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Abstract

The distribution of orbital energies imparted into stellar debris following the close encounter of a star with a
supermassive black hole is the principal factor in determining the rate of return of debris to the black hole, and thus
in determining the properties of the resulting lightcurves from such events. We present simulations of tidal
disruption events for a range of β≡ rt/rp where rp is the pericenter distance and rt the tidal radius. We perform
these simulations at different spatial resolutions to determine the numerical convergence of our models. We
compare simulations in which the heating due to shocks is included or excluded from the dynamics. For β 8, the
simulation results are well-converged at sufficiently moderate-to-high spatial resolution, while for β 8, the
breadth of the energy distribution can be grossly exaggerated by insufficient spatial resolution. We find that shock
heating plays a non-negligible role only for β 4, and that typically the effect of shock heating is mild. We show
that self-gravity can modify the energy distribution over time after the debris has receded to large distances for all
β. Primarily, our results show that across a range of impact parameters, while the shape of the energy distribution
varies with β, the width of the energy spread imparted to the bulk of the debris is closely matched to the canonical
spread, D =E GM R r• t

2
 , for the range of β we have simulated.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Black hole physics (159);
Hydrodynamical simulations (767); Hydrodynamics (1963); Supermassive black holes (1663); Tidal disrup-
tion (1696)

1. Introduction

The accretion flares produced by tidal disruption events
(TDEs) have been observed with ever-increasing frequency
since their discovery by ROSAT in the mid-1990s
(Komossa 2015; Gezari 2021). Survey science is uncovering
dozens of new events per year, and this rate is only expected to
increase in the present decade due to wide-field, all-sky
monitoring facilities such as the Rubin Observatory (Ivezić
et al. 2019).

The rate at which TDEs occur was constrained through
theoretical analyses of the collisional Boltzmann equation (i.e.,
through a kinetic treatment of a collection of stars orbiting
about a supermassive black hole) by Peebles (1972), Bahcall &
Wolf (1976), Frank & Rees (1976), and Lightman & Shapiro
(1977; see also Cohn & Kulsrud 1978). Since then, these
seminal analyses have been expanded upon and refined (e.g.,
Magorrian & Tremaine 1999; Stone & Metzger 2016), but the
number of events per galaxy per year has been repeatedly and
reliably found to be about 10−4 to 10−5; this number is
consistent with observations in the optical, radio, and X-ray
(Alexander et al. 2020; Saxton et al. 2020; van Velzen et al.
2020). Radial velocity anisotropies and stellar over-densities,
conceivably generated through bursts of star formation, could
augment this rate in individual galaxies (Stone et al. 2018), as
could the presence of supermassive black hole binaries (Chen
et al. 2009; Wegg & Bode 2011; Coughlin et al. 2019) or
eccentric nuclear disks (Madigan et al. 2018).

In addition to depending on the bulk properties of the host
galaxy and the mass of the black hole, the pre-marginalized
TDE rate (i.e., the TDE distribution function) depends strongly
on the pericenter separation between the disrupted star and the
supermassive black hole, meaning that it is much more likely
for TDEs with β 1 to occur over those with β? 1, where
β= rt/rp is the ratio of the tidal radius (rt) to the pericenter
distance of the center of mass (rp). In the limit that the changes
in the angular momentum of a star per scattering event are large
relative to GM r2 • p , the probability distribution that describes
the likelihood of generating a TDE with a given β varies
as∝ β−2, so that the integrated probability of having a TDE
with a b b> min is b-

min
1 . In the limit that stars’ orbits diffuse

into the tidal sphere (Wang & Merritt 2004), the likelihood of
having β> 1 is even smaller because the stars gradually
approach the tidal radius in their pericenter.
Nevertheless, while such high-β tidal encounters are

relatively rare compared to their less-extreme, low-β counter-
parts (which will often result in partial disruptions that remove
only a fraction of the stellar envelope during the tidal
encounter; Guillochon & Ramirez-Ruiz 2013; Mainetti et al.
2017; Coughlin & Nixon 2019; Miles et al. 2020; Nixon et al.
2021), the likelihood of observing such events will increase
dramatically as Rubin and other all-sky monitoring facilities
come online. It is therefore necessary to understand the nature
of the physical processes that ensue during the tidal compres-
sion and re-expansion of the stellar material, as it is strongly
perturbed by the tidal field of the hole in these deeply plunging
events.
To this end, Coughlin & Nixon (2021) demonstrated through

the development and implementation of a novel analytical
technique that deep TDEs result in an adiabatic increase in the
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central density of the star until β; 10, above which the inward
propagation of shockwaves sets the maximum-achievable
central temperature and density of the star. In this comple-
mentary paper, we present and analyze the details of numerical,
hydrodynamical simulations of tidal disruption events that (1)
span a range of β values, (2) include and exclude heating of the
stellar debris by shocks, and (3) are performed at a broad range
of spatial resolutions.

The paper is organized as follows. In Section 2 we describe
the details of the numerical simulations, e.g., the initial setup, the
range of parameters simulated, and the resolution employed. We
also discuss our results (Section 2.1), including the width of the
energy distribution of the tidally disrupted debris (Section 2.1.1),
the effects of spatial resolution (Section 2.1.2), the importance of
shock heating (Section 2.1.3), and the temporal dependence of
the energy distribution (and therefore the validity of the notion
that the energy of the debris is “frozen-in” once the disrupted
material recedes to distances well outside the tidal sphere of the
black hole; Section 2.1.4). We provide further discussion of our
results in Section 3, and give our conclusions in Section 4.

2. Numerical Simulations

We present numerical simulations of the tidal disruption of
solar-like stars by a supermassive black hole. We perform these
simulations using the smoothed particle hydrodynamics (SPH)
code PHANTOM (Price et al. 2018), which has been used
extensively for TDE simulations over the last few years (e.g.,
Coughlin & Nixon 2015; Coughlin et al. 2016a, 2016b, 2017;
Bonnerot et al. 2016; Darbha et al. 2019a; Golightly et al.
2019a, 2019b; Clerici & Gomboc 2020; Miles et al. 2020;
Wang et al. 2021). As we wish to explore the energy
distribution produced by different stellar orbits, specifically
different β, and the effect of adding heating due to shocks to
the gas, we model the standard TDE: we let the star be a γ= 5/
3 polytrope, on a parabolic orbit about the black hole, and take
the supermassive black hole to have a mass of 106Me, modeled
with Newtonian gravity. We discuss the physical limitations of
these approximations in Section 3.

