
VEHICLE OCCLUSION REMOVAL FROM SINGLE AERIAL IMAGES USING
GENERATIVE ADVERSARIAL NETWORKS

Meijie Xiang1, Seyedmajid Azimi2∗, Reza Bahmanyar2, Uwe Sörgel1, Peter Reinartz2

1Institute for Photogrammetry, University of Stuttgart, Stuttgart, Germany
2Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, Germany

- xiangmeijie@foxmail.com, soergel@ifp.uni-stuttgart.de, (seyedmajid.azimi, reza.bahmanyar, peter.reinartz)@dlr.de

KEY WORDS: Aerial imagery, Deep learning, Generative Adversarial Network (GAN), HD maps, Vehicle occlusion removal.

ABSTRACT:

Removing occluding objects such as vehicles from drivable areas allows precise extraction of road boundaries and related semantic
objects such as lane-markings, which is crucial for several applications such as generating high-definition maps for autonomous
driving. Conventionally, multiple images of the same area taken at different times or from various perspectives are used to remove
occlusions and to reconstruct the occluded areas. Nevertheless, these approaches require large amounts of data, which are not
always available. Furthermore, they do not work for static occlusions caused by, among others, parked vehicles. In this paper, we
address occlusion removal based on single aerial images using generative adversarial networks (GANs), which are able to deal with
the mentioned challenges. To this end, we adapt several state-of-the-art GAN-based image inpainting algorithms to reconstruct the
missing information. Results indicate that the StructureFlow algorithm outperforms the competitors and the restorations obtained
are robust, with high visual fidelity in real-world applications. Furthermore, due to the lack of annotated aerial vehicle removal
datasets, we generate a new dataset for training and validating the algorithms, the Aerial Vehicle Occlusion Removal (AVOR)
dataset. To the best of our knowledge, our work is the first to address vehicle removal using deep learning algorithms to enhance
maps.

1. INTRODUCTION

With the rapid evolution of autonomous driving, there has been
a rising demand for high-definition (HD) maps in recent years.
Occlusion-free aerial images from drivable areas can help gen-
erating more precise and complete HD maps by allowing for
more accurate extraction of crucial features such as road bound-
aries and lane markings. Automatically removing occlusions
is carried out by first detecting and masking undesired occlu-
sions caused by static and dynamic objects such as vehicles,
and then reconstructing the missing information in the masked
areas, with both of these tasks being non-trivial. Several previ-
ous works using classical and learning-based approaches have
addressed occlusion removal as an inpainting problem, filling
in missing areas with the support of known surrounding areas.
While classical methods rely solely on the neighborhoods of the
missing areas, learning-based approaches are capable of using
the learned features from various similar images. This theoret-
ically allows them to restore features that are unrelated to the
neighbouring regions.

Among the learning-based approaches, the ones based on deep
learning (DL) has shown promising performance in various im-
age processing and computer vision tasks in the past two decades.
For the first time, (Pathak et al., 2016) employed a DL-based
approach for image inpainting. They proposed a generative ad-
versarial network (GAN), where the encoder-decoder structure
can generate the incomplete image parts.

Later, (Nazeri et al., 2019) proposed the Edge-Connect net-
work, focusing on restoring the missing image structural fea-
tures by two GANs: one for generating edges, and the other
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one for completing the missing areas. The first GAN takes an
original image and its corresponding missing information mask
as input, and generates a masked grayscale image and a masked
edge map. For the training step, the ground truth edge map is
generated by applying the Canny edge detector to the original
image. The resulting edges are then transferred to the second
GAN with the masked source image in order to obtain the final
output. In another work, (Ren et al., 2019) proposed the Struc-
tureFlow network which uses Edge-Connect as backbone net-
work for recovering the missing structures in two stages: gen-
erating edge-preserved smooth images and refining the unifor-
mity of textures. The inputs to the network include the source
image and its corresponding mask, as well as its masked struc-
ture map. In contrast to Edge-Connect, StructureFlow attempts
to recover a smoothed structure map rather than an edge map
for structure retention, resulting in a better reconstruction of
structures and textures.

