
Analyzing One-Sided Communication Using
Memory Access Diagrams

Olaf Krzikalla1, Arne Rempke1, and Ralph Müller-Pfefferkorn2

1 German Aerospace Center, Dresden, Germany
{olaf.krzikalla,arne.rempke}@dlr.de

2 Technische Universität, Dresden, Germany
ralph.mueller-pfefferkorn@tu-dresden.de

Abstract. In recent years, one-sided communication has emerged as an
alternative to message-based communication to improve the scalability of
distributed programs. Decoupling communication and synchronization in
such programs allows for more asynchronous execution of processes, but
introduces new challenges to ensure program correctness and efficiency.
The concept of memory access diagrams presented in this paper opens up
a new analysis perspective to the programmer. Our approach visualizes
the interaction of synchronous, asynchronous, and remote memory ac-
cesses. We present an interactive tool that can be used to perform a post-
mortem analysis of a distributed program execution. The tool supports
hybrid parallel programs, shared MPI windows, and GASPI communi-
cation operations. In two application studies taken from the European
aerospace industry we illustrate the usefulness of memory access dia-
grams for visualizing and understanding the logical causes of program-
ming errors, performance flaws, and to find optimization opportunities.

Keywords: One-Sided Communication · PGAS Programming Models
· Memory Access Analysis.

1 Introduction

Today, distributed applications can create a shared global address space across
nodes of an HPC system by using asynchronous, one-sided memory accesses
to remote memory. This global address space has given rise to new program-
ming models like one-sided MPI or GASPI[1], which allow new ways to develop
powerful applications, but also introduces new challenges to ensure program
correctness and efficiency.

In a one-sided communication model a process can directly access memory
areas of another target process. For the target process, such accesses are trans-
parent, leading to a decoupling of data transfer and process synchronization.
In addition, these accesses can even be asynchronous to the executing process,
allowing an overlap of computation and communication. However, the potential
interaction of direct, asynchronous and remote memory accesses to the same
memory region increases the software complexity. The software developer must



2 O. Krzikalla et al.

ensure race-free memory accesses across the entire process space. On the other
hand, process synchronization must not be stricter than necessary, otherwise the
performance and scalability benefits of one-sided communication will be lost.

The paper contributes to the systematic understanding of parallel distributed
applications that use one-sided, asynchronous communication. The introduced
visualization concept opens up a new analysis perspective to the programmer.
We present an interactive visualization tool for the memory access analysis of
GASPI programs with an extension for MPI shared windows. Our tool supports
the analysis of hybrid parallel programs, i.e. programs combining distributed
and shared-memory parallelization. Two application studies on the analysis of
industrial codes from the European aerospace industry complete the paper.

2 Terms, Operations, and Execution Model

Throughout this paper, we distinguish between two types of memory accesses. A
direct memory access is executed synchronously by a thread, usually by a CPU
instruction. It always accesses process-local memory. An asynchronous memory
access is caused by a one-sided communication operation and is usually part of
a data transfer between processes. It can access local memory as well as remote
memory. In addition, we use the term remote memory access for asynchronous
memory accesses to the local memory of one process caused by a communication
operation of another process.

A one-sided communication operation copies data from the memory of one
process to the memory of another process. It is usually accompanied by synchro-
nization operations. For example, the write_notify operation specified by the
GASPI standard copies data from local source memory to target remote mem-
ory. It also sets a notification flag on the remote side signaling the completion
of the data transfer. Source and remote memory reside in dedicated regions.
In GASPI these regions are called segments, in MPI windows. Asynchronous
memory accesses can only occur to these regions.

We model a program execution as a task graph. A task executed by a thread
represents either a direct memory access or a communication operation. We
compute the synchronization relations between threads and processes using a
replay algorithm. This algorithm replays the recorded synchronization operations
in an arbitrary order respecting the synchronization relations of the operations.
As proved in [7] this leads to a logically sound task graph, which includes all
happens-before relations across threads and processes.