We perform simulations with varying orbital impact
parameter β, particle number Np, and we repeat these
simulations with two different thermodynamic approaches. In
one set of simulations, we model the fluid with a polytropic
equation of state, where P= Kργ and the entropy function K
and adiabatic exponent γ are fixed constants that do not vary
with time; this is equivalent to evolving the energy equation for
the gas but only including the effects of “adiabatic” expansion/
contraction (i.e., PdV work). In the second set of simulations,
we evolve the energy equation and, in addition to the
polytropic case, any kinetic energy that is dissipated by, e.g.,
shocks is turned into heat and retained within the gas, meaning
that K becomes a function of both space and time. We do not
impose an explicit physical viscosity in these simulations and
thus any dissipation of kinetic energy—which may be due to
physical effects such as shocks, but also numerical effects such
as the mixing of shearing flows where the length scale is
smaller than the local resolution length scale—is mediated by
the SPH numerical viscosity, which here takes the form of a
constant quadratic viscosity with βAV= 2 and a variable linear
viscosity following the Cullen & Dehnen (2010) switch with
a = 0.01min

AV and a = 1max
AV (see Price et al. 2018, for details).

For the simulations that include shock heating of the gas, we
also include a numerical conductivity to ensure that the internal

energy remains continuous in the flow; for this we employ the
standard value of αu= 1 (Price et al. 2018).3

We simulate five different values of β corresponding to
β= 1, 2, 4, 8, and 16. We vary the resolution of the simulations
corresponding to Np= 250 k, 2 M, 16M, and 128M particles.4

In Figure 1 we show the star as the center of mass reaches
pericenter for β= 1, 4, and 16, each at 128M particles. For
small β, the star is significantly distorted at pericenter, while for
large β, the star is crushed into the orbital plane by the tidal
field of the black hole. In the following subsections, we report
our results with respect to (1) the width of the energy
distribution with varying impact parameter measured at
different times post-pericenter, (2) the convergence of the
numerical simulations in terms of the energy distribution
measured when the zero-energy orbit has reached a distance of
5rt from the black hole, (3) the evolution of the energy
distributions measured at different times after the pericenter
passage of the stars, (4) the impact of shock heating on the
energy distribution at different β values, and (5) the entropy
generation and maximum density and temperature attained in
the simulations as the star passes pericenter as a function of
impact parameter and resolution.

2.1. Results

2.1.1. The Shape of the Energy Distribution

The energy distributions for different values of the impact
parameter β and at several times post-pericenter are given in
Figure 2. The left panel corresponds to a time at which the zero-
energy orbit has receded to a distance of 5rt from the black hole,
the middle panel corresponds to a time of 104GM/c3≈ 14 hr,
and the right panel corresponds to a time of 105GM/c3≈ 5.7
days. We have normalized the energy by the canonical energy
spread, i.e., ò= E/ΔE where E= v2/2−GM•/r is the Keplerian
energy5 and D =E GM R r• t

2
 . Note that 2ΔE is the spread of

orbital energies across the star if each fluid element moves
precisely with the center of mass when the center of mass
crosses the tidal sphere (Lacy et al. 1982). A similar
normalization is applied to the energy distribution with
dm/dò= (ΔE/Må)dM/dE. We also include on the plot the
prediction of the “frozen-in” model; this model is most similar
to the high-β cases, and while it provides a reasonable order-of-
magnitude estimate for lower-β, it is generally not correct in
detail.
This figure shows that, in all cases, the energy distribution is

closely centered around E= 0 and is approximately symmetric
about this point (except for β= 16, which displays a noticeable
asymmetry). The asymmetry for β= 16 that is apparent in the

3 To test whether the numerical conductivity has any noticeable effect on the
dynamics (for example on the energy distribution), we performed an additional
set of simulations (not depicted) in which the energy equation was evolved
with numerical conductivity included, but with heating from the numerical
viscosity excluded. The results in this case should be the same as those in
which a polytropic equation of state is enforced exactly, with any differences
coming from a combination of errors associated with numerical integration of
the energy equation and the effects of numerical conductivity. We found no
discernible differences between these sets of simulations.
4 As the star is initially cut from a cube of particles before being stretched to
the desired density profile (Price et al. 2018), the actual numbers of particles are
250,045, 2,000,491, 16,003,537, and 128,024,080, respectively.
5 We note that while a Keplerian orbital energy is always a well-defined
quantity, the orbital dynamics is not Keplerian when one accounts for the self-
gravity of the material (which also includes the possible existence of a self-
bound core; Coughlin & Nixon 2019); hence, the Keplerian orbital energy is
not a conserved quantity. We show this explicitly below.
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left panel of this figure is driven by a combination of (1) the
differing times at which different fluid elements reach their
point of maximal compression—this occurs at approximately
the same true anomaly, which is reached by different parts of
the stream at different times—and (2) the influence of self-
gravity, which is particularly strong for the maximally
compressed material. As the leading part of the star reaches
the point of maximum compression first, it is this region that
maximizes the effect of self-gravity and thus “steals” some of
the mass that would otherwise be distributed more evenly in the
energy distribution; we would expect this asymmetry to persist
at higher β. Further, Figure 2 shows that the breadth of the

energy distribution is≈ΔE, largely independent of β.6 How-
ever, we can also see that there is a dependence on β of the
overall shape of the energy distribution. Typically, larger β
corresponds to more concentrated distributions with more
debris with, for example, |E|< 0.5ΔE, while smaller β show
stronger self-gravitating “shoulders” that persist to later times
(see also Coughlin & Nixon 2015).

