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Abstract

The investigation of the relationship between neural measures of limbic struc-

tures and hypothalamic pituitary adrenal axis responses to acute stress expo-

sure in healthy young adults has so far focused in particular on task-based and

resting state functional connectivity studies. Thus, the present study examined

the association between limbic volume and thickness measures and acute cor-

tisol responses to the psychosocial stress paradigm ScanSTRESS. Using Permu-

tation Analysis of Linear Models controlling for sex, age and total brain

volume, the associations between (sex-specific) cortisol increases and human

connectome project style anatomical variables of limbic structures (i.e. volume

and thickness) were investigated in 66 healthy and young (18–33 years) sub-

jects (35 men, 31 women taking oral contraceptives). In addition, exploratory

(sex-specific) bivariate correlations between cortisol increases and structural

measures were conducted. The present data provide interesting new insights

into the involvement of striato-limbic structures in psychosocial stress proces-

sing, suggesting that acute cortisol stress responses are also associated with

mere structural measures of the human brain. Thus, our preliminary findings

suggest that not only situation- and context-dependent reactions of the limbic

Abbreviations: AUC, area under the curve; BOLD, blood oxygenation level dependent; cACC, caudal anterior cingulate cortex; DELFIA,
dissociation-enhanced lanthanide fluorescence immunoassay; FWER, family-wise error rate; fMRI, functional magnetic resonance imaging; Glc-Tea,
glucose tea; HCP, Human Connectome Project; HPA axis, hypothalamic pituitary adrenal axis; lOFC, lateral orbitofrontal cortex; mOFC, medial
orbitofrontal cortex; OCs, oral contraceptives; OFC, orbitofrontal cortex; PALM, Permutation Analysis of Linear Models; PCC, posterior cingulate
cortex; PFC, prefrontal cortex; rACC, rostral anterior cingulate cortex; ROI, region of interest; RS, resting state; T1w, T1-weighted; T2w, T2-weighted;
TBV, total brain volume; TSST, Trier Social Stress Test.
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system (i.e. blood oxygenation level-dependent reactions) are related to acute

(sex-specific) cortisol stress responses but also basal and somewhat more con-

stant structural measures. Our study hereby paves the way for further analyses

in this context and highlights the relevance of the topic.

KEYWORD S
amygdala; Human Connectome Project, HCP; ncl. caudatus; psychosocial stress;
ScanSTRESS

1 | INTRODUCTION

In recent decades, research on the relationship between
neural measures and psychoneuroendocrine responses to
acute (psychosocial) stress has focused in particular on
functional magnetic resonance (fMRI) studies imple-
menting task-based and/or resting state (RS) designs. In
this context, studies on the association between structural
measures of the brain, for example, volume and thick-
ness, and stress-induced hypothalamic pituitary adrenal
(HPA) axis responses have been neglected. To the best of
our knowledge, only a handful of studies subsists contrib-
uting to a better understanding of this association in
healthy subjects. For instance, in a small (n = 13) sam-
ple, Pruessner et al. (2007) detected a positive correlation
between bilateral hippocampal volume and area under
the curve (AUC) cortisol in response to the Trier
Social Stress Test (TSST) in young men (Kirschbaum
et al., 1993). Three further TSST studies reported no sig-
nificant associations between cortisol responses and hip-
pocampal, amygdalar, as well as prefrontal cortex (PFC)
volume (Barry et al., 2017; Liu et al., 2012), and a nega-
tive correlation with amygdalar volume in a subsample
of healthy subjects (Klimes-Dougan et al., 2014), with Liu
et al. (2012) and Klimes-Dougan et al. (2014) examining
adolescents. Moreover, Sindi et al. (2014) revealed nega-
tive associations between hippocampal volume and corti-
sol levels in unfavorable stressful testing conditions
specific for young (ages 18–35, word-list recall task) ver-
sus old (ages 60–75, face-association memory task) age
groups. Considering AUC cortisol as a grouping factor,
Admon et al. (2017) found high and low levels of cortisol
to be associated with less hippocampal volume compared
to moderate cortisol release in response to a prolonged
version of the Maastricht Acute Stress Test (Smeets
et al., 2012) in women. Taken together, these studies pre-
sent an inconsistent pattern of findings, and only two
studies examined the relationship in response to a psy-
chosocial stressor (TSST) in healthy young adults (Barry
et al., 2017; Pruessner et al., 2007).

Apart from a few studies in newborns and (young)
children (Blankenship et al., 2019; Buss et al., 2012;

Fowler et al., 2021; Keresztes et al., 2020; Merz
et al., 2019; Moog et al., 2021; Wiedenmayer et al., 2006),
there mainly exist studies elaborating the interplay
between basal HPA axis responses and structural brain
measures. HPA axis markers thereby range from simple
one-time collected salivary cortisol samples (Cho, 2001),
24-h urinary cortisol and basal adrenocorticotropic hor-
mone levels (Wolf et al., 2002), to diurnal cortisol assess-
ments and/or cortisol awakening responses (Dedovic
et al., 2010; Ennis et al., 2019; Kremen et al., 2010; Lu
et al., 2013; Lupien et al., 1998; MacLullich et al., 2005;
Stomby et al., 2016; Sudheimer et al., 2014; Treadway
et al., 2009), morning salivary cortisol after dexametha-
sone administration (Cacciaglia et al., 2017), as well as
hair cortisol (R. Chen et al., 2016). In addition, two stud-
ies focused on perceived stress measures instead of corti-
sol responses (Blix et al., 2013; Piccolo & Noble, 2018).
Apart from studies that did not detect any association
(Chen et al., 2016; Kremen et al., 2010; MacLullich
et al., 2005; Treadway et al., 2009), predominantly
negative associations between HPA axis and structural
measures have been reported, particularly for the
hippocampus.

