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Abstract
The state-of-the-art technology in the field of vehicle automation will lead to a mixed traffic environment in the coming 
years, where connected and automated vehicles have to interact with human-driven vehicles. In this context, it is necessary 
to have intention prediction models with the capability of forecasting how the traffic scenario is going to evolve with respect 
to the physical state of vehicles, the possible maneuvers and the interactions between traffic participants within the seconds 
to come. This article presents a Bayesian approach for vehicle intention forecasting, utilizing a game-theoretic framework in 
the form of a Mixed Strategy Nash Equilibrium (MSNE) as a prior estimate to model the reciprocal influence between traffic 
participants. The likelihood is then computed based on the Kullback-Leibler divergence. The game is modeled as a static 
nonzero-sum polymatrix game with individual preferences, a well known strategic game. Finding the MSNE for these games 
is in the PPAD ∩ PLS complexity class, with polynomial-time tractability. The approach shows good results in simulations 
in the long term horizon (10s), with its computational complexity allowing for online applications.

Keywords Vehicle intention prediction · Trajectory prediction · Bayesian approach · Mixed strategy · Nash equilibrium

Abbreviations
GNI  Gradient-based nikaido isoda
minADE  Minimum average displacement error
minFDE  Minimum final displacement error
MR  Missing rate
MSNE  Mixed strategy nash equilibrium
NE  Nash equilibrium
pdf  Probability density function
PLS  Polynomial local search
PPAD  Polynomial parity arguments on directed 

graphs

1 Introduction

Risk identification in traffic is essential for guaranteeing safe 
driving in automated vehicles. Dangerous scenarios could 
arise from an inaccurate estimation of future trajectories of 
other traffic participants, given the uncertainty of human 
behavior. Prediction is therefore necessary in order to guar-
antee a safe decision making. Nevertheless, a reliable esti-
mation can not be limited to a short-term prediction based on 
dynamic or kinematic models, but it has to take into account 
possible future interactions and influence between the traffic 
participants in the scenario.

Many trajectory predictors are data-driven-based and 
they suffer from exponentially increasing sample complexity 
when trying to predict trajectories across a joint space in a 
multi-agent environment, as the number of agents increases. 
Edge cases constitute another challenge, particularly when 
the learning data set is largely comprised of straightforward 
traffic scenarios.

This paper presents a methodology to predict the future 
trajectories of vehicles in traffic, considering the informa-
tion coming from sensors in terms of actual state of the 
vehicles and interactions and mutual influence between 
them, that can come from possible future traffic outcomes. 
The proposed model is therefore multi-agent, not based on 
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data-driven learning and generally adaptable to any topol-
ogy. The contributions of this study are the following: 

1. Definition of an innovative and effective framework 
for vehicle intention prediction through the use of 
the Bayes’ theorem. The approach considers both the 
rational prior outcome of the traffic scenario through 
a Mixed Strategy Nash Equilibrium (MSNE) and the 
current evidence from the vehicle data as the likelihood. 
The game-theoretic framework takes into account the 
interactions and reciprocal influence between the vehi-
cles, while the likelihood corrects the prior estimate con-
sidering the actual short-term trajectories that the agents 
are going to take.

2. The model outputs probability distributions over a set 
of possible trajectories that vehicles can take. The finite 
action space of the agents allows the game to be mod-
eled as a static nonzero-sum polymatrix game (network 
coordination game) with individual preferences. Poly-
matrix games with individual preferences belongs to the 
PPAD ∩ PLS complexity class, with polynomial-time 
tractability [1–3]. The computational time satisfies the 
real-time application. The simplification of the game 
does not negatively impact performance, as the results 
are still acceptable even for long-term horizons of 10 
seconds.

The organization of this paper are as below. In Sect. 2, 
some background related to the different models of trajec-
tory prediction algorithm is provided. The formulation of 
the problem can be found in Sect. 3. In Sect. 4, the approach 
is presented. Section 5 shows the details of a case study. In 
Sect. 6, some results in simulation environment in terms of 
performances and computational time are provided. Finally, 
the results and potential future research directions are dis-
cussed in Sect. 7.

2  Related Works

Most motion prediction approaches can be categorized fol-
lowing the three-levels scheme proposed by Ref. [4]: (1) 
Physics-based motion prediction algorithms, which rely 
on dynamic and kinematic models of the system [5, 6]; (2) 
Maneuver-based motion models, which consider the maneu-
ver intention of the traffic participant and incorporate a high-
level-strategic layer [7–9]; (3) Interaction-aware prediction 
algorithms, which consider the possible interactions and 
inter-dependencies between the vehicles in the traffic sce-
narios [10, 11].

The physics-based motion prediction algorithms have an 
acceptable reliability only on a short-term horizon, since the 
possible maneuver and the long-term interactions between 

the vehicles are ignored. Also the maneuver-based motion 
models fall short in the context of a complex traffic scenario. 
As stated by Ref. [10] indeed, many trajectory prediction 
approaches focus on estimating marginal prediction samples 
of possible future trajectories of single vehicles, failing in 
considering interactions and mutual influence between the 
traffic participants. The interaction-aware prediction algo-
rithms try to provide a solution to this problem by modeling 
the multi-agent environment.

