University of York

This is a repository copy of A GSVD-Based Precoding Scheme for MIMO-NOMA Relay Transmission.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/204753/
Version: Accepted Version

Article:

Rao, Chenguang, Ding, Zhiguo, Cumanan, Kanapathippillai orcid.org/0000-0002-97357019 et al. (1 more author) (2023) A GSVD-Based Precoding Scheme for MIMO-NOMA Relay Transmission. IEEE Internet of Things Journal. ISSN 2327-4662
https://doi.org/10.1109/JIOT.2023.3325528

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A GSVD-Based Precoding Scheme for MIMO-NOMA Relay Transmission

Chenguang Rao, Zhiguo Ding, Fellow, IEEE, Kanapathippillai Cumanan, Senior Member, IEEE and Xuchu Dai

Abstract

Recently, the multiple-input multiple-output (MIMO) non-orthogonal multiple-access (NOMA) transmission, denoted as MIMO-NOMA, has been widely applied for Internet-of-Things (IoT) systems due to its spectral efficiency. As a promising precoding method, the generalized singular value decomposition (GSVD) based precoding scheme has been studied in MIMO-NOMA. In this study, we apply the GSVD-based precoding scheme to a downlink MIMO-NOMA communication system with an amplify-and-forward (AF) relay and two IoT users. A closed-form expression of the probability density function (PDF) of two channel matrices' generalized singular values (GSVs) is obtained in order to facilitate the performance analysis for cooperative MIMO-NOMA transmission. In particular, by this distribution characteristic result, the users' rates and outage probabilities achieved by MIMO-NOMA are studied for the insightful performance evaluation. In addition, the asymptotic approximations for outage probabilities at the high signal-to-noise-ratio (SNR) condition are presented. In addition to characterize the performance achieved by cooperative MIMO-NOMA, resource allocation for the addressed NOMA system is also investigated in this paper, where a suboptimal power allocation algorithm to maximize the sum rate is given. The solution obtained by the proposed algorithm is studied, where the optimality condition of the solution is obtained. Finally, simulation results are presented to show the superiority of the scheme and verify these analytical results.

Index Terms-Amplify-and-forward (AF) relay, generalized singular value decomposition(GSVD), internet of things (IoT), multiple-input multiple-output (MIMO), non-orthogonal multiple access (NOMA).

I. Introduction

A. Related works and the Motivation.

With the rapidly development of internet of things (IoT), there is an urgent need for high-quality wireless communication systems. Among the potential enabling technologies for future IoT networks, multiple-input multiple-output (MIMO), a technology with high spectral efficiency, has been regarded as a crucial technology and has got broad application [1][4]. In addition, MIMO systems usually combine with nonorthogonal multiple access (NOMA) for rational use of the spectrum, which is termed the MIMO-NOMA technology and has been widely studied and applied [5]-[8]. However, in

[^0]the long distance communication, the feasible transmission distance between the base station and the IoT devices or users may not support a stable and efficient communication condition, in which case a relay station is required to improve link quality [9]. This promotes the development of cooperative MIMO-NOMA transmission research [10]-[12]. The relaying techniques can be classified into two types: amplify-andforward (AF) relaying and decode-and-forward (DF) relaying. Compared with DF, AF has a simpler implementation and a lower dissipation [13], which make it more attractive in practice. The precoding schemes of MIMO with an AF relay can be developed from conventional MIMO transmissions, which have been studied in [14]-[16]. There are mainly two types for MIMO precoding schemes: non-linear precoding [17]-[19] and linear precoding [20], [21]. The non-linear precoding is too complex to be often employed in practice, while linear precoding schemes can better balance efficiency and complexity and thus have been extensive used. The generalized singular value decomposition (GSVD) has stood out among the linear precoding schemes because of its implementation simplicity and advantageous performance, especially when the signal-to-noise-ratio (SNR) is high [22]-[24]. In the MIMO-NOMA-GSVD-based scheme, the channel matrices of two users are diagonalized simultaneously to achieve the purpose of transforming an MIMO channel into several parallel singleinput single-output (SISO) channels. Then the NOMA principle can be applied to each SISO channel individually. In [23], the authors have studied a GSVD-based two-user MIMONOMA download communication system. In [25], the authors have analyzed the perturbation of GSVD-NOMA scheme with imperfect channel state information. In [24], the authors have considered the performance of GSVD-NOMA from the single channel perspective, where the distribution characteristic of the ordered GSVD has been analyzed. In [26], the GSVDNOMA scheme with the security constraint has been studied. In [22] and [27], the authors have studied the GSVD-based MIMO-NOMA system with a DF relay.

All works above have contributed to the GSVD-based MIMO-NOMA schemes. However, to the best knowledge of the authors, the design of GSVD-based MIMO-NOMA with an AF relay is still unknown, which motivates our work in this paper. The key contribution of this work is how to characterize the distribution characteristic of the generalized singular values (GSVs) of two channel matrices, which is needed for the performance analysis of the scheme. In [23], the probability density functions (PDFs) of two Gaussian random matrices are calculated for both the two-user downlink MIMO-NOMA scenario and MIMO-NOMA scenario with a DF relay. In the DF relay scenario, the relay station can decode the received messages and then encode the message before
relaying. Thus, its end-to-end matrices can be decomposed into several Gaussian matrices, and the distribution characteristics of GSVs of these Gaussian channel matrices can be directly obtained from existing works for the performance analysis. However, in the AF relay scenario, the channel matrices are the products of Gaussian matrices and no longer satisfy the Gaussian distribution. As a result, those existing results about GSVD-NOMA in [23] cannot be applied. Thus, we are devoted to finding a new approach to solve this problem in this paper.

B. Contributions

In this paper, we consider a two-user downlink MIMONOMA scenario with a single AF relay station and two IoT users. The far user, i.e., the user which is farther from the base station, receives messages via the AF relay station, while the near user, i.e., the user which is close to the base station, receives messages directly from the base station. Then the end-to-end channel matrix pair consists of a Gaussian random matrix and a new matrix which is a product between two Gaussian random matrices. We calculate the distribution characteristics of the corresponding GSVs for the channel matrix pair and then analyze the performance of the communication system by using these results.

The main contributions of this paper are shown as follows:

- A GSVD-based MIMO-NOMA IoT transmission system with an AF relay precoding scheme is presented. Specifically, the GSVD-based precoding scheme is applied to this system. The distribution characteristic of the GSVs of two channel matrices of the considered scenario is analyzed. Closed-form expressions of both the PDF and marginal PDF of GSVs are obtained.
- Based on the PDF of GSVs, the performance analysis for the considered cooperative MIMO-NOMA scheme is carried out. In particular, the expressions of average rates and outage probabilities are obtained. Besides, the asymptotic results at high SNR are also estimated.
- To maximize the sum rate of two users and meet those communication quality requirements, a problem where the objective function is the sum rate of the two users is generated. As the solution of this problem, a suboptimal algorithm is proposed. Furthermore, this solution is proved to be optimal in most cases in practice.

The rest of this paper is organized as follows. In Section II, we briefly describe the system model and the GSVD-based precoding scheme. In Section III, we present the performance analysis of the system. In Section IV, we study the power allocation strategy to get the maximum sum rate and give a suboptimal power allocation algorithm. Simulation results are provided in Section V, and conclusions are presented in Section VI.

II. System Model

A. System Setup and Parameters

Consider an AF-relay assisted downlink MIMO-NOMA transmission system as Fig. 1. We denote the base station, the relay station and the two IoT users by BS, R and $\mathrm{U}_{i}, i=1,2$,

TABLE I
NOTATIONS AND PARAMETER DEFINITIONS OF THE SYSTEM MODEL.

Notations	Definitions
\mathbf{X}	Matrix
\mathbf{x}	Column vector
$\left\{X_{m, n}\right\}$	The m-th, n-th element of \mathbf{X}
\mathbb{C}, \mathbb{R}	Complex number field, real number field
$E()$.	Expectation
$\operatorname{trace}()$.	Trace
$\operatorname{det}()$.	Determinant
$\operatorname{Pr}()$	Probability calculation
\mathbf{I}	Identity matrix
$G()$.	Meijer G-function
ξ_{i}	Permutations
$\operatorname{sign(\xi _{i})}$	Sign function of permutations
$U()$.	Tricomi confluent hypergeometric function
\mathbf{H}	Channel matrices
$\mathrm{U}_{i}, \mathrm{BS}$	Communication nodes
d_{i}	Distances between nodes
$M_{,}, N_{i}$	Numbers of antennas
$\mathbf{s}, \mathbf{s}_{i}$	Message vectors
$\mathbf{P}_{s}, \mathbf{D}_{i}$	Precoding and decoding matrices
P_{0}, P_{R}	Transmission powers
t_{0}, t_{R}	Power normalization coefficients
l_{i}	Power allocation coefficients
$\mathbf{n}, \mathbf{n}_{i}$	White noises

Fig. 1. System model.
respectively. ${ }^{1}$ In this system model, U_{1} represents a 'poor channel' user that is far from BS . The poor communication condition of U_{1} blue to the requirement of relay station R. ${ }^{2}$ Recall that NOMA performs better when the difference between the users' conditions is larger. Therefore, U_{1} is paired with a 'good channel' user, U_{2}, whose communication condition is good enough to support direct communication to BS . The distances between BS and R, R and $\mathrm{U}_{1}, \mathrm{BS}$ and U_{2} are denoted by d_{0}, d_{1}, d_{2}, respectively. The distances are assumed to satisfy $d_{0}, d_{1}, d_{2}>1, d_{0}, d_{1}>d_{2}$. The distance between R and U_{2} is assumed to be large enough to ignore the interference each other. BS and U_{i} are equipped with N_{B} and N_{i} antennas, respectively. R is equipped with M antennas. Denote $N=\min \left\{N_{B}, N_{1}, N_{2}\right\}$. The numbers of antennas satisfy that $M \geq N^{3} . \mathbf{H}_{0} \in \mathbb{C}^{M \times N}$ is the downlink channel matrix between BS and $\mathrm{R}, \mathbf{H}_{1} \in \mathbb{C}^{N \times M}$ is the downlink channel matrix between R and U_{1}, and $\mathbf{H}_{2} \in \mathbb{C}^{N \times N}$ is the downlink channel matrix between BS and U_{2}. In this

[^1]paper, the number of the multipath propagation is assumed to be very large, and the channel matrices can be modeled as independent and identically complex Gaussian random matrices [28], whose all elements have zero means and one variances. The large scale fading coefficient corresponding to channel matrix \mathbf{H}_{i} is modeled as $1 / \sqrt{d_{i}^{\tau}}, i=0,1,2$, where τ represents the path loss exponent. The message broadcasted by BS is expressed as $\mathbf{x}=\sqrt{P_{0}} \mathbf{P}_{s} \mathbf{s} . \mathbf{P}_{s}$ represents the precoding matrix. $\mathbf{s}=l_{1} \mathbf{s}_{1}+l_{2} \mathbf{s}_{2}$, where \mathbf{s}_{i} is the signal vector for U_{i}, $E\left(\mathbf{s}_{i} \mathbf{s}_{i}^{H}\right)=\mathbf{I} . P_{0}$ is the transmission power. l_{i} denotes the power allocation coefficient and satisfies $l_{1}^{2}+l_{2}^{2}=1$. Then the received message at R and U_{2} can be expressed as follows:
\[

