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Abstract—This paper proposes an approach to predict vessel
tracks in waterways using a bidirectional Long Short-Term
Memory (Bi-LSTM) and a transformer model. For this purpose,
the positions of the buoys along the Elbe and Weser rivers
delimiting the waterway will be determined and merged with
Automatic Information System (AIS) data. Additionally, tide data
as well as weather information will be used to train the model.
The created models are then trained with and without tide and
weather data and evaluated against each other to check the
influence of the additional attributes. Our results show that the
lowest average error for each predicted feature is achieved with
the Bi-LSTM, where no tide and weather data were used for
training. Also the transformer model reaches lower prediction
errors than a linear prediction, which is used as a baseline model.

Index Terms—Track prediction; bidirectional LSTM; Trans-
former; AIS; Tide data; Weather information

I. INTRODUCTION

The shipping industry is a important section of the global
economy, with around 80% of global trade by volume carried
out by sea [1]. This high volume leads to dense traffic,
especially in coastal regions, due to the limited and narrow
routes that can be navigated by vessels. Accidents such as that
of the container ship Mumbai Maersk, which ran aground off
Wangerooge, or the vessel that collided with a wind turbine in
the north see, pose a major risks [2] [3]. To avoid these types
of incidents, predicting vessel tracks for maritime situational
awareness is becoming increasingly important, as these pre-
dicting can be used to detect anomalous vessel behavior [4].

In this paper, we introduce a bidirectional Long Short-Term
Memory (Bi-LSTM) as well as a transformer model to predict
vessel tracks in waterways. We use historical AIS data, tide
information, weather data as well as topological information as
inputs for these models. As will be described in section III-B,
the topological information is used for representing the water-
ways as grids following the approach from Steidel et al. [5].
We then compare the results with a linear model consisting of
a simple dense layer with a linear activation function. This

model is used as a baseline because it makes simple and
reasonable predictions.

These experiments are motivated by previous works. Steidel
et al. [5] use kernel density estimation for predicting vessel
tracks. However, their approach predict vessel behavior inde-
pendently of the behavior in the previous corridor, which can
lead to great variations for each of the considered parameters.
Our approach predicts track through multiple corridors. Steidel
et al. also considered enhancing the prediction performance
by including weather information. As a recent review paper
by Zhang et al. [6] point out, combining several data sources
to predict vessel tracks is not yet sufficiently researched. We
compare the prediction accuracies for models with and with-
out the weather characteristics: wind speed, wind direction,
wave height and tidal data. To the best of our knowledge,
transformer models have so far only used AIS data for track
prediction [4]. Therefore, combining additional data with AIS
data to train a transformer model for track prediction is a novel
experiment.

This paper is organized as follows. Section II gives a more
thorough description of recent works in vessel track prediction.
Our approaches are detailed in Section III. Part III-A intro-
duces the Bi-LSTM and transformer models and Part III-B
describes the input data sources. Section IV first describes
how we prepared the input data and then provides the results.
The results show that the average prediction errors obtained
with the Bi-LSTM and the transformer models are lower than
that of the linear model. This paper ends with section V where
the presented results will be discussed.

II. RELATED WORK

The prediction of vessel tracks has been intensively re-
searched in recent years. Zhang et al. [6] summarize 57
different works covering this area. Their summary shows that
machine learning has been becoming increasingly important
since 2020. State-of-the-art models within research often use



variations of LSTM models to predict the expected vessel
movement.

One approach introduced by Mehri et al. [7] trains separate
LSTM models for each type of vessel. To train these models,
AIS data were used from November 2017 to the end of
December 2017 from the eastern coast of the United States
of America. In addition, geographic information was used
to simplify vessel tracks. The models were then evaluated
using the Root Mean Square Error (RMSE) and the point-
wise horizontal error and compared with an ordinary LSTM
model. The results show that the developed method receives a
lower point-wise error in predicting the tracks accuracy with
a range of up to 2 kilometers than an ordinary LSTM model.

Forti et al. [8] propose an encoder-decoder LSTM model
that receives up to 20 previous positions to predict the next
20 vessel positions at two-minute intervals. To train the model,
the authors used AIS data from June to September 2018 from
the port of Piombino to Portoferraio on the island of Elba,
Italy.

