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Abstract
Over the last decade, neural networks have reached almost every field of science and 
become a crucial part of various real world applications. Due to the increasing spread, 
confidence in neural network predictions has become more and more important. However, 
basic neural networks do not deliver certainty estimates or suffer from over- or under-con-
fidence, i.e. are badly calibrated. To overcome this, many researchers have been working 
on understanding and quantifying uncertainty in a neural network’s prediction. As a result, 
different types and sources of uncertainty have been identified and various approaches to 
measure and quantify uncertainty in neural networks have been proposed. This work gives 
a comprehensive overview of uncertainty estimation in neural networks, reviews recent 
advances in the field, highlights current challenges, and identifies potential research oppor-
tunities. It is intended to give anyone interested in uncertainty estimation in neural net-
works a broad overview and introduction, without presupposing prior knowledge in this 
field. For that, a comprehensive introduction to the most crucial sources of uncertainty is 
given and their separation into reducible model uncertainty and irreducible data uncer-
tainty is presented. The modeling of these uncertainties based on deterministic neural net-
works, Bayesian neural networks (BNNs), ensemble of neural networks, and test-time data 
augmentation approaches is introduced and different branches of these fields as well as the 
latest developments are discussed. For a practical application, we discuss different meas-
ures of uncertainty, approaches for calibrating neural networks, and give an overview of 
existing baselines and available implementations. Different examples from the wide spec-
trum of challenges in the fields of medical image analysis, robotics, and earth observation 
give an idea of the needs and challenges regarding uncertainties in the practical applica-
tions of neural networks. Additionally, the practical limitations of uncertainty quantifica-
tion methods in neural networks for mission- and safety-critical real world applications are 
discussed and an outlook on the next steps towards a broader usage of such methods is 
given.
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1  Introduction

Within the last decade enormous advances on deep neural networks (DNNs) have been 
realized, encouraging their adaptation in a variety of research fields, where complex sys-
tems have to be modeled or understood, such as earth observation, medical image analysis, 
or robotics. Although DNNs have become attractive in high-risk fields such as medical 
image analysis (Nair et al. 2020; Roy et al. 2019; Seebock et al. 2020; LaBonte et al. 2019; 
Reinhold et al. 2020; Eggenreich et al. 2020) or autonomous vehicle control (Feng et al. 
2018; Choi et al. 2019; Amini et al. 2018; Loquercio et al. 2020), their deployment in mis-
sion- and safety-critical real world applications remains limited. The main factors responsi-
ble for this limitation are

•	 the lack of expressiveness and transparency of a deep neural network’s inference 
model, which makes it difficult to trust their outcomes (Roy et al. 2019),

•	 the inability to distinguish between in-domain and out-of-domain samples (Lee et al. 
2018a; Mitros and Mac Namee 2019) and the sensitivity to domain shifts (Ovadia et al. 
2019),

•	 the inability to provide reliable uncertainty estimates for a deep neural network’s deci-
sion (Ayhan and Berens 2018) and frequently occurring overconfident predictions (Guo 
et al. 2017; Wilson and Izmailov 2020), and

•	 the sensitivity to adversarial attacks that make deep neural networks vulnerable for sab-
otage (Rawat et al. 2017; Serban et al. 2018; Smith and Gal 2018).

These factors are mainly based on an uncertainty already included in the data (data uncer-
tainty) or a lack of knowledge of the neural network (model uncertainty). To overcome 
these limitations, it is essential to provide uncertainty estimates, such that uncertain predic-
tions can be ignored or passed to human experts (Gal and Ghahramani 2016). Providing 
uncertainty estimates is not only important for safe decision-making in high-risk fields, 
but it is also crucial in fields where the data sources are highly inhomogeneous and labeled 
data is rare, such as in remote sensing (Rußwurm et al. 2020; Gawlikowski et al. 2022). 
Also for fields where uncertainties form a crucial part of the learning techniques, such as 
for active learning (Gal et al. 2017b; Chitta et al. 2018; Zeng et al. 2018; Nguyen et al. 
2019) or reinforcement learning (Gal and Ghahramani 2016; Huang et  al. 2019a; Kahn 
et al. 2017; Lütjens et al. 2019), uncertainty estimates are highly important.

In recent years, researchers have shown an increased interest in estimating uncer-
tainty in DNNs (Blundell et  al. 2015; Gal and Ghahramani 2016; Lakshminarayanan 
et al. 2017; Malinin and Gales 2018; Sensoy et al. 2018; Wu et al. 2019; Van Amers-
foort et al. 2020; Ramalho and Miranda 2020). The most common way to estimate the 
uncertainty of a prediction (the predictive uncertainty) is based on separately modelling 
the uncertainty caused by the model (epistemic or model uncertainty) and the uncer-
tainty caused by the data (aleatoric or data uncertainty). While the first one is reducible 
by improving the model which is learned by the DNN, the latter one is not reducible. 
The most important approaches for modeling this separation are Bayesian inference 
(Blundell et al. 2015; Gal and Ghahramani 2016; Mobiny et al. 2021; Amini et al. 2018; 
Krueger et al. 2017), ensemble approaches (Lakshminarayanan et al. 2017; Valdenegro-
Toro 2019; Wen et al. 2019), test-time augmentation approaches (Shorten and Khosh-
goftaar 2019; Wen et  al. 2021a), or single deterministic networks containing explicit 
components to represent the model and the data uncertainty (Malinin and Gales 2018; 
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Sensoy et al. 2018; Malinin and Gales 2019; Raghu et al. 2019). However, estimating 
the predictive uncertainty is not sufficient for safe decision-making. It is also crucial to 
assure that the uncertainty estimates are reliable. To this end, the calibration property 
(the degree of reliability) of DNNs has been investigated and re-calibration methods 
have been proposed (Guo et al. 2017; Wenger et al. 2020; Zhang et al. 2020) to obtain 
reliable (well-calibrated) uncertainty estimates.

