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A B S T R A C T

A common assumption in many speech and acoustic processing methods is that the noise is white and Gaussian
(WGN). Although making this assumption results in simple and computationally attractive methods, the
assumption is often too simple and crude in many applications. In this paper, we introduce a general purpose
and online pre-whitener which can be used as a pre-processor with methods based on the WGN assumption,
improving their reliability and performance in applications with colored noise. The pre-whitener is a time-
varying filter whose coefficients are found using a parametric non-negative matrix factorization (NMF), based
on autoregressive (AR) mixture modeling of both the noise component and the signal component constituting
the noisy signal. Compared to other types of pre-whiteners, we show that the proposed pre-whitener has the
best performance, especially in applications with non-stationary noise. We also perform a large number of
experiments to quantify the benefits of using a pre-whitener as a pre-processor for methods based on the
WGN-assumption. The applications of interest were pitch estimation and time-of-arrival (TOA) estimation,
where the WGN assumption is very popular.

1. Introduction

In many speech and acoustic applications, the signal of interest is
contaminated with noise. To cope with this, methods or estimators
designed to extract the signal (or a quantity) of interest must be robust
to the noise whose level and spectral shape are often unknown a
priori. Like the signal of interest, a noise model can also be elicited
from which a robust, joint estimator of the signal and noise model
parameters can be derived (see examples in, e.g., Quinn, 2007; Emiya
et al., 2007; Yoshii and Goto, 2012; Dou et al., 2017; Quinn et al.,
2021). A Gaussian noise model is popular, but estimating its covariance
or its parametrization jointly with the signal model parameters often
leads to intractable estimators. Moreover, this approach is not very
flexible since a new estimator has to be re-derived when the noise
model changes. As an alternative to the joint approach, it is possible
to keep using methods which were derived based on the simple WGN
assumption, provided that a pre-whitener is used as a pre-processor so
that the noise color of the pre-whitened signal is approximately white.
Various acoustic and speech processing methods (Christensen, 2013;
Nielsen et al., 2017; Swärd et al., 2017; Feder and Weinstein, 1988;
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Zou and Liu, 2020; Blanco and Nájar, 2012; Al-Aboosi and Sha’ameri,

2017; Jensen et al., 2019) have assumed that the noise is WGN to

retain the mathematical simplicity of the problem and to achieve a fast

implementation. However, if those WGN-based methods are applied

without any pre-processing, certain problems may appear. An example

of this is found in pitch estimation where a pronounced noise peak

at low frequencies causes the pitch estimator to produce an estimate

which is an integer fraction of the true pitch (Jaramillo et al., 2019b);

an estimation error which is often referred to as the subharmonic

error. To combat this, applying a pre-whitener as a pre-processor is

desirable since the noise will be whitened, thereby better fulfilling the

model assumptions made in the WGN-based method. As we show later,

however, accurate noise statistics information is needed.

The task of applying a pre-whitening scheme has been important

in several areas, such as remote sensing (Jakobsson et al., 2005),

sonar (Trucco, 2001), biomedical engineering (Birch et al., 1988),

speech (Zhao et al., 2003; Nørholm et al., 2016; Jaramillo et al.,

2021, 2018) and acoustic array processing (Okamoto et al., 2012). Pre-

whitening of the noise can be performed by, e.g., applying a general
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linear transformation. This can be a matrix such as the Cholesky factor
of the inverse noise covariance matrix (Jaramillo et al., 2019b; Chris-
tensen and Jakobsson, 2009) that will decorrelate the noise samples,
but will also modify the signal of interest, including the frequency
content (Nørholm et al., 2016). In Nørholm et al. (2016), Jaramillo
et al. (2019b) it was shown how applying the Cholesky factor as a
transformation to noisy signals modifies the harmonic model structure,
often used in pitch estimation, of the voiced speech parts. An alter-
native way to pre-whiten the noise is to apply a linear filter whose
amplitude response is the inverse of the spectral shape of the noise. An
example is the (autoregressive) AR pre-whitener (Kay and Salisbury,
1990) which is a (finite impulse response) FIR filter whose coeffi-
cients are the AR parameters (Stoica et al., 2005) describing the noise
spectral shape. This filter corresponds to the classical prediction error
filter (Therrien, 1992), and its application only modifies the sinusoidal
amplitudes and phases of the desired signal and not its frequency
content (asymptotically) (Jaramillo et al., 2019b). Therefore, model-
based estimators assuming WGN such as the (nonlinear least squares)
NLS pitch estimator (Quinn and Thomson, 1991; Christensen, 2013;
Nielsen et al., 2017) can be reliably used after the signal has been pre-
processed with that pre-whitening filter. It should be noted that fitting
the noise (power spectral density) PSD with a smoothed spectrum,
as the AR spectrum is, is preferable to directly using the estimated
noise PSD coefficients to generate the FIR filter that counteracts the
noise spectral shape, since this option could possibly lead to inaccurate
estimates (Jaramillo et al., 2019b).

This paper proposes an adaptive pre-whitener for speech and acous-
tic signals, which is auto-regressive (AR) and is based on parametric
NMF. Particularly, the required noise statistics used to derive the pre-
whitening filter coefficients are obtained from the model introduced
in Kavalekalam et al. (2018), in which both the signal and noise
are modeled as a sum of time-varying AR processes. The estima-
tion of the parameters of this model was performed using parametric
NMF (Kavalekalam et al., 2018) which is a generalization of traditional
NMF of superimposed Gaussian sources (Févotte et al., 2009). AR-
dictionaries were pre-trained offline on typical envelopes of speech
and noise sources represented by AR parameters. Given the pre-trained
AR-dictionaries, the parametric NMF method continuously re-computes
the activation coefficients, which are the excitation noise variances
of the pre-trained AR-spectra. The proposed pre-whitener can be ap-
plied to many different problems to simplify the computations and
the paper looks at some of these problems to demonstrate this. The
NLS pitch estimator (Christensen, 2013; Nielsen et al., 2017) achieves
a better performance when the proposed pre-whitener is used as a
pre-processor as compared to a pre-whitener based on a noise PSD
tracker (Martin, 2001; Gerkmann and Hendriks, 2012). The solution
of the cascade of the AR pre-whitener with the NLS pitch estimator
can be further refined by post-processing the initial estimates through
iterative refinement, leading to an improved accuracy. Preliminary
work was presented in Jaramillo et al. (2019a), Jaramillo et al. (2020).
The present manuscript extends on such previous work, providing
a comprehensive and in-depth experimental study of the introduced
pre-whitener. Additional performance measures are assessed and in
addition to the NLS pitch estimator, the influence of the pre-whitener
on other methods, such as well-known speech processing algorithms
(e.g., non-parametric pitch estimators), a recently introduced Bayesian
parametric pitch estimator and source localization methods (TOA esti-
mation), is exemplified. The remainder of this paper is organized as
follows. Section 2 introduces the related work. We describe how to
obtain the AR pre-whitening filter on a segment-by-segment basis in
Section 3. In Section 4, we describe how to estimate the required noise
statistics for the pre-whitening filter. The experimental setting for the
applications of interest, the procedure for training the dictionaries, the
performance measures and the discussion of the observed results are
presented in Section 5. Section 6 concludes the work.

2. Related work

To cope with the non-stationary nature of both the signal of inter-
est and the noise, a pre-whitener should update its parameters on a
segment-by-segment basis (Christensen and Jakobsson, 2009). In the
literature, as the noise statistics are unknown, the parameters of the
pre-whitener are often determined only from segments in which the
desired signal is absent, i.e., where only the noise is present. For
example, in a sonar application to detect a low-Doppler target (Kay
and Salisbury, 1990), an AR pre-whitener obtained its parameters only
when the reverberation was assumed to be present, thus ignoring a
more realistic scenario in which both the reverberation and the signal
of interest coexist. Similarly, in Hansen and Jensen (2007), the noise
statistics were only computed during silent periods obtained from a
voice activity detector (VAD) (Sohn et al., 1999). Other works (Huang
and Zhao, 1998) have assumed that the noise AR parameters describing
the noise spectral shape are known beforehand, but this is unrealistic
in non-stationary noise cases where the noise spectral shape changes
quickly between segments.

For non-stationary noise, the noise statistics may change signifi-
cantly during speech presence, and this will not be tracked when a VAD
is used, potentially leading to a poor performance of the pre-whitener
as well as the estimator assuming WGN. During speech presence,
information about the noise spectrum can be tracked across time using
various well-known state-of-the art methods (e.g., minimum statistics
(MS) Martin, 2001 and MMSE based on speech presence probabilities
(SPP) Gerkmann and Hendriks, 2012). Pre-whitening reliant on these
approaches results in a good performance when the noise is stationary,
but not when the noise is highly non-stationary. For pitch estimation,
this was demonstrated in Jaramillo et al. (2019b).