\left\{$$
\begin{align*}
\mathbf{y}_{R} & =\frac{\sqrt{P_{0}}}{t_{0} \sqrt{d_{0}^{\tau}}} \mathbf{H}_{0} \mathbf{P}_{s} \mathbf{s}+\mathbf{n}_{0} \tag{1}\\
\mathbf{y}_{2} & =\frac{\sqrt{P_{0}}}{t_{0} \sqrt{d_{2}^{\tau}}} \mathbf{D}_{2} \mathbf{H}_{2} \mathbf{P}_{s} \mathbf{s}+\mathbf{D}_{2} \mathbf{n}_{2}
\end{align*}
$$\right.
\]

respectively. t_{0} denotes the long-term power normalization coefficient (see (9)) to reduce the power gap between the various channels, and \mathbf{D}_{2} denotes the decoding matrix at U_{2}. Each element of $\mathbf{n}_{i}, i=0,1,2$ is independent white noise with unit variance. In this paper, it is assumed that all of the white noises have the same variances N_{0}. Then R sends $\frac{\sqrt{P_{R}}}{t_{R}} \mathbf{y}_{R}$ to $\mathrm{U}_{1} . P_{R}$ is the transmission power at R . To keep the average power on each antenna within the power limit, the average normalization coefficient t_{R} is set as the average power of \mathbf{y}_{R}, which can be expressed as follows:

$$
\begin{equation*}
t_{R}=\sqrt{E\left\{\operatorname{trace}\left(\mathbf{H}_{0} \mathbf{H}_{0}^{H}\right)\right\} \frac{P_{0}}{t_{0}^{2} d_{0}^{\tau}}+N_{0}} \tag{2}
\end{equation*}
$$

From [29], it can be shown that

$$
\begin{equation*}
E\left\{\operatorname{trace}\left(\mathbf{H}_{0} \mathbf{H}_{0}^{H}\right)\right\}=M N . \tag{3}
\end{equation*}
$$

Therefore, t_{R} can be simplified as follows:

$$
\begin{equation*}
t_{R}=\sqrt{M N \frac{P_{0}}{t_{0}^{2} d_{0}^{\tau}}+N_{0}} \tag{4}
\end{equation*}
$$

From (1), the received message at U_{i} can be expressed as follows:

$$
\left\{\begin{array}{l}
\mathbf{y}_{1}=\frac{\sqrt{P_{0} P_{R}}}{t_{0} t_{R} \sqrt{d_{0}^{\tau} d_{1}^{\tau}}} \mathbf{D}_{1} \mathbf{H}_{1} \mathbf{H}_{0} \mathbf{P}_{s} \mathbf{s}+\frac{\sqrt{P_{R}}}{t_{R} \sqrt{d_{1}^{\tau}}} \mathbf{D}_{1} \mathbf{H}_{1} \mathbf{n}_{0}+\mathbf{D}_{1} \mathbf{n}_{1} \tag{5}\\
\mathbf{y}_{2}=\frac{\sqrt{P_{0}}}{t_{0} \sqrt{d_{2}^{\tau}}} \mathbf{D}_{2} \mathbf{H}_{2} \mathbf{P}_{s} \mathbf{s}+\mathbf{D}_{2} \mathbf{n}_{2}
\end{array}\right.
$$

where \mathbf{D}_{1} denotes the decoding matrix at U_{1}.

B. Application of GSVD

The design for \mathbf{P}_{s} and \mathbf{D}_{i} is considered in this subsection. To diagonalize the channel matrices simultaneously for eliminating the interference between subchannels, the GSVDbased precoding scheme is applied [23]. From [30], the GSVD is adopted to the matrix pair $\left\{\mathbf{H}_{1} \mathbf{H}_{0}, \mathbf{H}_{2}\right\}$ as follows [30]:

$$
\begin{equation*}
\mathbf{H}_{1} \mathbf{H}_{0}=\mathbf{U}_{1} \boldsymbol{\Sigma}_{1} \mathbf{V}, \mathbf{H}_{2}=\mathbf{U}_{2} \boldsymbol{\Sigma}_{2} \mathbf{V} \tag{6}
\end{equation*}
$$

where $\mathbf{U}_{i} \in \mathbb{C}^{N \times N}$ is a unitary matrix, and $\mathbf{V} \in \mathbb{C}^{N \times N}$ is an invertible matrix. $\boldsymbol{\Sigma}_{i}=\operatorname{diag}\left(\mu_{i, 1}, \ldots, \mu_{i, N}\right)$ that satisfying
$\mu_{1, q}^{2}+\mu_{2, q}^{2}=1, \forall 1 \leq q \leq N$. The generalized singular values (GSV) are defined as $\omega_{q}=\mu_{1, q}^{2} / \mu_{2, q}^{2}, q=1,2, \ldots, N$. On the other hand, it can be shown that $\mu_{1, q}^{2}=\omega_{q} /\left(1+\omega_{q}\right)$, $\mu_{2, q}^{2}=1 /\left(1+\omega_{q}\right)$.

By applying GSVD, the precoding and decoding matrices can be designed as $\mathbf{P}_{s}=\mathbf{V}^{-1}$ and $\mathbf{D}_{i}=\mathbf{U}_{i}^{H}$. The expressions of (5) can be rewritten as follows:

$$
\left\{\begin{array}{l}
\mathbf{y}_{1}=\frac{\sqrt{P_{0} P_{R}}}{t_{0} t_{R} \sqrt{d_{0}^{\tau} d_{1}^{\tau}}} \mathbf{\Sigma}_{1} \mathbf{s}+\frac{\sqrt{P_{R}}}{t_{R} \sqrt{d_{1}^{\tau}}} \mathbf{n}_{0}^{\prime}+\mathbf{n}_{1}^{\prime} \tag{7}\\
\mathbf{y}_{2}=\frac{\sqrt{P_{0}}}{t_{0} \sqrt{d_{2}^{\tau}}} \mathbf{\Sigma}_{2} \mathbf{s}+\mathbf{n}_{2}^{\prime}
\end{array}\right.
$$

Since the unitary matrices do not change the distribution of Gaussian matrices, it can be shown that $\mathbf{n}_{i}^{\prime}=\mathbf{U}_{i}^{H} \mathbf{n}_{i}, i=1,2$, is also a white Gaussian distributed vector. In addition, each element of $\mathbf{n}_{0}^{\prime}=\mathbf{U}_{1}^{H} \mathbf{H}_{1} \mathbf{n}_{0}$ is the inner product of two independent Gaussian random vectors with zero means and diagonal covariance matrices. We denote $n_{i, q}^{\prime}$ by the q-th element of \mathbf{n}_{i}^{\prime}. Then it is obvious that $E\left\{n_{1, q}^{\prime 2}\right\} \stackrel{y}{=} E\left\{n_{2, q}^{\prime 2}\right\}=N_{0}$. As for $n_{0, q}^{\prime}$, we rewrite it as $n_{0, q}^{\prime}=\sum_{j=1}^{N} a_{j} b_{j}$, where a_{j}, b_{j} are independent Gaussian random variables with zero means and unit variances. Then, its power can be obtained as follows:

$$
\begin{equation*}
E\left\{n_{0, q}^{\prime 2}\right\}=E\left\{\left(\sum_{j=1}^{N} a_{j} b_{j}\right)^{2}\right\}=E\left\{\sum_{j=1}^{N} a_{j}^{2} b_{j}^{2}\right\}=N N_{0} \tag{8}
\end{equation*}
$$

Similar to t_{R}, the normalization coefficient t_{0} is set as the average power of $\mathbf{P}_{s} \mathbf{s}$, which can be designed as $t_{0}^{2}=$ $E\left\{\operatorname{trace}\left(\mathbf{V} \mathbf{s s}^{H} \mathbf{V}^{H}\right)\right\}=E\left\{\operatorname{trace}\left(\mathbf{V} \mathbf{V}^{H}\right)\right\}$. From [23], it can be shown that

$$
\begin{equation*}
t_{0}^{2}=E\left\{\operatorname{trace}\left(\mathbf{V} \mathbf{V}^{H}\right)\right\}=\frac{N}{2 N-N}=1 \tag{9}
\end{equation*}
$$

This result shows that when the antennas at both ends are equal, the long-term average power of each channel is approximately equal, so normalization coefficient is not needed.

The q-th element of \mathbf{y}_{i} can be expressed as follows:

$$
\left\{\begin{array}{l}
y_{1, q}=\frac{\sqrt{P_{0} P_{R}}}{t_{R} \sqrt{d_{0}^{\tau} d_{1}^{\tau}}} \mu_{1, q}\left(l_{1} s_{1, q}+l_{2} s_{2, q}\right)+\frac{\sqrt{P_{R}}}{t_{R} \sqrt{d_{1}^{\tau}}} n_{0, q}^{\prime}+n_{1, q}^{\prime} \tag{10}\\
y_{2, q}=\frac{\sqrt{P_{0}}}{\sqrt{d_{2}^{\tau}}} \mu_{2, q}\left(l_{1} s_{1, q}+l_{2} s_{2, q}\right)+n_{2, q}
\end{array}\right.
$$

where $s_{i, q}$ is the q-th element of \mathbf{s}_{i}. (10) also represents the q-th SISO channel between BS and U_{i}. We denote signal-to-interference-plus-noise-ratio (SINR) of $s_{p, q}$ at U_{i} as $\gamma_{p \rightarrow i, q}$. The SINR is defined as the ratio of the power of the required message to the sum of the power of interference and noise. As the Shannon-Hartley theorem, its relation to the rate $r_{i, q}$ is expressed as follows:

$$
\begin{equation*}
r_{i, q}=\log \left(1+\gamma_{i \rightarrow i, q}\right) \tag{11}
\end{equation*}
$$

Since U_{2} has a better channel condition (If otherwise, U_{1} tends to be chosen as the relay-assisted users.), we apply the successive interference cancellation (SIC) to U_{2}. In particular, U_{2} firstly decodes \mathbf{s}_{1} by regarding \mathbf{s}_{2} as noise. Then if \mathbf{s}_{1} can be decoded correctly, it can be eliminated from the message
and \mathbf{s}_{2} is decoded without interference. U_{1} decodes \mathbf{s}_{1} by regarding \mathbf{s}_{2} as noise directly. From (10), $\gamma_{p \rightarrow i, q}$ are given by

$$
\begin{align*}
\gamma_{1 \rightarrow 1, q} & =\frac{\left(\frac{\sqrt{P_{0} P_{R}}}{t_{R} \sqrt{d_{0}^{\tau} d_{1}^{\tau}}} \mu_{1, q} l_{1}\right)^{2}}{\left(\frac{\sqrt{P_{0} P_{R}}}{t_{R} \sqrt{d_{0}^{\tau} d_{1}^{\tau}}} \mu_{1, q} l_{2}\right)^{2}+\left(\frac{\sqrt{P_{R}}}{t_{R} \sqrt{d_{1}^{\tau}}}\right)^{2} N_{0}+N_{0}}, \tag{12}\\
\gamma_{1 \rightarrow 2, q} & =\frac{\left(\frac{\sqrt{P_{0}}}{\sqrt{d_{2}^{\tau}}} \mu_{2, q} l_{1}\right)^{2}}{\left(\frac{\sqrt{P_{0}}}{\sqrt{d_{2}^{\tau}}} \mu_{2, q} l_{2}\right)^{2}+N_{0}}, \gamma_{2 \rightarrow 2, q}=\frac{\left(\frac{\sqrt{P_{0}}}{\sqrt{d_{2}^{\tau}}} \mu_{2, q} l_{2}\right)^{2}}{N_{0}} . \tag{13}
\end{align*}
$$