As a more efficient method, (Li et al., 2019) proposed progres-
sive reconstruction of visual structure (PRVS), which performs
structure and texture restorations in parallel. The encoder starts
the process from the boundaries of the masked area to its cen-
ter, while the decoder performs the same operation in the op-
posite direction. This procedure enhances the coherence be-
tween the masked area and the rest of the image, considering
that the boundaries of the masked area provide valuable infor-
mation. Results on several benchmark datasets show promis-
ing restorations of image contents and edges. Mutual encoder-
decoder with feature equalization (MEDFE) is another method
that simultaneously recovers structural and textural informa-
tion (Hongyu Liu, Yang, 2020). This network recovers textural
and structural features at the shallowest and deepest layers, re-
spectively, during the encoding process, and adds them through
skip connections during the decoding step.
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Figure 1. Examples of occlusion-free images and random occlusion masks from the AVOR dataset.

In order to improve pixel discontinuity in the missing regions,
(Liu et al., 2019) developed the coherent semantic attention
(CSA) network, consisting of a shallow and a deep network.
The shallow network provides a course prediction of the re-
stored image, while the deep network refines the output using
the CSA layer to improve the pixel coherence in the missing
areas. Results show that CSA can coherently recover missing
regions. Dealing with restoring large missing regions, (Li et al.,
2020) proposed the recurrent feature reasoning (RFR) network
that recursively infers the boundary of the missing regions as a
reference, filling the missing parts from the border towards the
center. RFR uses a knowledge consistent attention module that
calculates the scores for each recursion and merges them in or-
der to obtain more consistent outputs. Results demonstrate its
efficiency in reconstructing large missing regions.

In real-world scenarios, there is no ground truth for missing im-
age information, with inpainting methods estimating the pos-
sible restorations of the missing information. Therefore, there
is no unique solution to inpainting problems. In order to deal
with these limitations, a more recent family of inpainting meth-
ods tries to provide multiple possible restorations of the miss-
ing image parts. One of such methods is the hierarchical vector
quantized variational auto-encoder (VQ-VAE) network (Peng et
al., 2021) that comprises three modules: a hierarchical encoder
and decoder extracting discrete structural and textual features,
a diverse structure generator estimating structure distribution
in order to produce multiple possible structural features, and a
texture generator which helps maintaining the synthesis of tex-
tures.

All these methods have been developed for image inpainting
and occlusion removal in the computer vision frame. To the best
of our knowledge, there is no DL-based method in remote sens-
ing for removing occlusion from single high-resolution aerial
images. Moreover, while datasets with ground truth are cru-
cial for training DL-based methods, there is no training dataset
available for removing vehicles from aerial images. Since usu-
ally there is no ground truth of the occluded image parts, gen-
erating such dataset is very challenging thing, which imposes
limits to the development of DL-based methods in this domain.

In order to deal with these limitations and to promote the future
development of DL-based methods for vehicle removal from
single aerial images, in this paper we introduce the Aerial Vehi-
cle Occlusion Removal (AVOR) dataset, based on an aerial im-
age dataset with annotated vehicles from the German Aerospace

