Supported by:

fo an

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

UNCERTAINTIES AND INTERACTIONS IN VARIOUS TRANSITION PATHWAYS OF A DECENTRALIZED ENERGY SYSTEM

INREC, 6th of September 2023, Essen

Ulrich FREY⁽¹⁾, A. Achraf EL GHAZI⁽¹⁾, <u>Evelyn SPERBER⁽¹⁾</u>, Fabia MIORELLI⁽¹⁾, Christoph SCHIMECZEK⁽¹⁾, Stephanie STUMPF⁽²⁾, Anil KAYA⁽²⁾, Steffen REBENNACK⁽²⁾

⁽¹⁾ German Aerospace Center (DLR), ⁽²⁾ Karlsruhe Institute of Technology (KIT)

Motivation

Large flexibility potentials in the residential sector, especially by **electric vehicles, heat pumps and PV storage systems**

- Technology diffusion?
- > Actors' dispatch decisions?
- Impact on tomorrow's energy system?

*Idea of the En4U*¹*) project* (2021 - 2024):

→ Analyze household's operating and investment decisions regarding these technologies while considering uncertainties and their interaction with the overall energy system

 <u>"En</u>twicklungspfade eines dezentralen <u>En</u>ergiesystems im Zusammenspiel der <u>En</u>tscheidungen privater und kommerzieller <u>En</u>ergieakteure unter <u>U</u>nsicherheit"

DLR **PROJECT OVERVIEW**

The En4U project

Model technology diffusion under uncertainty.

 Integrate household's decisions regarding the operation of residential flexibility options into electricity market models using Machine Learning.

 Couple diffusion model, stochastic optimization and agent-based simulation to capture complex interactions.

Explore pathways to enable policy advice.

Methodology

Model coupling workflow

Methodology

Model coupling workflow

Diffusion model

Modelling diffusion of PV storage systems

- Representative survey of around 800 participants
- Calculates diffusion of household technologies for typical households

Methodology Model coupling workflow

Explicit dispatch models

Heat pump micro-model

GAMS optimization model

- Minimizes operating cost of residential heat pumps
- Flexibility by varying indoor temperature within given boundaries
- Electricity demand calculated bottom-up by reduced-order thermodynamic models of building archetypes¹⁾

1) Sperber, Frey, Bertsch: Reduced-order models for assessing demand response with heat pumps – Insights from the German energy system, Energy & Buildings vol. 223, 2020

Explicit dispatch models

Heat pump micro-model

= $18 \times 3 \times 2 \times 6 = 648$ individual optimization problems!

Abstraction of individual household decisions

Problem

- Many different households
- High computation effort per optimization
- Individual dispatch optimization of all household types not possible within energy system model

Idea

- Individual household dispatch optimization done for multiple input variations
- Aggregate household results
- Train Neural Net to predict household aggregated behavior based on given input variations
- Include Neural Net feedback in energy system model

Methodology Model coupling workflow

Coupling two energy market models

Stochastic optimization

Schimeczek et al., (2023). AMIRIS: Agent-based Market model for the Investigation of Renewable and Integrated energy Systems. Journal of Open Source Software, 8(84), 5041, https://doi.org/10.21105/joss.05041 Rebennack, Steffen (2014): Generation expansion planning under uncertainty with emissions quotas. In: Electric Power Systems Research 114, S. 78–85. https://doi.org/10.1016/j.epsr.2014.04.010

FIRST RESULTS

Q

DLR

Diffusion model Results for PV storage systems

- LCA resulted in 19 subgroups of households with 4 different adopter profiles (based on sociodemographics, building characteristics, and technology adoption)
 - Two classes of PV only (3.6 %)
 - EV as well as heat pump adopters (1.7%)
 - Multiple electric technologies adopters (1.6 %)

Aggregation of individual household decisions Heat pumps

- Building types
- User comfort types
- Heat pump types

Bechcicky consumption in MV Electricity consumption in MV El

1 aggregated consumption pattern per location

108 individual consumption patterns per location

Encapsulating aggregated household decisions with Neural Net Heat pumps

Neural Net structure

- Explicit Long Short-Term Memory neuronal network (LSTM)
- Standalone TensorFlow-based tool
- Look-back-size: 24 h
- Training data: 85% of dataset for 5 locations
- Validation data: 15% of dataset for (the same)
 5 locations
- Prediction: entire dataset of 1 (other) location
- Size of one data set: 8760 h in ¼ h resolution
- Epochs: 100

Layer (type)	Output shape	Param #
lstm (LSTM)	(None, 24, 64)	17,408
lstm_1 (LSTM)	(None, 24, 128)	98,816
lstm_2 (LSTM)	(None, 256)	394,240
dense (Dense)	(None, 64)	16,448
dense_1 (Dense)	(None, 1)	65

Task:

Predict aggregated heat pump electricity consumption for given

- Ambient temperature
- Solar radiation
- Real-time electricity price

Encapsulating aggregated household decisions with Neural Net *Heat pumps*

RMSE = 0.87 GW

Encapsulating aggregated household decisions with Neural Net PV storage systems

Neural Net structure

- Using Focapy¹, a Darts-based time series forecasting tool
- Best model: Temporal Fusion Transformer network (TFT)
- Look-back-size: 168 h
- Forecast period: 24 h
- Training data: entire data set for 1st location
- Validation data: entire data set for 2nd location
- Prediction: entire data set for 3rd location
- Size of one data set: 8760 h in 1 h resolution
- Epochs:100

Task:

Predict aggregated PV grid interaction for given

- Aggregated PV yield profile
- Aggregated household load profile
- Real-time electricity price

¹) Nitsch, F. (2023). focapy: Time Series Forecasting in Python. DOI: 10.5281/zenodo.7792751 (to be published in autumn 2023)

Encapsulating aggregated household decisions with Neural Net *PV storage systems*

Exemplary prediction

CONCLUSION

DLR

Conclusion and outlook

Conclusion

- Model coupling is necessary to represent individual decisions and their uncertainties in national energy system analysis simulations
- Abstracting individual decisions with Machine Learning
 - Is important for simulation speed
 - Could be a general solution for integrating computationally intensive tasks into simulations that were
 previously impossible

Outlook

- Investigating market effects through coupled model runs
- Analyzing impact of regulatory framework conditions on investments and system-friendly operation of household flexibility options

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

THANK YOU!

evelyn.sperber@dlr.de ulrich.frey@dlr.de