After simplification, the following equations can be derived:

$$
\begin{gather*}
\gamma_{1 \rightarrow 1, q}=\frac{l_{1}^{2} \omega_{q}}{\left(l_{2}^{2}+C_{1}\right) \omega_{q}+C_{1}} \tag{14}\\
\gamma_{1 \rightarrow 2, q}=\frac{l_{1}^{2}}{C_{2} \omega_{q}+C_{2}+l_{2}^{2}}, \gamma_{2 \rightarrow 2, q}=\frac{l_{2}^{2}}{C_{2} \omega_{q}+C_{2}} \tag{15}
\end{gather*}
$$

where

$$
\begin{equation*}
C_{1}=\frac{d_{0}^{\tau} N_{0}}{P_{0}}+\frac{t_{R}^{2} d_{0}^{\tau} d_{1}^{\tau} N_{0}}{P_{0} P_{R}}, C_{2}=\frac{d_{2}^{\tau} N_{0}}{P_{0}} \tag{16}
\end{equation*}
$$

III. Performance Analysis

In this section, we first consider the distribution characteristics of $\omega=\frac{1}{N} \sum_{q=1}^{N} \omega_{q}$, including its joint and marginal PDF. Then we use the results to analyze the average achievable rates and outage probabilities of two users.

A. The Distribution Characteristic of ω

Since all metrics for performance analysis are functions of ω, it is necessary to find the PDF of ω first. In this subsection, firstly, we construct a matrix with eigenvalues equal to GSVs and then obtain the joint PDF of its eigenvalues from the existing conclusion. Naturally, we can obtain the joint PDF of $\omega_{1}, \omega_{2}, \ldots, \omega_{N}$ right away. Then we can obtain the marginal PDF via integral operations.

Theorem 1. The unordered joint PDF of $\omega_{1}, \omega_{2}, \ldots, \omega_{N}$ can be expressed as follows:

$$
\begin{equation*}
f\left(\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right)=\frac{1}{V} \prod_{1 \leq m<n \leq N}\left(\omega_{n}-\omega_{m}\right) \operatorname{det}\left(\left\{G_{m, n}\right\}\right) \tag{17}
\end{equation*}
$$

where

$$
G_{m, n}=G_{1,2}^{2,1}\left(\left.\begin{array}{c}
-N \tag{18}\\
M+m-N-1,0
\end{array} \right\rvert\, \omega_{n}\right)
$$

G is the Meijer G-function [31]. The normalization factor V can be expressed as follows:

$$
\begin{equation*}
V=N \Gamma(M) \prod_{i=1}^{N} i^{4(N-i)} \tag{19}
\end{equation*}
$$

Proof. See Appendix A.
Then we need to obtain the marginal PDF for further analysis. We can directly obtain marginal PDF based on joint PDF via integral operations, as shown in the following theorem:

Theorem 2. The marginal PDF of ω can be expressed as follows:

$$
\left.\begin{array}{rl}
g(\omega)= & \frac{1}{V} \sum_{\xi_{1}, \xi_{2} \in S_{N}} \operatorname{sign}\left(\xi_{1}\right) \operatorname{sign}\left(\xi_{2}\right) \prod_{o=1}^{N-1} W_{o} \omega^{\xi_{1}(N)-1} \tag{20}\\
& \times G_{1,2}^{2,1}\left(M+\xi_{2}(N)-N-1,0\right.
\end{array}\right),
$$

where

$$
\begin{align*}
W_{o}=\Gamma\left(\xi_{1}(o)\right) & \Gamma\left(M-N+\xi_{1}(o)+\xi_{2}(o)-1\right) \tag{21}\\
& \times \Gamma\left(N-\xi_{1}(o)+1\right)
\end{align*}
$$

ξ_{1} and ξ_{2} are permutations of length N. On the other word, $\xi=(\xi(1), \xi(2), \ldots, \xi(N)), \forall 1 \leq a, b \leq N, a \neq b, \xi(a) \in$ $\{1,2, \ldots, N\}, \xi(a) \neq \xi(b) . \operatorname{sign}(\xi)$ is equal to -1 if ξ is an odd permutation, otherwise $\operatorname{sign}(\xi)=1$ [24].

Proof. See Appendix B.

For the special case where each node is equipped with a single antenna, the use of Theorem 1 immediately leads to the following corollary.
Corollary 1. When $M=N=1$, the marginal PDF of ω can be expressed as follows:

$$
\begin{equation*}
g(\omega)=U\left(2,1, \omega_{n}\right) \tag{22}
\end{equation*}
$$

where $U(a, b, x)$ is the Tricomi confluent hypergeometric function [32].

Proof. See Appendix C.

To illustrate the result of (22) visually, it will be pointed out the relationship between this result and classical singleantenna Rayleigh fading channel model. At the single-antenna condition, the GSV degrades into

$$
\begin{equation*}
\omega_{0}=\frac{\left|h_{0}\right|^{2}\left|h_{1}\right|^{2}}{\left|h_{2}\right|^{2}} \tag{23}
\end{equation*}
$$

$h_{i}, i=0,1,2$ is the independent Rayleigh fading coefficient, which is subject to Gaussian distribution with the zero mean and the unit variance. Then the following remark can be given.

Remark 1. At the single-antenna condition, the PDF of ω_{0} from (23) is equal to the result of (72), i.e.,

$$
\begin{equation*}
g\left(\omega_{0}\right)=U\left(2,1, \omega_{0}\right) \tag{24}
\end{equation*}
$$

Proof. See Appendix D.

Remark 1 shows that in the especial case where each node is equipped with a single antenna, $g(\omega)$ will degenerate into the PDF of the random variable $\omega_{0}=\frac{\left|h_{0}\right|^{2}\left|h_{1}\right|^{2}}{\left|\left.\right|_{2}\right|^{2}}$, i.e., the SISO model, which confirms the results in this subsection.

Next, the average rates can be calculated by using the expressions of marginal PDF.

B. Average Achievable Rate

In this subsection, we will obtain the expressions of the average rates of the users by using the marginal PDF of ω.

To evaluate the effectiveness of the system, we need to get the expressions of average achievable rates. According to (11), (14), (15) and (20), the average achievable rates can be written as follows:

$$
\begin{align*}
R_{1} & =\frac{N}{2} \int_{0}^{+\infty} \log \left(\frac{\left(1+C_{1}\right) \omega_{q}+C_{1}}{\left(l_{2}^{2}+C_{1}\right) \omega_{q}+C_{1}}\right) g(\omega) d \omega \tag{25}\\
R_{2} & =\frac{N}{2} \int_{0}^{+\infty} \log \left(\frac{C_{2} \omega_{q}+C_{2}+l_{2}^{2}}{C_{2} \omega_{q}+C_{2}}\right) g(\omega) d \omega \tag{26}
\end{align*}
$$

According to the definitions, we can get the expressions of average achievable rates as follows:

Theorem 3. The average achievable rates of two users can be expressed as follows:

$$
\begin{gather*}
R_{1}=\frac{N}{2} \log \left(\frac{C_{1}+1}{C_{1}+l_{2}^{2}}\right)+\frac{N}{2} J\left(\frac{C_{1}}{C_{1}+1}\right)-\frac{N}{2} J\left(\frac{C_{1}}{C_{1}+l_{2}^{2}}\right), \tag{27}\\
R_{2}=\frac{N}{2} J\left(1+\frac{l_{2}^{2}}{C_{2}}\right)-J(1), \tag{28}
\end{gather*}
$$

where

$$
\begin{align*}
& J(x)= \log x+\sum_{\xi_{1}, \xi_{2} \in S_{N}} \operatorname{sign}\left(\xi_{1}\right) \operatorname{sign}\left(\xi_{2}\right) \prod_{o=1}^{N-1} W_{o} G_{3,4}^{4,2} \tag{29}\\
& 0, \xi_{1}(N)-N, 1 \\
&\left(\left.\begin{array}{c}
(N) \\
0,0, M-N+\xi_{1}(N)+\xi_{2}(N)-1, \xi_{1}(N)
\end{array} \right\rvert\, x\right) .
\end{align*}
$$

Proof. See Appendix E.
To maximum the sum rate, a resource allocation optimization scheme can be considered. The explicit expressions obtained in Theorem 3 can be used as the objective function of the optimization problem, as shown in Section IV.

C. Outage Probability

In this subsection, we will obtain the expressions of the outage probabilities of the users by using the marginal PDF of ω.

To evaluate the reliability of the system, it is necessary to calculate the outage probabilities. It is assumed that the target SINR of \mathbf{s}_{i} is set as T_{i}. In this paper, the outage probability of U_{i} is defined as the probability of the event that SIC can not be carried out successfully (only for U_{2}) or SINR falls short of the target, i.e.

$$
\begin{align*}
& P_{\text {out }, 1}=1-\operatorname{Pr}\left\{\gamma_{1 \rightarrow 1}>T_{1}\right\}, \tag{30}\\
& P_{\text {out }, 2}=1-\operatorname{Pr}\left\{\gamma_{1 \rightarrow 2}>T_{1}, \gamma_{2 \rightarrow 2}>T_{2}\right\} .
\end{align*}
$$

According to the definition, the following theorem about the outage probabilities achieved by cooperative MIMO-NOMA can be obtained.