In addition, the task graph is extended with virtual tasks. Virtual tasks are
not assigned to a thread and therefore run in parallel to all threads. However,
they are forked by thread tasks or other virtual tasks and eventually joined by
thread tasks. Fig. 1 shows a task graph of a write_notify operation initiated by
process 1, that writes data to the memory of process 2. The write_notify call
is modeled as the task WN . It forks three virtual tasks RL, WR, and WF . RL

represents the asynchronous read from the local memory. WR represents the re-
mote writing to the memory of process 2. Due to the data dependency, we model



Analyzing One-Sided Communication Using Memory Access Diagrams 3

RL as happening before WR. The third virtual task forked by write_notify is
the notification task WF . It sets a flag on the remote process signaling the com-
pletion of the write access. So WR happens before WF . The task WT represents
a call to an operation waiting for the completion of the local asynchronous read.
Note that this task waits only for the local read task, but not for the remote
write task. The remote side waits for the data to arrive. The corresponding op-
eration is modeled by the NW task. This task is triggered, when the flag is set
by WF .

Virtual tasks can be used to model all kinds of one-sided communication and
synchronization operations. Many examples for the modeling of MPI, GASPI,
and openShmem operations are given in [6]. Virtual tasks play a central role
in our analysis approach, because they abstract from concrete APIs while accu-
rately modeling the logical relationships of events.

W N W T

RL

WR WF

NW

process 1

process 2

Fig. 1. Virtual tasks of a write_notify operation.

3 Visualization Concept and Realization

In programs with one-sided communication, the interactions between direct
memory accesses and remote memory accesses form the central element of com-
munication between processes. In order to analyze these interactions we have
developed a visualization concept based on memory access diagrams.

A memory access diagram is a two-dimensional Cartesian coordinate system.
It represents the course of the memory accesses related to the execution of a
particular thread. The x-axis denotes the program time of the visualized thread
as logical time steps. A logical time step is either a direct memory access or
another event represented in the task graph (e.g. a synchronization operation).
The y-axis denotes the local address space of the process to which the visualized
thread belongs. Each direct memory access is represented as a vertical line, which
marks the access interval at the time of the access. The access type is determined
by color: read accesses are marked green and write accesses red (Fig. 2).

Fig. 2 illustrates this visualization concept. It displays the direct memory
accesses to the source and target arrays as they happen over time. During
each logical time step one direct memory access is performed.

Asynchronous memory accesses, like direct memory accesses, have an ad-
dress interval and an access type. However, unlike direct memory accesses, such
a memory access has a potentially very large address interval. A single mem-
ory access to individual data words within this interval is not represented by



4 O. Krzikalla et al.

1 int* source = 0x10;
2 int* target = 0x20;
3 for (int i=0; i <4; ++i)
4 {
5 target [i] = source [i];
6 }

0 2 4 6 8
0x10

0x18

0x20

0x28

0x30

time

pr
oc

es
s-

lo
ca

la
dd

re
ss

Fig. 2. Visualization of direct memory accesses in a memory access diagram.

our diagrams. Instead, each memory access by a communication operation is al-
ways represented as access to the entire address interval. This interval is plotted
directly on the y-axis of the diagram.

Specifying a concrete logical time for such a memory access from the point
of view of the visualized thread is usually not possible, since it occurs asyn-
chronously to the thread execution. However, both the earliest time at which
the access can take place and the latest time at which the access can take place
can be specified. Thus, our diagrams draw asynchronous memory accesses as
rectangles. The width of the rectangle represents the time range, at which the
shown memory access can happen. The height represents the address range, and
the color of the rectangle represents the access type again.

Fig. 3 illustrates this concept. The vertical sequence of tasks in the task graph
are executed by a thread. The first task represents a loop similar to the one of
Fig. 2. It performs four direct memory writes to address 0x10-0x20. The second
task is a write operation, which transfers the data just written to another process.
This operation initiates an asynchronous read access – the virtual task R – to the
local memory at address 0x10-0x20. Depending on R is the asynchronous write
access W (see also Fig. 1). Asynchronous accesses initiated by GASPI operations
are specified by the GASPI segment id seg, an offset o into seg, and a byte size
sz. For remote accesses the target rank r is added. The third task of the thread
again represents a loop, this time writing to address 0x0-0x10. The fourth task
represents a wait operation, which synchronizes with the local read of the former
write operation. The final task again represents a loop, this time reading from
address 0x0-0x10. The green rectangle in the associated memory access diagram
represents the asynchronous read access from the perspective of the thread. This
access starts with the execution of the write operation, and it lasts until the
wait operation is executed. During that time, all memory locations inside the
rectangle can be read by the asynchronous read access. The representation as
a rectangle corresponds to the usual specifications of one-sided communication
operations, since these specifications neither specify any access order nor further
timing constraints.