To cope with noise statistics estimation in nonstationary noise, a
model-based estimator (Nielsen et al., 2018) using a priori spectral
information about typical speech and noise AR parameters stored in
codebooks has been found to improve the noise PSD estimation accu-
racy compared to traditional noise trackers. As opposed to codebook-
based approaches which use a log-spectral distortion approximation
and noise classification (Srinivasan et al., 2006, 2007), multiplicative-
update (MU) based approaches (He et al., 2017) result in more accurate
excitation variance estimates, i.e., they capture better the noise spectral
envelope. For the introduced pre-whitener based on parametric NMF,
the minimization of the spectral distance between the periodogram and
the modeled PSD leads to an MU rule of the activation coefficients.
The parametric NMF method differs from unsupervised approaches
such as (Févotte et al., 2009) by parametrizing the dictionary with
normalized AR-envelopes. Thus, in parametric-NMF, only the activation
coefficients are estimated, as the so-called spectral basis vectors are
pre-trained offline and kept fixed during inference.

3. AR pre-whitener

This section describes the principle of how an AR pre-whitening
filter is applied when the noise statistics are available. The next section
provides details on how such noise statistics are estimated. An observed
signal 𝑥(𝑛) is assumed to be formed by the mixture of a signal of interest
(e.g., speech) 𝑠(𝑛) and a colored noise signal 𝑐(𝑛), i.e.,

𝑥(𝑛) = 𝑠(𝑛) + 𝑐(𝑛) . (1)

Furthermore, we assume that 𝑐(𝑛) is well modeled as an AR process,
i.e.,

𝑐(𝑛) = −

𝑃∑
𝑖=1

𝑤𝑐 (𝑖)𝑐(𝑛 − 𝑖) + 𝑒(𝑛) . (2)

where 𝑒(𝑛) is white Gaussian excitation noise of variance 𝜎2𝑒 , {𝑤𝑐 (𝑖)}
𝑃
𝑖=1

denote the AR parameters which describe the spectral shape of the
colored noise, and 𝑃 is the AR order. The generative noise model is



Speech Communication 151 (2023) 9–23

11

A.E. Jaramillo et al.

Fig. 1. Generative noise model (left) and whitening FIR filter (right).

illustrated in the left part of Fig. 1), and the model to recover the white
Gaussian excitation noise samples given colored noise samples is on the
right part. Such filter 𝑊 (𝜔) is a whitening filter, and the prefix ‘‘pre’’
denotes that it is applied before some other method.

The parameters 𝜎2𝑒 and {𝑤𝑐 (𝑖)}
𝑃
𝑖=1

are seldom known and they can
be obtained from noise statistics, namely the noise covariance sequence
{𝑟𝑐 (𝑖)}

𝑃
𝑖=0
, by solving the Yule–Walker equations (Stoica et al., 2005),

using the Levinson–Durbin recursion (Stoica et al., 2005; Therrien,
1992). If instead𝑁 samples from the noise PSD {𝛷𝑐 (𝑘)}

𝑁−1
𝑘=0

is available,
the noise covariance sequence can be computed as (Stoica et al., 2005)

𝑟𝑐 (𝑛) =
1

𝑁

𝑁−1∑
𝑘=0

𝛷𝑐 (𝑘) exp
(
𝑗
2𝜋

𝑁
𝑛𝑘

)
, 0 ≤ 𝑛 ≤ 𝑃 . (3)

Due to the time-varying noise statistics, the AR parameters will be
time-varying. In practice, we implement this by dividing the data into
overlapping segments, each of length 𝑁 . Given such 𝑁 data samples

𝐱(𝑙) =
[
𝑥(0, 𝑙) 𝑥(1, 𝑙) ⋯ 𝑥(𝑁 − 1, 𝑙)

]𝑇
, (4)

with (⋅)𝑇 denoting transpose, and time-varying AR parameters 𝐰𝑃 (𝑙) in
segment 𝑙, the pre-whitener is implemented in the frequency domain,3.
That is, the discrete Fourier transform (DFT) of the pre-whitened signal
is computed as

�̂�𝑊 (𝑘, 𝑙) = 𝑊 (𝑘, 𝑙)𝑋(𝑘, 𝑙) (5)

where 𝑊 (𝑘, 𝑙) and 𝑋(𝑘, 𝑙) are the 𝑘th bin of the 𝑁-length DFT of
time-varying AR parameters 𝐰𝑃 (𝑙) and the data segment 𝐱(𝑛+ 𝑙𝑀)𝑣(𝑛),
respectively, where 𝑀 denotes the hop size in samples between seg-
ments and 𝑣(𝑛) is the analysis window. The whitened signal in the
time domain 𝑥𝑊 (𝑛, 𝑙) is then obtained by computing an inverse DFT
of {�̂�𝑊 (𝑘, 𝑙)}𝑁−1

𝑘=0
. As the processing is done on overlapping segments, a

synthesis window 𝑣(𝑛) is applied to update the full pre-whitened signal
as 𝑥𝑊 (𝑛 + 𝑙𝑀) = 𝑥𝑊 (𝑛 + 𝑙𝑀) + 𝑣(𝑛)𝑥𝑊 (𝑛, 𝑙).

4. Noise PSD estimation based on parametric NMF

As mentioned above, segment-wise estimates of the noise PSD 𝛷𝑐 (𝑘)
are required to compute the AR-coefficients used in the pre-whitening
filter. In this section, we describe how the noise PSD is estimated in the
proposed pre-whitener from a segment of data. Note that we omit the
segment index 𝑙 in this section to simplify the notation. To get good
performance in even non-stationary noise conditions, we here propose
that the noise PSD estimate is obtained by taking typical spectral shapes
of speech and noise into account. For this purpose, we model the data
vector in (4) as a summation of 𝑈 AR processes {𝐭𝑢}

𝑈
𝑢=1

where each AR-
process describe a typical spectral shape. Specifically, the data vector
is modeled as

𝐱 =

𝑈∑
𝑢=1

𝐭𝑢 =

𝑈𝑠∑
𝑢=1

𝐭𝑢 +

𝑈∑
𝑢=𝑈𝑠+1

𝐭𝑢, (6)

where the first 𝑈𝑠 AR processes model clean signals (e.g., speech), and
the last 𝑈𝑐 = 𝑈 −𝑈𝑠 AR processes model noise signals. A stationary and
stable AR process can be described as a realization from a multivariate
Gaussian probability density function (pdf) (Srinivasan et al., 2007),

3 In Jaramillo et al. (2019b,a) the pre-whitening filter was applied in the
time domain.

i.e., 𝐭𝑢 ∼  (𝟎, 𝜎2𝑢𝐑𝑢(𝐚𝑢)), where 𝜎
2
𝑢 is the excitation variance, 𝐑𝑢(𝐚𝑢) is

its gain normalized covariance matrix, and

𝐚𝑢 =
[
1 𝑎𝑢(1) ⋯ 𝑎𝑢(𝑃

′)
]𝑇

(7)

is the vector containing the AR parameters of the 𝑢th spectral basis.
Here 𝑃 ′ is the AR order.

The likelihood of the observation 𝐱 as a function of 𝑈 excitation
variances and 𝑈 spectral shapes is given by

𝑝(𝐱|𝝈,𝐃) ∼ 

(
𝟎,

𝑈∑
𝑢=1

𝜎2𝑢𝐑𝑢(𝐚𝑢)

)
(8)

where

𝝈 =
[
𝜎2
1

⋯ 𝜎2
𝑈

]𝑇
(9)

is a 𝑈 × 1 vector containing the 𝑈 excitation variances and is referred
to as the vector of activation coefficients. The matrix 𝐃 of dimension
𝑁×𝑈 is referred as either the spectral basis matrix or the AR dictionary,
and its column vectors are the 𝑈 gain normalized PSDs parametrized
by the AR parameters, i.e.,

𝐃 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑1(0) ⋯ 𝑑𝑢(0) ⋯ 𝑑𝑈 (0)

⋮ ⋮ ⋮

𝑑1(𝑘) ⋯ 𝑑𝑢(𝑘) ⋯ 𝑑𝑈 (𝑘)

⋮ ⋮ ⋮

𝑑1(𝑁 − 1) ⋯ 𝑑𝑢(𝑁 − 1) ⋯ 𝑑𝑈 (𝑁 − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝐝
𝑇
0

⋮

𝐝
𝑇
𝑘

⋮

𝐝
𝑇
𝑁−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

=
[
𝐝1 ⋯ 𝐝𝑢 ⋯ 𝐝𝑈

]
, (11)

where 𝐝𝑇
𝑘
and 𝐝𝑢 are the 𝑘th row and 𝑢th column of 𝐃, respectively. As

shown in the Appendix, the (𝑘, 𝑢)th element of 𝐃 is given by

𝑑𝑢(𝑘) =
1

|||1 +
∑𝑃 ′

𝑖=1 𝑎𝑢(𝑖) exp(−
2𝜋𝑗𝑖𝑘

𝑁
)
|||
2

(12)

which is the 𝑘th bin of the 𝑢th gain normalized PSD. The 𝑈 different

sets of AR parameters
{
𝑎𝑢(𝑖)

}𝑃 ′

𝑖=1
are obtained from a training stage

which is detailed in the next section. The matrix 𝐃 can be partitioned
as 𝐃 =

[
𝐃𝑠 𝐃𝑐

]
, where 𝐃𝑠 of size 𝑁 × 𝑈𝑠 contains only the 𝑈𝑠 signal

spectral envelopes, and 𝐃𝑐 of size 𝑁 × 𝑈𝑐 contains only the 𝑈𝑐 noise
spectral envelopes. The 𝑘th row of 𝐃 can be partitioned similarly, and

we write this as 𝐝𝑇
𝑘
=
[
𝐝
𝑇
𝑠,𝑘

𝐝
𝑇
𝑐,𝑘

]
.