Figure 1. Column density renderings of the β = 1, 4, and 16 simulations performed with 128M particles when the center-of-mass orbit for the star reaches pericenter.
The left column shows the distribution in the orbital plane, and the right column shows the view across the orbital plane. The center of mass of the star starts in the
negative x- and y-quadrant, and reaches pericenter with a positive x-position and y = 0. Stellar material at positive y-values therefore has already passed pericenter, and
negative y-values are yet to reach the pericenter of the original stellar orbit. The top panels correspond to β = 1, the middle panels to β = 4, and the bottom panels to
β = 16. In each case, we have restricted the view to the position of the center of mass ±3Re, which for larger β does not quite encompass the entire debris stream, with
larger β corresponding to more stretching of the star by the time pericenter is reached. As β is increased, the star is increasingly crushed into the orbital plane, with the
thickness for β = 16 being∼0.01–0.1 Re (the spread in vertical height is due to the fact that the point of maximum compression occurs slightly post-pericenter, and
most of the star has not yet reached this point).

6 This result is not likely to hold for partial disruptions with β= βc in which
the core of the star is not disrupted during pericenter passage as the
gravitational tidal influence is typically not strong enough to overcome the
stellar gravity and therefore to impart this energy spread in this case (see, e.g.,
Nixon et al. 2021).
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2.1.2. Varying the Spatial Resolution

SPH simulations of TDEs with β≈1 have yielded qualita-
tively and quantitatively similar results in terms of the energy
distribution of the debris measured not long after pericenter
passage with modest numbers of particles, Np≈104–105 (Evans
& Kochanek 1989; Lodato et al. 2009). However, the
numerical convergence of such simulations at larger β is not
so well established. Here we aim to assess the level of
numerical convergence of the energy distribution measured at
the same time in the post-disruption debris for the range of
impact parameters and particle numbers we have simulated. For
this, we evolve the stellar debris until the zero-energy orbit has
reached a distance of 5rt post-pericenter. We plot in Figure 3
the resulting energy distributions on a linear-linear scale (left
column), a zoom-in on the peak (middle column), and a log-
linear scale (right column), with each row corresponding to a
different value of β increasing from the top to the bottom. On
each panel, four lines are present indicating the simulation
results at different resolutions corresponding to particle
numbers ranging from 250 k to 128M. Across this range of
resolution, corresponding to a factor of 512 in particle number
and thus a factor of eight in spatial resolution, we see no
difference for the simulations at β= 1 and β= 2. At β= 4
there is a noticeable change from 250 k to 2 M, but by 16 M
particles, this case is also well-converged. For β= 8, the
simulation results are very similar between 16 and 128 M,
albeit with minor differences in the shape of the distribution at
the peak and the breadth of the energy distribution for the very
low-mass tail (0.1–1% of the mass); however, at lower
resolution, the shape and width of the energy distribution are
not well-converged, indicating that simulating β at least this
high requires substantial numerical resolution (corresponding
to particle numbers in excess of ∼10M). The β= 16 case
shows significant discrepancies, particularly at low resolution.
For low resolution, this case is skewed toward negative
energies with the peak occurring at around ò=−0.2; this is no
longer present for the highest-resolution case (although the
distribution remains clearly asymmetric). Also, the energy
distributions at low resolution are very broad. It is clear in the
bottom-right panel of Figure 3 that this breadth is not physical;
by 128M particles, almost all of the mass (99.9%) is confined
to |E|ΔE. It is not currently feasible to perform simulations

with Np? 128 M, but with the trends seen in the right panels
appropriate to β= 4 and β= 8, it is clear that going to even
higher resolution would reduce the breadth of the energy
spread in the low dm/dò wings (10−4) even further. Given
this, we are reasonably confident that the properties of the vast
majority of the debris in the β= 16 case are accurate for the
128M particle simulation (i.e., the region above dm/dò∼10−3

in the bottom-right panel of Figure 3). This statement is further
supported by the excellent agreement between the results of
this simulation and the analytical predictions of Coughlin &
Nixon (2021; see their Figure 17).
To provide a quantitative measure of the convergence of the

simulations, we calculate the L2 error norm, or rms error, for
the lower-resolution simulations, with respect to the highest-
resolution simulation (128M), given by

⎡

⎣
⎢

⎤

⎦
⎥( ) ( )å=

=

L N
N f

e
1

, 1
i i

N

i2 p

max
2

1

2

1 2
i

where fmax is the maximum value of dm/dò, Ni= 200 is the
number of bins used for the dm/dò array, and ei is the
difference between the value of dm/dò for the simulation with
Np particles and the value for the simulation with 128M
particles for each energy bin. We restrict the sum to the energy
range corresponding to the full range of the 128M simulation.
The L2 error norm value for each of the simulations is given in
Table 1. For smooth flow, the numerical scheme employed in
the PHANTOM SPH code is formally second-order accurate in
space, while for flows containing discontinuities such as
shocks, the accuracy is reduced to first order (this also occurs
where the particles reach the ceiling of the switch for the linear
artificial viscosity term, amax

AV ). Therefore we expect the error to
scale roughly as ∝h2 for cases where the flow is smooth and
as∝ h where shocks play a significant role. In our 3D
simulations, this suggests the error should scale
between∝ N−1/3 and∝ N−2/3, and thus for each factor of
eight increase in particle number, we expect the error to be
reduced by a factor of two to four. The αAV values for the
particles are typically large during the pericenter passage of the
star, with the fraction that are at the ceiling increasing with
increasing β. This appears to be why the lower β simulations

Figure 2. Comparison of the energy distributions for the simulations with Np = 128M and a polytropic equation of state for different β values. The Keplerian energy E
has been normalized by the energy spread predicted by the frozen-in approximation with ò = E/ΔE where E = v2/2 − GM•/r is the Keplerian energy, and
D =E GM R r• t