Also variations of LSTM models were used to predict ship
track. Yang et al. [9] designed a Bi-LSTM to predict short-term
vessel predictions. The model was trained with AIS data from
1364 ship tracks collected during one month in the Taiwan
area. It was then evaluated by comparing the Mean Absolute
Error, RMSE and the Mean-Absolute-Percentage Error with
various other methods, such as simple LSTM and Recurrent
Neural Network (RNN) models. Therefore, 10 vessel tracks
were randomly compared. The results showed that the BI-
LSTM has the lowest error in all categories compared to the
other models. Based on this, Yang et al. [9] state that the
developed model can accurately predict short-term trajectories.

A Bi-LSTM model can also be found in the work by Liu et
al. [10]. They developed a series of routing algorithms where
a Bi-LSTM was augmented with an attention mechanism to
predict the next position of a vessel along the trajectory. The
attention mechanism should make the prediction more accurate
by better learning the dependencies of the AIS data. This
method was trained with AIS data from fishery vessels along
the east coast of China from May 2015 to May 2018. The
results showed that the methods predict vessel positions to an
error of less than 300 meters after one hour and an error of
2.73 kilometers after 9 hours when using an iterative process.

A different approach for trajectory predicting was developed
by Nguyen et al. [4]. They state that standard deterministic
approaches such as LSTMs cannot capture the multi-model
patterns involved in AIS data and are therefore ineffective for
trajectory prediction. With this assumption in mind, Nguyen et
al. [4] propose a transformer structure to deal with the multi-
model nature of AIS tracks. The transformer model contains
8 layers, each with 8 attention heads, and is being trained
and tested with AIS data along the Danish coast during the
first three months of 2019. The model was then evaluated,
among others, against the sequence-to-sequence LSTM model
proposed by Forti et al. [8]. Thereby, a significantly lower
error in the forecast, measured with the haversine distance, is
shown both in the first three hours and after 10 hours. Nguyen

et al. [4] state that the developed model is more suitable to
capture the multi-model nature of AIS-data and extract useful
information in historical data than the compared models.

Much of existing research uses solely the vessel location
information provided via the AIS to predict vessel tracks.
Although, other factors such as weather conditions, tides and
regional geographical characteristics also influence the track
taken. As Zhang et al. [6] pointed out, combining several
data sources to predict vessel tracks is not yet sufficiently
researched.

III. MATERIALS & METHODS

A. Machine Learning Models

LSTM models are widely used for predicting vessel tracks.
They are a type of recurrent neural network that utilize gated
units to selectively control the flow of information within the
network. LSTMs consist of a memory cell and three types
of gates: input gate, forget gate, and output gate. The input
gate regulates the flow of new information into the cell, the
forget gate controls the flow of information out of the cell,
and the output gate determines the information flow from the
cell to the next hidden state. These gates allow selectively
remembering or forgetting information, through which LSTMs
are better able to model long-term dependencies in sequential
data than regular RNNs. [11]

To extend the capabilities of LSTMs, Bi-LSTMs incorporate
information from both past and future time steps of the input
sequence. Thereby, the architecture consists of two LSTM
layers, one processing the sequence in a forward direction and
the other in a backward direction. The outputs of these layers
are concatenated to produce the final output, allowing access
to information from both temporal directions and improving
prediction accuracy compared to regular LSTM models.

LSTMs process input sequences sequentially, updating their
internal state one element at a time. This sequential nature
limits parallelization and can lead to increased computational
complexity and training time, especially for long sequences.
To address this limitation, Vaswani et al. [12] propose the
transformer model, which operates without any recurrence.
The introduced transformer model employs a self-attention
mechanism that enables efficient capturing of global dependen-
cies by processing the entire input sequence in parallel. This
attention mechanism calculates similarity scores for all pairs of
positions in the sequence, allowing the model to learn deeper
dependencies compared to LSTM models. The self-attention
mechanism is combined with a feed-forward network, as well
as normalization layers, and embedded in encoder and decoder
layers. These components collectively enable the transformer
model to effectively capture long-term dependencies which
made it successful for time series predictions.