The AR parameters describing the spectral shapes contained in 𝐃

are obtained offline. Thus, only the activation coefficients in 𝝈 have to
be estimated online which we do by maximizing the likelihood in (8)
w.r.t. 𝝈, i.e.,

�̂� = argmax
𝝈≥0

𝑝(𝐱|𝝈,𝐃) = argmax
𝝈≥0



(
0,

𝑈∑
𝑢=1

𝜎2𝑢𝐑𝑢(𝐚𝑢)

)
. (13)

As shown in the Appendix, the log-likelihood function can be expanded
as

ln 𝑝(𝐱|𝝈,𝐃) = −
𝑁

2
ln 2𝜋 −

𝑁

2
𝐷IS (𝜱|𝐃𝝈) − 1

2

𝑁−1∑
𝑘=0

ln𝛷(𝑘) +
𝑁

2
(14)

where we have defined

𝛷(𝑘) =
1

𝑁
|𝑋(𝑘)|2 = 1

𝑁

||||||

𝑁−1∑
𝑛=0

𝑥(𝑛) exp
(
−𝑗2𝜋

𝑛𝑘

𝑁

)||||||

2

(15)
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𝜱 =
[
𝛷(0) ⋯ 𝛷(𝑁 − 1)

]𝑇
(16)

𝐷IS(𝝍1|𝝍2) =
1

𝑁

𝑁−1∑
𝑘=0

(
𝜓1(𝑘)

𝜓2(𝑘)
− ln

𝜓1(𝑘)

𝜓2(𝑘)
− 1

)
. (17)

The function 𝐷IS(𝝍1|𝝍2) is the Itakura–Saito distance (ISD) measure be-
tween two discrete spectra 𝝍1 and 𝝍2 (Itakura, 1968). As

∑𝑁−1
𝑘=0 ln𝛷(𝑘)

does not depend on 𝝈, maximizing the likelihood with respect to 𝝈
simply corresponds to minimizing the ISD between the periodogram 𝜱

and the modeled PSD 𝐃𝝈, under the constraint that 𝛷(𝑘) ≥ 0 ∀𝑘. That
is, the maximum likelihood (ML) estimate of 𝝈 is obtained by solving
the supervised non-negative matrix factorization (NMF) problem

�̂� =
[
𝝈𝑠

𝑇 𝝈𝑐
𝑇
]𝑇

= argmin
𝝈≥0

𝐷IS (𝜱|𝐃𝝈) . (18)

We remark here that unlike in Févotte et al. (2018), the matrix 𝐃 is
parametrized by pre-trained AR-envelopes for which reason the prob-
lem here is referred to as parametric NMF (Kavalekalam et al., 2018).
The optimization problem can easily be extended to the case where 𝑉
overlapping segments are available. For such case, the modeled PSD can
be written as the matrix product 𝐃𝜮 where 𝜮 of dimension 𝑈 × 𝑉 is the
activation matrix containing the activation coefficients of a segment as
a column vector, i.e., 𝜮 =

[
𝝈(1) ⋯ 𝝈(𝑉 )

]
.

Focusing on estimating 𝝈 for a single segment from (18), it is well-
known in the NMF-literature that (18) cannot be solved analytically.
The problem is reminiscent of NMF under the 𝛽 divergence, with 𝛽 =

0, and approaches based on maximization–minimization or heuristic
algorithms based on multiplicative updates (MU) (Févotte and Idier,
2011) can be used to iteratively approach a solution. Typically, the
heuristic algorithm based on MU is adopted as it requires less iterative
updates for convergence. As described in Févotte and Idier (2011),
under the 𝛽 = 0 condition, each iterative update leads to a decrease
of the objective function in (18). Specifically, the value of the variable
of interest at the (𝑖+1)th iteration is updated by multiplying its value at
the previous 𝑖th iteration by the ratio of the negative part to the positive
part of the gradient of the criterion with respect to this variable. Thus,
𝝈 is computed iteratively from

�̂�(𝑖+1) ← �̂�(𝑖) ⊙
𝐃𝑇

(
𝐃�̂�(𝑖)

)[−2]

⊙𝜱

𝐃𝑇
(
𝐃�̂�(𝑖)

)[−1]
, (19)

where ← refers to an iterative overwrite, ⊙ denotes element-wise
multiplication, (⋅)[−2] denotes element-wise inverse squared operator
and (⋅)[−1] denotes element-wise inverse operator. The division is also
element-wise, and the number of iterations is denoted as 𝐼 .

Having computed �̂� =
[
𝝈𝑠

𝑇 𝝈𝑐
𝑇
]𝑇
, we can compute an SNR

estimate as

𝜉(𝑘) =
𝜆2𝑠 (𝑘)

𝜆2𝑐 (𝑘)
(20)

where

𝜆2𝑠 (𝑘) = 𝐝
𝑇
𝑠,𝑘
�̂�𝑠 (21)

𝜆2𝑐 (𝑘) = 𝐝
𝑇
𝑐,𝑘
�̂�𝑐 . (22)

In the noise PSD estimation literature, these quantities are often re-
ferred to as the a priori SNR, the prior speech PSD, and the prior noise
PSD, respectively. Given values for these quantities, it can be shown
that the MMSE estimator of the noise PSD is Gerkmann and Hendriks
(2012)

𝛷𝑐 (𝑘) =

(
1

1 + 𝜉(𝑘)

)2

𝛷(𝑘) +

(
𝜉(𝑘)

1 + 𝜉(𝑘)

)
𝜆2𝑐 (𝑘), (23)

for 𝑘 = 0,… , 𝑁 − 1. The differences between the estimate in (23)
and the MMSE-based estimate in Gerkmann and Hendriks (2012) are
how the a priori SNR and the prior noise PSD are computed. While
we here obtain values for these via the parametric NMF method, the

Algorithm 1 Proposed Pre-whitening for a single segment, based on
parametric NMF noise PSD estimate, assuming 𝑈𝑠 signal and 𝑈𝑐 noise
spectral envelopes whose columns given by (12) are contained on 𝐃.

1: Obtain 𝛷(𝑘), 𝑘 = 0, ..., 𝑁 − 1 from (15) ⊳(𝑁 log𝑁)

2: Estimate MMSE-SPP noise PSD (Gerkmann and Hendriks, 2012) and
fit it to an AR spectrum. Augment 𝐃 with envelope whose elements
are given by (24) ⊳[(𝑁 + 𝑃 ) log𝑁] + (𝑃 2)

3: Initialize �̂�(𝑖) with random positive numbers ⊳(1)

4: for i=1:I do ⊳(𝑈𝑁𝐼)

5: Compute �̂�(𝑖) using (19)
6: end for
7: Compute 𝜆2𝑠 (𝑘) and 𝜆

2
𝑐 (𝑘), for 𝑘 = 0, ..., 𝑁 − 1, from (21) and (22)

⊳(𝑈𝑁)

8: Obtain 𝜉(𝑘) from (20), for 𝑘 = 0, ..., 𝑁 − 1 ⊳(𝑁)

9: Estimate 𝛷𝑐 (𝑘), 𝑘 = 0, ..., 𝑁 − 1 from (23) ⊳(𝑁)

10: Fit noise PSD to AR spectrum of order 𝑃 . The pre-whitening filter
is 𝑊 (𝜔) = 1 +

∑𝑃
𝑖=1𝑤𝑐 (𝑖)𝑒

−𝑗𝜔𝑖 ⊳ (𝑃 log𝑁) + (𝑃 2)

approach in Gerkmann and Hendriks (2012) relies on speech presence
probabilities (SPPs).

To add robustness to cases where the observed noise samples are not
well-represented by the pre-trained spectral envelopes in 𝐃, it can be
augmented with a single time-varying entry corresponding to the nor-
malized AR spectral envelope that is fitted to the MMSE-SPP (Gerkmann
and Hendriks, 2012) noise PSD based pre-whitener {𝑤MMSE-SPP(𝑖)}

𝑃 ′

𝑖=1
, in

which each frequency-bin entry is given by

𝑑MMSE-SPP(𝑘) =
1

||||1 +
∑𝑃 ′

𝑖=1𝑤MMSE-SPP(𝑖) exp
(
−

2𝜋𝑗𝑖𝑘

𝑁

)||||
2
. (24)

A summary on how the pre-whitening filter is updated for a single
segment is outlined in Alg. 1. Note that the computational complexity
of each step is given using big  notation. A block diagram of the
pre-whitening method based on parametric NMF is shown in Fig. 2.
The proposed pre-whitening method has a time complexity of [(𝑁 +

𝑃 ) log𝑁] +𝑂(𝑃 2) +(𝑁𝑈𝐼), while pre-whitening based on MMSE-SPP
and MS has simply an order of [(𝑁 + 𝑃 ) log𝑁] + (𝑃 2).

