the form of holograms can 
be projected into the surgeon’s operation field (78). This technology 
was recently adapted by Microsoft® with the “hololens” concept, 
which allows interactions with the holograms due to cutting-edge 
hand-motion-recognizing technology (79). Contrary to image-guided 
navigation and VR, AR renders the need to look outside of the 
operation field obsolete (80). Consequently, surgical efficiency, 
assurance of sterility, and immediate data access are supported when 
using AR. Notably, the intraoperative use of AR devices can also 
facilitate detailed surgery documentation and assist in legal issues. So 
far, AR-enhanced surgeries have reached robust levels of accuracy, 
while showing high rates of preserving critical anatomical structures 
(81, 82). Although AR has mainly been used in neurosurgery, 
orthognathic surgery, and facial deformity repairs, previous studies 
point toward promising results in mandibular reconstruction 
(especially in complex mandibular reconstructions cases) too (83–89).

Yet, the following limitations delay AR implementation into the 
FFF reconstruction workflow: The vergence-accommodation conflict 
is caused by different points of focus and vergence. This phenomenon 
is due to AR displays being featured by a fixed focal distance, while the 
ocular point of focusing and verging remain the same (90, 91). 
Further, errors during the registration and tracking processes of the 
AR device may lead to misalignments of the virtual objects with the 
real-life surgery site (92, 93).

4.2. Recent advancements in 3D printing

The technology of 3D printing enables the fast-track translation 
of CAD data into physical 3D models (94). In contrast to CAD/CAM, 
3D printing defines various methods of building-up objects in a layer-
by-layer fashion (i.e., additive manufacturing). Several methods of 3D 
printing are currently available, including (i) vat photopolymerization, 
(ii) powder bed fusion, (iii) material jetting, (iv) material extrusion (v) 
directed energy deposition, (vii) binder jetting, and (viii) sheet 
lamination (95, 96). Powder bed fusion, more specifically selective 
laser melting/sintering (SLM/SLS), is mainly used for constructing 
titanium PSI in maxillofacial surgery (65, 97, 98). Typically, a 
stereolithographic resin model/mold is 3D-printed to construct a 
rapid and reliable prototype. Upon this prototype, the definitive 
titanium osteosynthesis plate can be  flexed, pressed, or molded 
preoperatively, and most notably, controlled against the 
stereolithographic model (98). For assisting in surgical planning and 
checking the fitting accuracy of the PSI preoperatively a polyamide 3D 
anatomic model of the remaining mandible can be  fabricated by 
means of 3D printing (i.e., SLS) (99). Recent studies and case reports 
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reported high accuracy levels and patient satisfaction following 
3D-printed PSI, rendering 3D printing a valuable tool in up-to-date 
FFF reconstruction (100–102). Furthermore, current locking systems 
in 3-D printing are milled or printed, which has been shown to 
be highly accurate and may minimize the need for manual adjustments 
during the surgery. In addition, in maxillary reconstruction, 3-D 
printing of Titanium subperiosteal implants has shown improved long 
term outcomes for patients (103). There is ongoing debate about what 
material is the most effective bone anchored implant, however, current 
evidence suggests that both commercially pure titanium (cp-Ti) and 
titanium alloy (Ti6Al4V) are effective, and there is no clear difference 
between the two materials (104). 3-D printing has also moved toward 
utilization of poly ether-ether-ketone (PEEK) and cellular calcium 
hydroxyapatite (CHAp), which have extraordinary strength and 
function similar to biological materials, making them an exciting area 
of growth within this field (105). Advancements have also been shown 
with resorbable material, such as Magnesium, especially for 
procedures related to bone tissue repair (106). Finally, research is 
advancing in harnessing good manufacturing practice level autologous 
adipose stem cells for maxillary reconstruction (107).

4.3. Recent advancements in bioprinting

Bioprinting represents a novel technology, which emerged from 
the available 3D printing. The concept of integrating living cellular 
biomaterials into a controlled layer-by-layer deposition allows for the 
creation of complex, heterogenous tissues with maintained cellular 
viability (108). Similar to conventional 3D printing strategies, 
bioprinting is based on data derived from 3D imaging, such as 
computerized tomography (CT) and magnetic resonance imaging 
(MRI), translated into CAD files. While there are various bioprinting 
methods, including inkjet 3D bioprinting, micro-extrusion 3D 
bioprinting, laser-assisted 3D bioprinting, and stereo-lithography, all 
approaches rely on a combination of printing biomaterials (i.e., a 
composition of cells, gels, and growth factors, referred to as bioink), 
scaffold, and other additive factors (109). Playing a key role in the 
development of 3D bioprinting, optimizing the composition and 
texture of bioink represents the pivotal step to bridge the gap from 
bench to bedside. To organize the cells contained in the bioink 
biocompatible scaffolds are commonly used as structural support, 
where cells can adhere, proliferate, and differentiate. The scaffold 
further includes a plethora of bioactive agents (e.g., interleukins), 
which stimulate cell growth and proliferation. Cell viability and 
vascularization are supported by the porous structure of the scaffold 
(110). While current research is still perplexed by the formation of 
organic tissue embryonic development, this insight into the embryonic 
maturation process could represent a promising alternative to using 
scaffolds for cell organization (111).