Assuming that these markers of HPA axis regulation
are more stable than situation- and context-dependent
responses to a specific experimental setting, it may seem
more reasonable to link precisely these measures to struc-
tural brain variables (i.e. volume and thickness). Simi-
larly, such structural measures seem to be more constant
compared to task- and RS-based responses—at least in
certain age groups. However, there is evidence that
structural features of the brain are indeed related to acute
stress responses (Herman et al., 2005; McEwen
et al., 2016; Sapolsky, 2003). In this respect, the limbic
system with its inherent and associated structures is of
particular interest, including areas beyond the (para)hip-
pocampus, amygdala and PFC, namely, striatal and cin-
gulate subfields as well as the thalamus (Berretz
et al., 2021; Henze et al., 2021, 2020; Noack et al., 2019;
Reinelt et al., 2019; Ulrich-Lai & Herman, 2009; Van Oort
et al., 2017). These same structures also exhibit
sex-specific neural response patterns to stress as well as
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associations with cortisol, especially in Blood Oxygena-
tion Level Dependent (BOLD)–based fMRI studies
(Chung et al., 2016; Dahm et al., 2017; Goldfarb
et al., 2019; Henckens et al., 2010; Henze et al., 2021;
Kogler et al., 2015, 2016; Seo et al., 2017, 2011; Veer
et al., 2012; Vogel et al., 2015; Wang et al., 2007). Hence,
sex-specific associations between acute cortisol responses
and limbic structural measures may also be relevant and
need further investigation.

Based on this, the present study scrutinised the rela-
tionship between (sex-specific) cortisol responses to the
psychosocial stressor ScanSTRESS (Streit et al., 2014)
and volumetric as well as thickness measures of the lim-
bic system in young adults. Cortisol (as well as affect,
heart rate and task-based neural) responses of the stud-
ied sample have already been published (Henze
et al., 2020). However, the present Human Connectome
Project (HCP) style anatomical data (Van Essen
et al., 2013, 2012) offered the potential to further investi-
gate the interplay of neural substrates and acute HPA
axis markers in more detail. Given the limited number
of studies on this topic to date, we designated our study
as exploratory.

2 | MATERIALS AND METHODS

The present study comprised the sample of Henze et al.
(2020) excluding one male subject as a 3D-structural T2-
weighted (T2w) image could not be obtained. Initially,
67 young, healthy, scanner-naive participants were
recruited via flyers and social media Internet platforms.
The final sample for the present study consisted of
66 subjects (mean age 23.08 ± 3.16 years), with 31 women
(mean age 22.10 ± 2.12 years) and 35 men (mean 23.94
± 3.68 age years). Owing to HPA axis activity differences
depending on menstrual cycle phase and oral contracep-
tives (OCs) usage (Kudielka & Kirschbaum, 2005;
Zänkert et al., 2019), only women taking OCs were
tested. We included all types of OCs (single and combina-
tion agents) and performed the fMRI measurements dur-
ing active phases of OC use, that is, not during intake
breaks between cycles. Exclusion criteria for this study

further included self-reported history of or current psy-
chiatric, neurological or endocrine disorders; treatment
with psychotropic medications or other medication
affecting central nervous system or endocrine functions;
daily tobacco or alcohol use; incompatibility with fMRI
scanning (e.g. metal parts and pregnancy); regular night-
shift work; and undergoing a current stressful episode
(e.g. major exams or emotional stress due to separation
from partner or serious illness/death of a family
member).

All subjects provided written informed consent and
the study was approved by the local ethics committee of
the University of Regensburg. Test sessions took place
between 1 and 6 PM to minimise influences of the circa-
dian rhythm of cortisol secretion (Kudielka et al., 2004).
The sequence of the test protocol can be seen in Figure 1.

For the present analysis, only cortisol stress responses
and structural measures of our subjects were relevant.
Therefore, the following is limited to the description of
these parameters.

To assess cortisol responses to ScanSTRESS, saliva
samples were collected at 10 time points referring to �1
as stress onset (�75, �15, �1, +15, +30, +50, +65, +80,
+95 and +110 min) using ‘Cortisol Salivettes’ (Sarstedt,
Nuembrecht, Germany). Saliva samples were analysed
using a time-resolved fluorescence immunoassay with
fluorometric end-point detection [DELFIA (dissociation-
enhanced lanthanide fluorescence immunoassay);
Dressendörfer et al., 1992] with an intra-assay coefficient
of variation between 4.0% and 6.7% and an inter-assay
coefficient of variation between 7.1% and 9.0%.

ScanSTRESS was conceived as a block design with
alternating stress and control blocks presented in two
runs. In control blocks, subjects solved simple figure and
number matching tasks. In stress blocks, subjects were
challenged with rotation and arithmetic tasks while being
monitored by an investigator panel, exposed to time pres-
sure, and receiving disapproving feedback. The original
protocol (Streit et al., 2014) was slightly modified to
enhance stress-induced responses, as described in Henze
et al. (2020), without changing the paradigm itself. First,
a prolonged (45 min) relaxing phase prior to stress was
implemented to create appropriate baseline conditions

F I GURE 1 Experimental procedure including collection of saliva samples (cortisol) and administration of a sugary drink (glucose tea,

Glc-Tea). The relaxing phase is shaded in dark grey, and the scanner procedure, in light grey. Displayed are the time points in minutes

relative to the start of ScanSTRESS.