In this work, we want to compare both a Bi-LSTM and a
transformer model to predict vessel tracks inside waterways.
Therefore, we employed a Bi-LSTM model where each LSTM
has 128 units followed by a dropout layer and a dense layer
that predicts the future attributes. Overall, the model has
at least 155,078 trainable parameters. This model will be



compared with a transformer model that contains three trans-
former encoder layers, based on the architecture introduced
by Vaswani et al. [12]. Using this architecture, the model
contains at least 24,286 trainable parameters. This encoder
layer is also followed by a dense layer predicting the future
attributes. The linear model, to which the Bi-LSTM and the
transformer model are compared, consists of a simple dense
layer with a linear activation function.

B. Maritime Data

AIS data are based on the automatic exchange of data
between vessels regarding their characteristics and positions
with other vessels in their area. AIS data is collected, on the
one hand, from AIS base stations that monitor traffic in specific
areas and, on the other hand, from satellites that collect data
on a global scale. Since the use of AIS is mandatory for
specific vessels, these data can be used to obtain a view of
shipping traffic all over the world and allows creating vessel
tracks [13]. From the AIS data, we extract the Speed Over
Ground (SOG), Course Over Ground (COG), vessel position
(longitude, latitude), the vessel identification number (MMSI)
and the time the message was sent.

Based on the approach of Steidel et al. [5], it is assumed
that vessels in the area of interest have to sail within the
waterways, because only there a minimum depth is ensured.
Waterways are bounded by starboard and port buoys that
structure traffic within the waterways. These buoys are placed
at indeterminate intervals and at crossings to help navigate
within the waterways. Within these waterways, vessels are
obliged to sail as close as possible to the starboard buoy [14].
To extract the required information, we divide the waterways
into a grid, where four buoys always form a cell, as shown
in Fig 1. With this approach, a waterway can be viewed as a
sequential series of cells and all AIS positions occurring within
these cells can be filtered. This filtered AIS data is then used to
create continuous AIS tracks along the considered waterways.
An AIS track is defined as a series of AIS messages for a
particular MMSI received within one minute of the previous
message. If the interval between received messages is longer
than one minute, a new track is created. From this AIS tracks
transition points (TP) at which a vessel enters a cell, i.e., passes
through the starboard and port buoys of the respective cell,
can be calculated. Therefore the positions before and after
entering the cell are interpolated linearly. Further, the distance
to the starboard buoy (ds) at the crossing can be calculated.
This measurement simplifies the prediction, since instead of a
position including latitude and longitude, only one value, the
distance, has to be predicted.

The TP is also used to determine the angle (β) at which
the vessel moves from one cell to the next. Therefore, TP,
the position of the starboard buoy which the vessel crosses by
entering the cell as well as the first position inside the new
cell is used. These three points form a triangle, from which
β can be calculated. At cells where waterways cross, β may
suggest which waterway a vessel will follow.

SOG풅풔
ß

TP
COG

Fig. 1. Visualization of the extracted information from the waterway. The
red cones show the port limits and the green ones the starboard limits of
the waterway. TP indicates the transition point when the vessel enters the
cell, while ds indicates the distance to the starboard board buoy and β the
angle at which the vessel enters the cell. Further SOG and COG are linearly
interpolated for each TP.

Furthermore, it is assumed that tide information has an in-
fluence on the prediction accuracy. Therefore, tide information
from data provided by the European Center for Medium-Range
Weather Forecasts (ECMWF) is used [15]. These data consist
of records of the water surface level from buoys located at
specific positions along the coast and in rivers. The position
of the recording buoys considered in this work are displayed
in Fig. 2. Depending on the position of the track, the water
surface level from the two recording buoys, which are referred
to as b1 and b2, located at the beginning and end of the track,
are added to the AIS track, by interpolating the water levels
based on the time at which the vessel crosses the TP.

Fig. 2. Location and name of the six buoys that measure the water level
in the area of interest. (Bremen, Wilhelmshaven, Wangerooge, Alte Weser,
Cuxhaven and St Pauli)

Since the influence of weather data on the prediction will
also be investigated, the characteristics: wind speed (ws), wave
height (wh) and wind direction (wd) will be extracted from the
ERA5 dataset provided by Copernicus [16]. These are then
attached to the TPs based on time and position.

In summary, a track is represented as a series of
transition points TP , each containing the attributes:
{ds, SOG,COG, β, b1, b2, ws, wh, wd}.