There are several works that give an introduction and overview of uncertainty in sta-
tistical modelling. Ghanem et al. (2017) published a handbook about uncertainty quanti-
fication, which includes a detailed and broad description of different concepts of uncer-
tainty quantification, but without explicitly focusing on the application of neural networks. 
The theses of Gal (1998) and Kendall (2019) contain a good overview of Bayesian neural 
networks (BNNs), especially with the focus on the Monte Carlo (MC) Dropout approach 
and its application in computer vision tasks. The thesis of Malinin (2019) also contains 
a very good introduction and additional insights into Prior networks. Wang and Yeung 
(2016, 2020) contributed two surveys on Bayesian deep learning. They introduced a gen-
eral framework and the conceptual description of the BNNs, followed by an updated pres-
entation of Bayesian approaches for uncertainty quantification in neural networks with a 
special focus on recommender systems, topic models, and control. In Ståhl et al. (2020), an 
evaluation of uncertainty quantification in deep learning is given by presenting and com-
paring the uncertainty quantification based on the softmax output, the ensemble of net-
works, BNNs, and autoencoders on the MNIST data set. Regarding the practicability of 
uncertainty quantification approaches for real-life mission- and safety-critical applications, 
(Gustafsson et  al. 2020) introduced a framework to test the robustness required in real-
world computer vision applications and delivered a comparison of two popular approaches, 
namely MC Dropout and Ensemble methods. Hüllermeier and Waegeman (2021) presented 
the concepts of aleatoric and epistemic uncertainty in neural networks and discussed dif-
ferent concepts to model and quantify them. In contrast to this, (Abdar et al. 2021) pre-
sented an overview on uncertainty quantification methodologies in neural networks and 
provide an extensive list of references for different application fields and a discussion of 
open challenges.

In this work, we present an extensive overview over all concepts that have to be taken 
into account when working with uncertainty in neural networks while keeping the appli-
cability of real world applications in mind. Our goal is to provide the reader with a clear 
thread from the sources of uncertainty to applications, where uncertainty estimations 
are needed. Furthermore, we point out the limitations of current approaches and discuss 
further challenges to be tackled in the future. For that, we provide a broad introduction 
and comparison of different approaches and fundamental concepts. The survey is mainly 
designed for people already familiar with deep learning concepts and who are planning 
to incorporate uncertainty estimation into their predictions. But also for people already 
familiar with the topic, this review provides a useful overview of the whole concept of 
uncertainty in neural networks and their applications in different fields. In summary, we 
comprehensively discuss

•	 Sources and types of uncertainty (Sect. 2),
•	 Recent studies and approaches for estimating uncertainty in DNNs (Sect. 3),
•	 Uncertainty measures and methods for assessing the quality and impact of uncertainty 

estimates (Sect. 4),
•	 Recent studies and approaches for calibrating DNNs (Sect. 5),
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•	 An overview over frequently used evaluation data sets, available benchmarks and 
implementations1 (Sect. 6),

•	 An overview over real-world applications using uncertainty estimates (Sect. 7),
•	 A discussion on current challenges and further directions of research in the future 

(Sect. 8).

The basic descriptions of uncertainty representations in neural networks are not problem 
specific and many of the proposed methods (e.g., BNNs or ensemble of neural networks) 
can be applied to many different types of problems such as classification, regression, or 
segmentation. If not stated differently, the presented methods are not limited to a specific 
type of problem. In order to get a deeper dive into explicit applications of the methods, we 
refer to the section on applications and to further readings in the referenced literature.

2 � Uncertainty in deep neural networks

A neural network is a non-linear function f� parameterized by model parameters � (i.e. the 
network weights) that maps from a measurable input set � to a measurable output set �  , 
i.e.

For a supervised setting, we further have a finite set of training data D ⊆ � = � × �  con-
taining N data samples and corresponding targets, i.e.

For a new data sample x∗ ∈ � , a neural network trained on D can be used to predict a cor-
responding target f�(x∗) = y∗ . We consider four different steps from the raw information in 
the environment to a prediction by a neural network with quantified uncertainties, namely 

1.	 the data acquisition process: The occurrence of some information in the environment 
(e.g. a bird’s singing) and a measured observation of this information (e.g. an audio 
record).

2.	 the DNN building process: The design and training of a neural network.
3.	 the applied inference model: The model is applied for inference (e.g. a BNN or an 

ensemble of neural networks).
4.	 the prediction’s uncertainty model: The modelling of the uncertainties caused by the 

neural network and/or by the data.

In practice, these four steps contain several potential sources of uncertainty and errors, 
which again affect the final prediction of a neural network. The five factors that we think 
are the most vital for the cause of uncertainty in a DNN’s predictions are

•	 the variability in real world situations,
•	 the errors inherent to the measurement systems,
•	 the errors in the architecture specification of the DNN,

(1)f� ∶ � → � f�(x) = y.

(2)D = (X,Y) = {xn, yn}
N
n=1

⊆ � .

1  The list of available implementations can be found in Sect.  6 as well as within an additional GitHub 
repository under https://​github.​com/​Jakob​Code/​Uncer​taint​yInNe​uralN​etwor​ks_​Resou​rces.

https://github.com/JakobCode/UncertaintyInNeuralNetworks_Resources
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•	 the errors in the training procedure of the DNN,
•	 the errors caused by unknown data.

In the following, the four steps leading from raw information to uncertainty quantification 
on a DNN’s prediction are described in more detail. Within this, we highlight the sources 
of uncertainty that are related to the single steps and explain how the uncertainties are 
propagated through the process. Finally, we introduce a model for the uncertainty on a neu-
ral network’s prediction and introduce the main types of uncertainty considered in neural 
networks.

The goal of this section is to give an accountable idea of the uncertainties in neural 
networks. Hence, for the sake of simplicity, we only describe and discuss the mathematical 
properties, which are relevant for understanding the approaches and applying the method-
ology in different fields.

