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We consider the two-dimensional topological Chern insulator in the presence of static disorder.
Generic quantum states in this system are Anderson localized. However, topology requires the
presence of a subset of critical states, with diverging localization length (the Chern insulator analog
of the ‘center of the Landau band states’ of the quantum Hall insulator.) We discuss geometric
criteria for the identification of these states at weak disorder, and their extension into the regime
of strong disorder by analytical methods. In this way, we chart a critical surface embedded in a
phase space spanned by energy, topological control parameter, and disorder strength. Our analytical
predictions are supplemented by a numerical analysis of the position of the critical states, and their
multifractal properties.

I. INTRODUCTION

Next to the one-dimensional SSH chain the quantum
anomalous Hall insulator (aka Chern insulator) is the
most basic topological insulator. Defined in two dimen-
sions, the system does not possess symmetries other than
hermiticity of the Hamilitonian (class A). It is ‘anoma-
lous’ in that its topological order is intrinsic, and does
require an external magnetic field as in the conventional
quantum Hall insulator. (In fact, the first theoretical
model of a AQH insulator was proposed by Haldane [1]
as a ‘field free’ realization of a quantum Hall effect.)

In the presence of static disorder, the AQH band insu-
lator turns into a topological Anderson insulator [2, 3],
and the spectral band gap becomes a mobility gap. Cru-
cially, however, at least some of its states must remain
delocalized. As with the critically delocalized states in
the center of the IQH Landau levels, the presence of such
states is required for consistency. If there were not any,
one would end up with contradictions such as vanishing
of the transverse Hall conductance, whose integer quan-
tization is the defining feature of this system [4]. Alter-
natively one may reason that the band of conducting sur-
face states cannot simply disappear but must hybridize
with states from the other surface somewhere up in the
spectrum via delocalized bulk states.

However, to the best of our knowledge the physics of
AQH state delocalization has not yet been systematically
explored. Is there a single energy at which states delocal-
ize and if yes, where in the band is it situated? How much
disorder is required to destroy the delocalized states, and
in this way the topological phase at large? What are the
critical properties of the delocalized states and how do
they compare to those of the IQH Landau level center
states? In this paper, we address these questions within
a two-thronged approach combining field theoretical con-
structions with high performance direct diagonalization.

Indeed it turns out that analytical methods go a long
way in the characterization of AQH delocalized states.
The main result will be a phase diagram spanned by
three parameters. The first is a parameter, r, control-
ling the topological properties, i.e. the topological index,
ν(r) ∈ Z, of the clean system. The second is band energy,
E, and the third the disorder strength, W . Embedded
in this parameter space there lies a two dimensional sur-
face, whose crossing implies criticality and along with it
the divergence of correlation lengths, or ‘delocalization’,
see Fig.1 for a schematic. For example, for E = 0, the
critical line W (r), marks a stability boundary at which
disorder enforces a phase transition between the topo-
logical and a trivial insulator. The critical value E(r,W )
defines the value in energy at which state delocalize for
a given control parameter and disorder strength, etc.

At weak disorder, the dependence E(r,W ) is encoded
in the ground state of the clean topological insulator.
(Specifically, we will show that for a simple two-band
model of the Chern insulator, the critical state is defined
by a half-integer Berry flux quantization condition.) For
stronger disorder, the computation of the critical energy
gets a little more involved, but even then requires no
more than knowledge of the SCBA Green function, i.e.
G(z) = (z−H(k)−Σ)−1, where H(k) is the clean Hamil-
tonian, and Σ the average quasiparticle self energy due
to impurity scattering. The condition for criticality then
follows via computation of a few integrals of Green func-
tions over the Brillouin zone, which may be done analyt-
ically, or numerically.

The result of this analysis is a comprehensive phase
portrait of the disordered Chern insulator, including pre-
dictions for its stability boundaries, the critical states,
and conduction properties at finite system sizes before
Anderson localization becomes effective in the thermo-
dynamic limit.

In the next section, we summarize the main results of
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FIG. 1. Schematic illustration of the critical surface of a
Chern insulator. The clean system is defined in terms of dif-
ferent topological sectors realized as a function of a control
parameter r, for example, Ch1 = 0 → 1 → −1 → 0. For a
given value of r and disorder strength, W , delocalized states
exist at a critical energies El(r,W ), one for each band. The
merging of these bands at the center of the spectrum marks
the stability boundary of the TI; for larger disorder the sys-
tem has become a trivial Anderson insulator. (For systems
with high Chern indices, max |Chl| > 1, the destruction of
topological order for increasing W occurs in the successive
merging of multiple surfaces El(r,W ).)

our study. This will be followed by section III where we
present a self contained derivation of the topological field
theory underlying our analytical results. In section IV we
discuss the results obtained from both, the numerical and
analytical calculations and we conclude in section V.

II. SUMMARY OF RESULTS

We begin this section with a short review of the clean
Chern insulator. This will be followed by the discussion
of an effective field theory describing the critical physics
of the disordered system, and a comparison to the con-
ventional quantum Hall insulator. We conclude with a
discussion of numerical results.

A. Clean Chern insulator

The clean two-dimensional (more generally, even-
dimensional) Chern insulator is a topological insulator
characterized by non-vanishing Chern number, Chl, car-
ried by individual of its bands, l = 1, . . . , N . These
numbers are constructed from the Berry connection a =
i〈k|dk〉 = i〈k|∂kik〉dki, where {|k〉} are the Bloch eigen-
states of a specific band, and k = (k1, k2) is crystal
momentum [5–7]. Integration of the Berry curvature
b = da = i〈∂kjk|∂kik〉dki ∧ dkj over the Brillouin zone

then yields the Chern number as, Chl = 1
4π

∫
BZ
b.