In order to visualize all kinds of asynchronous memory accesses in the de-
scribed way we have generalized the computation of the time range of the access
as seen by a particular thread based on the task graph of the program execution.
An asynchronous memory access starts with the latest thread task, which has a



Analyzing One-Sided Communication Using Memory Access Diagrams 5

Rank 0
Thread 84108

proc_init

group_commit

segment_create

local w:[10,20)

write

local w:[0,10)

wait

local r:[0,10)

segment_delete

R(o:16 sz:16 seg:0)

W(r:1 o:16 sz:16 seg:0)

Rank 1
Thread 84118

proc_init

group_commit

segment_create

local r:[0,10)

segment_delete

Fig. 3. Task graph and corresponding memory access diagram of a thread.
happens-before relation to the corresponding virtual task. And it ends with the
first thread task, to which this virtual task has a happens-before relation.

Fig. 4 visualizes both an asynchronous local read access and a remote write
access of process 1. Two processes, each consisting of one thread, exchange data
via write_notify. The virtual notification tasks are specified by the target
rank r, the target segment s and the flag id f. Both processes have organized its
memory in the same way: the region from 0x0-0x10 is only locally accessed, the
region from 0x10-0x20 is locally written and then sent to the remote process, and
the region from 0x20-0x30 acts as receive buffer, from which the data received
is later read. The green rectangle in the memory access diagram represents the
local asynchronous read access similar to Fig. 3. The red rectangle represents
the remote write access, which is caused by the other process. The red arrow in
the task graph outlines how this remote access is timed in relation to process 1.
From the point of view of process 1 the remote write access can occur as soon
as the barrier before the data exchange is entered (barrier(E)). And it is not
finished until the corresponding notification flag is received by the notify_reset
operation, which corresponds to the NW task in Fig. 1.

process 1 process 2

Rank 0
Thread 96592

proc_init(E)

proc_init(L)

group_commit(E)

group_commit(L)

segment_create(E)

segment_create(L)

local w:[10,20)

barrier(E)

barrier(L)

write_notify

local w:[0,10)

wait

notify_reset

local r:[20,30)

segment_delete

R(o:16 sz:16 seg:0)

W(r:1 o:32 sz:16 seg:0)

r:1, s:0, f:0

Rank 1
Thread 96609

proc_init(E)

proc_init(L)

group_commit(E)

group_commit(L)

segment_create(E)

segment_create(L)

local w:[10,20)

barrier(E)

barrier(L)

write_notify

local w:[0,10)

wait

notify_reset

local r:[20,30)

segment_delete

R(o:16 sz:16 seg:0)

W(r:0 o:32 sz:16 seg:0)

r:0, s:0, f:0

Fig. 4. Representation of a local asynchronous read access and a remote write access
to the memory of process 1.

The tool presented in this paper consists of two components. The recording
tool traces a program execution. The analysis and visualization tool evaluates
the recorded program execution after its completion.

The recording tool is implemented on top of the dynamic instrumentation
API PIN [10]. We trace function calls including the values of their arguments
and the return result, and we use the fine-grained instrumentation capabilities of
PIN to record the addresses of direct memory accesses. With our implementation,
practical applications are slowed down by a factor of 2-10 due to instrumentation



6 O. Krzikalla et al.

and recording, and a native 10-second run of a CFD program on 24 processes
over a typical mesh, for example, will generate a total of 10 GB of analysis
data [5]. However, memory access patterns do not usually depend on the length
of the program run. Also, the number of processes usually does not affect the
interaction between local computation and communication, only the amount of
data exchanged. Therefore, when applying our analysis, one should limit oneself
to a rather short program run with few processes. In our experience, this is also
perfectly sufficient to obtain the desired insights.

The second component of our tool suite is the analysis and visualization
tool. It reads a recorded program execution and displays a task graph for all
threads of all processes. The task graph provides a global view of the program
execution, including its synchronization relationships. From there, a user can
select a thread and view its memory access diagram. The memory access diagram
provides a view of the process-local memory as observed by the selected thread.
The user may zoom in, and hide address ranges. By default, address ranges
without accesses are hidden. Moreover, our tool automatically checks for data
races. A memory access diagram is well suited for visualizing such a race, since
races are intuitively recognizable as an overlap of multiple memory accesses.