HENZE ET AL. 3
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(i.e. low cortisol levels). Moreover, a detailed description
and comprehensive clarification about the general
scanning procedure was provided to minimise subjects’
concerns prior to scanning that may confound with the
response to the paradigm itself (McGlynn et al., 2007;
Thorpe et al., 2008). Second, a sugary drink (75 g glucose
in 200 mL herbal tea) was administered to facilitate corti-
sol reactivity (Zänkert et al., 2020). Third, a more abrupt
passage (<10 min) from relaxation to stress exposure was
achieved.

Subjects were scanned in a Siemens MAGNETOM
Prisma 3 T MRI (Siemens Healthcare, Erlangen,
Germany) equipped with a 64-channel head coil. Two
series of BOLD echo planar imaging sequences
(ScanSTRESS, results reported in Henze et al., 2021,
2020), multiband RS (results are yet to be published) and
anatomical sequences were performed. The anatomical
measurements included a 3D-structural T1-weighted
(T1w) image (T1/TR/TE = 1200/2400/2.18 ms, flip-
angle = 8�, distance factor = 50%) and a 3D-structural
T2w image (TR/TE = 3200/564, flip angle: variable) with
0.8 mm isotropic resolution and 256 mm field of view.

Pulse sequence parameters matched those used in the
HCP so that the structural steps of the HCP minimal pre-
processing pipelines (v.4.3.0) could be applied to our
HCP-style data (Glasser et al., 2013). The initial proces-
sing of this pipeline includes an alignment between the
T1w and T2w images, bias field and gradient distortion
corrections, and registrations of the data to the Montreal
Neurological Institute space. FreeSurfer (v7.1.1) was used
for cortical parcellation and subcortical segmentation of
the T1w volume, including the estimation of total brain
volume (TBV). FreeSurfer processing included removal of
non-brain tissue, automated Talairach transformation,
segmentation, intensity normalisation, tessellation of
grey/white matter boundary, topology correction and sur-
face deformation. The T2w image was included in the
processing stream to better refine the pial surface by
removing dura and vasculature. Furthermore, every sub-
ject’s structural output was visually inspected before
applying asegstats2table and aparcstats2table to extract
volume (subcortical) and thickness (cortical) measures of
limbic structures for each hemisphere.

In addition to IBM SPSS Statistics Version 25 (IBM
Corp., Armonk, NY) and the packages haven, tidyverse,
psych, ggplot2, ggside and labelled in R 4.2.1
(Landis, 2022; Larmarange et al., 2023; R Core
Team, 2023; Revelle, 2023; Wickham, 2016; Wickham
et al., 2019, 2023), Permutation Analysis of Linear Models
(PALM, Winkler et al., 2014), implemented in MATLAB
R 2021a was used to examine associations between indi-
vidual cortisol stress responses and structural measures
of the limbic system. According to the current literature

on the interplay of neural substrates and acute HPA axis
responses (e.g. Berretz et al., 2021; Noack et al., 2019;
Van Oort et al., 2017), the following regions of interest
(ROIs) were selected: Volume was extracted for the
thalamus, striatum (ncl. caudatus, ncl. accumbens and
putamen), hippocampus and amygdala. Thickness was
determined for the cingulate cortex (rostral anterior cin-
gulate cortex, rACC; caudal anterior cingulate cortex,
cACC; and posterior cingulate cortex, PCC), parahippo-
campus and the orbitofrontal cortex (OFC: lateral and
medial OFC, lOFC and mOFC). A total of four models
were tested, in which lateralised structural measures (vol-
ume and thickness) of the left and right hemispheres
served separately as dependent variables, considering
that regulation of the HPA axis was assumed to be latera-
lised (Cerqueira et al., 2008). Since the variables sex, age
and TBV have an impact on structural brain measures
(Giedd et al., 1999; Moog et al., 2021), they were included
as control variables, with TBV only taken into account
when volumetric measures were considered as dependent
variables. Hence, each model (n = 4) with lateralised
structural measures as dependent variables included the
independent variables sex, age and total brain volume
(where appropriate) as control variables as well as indi-
vidual (sex-specific) cortisol increases as variables of
interest.

To adequately examine the association between acute
cortisol increases and structural measures of the brain,
we chose to consider the respective lateralised structural
measure as a dependent variable as this is the most suit-
able way to (a) account for potential influences of the
variables sex, age and TBV (where appropriate) on struc-
tural measures and (b) account for the inherent sex dif-
ference in the variable cortisol increase (by including
individual sex-specific cortisol increases). Table 1 depicts
our tested model(s) and also lists the contrasts consid-
ered. It should be noted that for the variables sex-specific
cortisol (cortisol increase men and cortisol increase
women), age and TBV the exact continuous values were
included in the linear model(s) and that only the variable
sex was coded as a grouping variable with 0 (=men) and
1 (=women). The grouping variable cortisol increase men,
for instance, was coded to include the actual value for
male subjects and 0 for female subjects; the same proce-
dure was used for the variable cortisol increase women,
but in the opposite manner. All variables were mean-
centred. Ultimately, this approach allowed us to correct
for and/or explore in more detail the potential influence
of sex-specific cortisol responses. Family-wise error rate
(FWER) corrections were performed in PALM within
modality and contrast (pFWER) and using -corrmod and
-corrcon to FWER correct p-values across modalities and
contrasts (pFWERmc) (Alberton et al., 2020).

4 HENZE ET AL.
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TAB L E 1 Statistical model tested with PALM separately for both hemispheres and volume and thickness measures.