5. Experimental setup and results

In this section, we present an extensive performance evaluation of
the proposed pre-whitener on real signals under different colored noise
scenarios. Except for the last experiment, which is concerned with time-
of-arrival (TOA) estimation, we focus on speech processing problems.
Specifically, the results of the following experiments are presented.

1. We seek to answer if whitening the noise using a pre-whitener
is preferable to removing the noise using a speech enhancement
(or noise reduction) algorithm (Huang et al., 2020). Specifically,
we evaluated the accuracy of the nonlinear least squares (NLS)
pitch estimator (Christensen, 2013; Nielsen et al., 2017), which
is optimal under a WGN assumption, when its input speech sig-
nal has either been pre-whitened or enhanced. The comparison
also included the baseline approach where no pre-processing is
performed.

2. We demonstrate that the proposed pre-whitener outperforms
other pre-whiteners in terms of whiteness and spectral distance
to an oracle pre-whitener. The oracle pre-whitener is the pre-
whitener obtained from the AR parameters computed directly
from the noise signal.

3. We investigate how the pre-whitening performance depends on
the AR-order and the number of spectral shapes of the pre-
trained dictionaries.
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Fig. 2. The block diagram of a parametric NMF-based AR pre-whitener.

4. We aimed to verify that a better estimation accuracy of the
NLS pitch estimator could be obtained when the signal was
pre-processed with the proposed pre-whitener, especially in non-
stationary noise conditions. The comparison also included the
case in which a fixed (i.e., non-adaptive) pre-whitener is applied.
Moreover, for a fairer comparison to typical non-parametric
pitch estimators (e.g., RAPT Talkin, 1995), we then conducted
an experiment in which we applied either speech enhancement
or pre-whitening before the pitch was estimated with those
classical approaches, thus allowing us to determine whether
there is a greater benefit with certain types of pre-processing.
The computational complexity of the different pre-processing
approaches was also evaluated.

5. We applied a last stage of post-processing in order to contrast
the performance to individual pitch estimators.

6. Finally, the last experiment dealt with TOA estimation, and it
was assessed how much the proposed pre-whitener improved the
estimation accuracy.

5.1. Codebook training

As we have alluded to earlier, the matrix 𝐃 in , containing spectral
envelopes of typical speech and noise segments, must first be obtained
via a training step. The spectral envelopes are determined from autore-
gressive parameters which were obtained by using a standard vector
quantization technique of speech coding. Specifically, the generalized
Lloyd algorithm (Linde et al., 1980) was used to obtain cluster centers
of line spectral frequency (LSF) coefficients of order 𝑃 ′ = 12 computed
from a large number of windowed data segments. The LSF parametriza-
tion was used in the clustering to ensure that the cluster centers
corresponded to stable AR-processes. The obtained cluster centers were
converted into AR parameters of order 𝑃 ′ = 12. The collection of
cluster centers converted into AR-parameters are often referred to as
a codebook (Srinivasan et al., 2006, 2007). A speech codebook of
𝑈𝑠 entries was obtained from training on 54 minutes of sentences
uttered by four speakers (two male and two female) from the CMU
Arctic database (Kominek and Black, 2004), which were re-sampled
from 16 to 8 kHz. We note that another database was used in the
evaluation. Similarly, a noise codebook of 𝑈𝑐 entries was obtained from
training samples from the NOISEX-92 database (Varga and Steeneken,
1993), and we used the noise types babble, factory, F-16 and street,
all resampled to 8 kHz. The duration of segments for the training was
32 ms. The segments were windowed using a Hanning window with
50% overlap between adjacent segments. Examples of speech and noise
spectral envelopes are illustrated in Rosenkranz (2010). The codebook
sizes 𝑈𝑠 and 𝑈𝑐 are intentionally kept as variables as we evaluate the
pre-whitening performance for different codebook sizes.

5.2. Performance measures

To compare the different pre-whiteners, both the spectral flatness
measure (SFM) and the Itakura–Saito distance (ISD) are used. The SFM
is defined as the ratio between the geometric mean and the arithmetic
mean of a PSD (Madhu, 2009), i.e., as

SFM =

𝑁

√∏𝑁−1
𝑘=0 𝛷𝑐,𝑤(𝑘)

1

𝑁

∑𝑁−1
𝑘=0 𝛷𝑐,𝑤(𝑘)

. (25)

where 𝜱𝑐,𝑤 is the noise PSD of the pre-whitened noise. The SFM
indicates how correlated the noise samples are and, therefore, the
degree of coloring. A value of 0 means that the noise is very correlated
(colored), whereas an SFM of 1 means that the noise is perfectly white
(the samples are perfectly uncorrelated). Therefore, an important goal
of a pre-whitener is to increase the SFM, and we can also use the
SFM to quantify the performance of a pre-whitener. Another approach
to quantifying pre-whitening performance is to measure a spectral
distance between a pre-whitener and the oracle pre-whitener. We here
measure this spectral distance using the ISD defined in (17). Note that
both the SFM and ISD are computed on a segment-by-segment basis
and averaged over the test set.

While the SFM and ISD can be used to evaluate a pre-whitener di-
rectly, we can also evaluate it indirectly by measuring the performance
improvement of the estimator cascaded with a pre-whitener. For pitch
estimation, typical performance measures are Chu and Alwan (2009):

• Gross Error Rate (GER): GER is defined as

𝐺𝐸𝑅 =
𝑁𝑔

𝑁𝑉 𝑉

× 100 % (26)

where 𝑁𝑉 𝑉 is the number of voiced segments and 𝑁𝑔 is the
number of voiced segments in which the magnitude of the relative
difference between the estimate and the ground truth is greater
than a threshold. Here, we used a relative threshold of 20%. Note
that only segments which are correctly classified as being voiced
are included in the GER.
• Voicing Detection Error (VDE): VDE is defined as

𝑉 𝐷𝐸 =
𝑁𝑉 𝑈 +𝑁𝑈𝑉

𝑁
× 100 % (27)

where 𝑁𝑉 𝑈 , 𝑁𝑈𝑉 , and 𝑁 are the number of segments misclassi-
fied as voiced, the number of segments misclassified as not-voiced
(i.e., as unvoiced or pauses), and the total number of segments,
respectively.
• Full Frame Error (FFE) (Chu and Alwan, 2009): FFE is defined as

𝐹𝐹𝐸 =
𝑁𝑉 𝑈 +𝑁𝑈𝑉 +𝑁𝑔

𝑁
× 100 % (28)
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Fig. 3. Structure diagram for obtaining estimates on colored noise scenarios based on a WGN method.

where the different quantities are the same as in the GER and
VDE. Note that FFE is a composite metric which is simply the
sum of the VDE and the FFE when all segments are voiced and
correctly classified as being voiced (i.e., when 𝑁 = 𝑁𝑉 𝑉 ).

5.3. Experimental results with the Keele speech database

The set of experiments in this subsection was conducted on the
Keele database (Plante et al., 1995), which consists of speech recordings
of around 40 seconds from five male and five female speakers. The sig-
nals were resampled from 20 kHz to 8 kHz. Pitch estimates4 extracted
from laryngograph measurements segmented into 26.5 ms frames with
16.5 ms overlap are available in the database, and we treat these as
being the ground truth estimates. We used the same segment length
and overlap for the pitch estimators. Note that we in the evaluation
have ignored segments for which the ground truth estimate has been
labeled unreliable. These segments represents only approximately 3 %
of the total number of segments.

Different noise types such as babble, factory, F-16 and street noise
from the NOISEX-92 database (Varga and Steeneken, 1993) were added
at different values of iSNR. The iSNR indicates the power level of the
clean speech signal relative to the noise power component, i.e.,

iSNR =
𝜎2𝑠

𝜎2𝑐
, (29)

where 𝜎2𝑠 is the variance of the speech signal, and 𝜎
2
𝑐 is the noise signal

variance. The samples used for the testing were different from those
used in the training of the noise codebooks. In addition, samples of
restaurant noise from the Aurora database (Hirsch and Pearce, 2000),
already sampled at 8 kHz, were used in the evaluation to assess the
robustness against new encountered noise types.