A second classification, transversal to the previous one 
proposed by Ref. [8], divides the approaches into: (1) Deter-
ministic models, which predict for each agent a unique tra-
jectory that is considered the most probable [12–14]; (2) 
Stochastic models, which define a non-deterministic frame-
work for the estimation, for instance predicting the likeli-
hood of a finite set of outcome-representative trajectories 
[8, 15–18], or defining a probabilistic state-space occupancy 
grid [19]. The predictive method proposed in this article 
can be classified as stochastic, maneuver-based and interac-
tion-aware. It is stochastic because the output is not a single 
trajectory but a probability distribution over a set of tra-
jectories, maneuver-based since maneuvers are predicted, 
interaction-aware because the forecast outcome includes the 
result of a MSNE, within a multi-agent interactive and game 
theoretic framework.

Game theory is a powerful approach that can be used 
in prediction and decision making. Recent examples can 
be found in Refs. [20–22]. In Ref. [22], Nash and Stackel-
berg equilibria are applied for human-like decision making, 
modeling the different driving styles and social interaction 
characteristics. In Ref. [20], the authors define an online 
method of predicting multiagent interactions estimating their 
SVO (Social Value Orientation). The interactions between 
agents are modeled as a best-response game and the control 
policy is found by solving the dynamic game and finding 
the Nash equilibrium. In Ref. [21], the other agents’ cost 
function parameters are estimated online then used to find 
the Nash equilibrium in a discretized dynamic game. These 
works model the interaction as a multi-agent dynamic game, 
since the action space consists on the agents’ vehicles inputs. 
However, the problem of finding a Nash equilibrium of a 
dynamic game can be computationally unfeasible in real-
time applications, particularly under a long time horizon. 
For this reason, the current study considers the high-level 
decisions that vehicles can take, or the possible maneuvers 
in the scenario, as the action space. This allows to have a 
finite action space, a N-person static finite polymatrix game 
that can always be solved by finding a Nash equilibrium in 
mixed strategies [23].

The approach proposed in this article has been inspired 
particularly by the work of Refs. [11, 15] and [24]. In Ref. 
[15], the inference of a distribution of high-level, abstract 
driving maneuvers has been taken as reference for the 
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desired output. Moreover, the philosophy under the proposed 
Bayesian network in Ref. [15] reflects the Bayesian approach 
proposed in this article. In Ref. [11], a Nash equilibrium in 
mixed and behavioural strategies is used to predict the future 
vehicles’ maneuvers. The mixed strategies for a player are a 
probability distribution over all of the player’s pure strate-
gies, therefore the possible maneuvers. Finally, the compu-
tation of the MSNE utilizes a merit function, known as the 
Gradient-based nikaido-isoda (GNI) function, as introduced 
in Ref. [24].

3  Problem Statement

For each traffic participant in the scenario, a set of represent-
ative trajectories are computed based on map information 
(Fig.1). These trajectories represent particular maneuvers 
and behaviours that the vehicle could take in the future. The 
definition of these trajectories has been inspired particularly 
by the work of Ref. [15]. The trajectory computation is per-
formed in two stages: (1) Computation of the geometrical 
path through a Particle Swarm Optimization algorithm. (2) 
Definition of the acceleration profile along the path. Local 
uncertainty along the trajectory is introduced through a evo-
lution kinematic model with Gaussian noise on the vehicle 
state and input variables.

The trajectories defined for each vehicle are:

• Acceleration trajectory: trajectory in which 
a ∼ N(a ∣ �a, �

2
a
) , where �a = 1.5 m∕s

2 and �2
a
= �2

0
+ �t , 

�2
0
= 0.5 m2

∕s4 , � = 1e − 3

• Constant speed trajectory: trajectory in which 
a ∼ N(a ∣ �a, �

2
a
) , where �a = 0 m∕s

2 and �2
a
= �2

0
+ �t , 

�2
0
= 0.5 m2

∕s4 , � = 1e − 3

• Braking trajectory: trajectory in which the accelera-
tion is the output of an Intelligent driver model (IDM) 
when it is overlapping with trajectories of other vehicles, 
a ∼ N(a ∣ �a, �

2
a
) , where �a = IDM or −0.5 m∕s

2 (if there 
is no overlapping) and �2

a
= �2

0
+ �t , �2

0
= 0.5 m2

∕s4 , 
� = 1e − 3

• Harsh braking trajectory: trajectory in which 
a ∼ N(a ∣ �a, �

2
a
)  ,  w h e r e  �a = −3.0 m∕s

2  a n d 
�2
a
= �2

0
+ �t , �2

0
= 0.5 m2

∕s4 , � = 1e − 3

Considering the state vector x = { x, y, � , v}T , where x and 
y are the Cartesian coordinates of the position, � is the head-
ing and v is the speed, the time step t in the trajectory can be 
represented by the following normal distribution:

Where p(xt ∣ �) is the probabilty density function (pdf) of the 
state x conditioned by the choice of the trajectory � at time 
step t, ��

t
 comes from the � trajectory computation and ��

t
 

is the covariance matrix on the state space that gives local 
uncertainty. Starting from a simple bicycle model of the sys-
tem ẋ(t) = f (x(t), u(t)) , where u(t) = {a(t), �(t)}T is the vec-
tor of the inputs (acceleration a(t) and steering angle �(t) ), 
through inverse kinematics the steering angle �(t) required 
is computed. Considering the linearized time-discrete ver-
sion xt+1 = Atxt + Btut the dynamic model of the covariance 
matrix is defined:

(1)p(xt ∣ �) = N(xt ∣ �
�
t
,��

t
)

Fig. 1  Example of trajectories. 
The ellipses represent the mul-
tivariate normal distributions at 
each time step
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Where � t = diag(�2
a
(t), �2

�
(t)) is the diagonal covariance 

matrix of the inputs, with variances linearly increasing over 
time.

The policy of the i-th traffic participant �(�j ∣ x0) is a 
probability distribution over the finite number of trajectories 
available �j, j = 1,… ,Ni and represents the future inten-
tion of the vehicle, conditioned by the actual vehicle state 
x0 . Marginalizing on the agent policy, the pdf of the state 
vector x = { x, y, � , v}T at time t conditioned by the initial 
state x0 is:

The result is a Gaussian Mixture Model distribution, 
weighted by the agent policy �(�j ∣ x0) . This policy repre-
sents the strategic uncertainty over the intentions of the vehi-
cle and it is the object of interest of the prediction approach 
presented in this article.

4  Application of the Bayes’ Theorem

The Bayes’ theorem is applied:

Where p(�j) is the prior probability of the trajectory �j and 
p(x0 ∣ �j) is the likelihood, which gives a measure of com-
patibility between the current evidence coming from data x0 
and the pre-computed trajectory �j . The p(�j) is the result of 
a MSNE, p(x0 ∣ �j) is found defining a likelihood function.

4.1  Prior Probability Through Mixed Strategy Nash 
Equilibrium

The MSNE is the solution to a non-cooperative game involv-
ing two or more players, considering mixed strategies (prob-
ability distributions over the action space) instead of pure 
strategies. A mixed strategy profile is considered an MSNE 
if each player’s strategy is the best response to the strategies 
of all other players. This decision to use the prior distri-
bution as an MSNE comes from the hypothesis that every 
traffic participant, as a rational player, is prone to adopt his 
optimal strategy in the multi-agent traffic scenario.

Each vehicle (player) i = 1,… ,M in the scenario is sup-
posed to choose among a finite set of Ni trajectories, defined 

(2)� t+1 = AT
t
� tAt + BT

t
� tBt

(3)

p(xt ∣ x0) =

j=Ni∑

j=1

�(�j ∣ x0) p(xt ∣ �j)

=

j=Ni∑

j=1

�(�j ∣ x0) N(xt ∣ �
�j
t ,�

�j
t )

(4)�(�j ∣ x0) =
p(�j) p(x0 ∣ �j)

p(x0)
=

p(�j) p(x0 ∣ �j)

∑k=Ni

k=1
p(�k) p(x0 ∣ �k)

by the notation Ti = {� i
1
,… , � i

Ni
} . N indicates the total number 

of trajectories that the vehicles can take, i.e. N =
∑M

j=1
Nj.

Let the notation

denote the mixed-strategy vector of the i player, i.e. the prob-
ability distribution over the available trajectories, while

denotes the vector of the mixed-strategies of all the M 
players.

Let �
−i =

[
�T
1
,… ,�T

i−1
,�T

i+1
, ...�T

M

]T denote the set of 
mixed-strategies except i. The notation � = {�1,… , �M} 
indicates the joint pure strategy among all the players (i 
player chooses trajectory � i ), while fi denotes the payoff 
function for the i player and it takes into account safety, 
efficiency and comfort.

The following problem is considered:

A point �∗ that satisfies Eq.(7) is called a Nash equilibrium 
(NE). Every N-person static finite game in normal form 
admits a noncooperative NE solution in mixed strategies 
[23].

4.1.1  Payoff Function

The payoff function fi for each traffic participant takes into 
account safety ( f S

i
 ), comfort ( f C

i
 ) and efficiency ( f E

i
 ) with 

weighting coefficients ( �S , �C , �E ) as shown in Eq.(8). The 
definition of payoff function considering pure strategies is 
presented here, which means that player i chooses trajectory 
� i with probability 1.

The payoff function for safety f S
i

 depends on the joint pure 
strategy of all the players � , while both the ones for effi-
ciency f E

i
 and comfort f C

i
 depend only on the trajectory cho-

sen by player i, that is � i . The weighting coefficients have 
been tuned to optimize the performance in the simulation 
environment used in this article [25].