2.1 � Data acquisition

In the context of supervised learning, the data acquisition describes the process where 
measurements x and target variables y are generated in order to represent a (real world) 
situation � from some space Ω . In the real world, a realization of � could for example be a 
bird, x a picture of this bird, and y a label stating ‘bird’. During the measurement, random 
noise can occur and information may get lost. We model this randomness in x by

Equivalently, the corresponding target variable y is derived, where the description is either 
based on another measurement or is the result of a labeling process.2 For both cases, the 
description can be affected by noise and errors and we state it as

A neural network is trained on a finite data set of realizations of x|�i and y|�i based on N 
real world situations �1,… ,�N,

When collecting the training data, two factors can cause uncertainty in a neural network 
trained on this data. First, the sample space Ω should be sufficiently covered by the training 
data x1,… , xN for �1,… ,�N . For that, one has to take into account that for a new sample 
x∗ it in general holds that x∗ ≠ xi for all training situations xi . Following, the target has to 
be estimated based on the trained neural network model, which directly leads to the first 
factor of uncertainty: 

(3)x|� ∼ px|�.

(4)y|� ∼ py|�.

(5)D = {xi, yi}
N
i=1

.

2  In many cases one can model the labeling process as a mapping from � to �  , e.g. for speech recognition 
or various computer vision tasks. For other tasks, such as earth observation, this is not always the case. 
Data is often labeled based on high-resolution data while low-resolution data is utilized for the prediction 
task.
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Factor I: Variability in real world situations

Most real world environments are highly variable and almost constantly affected by changes. These 
changes affect parameters such as temperature, illumination, clutter, and physical objects’ size and 
shape. Changes in the environment can also affect the expression of objects, such as plants after rain 
look very different from plants after a drought. When real world situations change compared to the 
training set, this is called a distribution shift. Neural networks are sensitive to distribution shifts, which 
can lead to significant changes in the performance of a neural network.

The second case is based on the measurement system, which has a direct effect on the 
correlation between the samples and the corresponding targets. The measurement system 
generates information xi and yi that describe �i but might not contain enough information 
to learn a direct mapping from xi to yi . This means that there might be highly different real 
world information �i and �j (e.g. city and forest) resulting in very similar corresponding 
measurements xi and xj (e.g. temperature) or similar corresponding targets yi and yj (e.g. 
label noise that labels both samples as forest). This directly leads to our second factor of 
uncertainty: 

Factor II: Error and noise in measurement systems

The measurements themselves can be a source of uncertainty on the neural network’s prediction. This can 
be caused by limited information in the measurements, such as the image resolution. Moreover, it can be 
caused by noise, for example, sensor noise, by motion, or mechanical stress leading to imprecise meas-
ures. Furthermore, false labeling is also a source of uncertainty that can be seen as an error or noise in 
the measurement system. It is referenced as label noise and affects the model by reducing the confidence 
on the true class prediction during training. Depending on the intensity, this type of noise and errors can 
be used to regularize the training process and to improve robustness and generalization (Goodfellow 
et al. 2016; Peterson et al. 2019; Lukasik et al. 2020).

2.2 � Deep neural network design and training

The design of a DNN covers the explicit modeling of the neural network and its stochas-
tic training process. The assumptions on the problem structure induced by the design and 
training of the neural network are called inductive bias (Battaglia et al. 2018). We summa-
rize all decisions of the modeler on the network’s structure (e.g. the number of parameters, 
the layers, the activation functions, etc.) and training process (e.g. optimization algorithm, 
regularization, augmentation, etc.) in a structure configuration s. The defined network 
structure gives the third factor of uncertainty in a neural network’s predictions: 

Factor III: Errors in the model structure

The structure of a neural network has a direct effect on its performance and therefore also on the uncer-
tainty of its prediction. For instance, the number of parameters affects the memorization capacity, which 
can lead to under- or over-fitting on the training data. Regarding uncertainty in neural networks, it is 
known that deeper networks tend to be overconfident in their softmax output, meaning that they predict 
too much probability on the class with the highest probability score (Guo et al. 2017).

For a given network structure s and a training data set D , the training of a neural net-
work is a stochastic process and therefore the resulting neural network f� is based on a 
random variable,
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The process is stochastic due to random decisions as the order of the data, random initiali-
zation, or random regularization as augmentation or dropout. The loss landscape of a neu-
ral network is highly non-linear and the randomness in the training process in general leads 
to different local optima �∗ resulting in different models (Lakshminarayanan et al. 2017). 
Also, parameters such as batch size, learning rate, and the number of training epochs affect 
the training and result in different models. Depending on the underlying task these models 
can significantly differ in their predictions for single samples, even leading to a difference 
in the overall model performance. This sensitivity to the training process directly leads to 
the fourth factor for uncertainties in neural network predictions: 

Factor IV: Errors in the training procedure

The training process of a neural network includes many parameters that have to be defined (batch size, 
optimizer, learning rate, stopping criteria, regularization, etc.), and also stochastic decisions within the 
training process (batch generation and weight initialization) take place. All these decisions affect the 
local optima and it is therefore very unlikely that two training processes deliver the same model param-
eterization. A training data set that suffers from imbalance or low coverage of single regions in the data 
distribution also introduces uncertainties on the network’s learned parameters, as already described 
in the data acquisition. This might be softened by applying augmentation to increase the variety or by 
balancing the impact of single classes or regions on the loss function.

Since the training process is based on the given training data set D , errors in the data 
acquisition process (e.g. label noise) can result in errors in the training process.

2.3 � Inference

The inference describes the prediction of an output y∗ for a new data sample x∗ by the neu-
ral network. At this time, the network is trained for a specific task. Thus, samples that are 
not inputs for this task cause errors and are therefore also a source of uncertainty: 

Factor V: Errors caused by unknown data

Especially in classification tasks, a neural network that is trained on samples derived from a world W
1
 can 

also be capable of processing samples derived from a completely different world W
2
 . This is for exam-

ple the case when a network trained on images of cats and dogs receives a sample showing a bird. Here, 
the source of uncertainty does not lie in the data acquisition process, since we assume a world to contain 
only feasible inputs for a prediction task. Even though the practical result might be equal to too much 
noise on a sensor or complete failure of a sensor, the data considered here represents a valid sample, but 
for a different task or domain.