Fig. 5 shows a case very similar to Fig. 3. The only difference is that the
direct memory accesses in the third task have been shifted by 8 bytes. In this
case the memory from address 0x10-0x18 is written by direct memory accesses,
while at the same time the write operation reads data from this region. This
constitutes a data race, which can also be recognized by the two direct write
accesses inside the green rectangle.

Fig. 5. Selection of a task representing an asynchronous memory access that causes a
data race.

Fig. 5 also demonstrates the interactive capabilities of our tool to understand
the relationships between program synchronization and memory access patterns.
All tasks involved in data races are marked red in the task graph display. Red
lines are drawn to the tasks representing conflicting memory accesses. The user
can click on such a task to switch to the memory accesses diagram. The selected
memory access is then shown hatched. Thus, a user who clicks on the mouse
pointer position shown in the task graph of Fig. 5 will see the right memory
access diagram with the hatched asynchronous read access.

The interaction also works the other way around. A user can select an asyn-
chronous memory access in the diagram to see its temporal embedding in the



Analyzing One-Sided Communication Using Memory Access Diagrams 7

displayed thread. The left part of Fig. 6 shows a memory access diagram of a
stencil code using double buffering. Clicking at the shown mouse pointer posi-
tion in the remote write access leads to the task graph on the right side. In this
case, not only is the access event highlighted in gray in the task graph, but also
the paths to those tasks are marked blue, that lead to the logical time limit
of the memory access with respect to the displayed thread. This allows you to
analyze asynchronous memory accesses not only in the context of other memory
accesses, but also in the context of the triggering and synchronizing functions.

Rank 1
Thread 33661

Rank 2
Thread 33673

Rank 0
Thread 33708

Rank 3
Thread 68232

proc_init proc_init proc_init proc_init

group_commit group_commit group_commit group_commit

segment_create segment_create segment_create segment_create

segment_create

local r:[4c,214)

segment_create

local r:[4c,1c8)

segment_create

local r:[4c,214)

segment_create

local r:[4c,1c8)

barrier

write_notify

write_notify

local r:[4c,214)

notify_reset

local r:[0,e4)

notify_reset

local r:[4c,260)

write_notify

write_notify

local r:[4c,214)

notify_reset

local r:[17c,260)

notify_reset

local r:[0,214)

write_notify

write_notify

local r:[4c,214)

notify_reset

local r:[17c,260)

notify_reset

local r:[0,214)

write_notify

write_notify

local r:[4c,214)

notify_reset

local r:[17c,260)

notify_reset

local r:[0,214)

write_notify

write_notify

local r:[4c,214)

notify_reset

local r:[17c,260)

notify_reset

local r:[0,214)

barrier

write_notify

write_notify

local r:[4c,1c8)

notify_reset

local r:[0,e4)

notify_reset

local r:[4c,214)

write_notify

write_notify

local r:[4c,1c8)

notify_reset

local r:[0,e4)

notify_reset

local r:[4c,214)

write_notify

write_notify

local r:[4c,1c8)

notify_reset

local r:[0,e4)

notify_reset

local r:[4c,214)

write_notify

write_notify

local r:[4c,1c8)

notify_reset

local r:[0,e4)

notify_reset

local r:[4c,214)

write_notify

write_notify

local r:[4c,1c8)

notify_reset

local r:[0,e4)

notify_reset

local r:[4c,214)

barrier

write_notify

write_notify

local r:[4c,214)

notify_reset

local r:[0,e4)

notify_reset

local r:[4c,260)

write_notify

write_notify

local r:[4c,214)

notify_reset

local r:[0,e4)

notify_reset

local r:[4c,260)

write_notify

write_notify

local r:[4c,214)

notify_reset

local r:[0,e4)

notify_reset

local r:[4c,260)

write_notify

write_notify

local r:[4c,214)

notify_reset

local r:[0,e4)

notify_reset

local r:[4c,260)

write_notify

write_notify

local r:[4c,214)

notify_reset

local r:[0,e4)

notify_reset

local r:[4c,260)

barrier

write_notify

write_notify

local r:[4c,1c8)

notify_reset

local r:[0,e4)

notify_reset

local r:[4c,214)

write_notify

write_notify

local r:[4c,1c8)

notify_reset

local r:[130,214)

notify_reset

local r:[0,1c8)

write_notify

write_notify

local r:[4c,1c8)

notify_reset

local r:[130,214)

notify_reset

local r:[0,1c8)

write_notify

write_notify

local r:[4c,1c8)

notify_reset

local r:[130,214)

notify_reset

local r:[0,1c8)

write_notify

write_notify

local r:[4c,1c8)

notify_reset

local r:[130,214)

notify_reset

local r:[0,1c8)

barrier barrier barrier barrier

R(o:76 sz:76 seg:0)