The safety payoff is computed following Eq. (9):

(5)

�i =

[
p(� i

1
),… , p(� i

Ni
)

]T
∈ �i

where �i =

{
� ∈ ℝ

Ni ∣

Ni∑

k=1

�k = 1

}

(6)
� =

[
�T
1
,… ,�T

M

]T
∈ �

where � =

{
� ∈ ℝ

N
∣ � =

[
�T
j

]

j=1,…,M
, �j ∈ �j

}

(7)
Find �∗ =

[
�∗

1
,… ,�∗

M

]T

s.t. �∗

i
= arg min

�∶�
−i=�

∗

−i

�
�∼�

[fi(�)]

(8)fi(�) = �Sf S
i
(�) + �Cf C

i
(� i) + �Ef E

i
(� i)
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Where f S
i,j
(� i, � j) is the safety payoff for player i (and player 

j for symmetry) considering trajectory � i for player i and 
trajectory � j for payer j, wS is the penalty for crash, � is the 
discount factor, �� j

t
 is the mean vector (x, y) of the multivari-

ate normal distribution N(xt ∣ �� j

t
,�� j

t
) , which gives the pdf 

of the position of vehicle j on its trajectory � j at time step t.
The definition of the safety payoff, in particular the expo-

nent in Eq. (9), is inspired by the Mahalanobis distance [26], 
with a slightly modification. Indeed, the Mahalanobis distance 
defines a distance measure between a point and a distribution, 
while here a distance between two distributions is needed. 
Therefore it is necessary to modify the covariance matrix, 
that is �̂� = 0.5(𝜮� j

t
+𝜮� i

t
) + �I . The covariance matrix is 

therefore the average between the covariance matrices of the 
two distributions, with the additional term �I . This term has 
two scopes: (1) to guarantee in any case a payoff when the two 
distributions are close, even with small covariance matrices, 
(2) to avoid that �̂ is badly conditioned for the inversion. A 
further description is given in Fig.2.

The comfort payoff is the following:

Where alongt  and alat
t

 are the longitudinal and lateral accelera-
tion at time step t of the trajectory � i , while wC

long
 and wC

lat
 are 

the respective penalties.
The efficiency payoff is the following:

(9)

f S
i
(𝝉) = wS

∑

j≠i

f S
i,j

(
� i, � j

)

f S
i
(𝝉) = wS

∑

j≠i

t=T∑

t=0

� t exp

(
−

(
𝝁� j

t
− 𝝁� i

t

)T

�̂�
−1
(
𝝁� j

t
− 𝝁� i

t

))

(10)f C
i
(� i) =

t=T�

t=0

� t
�
wC
long

‖alongt ‖ + wC
lat
‖alat

t
‖
�

(11)f E
i
(� i) = wE

t=T∑

t=0

� t
(
vlim − vt

)2

In Eq.(11), vlim is the speed limit and vt the speed at time step 
t of the trajectory � i.

Considering the previous definitions, it is possible now 
to extend it in the general case of mixed strategies, in which 
the action of player i is a probability distribution over the 

possible trajectories: �i =

[
p(� i

1
),… , p(� i

Ni
)

]T
 . �k , with 

k = 1,… ,Ni , are the available trajectories of player i.
Reminding that � = [�T

1
,… ,�T

M
]
T denotes the set of the 

mixed-strategies of all the M players, the objective is to find 
an expression for the expected payoff in case of mixed strate-
gies, i.e. �

�∼�
[fi(�)].

4.1.2  Polymatrix Coordination Game with Individual 
Preferences

The definition of the players’ payoff allows to model the 
game as a polymatrix coordination game with individual 
preferences, a well known strategic game. Let’s define the 
matrix Pi,j

∈ ℝ
Ni×Nj as the matrix of safety payoffs between 

vehicle i and vehicle j. The pi,jn,m element of the matrix is:

Where Ti and Tj indicate the sets of trajectories available to 
the i and j vehicle. Therefore the (n, m) element of the matrix 
Pi,j is the safety payoff for vehicle i and j given that vehicle 
i chooses the trajectory � i

n
 and vehicle j the trajectory � jm.

Let’s recall that N indicates the total number of all the 
available trajectories of the vehicles in the scenario. Con-
sidering the matrix Q̂

i
∈ ℝ

Ni×N , defined as:

It is possible to define the matrix Qi
∈ ℝ

N×N for each traffic 
participant i:

(12)pi,j
n,m

= f S
i,j

(
� i
n
, � j

m

)
� i
n
∈ T

i, � j
m
∈ T

j

(13)Q̂
i
=

[
Pi,1 ... Pi,i−1

0
Ni×Ni Pi,i+1 ... Pi,M

]

Fig. 2  The computation of 
the safety payoff in Eq. (9) is 
based on a distance measure 
between the multivariate normal 
distributions that describe the 
uncertainty about the future 
steps of the trajectories
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Considering the vector r̂i ∈ ℝ
Ni for each vehicle i, whose 

element r̂i
j
 is:

The vector ri ∈ ℝ
N for each vehicle i is defined:

The expected payoff in the mixed strategy game is:

That, considering the definitions Eqs. (12) and (15) are:

The expression can be made quadratic with respect to 
� ∈ ℝ

N by means of the definitions Eqs.(14) and (16):

The component �TQi� gives the payoff given by the interac-
tion with other drivers, so linked with safety and trajectories’ 
overlapping. The component �Tri is the payoff exclusively 
dependent by the choice of the player, therefore linked with 
comfort and efficiency.