2
 . A similar normalization is applied to the vertical axis with dm/dò = (ΔE/Må)dM/dE. In each panel, the time at which the energy distribution is

computed is given in the top right corner, with t = t(5rt) referring to the time at which the zero-energy orbit has receded to a distance of 5rt from the black hole; this

occurs between 2.9 and 2.4 hr post-pericenter for these β. The later times of 0.57 d and 5.7 d are significantly larger than the dynamical timescale »R GM 273
 

minutes. On each panel, the value of β corresponding to each line color is given in the legend in the top left of the panel. In each case, the majority of the debris is
confined to a region |ò|  1, with the full range having |ò|  2 for these β values.
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Figure 3. Energy distributions for all of the simulations with a polytropic equation of state, with the x-axis being the orbital energy normalized by the canonical energy
spread ò = E/ΔE and the y-axis being the mass-energy distribution normalized by the canonical energy spread and the stellar mass dm/dò = (ΔE/Må)dM/dE. The left
column shows the energy distribution with linear axes, the middle column shows the same but with the axes zoomed in on the peak, and the right column shows the energy
distribution with the y-axis on a log scale. The value of β is given in the panel title and increases from the top row to the bottom row. In each column, the axis ranges are the
same to ease comparison between different β values. On each panel, the line color corresponds to the resolution of the simulations as given in the legend in the left column.
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show stronger convergence at these resolutions. However, in
each case, the error is reduced by a factor2 for a factor of
eight increase in particle number. Thus we can conclude that
the simulations are converging appropriately. It is also worth
remarking that the errors for the higher-β values at the higher
resolutions are approaching the errors for the lower β values at
lower resolutions (i.e., the values toward the bottom right of
Table 1 are similar to the values toward the top left). This
further substantiates our suggestion at the end of the previous
section that the high-β simulations are accurate for the majority
of the stellar debris at 128M particles.

2.1.3. The Effect of Shock Heating

So far we have explored the debris energy distribution in
simulations that enforce a polytropic equation of state where
P=Kργ and γ= 5/3, and K is a global constant determined by
hydrostatic equilibrium of the initial star. In Figure 4 we show
the set of plots that are analogous to those presented in
Figure 3, but in this case, the heating of the gas due to
dissipation of kinetic energy mediated by numerical viscosity is
included in the dynamics. In the limit of infinite resolution, this
heating would accurately reflect the presence of shocks within
the flow. However, at finite resolution, some additional
numerical heating is always present, even when the velocity
profile is relatively smooth (i.e., nowhere discontinuous). From
Figure 4 it is apparent that at low β (4), heating via shocks
has a negligible effect on the energy spread. This is consistent
with the predictions of Coughlin & Nixon (2021) who show
that shocks occur for β3, and when they do occur, they are
typically weak. At larger β (8), the simulations show that
shock heating can broaden the distribution of energy, but as the
resolution is increased, the degree of broadening decreases to
the point at which the energy distributions are similar to the
cases in which the heating is excluded (see also Figure 7
below). This demonstrates that simulations with inadequate
spatial resolution can lead to inaccurate inferences for the
breadth and shape of the energy distribution.

In the recent analysis of Coughlin & Nixon (2021), we
demonstrated that even in high-β encounters (i.e., those with
β10), the shocks generated during the compression of the star
were weak, with Mach numbers1.5 (see their Figure 16). We
can quantitatively assess the degree to which shocks modify the
thermodynamics of the compressing gas—from the standpoint
of the numerical simulations presented here—by analyzing the

entropy generated as a function of initial height above the
plane. Almost all of the entropy generation occurs during the
pericenter passage of the star. We therefore analyze the
snapshot corresponding to when the star has receded to 5rt
from the black hole, corresponding to a time of≈2.4−2.9 hr. In
terms of the cylindrical distance, s0, and vertical distance
measured out of the orbital plane, z0, both measured from the
center of mass of the star at the start of the simulation, we
restrict our analysis to particles with s0< 0.03Rå. We then bin
the particles with height above the plane from z0= 0 to
z0= 0.9Rå with a bin width of δz0= 0.03Rå. We then take the
average of the entropy function K= P/ργ within each bin, and
the standard deviation of the values within each bin as a
measure of the error associated with the binning procedure. The
top panel of Figure 5 shows the ratio of the entropy function of
the gas post-pericenter (at a distance of 5rt) to its initial value as
a function of initial height above the plane, where the black
curve is for β= 4, the red curve is for β= 8, and the blue curve
is for β= 16, all at 128M particles. The dashed curves are for
the same values of β but with 16M particles, i.e., at reduced
resolution compared to the solid curves. The overall result to be
inferred from this figure is that the entropy generation is
globally small for all values of β, and that there is a slight
positive correlation between initial height above the plane and
the amount of entropy generated for z00.6 (except for z00.3
for β= 16, where the entropy generated decreases with
increasing z0). We caution, however, that there are noticeable
differences between the results of the simulations as we go
from 16 to 128M particles, and hence, these trends may not be
representative of the solution in the limit of infinite resolution.
Instead, we infer that the relative entropy change at 128M
particles is an upper limit (for a given value of z0) on the
amount of entropy generated.
For a shock with Mach number, the post-shock density

and pressure are given by

⎜ ⎟
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⎝
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respectively. Note that these equations are appropriate for
arbitrary Mach numbers (i.e., they do not adopt the strong-
shock limit in which the Mach number is?1). From these
equations, we can calculate the ratio of the post- and pre-shock
entropy function (recalling that r= gK Pps ps ps, the sound speed

is given by g r=c Ps
2 , and the Mach number is

( )= -v v csh s ), as
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Here Kps is the post-shock entropy function, and K0 is the pre-
shock entropy function of the ambient gas.7 In the bottom panel
of Figure 5, we plot this ratio (Equation (4)) as a function of the

Table 1
L2 Error Norms for the Energy Distributions from the Simulations with a
Polytropic Equation of State, Calculated from Equation (1) with the 128M

Simulation Taken as the Reference Value

β Np = 250 k Np = 2 M Np = 16 M

1 1.2 × 10−2 4.3 × 10−3 2.2 × 10−3

2 1.3 × 10−2 5.2 × 10−3 2.1 × 10−3

4 4.0 × 10−2 1.7 × 10−2 5.4 × 10−3

8 8.8 × 10−2 4.5 × 10−2 1.7 × 10−2

16 1.1 × 10−1 6.6 × 10−2 3.2 × 10−2

Note. For larger β, the error is larger at the same number of particles. Also, as
the resolution is increased, the error decreases.