2.4 � Predictive uncertainty model

As a modeller, one is mainly interested in the uncertainty that is propagated onto a predic-
tion y∗ , the so-called predictive uncertainty. Within the data acquisition model, the prob-
ability distribution for a prediction y∗ based on some sample x∗ is given by

(6)�|D, s ∼ p�|D,s.

(7)p(y∗|x∗) = ∫Ω

p(y∗|�)p(�|x∗)d�
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and a maximum a posteriori (MAP) estimation is given by

Since the modeling is based on the unavailable latent variable � , one takes an approxima-
tive representation based on a sampled training data set D = {xi, yi}

N
i=1

 containing N sam-
ples and corresponding targets. The distribution and MAP estimator in (7) and (8) for a 
new sample x∗ are then predicted based on the known examples by

and

In general, the distribution given in (9) is unknown and can only be estimated based on the 
given data in D. For this estimation, neural networks form a very powerful tool for many 
tasks and applications.

The prediction of a neural network is subject to both model-dependent and input data-
dependent errors, and therefore the predictive uncertainty associated with y∗ is in general 
separated into data uncertainty [also statistical or aleatoric uncertainty (Hüllermeier and 
Waegeman 2021)] and model uncertainty [also systemic or epistemic uncertainty (Hüller-
meier and Waegeman 2021)]. Depending on the underlying approach, additional explicit 
modeling of distributional uncertainty (Malinin and Gales 2018) is used to model the 
uncertainty, which is caused by examples from a region not covered by the training data. 
Figure  1 illustrates the described types of uncertainty for regression and classification 
tasks.

2.4.1 � Model‑ and data uncertainty

The model uncertainty covers the uncertainty that is caused by shortcomings in the model, 
either by errors in the training procedure, an insufficient model structure, or lack of knowl-
edge due to unknown samples or a bad coverage of the training data set. In contrast to this, 
data uncertainty is related to uncertainty that directly stems from the data. Data uncertainty 
is caused by information loss when representing the real world within a data sample and 
represents the distribution stated in (7). For example, in regression tasks, noise in the input 
and target measurements causes data uncertainty that the network cannot learn to correct. 
In classification tasks, samples that do not contain enough information in order to identify 
one class with 100% certainty cause data uncertainty on the prediction. The information 
loss is a result of the measurement system, e.g. by representing real world information by 
image pixels with a specific resolution, or by errors in the labelling process.

For the five presented factors for uncertainties on a neural network’s prediction, this 
means the following: Only factor 2 represents a source of aleatoric uncertainty since it 
causes insufficient data that make a certain prediction not possible. For all other fac-
tors, the source of uncertainty lies in the experimental setup and is related to epistemic 
uncertainty. The uncertainty induced by Factor I is a result of the insufficient coverage 
of the data distribution in the training data. Factor III and Factor IV clearly represent 
shortcomings in the training and the modelling of the network. Factor V is also related 
to epistemic uncertainty since the data itself might be fine but the unknown domain is 

(8)y∗ = argmax
y

p(y|x∗).

(9)p(y∗|x∗) = ∫D

p(y∗|D, x∗)

(10)y∗ = argmax
y

p(y|D, x∗).
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not included in the modelling and hence the model lacks knowledge of how to handle 
this data. Figure 2 illustrates the discussed stages of a neural network pipeline employed 
in a remote sensing classification task, along with the diverse sources of uncertainties 
that impact the resulting predictions.

While model uncertainty can be (theoretically) reduced by improving the archi-
tecture, the learning process, or the training data set, the data uncertainties cannot be 
explained away (Kendall and Gal 2017). Therefore, DNNs that are capable of handling 
uncertain inputs and that are able to remove or quantify the model uncertainty and give 
a correct prediction of the data uncertainty are of paramount importance for a variety of 
real world mission- and safety-critical applications.

The Bayesian framework offers a practical tool to reason about uncertainty in deep 
learning (Gal and Ghahramani 2015). In Bayesian modeling, the model uncertainty is 
formalized as a probability distribution over the model parameters � , while the data 
uncertainty is formalized as a probability distribution over the model outputs y∗ , given 
a parameterized model f� . The distribution over a prediction y∗ , the predictive distribu-
tion, is then given by

The term p(�|D) is referenced as posterior distribution on the model parameters and 
describes the uncertainty on the model parameters given a training data set D. The pos-
terior distribution is in general not tractable. While ensemble approaches seek to approxi-
mate it by learning several different parameter settings and averaging over the resulting 

(11)p(y∗|x∗,D) = ∫ p(y∗|x∗, �)
⏟⏞⏞⏟⏞⏞⏟

Data

p(�|D)
⏟⏟⏟
Model

d� .

Fig. 1   Visualization of the data, the model, and the distributional uncertainty for classification and regres-
sion models
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models (Lakshminarayanan et  al. 2017), Bayesian inference reformulates it using Bayes 
Theorem (Bishop and Nasrabadi 2006)

The term p(�) is called the prior distribution on the model parameters since it does not 
take any information but the general knowledge on � into account. The term p(D|�) rep-
resents the likelihood that the data in D is a realization of the distribution predicted by a 
model parameterized with � . Many loss functions are motivated by or can be related to 
the likelihood function. Loss functions that seek to maximize the log-likelihood (for an 
assumed distribution) are for example the cross-entropy or the mean squared error (Ritter 
et al. 2018).

Even with the reformulation given in (12), the predictive distribution given in (11) is 
still intractable. To overcome this, several different ways to approximate the predictive 
distribution were proposed. A broad overview of the different concepts and some spe-
cific approaches is presented in Sect. 3.

(12)p(�|D) = p(D|�)p(�)
p(D)

.