The simplest model system realizing a nontrivial set
of Chern numbers is Haldane’s two-band QAH insulator

[1, 8], defined by the Hamiltonian

H = sin k1σ1 + sin k2σ2 + (r − cos k1 − cos k2)σ3

≡
3∑
a=1

ha(k)σa, (1)

where we have set the hopping strength to unity for
simplicity. For r 6= −2, 0, 2 this is a two-band insula-
tor with ‘valence’ and ‘conduction’ band Chern num-
bers (Chv,Chc) = (0, 0), (−1, 1), (1,−1), (0, 0) for r <
−2,−2 < r < 0, 0 < r < 2, 2 < r, respectively. In this
particular case, the integral over the Berry curvature as-
sumes the form Chc = −Chv = 1

4π

∫
d2k n·(∂k1n×∂k2n)),

where n = h/|h|, i.e. it probes the number of windings of
the Pauli vector h = {ha} defining the Hamiltonian over
the unit sphere.

B. Disordered Chern insulator

In the presence of translational invariance breaking dis-
order, the Bloch eigenstates of the system get replaced by
states which generically are Anderson localized. For im-
purity scattering rates, τ−1, comparable to the band gap
of the clean system, the spectral gap gets filled by impu-
rity states, with a globally gapless spectral density. The
topological properties of the system, too, are no longer
characterized by momentum space invariants but instead
by a effective field theory defined in real space.

To define this theory, consider the matrixQ = Tτ3T
−1,

where T ∈ U(2R) is a unitary matrix, R a number of
replicas (R → 0, eventually), and the doubling factor
2 required to distinguish between retarded and advanced
Green functions in the computation of observables in this
formalism. The matrix τ3 = τ3 ⊗ 1R acts in this space,
and its presence implies that Q ∈ U(2R)/U(R)×U(R) is
element of a coset space in which matrices commutative
with τ3 are divided out.

Promoting Q = Q(x) to a matrix field defined in two-
dimensional space, we note that there are just two ro-
tationally invariant gradient operators. They define an
effective action as

S[Q] =

∫
d2x

(
g tr(∂iQ∂iQ) +

θ

16π
εij tr(Q∂iQ∂jQ)

)
,

(2)

where the two coupling constants g = σxx/8 and θ =
2πσxy are determined by the system’s longitudinal and
transverse Hall conductance, respectively (in units of the
conductance quantum).

The second term in Eq. (2) is topological in nature. For
a fictitious infinitely extended (or boundary-less) system
it computes (16πi×) the number of times Q(x) covers
the coset space U(2R)/U(R) × U(R) as a function of x.
In its absence fluctuations of the Q-matrix field will lead
to a logarithmically slow downward renormalization of
g ∼ σxx — two-dimensional Anderson localization [9].
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The same happens for generic values of θ ∼ σxy. In fact,
Pruisken [10, 11] derived the above action as the effective
theory underlying Khmelnitskii’s two parameter scaling
paradigm [12] according to which the flow of coupling
constants (g, θ) → (0, 2πn) generically ends in localizing
fixed points, g = 0, with integer quantized Hall conduc-
tance, σxy = n.

The exceptional situation occurs at θ = π. For this
critical value the flow ends in a fixed point with finite con-
ductance, (g∗, π), the quantum Hall critical point. (The
critical point itself is described by an effective theory dif-
ferent from Eq. (2). While the identity of that theory
remains unknown to date, our focus here is on the iden-
tification of criticality, and for that purpose Eq. (2) re-
mains the appropriate diagnostic.)

The identification of the phases supported by a two-
dimensional class A topological insulator thus amounts
to the computation of the parameters (g, θ) for a given
microscopic system description. Previous work [13] per-
formed this task in a Dirac or ‘k ·p’ approximation, valid
for energies close to a band closing point. Since, how-
ever, the critical surfaces may be buried deeply in the
Chern bands, this approximation is not an option here,
we need to work with the full lattice dispersion. Interest-
ingly, abandoning the Dirac linearization turns out to be
a blessing, including from a computational perspective:
the construction of effective field theories building on top
of a microscopic Dirac Hamiltonian is met with ultravio-
let singularities. These need to be regularized by one of
various available schemes, which, however, are all ad-hoc
from a condensed matter perspective [14–16]. However,
these singularities are a mere artifact of the lineariza-
tion, they do not occur within for the full system with
its bounded dispersion relations. Relatedly, they obscure
the geometric interpretation of the topological angle as
an integral over the Brillouin zone.

In section III, we will see that the derivation of the ef-
fective theory building on the lattice Hamiltonian is both
more general and conceptually simpler than the Dirac
approach. Specifically, it yields the topological angle at
weak disorder of the two-band insulator as an integral

θ =
1

2

∫
εk>E

d2k n · (∂k1n× ∂k2n)). (3)

While this expression is derived for the simplest model of
a Chern insulator, the generalization to others is obvious:
the topological angle is defined by the fraction of the full
Berry flux 2πl carried by all states in the band above the
reference energy E (Since only θmod 2π matters, we may
equally compute the flux of states below E). Criticality
occurs for states for which θ(E) = π.

Far from the weak disorder the fractional Berry flux
becomes statistically distributed, and its mean value fea-
tures as the topological angle θ. This value can be rep-
resented as the sum of two momentum space integrals
over SCBA broadened Green functions, aka the Smrčka-
Středa coefficients [17], θI = 2πσI

xy and θII = 2πσII
xy. Odd

integer values θ = θI+θII = (2n+1)π serve as markers for

topological quantum criticality, as in the IQH context.

