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Abstract

In previous issues of this conference, a part of the
authors presented novel approaches for the use of
Doppler wind lidar in civil aeronautics (Vrancken
and Herbst 2020; Vrancken et al. 2021; Vrancken
and Herbst 2022). These approaches include
considerable advances in terms of technology and
data treatment (Fezans et al. 2020) as compared to
precursor projects (Schmitt et al. 2007; Rabadan et
al. 2010).

An important part of the development cycle from
the current state of scientific-grade more
experimental status (low technology readiness level
TRL of about 3) towards operationally proven
status (TRL 6) for the hand-over to industrial
partners is the steady maturation of all system
components.

Another aspect is equally continuous demonstration
and quantitative validation of the required
performance of these components along the way.

For that purpose, DLR and ONERA groups teamed
up for jointly performing these tasks. Within the
UP Wing project (Ultra Performing Wing) of the
European Commission financed Joint Undertaking
Clean Aviation, a substantial part is devoted to the
enhancement of aircraft wing control with the
ultimate goal of saving mass. A way to do this is to
lower the effective aerodynamical loads that drive
the structural design. And the most powerful
technique of such control is the feed-forward
(contrasting to established feedback control) that
ultimately has to rely on wind information ahead
which may only be retrieved by Doppler wind lidar
(DWL), and due to the high cruise flight levels, by
direct-detection (DD) DWL.

On our poster we highlight the different activities
focusing on the most critical technology items of
DD-DWL maturation.

The project also includes an early demonstration of
one possible DD-DWL implementation, namely
with the previously (and also in this conference)
shown version relying on a fringe-imaging skewed
Michelson interferometer as spectral analyzer.
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Rationale; » Goal: Saving structural mass of aircraft wing structure by lowering loads
with advanced feed-forward wing control within turbulence = Lidar-based Feed-Forward Gust Load Alleviation (GLA)

Needed: Turbulent gust / wind measurements ahead - retrieved by Doppler wind lidar (DWL)
High cruise flight levels + system availability requirements (aerosol abundance): UV Direct-detection Doppler Wind Lidar
~or perspectively industrial use: Increase Technology Readiness Level (TRL), i.e. mature technologies, test, and demonstrate

Lidar technology maturation

Laser transmitter: Direct-Detection Doppler Receiver: Tx/Rx beam direction:
(1) Towards all-fiber sources: Fibered MOPA (1) Based on Fringe-imaging field-widened Michelson (1) Application: ahead vertical and lateral wind LOS projection
 Advantages: efficiency, few alignment, robust to vibration, temporal pulse shaping interferometer — ﬂight version * Iteratwg stqdy on requirements on
for optimized detection, path to low cost » n° of directions,
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* Continuous scan

diode laser ~ Feneration pulse a““re _ _ _ « Few, discrete directions
Jode do (2) Michelson receiver upgrades / 2nd generation
L * Bistatic telescope architecture (adapt overlap) ~

(2) Flight-test laser — DPSS optimized for application * Optical mode scrambling (fiber etc.)

« DPSS-MOPA architecture » Michelson reflected channel

+ Goals: > 2.5 W @ 355 nm SLM, 1-3 kHz PRF, 10 ns pulses 2 IMMET oS e? CEiEsE

» Being integrated in FP7-DELICAT lidar architecture for test flights on NLR Citation 2 * Efficientimaging

B ... * Detection optimization
Mikrochip- S " | » Robust data analysis, real-time capable (2) Test purposes
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(3) Test and fallback lasers: : Imaging Michelson(Mach- Zehnder ~2.4 0y, 154 ﬁﬁi‘”‘“"““"gﬁjmpg_}.m,,

« Merion UV injection locked, single frequency laser, 22,5 mJ, 400 Hz, 6 ns * Only four detectors _ — N -

« WALES/DELICAT/AEROLI airborne laser, 80 mJ, 100 Hz, 6 ns * Lab version + monolithic ne —

Simulation support

Lidar simulation Wind reconstruction algorithm (WRA) Flight controller
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(2) Physics-based end-to-end simulation
* to date: Monte-Carlo-like simulation on main lidar design drivers / perfo impacts
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« Simplified optical system > - . .
« Atmospheric and fiber speckle effects | rode Aircraft models + ﬂlght pOIntS.
» Noise processes (laser, electronics etc.) — f”Hg:“'e”gghzg:zmgmr’;”” , » Models: GBJA — Generic business jet aircraft, GLRA — Generic long range aircraft,
« Synthetic signal = full data analysis including fringe fit finkz Airbus XRF-1, NASA CRM — Common research model (+Fermat)
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« Future additions of atmosphere interaction, light propagation, imaging errors, * Investigation of WRA properties 5z i .o 0 multirate simulation (i.e. in continuous time), allowing e.g.
detector model, environmental effects > + advanced ata analysis and performance in simulated 2 . —=m—mH—— WM‘WM ‘&@‘M * XRF-1 baseline controller 25 Hz,
complex 3D turbulence fields P load alleviation 100 Hz, lidar + WRA 10 Hz

Test and early demonstration

Ground-based high altitude Early flight tests / airborne validation of DWL functionality

- E:uhgcrggtr:!ztaetsigggar?; Zeesrf’f.f.%? !Sjéiggnﬂguratlons Demonstration UV-Direct-Detection Lidar works according to simulation

* High-altitude, mountain-based test facility: Environmental Research Station Schneefernerhaus (UFS) at 2650 rr bund demo) in ﬂight conditions

« Reference (heterodyne detection) Doppler wind lidar(s): Windcube® 200S, in-house fiber-base ingle-channel receiver + single fixed direction (for LOS only)

 Further reference wind sensors: ultrasonic anemometer(s)

 Aerosol quantification - German Federal Environmental Office (UBA): Ne
- German Weather service (DWD): Ceilonr

* First campaign 2022 with lessons learned (see talk Philipg
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