5.3.1. Comparison to no pre-processing and to speech enhancement
First, the accuracy of a WGN-based method, namely the nonlinear

least squares (NLS) pitch 𝜔0 estimator (Nielsen et al., 2017; Chris-
tensen, 2013), was assessed for the cases where the input signal to the
estimator is either pre-whitened, enhanced using a speech enhancement
method (an approach suggested in Huang et al., 2020), or unprocessed.
Fig. 3 illustrates the case where a pre-whitener is used as a pre-
processor. Note that a final post-processing step can be used to refine
the initially obtained parameter estimates. Such post-processing step
is ignored in all the subsections, except the last one, as we want first
to verify that a pre-whitener applied as a pre-processor will result
in a better accuracy of the pitch estimator. The NLS estimator of
𝜔0 (Christensen, 2013; Quinn and Thomson, 1991) corresponds to the
ML estimator under the WGN assumption and is given by

�̂�0 = argmax
𝜔0

𝐱
𝑇
𝐙𝐿(𝜔0)

[
𝐙
𝐻
𝐿
(𝜔0)𝐙𝐿(𝜔0)

]−1
𝐙
𝐻
𝐿
(𝜔0)𝐱, (30)

where 𝐙𝐿(𝜔0) =
[
𝐳(𝜔0) 𝐳

∗(𝜔0) ... 𝐳
∗(𝜔0𝐿)

]
is a Fourier matrix con-

structed from 2𝐿 complex exponential vectors
𝐳(𝜔0𝑙) = [1 𝑒𝑗𝜔0𝑙 ... 𝑒𝑗𝜔0𝑙(𝑁−1)]𝑇 . Here, 𝐱 is the vector used in the
estimation, either the vector of noisy speech (i.e., discarding the pre-
processing block), or enhanced speech or pre-whitened speech. An
important feature of this problem is that it jointly estimates 𝜔0 and the

4 The pitch estimates were computed using the RAPT (Talkin, 1995) pitch
estimation method and manually checked afterwards.

number of real sinusoids 𝐿. The frequency of each sinusoid is an integer
multiple of the fundamental 𝜔0, in contrast to the case of independent
sinusoids, which are not harmonically related (Quinn, 2007). To obtain
𝐿, some Bayesian model comparison methods (e.g., based on maximum
a posteriori) (Stoica and Selen, 2004) can be used to find the most
likely model order, after estimates of 𝜔0 have been obtained for all
candidate model orders. The model comparison is the key in reducing
the sub-harmonic error problems, such as doublings or halvings. Such
model comparison also includes the case 𝐿 = 0, i.e., it is possible to do
voicing detection. In all the experiments related to pitch estimation, the
pitch range was [60,400] Hz, and a maximum model order of 𝐿 = 30

harmonics is set for the model comparison.
To ensure that the differences in noise PSD estimates do not in-

fluence the result, both the applied AR pre-whitener and the speech
enhancement method were based on the introduced parametric NMF
(Par-NMF) noise PSD estimate. In the first experiment, 𝑈𝑠 = 32 and
𝑈𝑐 = 16 pre-trained spectral shapes were used, whereas we assessed
the performance as a function of the number of entries in the second
experiment. The iSNR was varied from −5 to 10 dB, and three Monte-
Carlo simulations (MCS) were run for each noise type at each iSNR
for each file from the Keele database. In each MCS, the noise samples
were randomly selected, as there are more available noise samples,
for each noise type, than the number of samples of each file from the
Keele database. The performance measures in (26)–(28) were computed
and are depicted in Fig. 4 with 95 % confidence intervals. The pre-
whitening order was set to 𝑃 = 30, and the pre-whitening filter
coefficients were updated on segments of length 32 ms, with a time
shift of 16 ms between them. 𝑃 = 30 was empirically chosen after
verifying better performance in (26)–(28) than when using 𝑃 = 16 at an
iSNR of −5 dB for all noise types. The pre-processing based on speech
enhancement was performed with the optimally modified LSA (OM-
LSA) speech estimator (Cohen, 2002). The average number of pitch
errors was very high when 𝐱 is the unprocessed input signal, even in
high SNR conditions. When 𝐱 is produced by the speech enhancement
method, the pitch estimation accuracy improved considerably in most
cases compared to when the input signal was unprocessed. When 𝐱 is
the pre-whitened input signal, this gives the overall best performance,
as noted from the non-overlapping confidence intervals between speech
enhancement and pre-whitening. This is more evident at lower iS-
NRs, but still a considerable gap is seen at high SNRs, specially for
non-stationary noise types, such as babble and restaurant noise.

5.3.2. Comparison of AR pre-whiteners
We investigated the pre-whitening performance of AR pre-whiteners

based on three noise PSD estimates: MS (Martin, 2001), MMSE-SPP
(Gerkmann and Hendriks, 2012), and the proposed Par-NMF based
approach. Since the codebooks were trained on segments of 32 ms,
overlapped by 50 %, the same segment length and overlapping per-
centage were used in the different pre-whiteners. The SFM of the pre-
whitened noise in (25) and the ISD between the frequency responses of
the oracle and the estimated pre-whiteners were evaluated.

First, we studied the performance as a function of the AR-order
𝑃 . The iSNR used in this setup was 0 dB. The SFM results include
four curves, as the performance from applying the oracle pre-whitener
is also included while the ISD plots only involve three curves, as
comparing the response of the oracle pre-whitener to itself leads to
an ISD of 0. 𝑈𝑠 = 32 and 𝑈𝑐 = 16 pre-trained spectral shapes were
used. Before pre-whitening, the average SFM values at all the iSNRs
were: babble noise (0.065), factory noise (0.045), restaurant noise
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Fig. 4. The gross pitch errors, voicing detection errors and full frame errors of the estimated pitch computed by the NLS pitch estimator, for different iSNRs, with different colored
noise types, after assuming that the noise is WGN, applying speech enhancement, or applying pre-whitening.

(0.129), and F-16 noise (0.115). The results are depicted in Fig. 5.
For the proposed Par-NMF based pre-whitener, the SFM increased as a
function of 𝑃 , but at the same time, the ISD between the oracle and the
estimated pre-whitener increased. Thus, even if the noise gets closer to
being white by increasing 𝑃 , the spectral response of the pre-whitener
becomes more different from the oracle pre-whitener response, given
that fitting the estimated noise PSD to an AR spectrum of a higher
order 𝑃 is more prone to overfitting. With a lower 𝑃 , the noise PSD
can be more easily fitted to a much smoother spectral shape, which
may lack some detail. The performance of pre-whitening based on
MMSE (Gerkmann and Hendriks, 2012) is better than the one based on
MS (Martin, 2001). The SFM from Par-NMF based pre-whitening was
always higher than that based on MS and MMSE for both babble and
F-16 noise. For factory noise, the Par-NMF pre-whitener can achieve
better performance when 𝑃 is not too low. For the restaurant noise
scenario, with a 𝑃 > 30, the Par-NMF based pre-whitener had lower
ISD than the MMSE based pre-whitener. Increasing 𝑃 did not appear
to significantly improve the noise whiteness by pre-whitening based
on MS in babble, restaurant and factory noise, and neither by pre-
whitening based on MMSE in babble and factory noise. In such cases,
the noise PSD could be either overestimated or underestimated at
some contiguous frequency bins where an important peak of the noise
spectrum was present. Thus, if not enough fine details were obtained,
when fitting such noise PSD to an AR spectral shape, the modeled AR
PSD revealed similar smooth characteristics for different orders 𝑃 of the
AR model. Therefore, when applying the pre-whitener obtained from
the modeled noise AR spectrum to counteract the spectral shape of the
noise component, a flatter spectrum will not necessarily be engendered
if the order 𝑃 is increased. An increase in the SFM from the proposed
pre-whitener is possible since in several cases the AR spectral shape
fitted to the Par-NMF noise PSD can become sharper for a large 𝑃 . This
is seen, e.g., in cases where there is more than one pronounced peak in
the noise spectrum. However, from the observed results in the figure,
to balance the noise whiteness and the accuracy of the pre-whitener
response, we found using a value of 𝑃 in the interval [30,40] to be
convenient. Since a slightly lower ISD was observed by using 𝑃 = 36 in
the Par-NMF as compared to the MMSE-based pre-whitener, as opposed
to the 𝑃 = 30 case (in which the ISD is quite identical) in the restaurant
noise scenario, we decided to use 𝑃 = 36 in the subsequent experiments,
instead of the used value of 𝑃 = 30 in the first experiment.