Note that the Eq. (18) is the definition of a static nonzero-
sum polymatrix coordination game (network coordination 
game) with individual preferences. The matrix Pi,j

∈ ℝ
Ni×Nj 

is the symmetric payoff of the bimatrix game {i, j} , the vec-
tor r̂i ∈ ℝ

Ni represents the individual preference function 
of player i. Polymatrix games with individual preferences 
belongs to the PPAD ∩ PLS complexity class, with polyno-
mial-time tractability [1, 2].

The Gradient-based Nikaido-Isoda (GNI) function [24] is 
used to find the NE. With the payoff function defined in Eq. 
(19), the gradient can be computed analytically with evident 
gain in terms of computational efficiency.

4.1.3  Optimization via Gradient‑Based Nikaido‑Isoda 
Function

The NE of the N-player game considered in this article Eq. 
(7) is found using the GNI Function, introduced in Ref. 

(14)Qi
=

�
0
N×

∑i−1

j=1
Nj Q̂

i T
0
N×

∑M

j=i+1
Nj

�T

(15)r̂i
j
= f C

i
(𝜏 i

j
) + f E

i
(𝜏 i

j
)

(16)ri =
�
0
1×

∑i−1

j=1
Nj r̂i T 0

1×
∑M

j=i+1
Nj

�

(17)

�
�∼�

[fi(�)] =

Ni∑

k=1

p(� i
k
)[f C

i
(� i

k
) + f E

i
(� i

k
)

+

M∑

j=1

Nj∑

n=1

f S
i,j
(� i

k
, � j

n
)p(� j

n
)]

(18)�
𝝉∼𝜸

[fi(𝝉)] = 𝜽T
i
[r̂i +

M∑

j=1

Pi,j𝜽j]

(19)�
�∼�

[fi(�)] = �Tri + �TQi�

[24]. Let’s indicate the expected payoff for player i with 
the function gi for simplicity of notation:

The GNI function V(�, �) is the following:

Reminding that M is the number of players (traffic par-
ticipants) in the scenario, � = [�T

1
,… ,�T

M
]
T
∈ ℝ

N  with 
N =

∑M

j=1
Nj is the vector of the mixed strategies of the 

players and �j ∈ ℝ
Nj is the mixed strategy vector of the j 

player. ∇jgj(�) denotes the gradient of gj with respect to �j 
that indicates the direction of maximum increase of the pay-
off for player i in its action space Θi.

The idea under this merit function is that every player 
can locally improve their objectives using the steepest 
descent direction, instead of computing a globally opti-
mal solution [24].

The gradient of Vi(𝜸, �) ∶= gi(𝜸) − gi(�̃�(i, �)) is the 
following:

W h e r e  Ei ∶= FiF
T
i
∈ ℝ

N×N  ,  Fi = [0
Ni×

∑i−1

j=1
Nj

Ii 0
Ni×

∑M

j=i+1
Nj
]
T
∈ ℝ

N×Ni , Hgi
(�) ∶= ∇(∇gi(�)) is the hes-

sian matrix, I ∈ ℝ
N×N and Ii ∈ ℝ

Ni×Ni are identity matrices.
Considering the function gi(�) in Eq. (20), the gradients 

are:

The modified vector of mixed strategies �̃�(i, �) ∈ ℝ
N is:

The Hessian Hgi
(�) ∈ ℝ

N×N is:

As it is evident, ∇Vi(�, �) can be computed analytically by 
using Eqs. (22), (23), (24) and (25). Finally, the gradient of 
V(�, �) is:

That is used for the descent iteration:

(20)gi(�) = �
�∼�

[fi(�)] = �Tri + �TQi�

(21)
V(𝜸, 𝜂) =

M∑

i=1

gi(𝜸) − gi(�̃�(i, 𝜂))

where �̃�j(i, 𝜂) = �̃�j =

{
𝜽j − 𝜂∇jgj(𝜸), if j = i

𝜽j, otherwise

(22)∇Vi(𝜸, �) = ∇gi(𝜸) − (I − EiHgi
(𝜸))∇gi(�̃�(i, �))

(23)
∇gi(�) = (Qi

+ Qi T
)� + ri ∈ ℝ

N

∇igi(�) = FT
i
∇gi(�) ∈ ℝ

Ni

(24)
�̃�(i, �) = 𝜸 − �Fi∇igi(𝜸)

�̃�(i, �) = 𝜸 − �Ei∇gi(𝜸)

(25)Hgi
(�) ∶= ∇(∇gi(�)) = (Qi

+ Qi T
)

(26)∇V(�, �) =

M∑

i=1

∇Vi(�, �)
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The fact that �(k+1) belongs to the allowed space �  (defined 
in Eq. (6)) is not ensured by considering only Eq. (27) 
because the gradient ∇V(�(k), �) does not belong in general 
to �  . This is the reason for which it is necessary to project 
∇V(�(k), �) into �  before computing the descent in Eq. (27) 
and this theme is faced in Sect. 4.1.4.