Contrast Cortisol increase men Cortisol increase women Sex Age TBV

Cortisol 1 1 0 0 0

Men > women 1 �1 0 0 0

Women > men �1 1 0 0 0

Men 1 0 0 0 0

Women 0 1 0 0 0

Note: Shaded in grey is the regressor total brain volume (TBV), which was not included in the models for thickness measures.

TAB L E 2 Sample characteristics of cortisol increase, total brain volume, as well as hemisphere-specific volume and thickness measures

for the thalamus, ncl. caudatus, ncl. accumbens, putamen, hippocampus, amygdala, rostral anterior cingulate cortex (rACC), caudal ACC

(cACC), posterior cingulate cortex (PCC), parahippocampus, lateral orbitofrontal cortex (lOFC), and medial OFC (mOFC).

Mean SD

Range

Kurtosis (±SE) Skewness (±SE)Min Max

Cortisol increase (nmol/L) 3.351 4.601 �2.300 22.360 4.212 (±.582) 1.851 (±.295)

Women 1.612 2.889 �1.820 11.510 5.525 (±.821) 2.221 (±.421)

Men 4.892 5.283 �2.300 22.360 2.581 (±.778) 1.443 (±.398)

AUCg 605.913 300.301 222.540 1747.680 4.296 (±.582) 1.866 (±.295)

Women 516.430 205.482 222.540 930.300 �.531 (±.821) .550 (±.421)

Men 685.170 348.398 327.300 1747.680 2.734 (±.778) 1.781 (±.398)

AUCi 334.592 318.483 �24.840 1448.480 3.395 (±.582) 1.813 (±.295)

Women 225.501 182.408 �.260 763.610 2.899 (±.821) 1.586 (±.421)

Men 431.216 379.596 �24.840 1448.480 1.244 (±.778) 1.333 (±.398)

Total brain volume (mm3) 1220662.300 113435.057 990274.000 1534427.000 .162 (±.582) .463 (±.295)

Women 1141886.030 73065.700 990274.000 1286201.000 �.474 (±.821) .077 (±.421)

Men 1290435.570 96018.205 1102269.000 1534427.000 .335 (±.778) .607 (±.398)

Volumetric measures (mm3)

Left thalamus 8494.856 865.398 6899.100 10651.000 �.417 (±.582) .406 (±.295)

Right thalamus 7872.770 819.070 6009.200 9718.000 �.221 (±.582) .435 (±.295)

Left ncl. caudatus 3880.138 427.435 2894.000 5211.900 .238 (±.582) .162 (±.295)

Right ncl. caudatus 3958.630 415.668 3027.600 5042.800 �.188 (±.582) .135 (±.295)

Left ncl. accumbens 535.147 87.320 350.700 749.500 �.196 (±.582) .243 (±.295)

Right ncl. accumbens 586.097 87.830 411.800 799.400 .018 (±.582) .287 (±.295)

Left putamen 4982.076 603.378 3870.700 6669.800 .206 (±.582) .567 (±.295)

Right putamen 5193.839 506.718 4204.100 6531.700 .148 (±.582) .409 (±.295)

Left hippocampus 4434.492 416.719 3578.200 5261.900 �.623 (±.582) .145 (±.295)

Right hippocampus 4468.656 442.015 3717.900 5578.900 �.474 (±. 582) .506 (±.295)

Left amygdala 1633.774 223.715 1228.400 2207.000 �.497 (±.582) .504 (±.295)

Right amygdala 1830.209 223.743 1458.900 2485.600 .779 (±.582) .720 (±.295)

Thickness measures (mm)

Left rACC 3.347 .245 2.760 3.860 .024 (±.582) �.228 (±.295)

Right rACC 3.359 .224 2.890 3.830 �.640 (±.582) .165 (±.295)

Left cACC 2.819 .321 1.830 3.460 .363 (±.582) �.445 (±.295)

Right cACC 2.712 .259 2.240 3.390 .640 (±.582) .744 (±.295)

(Continues)
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Cortisol increase was defined as the difference
between the individual cortisol peak (sample +30, +50,
+65) and the pre-stress cortisol level (sample �1). As we
were interested in the association between structural
brain measures and acute cortisol stress responses, we
focused on the individual cortisol increase rather than
AUC measures, which takes into account both pre-stress
and recovery phase values and represent an index of total
cortisol release. In contrast, the cortisol increase only
considers the period of acute stress exposure and the
latency phase of HPA axis reactivity (Dickerson &
Kemeny, 2004).

3 | RESULTS

Table 2 provides descriptive information of the present
sample regarding volumetric (mm3) and thickness

(mm) measures as well as sex-specific cortisol increases
(in nmol/L) and TBV (mm3). Figure 2 depicts individual
cortisol response profiles of all subjects included in our
study. The relevant analysis codes and data included in
our tested models are available at https://epub.uni-
regensburg.de/53549/.

Statistics of PALM analyses are shown in Table 3 for
volume and thickness measures of the left hemisphere
and in Table 4 for the same measures of the right
hemisphere. Figure 3 depicts scatterplots between (sex-
specific) cortisol increases and left and right hemisphere
volumetric measures. Figure 4 shows the associations
with thickness measures; both figures integrate density
plots.