Next, we evaluated how the performance of the Par-NMF pre-
whitener depends on how many speech and noise entries are used in 𝐃.
The performance was evaluated for different combinations of noise and
speech AR dictionary sizes where the speech AR dictionary 𝐃𝑠 could

have 2𝑏𝑠 spectral shapes for 𝑏𝑠 ∈ {5, 6, 7, 8} and the noise AR dictionary
𝐃𝑐 could have 2𝑏𝑐 spectral shapes for 𝑏𝑐 ∈ {3, 4, 5, 6, 7, 8, 10}. This will
allow us to compare different combinations of 𝑈𝑠 and 𝑈𝑐 in terms of
the pre-whitener performance. Again, the iSNR was fixed at 0 dB. The
results are displayed in Fig. 6. For a small number of entries in the noise
codebooks, using 𝑈𝑠 = 32 speech spectral envelopes leads to a higher
SFM and lower ISD for babble and restaurant noise. In such cases, a
larger 𝑈𝑠 degrades the performance, potentially due to overfitting, as
was similarly seen in Bao et al. (2014) in a speech enhancement frame-
work. However, when more entries are available in the noise codebook,
the performance from using 𝑈𝑠 = 64 is similar to that of 𝑈𝑠 = 32. To
lower computational complexity, we keep with the setup of 𝑈𝑠 = 32. An
important observation is that speech codebooks trained from a larger
or smaller dataset could slightly change the performance, and this
deserves future investigation. From the current codebook configuration,
the combination of 𝑈𝑠 = 32 with 𝑈𝑐 ≥ 128 spectral shapes lead to
the best performance for both babble and restaurant noise, although
increasing from 256 to 1024 noise spectral envelopes, did not decrease
the ISD significantly, as the confidence intervals overlapped. In the F-
16 noise scenario, there is not a noticeable difference in performance in
most cases, except when a very large number of 𝑈𝑠 = 256 speech shapes
is used. Using 𝑈𝑐 = 16 entries seemed to be enough for factory and F-16
noise types, although using a higher number of entries did not degrade
the performance too much. We therefore used both combinations 𝑈𝑠 =
32, 𝑈𝑐 = 16 and 𝑈𝑠 = 32, 𝑈𝑐 = 256 in the next experiments.

We then conducted an evaluation of the pre-whitening performance
as a function of the iSNR, and the results are depicted in Fig. 7. For
babble noise, Par-NMF based pre-whitening had the best performance,
regardless how many 𝑈𝑐 entries were used, although with 𝑈𝑐 = 16, a
considerable lower ISD was observed at higher iSNRs. However, 𝑈𝑐 =

256 allowed for a slightly better SFM. For restaurant noise, a similar
SFM was achieved for Par-NMF based pre-whitening using 𝑈𝑐 = 16

entries and MMSE pre-whitening, with a slightly lower ISD for the Par-
NMF. For this noise type, not included in the training step, 𝑈𝑐 = 256

entries lead to a much better performance. For factory and F-16 noise,
using a lower number of 𝑈𝑐 entries is more convenient. In these cases,
the benefit of Par-NMF pre-whitening (with 𝑈𝑐 = 16) was seen at
lower iSNRs, because at higher ones, the ISD from MMSE or MS based
pre-whitening became lower, although the noise whiteness from the
three approaches were similar. By increasing the iSNR, the ISD between
the oracle pre-whitener and the estimated pre-whitener increases, and
also the average SFM of the different pre-whiteners differs more from
the one that can be obtained from the oracle pre-whitener. This is
expected since the noise PSD estimates are typically less accurate in
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Fig. 5. The ISD between the oracle and estimated pre-whiteners and the spectral flatness measure of the pre-whitened noise as a function of the AR pre-whitening order, at iSNR
= 0 dB, under different colored noise scenarios. A lower ISD is preferred, and a higher SFM is desirable. Results are reported in 95% confidence intervals.

Fig. 6. The spectral flatness measure of the pre-whitened noise and the ISD between the oracle and estimated Par-NMF based pre-whitener as a function of 𝑏𝑐 , for different number
2𝑏𝑠 speech spectral envelopes, at iSNR = 0 dB, under different colored noise scenarios. A lower ISD is preferred, and a higher SFM is desirable.

high iSNR conditions as reported in the literature (Gerkmann and
Hendriks, 2012). Again, in most cases, MS based pre-whitening was
outperformed by either MMSE-SPP or Par-NMF based pre-whitening.

5.3.3. Evaluation of pitch estimation accuracy with pre-whitening
In the next experiment, we compared four different pre-whiteners

by evaluating the performance improvement of the NLS pitch estimator
when its input signal is the pre-whitened signal. The four pre-whiteners
are based on noise PSD estimates obtained by MS, MMSE, the proposed
Par-NMF (with both 𝑈𝑐 = 16 and 𝑈𝑐 = 256 entries), and a fixed noise
PSD computed from the long-term averaged spectrum of the samples
of the noise of interest used in the codebooks training. That is, a fixed
pre-whitening filter is applied to verify that an adaptive pre-whitener
based on the local characteristics of speech and noise signals should be
preferred as a pre-processor. Typical shapes of the long-term averaged
spectrum of some noise types can be seen in Hirsch and Pearce (2000),
Hilkhuysen et al. (2014). Only in the restaurant noise case, which was
not included in the training, the samples used for the testing were
used to determine the long-term average spectrum. The post-processing

block in Fig. 3 is still not used. Babble, factory, street, and restaurant

noise were added at different iSNRs from −5 to 10 dB, and three MCS

were run for each file at each iSNR. The performance measures in (26)–

(28) were computed after estimating the pitch. The results are depicted

in Fig. 8 with 95 % confidence intervals. Clearly, using a fixed pre-

whitener resulted in poorer pitch estimates and voicing detections than

using the time-varying pre-whiteners. For babble and restaurant noise,

the best accuracy of the NLS pitch estimator was achieved when the

cascading was done with the Par-NMF based pre-whitener, because the

confidence intervals of the FFE were clearly separated from those of

MMSE-SPP or MS based pre-whitening. When using 𝑈𝑐 = 256 entries, a

slightly better performance is seen than when using 𝑈𝑐 = 16 entries. For

street noise, using 𝑈𝑐 = 256 entries has a positive effect in reducing the

GER, although it will not benefit the VDE. In terms of FFE, for factory

and street noise, which are more stationary noise types, the accuracy

after pre-whitening based on the three approaches is very similar, thus

indicating that the proposed Par-NMF based pre-whitener is of greater

benefit in non-stationary noise scenarios.
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Fig. 7. The ISD between the oracle and estimated pre-whiteners, and the spectral flatness measure of the pre-whitened noise as a function of the iSNR, for an AR pre-whitening
order P=36. A lower ISD is preferred, and a higher SFM is desirable.

Fig. 8. Estimation accuracy of the NLS pitch estimator under different noise conditions, after application of AR pre-whitening based on different noise PSD estimates, and also
after applying a fixed pre-whitening filter.

We then investigated if various non-parametric pitch estimators,
which are not derived under a WGN assumption, improved their accu-
racy by using either the proposed pre-whitener or an enhancement sys-
tem as a pre-processor. Particularly, the Cepstrum-based method (Noll,
1967), RAPT (Talkin, 1995), SHRP (Sun, 2002), and SWIPE’ (Camacho
and Harris, 2008), all of them with a final smoothing step, were
used in the evaluation. To determine which is the best pre-processing
method on average, we present the averaged performance from those
four estimators in three different ways: in its naïve (out-of-the-box)
form (i.e., without a pre-processor), and when either an OMLSA based
enhancement system or the proposed Par-NMF pre-whitener were used
as a pre-processor. The performance of the recently introduced robust
Bayesian pitch tracker (Shi et al., 2019), also derived under a WGN
assumption, was also evaluated. This method models the dynamic
evolution of the pitch, the number of harmonics, and the voicing state
by using first-order Markov processes. The already introduced NLS
pitch estimates were again included, but a Ney smoothing step between
consecutive independent-segment values (Ney, 1983) was applied, to
be fairer in the comparison, as all the other methods had tracking or

refinement capabilities. The NLS and the Bayesian pitch tracker esti-
mates were evaluated only when the Par-NMF pre-whitener was used
as a pre-processor, as we verified in Section 5.3.1 that the performance
of the NLS estimator, has a better improvement from pre-whitening. An
example of the estimates produced by the Bayesian pitch tracker for a
female speaker in babble noise at an iSNR of 3 dB is shown in Fig. 9.
The pitch was estimated after either OMLSA-based enhancement or the
Par-NMF based pre-whitening or MS based pre-whitening were used
as pre-processors. Clearly, the resulting estimates after enhancement
showed a large number of not-voiced (e.g., silent) segments wrongly
detected as voiced, and also a high number of octave errors. When the
proposed pre-whitener is instead applied, the pitch contour is better
captured as less octave errors and less voicing detection errors are
obtained. MS-based pre-whitening appears to be effective in reducing
the octave errors, however it still leads to several consecutive voiced
frames incorrectly detected as unvoiced, e.g., between 4 and 6 s. In
such cases, the Par-NMF based pre-whitener produces a more accurate
pitch contour. A similar plot, but for car noise, is displayed in Fig. 10,
so that we can verify the generalization capacity of the pre-whitener in
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Fig. 9. Pitch estimates from the Bayesian tracker for a female excerpt in 3 dB babble noise after either enhancement (top) or pre-whitening based on Par-NMF (middle) pre-whitening
based on MS (bottom) is applied as pre-processor. Note that only the spectrograms of the clean signal are shown to facilitate an easier visual evaluation of the produced pitch
estimates.

noise environments of different nature than the ones considered in the
training stage. According to the spectral shape visualization, in general,
this noise type appears to be more stationary as compared to babble
or restaurant noise. The car noise was obtained at 50 km/h from the
NOISEX-92 database. The pitch contour obtained after enhancement
is better captured as opposed to the babble noise case counterpart.
Both pre-whitening approaches lead to an acceptable capture of the
pitch contour, although at 3.5 and between 6 and 7 s, some not-voiced
frames were incorrectly classified as voiced. This kind of error was less
visible in the babble noise setup, possibly due to the fact that the testing
samples are fairly similar to the ones used in the training (although
not identical). This suggests that a more diverse codebook trained on a
larger variety of noise types could improve the robustness.