Center (DLR), the so-called DLR multi-class vehicle detection
and orientation in aerial imagery (DLR-MVDA) (Liu, Mattyus,
2015). We consider only vehicles as occluding objects, with-
out their corresponding shadows. Our Occlusion-free dataset
is composed of 1,296 images of size 256 × 256 pixels, con-
taining no vehicle occlusions. Furthermore, in order to train
the DL networks to learn the occlusions, we generate 19,639
realistic vehicle occlusion masks with the same size as the im-
ages. We randomly assign the masks to the images, then we
split the dataset into training, validation, and test sets. The
number of masks and images are equal to the number of im-
ages with a fixed assignment in the test set. However, for the
training and validation sets, the number of masks are larger than
those of the images, and we perform an on-the-fly assignment
during the training and validation phases. Figure 1 demon-
strates some example images and occlusion masks from the
AVOR dataset. Furthermore, as an additional contribution, we
adapt the aforementioned state-of-the-art GAN-based inpaint-
ing methods and apply them on our AVOR dataset. As demon-
strated in Figure 2, the training and inference procedures of
GAN-based techniques exhibit similarities, despite variations
in their structural specifics. We then investigate their perfor-
mances qualitatively and quantitatively, and discuss their op-
portunities and limitations for their practical use in future appli-
cations by the community. According to the presented results,
StructureFlow outperforms the other methods and its restora-
tions are robust with high visual fidelity in real-world applica-
tions.

2. AERIAL VEHICLE OCCLUSION REMOVAL
DATASET

In this section, we introduce our Aerial Vehicle Occlusion Re-
moval (AVOR) dataset. We generated AVOR based on DLR-
MVDA, an aerial image dataset with annotated vehicles (Liu,
Mattyus, 2015), which comprises 20 high-resolution and non-
overlapping aerial RGB images with a size of 5616× 3744 pix-
els taken during a flight campaign over Munich, Germany by a
helicopter. The images were acquired at 1000 m resulting in a
ground sampling distance (GSD) of 13 cm/pixel.

Similar to many annotated datasets, this dataset suffers from a
lack of ground truth for the occluded regions, which is crucial
for training purposes. The general idea is to extract occlusion-
free areas from original images for driving areas which are not
occluded by vehicles. In order to train the algorithms to learn
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Figure 2. Workflow of GAN-based inpainting algorithms
including the training and test phases.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Examples of image restoration on the AVOR dataset.
The original occlusion-free (a) and masked images (b). The
results by Edge-Connect (c), StructureFlow (d), MEDFE (e),

PRVS (f), CSA (g), RFR (h), and VQ-VAE (i).

the occluded image contents, we generate synthetic occlusion
masks and assign them to these occlusion-free images. Since
the input is the element-wise multiplication of source images
and their binary masks, the networks assume that the masked
parts of the original images are occluded by vehicles.

In order to generate the occlusion-free images, we manually
crop image subsets of 256 × 256 pixels containing drivable ar-
eas not occluded by vehicles from the large aerial images. The
patch size is a trade-off between the number of samples and
the occurrence of representative contextual features. Since the
number of such image patches is limited, we augment them by

rotations of 90, 180, and 270 degrees, resulting in 1,296 im-
age patches. Then we split the dataset into 1,050 training, 188
test, and 58 validation images. Figure 1 shows a few example
images and occlusion masks from the AVOR dataset.

Since the images are not occluded, their corresponding occlu-
sion masks can be randomized. In order to keep the masks as
realistic as possible, we randomly crop patches of 256×256 pix-
els from the binary masks of the occluding vehicles of the orig-
inal dataset, resulting in 19,639 masks. We then split the gener-
ated masks into 17,825 training, 188 test, and 1,626 validation
masks, where the image patches of each set do not belong to
the same images. The number of masks in the training and val-
idation sets is much larger than in image patches. Thus, one
occlusion-free image can match multiple masks during train-
ing, which can slightly compensate for the limited number of
occlusion-free images, as various occlusion scenarios for each
image are present. For the test time, we use a fixed set of 188
randomly selected masks.

The most notable advantage of the dataset is that it contains
real-world images of drivable areas without occlusion, and oc-
clusion masks from real occluding vehicles. The dataset has
also some limitations, such as its relatively small size and un-
balanced distribution of scenes. For example, since the park-
ing areas are usually occupied by vehicles, these are rarely pre-
sented in our dataset: this can have a negative impact on occlu-
sion removal performance in these regions.