Fig. 2   The illustration shows the different steps of a neural network pipeline, based on the earth observa-
tion example of land cover classification (here settlement and forest) based on optical images. The different 
factors that affect the predictive uncertainty are highlighted in the boxes. Factor I is shown as changing 
environments by cloud-covered trees, and different types and colors of trees. Factor II is shown by insuf-
ficient measurements, that can not directly be used to separate between settlement and forest and by label 
noise. In practice, the resolution of such images can be low and which would also be part of Factor II. Fac-
tor III and Factor IV represent the uncertainties caused by the network structure and the stochastic training 
process, respectively. Factor V in contrast is represented by feeding the trained network with unknown types 
of images, namely cows and pigs
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2.4.2 � Distributional uncertainty

Depending on the approaches that are used to quantify the uncertainty in y∗ , the formula-
tion of the predictive distribution might be further separated into data, distributional, and 
model parts (Malinin and Gales 2018):

The distributional part in (13) represents the uncertainty on the actual network output, e.g. 
for classification tasks this might be a Dirichlet distribution, which is a distribution over 
the categorical distribution given by the softmax output. Modeled this way, distributional 
uncertainty refers to uncertainty that is caused by a change in the input-data distribution, 
while model uncertainty refers to uncertainty that is caused by the process of building and 
training the DNN. As modeled in (13), the model uncertainty affects the estimation of the 
distributional uncertainty, which affects the estimation of the data uncertainty.

While most methods presented in this paper only distinguish between model and data 
uncertainty, approaches specialized on out-of-distribution (OOD) detection often explicitly 
aim at representing the distributional uncertainty (Malinin and Gales 2018; Nandy et al. 
2020). A more detailed presentation of different approaches for quantifying uncertainties in 
neural networks is given in Sect. 3. In Sect. 4, different measures for measuring the differ-
ent types of uncertainty are presented.

2.5 � Uncertainty classification

On the basis of the input data domain, the predictive uncertainty can also be classified into 
three main classes:

•	 In-domain uncertainty (Ashukha et al. 2019)
	   In-domain uncertainty represents the uncertainty related to an input drawn from a 

data distribution assumed to be equal to the training data distribution. The in-domain 
uncertainty stems from the inability of the deep neural network to explain an in-domain 
sample due to a lack of in-domain knowledge. From a modeler’s point of view, in-
domain uncertainty is caused by design errors (model uncertainty) and the complexity 
of the problem at hand (data uncertainty). Depending on the source of the in-domain 
uncertainty, it might be reduced by increasing the quality of the training data (set) or 
the training process (Hüllermeier and Waegeman 2021).

•	 Domain-shift uncertainty (Ovadia et al. 2019)
	   Domain-shift uncertainty denotes the uncertainty related to an input drawn from a 

shifted version of the training distribution. The distribution shift results from insuf-
ficient coverage by the training data and the variability inherent to real world situa-
tions. A domain-shift might increase the uncertainty due to the inability of the DNN to 
explain the domain-shift sample on the basis of the seen samples at training time. Some 
errors causing domain shift uncertainty can be modeled and can therefore be reduced. 
For example, occluded samples can be learned by the deep neural network to reduce 
domain shift uncertainty caused by occlusions (DeVries and Taylor 2017). However, it 
is difficult if not impossible to model all errors causing domain shift uncertainty, e.g., 

(13)p(y∗|x∗,D) = ∫ ∫ p(y|�)
⏟⏟⏟

Data

p(�|x∗, �)
⏟⏞⏞⏟⏞⏞⏟
Distributional

p(�|D)
⏟⏟⏟
Model

d�d�.
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motion noise (Kendall and Gal 2017). From a modeler’s point of view, domain-shift 
uncertainty is caused by external or environmental factors but can be reduced by cover-
ing the shifted domain in the training data set.

•	 Out-of-domain uncertainty (Hendrycks and Gimpel 2017; Liang et al. 2018b; Shafaei 
et al. 2019; Mundt et al. 2019)

	   Out-of-domain uncertainty represents the uncertainty related to an input drawn from 
the subspace of unknown data. The distribution of unknown data is different and far 
from the training distribution. While a DNN can extract in-domain knowledge from 
domain-shift samples, it cannot extract in-domain knowledge from out-of-domain sam-
ples. For example, when domain-shift uncertainty describes phenomena like a blurred 
picture of a dog, out-of-domain uncertainty describes the case when a network that 
learned to classify cats and dogs is asked to predict a bird. The out-of-domain uncer-
tainty stems from the inability of the DNN to explain an out-of-domain sample due to 
its lack of out-of-domain knowledge. From a modeler’s point of view, out-of-domain 
uncertainty is caused by input samples, where the network is not meant to give a pre-
diction for or by insufficient training data.

Since the model uncertainty captures what the DNN does not know due to a lack of in-
domain or out-of-domain knowledge, it captures all, in-domain, domain-shift, and out-of-
domain uncertainties. In contrast, the data uncertainty captures in-domain uncertainty that 
is caused by the nature of the data the network is trained on, for example, overlapping sam-
ples and systematic label noise.

3 � Uncertainty estimation

As described in Sect. 2, several factors may cause model and data uncertainty and affect 
a DNN’s prediction. This variety of sources of uncertainty makes the complete exclusion 
of uncertainties in a neural network impossible for almost all applications. Especially in 
practical applications employing real world data, the training data is only a subset of all 
possible input data, which means that a miss-match between the DNN domain and the 
unknown actual data domain is often unavoidable. However, an exact representation of the 
uncertainty of a DNN prediction is also not possible to compute, since the different uncer-
tainties can in general not be modeled accurately and are most often even unknown. There-
fore, methods for estimating uncertainty in a DNN prediction is a popular and vital field 
of research. The data uncertainty part is normally represented in the prediction, e.g. in the 
softmax output of a classification network or in the explicit prediction of a standard devia-
tion in a regression network (Kendall and Gal 2017). In contrast to this, several different 
approaches which model the model uncertainty and seek to separate it from the data uncer-
tainty in order to receive an accurate representation of the data uncertainty were introduced 
(Kendall and Gal 2017; Malinin and Gales 2018; Lakshminarayanan et al. 2017).