Theorem 4. The outage probability of U_{1} can be expressed as follows:

$$
P_{o u t, 1}=\left\{\begin{array}{l}
G\left(D_{1}\right), l_{2}^{2}<C_{H, 1} \tag{31}\\
1, l_{2}^{2} \geq C_{H, 1}
\end{array}\right.
$$

The expression of outage probability of U_{2} is depended with the parameters, which can be expressed as follows:

- When $C_{2} \geq \frac{1}{T_{1}+T_{2}+T_{1} T_{2}}$,

$$
\begin{equation*}
P_{\text {out }, 2}=1 . \tag{32}
\end{equation*}
$$

- When $C_{2}<\frac{1}{T_{1}+T_{2}+T_{1} T_{2}}$

$$
P_{\text {out }, 2}=\left\{\begin{array}{l}
1, l_{2}^{2} \leq C_{2} T_{2} \text { or } l_{2}^{2} \geq C_{H, 2} \tag{33}\\
1-G(E), C_{2} T_{2} \leq l_{2}^{2} \leq C_{T} \\
1-G\left(D_{2}^{-1}\right), C_{T} \leq l_{2}^{2} \leq C_{H, 2}
\end{array} .\right.
$$

The constants are defined as follows:

$$
\begin{align*}
& C_{H, i}=\frac{1-C_{i} T_{1}}{T_{1}+1}, C_{T}=\frac{T_{2}}{T_{1}+T_{2}+T_{1} T_{2}}, \\
& D_{i}=\frac{C_{i} T_{1}}{-\left(T_{1}+1\right) l_{2}^{2}+1-C_{i} T_{1}}, E=\frac{l_{2}^{2}-C_{2} T_{2}}{C_{2} T_{2}}, \tag{34}
\end{align*}
$$

$G(\omega)$ is the indefinite integral of $g(\omega)$. From [33], we can get $G(\omega)$ as follows:

$$
\begin{align*}
& G(\omega)=\int_{0}^{\omega} g(t) d t \\
& =\sum_{\xi_{1}, \xi_{2} \in S_{N}} \operatorname{sign}\left(\xi_{1}\right) \operatorname{sign}\left(\xi_{2}\right) \prod_{o=1}^{N-1} W_{o} \tag{35}\\
& \times G_{2,3}^{2,2}\left(\left.\begin{array}{c}
1, \xi_{1}(N)-N \\
M-N+\xi_{1}(N)+\xi_{2}(N)-1, \xi_{1}(N), 0
\end{array} \right\rvert\, \omega\right) .
\end{align*}
$$

Proof. See Appendix F.
It can be seen from the theorem that sometimes the outage probabilities will be 1 , depending on the channel conditions, the power transmission, the number of the antennas, the system requirements, and the power allocation coefficients we choose. The results facilitate how to choose parameters and power allocation coefficients to avoid undesirable situation.
When $P_{\text {out }, 1}, P_{\text {out }, 2} \not \equiv 1$ and $P_{0} \rightarrow+\infty, P_{\text {out }, 1}, P_{\text {out }, 2} \rightarrow$ 0 . We are interested in the decay rate when $P_{0} \rightarrow+\infty$. We analyze them in the next subsection.

D. Asymptotic Analysis

Since the NOMA performs well at high SNR [6], [7], it is meaningful to analyze the asymptotic outage probabilities when $P_{0} \rightarrow+\infty$. In this subsection, we will obtain the results by studying the asymptotic characteristic of $G(\omega)$. Specifically, we have the following theorem:
Theorem 5. When $P_{0} \rightarrow+\infty$, the asymptotic results of P_{0} can be expressed as follows:

$$
\begin{equation*}
P_{o u t, 1} \rightarrow \frac{1}{P_{0}}, P_{o u t, 2} \rightarrow \frac{1}{P_{0}} \tag{36}
\end{equation*}
$$

Proof. See Appendix G.
As shown in the theorem, the two users' asymptotic results are equal and independent of other parameters, such as the antenna numbers, the power allocation coefficients or the transmission distances. This result also demonstrates that the proposed scheme is fair to two users.

IV. Power Allocation For Sum Rate Maximation

In this section, we formulate a power allocation problem. To balance the performance of both users, we use the sum rate, i.e., $R_{1}+R_{2}$, as the objective function. In addition, since the minimum rates are often required in communication, the constraints of R_{1} and R_{2} are need to be considered. Denote the minimum transmission rate required by the system of U_{i} as $r_{i}>0$. Then R_{1} and R_{2} need to satisfy

$$
\begin{equation*}
R_{1} \geq r_{1}, R_{2} \geq r_{2} \tag{37}
\end{equation*}
$$

Besides, to meet reliability requirements, we set the maximum outage probabilities $0<p_{1}, p_{2} \leq 1$. Then $P_{o u t, 1}$ and $P_{\text {out }, 2}$ need to satisfy

$$
\begin{equation*}
P_{o u t}, 1 \leq p_{1}, P_{\text {out }, 2} \leq p_{2} \tag{38}
\end{equation*}
$$

Therefore, the addressed resource allocation problem can be formulated as follows:

$$
\begin{align*}
\mathrm{P}_{1}: & \max _{l_{2}^{2}} R_{1}+R_{2} \\
\text { s.t. } & 0 \leq l_{2}^{2} \leq 1, R_{1} \geq r_{1}, R_{2} \geq r_{2} \tag{39}\\
& P_{\text {out }, 1} \leq p_{1}, P_{\text {out }, 2} \leq p_{2}
\end{align*}
$$

In the remainder of the paper, the data rates are defined as $R_{1}\left(l_{2}^{2}\right)$ and $R_{2}\left(l_{2}^{2}\right)$, in order to highlight the fact that l_{2}^{2} is the optimization variable. For simplicity, we represent l_{2}^{2} as x in the following analysis, i.e., we will use $R_{1}(x)$ and $R_{2}(x)$ to denote $R_{1}\left(l_{2}^{2}\right)$ and $R_{2}\left(l_{2}^{2}\right)$.

Since $R_{1}(x)+R_{2}(x)$ is a non-convex function, it is hard to solve. On the other hand, the convexity of $R_{1}+R_{2}$ depends on parameters C_{1} and C_{2}. Therefore, we are going to solve this problem by analyzing the properties of the function $R_{1}+R_{2}$. Specifically, our approach to solve this problem is as follows: First, we focus on the constraints and transform them into one inequality like $x_{L} \leq x \leq x_{H}$. Next, we simplify the original objective function to a simpler function of $f(x)$ by removing the terms independent of l_{2}^{2}. Then by analyzing the monotonicity of the objective function, we prove that $f(x)$ is a monotonically increasing function under a certain condition, that is to say, $x^{*}=x_{H}$ when a condition holds. Otherwise, when the condition does not hold, we offer a suboptimal solution by applying Taylor's first-order approximation. Finally, we discuss the condition under which the obtained solution is optimal. It provides a reference for the parameter selection in practical.

A. Problem Transformation

In this subsection, we will transform the proposed problem for analyzing more intuitively.

Firstly, we consider the constraints of effectiveness. The intervals that x should satisfy are shown visually in Fig. 2. It is obvious that $R_{1}(x)$ is monotonically decreasing because a larger x means less power to be allocated to U_{1}. On the other hand, $R_{2}(x)$ is monotonically increasing. In the extreme

Fig. 2. Rates and outage probabilities vs l_{2}^{2} with the constraints.
case where all power is allocated to one user (i.e., $x=0$ or $x=1$), the rates can be calculated as follows:

$$
\begin{align*}
& R_{1}(0)=\frac{N}{2}\left(\log \left(1+\frac{1}{C_{1}}\right)+J\left(\frac{C_{1}}{C_{1}+1}\right)-J(1)\right) \\
& R_{2}(1)=\frac{N}{2}\left(J\left(1+\frac{1}{C_{1}}\right)-J(1)\right), R_{1}(1)=R_{2}(0)=0 \tag{40}
\end{align*}
$$

Then the constraints $R_{1} \geq r_{1}, R_{2} \geq r_{2}$ can be calculated as follows:

$$
\begin{equation*}
x_{r 2} \leq x \leq x_{r 1} \tag{41}
\end{equation*}
$$

where

$$
\begin{align*}
& x_{r 1}=\left\{\begin{array}{l}
R_{1}^{-1}\left(r_{1}\right), r_{1}<R_{1}(0) \\
0, r_{1} \geq R_{1}(0)
\end{array}\right. \tag{42}\\
& x_{r 2}=\left\{\begin{array}{l}
R_{2}^{-1}\left(r_{2}\right), r_{2}<R_{2}(1) \\
0, r_{2} \geq R_{2}(1)
\end{array}\right. \tag{43}
\end{align*}
$$

$R_{i}^{-1}(r)$ is the inverse function of $R_{i}(x)$. The value of $R_{i}^{-1}\left(r_{i}\right)$ can be obtained by bisection search.

Then we consider the constraints of reliability. For brevity, $P_{\text {out }, 1}, P_{\text {out }, 2}$ will be denoted by P_{1}, P_{2} below. Since $G(\omega)$ is a monotonically increasing function, we can know from (31) and (33) that $P_{1}(x)$ is monotonically non-decreasing. When $x=0, P_{1}(x)$ reaches a minimum as

$$
\begin{equation*}
P_{1}(0)=G\left(\frac{C_{1} T_{1} 1}{1-C_{1} T_{1}}\right) \tag{44}
\end{equation*}
$$

The piecewise function $P_{2}(x)$ is monotonically non-increasing before C_{T}, and then non-decreasing in the condition of $C_{2} \geq$ $\frac{1}{T_{1}+T_{2}+T_{1} T_{2}}$. In this case, the minimum of $P_{2}(x)$ is

$$
\begin{equation*}
P_{2}\left(C_{T}\right)=1-G\left(\frac{C_{T}-C_{2} T_{2}}{C_{2} T_{2}}\right) \tag{45}
\end{equation*}
$$

Otherwise, when $C_{2}<\frac{1}{T_{1}+T_{2}+T_{1} T_{2}}, P_{2}(x)$ is a constant function as $P_{2}(x)=1$. To combine these two cases, we set

$$
P_{2}\left(C_{T}\right)^{\prime}=\left\{\begin{array}{l}
1-G\left(\frac{C_{T}-C_{2} T_{2}}{C_{2} T_{2}}\right), C_{2} \geq \frac{1}{T_{1}+T_{2}+T_{1} T_{2}} \tag{46}\\
1, C_{2}<\frac{1}{T_{1}+T_{2}+T_{1} T_{2}}
\end{array}\right.
$$

Then the constraints $P_{1} \leq p_{1}, P_{2} \leq p_{2}$ can be calculated as follows:

$$
\begin{equation*}
x_{p 2 L} \leq x \leq \min \left\{x_{p 1}, x_{p 2 H}\right\} \tag{47}
\end{equation*}
$$

where

$$
\begin{gather*}
x_{p 1}=\left\{\begin{array}{l}
\frac{1-C_{1} T_{1}\left(1+\left(G^{-1}\left(p_{1}\right)\right)^{-1}\right)}{T_{1}+1}, p_{1}>P_{1}(0) \\
0, p_{1} \leq P_{1}(0)
\end{array} .\right. \tag{48}\\
x_{p 2 L}=\left\{\begin{array}{l}
C_{2} T_{2} G^{-1}\left(1-p_{2}\right)+1, p_{2}>C_{T} \\
1, p_{2} \leq P_{2}\left(C_{T}\right)^{\prime}
\end{array},\right. \tag{49}\\
x_{p 2 H}=\left\{\begin{array}{l}
\frac{1-C_{2} T_{1}\left(1+G^{-1}\left(1-p_{2}\right)\right)}{T_{1}+1}, p_{2}>C_{T} \\
0, p_{2} \leq P_{2}\left(C_{T}\right)^{\prime}
\end{array}\right. \tag{50}
\end{gather*}
$$

$G^{-1}(p)$ is the inverse function of $G(\omega)$. The value of $G^{-1}\left(p_{i}\right)$ can be also obtained by bisection search.