3. VEHICLE REMOVAL USING INPAINTING
METHODS

In this section we report our experiments on vehicle removal
using image inpainting methods and evaluate their results. The
most significant challenge in vehicle removal is reconstructing
the missing information. The GAN-based inpainting methods
learn the data models by training on relevant datasets and use
the learned model to generate the missing features. Despite the
difference in their structure details, the training and inference
procedures of the GAN-based methods are similar as shown in
Figure 2.

In the training step, the networks relies on occlusion-free im-
ages and occlusion masks to learn the characteristics of the
occluded areas by their generators. For inference, the gener-
ators reconstruct the missing information of the occluded areas
indicated by the occlusion masks. In Figure 2, G and D de-
note generator and discriminator, respectively. Io is the input
occlusion-free image, M is a binary occlusion mask, and Iof is
the generated occlusion-free image. The discriminator uses the
original occlusion-free image (Io) as ground truth.

For our experiments, we consider seven GAN-based methods
including StructureFlow (Ren et al., 2019), Edge-Connect (Naz-
eri et al., 2019), PRVS (Li et al., 2019), MEDFE (Hongyu Liu,
Yang, 2020), RFR (Li et al., 2020), CSA (Liu et al., 2019), and
VQ-VAE (Peng et al., 2021). We use the available implemen-
tations of the algorithms available on Github, and keep their
parameters and configurations as in the original networks. We
train the networks on the AVOR dataset for 300 epochs. For
training, we input an occlusion-free image with a randomly se-
lected occlusion mask from the training set to the network. We
evaluate the methods on the test set of the AVOR dataset both
qualitatively and quantitatively. To this end, we mask the input
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Figure 4. Vehicle removal examples including the original images (a), and the results by Edge-Connect (b), StructureFlow (c),
MEDFE (d), PRVS (e), and RFR (f).

Figure 5. Demonstration of vehicle removal by StructureFlow.

occlusion-free images by their corresponding masks, and com-
pare the restored images with the input occlusion-free images
(ground truth). Furthermore, we apply the trained models to
the real-world scenarios by inputting images with vehicle oc-
clusions (from DLR-MVDA) together with the binary mask of
the vehicles. The networks are supposed to replace the vehi-
cles with the image content that they occlude. Since there is no
ground truth available for the occluded images, we evaluate the
results qualitatively.

4. EVALUATION METRICS

To evaluate the image restoration performance from various
perspectives, we employ three commonly-used metrics in im-
age enhancement domain.

Peak Signal-to-Noise Ratio (PSNR) (Davda et al., 2010) is the
most commonly-used metric for image quality. It characterizes
the relationship between the maximum possible signal power
and the destructive noise power. Since signals can have wide
dynamic ranges, PSNR is often presented as a logarithm with a
decibel range of 0 to∞:

PSNR = 10. log(
(max(I))2

MSE
), (1)

where max(I) is the maximum pixel value of the image and
MSE is the mean squared error. The larger the PSNR value, the
better the quality of the reconstructed image, as less errors are
introduced to the output.

Structural Similarity (SSIM) (Davda et al., 2010) is derived
from three comparative measures (brightness, contrast, and struc-
ture) between the source image x and the reconstructed image
y as follows:

SSIM(x, y) = [l(x, y)
α
⋅ c(x, y)

β
⋅ s(x, y)

γ
] , (2)

where α, β, and γ are the weights of brightness, contrast and
structure, respectively. The SSIM value ranges between 0 and
1. It is equal to 1 only if the two images are identical.

Fréchet Inception Distance (FID) (Heusel et al., 2017) is a widely-
used metric for measuring the distances between the feature
vectors of the original image set x and the recovered image set
y, as:

FID(y, x) = ∣∣ µy −µx∥
2
2 +Tr (Σy +Σx − 2 (ΣyΣx)

1
2 ) , (3)

where µy and µx denote the mean values of the feature vec-
tors of the sets y and x, respectively. Additionally, Σy and Σx

correspond to the covariance matrices of the feature vectors of
the two sets, respectively, while Tr(.) is the trace of the corre-
sponding matrix. A smaller FID implies a higher similarity of
the generated image to the source, with the FID between two
identical images being 0.