W(r:0 o:532 sz:76 seg:0)

r:0, s:0, f:1

R(o:380 sz:76 seg:0)

W(r:2 o:0 sz:76 seg:0)

r:2, s:0, f:0

R(o:76 sz:76 seg:1)

W(r:0 o:532 sz:76 seg:1)

r:0, s:1, f:1

R(o:380 sz:76 seg:1)

W(r:2 o:0 sz:76 seg:1)

r:2, s:1, f:0

R(o:76 sz:76 seg:0)

W(r:0 o:532 sz:76 seg:0)

r:0, s:0, f:1

R(o:380 sz:76 seg:0)

W(r:2 o:0 sz:76 seg:0)

r:2, s:0, f:0

R(o:76 sz:76 seg:1)

W(r:0 o:532 sz:76 seg:1)

r:0, s:1, f:1

R(o:380 sz:76 seg:1)

W(r:2 o:0 sz:76 seg:1)

r:2, s:1, f:0

R(o:76 sz:76 seg:0)

W(r:0 o:532 sz:76 seg:0)

r:0, s:0, f:1

R(o:380 sz:76 seg:0)

W(r:2 o:0 sz:76 seg:0)

r:2, s:0, f:0

R(o:76 sz:76 seg:0)

W(r:1 o:456 sz:76 seg:0)

r:1, s:0, f:1

R(o:456 sz:76 seg:0)

W(r:3 o:0 sz:76 seg:0)

r:3, s:0, f:0

R(o:76 sz:76 seg:1)

W(r:1 o:456 sz:76 seg:1)

r:1, s:1, f:1

R(o:456 sz:76 seg:1)

W(r:3 o:0 sz:76 seg:1)

r:3, s:1, f:0

R(o:76 sz:76 seg:0)

W(r:1 o:456 sz:76 seg:0)

r:1, s:0, f:1

R(o:456 sz:76 seg:0)

W(r:3 o:0 sz:76 seg:0)

r:3, s:0, f:0

R(o:76 sz:76 seg:1)

W(r:1 o:456 sz:76 seg:1)

r:1, s:1, f:1

R(o:456 sz:76 seg:1)

W(r:3 o:0 sz:76 seg:1)

r:3, s:1, f:0

R(o:76 sz:76 seg:0)

W(r:1 o:456 sz:76 seg:0)

r:1, s:0, f:1

R(o:456 sz:76 seg:0)

W(r:3 o:0 sz:76 seg:0)

r:3, s:0, f:0

R(o:76 sz:76 seg:0)

W(r:3 o:456 sz:76 seg:0)

r:3, s:0, f:1

R(o:456 sz:76 seg:0)

W(r:1 o:0 sz:76 seg:0)

r:1, s:0, f:0

R(o:76 sz:76 seg:1)

W(r:3 o:456 sz:76 seg:1)

r:3, s:1, f:1

R(o:456 sz:76 seg:1)

W(r:1 o:0 sz:76 seg:1)

r:1, s:1, f:0

R(o:76 sz:76 seg:0)

W(r:3 o:456 sz:76 seg:0)

r:3, s:0, f:1

R(o:456 sz:76 seg:0)

W(r:1 o:0 sz:76 seg:0)

r:1, s:0, f:0

R(o:76 sz:76 seg:1)

W(r:3 o:456 sz:76 seg:1)

r:3, s:1, f:1

R(o:456 sz:76 seg:1)

W(r:1 o:0 sz:76 seg:1)

r:1, s:1, f:0

R(o:76 sz:76 seg:0)

W(r:3 o:456 sz:76 seg:0)

r:3, s:0, f:1

R(o:456 sz:76 seg:0)

W(r:1 o:0 sz:76 seg:0)

r:1, s:0, f:0

R(o:76 sz:76 seg:0)

W(r:2 o:532 sz:76 seg:0)

r:2, s:0, f:1

R(o:380 sz:76 seg:0)

W(r:0 o:0 sz:76 seg:0)

r:0, s:0, f:0

R(o:76 sz:76 seg:1)

W(r:2 o:532 sz:76 seg:1)

r:2, s:1, f:1

R(o:380 sz:76 seg:1)