7 Recall that the entropy is related to the entropy function via µS Kln .
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Figure 4. This figure follows the same format as Figure 3, but the data plotted here are for the simulations in which shock heating of the gas has been included.
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Mach number. The horizontal/vertical lines in the bottom
panel of Figure 5 correspond to the values of the entropy
function at an initial height of z0= 0.5Rå, and the vertical lines
delimit the Mach number that a putative shock8 must have had
in order to generate that amount of entropy. This figure, in
conjunction with the results of the numerical simulations,
therefore shows that the Mach number of any shock potentially
generated during the compression of the star for β= 4, 8, and

16 must have had Mach numbers no greater than 1.4, 1.6, and
2.9, respectively. Again, we argue that these are upper limits
owing to the fact that the simulations have not yet converged in
their measurement of this quantity, as the top panel of this
figure demonstrates; artificial heating due to numerical
dissipation (i.e., the finite numerical viscosity) would, and
likely does, artificially inflate the amount of entropy generation
that occurs during these deep-β encounters. Nonetheless, these
results demonstrate that any shocks produced during the
compression of the star—even in high-β encounters—must
be weak.

2.1.4. Time Dependence of the Energy Distribution

For partial disruptions (not simulated here; see Nixon et al.
2021), Coughlin & Nixon (2019) pointed out that the time
dependence of the gravitational potential from the surviving
stellar core means that the orbital energy for each gas parcel in
the stream is not a conserved quantity. Thus, measuring the
Keplerian orbital energy with respect to the black hole at any
time is not a reliable indicator of the fallback rate. However, for
full disruptions in which there is no surviving core, it is
generally accepted that the fallback rate may be predicted using
the Keplerian orbital energies of each gas parcel in the debris
stream provided that the energies are measured at a sufficiently
late time. This is the standard method for calculating the
fallback rate from TDE simulations, and indeed is still used by
some authors for the partial disruption case as well.
In Figure 6 we plot the Keplerian energy distributions for the

stellar debris in our simulations at several times. Here we show
only the highest-resolution simulation (corresponding to 128M
particles) with a polytropic equation of state, for each β value.
The earliest time shown corresponds to when the zero-energy
orbit reaches a radius of 5rt from the black hole (black line),
and two later times are shown corresponding to 0.57 days and
5.7 days post-pericenter. From these plots, it is clear that the
energy distribution is still evolving, particularly for the high-
density gas where dm/dò is large. This evolution is driven by
self-gravity in the debris stream, which leads to a re-
distribution of mass along the stream. In the β= 1 and β= 8
cases, the data on the plot appear to show increased noise at
later times; this is due to the onset of gravitational instability in
the high-density regions of the stream, which is resolved in our
numerical simulations but appears as noise in the more coarsely
binned energy distributions. As the stream densities are
typically highest around ò≈0, there is a tendency for mass to
accumulate there over time. This is particularly evident for
β= 1 and β= 8, but can also be seen in the “shoulders” located
away from ò= 0 for β= 2 and β= 4. The fact that the debris
stream remains self-gravitating after the disruption has been
shown by Coughlin & Nixon (2015) and Coughlin et al.
(2016a, 2016b) for β= 1, and by Steinberg et al. (2019) and
Coughlin et al. (2020) for β?1. In some cases, the differences
in the energy distributions at late times may not strongly affect
the forward predictions of the fallback rates; for example, in the
β= 1 case, the differences are small for energies that are not
close to ò= 0. However, it is also clear that in some cases,
these differences lead to inaccurate estimates of the fallback
rate. Therefore we suggest that if accurate fallback rates are
required, they should be obtained from numerical simulations
that follow the debris orbits—including the gas hydrodynamics

Figure 5. Top: the entropy generated as a function of the initial height above
the plane for the βʼs listed in the legend and at 128M particles (solid) and 16M
particles (dashed). Here K = P/ργ is the entropy function evaluated when the
center of mass has reached 5rt from the black hole, and K0 is the initial entropy
function. Bottom: the relative jump in entropy function across a shock with
arbitrary Mach number (i.e., including the limit when  is of the order of
unity). The horizontal lines show the magnitude of the increase in the entropy
function from the simulation measured at z0 = 0.5, and the vertical lines give
the corresponding Mach number of the shock that would yield that large of a
change in entropy function. This figure demonstrates that any putative shocks
formed during the compression of the gas must be weak.

8 Note that we are not necessarily indicating that a shock has passed through
the gas at this height, even though the model in Coughlin & Nixon (2021)
predicts that there is one for β3; we are merely investigating the Mach
number that a shock would need to have had in order to produce the amount of
entropy generation seen in the simulations.
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and self-gravity—until they return to the vicinity of the black
hole (see, e.g., Coughlin & Nixon 2015).

3. Discussion

3.1. Physical Origin of the Energy Spread

The frozen-in model posits that the energy spread imparted
to the gas is established when the star crosses the tidal radius,
and hence predicts that ΔE is independent of β. To our
knowledge, this was first understood and demonstrated by Lacy
et al. (1982), and this point has since been revisited by other
authors (e.g., Stone et al. 2013). Other authors have assumed
that the conditions that regulate the evolution of the tidally
disrupted debris are set at the pericenter distance of the center
of mass, in which case the energy spread would be proportional
to β2 (e.g., Evans & Kochanek 1989; Ulmer 1999; Lodato et al.
2009; Strubbe & Quataert 2009). Our results demonstrate that,
in the limit of large β, the energy spread is nearly independent
of β (as seen qualitatively in Figure 2), but that there is a small,
but noticeable, inverted dependence for β1—the energy
spread decreases as β increases. This inverted dependence was
also found by Steinberg et al. (2019), who attributed it to the
influence of self-gravity just outside the tidal sphere of the
black hole and the increased amount of time spent by the star
near the tidal radius for low-β encounters (compared to high-β
encounters).