In general, Figure 3 illustrates that the association
between cortisol increase and volume tends to be posi-
tive. The only association displaying some statistical evi-
dence for the total sample (contrast cortisol) after using

TAB L E 2 (Continued)

Mean SD

Range

Kurtosis (±SE) Skewness (±SE)Min Max

Left PCC 2.745 .140 2.430 3.140 .557 (±.582) .161 (±.295)

Right PCC 2.744 .127 2.490 3.240 2.490 (±.582) .729 (±.295)

Left parahippocampus 3.026 .339 2.190 3.850 .046 (±.582) �.179 (±.295)

Right parahippocampus 2.875 .262 2.290 3.470 �.383 (±.582) �.032 (±.295)

Left lOFC 3.148 .167 2.670 3.490 .052 (±.582) �.416 (±.295)

Right lOFC 3.140 .136 2.770 3.450 �.106 (±.582) �.226 (±.295)

Left mOFC 2.905 .196 2.270 3.570 2.329 (±.582) �.013 (±.295)

Right mOFC 2.983 .196 2.350 3.380 .495 (±.582) �.487 (±.295)

Abbreviations: AUCg, area under the curve with respect to the ground; AUCi, area under the curve with respect to the increase; SD, standard deviation; min,
minimal value, max, maximum value; SE, standard error.

F I GURE 2 Individual salivary cortisol

profiles (nmol/L) covering all

10 measurement time points of the cortisol

assessment.
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TAB L E 3 Results of the PALM calculations for volume and thickness measures of the left hemisphere.

Contrast Thalamus Ncl. caudatus Ncl. accumbens Putamen Hippocampus Amygdala

Cortisol

t .3909 �.7003 .7038 .2096 .1563 1.6206

puncorr .3430 .7641 .2487 .4244 .4394 .0566

pFWER .8567 .9970 .7344 .9098 .9212 .2586

pFWERmc .9999 1.0000 .9947 .9999 .9999 .6548

Men > women

t .3556 1.9248 1.0724 .6216 .3868 .7264

puncorr .3678 .0301 .1428 .2634 .3448 .2351

pFWER .8756 .1423 .5353 .7793 .8651 .7321

pFWERmc .9999 .4394 .9434 .9974 .9999 .9939

Women > men

t �.3556 �1.9248 �1.0724 �.6216 �.3868 �.7264

puncorr .6323 .9700 .8573 .7367 .6553 .7650

pFWER .9850 1.0000 .9997 .9951 .9872 .9965

pFWERmc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Men

t .9113 1.7250 2.2073 1.0536 .6850 2.7981

puncorr .1840 .0464 .0203 .1459 .2505 .0052

pFWER .6086 .2147 .0838 .5368 .7229 .0213

pFWERmc .9763 .5741 .2673 .9466 .9951 .0747

Women

t �.0093 �1.4804 �.2692 �.2568 �.1466 .3986

puncorr .4990 .9271 .5841 .6153 .5633 .3401

pFWER .9493 .9999 .9799 .9792 .9671 .8513

pFWERmc 1.0000 1.0000 1.0000 1.0000 1.0000 .9999

Contrast rACC cACC PCC Parahippocampus lOFC mOFC

Cortisol

t �.7523 �.7689 �.0944 .8072 .3628 .1514

puncorr .7781 .7772 .5530 .2038 .3685 .4439

pFWER .9213 .9237 .7790 .4193 .6051 .6921

pFWERmc 1.0000 1.0000 1.0000 .8981 .9966 1.0000

Men > women

t �.1109 �.5410 �.5761 �.8470 �.7915 �.5740

puncorr .5290 .6936 .7020 .8044 .7728 .7024

pFWER .7748 .8948 .9029 .9452 .9396 .9028

pFWERmc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Women > men

t .1109 .5410 .5761 .8470 .7915 .5740

puncorr .4711 .3065 .2981 .1957 .2273 .2977

pFWER .7087 .5349 .5207 .4072 .4311 .5215

pFWERmc 1.0000 .9769 .9695 .8814 .9052 .9699

(Continues)
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TAB L E 3 (Continued)

Contrast rACC cACC PCC Parahippocampus lOFC mOFC

Men

t �1.0038 �1.5861 �.8624 �.1885 �.6231 �.5793

puncorr .8354 .9387 .8020 .5753 .7331 .7139

pFWER .9502 .9875 .9353 .7951 .9005 .8922

pFWERmc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Women

t �.3178 �.0751 .2883 .9048 .6465 .4120

puncorr .6334 .5515 .4070 .1791 .2780 .3563

pFWER .8418 .7755 .6376 .3847 .4903 .5903

pFWERmc 1.0000 1.0000 .9991 .8521 .9513 .9936

Note: Effects explained in more detail in the main text are printed in bold. pFWER stands for p-values FWER-corrected within modality and contrast, and
pFWERmc stands for p-values FWER-corrected across modalities and contrasts.

TAB L E 4 Results of the PALM calculations for volume and thickness measures of the right hemisphere.