In general, the methods for estimating the uncertainty can be split into four different 
types based on the number (single or multiple) and the nature (deterministic or stochastic) 
of the used DNNs.

•	 Single deterministic methods give the prediction based on one single forward pass 
within a deterministic network. The uncertainty quantification is either derived by 
using additional (external) methods or is directly predicted by the network.
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•	 Bayesian methods cover all kinds of stochastic DNNs, i.e. DNNs where two for-
ward passes of the same sample generally lead to different results.

•	 Ensemble methods combine the predictions of several different deterministic net-
works at inference.

•	 Test-time augmentation methods give the prediction based on one single determin-
istic network but augment the input data at test-time in order to generate several 
predictions that are used to evaluate the certainty of the prediction.

In the following, the main ideas and further extensions of the four types are pre-
sented and their main properties are discussed. In Fig. 3, an overview of the different 
types and methods is given. In Fig. 4, the different underlying principles that are used 
to differentiate between the different types of methods are presented. Table 1 summa-
rizes the main properties of the methods presented in this work, such as complexity, 
computational effort, memory consumption, flexibility, and others.

Fig. 3   Visualization of the four different types of uncertainty quantification methods presented in this paper
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3.1 � Single deterministic methods

For deterministic neural networks, the parameters are deterministic and each repetition 
of a forward pass delivers the same result. With single deterministic network methods for 
uncertainty quantification, we summarize all approaches where the uncertainty on a predic-
tion y∗ is computed based on one single forward pass within a deterministic network. In 
the literature, several such approaches can be found. They can be roughly categorized into 
approaches where one single network is explicitly modeled and trained in order to quantify 
uncertainties (Sensoy et  al. 2018; Malinin and Gales 2018; Możejko et  al. 2018; Nandy 
et al. 2020; Oala et al. 2020) and approaches that use additional components in order to 
give an uncertainty estimate on the prediction of a network (Raghu et al. 2019; Ramalho 
and Miranda 2020; Oberdiek et al. 2018; Lee and AlRegib 2020). While for the first type, 
the uncertainty quantification affects the training procedure and the predictions of the net-
work, the latter type is in general applied to already trained networks. Since trained net-
works are not modified by such methods, they have no effect on the network’s predictions. 
In the following, we call these two types internal and external uncertainty quantification 
approaches.

3.1.1 � Internal uncertainty quantification approaches

Many of the internal uncertainty quantification approaches followed the idea of predict-
ing the parameters of a distribution over the predictions instead of a direct pointwise 
maximum-a-posteriori estimation. Often, the loss function of such networks takes the 
expected divergence between the true distribution and the predicted distribution into 
account e.g., in Malinin and Gales (2018), Malinin and Gales (2019). The distribution 
over the outputs can be interpreted as a quantification of the model uncertainty (see 

Fig. 4   A visualization of the basic principles of uncertainty modeling of the four presented general types of 
uncertainty prediction in neural networks. For a given input sample x∗ each approach delivers a prediction 
y
∗ , a representation of model uncertainty �

model
 and a value of data uncertainty �

data
 . A Single deterministic 

model, B Bayesian neural network, C ensemble approach, and D test-time data augmentation. The mean 
and the standard deviation are only used to keep the visualization simple. In practice, other methods could 
be utilized. For the deterministic approaches the idea of predicting the parameters of a probability distri-
bution Ξ is visualized, other approaches which base on tools additional to the prediction network are not 
visualized here
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Sect. 2), trying to emulate the behavior of Bayesian modeling of the network parameters 
(Nandy et al. 2020). The prediction is then given as the expected value of the predicted 
distribution.

For classification tasks, the output in general represents class probabilities. These 
probabilities are a result of applying the softmax function

for multiclass settings and the sigmoid function

for binary classification tasks on the logits z. These probabilities can be already interpreted 
as a prediction of the data uncertainty. However, it is widely discussed that neural networks 
are often over-confident and the softmax output is often poorly calibrated, leading to inac-
curate uncertainty estimates (Vasudevan et al. 2019; Hendrycks and Gimpel 2017; Sensoy 
et al. 2018; Możejko et al. 2018). Furthermore, the softmax output cannot be associated 
with model uncertainty. But without explicitly taking the model uncertainty into account, 
out-of-distribution samples could lead to outputs that certify a false confidence. For exam-
ple, a network trained on cats and dogs will very likely not result in 50% dog and 50% cat 
when it is fed with the image of a bird. This is, because the network extracts features from 
the image and even though the features do not fit to the cat class, they might fit even less 
to the dog class. As a result, the network puts more probability on cat. Furthermore, it was 
shown that the combination of rectified linear unit (ReLu) networks and the softmax out-
put leads to settings where the network becomes more and more confident as the distance 
between an out-of-distribution sample and the learned training set becomes larger (Hein 
et al. 2019). Figure 5 shows an example where the rotation of a digit from MNIST leads to 
false predictions with high softmax values.

This phenomenon is described and further investigated by Hein et  al. (2019) who 
proposed a method to avoid this behaviour, based on enforcing a uniform predictive dis-
tribution far away from the training data.

Several other classification approaches (Sensoy et al. 2018; Malinin and Gales 2018, 
2019; Nandy et  al. 2020) followed a similar idea of taking the logit magnitude into 
account, but making use of the Dirichlet distribution. The Dirichlet distribution is the 
conjugate prior of the categorical distribution and hence can be interpreted as a distribu-
tion over categorical distributions. The density of the Dirichlet distribution is defined by

where Γ is the gamma function, �1,… , �K are called the concentration parameters, and the 
scalar �0 is the precision of the distribution. In practice, the concentrations �1,… , �K are 
derived by applying a strictly positive transformation, such as the exponential function, 

(14)

softmax ∶ ℝ
K
→

�
z ∈ ℝ

K�zi ≥ 0,

K�

k=1

zk = 1

�

softmax(z)j =
exp(zj)

∑K

k=1
exp(zk)

(15)
sigmoid ∶ ℝ → [0, 1]

sigmoid(z) =
1

1 + exp(−z)

Dir(𝜇�𝛼) =
Γ(𝛼0)

∏K

c=1
Γ(𝛼c)

K�

c=1

𝜇𝛼c−1
c

, 𝛼c > 0, 𝛼0 =

K�

c=1

𝛼c ,
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to the logit values. As visualized in Fig. 6, a higher concentration value leads to a sharper 
Dirichlet distribution.