C. Numerical analysis of the multifractal spectrum

Complementing the analytical approach, we diagnose
criticality numerically via multifractal analysis of states
at the critical points [18–21]. Our starting point is the
tight-binding model in Eq. (1) with periodic boundary
conditions and on-site uncorrelated Gaussian disorder
with width W . For a given wave function ψE at energy
E, the key objects of interest are the q-th moments

PEq =

N∑
ij

∑
α

| ψEij,α |2q, (4)

where ψEij,α labels the wave function element at lattice
site (i, j) and internal degree of freedom α = 1, 2.

Th q-th of these moments scales with linear system size
N as

PEq (N) ∝ Nτq , (5)

where τq is the effective dimension. Extended metallic
wave functions in a d-dimensional lattice have dimension
τmetal
q = d(q − 1), while localized wave function show

system size independent scaling τ loc
q = 0. Finally, the

fluctuations of a critical wave function are captured by
the anomalous part of the effective dimension [18, 20],

∆E
q = τEq + d(q − 1). (6)

Specifically, the multifractal dimension of the quantum
Hall transition has an approximately parabolic spectrum
with ∆QH

q ≈ 0.25 q (q − 1)[22]. Below, we will use this
scaling as a benchmark for diagnosing quantum Hall crit-
icality in the Chern insulator.

In practice we calculate the quantity

τ̃q(N ;E,W, r) =
log〈PE,W,rq (N)〉dis,E

logN
, (7)

where 〈·〉dis,E denotes the double average over a small
energy window, consisting of NE subsequent wave func-
tions as well as over Navg disorder configurations. In the
limit of infinite system size, limN→∞ τ̃q(N) = τq.

In Fig. 2 we show τ̃0.5 close to the critical surface for
fixed r, E for different W . The critical state is identi-
fied as the maximum of the data for a given system size
N . Finite size scaling and extrapolation to N → ∞ al-
lows us to extract the limiting effective dimension τq, the
critical disorder strength at this system parameters, and
the localization length exponent ν. Referring for details
of the extrapolation procedure to Appendix F, we also
extract the corresponding irrelevant scaling corrections
yτ , yν from the curvature of the data for different system
sizes.

Fig. 3 shows the scaling of the extrapolated critical
exponents. We find τ0.5 = 0.931± 0.004, ν = 2.73± 0.16.
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FIG. 2. Effective dimension τ̃q(E,W, r) for different system
sizes at the point (r, E) = (1.2, 0.6) as a function of W . The
data is approximately described by parabolas with increasing
opening angle for increasing system size. The fit (solid lines)
is done using a cubic polynomial Eq. (F1) to account for
asymmetries away from the critical point.

Within the error bars this is consistent with results for
the integer quantum Hall effect in Chalker-Coddington
networks and tight binding models [23–26].

The above discussion shows that field theory and nu-
merical analysis provide complementary means to iden-
tify and analyze the critical state of the Chern insulator.
In particular, one can be used to test the accuracy of
the other. (We will see, that this validation goes in both
directions.) Referring to section IV for the detailed com-
parison, we will identify the position of the extended state
in the conduction band given r and W , and on this iden-
tify a phase boundary in the r −W at the band center
E = 0. Building on this information, we will then map
out the full phase diagram in (r,W,E) space. However,
before turning to this comparison, we include a self con-
tained discussion of the field theoretical apparatus under-
lying our results. This section may be skipped by readers
primarily interested in results.

III. DERIVATION OF THE EFFECTIVE
ACTION

In this section we discuss the derivation of the effective
action Eq. (2) of the disordered Chern insulator. While
the initial steps of the construction are standard, they
are included here to keep the discussion self contained.
Emphasis will then be put on the derivation of the topo-
logical action, which is technically novel.
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c
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FIG. 3. Critical exponents of the topological phase transition.
left: Using the fit function Eq. (F2), the effective dimension
τ̃ cq , extracted from the maxima of the curves in Fig. 2 con-
verges as a function of the system size N to τq = 0.931±0.004.
(right) system size scaling of the curvature τ̃ c ′′q of the fitted
curves at the maxima in Fig. 2 fitted by Eq. (F3). The lo-
calisation length exponent is estimated to be ν = 2.73± 0.16.
The irrelevant exponents are shown in App. F.

1. Disorder average and stationary phase analysis

Our starting point is the Gaussian integral

Z =

∫
Dψ e−iψ̄(E+iδτ3−H−V )ψ, (8)

where ψ = {ψa(x)}, a = (s, r) is a 2R component Grass-
mann field, where s = ± distinguishes between retarded
and advanced Green functions (corresponding to the
Pauli structure iδτ3), and r = 1, . . . R is a replica index.
The Hamiltonian, H, represents the two-band model
Eq. (1), and V = V (x)σ0 is potential disorder, where

σ0 is the unit matrix, and 〈V (x)V (x′)〉 ≡ W 2

2 δ(x − x′)
Gaussian correlated with zero mean.

From this functional, observables such as transport co-
efficients can be represented as Gaussian integrals via
the introduction of suitable source terms (with an im-
plied replica limit R→ 0). However, for our purposes, it
will be sufficient to consider the functional as it is. Fol-
lowing standard protocol, we average the functional over

disorder, to obtain a quartic term W 2

4 (ψ̄ψ)2 in the ac-
tion. Decoupling the latter by a Hubbard-Stratonovich
transformation and integration over the fermion field
leads a functional Z =

∫
DA exp(−S[A]) with action

1
W 2

∫
dx trA2 − tr ln(E + iδτ3 − H − A), where A =

{A(x)ab} is a matrix field [27–29]. A variation of the
action in this field, leads to the stationary phase equa-

tion A(x) = W 2

2 tr(E + iδτ3 − H − A)−1(x, x), i.e. a
self consistent Born equation with ‘impurity self energy’,
A. We parameterize a matrix-diagonal solution compat-
ible with the symmetry of the causal increment iδτ3 as
A → ∆E + iκτ3. Here, ∆E and κ are the quasiparticle
energy shift and pole broadening induced by scattering,
respectively. Referring for a detailed discussion of these
parameters to Appendix A. We note that for infinitesi-
mal δ, the equation admits a continuous manifold of so-
lutions, A = ∆E+ iκQ, where Q = Tτ3T