Contrast Thalamus Ncl. caudatus Ncl. accumbens Putamen Hippocampus Amygdala

Cortisol

t �.6007 �.5844 .7021 .2487 �.0010 .8247

puncorr .7208 .7184 .2311 .4192 .5000 .2006

pFWE .9877 .9869 .6805 .8595 .9186 .6190

pFWERmc 1.0000 1.0000 .9943 .9999 1.0000 .9830

Men > women

t .7602 2.1817 �.9068 1.2305 .8009 �.0539

puncorr .2217 .0157 .8137 .1169 .2126 .5398

pFWE .6615 .0769 .9979 .4122 .6401 .9436

pFWERmc .9904 .2838 1.0000 .8662 .9854 1.0000

Women > men

t �.7602 �2.1817 .9068 �1.2305 �.8009 .0539

puncorr .7784 .9844 .1864 .8832 .7875 .4603

pFWE .9921 1.000 .5763 .9992 .9938 .9101

pFWERmc 1.0000 1.0000 .9712 1.0000 1.0000 1.0000

Men

t .3120 2.1936 �.3887 1.8960 1.0486 .8689

puncorr .3606 .0170 .6443 .0257 .1495 .1884

pFWE .8346 .0888 .9728 .1551 .5067 .5908

pFWERmc .9998 .2783 1.0000 .4424 .9372 .9776

Women

t �.7493 �1.5716 .8865 �.5927 �.4685 .4503

puncorr .7720 .9409 .1877 .7307 .6864 .3047

pFWE .9930 1.000 .5862 .9875 .9794 .7869

pFWERmc 1.0000 1.0000 .9755 1.0000 1.0000 .9994

8 HENZE ET AL.
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PALM (see Table 3) concerns the left amygdala. How-
ever, this association presents itself only at the level of
uncorrected p-values. In the male subsample (contrast
men), this association is particularly evident and this
effect is the only one also exhibiting significance at the
level of uncorrected and FWER-corrected p-values
(pFWER). However, this effect disappears when the
FWER correction is applied across modalities and con-
trasts (pFWERmc). Similarly, there is a tendency for posi-
tive associations between cortisol increases and striatal
volume in men. For the left hemisphere, this concerns
the ncl. caudatus and ncl. accumbens, whereas for the
right hemisphere, ncl. caudatus and putamen are
involved. Moreover, there appears to be an interaction
between sex-specific cortisol increases and bilateral ncl.
caudatus volume, in that the association is more positive
in men than in women. This tendency for a sex-specific
dissociation is also visible in Figure 3c,d. Interestingly,

the reverse picture seems to emerge for the association
between sex-specific cortisol increases and the thickness
of the right cACC (see Table 4) describing a more positive
association in women than men but with even lower sta-
tistical significance.

A closer look at Figure 3c,d indicates that one subject
had both the largest ncl. caudatus volume and, at the
same time, achieved the highest—but endocrinologically
plausible—increase in cortisol. Excluding this outlier did
not result in any substantial change regarding the effects
shown.

To enhance the exploratory nature of our study,
Figure 5 provides correlation matrices for the total sam-
ple (Figure 5a) and sex-specific matrices (Figure 5b)
including correlations in men below the diagonal and
those in women above the diagonal. Depicted are bivari-
ate correlations between lateralised structural measures
(volume and thickness), which were not corrected for the

TAB L E 4 (Continued)

Contrast rACC cACC PCC Parahippocampus lOFC mOFC

Cortisol

t �.0679 1.1257 �.2752 .1855 .2204 .1396

puncorr .5318 .1289 .6171 .4311 .4223 .4505

pFWE .7505 .2774 .8134 .6567 .6439 .6740

pFWERmc 1.0000 .6907 1.0000 .9999 .9994 1.0000

Men > women

t �.6313 �1.6182 �.1903 �.8294 �.9752 �.6031

puncorr .7261 .9494 .5584 .7923 .8302 .7173

pFWE .8983 .9926 .7690 .9340 .9515 .8921

pFWERmc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Women > men

t .6313 1.6182 .1903 .8294 .9752 .6031

puncorr .2740 .0507 .4417 .2078 .1699 .2828

pFWE .4866 .1341 .6659 .4063 .3463 .5002

pFWERmc .9417 .3917 .9998 .8576 .7791 .9511

Men

t �.9046 �.8356 �.5633 �.8750 �1.0262 �.6309

puncorr .8095 .7937 .7121 .8032 .8393 .7345

pFWE .9276 .9183 .8714 .9238 .9413 .8846

pFWERmc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Women

t .3340 1.5169 �.0289 .5784 .6813 .4230

puncorr .3872 .0613 .5214 .2827 .2562 .3511

pFWE .6123 .1588 .7423 .5059 .4651 .5734

pFWERmc .9962 .4481 1.0000 .9589 .9218 .9897

Note: Effects explained in more detail in the main text are printed in bold. pFWER stands for p-values FWER-corrected within modality and contrast, and
pFWERmc stands for p-values FWER-corrected across modalities and contrasts.
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F I GURE 3 Scatterplots of

(sex-specific) associations between

individual cortisol increases (nmol/L) and

volumetric measures of the (a) left

thalamus, (b) right thalamus, (c) left ncl.

caudatus, (d) right ncl. caudatus, (e) left

ncl. accumbens, (f) right ncl. accumbens,

(g) left putamen, (h) right putamen, (i) left

hippocampus, (j) right hippocampus,

(k) left amygdala and (l) right amygdala.

Shown are the linear slopes of the

individual models for the total sample

(solid lines) and the sex-specific models

(dotted lines). Moreover, density plots are

presented.
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influence of sex, age and TBV, and aggregate cortisol
measures. The latter also includes, in addition to
cortisol increase, the two AUC measures (AUCg and
AUCi) representing the total volume of cortisol secreted,
which were calculated according to Pruessner et al.

(2003) as follows: AUC with respect to the ground
(AUCg) was calculated by adding eight individual trape-
zoidal areas, defined by the respective measurement
times in the protocols (see Figure 1 from sample �15 to
sample +110). AUC with respect to the increase (AUCi)

F I GURE 4 Scatterplots of (sex-specific)

associations between individual cortisol

increases (nmol/L) and thickness measures of

the (a) left rostral anterior cingulate cortex

(rACC), (b) right rACC, (c) left caudal anterior

cingulate cortex (cACC), (d) right cACC, (e) left

posterior cingulate cortex (PCC), (f) right PCC,

(g) left parahippocampus, (h) right

parahippocampus, (i) left lateral orbitofrontal

cortex (lOFC), (j) right lOFC, (k) left medial

orbitofrontal cortex (mOFC) and (l) right

mOFC. Shown are the linear slopes of the

individual models for the total sample (solid

lines) and the sex-specific models (dotted lines).