After removing the independent terms of l_{2} from $-R_{1}-R_{2}$, P_{1} can be equated to the following problem:

$$
\begin{align*}
\mathrm{P}_{2}: & \min _{x} f(x) \tag{51}\\
& \text { s.t. } x_{L} \leq x \leq x_{H},
\end{align*}
$$

where

$$
\begin{gather*}
f(x)=\log \left(C_{1}+x\right)+J\left(\frac{C_{1}}{C_{1}+x}\right)-J\left(1+\frac{x}{C_{2}}\right), \tag{52}\\
x_{L}=\max \left\{x_{r 2}, x_{p 2 L}\right\}, x_{H}=\min \left\{x_{r 1}, x_{p 1}, x_{p 2 H}\right\} . \tag{53}
\end{gather*}
$$

B. The Suboptimal Algorithm

In this subsection, we offer a suboptimal algorithm for the proposed problem. We propose an optimal algorithm and a suboptimal algorithm for two different cases, respectively. At last, we unify them into a suboptimal algorithm.

1) The optimal solution when the optimality condition holds: To find the extremum of the objective function to solve the proposed problem, we analyze the monotonicity of $f(x)$. It can be proved that $f(x)$ is monotonically decreasing when a certain condition holds, which is shown as the following theorem:

Theorem 6. $f(x)$ is monotonically decreasing when

$$
\begin{equation*}
\frac{C_{1}}{C_{2}}>\frac{1}{2}\left(\frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right)\right)^{-1} \tag{54}
\end{equation*}
$$

Proof. See Appendix H.
According to the above analysis, when $\frac{C_{1}}{C_{2}}>$ $\frac{1}{2}\left(\frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right)\right)^{-1}$, the optimal solution $x^{*}=x_{H}$. However, when the condition doesn't hold, we need to solve it by using another method.
2) The suboptimal solution when the optimality condition does not hold: When $\frac{C_{1}}{C_{2}}<\frac{1}{2}\left(\frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right)\right)^{-1}$, the function $f(x)$ is non-convex, which is difficult to solve. Thus, we apply the first-order Taylor expansion to approximate it in order to get a suboptimal solution x^{*}. The first-order Taylor expansion of $f(x)$ is expressed as follows:

$$
\begin{align*}
& f(x) \approx f(0)+f^{\prime}(x) x \\
& =\log C_{1}+\left(\frac{1}{C_{1}}-\frac{1}{C_{1}} \frac{d}{d x} J(1)-\frac{1}{C_{2}} \frac{d}{d x} J(1)\right) x . \tag{55}
\end{align*}
$$

Then it can be shown that when $\frac{C_{1}}{C_{2}}>\left(\frac{d}{d x} J(1)\right)^{-1}-1, f^{\prime}(x)$ is monotonically decreasing, i.e, $x^{*}=x_{H}$. Otherwise, $f_{1}^{\prime}(x)$ is monotonically increasing, and $x^{*}=x_{L}$.

After determining the optimal solution, we can calculate x_{L} and x_{H} by applying the bisection search. According to the above analysis, we design a suboptimal power allocation algorithm as IV-B2.

```
Algorithm 1 Suboptimal Power Allocation Algorithm
    Input: \(C_{1}, C_{2}, r_{1}, r_{2}, p_{1}, p_{2}, M, N\)
    Output: \(l_{2}^{2 *}\), when \(l_{2}^{2 *}\) does not exist, output \(l_{2}^{2 *}=-1\).
    Obtain \(R_{1}^{-1}\left(r_{1}\right), R_{2}^{-1}\left(r_{2}\right), G^{-1}\left(p_{1}\right), G^{-1\left(1-p_{2}\right)}\) by using
    bisection search, respectively.
    Obtain \(x_{r 1}, x_{r 2}, x_{p 1}, x_{p 2 L}, x_{p 2 H}\) from (42), (43), (48),
    (49), (50), respectively.
    \(x_{L}=\max \left\{x_{r 2}, x_{p 2 L}\right\}, x_{H}=\min \left\{x_{r 1}, x_{p 1}, x_{p 2 H}\right\}\)
    if \(x_{L} \geq x_{H}\) then
        \(l_{2}^{2 *}=-1\)
    else
        if \(\frac{C_{1}}{C_{2}}>\max \left\{\left(\frac{1}{2} \frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right)\right)^{-1},\left(\frac{d}{d x} J(1)\right)^{-1}-1\right\}\)
    then
        \(l_{2}^{2 *}=x_{H}\)
        else
            \(l_{2}^{2 *}=x_{L}\)
    return \(l_{2}^{2 *}\)
```

Then we can analyze the complexity of the algorithm. Since all operations of the algorithm except the dichotomy are single operations, only the complexity of the dichotomy need to be considered. The precision requirement of $l_{2}^{2 *}$ is assumed to

TABLE II
PARAMETERS OF THE CHANNEL OF SIMULATION.

N_{0}	d_{0}	d_{1}	d_{2}	τ
-50 dBm	1000 m	1000 m	800 m	2

be ϵ, then the complexity of the dichotomy can be known as $O\left(\log \frac{2}{\epsilon}\right)$. The complexity of the algorithm is $4 O\left(\log \frac{2}{\epsilon}\right)$.

In this subsection, we present a suboptimal power allocation algorithm. However, when condition (54) holds, the algorithm offers the optimal solution, which is what we expect. We are interested in the possibility that this condition holds to judge the practicability of the algorithm. We will discuss this in the next subsection.

C. Discussions of the optimality

In this subsection, we will analyze the condition term (54).
Since (54) is not direct-viewing, i.e., it doesn't give us any clear condition for optimality, we need to deal with $J(x)$ and get an estimated expression. From the definition of $J(x)$, the right side of the inequality can be transformed as follows:

$$
\begin{equation*}
\frac{d}{d x} J\left(1+\frac{P_{0}}{d_{2}^{\tau} N_{0}}\right)=\int_{0}^{+\infty} \frac{1}{\omega+1+\frac{P_{0}}{d_{2}^{\tau} N_{0}}} g(\omega) d \omega \tag{56}
\end{equation*}
$$

In practice, $\frac{P_{0}}{N_{0}} \gg d_{2}^{\tau}$. Then the approximation of (56) can be expressed as follows:

$$
\begin{align*}
\frac{d}{d x} J\left(1+\frac{P_{0}}{d_{2}^{\tau} N_{0}}\right) & \approx \int_{0}^{+\infty} \frac{d_{2}^{\tau} N_{0}}{P_{0}} g(\omega) d \omega \tag{57}\\
& =C_{2}
\end{align*}
$$

Then inequality (54) can be transformed as follows:

$$
\begin{equation*}
C_{1}>\frac{1}{2} \tag{58}
\end{equation*}
$$

By substituting (16) into C_{1}, (58) can be rewrited as follows:

$$
\left\{\begin{array}{l}
P_{0} \in \mathbb{R}^{+}, P_{R}>2 M N d_{1}^{\tau} N_{0} \tag{59}\\
P_{0}<2 \frac{d_{0}^{\tau} N_{0}\left(N P_{R}+d_{1}^{\tau} N_{0}\right)}{P_{R}-2 M N d_{1}^{\tau} N_{0}}, \text { otherwise }
\end{array}\right.
$$

(59) can be used to select an appropriate transmitting power to get optimal results. We will discuss this further in the next section.

V. Simulation

In this section, simulation results are presented to intuitively verify the proposed analytical results. The system parameters of the channels are chosen as Tab. II. All the numerical results are obtained from 10^{6} times of simulation experiments with Matlab.

Fig. 3 presents the average rates of the users $\left(R_{1}+R_{2}\right) / 2$ achieved by GSVD-NOMA, the MIMO-NOMA schemes in [5], and the traditional OMA scheme, respectively. The transmission powers are chosen as $P_{0}=P_{R}=P$, and the power allocation coefficient is set as $l_{2}^{2}=0.13$. The unit of the data rate here is 'bit per channel use' (BPCU). It can be observed from the figure that the GSVD-NOMA scheme has higher data rates. Besides, as the transmission power increases, the gaps of the rates of GSVD-NOMA and the other schemes also

Fig. 3. The average rates achieved by the GSVD-NOMA, the MIMO-NOMA schemes in [5], and the OMA scheme, respectively.

Fig. 4. Analytical and simulation results of rates vs P_{0} at different M, N.

Fig. 5. Analytical and simulation results of outage probabilities vs P_{0} at different M, N.

Fig. 6. Analytical and simulation results of rates vs P_{R} at different M, N.

Fig. 7. Outage probabilities at a high SNR condition.
increase, demonstrating the great advantage of GSVD at high SNR.

Fig. 4 and 5 present the simulation and analytical average rates and outage probabilities of two users with 2×2 and 4×4 antennas, respectively. The transmission powers are chosen as $P_{0}=P$ and $P_{R}=20 \mathrm{dBm}$ is a constant. The target SINRs are set as $T_{1}=T_{2}=1$. The results verify the accuracy of Theorem 3 and 4, respectively. It can also be observed that a larger number of antennas leads to higher average rates and lower outage probabilities, which are confirmed by the simulation figure. In practice, we can improve communication efficiency by increasing the number of antennas. Besides, the effect of P_{0} on U_{1} is far less than that of U_{2}. It is because the performance of U_{1} is limited by the relay transmission power P_{R}. To study the effect of relay transmission power P_{R}, Fig. 6, the diagram of rates vs P_{R} at different M, N, is presented. The transmission power in BS is set as $P_{0}=20 \mathrm{dBm}$. It can be seen from the figure that P_{R} has no effect on U_{2}. On the other hand, P_{R} is decisive to the performance of U_{1}, which matches the actual circumstances.

As for asymptotic results from Theorem 5, Fig. 7 presents the simulation results of the outage probabilities at a high SNR condition. The antennas are chosen as 2×2. For the analysis of decay rate, the reference curve of $\frac{1}{P}$ is also presented in

Fig. 8. Sum rates vs l_{2}^{2} with different P_{0}.

Fig. 9. $I\left(d_{2}\right)$ vs P_{0} with different P_{R}.
the figure. As can be seen from the figure, the curves of both P_{1} and P_{2} are approximately parallel to the curve of $\frac{1}{P}$, i.e., $P_{\text {out }_{1}}, P_{\text {out }, 2} \propto \frac{1}{P}$. These results are consistent with (90) and verify the asymptotic results of $P_{\text {out }}$.

Fig. 8 shows the sum rates vs l_{2}^{2} with different p_{0}. It can be seen from the figure that the sum rate increases monotonically. According to Algorithm 1, we can get the optimal solution of $l_{2}^{2 *}$ as $l_{2}^{2 *}=x_{L}$, respectively. We choose the required minimal rates and maximal outage probabilities as $r_{1}=0.2, r_{2}=$ $1.5, p_{1}=p_{2}=0.5$. Then we obtain these results by using bisection search and present them as points in the figure.