We note here two additional effects that further complicate
the precise dependence of the energy distribution on β. The first
of which is that the central density of a star is larger than its

average density, and hence the effective tidal radius to which
one would have to go if one equated the central density to the
black hole density (i.e., ρ•∼M•/r

3), and hence completely
destroy the star,9 is a factor of ( )r rc

1 3
 smaller than the

fiducial tidal radius. For a γ= 5/3 polytrope, ρc/ρå; 5.99,
which leads to a factor of; 1.82 reduction in the distance of
the center of mass, or β; 1.82. For this value of β, one would
expect the usual frozen-in argument to apply: the tidal force of
the black hole has done enough work to completely unbind the
star, and the energies of the fluid elements, and the
corresponding spread in the energy, should be frozen-in and
should no longer evolve with time. Investigating Figure 2 of
Steinberg et al. (2019), this distance (;55 in the units on their
horizontal axis) roughly corresponds to the time at which their
ΔE(90%) asymptotes to a constant during the stellar ingress.
The second effect arises from the fact that the material is

strongly vertically compressed by the tidal force as it nears the
pericenter of its orbit. Carter & Luminet (1983), as well as
Stone et al. (2013) argued that the equivalence of the gas
pressure and the ram pressure leads to an increase in the central
density by a factor of∝ β3, though the model of Coughlin &
Nixon (2021; alongside the evidence of the simulations
described in detail here) demonstrated that the increase in the
density is not this strong (see their Figure 17). Nonetheless, by
β; 8, the central density at the point of peak compression is a
factor of ∼30 increased over the original central density of the
star. Arguing analogously to the previous paragraph, therefore,

Figure 6. Energy distributions for the simulations with Np = 128M and a polytropic equation of state for different β values. In each panel, the value of β is given at the
top of the panel, and the different lines correspond to different times post-pericenter passage. The solid line corresponds to the time when the zero-energy orbit has
receded to a distance of 5rt from the black hole. The dashed line corresponds to a time 0.57 d post-pericenter, and the dotted line corresponds to a time of 5.7 d post-
pericenter. For β = 16, we do not show the energy distribution at the latest time, as matter has already started returning to the black hole in this case. In each case, the
energy distribution evolves significantly, going from a few hours to approximately half a day. However, there is also continued evolution of the energy distribution
over later times due to the influence of self-gravity, which acts to redistribute the debris along the debris stream.

9 Meaning that the tidal density of the black hole is larger than the largest
stellar density.
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the density near the center of the star is well above the self-
gravitating limit at the point that maximum compression is
reached (the criterion for this being that ρ/ρ•1; Coughlin et al.
2016a). The sudden increase in the importance of self-gravity
at this point results in a corresponding drop in the energy
spread; this drop is apparent near the pericenter distance of the
star in Figure 2 of Steinberg et al. (2019). The black hole can
then continue to exert a tidal potential on the material—the
self-gravity of which has now been refreshed—as it recedes
from pericenter; this is also apparent from the increase in ΔE,
as seen in Figure 2 of Steinberg et al. (2019). That ΔE
continues to rise above the value at which it plateaus on the
stellar ingress is because the material is now even more self-
gravitating than it was initially (i.e., the peak density achieved
shortly after pericenter is larger than the original central stellar
density by a factor of ∼25 for β= 7; see Figure 17 of Coughlin
& Nixon 2021).

Given the complexity of these effects, and additional effects
such as the spin of the star prior to the encounter with the black
hole (Golightly et al. 2019b) and the details of the stellar
structure (Golightly et al. 2019a), it is currently necessary to
use numerical simulations (rather than a comparatively simple
analytical model) to determine the energy distribution accu-
rately. An analytical framework, which is more physically
accurate than the frozen-in model, with which to test the
numerical simulations would be highly desirable. Furthermore,
we note that while the energy spread is an important
characteristic of the distribution of the debris and that this
spread appears relatively insensitive to β, different values of β
can lead to different functional forms for the energy
distribution (see Figure 2). It is this functional form that is
important in determining the shape of the fallback curve.
However, as we have seen, the energy distribution can evolve
significantly over time (see Figure 6), and thus the most
accurate approach to determining the fallback rate is to directly
measure the return of debris to the vicinity of the black hole
(Coughlin & Nixon 2015).

3.2. Validity and Importance of Assumptions

The set of numerical simulations that we have carried out
here make a number of simplifying and/or model specific
assumptions that warrant further, but limited, discussion that
we provide here. One such assumption is that the star being
disrupted is a γ= 5/3 polytrope modeled to match the Sun in
its bulk properties, i.e., its mass and radius. There are multiple
motivating factors for this assumption, including that this type
of star has been simulated by a large number of authors (and,
indeed, appears to be the canonical stellar-type employed in
TDE simulations; e.g., Bicknell & Gingold 1983; Evans &
Kochanek 1989; Lodato et al. 2009; Guillochon & Ramirez-
Ruiz 2013; Coughlin & Nixon 2015) and therefore provides us
with the ability to compare our results to others in the field.
Another reason for this choice is that the majority of stars are
low in mass, and hence a γ= 5/3 polytrope—accurately
descriptive of low-mass stars owing to their fully convective
nature—is representative of the typical encounter to be
actualized in nature, though the Sun (or at least the radiative
interior) is better modeled by a Γ= 4/3 polytrope with a
γ= 5/3 equation of state (where p∝ ρΓ, as concerns the
density and pressure profiles of the star; e.g., Hansen et al.
2004). Simulating the deep disruption of a Γ= 4/3 polytrope
(with γ= 5/3) would likely result in our better resolving the

compression of the star, as the higher central density naturally
enforces a smaller smoothing length. However, the results in
Coughlin & Nixon (2021) suggest that one must go to much
larger βʼs to achieve the same level of relative compression as
compared to a γ= 5/3 polytrope. We leave a detailed study of
high-β encounters of Γ= 4/3 polytropes with γ= 5/3, or more
general “real stars,” (see Golightly et al. 2019a) to a future
investigation.
The second assumption we made was to model the

gravitational field of the supermassive black hole as that of a
Newtonian point mass. The inclusion of general relativistic
effects, and a more accurate description of the gravitational
field in the immediate vicinity of the black hole compared to
the purely Newtonian field employed here, becomes necessary
for modeling the dynamics once the β of the encounter
becomes modestly large (we would argue10) for a 106Me
supermassive black hole, because the ratio rt/RG; 47 in this
case (where RG=GM•/c