W(r:0 o:0 sz:76 seg:1)

r:0, s:1, f:0

R(o:76 sz:76 seg:0)

W(r:2 o:532 sz:76 seg:0)

r:2, s:0, f:1

R(o:380 sz:76 seg:0)

W(r:0 o:0 sz:76 seg:0)

r:0, s:0, f:0

R(o:76 sz:76 seg:1)

W(r:2 o:532 sz:76 seg:1)

r:2, s:1, f:1

R(o:380 sz:76 seg:1)

W(r:0 o:0 sz:76 seg:1)

r:0, s:1, f:0

R(o:76 sz:76 seg:0)

W(r:2 o:532 sz:76 seg:0)

r:2, s:0, f:1

R(o:380 sz:76 seg:0)

W(r:0 o:0 sz:76 seg:0)

r:0, s:0, f:0

Fig. 6. Selection of a remote memory access – the causal relationship to the operations
of the thread associated with the memory access diagram (here: the left thread) be-
comes clear.

4 Application Studies

Case studies on the application of memory access diagrams to small and com-
monly used code patterns are explained in [5]. In this paper we describe the
analysis of two industry codes that we have evaluated using our trace and visu-
alization tools. Both codes originate from the European aerospace industry.

4.1 Checking correctness and performance during development -
Spliss

Spliss[8] is a linear solver library, which supports a wide range of linear oper-
ators typically used in computational fluid dynamics (CFD) applications. This
includes sparse block matrices of variable block sizes and different scalar types as
well as matrix-free operators. It is actively developed at the German Aerospace
Center (DLR) and used by various research institutions and industry partners.

Since a key design goal of Spliss is HPC efficiency and scalability, a one-sided
asynchronous communication strategy using GASPI was implemented. During
the development we used memory access diagrams to ensure, that the commu-
nication patterns behave as intended, and to spot optimization opportunities.



8 O. Krzikalla et al.

Fig. 7 shows the memory access diagram of a Jacobi solver run in Spliss. Only
accesses to the memory area of the halo segment of the vectors were traced, since
the local part is never accessed by asynchronous or remote memory accesses. Be-
fore timestamp ~230 some initialization accesses occur. At ~230 the first Jacobi
iteration starts. From then on, a regular pattern is visible with alternating direct
and remote accesses.

Fig. 7. Memory access diagram of the halo segment of a Jacobi solver run in Spliss.

What stands out during the iterations is the rather short duration of asyn-
chronous read accesses and the large temporal gaps from those accesses to the
following direct write accesses. This points to a very tightly coupled synchro-
nization pattern. By clicking in one of the rectangles representing such an asyn-
chronous read access (in the figure the cross-hair is already in the right place) the
user can switch to the task graph view to examine the reason for the synchroniza-
tion pattern (Fig. 8). In the task graph view the task representing the clicked
read access is marked gray and the synchronization relations to the formerly
watched thread are highlighted by blue arrows.

Fig. 8. Task graph for a Jacobi solver run in Spliss showing the blue marked synchro-
nization path of an asynchronous memory access.



Analyzing One-Sided Communication Using Memory Access Diagrams 9

The actually intended synchronization task for the examined read access is
the wait task at the very bottom of the task graph view (the one which is directly
connected to the gray marked read task). However, the blue synchronization path
joins the watched thread already before the next direct memory access due to a
global barrier (barrier(E): enter barrier, barrier(L): leave barrier). It turned
out, that this particular barrier was not necessary during the solver loop. After
we removed it, the memory access pattern changed as depicted in Fig. 9. In
this diagram the temporal gaps have disappeared. On the other hand there are
still no overlaps of direct and asynchronous memory accesses proofing that the
change doesn’t cause a data race.

Fig. 9. Memory access diagram of the halo segment of a Jacobi solver run after the
removal of a gratuitous barrier.

This case demonstrates one strategy to utilize our memory access diagrams
to find optimization opportunities. The developer can look for temporal gaps
between asynchronous and direct memory accesses to the same addresses. By
closing such gaps communication operations get more time to finish before a
process actually waits for the corresponding data. Thus, the program becomes
more asynchronous and hence can scale better.

In the explained example the optimization improved the performance of the
solver loop by up to 30% even for few processes, since an entire global barrier
could be removed. However, for this kind of optimization one should usually
expect measurable improvements especially for many processes. For instance, a
similar optimization approach of a stencil code only significantly increased the
parallel efficiency above 256 processes [4]. A method for automatically finding
such temporal gaps is also described there. To reduce the search space, such gaps
are only searched for along the critical path.