To verify the discussions of optimality of Algorithm 1 from Subsection IV-C, Fig. 9 is presented and shows the graph of the function

$$
\begin{equation*}
I\left(d_{2}\right)=\frac{C_{1}}{C_{2}} / \frac{1}{2}\left(\frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right)\right)^{-1} \tag{60}
\end{equation*}
$$

vs P_{0} with different P_{R}. To verify the results, we can obtain the range of P_{0} by solving (59) directly: when $P_{R}=10 \mathrm{dBm}$, $P_{0} \in \mathbb{R}^{+}$; when $P_{R}=20 \mathrm{dBm}, P_{0}<23 \mathrm{dBm}$; when $P_{R}=$ $30 \mathrm{dBm}, P_{0}<16.4 \mathrm{dBm}$. It can be seen from the figure that the threshold d_{2} of $I\left(d_{2}\right)>1$ is approximately equal to these three theoretical values. This demonstrates the accuracy of our analysis results about optimality.

VI. CONCLUSION

In this paper, an AF relay-assisted MIMO-NOMA transmission scenario with two IoT users was considered. The expressions of the marginal PDF the GSVs of two channel matrices were calculated and applied to the performance analysis. Specifically, the expressions of average rates, outage probabilities, and the asymptotic results of outage probabilities at high SNR were calculated, respectively. A suboptimal Algorithm was also proposed to maximize the sum rate within the constraints of communication quality requirements. The optimality conditions of the proposed algorithm are also obtained. Simulation results showed the superiority of the scheme and verified the conclusions above.

Appendix A

PROOF OF THEOREM 1
To facilitate the proof, first define the following matrix:

$$
\begin{equation*}
\mathbf{L}=\left(\mathbf{H}_{1} \mathbf{H}_{0}\right)^{H}\left(\mathbf{H}_{1} \mathbf{H}_{0}\right)\left(\mathbf{H}_{2}^{H} \mathbf{H}_{2}\right)^{-1} \tag{61}
\end{equation*}
$$

From (6), it can be inferred that

$$
\begin{align*}
\mathbf{L} & =\mathbf{V}^{H} \boldsymbol{\Sigma}_{1}^{H} \boldsymbol{\Sigma}_{1} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\Sigma}_{2}^{-H} \mathbf{V}^{-H} \\
& =\mathbf{V}^{H} \operatorname{diag}\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right\} \mathbf{V}^{-H} . \tag{62}
\end{align*}
$$

(62) is written in terms of eigenvalue decomposition. It can be shown that the joint PDF of $\omega_{1}, \omega_{2}, \ldots, \omega_{N}$ equals the joint PDF of eigenvalues of \mathbf{L}. Because the matrix multiplication exchange order does not change the non-zero eigenvalues, the eigenvalues of \mathbf{L} are equal to the eigenvalues of

$$
\begin{align*}
\mathbf{L}^{\prime} & =\left(\mathbf{H}_{2}^{\dagger}\right)^{H}\left(\mathbf{H}_{1} \mathbf{H}_{0}\right)^{H}\left(\mathbf{H}_{1} \mathbf{H}_{0}\right) \mathbf{H}_{2}^{\dagger} \tag{63}\\
& =\left(\left(\mathbf{H}_{1} \mathbf{H}_{0}\right) \mathbf{H}_{2}^{\dagger}\right)^{H}\left(\left(\mathbf{H}_{1} \mathbf{H}_{0}\right) \mathbf{H}_{2}^{\dagger}\right) .
\end{align*}
$$

From the [34], a Lemma can be known as follow:

Lemma 1. Define a matrix

$$
\begin{equation*}
\mathbf{X}=\mathbf{G}_{r} \mathbf{G}_{r-1} \ldots \mathbf{G}_{1}\left(\hat{\mathbf{G}}_{s} \hat{\mathbf{G}}_{s-1} . . \hat{\mathbf{G}}_{1}\right)^{-1} \tag{64}
\end{equation*}
$$

where $\mathbf{G}_{k} \in \mathbb{C}^{n_{k} \times n_{k-1}}$ and $\hat{\mathbf{G}}_{k} \in \mathbb{C}^{\hat{n}_{k} \times \hat{n}_{k-1}}$ are Gaussian random matrices with zero means and unit variances. $n_{0}=$ $\hat{n}_{0}=\hat{n}_{s}=N, n_{k}=N+v_{k}, \hat{n}_{k}=N+\hat{v}_{k}$. Then the joint PDF of the non-zero eigenvalues of $\mathbf{X X}^{H}$ can be obtained as follows:

$$
\begin{equation*}
f\left(\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right)=\frac{1}{V} \prod_{1 \leq m<n \leq N}\left(\omega_{n}-\omega_{m}\right) \operatorname{det}\left(\left\{G_{m, n, v, \hat{v}}\right\}\right) \tag{65}
\end{equation*}
$$

$G_{m, n, v, \hat{v}}$ is defined as follows:

$$
G_{m, n}=G_{s, r}^{r, s}\left(\begin{array}{c}
\hat{v}_{1}^{\prime}, \hat{v}_{2}^{\prime}, \ldots,-\hat{v}_{s}^{\prime} \mid \tag{66}\\
v_{1}, v_{2}, \ldots, v_{r}
\end{array} \omega_{n}\right)
$$

where $\hat{v}_{1}^{\prime}=-\left(\hat{v}_{1}+m-1+N\right), \hat{v}_{t}^{\prime}=-\left(\hat{v}_{t}+N\right), t=2,3, \ldots, s$.
Then the joint PDF of the non-zero eigenvalues of \mathbf{L}^{\prime} can be straightforwardly obtained via Lemma 1, and further obtain the results of the theorem.

Appendix B

Proof of theorem 2

$\prod_{1 \leq m<n \leq N}\left(\omega_{n}-\omega_{m}\right)$ can be rewritten as a Vandermonde determinant [35] as follows:

$$
\begin{align*}
\prod_{1 \leq m<n \leq N}\left(\omega_{n}-\omega_{m}\right) & =\left[\begin{array}{cccc}
1 & \omega_{1} & \cdots & \omega_{1}^{N-1} \\
1 & \omega_{2} & \cdots & \omega_{2}^{N-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \omega_{N} & \cdots & \omega_{N}^{N-1}
\end{array}\right] \tag{67}\\
& =\sum_{\xi_{1} \in S_{N}} \operatorname{sign}\left(\xi_{1}\right) \prod_{o=1}^{N} \omega_{o}^{\xi_{1}(o)-1}
\end{align*}
$$

Then by expanding (67) and the determinant $\operatorname{det}\left(\left\{G_{m, n}\right\}\right)=$ $\sum_{\xi_{2} \in S_{N}} \operatorname{sign}\left(\xi_{2}\right) \prod_{o=1}^{N} G_{\xi_{2}(o), o}$, (1) can be expressed as follows:

$$
\begin{align*}
f\left(\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right) & =\sum_{\xi_{1}, \xi_{2} \in S_{N}} \operatorname{sign}\left(\xi_{1}\right) \operatorname{sign}\left(\xi_{2}\right) \\
& \times \prod_{o=1}^{N} \omega_{o}^{N-\xi_{1}(o)} G_{\xi_{2}(o), o} \tag{68}
\end{align*}
$$

The expression for marginal PDF is obtained by integrating (68) as follows:

$$
\begin{align*}
f\left(\omega_{N}\right) & =\sum_{\xi_{1}, \xi_{2} \in S_{N}} \operatorname{sign}\left(\xi_{1}\right) \operatorname{sign}\left(\xi_{2}\right) \\
& \times \prod_{o=1}^{N-1} \int_{0}^{+\infty} \omega_{o}^{\xi_{1}(o)-1} G_{\xi_{2}(o), o} d \omega_{o} \omega_{N}^{\xi_{1}(N)-1} G_{\xi_{2}(N), N} \tag{69}
\end{align*}
$$

From [36], $\int_{0}^{+\infty} \omega_{o}^{\xi_{1}(o)-1} G_{\xi_{2}(o), o} d \omega_{o}$ can be simplified as follows:

$$
\begin{align*}
& \int_{0}^{+\infty} \omega_{o}^{N-\xi_{1}(o)} G_{\xi_{2}(o), o} d \omega_{o} \\
= & \Gamma\left(\xi_{1}(o)\right) \Gamma\left(M-N+\xi_{1}(o)+\xi_{2}(o)-1\right) \Gamma\left(N-\xi_{1}(o)+1\right) . \tag{70}
\end{align*}
$$

Then we can get the result of the theorem.

Appendix C
 PROOF OF THEOREM 1

When $M=N=1$, (20) can be rewritten as follows:

$$
\begin{align*}
g(\omega) & =G_{1,2}^{2,1}\left(\left.\begin{array}{c}
-1 \\
0,0
\end{array} \right\rvert\, \omega\right) \\
& =\frac{1}{2 \pi j} \int_{L} \Gamma(-u)^{2} \Gamma(u+2) \omega_{n}{ }^{u} d u \tag{71}
\end{align*}
$$

Since all poles of $\Gamma(-u)^{2}$ are to the right of the vertical axis in the complex plane, and all poles of $\Gamma(u+2)$ are to the left of the vertical axis in the complex plane. By the definition of the Meijer G-function, we can choose the integral path L as $L=[-j \infty,+j \infty]$. Then from [35], $G_{m, n}$ can be calculated as follows:

$$
\begin{align*}
& g(\omega)=\frac{1}{2 \pi j} \int_{-j \infty}^{+j \infty} \Gamma(-u)^{2} \Gamma(u+2) \omega_{n}^{u} d u \tag{72}\\
& =U\left(2,1, \omega_{n}\right)
\end{align*}
$$

Then the proof is completed.

Appendix D
 Proof of theorem 1

The results of definite integrals used in this proof are all referenced from [35].

Since the modular square of a Gaussian random variable is subject to the exponential distribution, we can rewrite (23) as follows:

$$
\begin{equation*}
g\left(\omega_{0}\right)=\frac{x_{0} x_{1}}{x_{2}}, \tag{73}
\end{equation*}
$$

where $x_{i}, i=0,1,2$ is the exponential random variable with the unit rate parameter. Then by using the result of the product distribution, the PDF of $z=x_{1} x_{2}$ can be expressed as follows:

$$
\begin{align*}
f(z) & =\int_{0}^{+\infty} e^{-x} e^{-\frac{z}{x}} \frac{1}{x} d x \tag{74}\\
& =2 K_{0}(2 \sqrt{z}),
\end{align*}
$$

where $K_{0}(x)$ is the modified Bessel function of the second kind [37]. Then we apply the result of ratio distribution to $\omega_{0}=\frac{z}{x_{2}}$ as follows:

$$
\begin{align*}
f\left(\omega_{0}\right) & =2 \int_{0}^{+\infty} x e^{-x} K_{0}\left(2 \sqrt{x \omega_{0}}\right) d x \tag{75}\\
& =\omega_{0}^{-\frac{1}{2}} e^{\frac{1}{2} \omega_{0}} W_{-\frac{3}{2}, 0}\left(\omega_{0}\right)
\end{align*}
$$

where $W_{-\frac{3}{2}, 0}(x)$ is the Whittaker function [38]. Then by expanding the Whittaker function into a definite integral, $f\left(\omega_{0}\right)$ can be rewritten as follows:

$$
\begin{align*}
f\left(\omega_{0}\right) & =\omega_{0}^{-\frac{1}{2}} e^{\frac{1}{2} \omega_{0}} \omega_{0}^{\frac{1}{2}} e^{-\frac{1}{2} \omega_{0}} \int_{0}^{+\infty} e^{-\omega_{0} t} \frac{t}{(1+t)^{2}} d t \\
& =\int_{0}^{+\infty} e^{-\omega_{0} t} \frac{t}{(1+t)^{2}} d t \tag{76}\\
& =U\left(2,1, \omega_{0}\right)
\end{align*}
$$

The corollary is proved completely.