2). Therefore, once β10, the direct
capture of a nontrivial fraction of the stellar debris becomes
possible, and the large periapsis advance angle means that
direct collisions may occur almost immediately after pericenter
is reached (Darbha et al. 2019b). The tidal effects of the
supermassive black hole are also enhanced when general
relativistic effects are taken into account (e.g., Stone et al.
2019; Kesden 2012), and hence the tidal effects of what might
be considered a relatively small-β encounter in Newtonian
gravity may behave effectively as a larger-β encounter (again,
in Newtonian gravity) when general relativistic effects are
included. These considerations become increasingly important
as the black hole mass increases for smaller β, but the neglect
of relativistic gravity—even in very high-β encounters—is
even more justified as the black hole mass is reduced. We leave
an analysis of the effects of relativity on the behavior of, e.g.,
the maximum-achievable density within the compressing star
to future work (see also Gafton & Rosswog 2019 for an
investigation of highly relativistic TDEs).

3.3. The Maximum Density and Temperature

The density and temperature of the star, and in particular
their maximum values achieved as the star nears and recedes
from its pericenter, have received a great deal of attention since
the suggestion of Carter & Luminet (1983), rebuked by
Bicknell & Gingold (1983), that the compression induced by
the tidal field may lead to induced nuclear detonation in the
core of the star. Various authors have found agreement or
disagreement with the predictions that result from the
assumption of adiabatic compression and the ∼equivalence
of the gas pressure and the infalling ram pressure (assuming
freefall collapse for the latter) at the point of maximum
compression. These predictions are that r r b= 0.22max c

3 and
b=T T 0.37max c

2 (assuming an adiabatic index of γ= 5/
3; Luminet & Carter 1986), where rmax and Tmax are the
maximum density and temperature, and ρc and Tc are their
values at the center of the original star, respectively.
In Coughlin & Nixon (2021), we developed a model that

permitted a deeper understanding of the evolution of these fluid
quantities, and in that same paper, we compared our predictions
to and found excellent agreement with the simulations
described here (see Figure 17 of that paper in particular).
Rather than reiterate the findings in full, we summarize them
here by noting that the central density and temperature of the
star effectively never conform to their∝ β3 and∝ β2 scalings,
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because at low β (β10), the pressure gradient within the star
becomes dynamically significant well before the gas pressure
equals the ram pressure of the fluid. The importance of the
pressure gradient at these low values of β results in a much
more gradual increase in rmax and Tmax as β increases, with their
functional forms not being particularly well matched by power
laws (again, see Figure 17 of Coughlin & Nixon 2021). At
large β (β10), the formation of a weak shock (with Mach
number1.5; see the discussion in Section 2.1.3 above and
Coughlin & Nixon 2021) prematurely halts the adiabatic
increase in the density when the shock reaches the midplane, in
agreement with the arguments of Bicknell & Gingold (1983),
and results in the much shallower scalings r r bµmax c

1.62 and
bµT Tmax c

1.12. We refer the interested reader to Coughlin &
Nixon (2021) for more details.

3.4. The Importance of Shock Heating

We adopted two thermodynamic prescriptions for the
evolution of the gas in our simulations, one with shock heating
included in the gas-energy equation (the “w/ heating” set), and
the other in which the entropy is forced to be a global constant
(termed “polytropic”). The latter prescription implies that the
shock is, in a way, radiative, and that energy is not conserved
as we move across the shock and the dissipated kinetic energy
is instead lost from the system. In this scenario, the post-shock
pressure is reduced compared to its value in the case where
shock heating is included, and the increase in the density is
correspondingly larger.

In reality, since the shock that we are analyzing here forms
deep within the interior of the star, any additional heat
generated must diffuse outward on a timescale that is

comparable to the Kelvin–Helmholtz timescale of the original
star. For typical stellar progenitors, this timescale is millions of
years, and hence the energy lost by the star (via any process) is
extremely tiny over the duration of the tidal encounter (which is
roughly one dynamical time of the star by construction). The
most realistic scenario is therefore likely given by the one in
which any heat generated by the shock is retained by the
system.
We emphasize, however, that the simulations that maintain

the effects of shock heating on the gas may actually be less
representative of the true solution—the one achieved by going
to infinite resolution—as the amount of entropy generation may
be overestimated due to numerical effects, which is apparent as
the resolution increases in Figure 5. In fact, if the model in
Coughlin & Nixon (2021) is representative of the true level of
entropy generation at at least the order-of-magnitude level, then
—perhaps contrary to expectations, given that the star is highly
compressed and the conditions are rather extreme for high β
(e.g., the increase in the central density is by a factor of ∼110
for β= 16)—the numerical simulations without shock heating
are likely more representative of reality than those that do. In
other words, enforcing that the entropy be unchanged during
the tidal compression is more accurate given the overproduc-
tion of the entropy from spurious numerical heating with
shock-heating enabled (which we infer given the comparison
between 16 and 128M particles in Figure 5).
In addition, assuming that the model of Coughlin & Nixon

(2021) predicts at least roughly the right amount of entropy
generated through the formation of shocks, our two prescrip-
tions for the effects of shock heating should effectively
converge to the same one in the limit of infinite resolution.
Figure 7 gives a comparison of the energy spread measured