Various tissue components have to come from elsewhere in 
composite FFF transplants: (i) mandibular bone, (ii) 
temporomandibular joint, (iii) oral mucosa (iv) dentition, and (v) 
the inferior alveolar nerve. The reconstructed mandibula should 
resist life-long mastication stress, permanent contractile tension 
from adjacent facial soft tissue, and the microbiome of the oral 
cavity. Therefore, bioprinted tissue for mandibular reconstruction 
must be designed in compliance with mechanical strength, infection 
resistance, and facial esthetics (112–114). The main components of 

the mandibular bone are inorganic elements (i.e., hydroxyapatite 
(HA)), ensuring rigidity, and organic, resilience-ensuring elements 
(i.e., collagen) (115). Analogically, various scaffold materials have 
been studied for their inorganic-element-like structure, such as 
bioceramics of calcium phosphate components (e.g., α-tricalcium 
phosphate, β-TCP, and HA), synthetic biopolymers (e.g., 
polycaprolactone, polylactic acid, polylactic glycolic acid, 
polyethylene glycol), and natural polymers of chitosan, (116–119). 
Three types of stem cells can be used for mandibular reconstruction: 
adult stem cells (ASC), embryonic stem cells, and induced 
pluripotential stem cells (iPSC). Interestingly, mesenchymal stem 
cells (MSC) obtained from craniofacial bones display a dissenting 
genetic and histological profile compared to MSC stemming from 
long bones (114). Further, craniofacial MSC show impaired 
properties of proliferation and regeneration vs. increased levels of 
compact bone and alkaline phosphatase (120–123). Currently, there 
is a mounting body of research investigating further sources of 
MSC, such as dental pulp, periodontal ligaments, developing teeth, 
and gingival tissues. For instance, a clinical phase I trial reported 
promising results in maxillary alveolar cleft reconstruction using 
deciduous pulp MSC (124). Additional ongoing clinical trials 
investigate the regenerative potential of gingival fibroblast MSC and 
dental MSC for tissue engineering (125, 126). Bioactive molecules, 
such as VEGF, BMP, FGF, and IGF-1 stimulate the angiogenesis and 
the osteogenic differentiation when incorporated into the bioink 
(127). Of note, the reconstruction process of a mandibular defect 
with bioprinting procedures is highly individualizable as the 
bioprinted graft can be  customized to anatomic structures and 
include a wide composition of biomaterials (128). After uploading 
3D image modalities, such as CT, MRT, or PET-CT, onto an 
on-demand platform, VSP is performed on a multidisciplinary 
background. At this stage, feasible compositions and configurations 
of scaffold, cells, and bioactive molecules must be determined. For 
optimized intraoperative controlled positioning a surgical guide 
should be designed simultaneously to bioprinting the mandibula. 
After confirming the final draft, the neo-mandible can be printed in 
multiple cartridge manners (i.e., integrated tissue and organ printing 
(ITOP)), transported to the operating room, and finally inserted 
into the mandibular defect (114). Overall, bioprinted grafts can 
lower donor site morbidity, reduce operation time, and make graft 
shaping less sophisticated. Recently, numerous studies have 
investigated how to optimize both the bioprinting technology and 
bioink formulas to enhance tissue properties, such as stability and 
robustness (129–131). However, there is a scarcity of clinical 
experience on safety and outcomes of bioprinted tissues in 
maxillofacial reconstruction. Besides a limited number of case 
reports discussing this technology for the urethra, trachea, and 
blood vasculature, bioprinted tissue has not been frequently 
transplanted into human individuals (132). Moreover, there are no 
clinical trials listed at ClinicalTrails.gov, except for one study 
investigating the safety and efficacy of traumatic bone defects treated 
with a 3D tissue-engineered bone equivalent (3D-TEBE) (133). 
Although the technology of bioprinting still needs to bridge the 
translational gap for routine clinical use, 3D printed composite 
tissue is likely to become a versatile tool for maxillofacial, plastic, 
and head and neck reconstructive surgeons (134). Future 
perspectives of augmented/virtual reality, as well as 3D- and 
bioprinting are illustrated in Figure 1.
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5. Progress in the postoperative period 
– the advent of modern free flap 
monitoring