−1 with unitary
T ∈ U(2R) parameterizing the coset space mentioned in
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the previous section.
Substituting these configurations into the action, and

upgrading the constant T to a slowly varying Goldstone
mode T (x), we are led to consider the effective action

S[T ] = −tr ln

(∑
µ

vµ(k)σµ + iκT (x)τ3T
−1(x)

)
, (9)

where we absorbed the energy shift ∆E into E, neglected
the infinitesimal δ in comparison to κ, and introduced the
four component vector vµ with v0 = E, and va = −ha,
a = 1, 2, 3. In the following we expand this action in
slow T -fluctuations, first leaving the detailed form of the
momentum-dependent coefficients ha = ha(k) unspeci-
fied.

A. Gradient expansion

We begin our analysis of the fluctuation action with a
unitary rotation of the tr ln, leading to

S[T ] = −tr ln
(
vµσµ + iκτ3 + [T−1, vµσµ]T )

)
, (10)

where a summation convention is applied, and the
argument-dependence vµ = vµ(k) and T = T (x) is left
implicit. Previous work performed this analysis for an
effective Dirac Hamiltonian, vµ = (E,−k1,−k2,m), for
which the transformation of the logarithm is not inno-
cent: It generates the chiral anomaly, and the need for
UV regularization. Here, we need not worry, as we are
working with a manifestly UV regular theory.

Assuming variation of the fields T over scales much
larger than the lattice spacing, we approximate the com-
mutator up to second order in derivatives as

[T−1, vµσµ]T ' FiΦi − 1
2JijΦiΦj ,

with Fi = i∂ivµσµ, Jij = ∂i∂jvµσµ, Φi = (∂iT
−1)T , and

the abbreviated notation ∂iv = ∂kiv and ∂iT = ∂xiT .
Our task now is to evaluate the formal second order ex-
pansion

S[Q] = − tr ln

(
vµσµ + iκτ3 + FiΦi −

1

2
JijΦiΦj

)
(11)

= − tr(GFiΦi −
1

2
GJijΦiΦj)︸ ︷︷ ︸

S(1)

+
1

2
Tr(GFiΦi)

2︸ ︷︷ ︸
S(2)

,

with the Green function

G = (iκτ3 + vµσµ)−1 = D(iκτ3 + vµσ
µ),

D = [(iκτ3 + E)2 − haha]−1, (12)

and the convention xµy
µ = x0y0 − xaya. In the follow-

ing, we discuss how the two terms above yield the sum of
a gradient term, and a topological term for the effective
action of the system. Both contributions are of second
order in derivatives, the difference being is that one con-
tains ∂i∂i derivative combinations, the other εij∂i∂j .

B. Topological action

In the construction of the topological action, we go
fishing for antisymmetric derivative combinations εij∂i∂j .
As we show in Appendix B these emerge from both terms
S(1) and S(2). On this basis, we obtain the topological
action

Stop = S
(1)
top + S

(2)
top =

θ2 + θ1

16π

∫
dxLtop(Q),

Ltop(Q) ≡ εij tr(Q∂iQ∂jQ), (13)

with coupling constants

θ1 = 8κ

∫
(dk)D+D−Fk,

θ2 = 4πi

∫
(dk)

∞∫
E

dω (D+2
ω −D−2

ω )Fk (14)

where (dk) = dk1dk2
(2π)2 and

Fk = εabcha∂1hb∂2hc = (∂1h× ∂2h) · h. (15)

(Following standard conventions [10, 17]), we associate
the one/two derivative action S(1/2) with the two/one
contribution to the topological action, θ2/1.) Our final
task thus is to compute the coefficients θ1,2. These in-
tegrals are straightforward for weak disorder, under a
presumed hierarchy of energy scales

κ� E . 1. (16)

We first represent the propagators Ds as

Ds =
1

E2 − ε2 + isγτ3
, γ = 2κE, ε2 =

∑
a

h2
a.

Under the stated conditions, this leads to the approxi-
mation

κD+D− =
κ

(E2 − ε2)2 + γ2
' π

4E2
δ(E − ε), (17)

where here and throughout, ε > 0 is the positive root of
ε2. Thus,

θ1 '
2π2

E2

∫
(dk)Fkδ(E − ε),

which is an on-shell integral probing the density of states
at E. Turning to θ2, we note Ds2

ω ' ∂ω2Ds
ω, and

D+
ω −D−ω ' −

πi

ω
δ(ω − ε)

Entering with these relations into the integral defining θ1

and integrating by parts, it is straightforward to verify
that

θ2 ' 2π2

∫
(dk)Fk

(
Θ(ε− E)

ε3
− δ(ε− E)

ε2

)
.

We note that the second, on-shell term cancels against
θ1. To understand the meaning of the first, recall that
ε = |h|. We may thus define the unit sphere area element
S ≡ F/ε3 = n · (∂1n × ∂2n) with unit vector n = h/ε.
Tidying up, we obtain the topological angle as in Eq. (3).
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C. Gradient action

The gradient term of the action is obtained by similar
inspection of S(1,2), this time focusing on derivative com-
binations of the form ∼ FiFi. As detailed in Appendix
C, this leads to

Sgrad = I

∫
dx tr (∂iQ∂iQ) ,

I = I+ + I− + I+−, (18)

with coupling constants given by

I+− =
1

2

∑
a

∫
(dk)(E2 + κ2 − ε2 + 2h2

a)D+D−∂iha∂iha,

I± =
1

4

∑
a

∫
(dk)((E + i± κ)2 − ε2 + 2h2

a)D±2 ∂iha∂iha.