Figure 7. Energy distributions for the simulations with Np = 128 M, comparing the effect of excluding (polytropic) and including heating of the debris (with heating).
In each panel, the value of β is given at the top right of the panel. These energy distributions are calculated when the center-of-mass orbit has receded to a distance of
5rt (e.g., Figures 3 and 4). The heating of the gas is mediated in the simulations by the numerical viscosity, which captures the heating due to shocks. Coughlin &
Nixon (2021) showed that shocks should occur for β3, and that the shocks are typically weak, suggesting that their effect on the entropy of the gas is mild. This
figure shows that the effect of shock heating on the energy distribution is typically small.
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when the center-of-mass orbit has receded to a distance of 5rt
for β= 1, 2, 4, 8, and 16, all at 128M particles and including
and ignoring the effects of shock heating. We see that the two
curves are nearly indistinguishable for β= 1, 2, and 4, there are
small differences for β= 8 (including the structure around the
peak, and the high-energy wings present in the simulation that
includes shock heating), and for β= 16, the differences
between the simulations are more apparent. In particular, it is
worth noting that the significant asymmetry in the energy
distribution for the β= 16 polytropic case is largely removed
when shock heating is included. This occurs as the additional
heating provides pressure support against the self-gravity that is
responsible for generating the asymmetry as the debris moves
through the point of maximal compression (as discussed in
Section 2.1.1). However, we reiterate that the heating in this
case is significantly stronger than predicted by the analytical
model of Coughlin & Nixon (2021) and is not yet converged in
the simulations (see Figure 5), and thus we expect that
simulations performed at even higher resolution with shock
heating included would show less entropy generation and
would maintain the asymmetry.

3.5. Nuclear Energy Generation

We conclude this section by saying that we have ignored any
energy liberated by nuclear fusion as the gas is intensely heated
and compressed during the tidal encounter. This possibility
was, as we noted above, the original motivation of Carter &
Luminet (1983) when investigating the nature of deeply
plunging tidal disruption events.

We already noted in Coughlin & Nixon (2021) that the
likelihood of producing substantial energy through the triple-α
process is small until β; 10, as one needs a central
temperature of108 K in order to generate substantial rates
of energy production through this process. Even then, the
amount of time spent at these temperatures is extremely small,
which Bicknell & Gingold (1983) argued would further reduce
the possibility of significant energy production through helium
fusion. However, it seems possible that by pushing the
temperature of the star to∼108 K and igniting the process in
earnest, one could initiate a runaway process, but the situation
is very dissimilar from the one presumably encountered during
the standard picture of runaway carbon burning that occurs in
Type Ia supernovae. In particular, the gas is highly dynamic
and out of dynamical equilibrium, and is rapidly decompressed
shortly after the burning starts. It is therefore unclear whether
or not the initial burst of energy generation could maintain
sufficiently high temperatures in the expanding debris to allow
the process to continue.

Finally, there is also the possibility of igniting shell burning
in the outer layers of the star by nuclear reactions that require
less extreme temperatures and densities than the triple-α
process. Whether or not nuclear burning occurs (and, if so,
where in the star) requires further analysis, and determining the
answer to this question is outside the scope of the present
paper.

4. Summary and Conclusions

We have presented the results of numerical simulations of
tidal disruption events in which we varied the pericenter of the
stellar orbit, the spatial resolution, and performed the simula-
tions with and without the effects of shock heating included in

the gas dynamics. From these results, we are able to draw the
following conclusions:

1. The width of the energy distribution for the bulk of the
stellar debris is essentially independent of the pericenter
distance for tidal disruption events where the star passes
close to or within the tidal sphere, and is close to the
canonical spread ofD =E GM R r• t

2
 , predicted by Lacy

et al. (1982). Close inspection of the energy distributions
shows a weak inverse dependence of the width on β for
modest β values, which we attribute to a combination of
the increased time spent near the tidal radius for these
events compared to their higher-β counterparts and the
effects of self-gravity. However, for the β values, we
have simulated the overall shape of the energy distribu-
tion changes significantly for different β values.

2. We have demonstrated that for β2, the energy
distributions are accurate when the event is modeled
with modest numbers of particles. For β8, the
simulations show a good level of convergence between
16 and 128M particles, indicating that ∼10M particles
are sufficient in this case. For β= 16, there remain
differences in the energy distributions between 16 and
128M; although in this case, the width of the distribution
for the bulk of the debris agrees closely with the expected
value, and the maximum density and temperature
achieved agree closely with the predictions of Coughlin
& Nixon (2021, see their Figure 17). Additionally, our
analysis of the errors at different resolutions suggests that
all of the simulations are converging appropriately. We
therefore conclude that the results of the β= 16
simulation performed at 128M particles are acceptable.

3. We have demonstrated that any shocks occurring as the
star passes through the tidal sphere are of low-Mach
number by analyzing the entropy generation in the
simulations that include heating of the gas. Only the
simulations with β4 show any indication that shocks are
present. In contrast, the simulations with β= 1 and β= 2
show the same energy distribution whether heating is
included or not (Figure 7), suggesting that if any shocks
are present, they are sufficiently weak as to play
essentially no role in the gas thermodynamics. For larger
β, we find that the effects of shock heating can be
pronounced only when the simulation resolution is
inadequate. Once a sufficiently high resolution is reached,
the energy distributions are similar whether shock heating
is included in the gas dynamics or not. Analysis of the
entropy generation as a function of spatial resolution
suggests that the Mach numbers of any shocks present are
limited to < 1.4 for β= 4, < 1.6 for β= 8, and

< 2.9 for β= 16. These findings are in agreement
with the predictions of shock properties in TDEs made by
Coughlin & Nixon (2021).

4. We have shown that the energy distribution continues to
evolve with time as the debris recedes to distances much
greater than the tidal radius (see Figure 5). This evolution
is enacted by the gas self-gravity, which can redistribute
mass along the debris stream; in some cases, this leads to
widespread fragmentation of the debris stream (Coughlin
& Nixon 2015), and in other cases can result in the
formation of a single, dominant “zombie” core within the
stream (Nixon et al. 2021). This result suggests that care
should be taken when predicting the future fallback rate
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of stellar debris from the energy distribution at an early
time. We advocate that the safest way to measure the
fallback rate accurately from a numerical simulation is to
follow the return of the debris to pericenter and measure
the fallback rate directly (Coughlin & Nixon 2015).
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