Appendix E

Proof of theorem 3
First, we define $J(x)$ as follows:

$$
\begin{equation*}
J(x)=\int_{0}^{+\infty} \log (\omega+x) g(\omega) d \omega \tag{77}
\end{equation*}
$$

$\log (\omega+x)$ can be expressed by Meijer-G function as follows:

$$
\begin{align*}
\log (\omega+x) & =\log x+\log \left(1+\frac{\omega}{x}\right) \\
& =\log x+G_{2,2}^{1,2}\left(\left.\begin{array}{c}
1,1 \\
1,0
\end{array} \right\rvert\, \frac{\omega}{x}\right) \tag{78}
\end{align*}
$$

Then $J(x)$ can be calculated as follows:

$$
\begin{align*}
& J(x)=\log x \int_{0}^{+\infty} g(\omega) d \omega+\int_{0}^{+\infty} G_{2,2}^{1,2}\left(\left.\begin{array}{l}
1,1 \\
1,0
\end{array} \right\rvert\, \frac{\omega}{x}\right) \\
= & \log x \\
+ & \sum_{\xi_{1}, \xi_{2} \in S_{N}} \operatorname{sign}\left(\xi_{1}\right) \operatorname{sign}\left(\xi_{2}\right) \prod_{o=1}^{N-1} W_{o} \int_{0}^{+\infty} G_{2,2}^{1,2}\left(\left.\begin{array}{l}
1,1 \\
1,0
\end{array} \right\rvert\, \frac{\omega}{x}\right) \\
& \times G_{1,2}^{2,1}\left(\left.\begin{array}{c}
\xi_{1}(N)-N-1 \\
M-N+\xi_{1}(N)+\xi_{2}(N)-2, \xi_{1}(N)-1
\end{array} \right\rvert\,\right. \tag{79}
\end{align*}
$$

From [35], the definite integral of the product of two MeijerG functions over the positive axis transforms a Meijer-G function. Then $J(x)$ can be simplified as follows:

$$
\begin{align*}
J(x)= & \log x+\sum_{\xi_{1}, \xi_{2} \in S_{N}} \operatorname{sign}\left(\xi_{1}\right) \operatorname{sign}\left(\xi_{2}\right) \prod_{o=1}^{N-1} W_{o} x G_{3,4}^{4,2} \\
& \left(\left.\begin{array}{rl}
-1, \xi_{1}(N)-N-1,0 \\
-1,-1, M-N+\xi_{1}(N)+\xi_{2}(N)-2, \xi_{1}(N)-1
\end{array} \right\rvert\, x\right) \\
= & \log x+\sum_{\xi_{1}, \xi_{2} \in S_{N}} \operatorname{sign}\left(\xi_{1}\right) \operatorname{sign}\left(\xi_{2}\right) \prod_{o=1}^{N-1} W_{o} G_{3,4}^{4,2} \\
& 0, \xi_{1}(N)-N, 1 \tag{80}\\
& \left(\left.\begin{array}{c}
\\
0,0, M-N+\xi_{1}(N)+\xi_{2}(N)-1, \xi_{1}(N)
\end{array} \right\rvert\, x\right) .
\end{align*}
$$

Then by substituting $J(x)$ into (25) and (26), R_{1} and R_{2} can be calculated as the expressions shown in the theorem.

Therefore, the proof for the theorem is complete.

Appendix F

PROOF OF THEOREM 4
Directly from the definitions, $P_{\text {out }, 1}$ can be calculated as follows:

$$
\begin{align*}
P_{o u t, 1} & =1-\operatorname{Pr}\left\{\frac{l_{1}^{2} \omega_{q}}{\left(l_{2}^{2}+C_{1}\right) \omega_{q}+C_{1}}>T_{1}\right\} \\
& =1-\operatorname{Pr}\left\{\left(\left(T_{1}+1\right) l_{1}^{2}-T_{1}\left(C_{1}+1\right)\right) \omega>C_{1} T_{1}\right\} \tag{81}
\end{align*}
$$

When $\left(T_{1}+1\right) l_{1}^{2}-T_{1}\left(C_{1}+1\right) \leq 0$, i.e., $l_{2}^{2} \geq C_{H, 1}, P_{\text {out }, 1}=1$. Otherwise,

$$
\begin{equation*}
P_{\text {out }, 1}=1-\int_{D_{1}}^{+\infty} g(\omega) d \omega=G\left(D_{1}\right) \tag{82}
\end{equation*}
$$

Similarly, $P_{\text {out }, 2}$ can be calculated as follows:

$$
\begin{align*}
P_{\text {out }, 2} & =1-\operatorname{Pr}\left\{\frac{l_{1}^{2}}{C_{2} \omega_{q}+C_{2}+l_{2}^{2}}>T_{1}, \frac{l_{2}^{2}}{C_{2} \omega_{q}+C_{2}}>T_{2}\right\} \\
= & 1-\operatorname{Pr}\left\{\omega<\frac{\left(T_{1}+1\right) 1_{1}^{2}-T_{1}\left(C_{2}+1\right)}{C_{2} T_{1}}, \omega<\frac{l_{2}^{2}-C_{2} T_{2}}{C_{2} T_{2}}\right\} \\
& =1-\operatorname{Pr}\left\{\omega<D_{2}^{-1}, \omega<E\right\} . \tag{83}
\end{align*}
$$

When $\left(T_{1}+1\right) l_{1}^{2}-T_{1}\left(C_{2}+1\right) \leq 0$ or $l_{2}^{2}-C_{2} T_{2}<0$, i.e., $l_{2}^{2} \geq C_{H, 2}$ or $l_{2}^{2} \leq C_{2} T_{2}, P_{\text {out }, 2}=1$. Otherwise,

$$
\begin{align*}
P_{o u t, 2} & =1-\int_{0}^{\min \left\{D_{L}^{-1}, E\right\}} g(\omega) d \omega \\
& =\left\{\begin{array}{l}
1-G(E), C_{2} T_{2} \leq l_{2}^{2} \leq C_{T} \\
1-G\left(D_{2}^{-1}\right), C_{T} \leq l_{2}^{2} \leq C_{H, 2}
\end{array} .\right. \tag{84}
\end{align*}
$$

Then we need to compare C_{T} with $C_{2} T_{2}$ and $C_{H, 2}$.

- When $C_{2}<\frac{1}{T_{1}+T_{2}+T_{1} T_{2}}$, we have the following equivalence relation:

$$
\begin{align*}
& C_{2}<\frac{1}{T_{1}+T_{2}+T_{1} T_{2}} \Leftrightarrow C_{H, 2}>C_{2} T_{2} \tag{85}\\
& \Leftrightarrow C_{T}>C_{2} T_{2} \Leftrightarrow C_{T}<C_{H, 2} .
\end{align*}
$$

Therefore, $P_{\text {out }, 2}$ can be expressed as (33).

- When $C_{2} \geq \frac{1}{T_{1}+T_{2}+T_{1} T_{2}}, C_{H, 2} \geq C_{2} T_{2}, P_{\text {out }, 2}=1$.

As a result, the proof for the theorem is complete.

Appendix G
 Proof of theorem 5

To obtain the asymptotic outage probabilities, we need to obtain the asymptotic characteristic of $G(\omega)$ of (35) first.

- When $\omega \rightarrow 0$, we can directly write the first order Taylor expansion of $G(\omega)$ at $\omega=0$ as follows:

$$
\begin{equation*}
G(\omega) \approx G(0)+g(0) \omega=g(0) \omega \tag{86}
\end{equation*}
$$

- When $\omega \rightarrow+\infty$, it is difficult to get the asymptotic result of $G(\omega)$ directly. We will transform $G(\omega)$ to a definite integral of two Meijer-G functions' product. Specifically, $G(\omega)$ can be rewritten as follows:

$$
\begin{align*}
& G(\omega)=\sum_{\xi_{1}, \xi_{2} \in S_{N}} \operatorname{sign}\left(\xi_{1}\right) \operatorname{sign}\left(\xi_{2}\right) \prod_{o=1}^{N-1} W_{o} \\
& \times \int_{0}^{+\infty} G_{2,1}^{1,1}\left(M-N+\xi_{1}(N)+\xi_{2}(N)-1, \xi_{1}(N) \mid t\right) \\
& G_{1,1}^{1,1}\left({\underset{-1}{\xi_{1}(N)-N} 0}^{(N)} \mid \omega t\right) d t \\
& =\sum_{\xi_{1}, \xi_{2} \in S_{N}} \operatorname{sign}\left(\xi_{1}\right) \operatorname{sign}\left(\xi_{2}\right) \prod_{o=1}^{N-1} W_{o} \\
& \times \int_{0}^{+\infty} G_{2,1}^{1,1}\left(M-N+\xi_{1}(N)+\xi_{2}(N)-1, \xi_{1}(N) \mid t\right) \\
& \quad \Gamma\left(1-\xi_{1}(N)+N\right) \frac{1}{(\omega t+1)^{1-\xi_{1}(N)+N}} d t . \tag{87}
\end{align*}
$$

When $\omega \rightarrow+\infty, \omega t+1 \rightarrow \omega t$, then $G(\omega)$ can be expressed as follows:

$$
\begin{align*}
G(\omega)= & \sum_{\xi_{1}, \xi_{2} \in S_{N}} \operatorname{sign}\left(\xi_{1}\right) \operatorname{sign}\left(\xi_{2}\right) \prod_{o=1}^{N-1} W_{o} \tag{88}\\
& \times K_{\xi_{1}, \xi_{2}} \frac{1}{\omega^{1-\xi_{1}(N)+N}} \approx K \frac{1}{\omega}
\end{align*}
$$

where $K_{\xi_{1}, \xi_{2}}, K$ are coefficients independent of ω. Here we omit the higher order terms of $\frac{1}{\omega}$, because $\left(\frac{1}{\omega}\right)^{n} \ll \frac{1}{\omega}$ when $n \geq 2$.
From (16) and(34), it can be shown that when $P_{0} \rightarrow+\infty$, $D_{1} \rightarrow \frac{1}{P_{0}}, D_{2} \rightarrow P_{0}, E \rightarrow P_{0}$. Then by substituting these into the definitions of $P_{\text {out }}$, we have

$$
\begin{equation*}
P_{o u t, 1} \rightarrow G\left(\frac{1}{P_{0}}\right), P_{o u t, 2} \rightarrow G\left(P_{0}\right) \tag{89}
\end{equation*}
$$

From (86) and (88), the asymptotic results of $P_{\text {out }, 1}$ and $P_{\text {out }, 2}$ can be obtained as follows:

$$
\begin{equation*}
P_{o u t, 1} \rightarrow \frac{1}{P_{0}}, P_{\text {out }, 2} \rightarrow \frac{1}{P_{0}} . \tag{90}
\end{equation*}
$$

Then the proof of the theorem is complete.