The set of all class probabilities of a categorical distribution over k classes is equivalent 
to a k − 1-dimensional standard or probability simplex. Each node of this simplex repre-
sents a probability vector with the full probability mass on one class and each convex com-
bination of the nodes represents a categorical distribution with the probability mass distrib-
uted over multiple classes. Malinin and Gales (2018) argued that a high model uncertainty 
should lead to a lower precision value and therefore to a flat distribution over the whole 
simplex since the network is not familiar with the data. In contrast to this, data uncertainty 
should be represented by a sharper but also centered distribution, since the network can 
handle the data, but cannot give a clear class preference. In Fig.  6 the different desired 
behaviors are shown.

The Dirichlet distribution is utilized in several approaches as Dirichlet Prior Networks 
(Malinin and Gales 2018; Tsiligkaridis 2021b) and Evidential Neural Networks (Sensoy 

Fig. 5   Predictions received from a LeNet network trained on MNIST’s handwritten digits from 0 to 9 and 
evaluated on different rotations of test samples. One can clearly see, that for some rotations the network 
gives high confidence on the false class due to confusion (e.g.: 3 is confused with 8) or representations not 
seen at training. These examples represent a simple case of how a basic classification network can lead to 
overconfident wrong predictions under data distribution shifts

Fig. 6   The desired behaviors of a Dirichlet distribution over categorical distributions. The visualizations 
show three Dirichlet distributions over three classes. Each node of the simplex represents one class. In a the 
sharp Dirichlet distribution with its expectation close to the upper node represents a certain prediction of 
a categorical distribution. In b the sharp Dirichlet distribution in the center of the simplex represents high 
data uncertainty but low distributional uncertainty. In c the flat Dirichlet distribution indicates high distribu-
tional uncertainty
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et al. 2018). Both of these network types output the parameters of a Dirichlet distribution 
from which the categorical distribution describing the class probabilities can be derived. 
The general idea of prior networks (Malinin and Gales 2018) is already described above 
and is visualized in Fig. 6. Prior networks are trained in a multi-task way with the goal 
of minimizing the expected Kullback–Leibler (KL) divergence between the predictions of 
in-distribution data and a sharp Dirichlet distribution and between a flat Dirichlet distribu-
tion and the predictions of out-of-distribution data (Malinin and Gales 2018). Besides the 
main motivation of a better separation between in-distribution and OOD samples, these 
approaches also improve the separation between the confidence of correct and incorrect 
predictions, as was shown by Tsiligkaridis (2021a). As a follow-up, (Malinin and Gales 
2019) discussed that for the case that the data uncertainty is high, the forward definition 
of the KL-divergence can lead to an undesirable multi-model target distribution. In order 
to avoid this, they reformulated the loss using the reverse KL divergence. The experiments 
showed improved results in the uncertainty estimation as well as for the adversarial robust-
ness. Tsiligkaridis (2021b) extended the Dirichlet network approach by a new loss func-
tion that aims at minimizing an upper bound on the expected error based on the L∞-norm, 
i.e. optimizing an expected worst-case upper bound. Wu et al. (2019) argued that using a 
mixture of Dirichlet distributions gives much more flexibility in approximating the pos-
terior distribution. Therefore, an approach where the network predicts the parameters for 
a mixture of K Dirichlet distributions was suggested. For this, the network logits repre-
sent the parameters for M Dirichlet distributions and additionally M weights �i, i = 1, ..,M 
with the constraint 

∑M

i=1
�i = 1 are optimized. Nandy et al. (2020) analytically showed that 

for in-domain samples with high data uncertainty, the Dirichlet distribution predicted for a 
false prediction is often flatter than for a correct prediction. They argued that this makes it 
harder to differentiate between in- and out-of-distribution predictions and suggested a regu-
larization term for maximizing the gap between in- and out-of-distribution samples.

Evidential neural networks (Sensoy et al. 2018) also optimize the parameterization of 
a single Dirichlet network. The loss formulation is derived by using subjective logic and 
interpreting the logits as multinomial opinions or beliefs, as introduced in Evidence or 
Dempster-Shafer theory (Dempster 1968). Evidential neural networks set the total amount 
of evidence in relation to the number of classes and conclude a value of uncertainty from 
this, i.e. receiving an additional “I don’t know class”. The loss is formulated as the expected 
value of a basic loss, such as categorical cross entropy, with respect to a Dirichlet distribu-
tion parameterized by the logits. Additionally, a regularization term is added, encouraging 
the network predict the “I don’t know state” if no evidence for an improvement in the data 
fit is found. Zhao et al. (2019) extended this idea by differentiating between vacuity and 
dissonance in the collected evidence in order to better separate in- and out-of-distribution 
samples. For that, two explicit data sets containing overlapping classes and out-of-distribu-
tion samples are needed to learn a regularization term. Amini et al. (2020) transferred the 
idea of evidential neural networks from classification tasks to regression tasks by learn-
ing the parameters of an evidential normal inverse gamma distribution over an underlying 
Normal distribution. Charpentier et al. (2020) avoided the need of OOD data for the train-
ing process by using normalizing flows to learn a distribution over a latent space for each 
class. A new input sample is projected onto this latent space and a Dirichlet distribution is 
parameterized based on the class-wise densities of the received latent point.