The overall performance is assessed by adding either babble or
factory noise at iSNRs from −5 to 11 dB. Three MCS were run for each
file from the Keele database at each iSNR. The results are depicted
in Fig. 11. The best performance was achieved by cascading the pre-
whitener with the Bayesian pitch tracker, although in some cases under
factory noise conditions, the confidence intervals overlapped with the
NLS pitch estimates. The performance in the babble noise case was
worse than the factory noise case, which is expected due to the fact
that babble noise is a random mixture of human speech signals, making
more challenging the pitch estimation task. The displayed results from
the Bayesian pitch tracker correspond to using 𝑈𝑐 = 256 envelopes
in the babble noise case and 𝑈𝑐 = 16 envelopes for the factory noise
case, as these configurations produced slightly better results, but there
was not a very significant difference in the performance from using the
other 𝑈𝑐 configuration. On average, under babble noise conditions, the
GER from non-parametric estimators was improved by pre-processing

via pre-whitening, and in the factory noise, also from pre-whitening
based on 𝑁𝑐 = 16 spectral shapes, for iSNRs below 7 dB. In contrast,
the VDE was improved by applying enhancement below 7 dB for babble
noise, and in the factory noise case, at iSNRs below 11 dB. The FFE
slightly decreased when pre-whitening based on 𝑈𝑐 = 16 entries was
used, but only at iSNRs lower than 3 dB in babble noise. In the
factory noise case, the full frame errors were reduced by applying
enhancement at iSNRs below 7 dB. However, although the performance
of non-parametric pitch methods was improved by either enhancing or
pre-whitening, the best performance was achieved from pre-whitening
followed by the Bayesian pitch tracking. Pre-whitening combined with
NLS pitch estimation followed by nonlinear smoothing also resulted in
less full frame errors than non-parametric pitch estimators (even if they
obtained a benefit from a pre-processing step) for babble noise at iSNRs
below 7 dB.

5.3.4. Evaluation of computational complexity of pre-processors
We also evaluated the computation time of the various

pre-processors, including OMLSA-based enhancement based on the
parametric NMF noise PSD estimate. The testing was done with one
excerpt of the Keele database with a duration of 40.3 seconds. The total
time for each type of pre-processing (enhancement and pre-whitening
based on different noise PSD estimates) is reported in Table 1. The
other approaches, especially the pre-whiteners based on MS or MMSE,
are computationally faster than the pre-whitener based on parametric
NMF. However, as seen from previous experiments, such an increase in
computation time for the proposed pre-processing scheme resulted in
an improvement in the accuracy of the WGN-based estimators, specially
under non-stationary noise.
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Fig. 10. Pitch estimates from the Bayesian tracker for a female excerpt in 3 dB car noise after either enhancement (top) or pre-whitening based on Par-NMF (middle) pre-whitening
based on MS (bottom) is applied as pre-processor. Note that only the spectrograms of the clean signal are shown to facilitate an easier visual evaluation of the produced pitch
estimates.

Fig. 11. Estimation accuracy of parametric pitch estimators (NLS and Bayesian) after pre-whitening, and averaged performance of four non-parametric pitch estimators (Cepstrum,
SWIPE, SHRP and RAPT) in their naïve states, and when either speech enhancement or pre-whitening was previously applied, under different noise conditions.

Table 1
Computation time in [ms] for different pre-processing schemes for a single segment.

OMLSA MS MMSE Par-NMF (𝑈𝑐 = 16) Par-NMF (𝑈𝑐 = 256)

2.09 0.42 0.39 2.71 4.08

5.3.5. Evaluation of pitch estimation accuracy including post-processing

In the last evaluation of pitch estimation, we included the last
post-processing block of Fig. 3. As previously shown experimentally,
using the Par-NMF pre-whitener as a pre-processor leads to the largest
improvement of the accuracy of the NLS pitch estimator. However,
there might still be some segments in which the solution produces
estimates resulting in either a gross error or a voicing detection error.
To further reduce these errors, post-processing of the initial pitch
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estimates is performed by iterating the following two steps (Jaramillo

et al., 2020):

1. The harmonic amplitudes for a given estimated �̂�0 and order

�̂� are �̂� =
[
𝐙
𝐻

�̂�
(�̂�0)𝐙�̂�(�̂�0)

]−1
𝐙
𝐻

�̂�
(�̂�0)𝐱 (Christensen, 2013), so

the residual representing what is not captured by the harmonic

model, including the stochastic parts of the speech, is �̂� =

𝐱 − 𝐙
𝐻

�̂�
(�̂�0)�̂�. Thus, the AR parameters for an updated pre-

whitener can be directly re-estimated from this residual using

the autocorrelation method (Stoica et al., 2005).

2. The re-estimated AR parameters of the residual are directly used

as the coefficients of a new pre-whitening filter, which is applied

to the noisy signal. From the new pre-whitened signal, the pitch

𝜔0 and 𝐿 are again estimated with the NLS estimator (30).

In this iterative process, the new pre-whitener is no longer computed

using the parametric NMF based noise PSD estimator, as it is now

instead computed from the residual. As seen below, however, the key

to achieve the final best pitch estimation accuracy is having applied a

better pre-whitener as a pre-processor.

The full setup in Fig. 3 was evaluated, and although this involves

an even higher computational complexity than the one reported in Sec.

5.3.4, it also leads to an improved pitch estimation accuracy. Both pre-

whiteners based on MMSE-SPP and on the proposed Par-NMF were

applied as a pre-processor. For the Par-NMF noise PSD estimate, 𝑈𝑠 =

32 and either 𝑈𝑐 = 16 or 𝑈𝑐 = 256 spectral shapes were considered, for

factory and babble, respectively. For the iterative estimation, the itera-

tion was performed a maximum of 10 times. Moreover, if a frame was

detected as being not-voiced (i.e., �̂� = 0), the estimation was stopped

for that segment. We compared to the performance of individual non-

parametric estimators SWIPE’, PEFAC (Gonzalez and Brookes, 2014),

SHRP, and RAPT which all include a final smoothing step between

consecutive estimates. Their individual performance was also assessed

after pre-processing the noisy signal, being pre-whitened in the babble

noise case, and enhanced using OMLSA for factory noise, according to

the averaged preferred pre-preprocessing that was noted previously.

The FFE for babble and factory noise are depicted in Fig. 12. The

configurations including post-processing are denoted by Iter(MMSE)

and Iter(Par-NMF) in which either pre-whiteners based on MMSE or

Par-NMF noise PSD estimates were applied as a pre-processor. By

including the post-processing step, there was a reduction between 2.2

and 4.5% compared to the single cascade of pre-whitening and NLS

pitch estimation. The independent consecutive pitch estimates were not

smoothed in this case, but by doing so we expect that the performance

could be improved.

It is seen that only pre-processing using parametric NMF combined

with the NLS pitch estimates was not enough to have better accu-

racy than SWIPE’ in babble noise. However, by post-processing the

initially obtained estimates (i.e., Iter(Par-NMF)), a better performance

was achieved below 5 dB, and similar one at 5 and 10 dB. That

did not occur if the initial pre-whitener based on MMSE-SPP was

applied, even if the post-processing based on iterative refinement was

later applied (i.e., Iter(MMSE)). Also, SWIPE’ improved its accuracy

when its input signal was the pre-whitened signal, achieving similar

or better accuracy than the proposed method Iter(Par-NMF) at SNRs

above 0 dB. Similarly, for factory noise, by applying the post-processing

in the proposed method, SWIPE’ was outperformed at −5 and 0 dB and

RAPT was outperformed below 10 dB. When the estimates are obtained

from the pre-processed (enhanced) signal, RAPT was able to achieve

a similar performance to the proposed method for all the SNRs. Also,

when SWIPE’ was applied to the enhanced signal, it achieved a similar

performance at 0 and 5 dB, and a better one at 10 dB.