IV. RESULTS

A. Data
In this paper, we use commercially available AIS data

that were collected from terrestrial and satellite sources from



January 01, 2020 to April 30, 2020 along the German Bight
and the Elbe and Weser rivers (Fig. 3).

Fig. 3. AIS vessel positions in the area of interest

The AIS-data were then preprocessed by removing infea-
sible speed messages ( 2 knots < SOG < 30 knots ). Fur-
thermore, the process for generating TPs with the additional
weather and tide characteristics as described in section III-B
is summarized in Fig. 4

Fig. 4. Summary of the process for generating TPs in waterways with tide and
weather characteristics. The data generated from the preceding approaches are
incorporated into the succeeding approaches.

In total, 11,167 tracks with at least 20 and up to 60 transition
points are used. Thereof, 2,877 tracks (26%) navigate along the
Weser, 7,949 tracks (71%) along the Elbe and the remaining
341 tracks (3%) navigate to or from Wilhelmshaven. These

data were then split into a training (80%) and a test (20%)
data sets.

B. Track prediction results

All data-driven models were trained for 50 epochs using
the Adam optimizer and the Mean Square Error (MSE) to
measure the prediction error. In this process, the models are
trained to predict the next TP based on the previous 10 TPs.
The predicted TP is then used again with the previous nine TPs
to predict the subsequent TP. Using this iterative approach, the
subsequent five TPs were predicted. To evaluate the influence
of the additional tide and weather data, each model was trained
three times with different features. In the first approach, SOG,
COG, ds, and β were used exclusively to predict the vessel
tracks. For the second approach, b1 and b2 were added to
the existing features in the dataset, as well as the weather
attributes for the third approach. Table I shows the average
error for predicting the next five TPs compared to the ground
truth.

TABLE I
AVERAGE PREDICTION ERROR OF THE SUBSEQUENT FIVE TPS COMPARED

TO THE GROUND-TRUTH. ds IS MEASURED IN METERS [M], SOG IS
MEASURED IN KNOTS [KN] AND COG, β ARE MEASURES IN DEGREES [o].

THE LINEAR MODEL WAS TRAINED FOR EACH FEATURE INDIVIDUALLY.

Input Data Model ds SOG COG β
[m] [kn] [o] [o]

Linear 178.09 0.74 9.97 18.93
Approach 1 Bi-LSTM 106.42 0.68 2.07 1.85

SOG, COG, ds, β Transformer 182.75 2.73 5.24 7.09
Approach 2 Bi-LSTM 197.46 1.02 2.16 2.03

b1, b2 Transformer 171.21 2.75 5.06 5.95
Approach 3 Bi-LSTM 153.97 1.25 2.11 2.18
wh, ws, wd Transformer 185.67 2.79 7.4 7.64

The average prediction error obtained with the Bi-LSTM
model, which obtained the best result in comparison, can be
divided according to the waterways along the Elbe and Weser
rivers and Wilhelmshaven. This can be seen in Fig. II

TABLE II
AVERAGE PREDICTION ERROR DIVIDED BY WATERWAYS

Waterway ds [m] SOG [kn] COG [o] β [o]
Elbe 100.57 0.65 2.17 1.87

Weser 115.15 0.71 1.90 1.76
Wilhelmshaven 105.15 0.82 2.22 2.64

As the results show, the lowest average prediction error for
ds is achieved along the Elbe river followed by the predictions
along Wilhelmshaven and the Weser river. For SOG, the
lowest error is again obtained along the Elbe. However, the
difference between the best and the worst result applicable
to Wilhelmshaven is only less than 0, 2 knots For the other
features COG and β, the lowest error is received along the
Weser River. The prediction results for these two features are,
with less than one-degree difference, also close to each other.
That the predictions to and from Wilhelmshaven is slightly
worse than for the Elbe and Weser rivers, can be explained



by the fact that the model was trained on only 3% of the
total tracks in this waterway. Therefore, this waterway was
underrepresented for the model. However, since the overall
results of the predictions for the different waterways are close,
it can be concluded that the presented concept for predicting
ship tracks is generalizable.

V. DISCUSSION

The results show that the Bi-LSTM trained in the first
approach reaches the lowest average prediction error in all fea-
tures measured. The lowest error using the transformer model
is achieved in the second approach, where tide information
(b1, b2) was added to the dataset. It is noticeable that the
prediction results of the Bi-LSTM model become worse when
tide and weather features were added. The transformer model,
in contrast, decreased the prediction error by adding tide data.
However, when adding weather data, the results also got worse.