4.1.4  Gradient Projection

In the optimization problem described in Sect. 4.1.3, the 
gradient ∇V(�(k), �) is projected into the feasible space �  . 
This is necessary in order to allow that �(k) ∈ �  ∀k = 1, 2, ... 
The projection procedure is based on the consideration that, 
from the definition of �  in Eq. (6), every mixed strategy �i 
must belong to the space � , defined in Eq. (5). This defini-
tion ensures that �i is actually a probability distribution over 
the possible trajectories of player i, i.e. 

∑Ni

j=1
�i,j = 1 . Con-

sidering that ∇V = [∇1V ,… ,∇iV , ...∇MV]
T , where ∇iV  is 

the gradient with respect to �i , for each ∇iV  the following 
steps are executed: 

1. Projection properly defined: 

Where n̂ is the normal versor to the hyperplane ∑Ni

j=1
�i,j = 1 , that is n̂ = 1 , while with the notation 

< ⋅, ⋅ > is indicated the scalar product.
2. Tuning of the module: 

(a) Computation of the step: 

(b) While ∃ 𝜃i,j < 0 : 

4.2  Likelihood Function

The evaluation of the likelihood term p(x0 ∣ �j) , which gives 
a measure of how likely is the current state x0 , coming from 
sensor data, with respect to trajectory �j , is based on the 
following steps: 

1. A short-term trajectory 𝜏 is computed through a sim-
ple bicycle model f (⋅) , starting from current state 
x0 ∼ N(x ∣ �0,�0) and considering the input variables 

(27)�(k+1) = �(k) − �∇V(�(k), �)

(28)∇
∥

i
V(𝜸(k), 𝜂) = ∇iV(𝜸

(k), 𝜂)− < ∇iV(𝜸
(k), 𝜂), n̂ > n̂

(29)�
(k+1)

i
= �

(k)

i
− �∇

∥

i
V(�(k), �)

(30)

∇
∥

i
V(�(k), �) = �∇

∥

i
V(�(k), �) � = 0.9

repeat (a)

ut = {at, �t} ∼ N(u ∣ u0,�
u
t
) , therefore considering 

acceleration and steering angle normally distributed 
around the initial estimated input u0 = {a0, �0}.

2. The Kullback-Leibler divergence is measured between 
the pdf of the short-term trajectory p(xt ∣ 𝜏) and the pdf 
of the reference trajectory p(xt ∣ �j) at each time step t: 

 The Kullback-Leibler divergence D
KL

(P‖Q) can be seen 
as the information lost when the distribution Q is used to 
approximate the distribution P, in this case, considering 
the whole horizon, how much the trajectory �j (Q) is fail-
ing in representing the "true" trajectory 𝜏 (P).

3. p(x0 ∣ �j) is computed through a soft-max function that 
takes as a parameter the sum over the horizon of the 
Kullback-Leibler divergence between the time steps of 
the two trajectories: 

The philosophy under the computation of p(x0 ∣ �j) is to meas-
ure how much the current state of the vehicle x0 , considering the 
initial input u0 , is coherent with respect to the strategic choice 
of trajectory �j . A graphical representation is given in Fig. 3.

5  Case Study

In this section, an example of application is reported, show-
ing briefly how the predictor performs.

(31)

D
KL

�
p(xt ∣ 𝜏)‖p(xt ∣ 𝜏j)

�

=
∫
ℝn

N(xt ∣ �
𝜏
t
,�𝜏

t
) ln

N(xt ∣ �
𝜏
t
,�𝜏

t
)

N(xt ∣ �
𝜏j
t ,�

𝜏j
t )

dx

(32)

p(x0 ∣ 𝜏j) =
exp (−𝛽

∑T

t=1
D

KL
(p(xt ∣ 𝜏)‖p(xt ∣ 𝜏j)))

∑Ni

k=1
exp (−𝛽

∑T

t=1
D

KL
(p(xt ∣ 𝜏)‖p(xt ∣ 𝜏k)))

Fig. 3  The likelihood Eq. (4) defines a distance between the trajec-
tories coming from the map topology ( �

1
 and �

2
 ) and a trajectory 

obtained considering constant acceleration and steering angle ( ̂𝜏 ). In 
this case, �

2
 is expected to be more likely with respect to �

1
 , consider-

ing initial state and input (x
0
,u

0
)



432 G. Lucente et al.

1 3

The simulation environment is Automated Driving 
Open Research (ADORe) [25], an open source modular 
software library and toolkit for decision making, planning, 
control and simulation of automated vehicles, developed 
by the Institute of Transportation Systems of the German 
Aerospace Center (DLR).

The trajectory predictor is applied in the intersection 
scenario showed in Fig. 4. In the simulation, the vehicle 2 
accelerates till the speed of 10 m∕s while vehicle 1 deceler-
ate smoothly and stops at the cross. The prediction for this 
example has a horizon of 5 s.