5.1. Man vs. machine – novel techniques of 
flap monitoring

Postoperative complications after FFF reconstruction may occur 
in about 28–36% of cases. Donor site morbidity is a relatively rare 
major complication compared to other flap harvest sites, making FFF 
the gold standard currently, however, there is still risk of other minor 
complications such as infection, necrosis, fistula, and flap loss (135, 
136). Risk factors for postoperative complications include prolonged 
ischemic times, comorbidities, alcohol withdrawal, smoking, 
postoperative radiotherapy, and (pre)prosthetic surgery (132, 133). 
While vascular adverse events typically manifests within 72 h after 
surgery (i.e., the timeframe during which the anastomosed vessels 
commonly reepithelialize), inpatient monitoring represents the most 
powerful tool in flap failure prevention (134). In many cases, a bone 
reconstruction may be preferred over a 3-D printed load-bearing plate 
to decrease the risk of plate exposure and for the ability to insert 
implants followed with dental restoration and regaining masticatory 
function. In maxillofacial procedures specifically, VSP allows surgeons 
to perform more accurate reconstructions, allowing dental 
rehabilitation, and even immediate loading. In case of a skin paddle, 
the gold standard of flap monitoring comprises clinical examination 
(i.e., assessing parameters of skin color, temperature, tissue turgor, 
and capillary refill) and handheld acoustic doppler sonography (ADS) 
(137, 138). Yet, clinical examination is largely subjective. Therefore, 
experience and expertise in interpreting the variety of warning 

symptoms for flap failure are crucial. Further, the specific light source 
used to inspect the FFF and dark skin tone represent additional 
pitfalls when evaluating FFF failure (137, 139, 140). Monitoring of 
buried FFFs is even more challenging as there is no direct access 
postoperatively to the bony segment and the use of ADS is commonly 
limited to superficial vessels (141). To overcome such obstacles novel 
strategies in postoperative free flap monitoring were developed, 
namely (i) color duplex ultrasonography (CDS), (ii) flow coupler 
(FC), (iii) implantable doppler (ID), (iv) laser doppler flowmetry 
(LDF), (v) near-infrared spectroscopy (NIRS), and (vi) hyperspectral 
imaging (HSI). However, none of these techniques has been 
established for postoperative FFF management (137). However, 
several studies underlined the clinical value of CDS as a reliable 
monitoring instrument, which allows for safe and non-invasive 
postoperative assessment of buried flaps and vascularized free bone 
flaps (142, 143). The FC and ID technique are inserted intraoperatively 
to ensure continuous postoperative monitoring of venous outflow. 
While ID devices include an external Doppler console and an 
ultrasonic probe attached to a silicone sheet, which is wrapped around 
the venous pedicle, FC is not linked to any additional silicone sheet 
carrying the risk of dislodging. While both FC and ID represent 
promising tools for monitoring deeply buried flaps allowing for 
prompt intervention, the high false positive rates of up to 17% slows 
down their clinical implementation (141, 144, 145). In contrast, LDF, 
NIRS, and HSI represent non-invasive monitoring alternatives with 
poor cost-efficiency (146, 147). Currently, there are further promising 
monitoring techniques underway, which remain to be extensively 
employed in a clinical setting. For example, the Beckman Laser 
Institute developed the modulated imaging (MI) tool, a device for 
detecting changes in a flap appearance due to arterial or venous 

FIGURE 1

Future perspectives of virtual /augmented reality, three-dimensional (3D), and bioprinting.
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occlusion, fat necrosis, or flap atrophy. One main advantage of this 
technique is the early detection of venous occlusion, even before 
manifestation of other clinical symptoms (148). Further, there are two 
ongoing studies, evaluating the monitoring of bony free flaps with 
means of metabolite detection in the interstitial liquid (i.e., 
microdialysis) (149, 150). Decreased glucose and pyruvate levels vs. 
increased lactate levels following anaerobic metabolism indicate an 
impairment of tissue perfusion (e.g., due to ischemia). By placing a 
microdialysis catheter directly in the bone tissue, the glucose-to-
lactate ratio can be determined in bony free flap (151). Since recent 
studies have proposed optimal positioning sites of the catheter in the 
surrounding soft tissue, this technique provides more accurate 
reflection of bone vascularization and represents a promising tool for 
FFF observation (152, 153). However, further studies are required to 
identify concrete cut-off values of metabolites in bone tissue (154). 
Postoperative outcomes, ranging from esthetic outcome to recovery 
time, have significantly improved as a result of the accuracy of VSP 
and improvements in surgical planning overall (6, 11, 17, 155, 156).