5. RESULTS AND DISCUSSION

Table 1 shows the quantitative evaluation of the results on the
test set of the AVOR dataset based on SSIM, PSNR, and FID
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Algorithm SSIM ↑ PSNR ↑ FID ↓
Edge-Connect (Nazeri et al., 2019) 0.983 (0.027) 38.71 (6.77) 15.53
StructureFlow (Ren et al., 2019) 0.990 (0.014) 41.02 (6.51) 7.88
MEDFE (Hongyu Liu, Yang, 2020) 0.989 (0.017) 40.48 (6.99) 9.87
PRVS (Li et al., 2019) 0.988 (0.016) 40.21 (6.68) 21.91
CSA (Liu et al., 2019) 0.985 (0.021) 38.57 (6.18) 12.47
RFR (Li et al., 2020) 0.988 (0.016) 40.29 (7.22) 34.52
VQ-VAE (Peng et al., 2021) 0.984 (0.022) 38.37 (6.91) 13.30

Table 1. Comparing occlusion removal by inpainting algorithms
on the occlusion-free dataset

metrics. For SSIM and PSNR, we also present standard devia-
tions in parenthesis. In this table, ↑ and ↓ mean that higher and
lower indicate better performance, respectively, and we report
in bold the best result for each metric. According to the results,
StructureFlow (Ren et al., 2019) outperforms the other meth-
ods. It yields the best results for SSIM and PSNR, showing
that it can better preserve the image structures and the overall
pixel values. Moreover, it achieves the best FID, indicating that
the pixel value distributions of its resulting images are close
to those of the source images. In order to provide a visual in-
dication of the capabilities of each method, we assess the re-
sults qualitatively. Figure 3 shows an example reconstruction
of missing features by different methods. In this figure, the
first image is an occlusion-free image selected from the test set
of the AVOR dataset. The second image is the masked image
which is given to the networks, and the remainder the recon-
struction results.

Moreover, among the multiple generated outputs by VQ-VAE (Peng
et al., 2021), we select and visualize a representative one in
Figure 3. According to the results StructureFlow ensures the
continuity of the missing structures, although part of its created
structures are not similar to the original image. Additionally,
all methods fail in properly reconstructing fine structures such
as dashed lines. Only StructureFlow could partially complete a
missing dashed line on the right side of the image as a continu-
ous line.

In order to evaluate the applicability of the methods on real-
world vehicle removal problems, we apply the top five methods
( including Edge-Connect, StructureFlow, MEDFE, PRVS, and
RFR) based on the qualitative and quantitative results (see Ta-
ble 1) to the original images of the DLR-MVDA dataset.

Figure 4 demonstrates the results on two example image patches
with diverse occlusion scenarios. For the first example, since
the occlusions lay on a homogeneous road surface and do not
require much structural reconstructions, all methods can restore
the missing parts in a satisfactory way. However, results ob-
tained with Edge-Connect suffer from texture inconsistencies,
indicating its limitations in preserving texture homogeneity. In
the second example, the same performance holds for vehicles
on the plane road surface. For vehicles occluding the tree shadow
textures, StructureFlow and PRVS outperform the other meth-
ods in reconstructing the missing tree features.

In order to provide a broader view on the vehicle removal in
real-world scenarios, Figure 5 represents results of Structure-
Flow on a large part of an image from the DLR-MVDA dataset,
where StructureFlow can remove most of the vehicles and re-
store the occluded road information. There are also a few fail-
ure cases, especially where the vehicle shadows are large. Since
the vehicle masks usually do not include shadows, the models
cannot learn how to deal with the significant contrasts on the
border of the missing areas which do not belong to the road

(a) Original images with vehicles

(b) After vehicle removal

Figure 6. Confusion matrices before and after the vehicle
removal.