In Table 1, a punctual estimate is given at time t = 6 s 
circa, corresponding to the situation shown in Fig. 4. The 
table provides an example on how the correction mecha-
nism works: the Prior predicts with a high probability that 
vehicle 1 stops at the intersection and vehicle 2 acceler-
ates, but it also gives space to the opposite possibility, 
which is strongly reduced by the Likelihood. Note that 
the Prior does not predict a crash situation, indeed even if 
vehicle 1 proceeds with constant speed (16%), vehicle 2 
accelerates or stops at the intersection, avoiding the colli-
sion. This is also evident in the Pi,j matrix, defined in Eq. 
(12) and shown in Table 2.

The performance of the approach is measured using met-
rics defined in Ref. [27], in particular the minimum average 
displacement error (minADE):

the minimum final displacement error (minFDE):

and the Missing rate (MR):

The trajectory � i
j
 , considered for the computation, is the one 

with the highest posterior probability �(� i
j
∣ xi

0
) of player i. 

The expression 1�2
0.95
(⋅) in the MR definition indicates the 

indicator function that is equal to one if the null hypothesis 
of the chi-squared goodness of fit test is not rejected, other-
wise zero. In particular, the argument of 1�2

0.95
(⋅) is the test 

statistic, the reference distribution is a chi-squared distribu-
tion �2 with 2 degree of freedom and 0.95 confidence inter-
val. The MR is basically testing at each time step if the 
actual point of the trajectory belongs to the distribution of 
the predicted trajectory.

Regarding the episode in Fig. 4, the results are shown in 
Table 3. The Table illustrates that both vehicles, vehicle 1 
and vehicle 2, have an average displacement error along the 
episode of 2.79 m and 1.21 m, respectively, with a combined 
average of 2.0 m. During the last step of the episode, vehicle 
1 exhibits a final displacement error of 3.01 m, while vehicle 

(33)minADE =
1

MT

M�

i=1

T�

t=0

‖xi
t
− �

� i
j

t ‖L2

(34)minFDE =
1

M

M�

i=1

‖xi
T
− �

� i
j

T
‖L2

(35)MR =
1
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T∑

t=0
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(
(xi

t
− �
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j

t )
T
�
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t
− �

� i
j

t )

)

Fig. 4  The intersection scenario in the simulation

Table 1  Estimation at t = 6 s, corresponding to the situation in Fig.4

Trajectories Prior Likelihood Posterior

V. 1 acceleration 0.0196 0.0173 0.0007
V. 1 constant speed 0.1693 0.0990 0.0338
V. 1 stop at intersection 0.8663 0.9433 0.9562
V. 1 harsh braking 0.26434 0.0173 0.0092
V. 2 acceleration 0.6733 0.4800 0.8705
V. 2 constant speed 0.0193 0.3688 0.0191
V. 2 stop at intersection 0.2881 0.1415 0.1098
V. 2 harsh braking 0.0193 0.0096 0.0004

Table 2  Matrix Pi,j at t = 6 s of the collision payoffs for the vehicles 1 
and 2, the definition of this matrix can be found in Eq.12

Trajectories V.1 acc V.1 const sp V.1 stop V.1 braking

V.2 acc 25641.8 0.0 0.0 0.0
V.2 const sp 947.8 33034.3 0.0 0.0
V.2 stop 0.0 0.6 0.0 0.0
V.2 braking 0.0 0.0 0.0 0.0

Table 3  minADE and minFDE of the episode shown in Fig. 4. The 
length of the episode is around 5 s

Vehicle 1 Vehicle 2 Total

minADE (m) 2.79 1.21 2.00
minFDE (m) 3.01 3.06 3.04
MR – – 0.34
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2 records a final displacement error of 3.06 m, with 3.04 m 
considering both. This reaffirms the reliability of the predic-
tions even after 5 seconds have elapsed. The missing rate 
considering both vehicles is 0.34, meaning that for the 66% 
of the episode length, the vehicles belong to the predicted 
distributions.

In Fig. 5, the minADE for vehicles 1, 2 and for both vehi-
cles is shown. For the vehicle that stops (vehicle 1, Fig. 4), 
the minADE is higher because of the more dynamic behav-
ior of the vehicle but it converges around 2.7 m when the 
vehicle starts to decelerate. For vehicle 2 the minADE is 
lower, the vehicle has indeed a more constant behavior, but 
it grows rapidly, this is due to the higher uncertainty on the 
position for a vehicle that is in movement.

In Fig. 6, the real trajectories are represented in red. In 
blue are shown the predicted trajectories and the probability 
is given by the color intensity. A slight shift is applied to 
each trajectory to allow a better readability. The observa-
tion of the graph reveals that trajectories with the highest 
posterior probability (indicated by the dark blue lines) align 
more accurately with the actual trajectories (depicted in red), 
affirming the prediction's high quality. The graph provides a 

clearer comprehension of the episode, showcasing the poten-
tial trajectories considered and the actual ones followed by 
the vehicles.