(19)

We are left with the task to do the momentum integrals.
For weak disorder, these integrals are analytically doable,
if somewhat tedious. As a result, detailed in Appendix
D, we obtain

I =
E2 −m2

2|E|κ
Θ(E2 −m2), (20)

where m = (r − c) and c = 2, 0,−2 depending on the
Dirac cone around which we approximate.

This result states that for weak disorder, diffusive
quasiparticle propagation is limited to energies above the
clean insulator band gap, m. For energies E � m, the
coupling constant asymptotes to ∼ E/κ which is the
characteristic scale for the conductivity of a weakly dis-
ordered two-dimensional conductor.

D. Beyond the weak disorder limit

From Eq.(14) we may calculate angle θ for arbitrary
two-band Hamiltonians H and for values (r, E, W ) such
that the self consistent Born approximation underlying
our theory remains valid, Eκ & 1. However, outside the
weak disorder regime Eκ � 1 considered in the previ-
ous section the analytical computation of the integrals
becomes cumbersome, or even impossible.

Progress can nevertheless be made, starting from the
following representation of the coupling constants in
terms of energy/momentum integrals:

θ1 = − iπ
2

∫
(dk) εij tr

(
τ2GE∂iG

−1
E τ1GE∂jG

−1
E

)
,

θ2 =
πεαβγ

3

∫ E

−∞
dω

∫
(dk)× (21)

× tr
(
τ3Gω∂αG

−1
ω Gω∂βG

−1
ω Gω∂γG

−1
ω

)
,

where G = GE is the SCBA Green function Eq.(12), latin
indices take the values i, j = 1, 2 and the Greek indices

the values α, β, γ = ω, 1, 2. Referring for the derivation
of these representations from Eq.(14) to Appendix E, we
note that in the IQH context these integral representa-
tions are known as the Smrcka-Streda [17] Hall coeffi-
cients, σI

xy = θ1/2π, and σII
xy = θ2/2π. These parame-

ters describe the Fermi surface (σI
xy) and thermodynamic

(σII
xy, note the integral over all energies below the Fermi

surface) contribution to the Hall response σxy = σI
xy+σII

xy

of an electron gas subject to a magnetic field.
We may now numerically compute the complex self

energy ∆E + iκ in self-consistent Born approximation
along the lines of section III 1, and then do the integrals.
This procedure yields estimates for the topological angle,
which however remain of limited accuracy. Deviations
arise because of the reliance on the SCBA, whose range
of applicability is limited to E � κ and σxx � 1. For
the former condition, if we go outside this regime, the
self energy κ is affected by scattering processes techni-
cally described by diagrams with crossing impurity scat-
tering and for the latter condition σxx ∼ O(1) indicates
close proximity to the quantum Hall critical point, where
the approach discussed in this paper is no longer suit-
able. While we did not investigate the contributions
from further scattering processes in quantitative detail,
our comparison to exact diagonalization shows that we
obtain reasonable agreement, including in regimes where
the theory is past the region of parametric control.

IV. COMPARISON TO EXACT
DIAGONALIZATION

In figure 4 we compare the results obtained from nu-
merical simulations (section II C) with the analytical pre-
dictions (section III) for the position of the extended
state in the band of eigenstates. Numerically, we identify
these states by calculation of the exponent τq = 2(1−q)+
∆q, at quantum Hall criticality, ∆q = 0.25× q(q− 1), for
the extremal value q = 0.5, i.e. ∆min = ∆q=0.5 ≈ −0.06,
and τ0.5 ≈ 0.94. The leftmost panel shows the system
size dependent τN0.5 for r = 1.2, W = 1.45 as a func-
tion of E. At the above value τN0.5 ≈ τ0.5 ≈ 0.94 (green
arrow) the data becomes system size independent, signi-
fying criticality with an exponent matching the quantum
Hall expectation.

To compare to the field theory predictions, we com-
pute σxy by numerical evaluation of Eqs. (21) for the
same values of r and W (blue curve). The crossing of
the critical conductance σxy = 1

2 is indicated by a blue
arrow. The analytical and numerical predictions are not
in perfect, but in reasonable agreement, given that there
are no adjustable fitting parameters.

The center panel shows the energy of the extended
state at r = 1.7 (left) and r = 1.2 (right) as a function
of the disorder strength W . The green curves show the
analytically computed longitudinal conductance, where
σxx & 1 is necessary for quantiative reliability of the
field theory. As long as this condition is met, the analyt-
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FIG. 4. Analytical and numerical prediction for the position of the extended state. Left: the blue solid line shows the Hall
conductivity calculated from Eq. (3), for different energies, at (r,W ) = (1.2, 1.45), while the blue dashed line shows the Hall
conductivity for the clean Chern insulator at r = 1.2. Criticality is associated with the value σxy(E) = 1/2 mod 1, cf. blue
arrow. On the right axis the numerical results for the effective dimensions τq(E) [30] for different system sizes N = 64 (green)
up to N = 512 (red) are shown (black arrow). The dotted horizontal line is the dimension τ0.5 ≈ 0.94 of the quantum Hall
critical state. This condition is approximately met at the green arrow, which is reasonably, but not perfectly well aligned
with the blue analytical marker. Center: prediction for the delocalized states taken from multifractal analysis and field theory
at r = 1.7 and r = 1.2 as a function of disorder strength W . Additionally the analytically calculated σxx is shown (green).
The inset shows the behavior of the delocalized state calculated with both analytical and numerical approaches for the full
topological phase at r = 1.7. Right: phase diagram of the disordered Chern insulator in the r-W -plane at E = 0, calculated
analytically and numerically.

ical and numerical predictions for the value of the critical
energy are in good agreement. At larger values of the dis-
order, σxy is at its critical value, and σxx = O(1), so we
are in proximity to the quantum critical point where the
present theory is no longer applicable. In this regime,
the numerical prediction for the critical energy shows a
transient increase (cf. inset) for which we do not have
a good explanation. Eventually, the numerical and ana-
lytical value for the critical energy approach zero — that
they do so at roughly the same disorder concentration
may be coincidental — thus signalling the breakdown of
the topological phase due to disorder.