APPENDIX H

PROOF OF THEOREM 6
Since

$$
\begin{equation*}
\frac{d^{2} J(x)}{d x^{2}}=-\int_{0}^{+\infty} \frac{1}{(\omega+x)^{2}} g(\omega) d \omega<0 \tag{91}
\end{equation*}
$$

it is known that $\frac{d}{d x} J(x)$ is monotonically decreasing. Then it can be inferred that

$$
\begin{equation*}
\frac{d}{d x} J\left(1+\frac{x}{C_{2}}\right)>\frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right) \tag{92}
\end{equation*}
$$

Then we can know that

$$
\begin{align*}
& \frac{d f(x)}{d x} \\
& =\frac{1}{C_{1}+x}-\frac{C_{1}}{\left(C_{1}+x\right)^{2}} \frac{d}{d x} J\left(\frac{C_{1}}{C_{1}+x}\right)-\frac{1}{C_{2}} \frac{d}{d x} J\left(1+\frac{x}{C_{2}}\right) \\
< & \frac{1}{C_{1}+x}-\frac{1}{C_{2}} \frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right)=\frac{f_{0}(x)}{\left(C_{1}+x\right)^{2} C_{2}}, \tag{93}
\end{align*}
$$

where $f_{0}(x)$ is an inverted-U quadratic function as follows:

$$
\begin{align*}
f_{0}(x)= & -\frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right) x^{2}+\left(C_{2}-2 C_{1} \frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right)\right) x \tag{94}\\
& -C_{1}^{2} \frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right) .
\end{align*}
$$

When $\frac{C_{1}}{C_{2}}>\frac{1}{2}\left(\frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right)\right)^{-1}$, the axis of symmetry

$$
\begin{equation*}
-\frac{C_{2}-2 C_{1} \frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right)}{2 \times-\frac{d}{d x} J\left(1+\frac{1}{C_{2}}\right)}<0 . \tag{95}
\end{equation*}
$$

Since $f_{0}(0)<0$, it can be inferred that $f_{0}(0)$ is negative on the positive axis. On the other hand, $f(x)$ is monotonically decreasing. Then the proof of the theorem is completed.

References

[1] A. Kaye and D. George, "Transmission of multiplexed PAM signals over multiple channel and diversity systems," IEEE Transactions on Communication Technology, vol. 18, no. 5, pp. 520-526, 1970.
[2] Y. Huang, C. Zhang, J. Wang, Y. Jing, L. Yang, and X. You, "Signal processing for MIMO-NOMA: Present and future challenges," IEEE Wireless Communications, vol. 25, no. 2, pp. 32-38, 2018.
[3] B. M. Lee and H. Yang, "Massive MIMO with massive connectivity for industrial internet of things," IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 5187-5196, 2020.
[4] P. Liu and T. Jiang, "Channel estimation performance analysis of massive MIMO IoT systems with ricean fading," IEEE Internet of Things Journal, vol. 8, no. 7, pp. 6114-6126, 2021.
[5] Z. Ding, F. Adachi, and H. V. Poor, "The application of MIMO to non-orthogonal multiple access," IEEE Transactions on Wireless Communications, vol. 15, no. 1, pp. 537-552, 2016.
[6] Z. Ding, R. Schober, and H. V. Poor, "A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment," IEEE Transactions on Wireless Communications, vol. 15, no. 6, pp. 4438-4454, 2016.
[7] Z. Chen, Z. Ding, X. Dai, and R. Zhang, "An optimization perspective of the superiority of NOMA compared to conventional OMA," IEEE Transactions on Signal Processing, vol. 65, no. 19, pp. 5191-5202, 2017.
[8] M. Zeng, A. Yadav, O. A. Dobre, G. I. Tsiropoulos, and H. V. Poor, "Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster," IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, pp. 2413-2424, 2017.
[9] U. Uyoata, J. Mwangama, and R. Adeogun, "Relaying in the internet of things (IoT): A survey," IEEE Access, vol. 9, pp. 132675-132704, 2021.
[10] D. Zhang, Y. Liu, Z. Ding, Z. Zhou, A. Nallanathan, and T. Sato, "Performance analysis of non-regenerative massive-MIMO-NOMA relay systems for 5G," IEEE Transactions on Communications, vol. 65, no. 11, pp. 4777-4790, 2017.
[11] M.-G. Bereeanu, C. Voicu, and S. Halunga, "AF relaying in a massive MU-MIMO OFDM system," in 2018 IEEE 24th International Symposium for Design and Technology in Electronic Packaging? (SIITME), 2018, pp. 226-229.
[12] X. Yue, Y. Liu, S. Kang, A. Nallanathan, and Z. Ding, "Exploiting full/half-duplex user relaying in NOMA systems," IEEE Transactions on Communications, vol. 66, no. 2, pp. 560-575, 2018.
[13] J. Laneman, D. Tse, and G. Wornell, "Cooperative diversity in wireless networks: Efficient protocols and outage behavior," IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 3062-3080, 2004.
[14] B. Lee and C. Lee, "A joint precoding scheme for MIMO systems with distributed single antenna AF relays," in 2012 International Conference on ICT Convergence (ICTC), 2012, pp. 666-670.
[15] F. Heliot and R. Tafazolli, "Energy-efficient joint source and relay precoding design for cooperative MIMO-AF systems," in 2017 European Conference on Networks and Communications (EuCNC), 2017, pp. 1-6.
[16] J. L. Bing, L. Gopal, Y. Rong, C. W. R. Chiong, and Z. Zang, "Robust transceiver design for multi-hop AF MIMO relay multicasting from multiple sources," IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1565-1576, 2021.
[17] M. Costa, "Writing on dirty paper (corresp.)," IEEE transactions on information theory, vol. 29, no. 3, pp. 439-441, 1983.
[18] H. Harashima and H. Miyakawa, "Matched-transmission technique for channels with intersymbol interference," IEEE Transactions on Communications, vol. 20, no. 4, pp. 774-780, 1972.
[19] A. Li and C. Masouros, "A two-stage vector perturbation scheme for adaptive modulation in downlink MU-MIMO," IEEE Transactions on Vehicular Technology, vol. 65, no. 9, pp. 7785-7791, 2016.
[20] C. Masouros, "Correlation rotation linear precoding for MIMO broadcast communications," IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 252-262, 2011.
[21] X. Zhang, Y. Qi, and M. Vaezi, "A rotation-based method for precoding in gaussian MIMOME channels," IEEE Transactions on Communications, vol. 69, no. 2, pp. 1189-1200, 2021.
[22] L. Gerdes, L. Weiland, and W. Utschick, "Optimal partial decode-andforward rates for the gaussian MIMO relay channel using the GSVD," in 2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2014, pp. 259-263.
[23] Z. Chen, Z. Ding, X. Dai, and R. Schober, "Asymptotic performance analysis of GSVD-NOMA systems with a large-scale antenna array," IEEE Transactions on Wireless Communications, vol. 18, no. 1, pp. 575590, 2018.
[24] C. Rao, Z. Ding, and X. Dai, "The distribution characteristics of ordered GSVD singular values and its applications in MIMO-NOMA," IEEE Communications Letters, pp. 1-1, 2020.
[25] M. F. Hanif and Z. Ding, "Robust power allocation in MIMO-NOMA systems," IEEE Wireless Communications Letters, vol. 8, no. 6, pp. 1541-1545, 2019.
[26] C. Rao, Z. Ding, and X. Dai, "GSVD-based MIMO-NOMA security transmission," IEEE Wireless Communications Letters, vol. 10, no. 7, pp. 1484-1487, 2021.
[27] C. Rao, "Application of GSVD-based precoding in MIMO-NOMA relaying systems," IET Communications, vol. 14, pp. 3802-3812(10), December 2020.
[28] D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge university press, 2005.
[29] A. M. Tulino, S. Verdú, and S. Verdu, Random matrix theory and wireless communications. Now Publishers Inc, 2004.
[30] C. F. Van Loan, "Generalizing the singular value decomposition," SIAM Journal on numerical Analysis, vol. 13, no. 1, pp. 76-83, 1976.
[31] R. Beals and J. Szmigielski, "Meijer G-functions: a gentle introduction," Notices of the American Mathematical Society, vol. 60, no. 7, pp. 866873, 2013.
[32] F. Tricomi, "Sulle funzioni ipergeometriche confluenti," Annali di Matematica Pura ed Applicata, vol. 26, no. 1, pp. 141-175, 1947.
[33] 2001, October 29. [Online]. Available: http://functions.wolfram.com/07. 34.21.0002.01
[34] P. J. Forrester, "Eigenvalue statistics for product complex wishart matrices," Journal of Physics A, vol. 47, no. 34, p. 345202, 2014.
[35] A. Jeffrey and D. Zwillinger, Table of integrals, series, and products. Elsevier, 2007.
[36] J. R. Ipsen, "Products of independent gaussian random matrices," arXiv preprint arXiv:1510.06128, 2015.
[37] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. US Government printing office, 1948, vol. 55.
[38] E. T. Whittaker, "An expression of certain known functions as generalized hypergeometric functions," Bulletin of the American Mathematical Society, vol. 10, no. 3, pp. 125-134, 1903.

[^0]: The work of C. Rao and X. Dai is supported by the National Natural Science Foundation of China (No. 61971391) and China Scholarship Council. The work of K. Cumanan is supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under grant number EP/X01309X/1.
 C. Rao and X. Dai are with the CAS Key Laboratory of WirelessOptical Communications, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China. (e-mail: rcg1839@mail.ustc.edu.cn; daixc@ustc.edu.cn).
 Z. Ding is with Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE. (e-mail:, zhiguo.ding @ieee.org).

 Kanapathippillai Cumanan is with the School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K. (e-mail: kanapathippillai.cumanan@york.ac.uk).

[^1]: ${ }^{1}$ For the case with more than two users, a hybrid approach can be employed in which users are divided into groups of two users, each group is allocated orthogonal resources, and within each two-user group, the proposed GSVDbased MIMO-NOMA scheme can be utilized.
 ${ }^{2}$ When there is a direct link between U_{1} and $B S$, the system can be simplified to a GSVD-MIMO scenario. The detailed analysis can be found in [23].
 ${ }^{3}$ This condition is to ensure the full rank of the channel matrix for subsequent analyses.