Moreover, density plots are presented.

HENZE ET AL. 11
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was determined by subtracting the area between the
ground and the pre-stress measurement (sample �1)
from AUCg values. Descriptively, these correlation struc-
tures support the PALM results to some extent indicating
rather positive associations between all three aggregate
cortisol measures and striato-limbic volume for the total
sample, but rather mixed results regarding thickness.
Likewise, there might be some evidence for a dissociation
in sex-specific associations between cortisol and striatal
volume, tending to be more positive in men but more
negative in women (see Figure 5b). However, the results
for thickness remain inconclusive in the context of poten-
tial sex effects.

4 | DISCUSSION

This is the first study investigating the association
between structural measures of a larger number of lim-
bic regions and acute cortisol responses to psychosocial

stress in a healthy sample of young adults with a bal-
anced number of female and male subjects. Further-
more, this is the first study applying a psychosocial
stress paradigm for imaging environments in this con-
text. In the following, given the exploratory nature of
our study, we refrain from making any qualitative state-
ments (i.e. an association is definitely positive or nega-
tive) about the relationship between cortisol stress
responses and structural measures of the brain and
therefore make no claim to adequately substantiated
significance of our results. Comments on effect direc-
tions are descriptive only and are primarily intended to
illustrate the involvement of individual structures in the
HPA axis response to acute stress processing. The statis-
tical results presented are also intended to illustrate
that more basal and somewhat stable brain measures
are also related to acute stress responses and do not
allow conclusions to be drawn because of the low preci-
sion of the multivariate coefficients. In view of the
above, some evidence of associations between acute

(a)

(b)

F I GURE 5 Exploratory correlation

matrices between cortisol measures

(nmol/L) (cortisol increase; area under

the curve with respect to the ground,

AUCg; area under the curve with respect

to the increase, AUCi) and volume and

thickness measures of the brain for

(a) the whole sample and (b) men and

women separately (sex-specific). In (b),

the correlations for OC-taking women

are shown above the diagonal and for

men below.
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(sex-specific) cortisol increases and striato-limbic vol-
ume emerged.

For striatal volume, our data may suggest a sex-
specific dissociation regarding the association with corti-
sol increases in women compared to men (see
Figure 3c–h). On a descriptive level, this dissociation is
also evident from the correlation structures depicted in
Figure 5b. Considering the results of PALM, this dissocia-
tion was most evident for the ncl. caudatus in that we see
a more positive association in men but a more negative
association in women. Interestingly, this dissociation
tends to be reversed for the right ncl. accumbens (see
Figure 3f), at least on a descriptive level. Moreover, this
observation appears to be relevant in that it once again
suggests striatal structures to be crucial when examining
sex differences in the association between HPA axis
markers and limbic measures (Henze et al., 2021;
Hidalgo-Lopez et al., 2020; Yoest et al., 2018). This might
also confirm that in the context of stress-related sex dif-
ferences in the brain, it might be the quality of the
responses (e.g. activation vs. deactivation and positive
vs. negative association) for the same structures rather
than different brain regions that are decisive (Henze
et al., 2021; Shalev et al., 2020).

As noted above, the issue of laterality also seems rele-
vant in terms of studying the association between cortisol
responses and brain variables (structure, BOLD responses
etc.). Our data do not allow to draw a definitive conclu-
sion as to whether the regulation of the HPA axis might
be lateralised. Moreover, a sufficient explanation for why
one hemisphere may be more dominant in the context of
stress processing has not yet been provided. However,
one explanatory approach could be to divide a stress
response into more physiological (left hemisphere) and
emotional (right hemisphere) components (Cerqueira
et al., 2008). Interestingly, neither the present structural
data nor the task-based results from our sample refute
this hypothesis (Henze et al., 2021, 2020). For certain
structures, there seems to be some dominance of one or
the other hemisphere regarding the association with cor-
tisol increases, which should be further investigated in
the future, and is confirmed by the following.

Our results may suggest that acute cortisol increases
are to some extent associated with left hemispheric amyg-
dalar volume. Even though the findings regarding the
association of brain structures and cortisol responses in
healthy adults are very limited so far, it still seems inter-
esting that the majority of effects have concerned the
amygdala (Barry et al., 2017; Klimes-Dougan et al., 2014;
Liu et al., 2012). The same picture emerges when task-
based and resting state-based connectivity studies are
considered. This not only shows that the focus of interest
is a priori on the amygdala as ROI in respective studies

but also represents the limbic structure most frequently
responsive during and after psychosocial stress proces-
sing (e.g. Berretz et al., 2021; Henze et al., 2021, 2020;
Noack et al., 2019; Van Oort et al., 2017; Veer et al., 2011,
2012). It therefore stands to reason that the amygdala
should continue to be studied as intensively and pro-
foundly as has been done so far. Accordingly, as the pre-
sent structural data can be very clearly distinguished
from situation- and task-specific contexts as in the typical
elicitation of BOLD responses, this possibly highlights
the relevance of this preliminary finding. To date, the
sole responsiveness of a structure during or after a partic-
ular task cannot be interpreted with certainty as a reac-
tion to the intended or induced state (e.g. stress, fear and
pain). In this regard, it is essential to demonstrate statisti-
cally proven relatedness to other responses to this experi-
mental manipulation that are not measured in the brain.
In the case of acute stress induction, for example, the
value of the possible statement that the mere morphology
of a structure is related to the HPA axis response to stress
(e.g. in the form of cortisol) and vice versa seems obvious.
Beyond that, our data suggest to also consider other
striato-limbic structures and to generate multimethod
data mapping different qualitative and quantitative mea-
sures of the human brain (i.e. structure, task-based and
connectivity data).