The right panel shows a cut through the critical sur-
face at E = 0. Inside the lobe we have the Chern num-
ber Chc = −1, outside it is vanishing. Broadly speaking,
we again observe semi-quantitative parameter free agree-
ment between field theory and numerics. However, there
are some qualitative features which the former does not
capture: Close to the clean critical value, r = 2, disorder
stabilizes the topological phase in that the critical value
gets pushed upwards (the bulge visible in the numerical
data.) This feature does not show in the field theoretical
calculation. We suspect that this is due to the fact that
we are in parametric proximity to a Dirac band closing at
weak disorder and zero energy. For such configurations,
the SCBA approximation produces incorrect estimates
for self energies[31]. However, a more detailed analysis
of the latter beyond the SCBA approximation is beyond
the scope of the present paper.

V. CONCLUSIONS

In the disordered Chern insulator, the spectral gap of
the clean insulator is replaced by a mobility gap: generic
states inside the spectrum are Anderson localized, thus
preventing bulk hybridization between the extended sur-
face states of the system. However, this feature can-
not extend to all states: there must exist bulk delo-
calized states establishing contact between the surface
bands somewhere up in the spectrum. However, these
consistency arguments do not tell us where the delocal-
ized states lie in energy, nor what their critical properties
are. The study of these two questions was the subject of
the present paper.

Describing the Chern insulator in terms of the three
parameters band energy, E, effective disorder strength,
W , and a parameter, r, controlling its topological index
ν(r), we applied a combination of analytical and numer-
ical methods to study the ‘critical surface’ of delocal-
ized states in the Chern insulator. For generic parameter
values, the critical states are buried deep in the band,
meaning that these analyses had to operate outside the
regime where ‘Dirac’ band linearlizations are an option.
Perhaps unexpectedly, this generalization turned out to
be a blessing, from various perspectives: The analytical
derivation of an effective field theory building on the full
microscopic band structure was no more difficult than
the one starting from a lineraized spectrum. However,
unlike that one, it was not plagued by spurious ultra-
violet divergences, and it produced intuitive predictions
for the identification of the critical states. Specifically,
we found that, at least for weak disorder, criticality was
tied to the integral Eq.(3): the energy of critical states
in the weakly disordered system is such that the inte-
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grated Berry curvature of a all states above (or below) it
equals π. The effective action describing the localization
properties of these and of generic states was that of the
quantum Hall insultator, confirming the expectation of
bulk quantum Hall crtiticality in the system. However,
for generic points in the parameter space (r,W,E) the
weak disorder condition required for this description to
be quantitatively reliable was violated, and quantitative
errors ahad to be expected.

To benchmark the quality of the analytical predictions,
we analyzed the eigenstates of the system by numerical
methods. Specifically, we computed the wave function
scaling dimensions τq, Eqs. (4), (5) to identify both the
position of the extended states in parameter space, and
their critical properties. This analysis confirmed the ex-
pectation of quantum Hall criticality, and for sufficiently
weak disorder the results obtaind by the field theoretical
computation. Outside that regime, the quality of the an-
alytical predictions deteriorated, with errors up to O(1),
but no parametric disagreement.

The Chern insulator is one of the simplest topological
insultators, and features as an effective building block for
others. In view of the fact, that even basic signatures of
the (surface) criticality of disordered topological insula-
tors remain mysterious[32], it is reassuring to have this
basic system under control. We hope that the insights
gained here may help in the solution of the more chal-
lenging problem of understanding the surface criticality
of disordered three-dimensional topological insulators.
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Appendix A: Self consistent Born approximation

In this appendix we discuss more in depth the self con-
sistent Born approximation and in general the role of the
parameters κ and ∆E. The starting point is the self
consistent Born equation for the matrix A(x),

A(x) = W 2 tr (E + iδτ3 −H −A)
−1

(x, x).

We propose a spatially homogeneous and matrix diagonal
Ansatz of the form Ā = ∆E + iκτ3. Plugging in the
Ansatz into the previous expression, we obtain a self-
consistent equation for both ∆E and κ.

∆E+iκτ3 =
W 2

2

∫
BZ

d2k

(2π)2
tr

(
1

E −H(k)−∆E − iκτ3

)
.

The real part of the previous equation, ∆E, represents
nothing more than an overall shift in the energy E of
the system. The imaginary part is the self energy due
to impurity scattering which is to be identified with (2
times) the scattering rate off impurities and consequently
defines another quantities of interest such as the elastic
scattering time τ and the mean free path `.

Appendix B: Derivation of the topological action

We here derive Eq.(13) for the topological action by

explicit computation of the two contributing terms S
(1,2)
top ,

i.e. the skew-derivative contributions to the first and
second order gradient term in Eq. (11).