It is noticeable that all models can produce erroneous
data by predicting vessel tracks outside the waterway. In the
respective best attempts, this occurs 0.7% of the time for the
Bi-LSTM, 1.3% of the time for the transformer model, and
0.4% of the time for the liner model. This phenomenon occurs
mainly in curve passages where the distance to the previous
TP becomes significantly smaller as it can be seen in Fig. 5.

Fig. 5. Erroneous predictions outside the waterway.

Among the predictions, outliers with a large deviation from
the ground truth were also predicted. For β and COG, the
outliers mainly occur mainly for one location in the waterway
along the Elbe river, which is displayed in Fig. 6. The
waterway runs along Glückstadt and the buoys are arranged in
such a way that it seems as if the vessel do not pass through
the waterway from the north or south, but from the west or
east. Since the arrangement of the buoys in the course of the
waterway only give the impression at this intersection, the
models cannot represent this transition well. Had the model
actually predicted this outlier, this would have indicated that
the model had overfitted and made predictions too close to the
training data.

All in all, the results displayed in Table I show that the
addition of tide information as well as weather characteristics
does not automatically lead to an improvement of the predic-
tions. Only the average prediction error for the transformer
model decreases when tide data are added. Otherwise, adding

Fig. 6. Section of the waterway where outliers of COG and β are predicted
due to the arrangement of the starboard and port buoys. Although the
waterway leads north and south, the arrangement of the buoys indicates a
more westerly and easterly course, respectively.

data lead to an increased average prediction error even though
tide and weather data have a real impact on the navigation of
vessels. One possible reason for that is that the new features
may not be relevant or informative to the prediction task and
therefore may introduce unwanted noise or bias to the model.
That results in general can get worse with the addition of
features has already been described by Kuhn et al. [17] and
also by John et al. [18].

Overall, it should also be noted that the Bi-LSTM predicts
the lowest average error. On the one hand, this result can
be explained by the fact that it was also the most complex
model and thus had more capacity to predict the dependencies.
However, even the less complex transformer model makes
reasonable predictions for the number of trainable parameters
it possesses. It should be noted that approaches, to increase the
complexity of the models to create a more comparable model
lead to overfitting. Accordingly, the transformer architecture
was left with the number of parameters. In particular, the
strength of a transformer model is its ability to identify long-
term dependencies [12]. In the presented approach, however,
only the first following TP was predicted. Accordingly, the
models did not have to learn large dependencies. For this kind
of prediction, LSTM models are also well suited, as can be
seen in the results.

In summary, both data-driven models show better results
than linear prediction, except for SOG for the transformer
model, which justifies the use of these models for this pre-
diction task. However, the data-driven models could not use
additional weather information to their advantage in order to
make more accurate predictions. This issue may caused by
the fact that including extraneous features hurts prediction
performance of data driven models [17], [18]. This result



adds nuance to the notion that including weather data would
necessarily improve track predictions.

VI. CONCLUSION

In this paper, a concept for predicting Transition Points (TP)
representing vessel tracks in waterways has been successfully
developed, combining historical vessel position in the form of
AIS data with weather information and tide data. Positions
of buoys were extracted from sea chart information and were
also combined with AIS data to create TPs. The data resulting
from this concept was then used to train a Bi-LSTM and a
transformer model. These models can be used to iteratively
predict the subsequent transition points that represent the track
a vessel will take. The model that predicts the most accurate
vessel tracks was a Bi-LSTM model trained without tide and
weather information, focusing only on AIS data combined with
position of buoys that delimit waterways. However, also the
transformer model predicted a lower average error than the
linear prediction for ds, COG and β.

In this paper, the transformer model overfitted as soon as
more layers were added. Future work should experiment with
different architectures, which may prevent this phenomenon.
Solving it would improve predictions. In addition the devel-
oped concept can also be used for specific vessel types, which
helps to assess the method for a real-world use. Further, the
concept developed could also be used to detect anomalies.
Thus, it could be elaborated to what extent the predictions
can be used to detect anomalous vessel tracks in relation to
the predicted features.
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