For instance, another structure that has been shown
to be relevant in the presented context by its representa-
tion in the literature is the thalamus. The results seem
particularly ambiguous here, but the structure should
continue to be considered in the future, and not only
because of its centrality in the limbic system. Based on its
attributed role as a gateway, dynamic brain responses
originating from the thalamus deserve further evaluation
especially with regard to sex effects. Regarding the above-
mentioned involvement of the striatum in sex-specific
cortisol reactions, the thalamus as an adjacent structure
could act as an additional coordinator (Henze et al., 2021;
Reinelt et al., 2019; Seo et al., 2017, 2011; Wang
et al., 2007).

Other published effects mainly concerned the hippo-
campus, which was less reflected in our data. Given the
function of this structure in the context of memory pro-
cessing, this is remarkable, as one could possibly assume
that brain morphological changes should occur in this
region due to, for example, chronic stress experience
(Botdorf et al., 2022; Hardcastle et al., 2020; Kim
et al., 2015). Examining samples at risk in terms of associ-
ations between structural measures and acute stress
responses could be a potential prospect at this point
(Misaki et al., 2021).

With respect to thickness measures the presented
results are highly inconclusive. We found little evidence
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for associations involving the right cACC in this case.
Given the focus of previous studies mentioned in the
introduction on (a) the relationship between
hippocampal structure and basal, that is, non-stress-
induced, cortisol responses and (b) amygdalar morphol-
ogy and (stress-induced) cortisol responses, this prelimi-
nary finding concerning the cingulate cortex may be of
particular interest. It possibly shows that it is not appro-
priate to limit the investigation of the interplay between
limbic structures and (acute) responses of the HPA axis
to the hippocampus, amygdala and also the subfields of
the PFC. Indeed, the majority of BOLD-dependent stud-
ies in the context of acute stress exposure continue to
focus on these structures (Berretz et al., 2021; Chen
et al., 2020; Henze et al., 2020; Noack et al., 2019;
Sakamoto et al., 2005; Van Oort et al., 2017). In particu-
lar, with regard to the PFC, it should be noted that it is
not appropriate to study it as a whole, but rather in sub-
regional resolution. This is also supported in the litera-
ture, particularly with regard to the OFC, which
undergoes morphological changes in response to, for
example, early life adversity and plays a crucial role in
encoding stressful experiences (Jacobs &
Moghaddam, 2021; Monninger et al., 2020; Sequeira &
Gourley, 2021).

As we have repeatedly pointed out, the presented
findings are of preliminary character and therefore have
to be treated as such. This is also confirmed by the work
of Harrewijn et al. (2020), who have demonstrated that
large samples are needed to have a chance to detect true
qualitative and quantitative effects on the one hand or to
identify true null effects when studying the relationship
between cortisol responses and those of the brain on the
other. However, the non-parametric approach via PALM
and the correlation structures displayed in Figure 5 show
that structural measures of the brain are indeed associ-
ated with acute cortisol stress responses. Accordingly, the
presented data with exploratory findings may be indica-
tive and thus expand the research field of ‘stress
imaging’.

Moreover, Figure 5 shows that the relationship
between structural measures and cortisol increase as a
measure of acute stress reactivity is highly consistent
with those of AUC measures representing the volume of
cortisol secreted. Furthermore, we can see that volume
and thickness measures are also interrelated, although
volumetric measures seem to render a more consistent
picture than thickness measures. Although only the
association between individual cortisol increases and left
ncl. caudatus volume in men survived all but one cor-
rection for multiple testing, the data presented suggest
interesting new insights into the associations between
striato-limbic structures and acute HPA axis responses

to stress by reconfirming the involvement of typical
brain areas. In addition, it should be noted that the pre-
sented model(s) take into account variables with empiri-
cally proven influence on volume and thickness (i.e. sex,
age and TBV) (Giedd et al., 1999; Moog et al., 2021).
Compared to previous studies not considering (all) these
variables and containing less high-resolution structural
data (Admon et al., 2017; Klimes-Dougan et al., 2014;
M. Pruessner et al., 2007; Sindi et al., 2014), the infor-
mative value of the present HCP-style data may be
obvious.

However, the present analysis had some limitations
that have to be acknowledged. First, the composition of
the sample—especially regarding the variable cortisol—
has to be taken into account, as it only included men and
women taking OCs. Secondly, a larger sample size would
be desirable, allowing for the inclusion of women in
different menstrual cycle phases. This should, as far as
possible, not only distinguish between OC-taking and
free-cycling women (in comparison to each other and to
men) but also consider different OC methods (single
vs. different combination agents) as well as different hor-
monal contraceptives and menstrual cycle phases
(Brønnick et al., 2020; Pletzer et al., 2023; Song
et al., 2023). This undoubtedly requires the generation of
large-scale samples in the context of stress induction in
the MRI, which do not yet exist.

5 | CONCLUSION

Although previous studies were able to link acute cortisol
responses to mainly BOLD-based responses of limbic
structures, the present results confirm that structural and
thus somewhat more stable measures of the brain may
also be associated with neuroendocrine stress processing.
In addition, the present study extends the knowledge of
the relationship between striato-limbic structural features
and HPA axis markers, which until now mainly included
basal responses. As an exploratory study, our research
hopefully paves the way for future investigations in the
field.
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