S
(2)
top: The expanded representation of the second order

term reads

S(2)[Q] =
1

2

∫
dx(dk) tr(D(iκτ3 + vµσ

µ)FiΦiD(iκτ3 + vνσ
ν)FīΦī)

→ −1

2

∫
dx(dk) tr(D(iκτ3 + vµσ

µ)(σa∂ihaΦi)D(iκτ3 + vνσ
ν)(σb∂īhbΦī))

= −iκ
∫
dx(dk) tr(Dτ3(σa∂ihaΦi)D(hcσc)(σb∂īhbΦī))

= −2κεabc

∫
dx(dk) tr(Dτ3ΦiDΦī)∂iha∂īhbhc = −2κεij

∫
dx(dk) tr(Dτ3ΦiDΦj)Fk, (B1)

where (dk) = dk1dk2/(2π)2, the arrow indicates that we
retain only derivative combinations ∂i∂ī, ī = (i+1)mod 2,
and we used the definition Eq. (15). To process the in-

tegral over k, we decompose the matrices D = D+P+ +
D−P−, P s = 1

2 (1 + sτ3) into advanced and retarded
contributions and note that only momentum integrals
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over denominators D+D− of opposite causality are non-
vanishing. In this way we arrive at

S
(2)
top[Q] = − θ1

4π

∫
dx
∑
s

sεij tr(P s Φi P
s̄Φj), (B2)

with the momentum integral θ2 defined in Eq. (14). We
finally use the first of the auxiliary relations

−4εij
∑
s

tr(sP sΦiP
s̄Φj) = Ltop(Q),

4εijtr(τ3∂iΦj) = Ltop(Q), (B3)

to obtain S
(2)
top as given in Eq. (13).

S
(2)
top: Being first order in derivatives, the contribution

from the term S(1) naively seems to vanish. To see that
it does not, we play a trick first applied by Pruisken in
his analysis of the quantum Hall effect. Noting that the
energy-dependent Green function G ≡ GE can be written
as GE =

∫∞
E
dωG2

ω, we represent the action as (in the
same notation, Dω ≡ DE=ω)

S
(1)
top[Q] = −

∞∫
E

dωTr(GωFiΦiGω)→ − i
2

∞∫
E

dω

∫
dx(dk) tr((∂jGω)Fi(∂jΦi)Gω −GωFi(∂jΦi)∂jGω)

= − i
2

∞∫
E

dω

∫
dx(dk) tr([(∂jGω), Gω]Fi∂jΦi) = −1

2

∫ ∞
E

dω

∫
dx(dk) tr(D2

ω[∂j(haσa), hbσb](∂ihcσc)∂jΦi)

= −2i

∞∫
E

dω

∫
dx(dk)εij tr(D2

ω∂jΦi)Fk. (B4)

We now decompose the matrix D again, and note that
only the contribution proportional to τ3 yields a non-
vanishing trace, D2 → 1

2 (D+2 −D−2)τ3. As a result, we
obtain

S
(1)
top[Q] =

θ2

4π

∫
dx εij tr(τ3∂iΦj), (B5)

with θ2 given in (14). In a final step, we use the second of
the auxiliary relations (B3) to arrive at the contribution

S(1) to (13).

Appendix C: Derivation of the gradient action

We here derive Eq. (18) by inspection of the two terms
S(1,2) in the formal gradient expansion Eq. (11).

S
(1)
grad: Filtering symmetric derivative combinations from

the explicit representation of the second order expansion
we obtain

S
(2)
grad[Q] =

1

2

∫
dx(dk) tr(D(iκτ3 + vµσ

µ)FiΦiD(iκτ3 + vνσ
ν)FjΦj)

→ −1

2

∫
dx (dk) tr

(
−κ2Dτ3σνΦiDτ3σλΦi +Dvµσ

µσνΦiDvρσ
ρσλΦi + 2iEκDτ3σνΦiDσλΦi

)
∂ivν∂ivλ

= −
∫
dx(dk)

∑
a

tr
(
−κ2 τ3DΦiτ3DΦi + (E2 − ε2 + 2h2

a)DΦiDΦi + 2iEκDτ3ΦiDΦi
)
∂iha∂iha,

where ”→” indicates that we retain only derivatives with
identical i-index, and in the second equality traced over
Pauli matrices. To compute the k-integrals, we again
decompose D = D+P++D−P−. The product of two D’s
then leads to terms DsDs′ of equal and opposite causal
index s, s′, which need to be considered separately.

Using the auxiliary relations∑
s

tr
(
Φiτ

n
3 P

sΦiτ
m
3 P−s

)
=

1

4
tr (∂iQ∂iQ)×

×

 −1 (n,m) = (0, 0),
1 (n,m) = (1, 1),
0 (n,m) = (0, 1), (1, 0)

,
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and

∑
s

tr (Φiτ
n
3 P

sΦiτ
m
3 P s) fs =

= −
∑
s

sn+m tr

(
1

4
∂iQ∂iQ− P sΦ2

i

)
fs,

where fs is arbitrary, it is straightforward to obtain

S
(2)
grad[Q] = (I+ + I− + I+−)

∫
dx tr (∂iQ∂iQ) + SA,

(C1)

with SA = 4
∑
s Is

∫
dx tr(P sΦ2

i ), and the coefficients de-
fined in Eq. (19)

S
(1)
grad: The terms with equal indices, Jii in Eq. (11) yield

a term

S
(1)
grad =

1

2
Tr(GJiiΦ

2
i ),

=
1

2

∫
dx(dk)

∑
s

tr
(
GsP s∂2

i vµσµΦ2
i

)
,

=
1

2

∫
dx(dk)

∑
s

tr
(
Gs∂ivνσνG

s∂ivµσµP
sΦ2

i

)
,

= −SA

where we integrated by parts and used that ∂iG
s =

−Gs∂ihνσνGs. We conclude that the anomalous terms,
SA cancel out and arrive at the full gradient action
Eq. (18).