6  Results and Discussion

This section presents the results of some simulations in 
ADORe in terms of minADE, minFDE and MR. Figure 7 
shows the scenarios simulated. Here is a brief description 
of the scenarios: 

1. Scenario 1: this scenario represents a case study from 
the preceding chapter, wherein the car turning left halts 
at the intersection, affording the car with high priority 
to proceed.

2. Scenario 2: in this case the car turning left holds prec-
edence over the car proceeding straight, which stops at 
the intersection.

3. Scenario 3: in this scenario, the merging car pauses at 
the intersection, granting passage to the car with high 
priority.

Fig. 5  The figure shows how does the minADE evolve in time
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4. Scenario 4: the car with high priority reduces its speed, 
permitting the other car to merge smoothly.

Each scenario has been repeated different times. The predic-
tion horizon is 10s. For the first 8s of the simulation, predic-
tions are collected. The simulation ends at t = 18s.

Table 4 shows the results of the simulation scenarios in 
terms of minADE, minFDE and MR, while Table 5 pre-
sents the results of the 1st, 12th, 24th, 50th places in the 
WAYMO competition in 2021. The two tables cannot be 
compared, since the first shows the results of predictions 
in a simulation environment, the second presents results of 
prediction on a real road dataset. However, the simulator 
used (ADORe) is not only a simulation environment but also 
a tool for decision making and control of AVs in traffic, 
currently used by the Institute of Transportation Systems 
of the German Aerospace Center. This suggests a high level 
of realism in the trajectories taken by the vehicles. Figure 8 
showcases the time required by the algorithm to compute the 
Nash equilibrium and to perform the complete prediction. 
From these data some observations can be drawn:

• The approach shows good performances in simulation 
in the long term horizon (10 s) and outperforms the 

Fig. 6  Here the real trajectories (red) and the predicted ones (blue) 
are shown

Fig. 7  Test scenarios
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acceptable standards of the WAYMO interactive data 
set results. Nevertheless, a fair comparison can only be 
established once the model is tested using real-road data 
sets.

• The computation of the equilibrium always takes less 
than 12 ms and the whole prediction is performed in less 
than 120 ms, considering 11 trajectories in the scenario. 
This allows a online application of the predictor. Other 
algorithms, based on the computation of Nash equilibria 
in multi-agent dynamic games, often require computa-
tional time on the order of seconds. The simulations have 
been carried out with a processor Intel(R) Core(TM) 
i7-10850H CPU @ 2.70GHz 2.71 GHz.

• The weak point of the algorithm is the trajectories com-
putation, as the Particle Swarm Optimization approach 

is not computationally efficient. This is reflected in the 
significant difference between the time required from 
the Nash equilibrium computation and the total time 
required. The difference is basically required by the 
definition of the trajectories. Nonetheless, the total time 
required still allows a online application of the algorithm.

7  Conclusions

In this paper, an innovative approach for predicting tra-
jectories in traffic is proposed. The approach combines an 
interaction-aware motion model with a physics-based and 
maneuver-based model. The Bayes’ theorem is applied: the 
prior estimate takes into account the rational evolution of 
the traffic scenario by computing the Mixed strategy nash 
equilibrium (MSNE) among the participating vehicles. The 
likelihood adjusts the prior estimate by incorporating data 
coming from the vehicles in terms of position, heading, 
speed, acceleration and steering angle. This allows for con-
sideration of the possibility of irrational decisions by the 
participating vehicles that may have been discarded in the 
prior estimate. The output of the approach is a probability 
distribution over a set of representative trajectories for each 
vehicle.

This innovative framework, which combines a priori 
game-theoretic considerations with the a posteriori data 
from the road, constitutes a crucial contribution of this 
study. Another important contribution is the modeling of 
the interactive scenario as a polymatrix coordination game 
with individual preferences, a well known strategic game 
with desirable computational complexity. The preliminary 
and indicative experiments to test the approach show good 
results and good computational efficiency. Future areas of 

Table 4  minADE, minFDE and MR of the scenarios

minADE (m) minFDE (m) MR Horizon (s)

Scenario 1 4.91 11.59 0.44 10.0
Scenario 2 4.80 11.48 0.49 10.0
Scenario 3 4.27 5.62 0.33 10.0
Scenario 4 4.86 9.95 0.36 10.0

Table 5  Results of the 1st, 12th, 24th, and 50th places in the 
WAYMO competition in 2021

minADE (m) minFDE (m) MR Horizon (s)

1. place 1.12 2.31 0.15 8.0
12. place 1.40 3.17 0.27 8.0
24. place 1.56 3.50 0.34 8.0
50. place 16.02 35.49 0.98 8.0

Fig. 8  Computational time required considering the number of trajectories in the scenario. The simulations have been carried out with a proces-
sor Intel(R) Core(TM) i7-10850H CPU @ 2.70GHz 2.71 GHz
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development include incorporating a model for online esti-
mation of drivers’ behavior and implementing a decision-
making algorithm based on this predictor.
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