5.2. Artificial intelligence-supported 
monitoring

While the aforementioned techniques are operator-dependent 
and subjective, AI is a promising aid in standardizing flap observation 
and interpretation of continuous flap monitoring (157). Recent 
literature describes increasing effort in supervising ML tools for 
postoperative free flap monitoring. Reporting accuracy rates of up to 
98.4% AI-supported monitoring tools proved to be time-effective and 
overcome shortage of specialty-trained clinic staff (158). Moreover, 
using AI in flap monitoring allows for outsourcing flap assessment 
from an inpatient setting to home examination. Thus, flap monitoring 
could be  expanded beyond the inpatient period and, vice versa, 

inpatient time could be shortened, leading to a saving of clinical staff 
and costs. Notably, the first smartphone application for such 
microsurgery monitoring was developed back in 2014. Here, varying 
degrees of pressure were applied around the index finger to produce 
partial and complete occlusion, which were analyzed by AI based on 
photographs (159). Another recently developed smartphone-based 
free flap monitoring tool was described by Provenzano et al., who use 
ML to develop and validate the assessment model (160, 161). For this 
purpose, patient data covering various scales of the Fitzpatrick skin 
type spectrum were utilized to simulate arterial and venous occlusion 
using a blood pressure tourniquet. Subsequently, a simplistic pattern 
recognition algorithm was developed to predict arterial or venous 
occlusion (161). Despite the accuracy and simplicity of utilizing 
smartphone applications, the EU MDR considers any smartphone 
application for such purposes as a medical device, making it difficult 
to get access to such applications. Although AI-supported monitoring 
tools represent a convenient, economical, and accurate strategy, larger-
scale randomized controlled trials are warranted to investigate the 
clinical implementation of ML devices (162–164). Figure 2 compares 
novel postoperative monitoring tools to conventional monitoring 
techniques (Table 1).

6. Conclusion

FFF is based on an intriguing concept that combines anatomical 
and clinical strengths resulting in reliable patient outcomes. While 
FFF has emerged as a high-volume working horse in facial 
reconstructive surgery, recent advancements in perioperative 
technologies have paved the way toward innovative and novel 
concepts for advancing FFF. This review is the to date largest effort to 
condense the current knowledge of clinical and translational 
challenges in FFF surgery research and discuss potential solution 

FIGURE 2

Novel approaches in postoperative monitoring vs. the current gold standard.
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TABLE 1 Strengths and limitations of different pre- and intraoperative innovations for fibula free flap surgery.

Technique/Method Description Advantages Limitations

Virtual Surgical Planning (VSP)  - Involves using imaging technology (like 

CT scans) and 3D modeling software to 

plan surgeries in advance

 - Finds application in complex surgeries 

where precision is crucial

 - Decreased intraoperative time

 - Improved accuracy of reconstruction

 - Visualization of predictable results, 

reconstruction limitations, and 

possible complications

 - Clear margins at tumor resection

 - Additional costs

 - Risk of losing familiarity with 

conventional techniques

 - Delay of surgery due to extended 

preoperative planning time

Artificial Intelligence (AI) in VSP  - Used to create models and help surgeons 

make decisions based on these models

 - Timesaving with objective and 

standardized reconstruction planning

 - Reasonable image generation in case of 

initial mandibular deformity

 - Enhancement of AI use in VSP with 

machine learning and deep learning

 - AI-designed grafts need 

adjustments and refinement by 

surgeons and engineers

 - Relies on refinements referring 

to dependable anatomical skills 

and image evaluation

Patient-Specific, Topology-Optimized 

Osteosynthesis Plates (TOPOS-

implants)

 - Represent a type of patient-specific 

implant that use principles of 

topology optimization

 - Strive to create an ideal load distribution 

within the implant

 - Decreased volume, optimized mechanics, 

and modular exchangeability

 - Prevents overloading of the screws

 - Reduced contact area between TOPOS-

implant and bone improves healing 

capacities

 - Current studies are limited to 

biomechanical and cadaveric 

investigations

Patient-Specific Plate (PPP)  - Depicts a personalized implant designed 

based on patient’s anatomical data 

obtained from CT or MRI scans

 - Commonly used for the reconstruction 

of facial bones after tumor resection 

or trauma

 - Overcomes limitations of vertical height in 

FFF and avoids double barrel procedure

 - Allows for ideal occlusion in terms of VSP

 - Leads to better prognoses for prosthetic 

rehabilitation

 - Relatively large amount of 

titanium needed

 - Risk of plate exposure 

after radiotherapy

 - Limited availability of studies for 

treatment of malignant tumors

possibilities. Overall, the integration of cutting-edge technologies into 
the perioperative workflow of FFF surgery demonstrates promising 
preliminary results, while carrying untapped potential at the same 
time. This line of research may guide future research efforts and 
catalyze the implementation of modern technologies into FFF surgery.
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