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Motivation

Large flexibility potentials in the residential sector, 
especially by electric vehicles, heat pumps and 
PV storage systems

 Technology diffusion?

 Actors’ dispatch decisions?

 Impact on tomorrow’s energy system?

Idea of the En4U1) project (2021 - 2024): 

Analyze household’s operating and investment
decisions regarding these technologies while 
considering uncertainties and their interaction
with the overall energy system
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1) „Entwicklungspfade eines dezentralen Energiesystems im Zusammenspiel der Entscheidungen 
privater und kommerzieller Energieakteure unter Unsicherheit“



PROJECT OVERVIEW

Frey et al. - INREC 2023



The En4U project
Approach

 Model technology diffusion under uncertainty.

 Integrate household’s decisions regarding the operation of residential 
flexibility options into electricity market models using Machine Learning.

 Couple diffusion model, stochastic optimization and agent-based simulation to 
capture complex interactions.

 Explore pathways to enable policy advice.
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Methodology
Model coupling workflow
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Diffusion model

Modelling diffusion of PV storage systems

 Representative survey of around 800 participants

 Calculates diffusion of household technologies for typical households
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Bass diffusion modellLatent Class Analysis
(based on overall German population)

+
-

• Number of potential 
prosumers

• Optimal PV size
• Optimal battery storage size

• Potential prosumer groups
• Resulting load profiles

Identification of adopters
among German households 

Investment decision

Optimizing investment (NPV)

+
-

Cumulative capacities of PV and storage

Diffusion process
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Explicit dispatch models
Heat pump micro-model

 Minimizes operating cost of residential heat 
pumps

 Flexibility by varying indoor temperature within 
given boundaries

 Electricity demand calculated bottom-up by 
reduced-order thermodynamic models of 
building archetypes1)

GAMS optimization model

1) Sperber, Frey, Bertsch: Reduced-order models for assessing demand response with heat pumps – Insights from the German 
energy system, Energy & Buildings vol. 223, 2020
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Explicit dispatch models
Heat pump micro-model

18 building types 2 heat pump types3 user comfort types

Exploring various household’s decisions

= 18 x 3 x 2 x 6 = 648 individual optimization problems!
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6 weather locations



Abstraction of individual household decisions
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 Many different households

 High computation effort per optimization

 Individual dispatch optimization of all 
household types not possible within 
energy system model

 Individual household dispatch 
optimization done for multiple input 
variations

 Aggregate household results

 Train Neural Net to predict household 
aggregated behavior based on given 
input variations

 Include Neural Net feedback in energy 
system model

Problem

Idea
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Coupling two energy market models

AMIRIS
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Stochastic optimization

Spot market
prices

Power plant 
capacities

Schimeczek et al., (2023). AMIRIS: Agent-based Market model for the Investigation of Renewable and 
Integrated energy Systems. Journal of Open Source Software, 8(84), 5041, 
https://doi.org/10.21105/joss.05041

Rebennack, Steffen (2014): Generation expansion planning under 
uncertainty with emissions quotas. In: Electric Power Systems Research 
114, S. 78–85. https://doi.org/10.1016/j.epsr.2014.04.010



FIRST RESULTS
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Diffusion model
Results for PV storage systems

 LCA resulted in 19 subgroups of households with 4 different adopter profiles 
(based on sociodemographics, building characteristics, and technology adoption) 

 Two classes of PV only (3.6 %)

 EV as well as heat pump adopters (1.7%)

 Multiple electric technologies adopters (1.6 %)
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Aggregation of individual household decisions
Heat pumps
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Encapsulating aggregated household decisions with Neural Net
Heat pumps

 Explicit Long Short-Term Memory neuronal 
network (LSTM)

 Standalone TensorFlow-based tool 

 Look-back-size: 24 h

 Training data: 85% of dataset for 5 locations

 Validation data: 15% of dataset for (the same) 
5 locations 

 Prediction: entire dataset of 1 (other) location

 Size of one data set: 8760 h in ¼ h resolution

 Epochs: 100

Neural Net structure
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Layer (type) Output shape Param #

lstm (LSTM) (None, 24, 64) 17,408

lstm_1 (LSTM) (None, 24, 128) 98,816

lstm_2 (LSTM) (None, 256) 394,240

dense (Dense) (None, 64) 16,448

dense_1 (Dense) (None, 1) 65

Task: 
Predict aggregated heat pump 
electricity consumption for given
• Ambient temperature
• Solar radiation
• Real-time electricity price



Encapsulating aggregated household decisions with Neural Net
Heat pumps

Exemplary predictions

RMSE = 0.87 GW
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Encapsulating aggregated household decisions with Neural Net
PV storage systems

 Using Focapy1), a Darts-based time series forecasting tool

 Best model: Temporal Fusion Transformer network (TFT) 

 Look-back-size: 168 h

 Forecast period: 24 h

 Training data: entire data set for 1st location

 Validation data: entire data set for 2nd location

 Prediction: entire data set for 3rd location

 Size of one data set: 8760 h in 1 h resolution

 Epochs:100

Neural Net structure
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Task: 
Predict aggregated PV grid 
interaction for given
• Aggregated PV yield profile
• Aggregated household load 

profile
• Real-time electricity price

1) Nitsch, F. (2023). focapy: Time Series Forecasting in Python. DOI: 10.5281/zenodo.7792751 (to be published in autumn 2023)



Encapsulating aggregated household decisions with Neural Net
PV storage systems

Exemplary prediction

168 h 24 h
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CONCLUSION
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Conclusion and outlook

 Model coupling is necessary to represent individual decisions and their uncertainties in national 
energy system analysis simulations

 Abstracting individual decisions with Machine Learning
 Is important for simulation speed
 Could be a general solution for integrating computationally intensive tasks into simulations that were 

previously impossible

Conclusion

 Investigating market effects through coupled model runs

 Analyzing impact of regulatory framework conditions on investments and system-friendly 
operation of household flexibility options

Outlook
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