Appendix D: Derivation of Eq. (20)

In this appendix we take a closer look at the derivation
of equation (20). The first thing to notice is that I can
be written as the following,

I =
1

4

∑
a

∫
(dk)((E + iκ)D+ + (E − iκ)D−)2 + (2h2

a − ε2)(D+ +D−)2(∂iha∂iha),

=
∑
a

∫
(dk)

E2(E2 + κ2 − ε2)2 + (2h2
a − ε2)(E2 − κ2 − ε2)2

((E2 − κ2 − ε2)2 + 4E2κ2)2
(∂iha∂iha),

=
∑
a

∫
(dk)

E2(E2 + κ2 − ε2)2 + (2h2
a − ε2)(E2 − κ2 − ε2)2

((E2 − κ2 − ε2)2 + 4E2κ2)(2|E|κ)

(
2|E|κ

(E2 − κ2 − ε2)2 + 4E2κ2

)
(∂iha∂iha).

To make further progress we take the limit when Eκ→ 0
resulting in,

I =π
∑
a

∫
(dk)

E2 − ε2 + 2h2
a

2|E|κ
(∂iha∂iha)δ(E2 − ε2),

=π

∫
(dk)

∑
a h

2
a(∂iha∂iha)

|E|κ
δ(E2 − ε2).

At this point we focus in the low energy regime, where
we can take the Dirac approximation, resulting in,

I =
E2 −m2

2|E|κ
Θ(E2 −m2),

with m = r−c and c = 2, 0,−2 depending on the Dirac
cone around which we approximate.

Appendix E: Derivation of the Smrcka-Streda
coefficients

In this appendix we show the relation between the
equations 14 and the equations (21). More precisely, we
want to show that θ1 = 2πσIxy and θ2 = 2πσIIxy.
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σIxy = − i

16π2

∫
dk εij tr

(
τ2GE∂iG

−1
E τ1GE∂jG

−1
E

)
,

=
1

8π2

∑
s

∫
dk s tr((GE∂1G

−1
E )s(GE∂1G

−1
E )−s),

=
1

8π2

∑
s

∫
dk s tr ((E + isκ+ haσa)(∂1hbσb)(E − isκ+ hcσc)(∂2hdσd))D

sD−s,

= − iκ

2π2

∫
dk tr(σaσbσc)ha∂1hb∂2hcD

+D−,

=
κ

π2

∫
dkD+D−Fk,

= θ1/(2π),

σIIxy =
1

24π2

∫ E

−∞

∫
dωdk εαβγ tr

(
τ3Gω∂αG

−1
ω Gω∂βG

−1
ω Gω∂γG

−1
ω

)
,

=
1

8π2

∑
s

∫ E

−∞
dω

∫
dk s tr

(
((Gω∂1G

−1
ω )s(Gω∂2G

−1
ω )− (Gω∂1G

−1
ω )s(Gω∂2G

−1
ω )Gω)

)
,

=
1

8π2

∑
s

∫ E

−∞
dω

∫
dk s tr

(
[(∂1Gω)s, (Gω)s]∂2(G−1

ω )s
)
,

=
1

8π2

∑
s

∫ E

−∞
dω

∫
dk s tr ([(ω + isκ+ haσa), ∂1hbσb]∂2hcσc)D

2
s ,

=
1

4π2

∫ E

−∞
dω

∫
dk tr(σaσbσc)ha∂1hb∂2hc(D

2
+ −D2

−),

=
i

2π2

∫ E

−∞
dω

∫
dk Fk((D2

+ −D2
−)),

= θ2/(2π).

(E1)

Appendix F: Details of the multifractal analysis

This section provides supportive data to show that the
critical lines shown in Fig. 4 can be identified with quan-
tum Hall criticality.

1. Distribution functions of the moments

Fig. 5 shows the distribution functions for the critical
point associated with the delocalised state found analyt-
ically in Fig. 4 (left). The shape of the distribution func-
tion as well as their mean converge to a power law scaling
governed by the effective dimension of the quantum Hall
effect, known from other numerical works. [22] This can
be most convincingly seen in the collapsed curves in the
inset of Fig. 5.

2. Extrapolation of the critical exponents

In order to find the critical point at which we can com-
pare to quantum Hall criticality in the first place we cal-

culate τ̃q(E,W, r) at q = 0.5 as described in the main
text for all available system sizes, and find their local
maxima.

A cut through phase space close to the critical point
(E∗,W ∗, r∗) ≈ (0.6, 1.45, 1.2) is shown in Fig. 2.

The extrapolation of the critical properties is done by
fitting the curves using the model

τ̃q = τ̃ cq +
1

2
τ̃ c ′′q (W −W c)2 + βc(W −W c)3, (F1)

where the superscript c denotes the fitted values at crit-
icality for a given system size N , and αc the opening
angle of the parabolic part of the curve, from which the
curvature, and the localization length exponent can be
extracted. We use a third order model to account for
asymmetries in the curves.

In Fig. 3 we present a more detailed analysis of the
system size scaling of the data for the effective dimen-
sion in Fig. 2. Since we approximate the true effective
dimension τq by the maxima of τ̃q, we need to extrapolate
to N →∞. This is done by the fitting function

τ̃ cq (N) = τq +
a

logN
+ bN−yτ , (F2)
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from the fitting function in Eq. (F3). The irrelevant expo-
nents quantify the finite size corrections associated with the
exponents extracted in Fig. 2.

where the fitting parameter a corresponds to the prefac-
tor of the system size scaling of the wave function mo-
ments in Eq. (5) and yτ approximates the exponent of
an irrelevant scaling correction.

Additionally, we show the localization length exponent
ν extracted from the curvature of the curves in Fig. 2.
The latter is supposed to scale as

τ̃ c ′′q = cN2/ν (1 + dN−yν ), (F3)

where again yν denotes the corresponding irrelevant ex-
ponent. We find ν = 2.73± 0.16 and yν = 0.52± 0.27 as
described in the main text.
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