4.2 Assessing memory accesses of an established code - HYDRA

Rolls-Royce’s CFD solver framework HYDRA[9] uses a pure distributed paral-
lelization scheme. Our task was to assess an evaluation version, which uses a



10 O. Krzikalla et al.

one-sided communication scheme. In that version node-local communication is
organized by shared MPI windows. Therefore, we have extended our tool suite
to handle direct memory accesses to remote process memory. We have done this
by mapping tasks for direct memory accesses to shared MPI windows to the
process address space of the just visualized thread and handle them as virtual
tasks. In this way, the synchronization relationships to other tasks are preserved.

Fig. 10 shows a memory access diagram of a sample HYDRA run. Data in the
GASPI segment memory is sent and received by processes from remote nodes.
Data in the SHAN segment memory is directly read and written by other pro-
cesses running on the same node. Those accesses still appear as rectangles similar
to remote accesses to the GASPI segment, since the access and synchronization
patterns are the same for each process independent of its node location.

G
A

SPI
segm

ent
SH

A
N

segm
ent

Fig. 10. Memory access diagram of halo segments of a HYDRA run. The dashed
rectangles mark a copy operation that can be saved.

As you can see in the diagram, many direct memory accesses are close to
remote accesses. Still, there are some temporal gaps between direct and remote
accesses. During our assessment, we found that the synchronization patterns
that cause these gaps are difficult to change. However, another access pattern
caught our attention. The spots marked by the dashed rectangles represent a
copy operation from the SHAN segment to the GASPI segment. From the GASPI
segment the data is then sent to processes on remote nodes. But this data could
also be transferred directly from the SHAN segment to remote nodes via GASPI
operations. Thus, the copy operation can be optimized away. Then the green
rectangle at address 0x6d7000 would move to address 0x2ba285fe3020, because
the data will be read from there. The diagram also shows, that in this case
the GASPI remote access represented by that green rectangle needs a stricter
synchronization. This prevents an overlap and hence a data race with the direct
write accesses to address 0x2ba285fe3020 starting at timestamp ~140.

As a result of our assessment we have shown, that there are no data races
in HYDRA regarding the interaction on direct memory accesses, accesses to
shared MPI windows and remote asynchronous accesses. We have also identified
several optimization opportunities. The asynchronicity of memory accesses could
be increased on several occasions. In addition, a superfluous copy operation in
the solver loop has been identified.



Analyzing One-Sided Communication Using Memory Access Diagrams 11

5 Related Work
Memory access analysis tools are used for a wide variety of problems. We limit
our brief overview to tools targeting distributed platforms and visualization
tools.

Data race detection tools that include direct memory accesses in their analy-
sis, are MC-Checker [2] and UPC-Thrille[11]. MC-Checker checks one-sided MPI
communication operations; and UPC-Thrille checks UPC programs. A perfor-
mance analysis tool for MPI programs is described in [14], which traces memory
accesses and provides a dataflow and dependency graph.

A visualization tool for memory accesses is described in [13]. It focuses on
visualizing performance characteristics of direct memory accesses. The space-
time diagrams used are very similar to our visualization concept. MemAxes[3]
uses a radial layout to visualize the performance of direct memory accesses.

To the best of our knowledge, our tool is the only one that combines direct,
asynchronous, and remote memory accesses in its visualization and analysis.

6 Conclusion
This paper extends the portfolio of available analysis methods for distributed
programs with one-sided communication. The introduced tool offers new possi-
bilities to examine all memory accesses in their respective logical context and
draw conclusions about the correctness and efficiency of the program. The inter-
active integration of memory access diagrams with the task graph model makes
it possible to study the logical relationships in a program in detail. The visu-
alization can also contribute to a better understanding of the often complex
interrelationships of threads and processes in development meetings, documen-
tation or even in teaching.

Our tool combines the analysis of local memory accesses, accesses via shared
MPI windows, and GASPI operations. However, the underlying model is API-
independent. One-sided MPI operations can easily be supported and will be
integrated as the need arises. We expect the popularity of one-sided communi-
cation to continue to grow as a remote completion operation similar to GASPIs
write_notify is integrated into MPI [12].