5.4. Experimental results regarding TOA estimation

Finally, we evaluated the accuracy of an estimator of the time-of-
arrival (TOA) of a signal emitted by a source such as a loudspeaker and
received by a receiver such as a microphone. For this application, we
use a model in which the received signal is modeled as

𝑥(𝑛) = 𝑔𝑠(𝑛 − 𝜏) + 𝑐(𝑛) (31)

where 𝑠(𝑛) is a known signal emitted by the source, 𝑔 is the attenuation
of the signal, and 𝜏 is the time it takes for the signal to propagate
from the source to the receiver (i.e., the TOA). If the noise term 𝑐(𝑛)

is assumed to be WGN, and by considering vectors of 𝑁 successive
samples in bold notation, the ML estimator of 𝜏 and 𝑔 are the solutions
to

{𝜏, �̂�} = min
𝜏∈𝑇 ,𝑔>0

‖𝒙(𝑛) − 𝑔𝒔(𝑛 − 𝜏)‖2
2
, (32)

over the possible set 𝑇 of TOAs. If the analysis window is long relative
to the size of 𝑠(𝑛), the TOA estimator can be accurately approximated
as

𝜏 = argmax
𝜏∈𝑇

𝒙(𝑛)𝒔(𝑛 − 𝜏) (33)

which is often referred to as the matched filter (Feder and Weinstein,
1988). In practical setups, the noise is likely to be non-white. In such
cases, pre-whitening should be applied as a pre-processor, but we
remark that it has to be applied to both 𝒙(𝑛) and 𝒔(𝑛) since applying the
pre-whitener to only 𝒙(𝑛) would introduce an additional delay, resulting
in a biased estimator.

We used the recorded signals from the SMARD database (Nielsen
et al., 2014) at both the loudspeaker and the single microphone, both
of them separated 3.13 m, with configuration number 0001. The known
source signal was an artificial white noise synthetic signal, and the size
of the burst was 3500 samples at a sampling frequency of 48 kHz. The
rooms where the signals were recorded had a reverberation time of
approximately 0.15 s. The colored noise was taken from the DREGON
database (Strauss et al., 2018). Specifically, rotor noise from a drone
running at 70 rounds per second was added to the signal picked up by
the single microphone at different signal-to-diffuse-noise ratios (SDNR)
before the TOA was estimated. 200 MCS were run at each SDNR. The
rotor noise was resampled from 44.1 to 48 kHz to match the rate of
the source signal. In the evaluation, we compared the performance of
the matched filter with and without a pre-whitener. To pre-whiten the
observation, a spectral basis matrix of four AR spectra shapes of the
rotor noise was built by training a noise codebook on samples of the
rotor noise. The training samples were different from those for testing.
The testing samples were randomized at each MCS. An additional entry,
corresponding to the known source signal, was also included as the
clean signal spectral shape which was simply a flat PSD. The training
was performed with an order 𝑃 ′ = 35 on segments with a duration of
20 ms with an overlap of 50 % between them. This order was chosen
according to our observation that the best oracle performance was
obtained with a higher order, as important envelope components that
might be present at medium and high frequencies were not smoothed
out. From the estimated TOA, the distance between the loudspeaker
and the microphone was obtained, and we computed the mean squared
error (MSE) of the measured distance at each SDNR. The results are
shown in Fig. 13. As seen, pre-whitening the received signal leads to a
lower MSE as compared to the case where the received signal was not
pre-whitened prior to the TOA estimation.

6. Conclusion

The accuracy of statistical-based estimators based on the WGN
assumption in real acoustic scenarios can be considerably improved
when an AR pre-whitener is applied as a pre-processor of the noisy
observation. In this paper, we introduced a time-varying pre-whitener
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Fig. 12. Estimation accuracy of NLS pitch estimation by considering both pre-processing and post-processing, and of non-parametric pitch estimators (PEFAC, SWIPE’, SHRP, and
RAPT) in their naïve states and with pre-processing, under different noise conditions.

Fig. 13. MSE of single-channel TOA estimation with pre-whitening applied or not
applied, versus the SDNR. Results are reported as 95% confidence intervals.

which requires the activation coefficients of pre-trained spectral shapes
in the parametric NMF method. Through numerous simulations, we
have shown that using an AR pre-whitener based on the parametric
NMF method results in a higher noise whiteness and a more simi-
lar spectral response to that of the oracle pre-whitener compared to
conventional noise PSD estimators, especially in non-stationary noise
situations. Although the training stage of the spectral shapes may
initially require additional effort compared to using traditional noise
trackers, it offers a consistent way of including prior information about
speech and noise types, resulting in a better performance of WGN-
based estimators such as the NLS pitch estimator. Although well-known
non-parametric pitch estimators can improve their accuracy from some
pre-processing, the combination of pre-whitening with fast and efficient
statistical-based WGN methods gives the best performance in terms
of pitch errors and voicing detection errors, specially in scenarios of
high noise levels (i.e., low SNRs). An additional improvement can be
obtained by post-processing the resulting NLS pitch estimates, and this
will result in a better overall accuracy than individual non-parametric
pitch estimators, even if they are using a pre-processor, specially under
low SNR conditions. This may require high computation time, but it
allows to extract both the harmonic and autoregressive components of
the speech signal, which is useful, e.g., in the speech decomposition
problem (Jaramillo et al., 2021). The pre-whitener was also applied
before a time-of-arrival estimation method formulated under the WGN

assumption. In that case, the TOA estimation accuracy is improved by
a pre-whitening step which relies on pre-trained shapes of the involved
source signal and of the real noise in the recording environment, such
as wind noise or drone ego-noise.
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Appendix

To maximize the data likelihood 𝑝(𝐱|𝝈,𝐃) ∼ 
(
𝟎,
∑𝑈
𝑢=1 𝜎

2
𝑢𝐑𝑢(𝐚𝑢)

)
,

we use the well-known fact (Gray et al., 2006) that 𝐑𝑢(𝐚𝑢) can be
approximated as circulant and therefore diagonalized by the Fourier
transform if 𝑁 is much larger than the AR-order 𝑃 ′. Thus, the approx-
imate diagonalization of the covariance is

𝐑𝑢(𝐚𝑢) ≈
1

𝑁
𝐅𝐃𝑢(𝐚𝑢)𝐅

𝐻 (A.1)

https://github.com/alfredoej87/Autoregressive-Pre-whitening-based-on-Parametric-NMF
https://github.com/alfredoej87/Autoregressive-Pre-whitening-based-on-Parametric-NMF
https://github.com/alfredoej87/Autoregressive-Pre-whitening-based-on-Parametric-NMF
https://github.com/alfredoej87/iterativeF0Ar_NLS
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where 𝐅 is the DFT matrix whose entries are given by
[𝐅]𝑛,𝑙 = exp (𝑗2𝜋𝑛𝑙∕𝑁) , 𝑛, 𝑙 = 0, 1,… , 𝑁 − 1, and

𝐃𝑢(𝐚𝑢) =
(
𝜦𝐻𝑢 (𝐚𝑢)𝜦𝑢(𝐚𝑢)

)−1
, 𝜦𝑢(𝐚𝑢) = diag

(
𝐅
𝐻
[
𝐚
𝑇
𝑢 𝟎

𝑇
]𝑇 )

. (A.2)

The diagonal entries of 𝐃𝑢(𝐚𝑢) represent the eigenvalues of 𝐑𝑢(𝐚𝑢),
which correspond to the normalized PSD of the 𝑢th AR process.

Using the above definitions, the log-likelihood can be written as
(Kavalekalam et al., 2018)

ln 𝑝(𝐱|𝝈,𝐃) = −
𝑁

2
ln 2𝜋 −

1

2
ln

||||||

𝑈∑
𝑢=1

𝜎2𝑢𝐅𝐃𝑢(𝐚𝑢)𝐅
𝐻

𝑁

||||||
−

1

2
𝐱
𝑇

[
𝑈∑
𝑢=1

𝜎2𝑢𝐅𝐃𝑢(𝐚𝑢)𝐅
𝐻

𝑁

]−1

𝐱, (A.3)

which can be simplified as

ln 𝑝(𝐱|𝝈,𝐃) = −
𝑁

2
ln 2𝜋 −

1

2
ln

𝑁−1∏
𝑘=0

𝑈∑
𝑢=1

𝜎2𝑢𝑑𝑢(𝑘)

−
1

2𝑁
𝐱
𝑇
𝐅

[
𝑈∑
𝑢=1

𝜎2𝑢𝐃𝑢(𝐚𝑢)

]−1

𝐅
𝐻
𝐱 (A.4)

= −
𝑁

2
ln 2𝜋 −

1

2

𝑁−1∑
𝑘=0

ln

𝑈∑
𝑢=1

�̂�𝑢(𝑘) −
1

2

𝑁−1∑
𝑘=0

𝛷(𝑘)∑𝑈
𝑢=1 �̂�𝑢(𝑘)

(A.5)

where 𝛷(𝑘) is the 𝑘th element of the periodogram of 𝐱 and �̂�𝑢(𝑘) =

𝜎2𝑢𝑑𝑢(𝑘). Each 𝑑𝑢(𝑘) is the 𝑘th diagonal element of 𝐃𝑢(𝐚𝑢). The summa-
tion over 𝑈 spectral basis, i.e.,

∑𝑈
𝑢=1 �̂�𝑢(𝑘) = 𝐝

𝑇
𝑘
𝝈 is the modeled PSD

at frequency bin 𝑘. The expression in (A.5) can now be re-written into
(14).
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