Table 2. Surface extraction evaluation for HD mapping using
aerial images after vehicle removal. Numbers are in %.

Scenario Acc. Precision Recall DICE IoU

Vehicle 92.86 79.11 67.33 72.01 60.24
No vehicle 94.13 79.57 71.15 74.42 63.51

Table 3. Surface extraction evaluation for HD mapping using
aerial images after vehicle removal. MN, BKG, RD, PP and
AW/EE stand for mean, background, road, parking-place,

Access-way or Entrance-exit.

Scenario IoU %
MN BKG RD PP AW/EE

Vehicle 60.24 92.85 72.65 49.08 26.36
No vehicle 63.51 94.49 78.33 54.68 26.55

surface. Thus, the missing parts with the pixel values of the
shadowed areas appear smeared. This shows the limitations
caused by the vehicle masks, and the necessity for the devel-
opment of algorithms learning the vehicles and their relevant
features (e.g., shadows) in the training phase, in order to rec-
ognize and remove them fully automatically without relying on
vehicle masks as prior information.

To investigate the improvements of surface extraction neces-
sary for HD mapping in autonomous driving, we use the labels
of the SkyScapes (Azimi et al., 2019) dataset. We keep only
road, parking-place and enterance-exit (access-way) classes. To
remove vehicles, we propagate the class of neighboring pixels
based on 8-pixel connectivity to the regions occupied by vehi-
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(a) Original image (b) Base GT (c) Subset GT (d) Output vehicle re-
moval

(e) Prediction with ve-
hicles

(f) Prediction without
vehicles

Figure 7. Results of surface extraction for HD mapping after vehicle removal. (b) is the full set of labels from the SkyScapes dataset
which refer to (Azimi et al., 2019) for its color codes. Surface color coding: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ road, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ parking-place, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ entrance-exit (accesss-way).

cles. In this propagation, we only allow the pixels belonging to
the mentioned classes to be propagated. One could have used
morphological or contour-based propagation, but we found this
approach to be more accurate. We compare the predictions of
SkyScapesNet (Azimi et al., 2019) with and without vehicles
against the generated ground truth. Table 2 and Table 3 show
how the performance can be increased on the indicated classes
without vehicles. The results show after the vehicle removal,
the mean IoU has increased from 60.24% to 63.51%, a roughly
3% increase, indicating the rough portion of vehicles occupy-
ing the driving areas in the predictions. The confusion matri-
ces in Figure 6 provide more insights into the segmentation re-
sults where Figure 7 illustrates the qualitative evaluation results
on three sample patches. We expect that by applying the seg-
mentation method to the images with vehicles removed, we can
achieve even better performance than what our preliminary ex-
periment indicates.

6. CONCLUSION AND FUTURE WORK

In this paper, we address automatic vehicle removal from driv-
able areas in aerial imagery using DL-based inpainting meth-
ods. Due to the lack of appropriate training datasets, we gener-
ate the Aerial Vehicle Occlusion Removal (AVOR) dataset con-
taining occlusion-free aerial image patches and realistic random
vehicle occlusion masks. Subsequently, we adapt and eval-
uate seven state-of-the-art GAN-based inpainting methods on
the AVOR dataset. Based on quantitative and qualitative eval-
uations, StructureFlow outperforms other inpainting methods,
yielding robust restorations with high visual fidelity. Results
show that all evaluated methods suffer from limitations in restor-
ing fine structures such as lane markings on the road surfaces.
In order to improve their performance, in addition to developing
problem-specific networks, future work should focus on gener-
ating larger and more diverse datasets, in terms of occluding
vehicles, road surface textures, and structures. Moreover, fu-
ture works should make the vehicle removal algorithms inde-
pendent from vehicle masks which in this stage is needed as an
extra input to the networks. Using the SkyScapes dataset, we
demonstrate that vehicle removal can improve the performance
of surface extraction. As a next step, we plan to explore the
direct application of vehicle removal to trained networks using
images generated by this approach.
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