The recent addition of shared MPI windows to our tool suggests another
improvement. In principle, this method can also be used to examine shared
memory programs. The visualization can reveal basically the same information
about the access patterns of a shared memory program. Overlaps would still
indicate data races, and it would still be important to have as few gaps as possible
between memory accesses of the watched thread and the memory accesses from
other threads to the same region.

Acknowledgements We would like to thank the Center for Information Ser-
vices and High Performance Computing (ZIH) Dresden, esp. Prof. Wolfgang
Nagel for supporting this work. We would also like to thank the German Aero-
space Center (DLR) and Rolls-Royce for their support and the permission to
publish analysis results of their codes.



12 O. Krzikalla et al.

References
1. Alrutz, T., Backhaus, J., et al.: Gaspi – a partitioned global address space program-

ming interface. In: Facing the Multicore-Challenge III: Aspects of New Paradigms
and Technologies in Parallel Computing. pp. 135–136. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013)

2. Chen, Z., Dinan, J., et al.: Mc-checker: Detecting memory consistency errors in mpi
one-sided applications. In: SC14: International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 499–510 (Nov 2014)

3. Gimenez, A.A., Gamblin, T., et al.: Memaxes: Visualization and analytics for char-
acterizing complex memory performance behaviors. IEEE Transactions on Visual-
ization and Computer Graphics PP(99), 1–1 (2017)

4. Herold, C., et al.: Optimizing one-sided communication of parallel applications
using critical path methods. In: 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). pp. 567–576 (May 2017)

5. Krzikalla, O.: Neue Ansätze zur Speicherzugriffsanalyse paralleler Anwendungen
mit gemeinsam genutztem Adressraum. Ph.D. thesis, Technische Universität Dres-
den (2018)

6. Krzikalla, O., Knüpfer, A., et al.: On the Modelling of One-Sided Communication
Systems. In: Proceedings of the 7th International Conference on PGAS Program-
ming Models. pp. 41–53. Edinburgh, UK (October 2013)

7. Krzikalla, O., Müller-Pfefferkorn, R., Nagel, W.E.: Synchronization debugging of
hybrid parallel programs. In: Dutot, P.F., Trystram, D. (eds.) Euro-Par 2016: Par-
allel Processing: 22nd International Conference on Parallel and Distributed Com-
puting, Grenoble, France, August 24-26, 2016, Proceedings. pp. 37–50. Springer
International Publishing, Cham (2016)

8. Krzikalla, O., Rempke, A., et al.: Spliss: A sparse linear system solver for transpar-
ent integration of emerging hpc technologies into cfd solvers and applications. In:
STAB-Symposium 2020. pp. 635–645. Notes on Numerical Fluid Mechanics and
Multidisciplinary Design, Springer International Publishing (Juli 2021)

9. Lapworth, L.: Hydra: A framework for collaborative cfd development. In: Interna-
tional Conference on Scientific and Engineering Computation. Singapore (2004)

10. Luk, C.K., et al.: Pin: Building customized program analysis tools with dynamic
instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. pp. 190–200. PLDI ’05, ACM,
New York, NY, USA (2005)

11. Park, C.S.: Active Testing: Predicting and Confirming Concurrency Bugs for Con-
current and Distributed Memory Parallel Systems. Ph.D. thesis, EECS Depart-
ment, University of California, Berkeley (December 2012)

12. Sergent, M., Aitkaci, C.T., et al.: Efficient notifications for mpi one-sided applica-
tions. In: Proceedings of the 26th European MPI Users’ Group Meeting. EuroMPI
’19, Association for Computing Machinery, New York, NY, USA (2019)

13. Servat, H., Llort, G., González, J., Giménez, J., Labarta, J.: Low-overhead detec-
tion of memory access patterns and their time evolution. In: Träff, J.L., Hunold,
S., Versaci, F. (eds.) Euro-Par 2015: Parallel Processing: 21st International Confer-
ence on Parallel and Distributed Computing, Vienna, Austria, August 24-28, 2015,
Proceedings. pp. 57–69. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

14. Subotic, V., Ferrer, R., Sancho, J.C., Labarta, J., Valero, M.: Quantifying the
potential task-based dataflow parallelism in mpi applications. In: Proceedings of
the 17th International Conference on Parallel Processing - Volume Part I. pp.
39–51. Euro-Par’11, Springer-Verlag, Berlin, Heidelberg (2011)


	Analyzing One-Sided Communication Using Memory Access Diagrams