Besides the Dirichlet distribution based approaches described above, several other inter-
nal approaches exist. In Liang et al. (2018b), a relatively simple approach based on small 
perturbations on the training input data and the temperature scaling calibration is presented 
leading to efficient differentiation of in- and out-of-distribution samples. Możejko et  al. 
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(2018) made use of the inhibited softmax function. It contains an artificial and constant 
logit that makes the absolute magnitude of the single logits more determined in the soft-
max output. Van Amersfoort et al. (2020) showed that Radial Basis Function (RBF) net-
works can be used to achieve competitive results in accuracy and very good results regard-
ing uncertainty estimation. RBF networks learn a linear transformation on the logits and 
classify inputs based on the distance between the transformed logits and the learned class 
centroids. In Van Amersfoort et al. (2020), a scaled exponentiated L2 distance was used. 
The data uncertainty can be directly derived from the distances between the centroids. By 
including penalties on the Jacobian matrix in the loss function, the network was trained to 
be more sensitive to changes in the input space. As a result, the method reached good per-
formance on out-of-distribution detection. In several tests, the approach was compared to 
a five members deep ensemble (Lakshminarayanan et al. 2017) and it was shown that this 
single network approach performs at least equivalently well on detecting out-of-distribu-
tion samples and improves the true-positive rate.

For regression tasks, (Oala et  al. 2020) introduced an uncertainty score based on the 
lower and upper bound output of an interval neural network. The interval neural network 
has the same structure as the underlying deterministic neural network and is initialized with 
the deterministic network’s weights. In contrast to Gaussian representations of uncertainty 
given by a standard deviation, this approach can give non-symmetric values of uncertainty. 
Furthermore, the approach is found to be more robust in the presence of noise. Tagasovska 
and Lopez-Paz (2019) presented an approach to estimate data and model uncertainty. A 
simultaneous quantile regression loss function was introduced in order to generate well-
calibrated prediction intervals for the data uncertainty. The model uncertainty is quanti-
fied based on a mapping from the training data to zero, based on so-called Orthonormal 
Certificates. The aim was that out-of-distribution samples, where the model is uncertain, 
are mapped to a non-zero value and thus can be recognized. Kawashima et al. (2021) intro-
duced a method that computes virtual residuals in the training samples of a regression task 
based on a cross-validation like pre-training step. With original training data expanded by 
the information of these residuals, the actual predictor is trained to give a prediction and a 
value of certainty. The experiments indicated that the virtual residuals represent a promis-
ing tool in order to avoid overconfident network predictions.

3.1.2 � External uncertainty quantification approaches

External uncertainty quantification approaches do not affect the models’ predictions, since 
the evaluation of the uncertainty is separated from the underlying prediction task. Further-
more, several external approaches can be applied to already trained networks at the same 
time without affecting each other. Raghu et al. (2019) argued that when both tasks, the pre-
diction, and the uncertainty quantification, are done by one single method, the uncertainty 
estimation is biased by the actual prediction task. Therefore, they recommended a “direct 
uncertainty prediction” and suggested training two neural networks, one for the actual pre-
diction task and a second one for the prediction of the uncertainty on the first network’s 
predictions. Similarly, Ramalho and Miranda (2020) introduced an additional neural net-
work for uncertainty estimation. But in contrast to Raghu et  al. (2019), the representa-
tion space of the training data is considered and the density around a given test sample is 
evaluated. The additional neural network uses this training data density in order to predict 
whether the main network’s estimate is expected to be correct or false. Hsu et al. (2020) 
detected out-of-distribution examples in classification tasks at test-time by predicting total 
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probabilities for each class, in addition to the categorical distribution given by the softmax 
output. The class-wise total probability is predicted by applying the sigmoid function to 
the network’s logits. Based on these total probabilities, OOD examples can be identified as 
those with low class probabilities for all classes.

In contrast to this, (Oberdiek et al. 2018) took the sensitivity of the model, i.e. the mod-
el’s slope, into account by using gradient metrics for the uncertainty quantification in clas-
sification tasks. Lee and AlRegib (2020) applied a similar idea but made use of back-prop-
agated gradients. In their work, they presented state-of-the-art results on out-of-distribution 
and corrupted input detection.

3.1.3 � Summing up single deterministic methods

Compared to many other principles, single deterministic methods are computationally 
efficient in training and evaluation. For training, only one network has to be trained and 
often the approaches can even be applied to pre-trained networks. Depending on the actual 
approach, only a single or at most two forward passes have to be fulfilled for evaluation. 
The underlying networks could contain more complex loss functions, which slows down 
the training process (Sensoy et  al. 2018) or external components that have to be trained 
and evaluated additionally (Raghu et al. 2019). But in general, this is still more efficient 
than the number of predictions needed for ensembles based methods (Sect. 3.3), Bayesian 
methods (Sect. 3.2), and test-time data augmentation methods (Sect. 3.4). A drawback of 
single deterministic neural network approaches is the fact that they rely on a single opinion 
and can therefore become very sensitive to the underlying network architecture, training 
procedure, and training data.

3.2 � Bayesian neural networks

Bayesian Neural Networks (BNNs) (Denker et al. 1987; Tishby et al. 1989; Buntine and 
Weigend 1991) have the ability to combine the scalability, expressiveness, and predictive 
performance of neural networks with the Bayesian learning as opposed to learning via the 
maximum likelihood principles. This is achieved by inferring the probability distribution 
over the network parameters � = (w1,… ,wK) . More specifically, given a training input-tar-
get pair (x, y) the posterior distribution over the space of parameters p(�|x, y) is modelled 
by assuming a prior distribution over the parameters p(�) and applying Bayes theorem:

Here, the normalization constant in (16) is called the model evidence p(y|x) which is 
defined as

Once the posterior distribution over the weights has been estimated, the prediction of 
output y∗ for a new input data x∗ can be obtained by Bayesian Model Averaging or Full 
Bayesian Analysis that involves marginalizing the likelihood p(y|x, �) with the posterior 
distribution:

(16)p(�|x, y) = p(y|x, �)p(�)
p(y|x)

∝ p(y|x, �)p(�).

(17)p(y|x) = ∫ p(y|x, �)p(�)d�.
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This Bayesian way of prediction is a direct application of the law of total probability and 
endows the ability to compute the principled predictive uncertainty. The integral of (18) 
is intractable for the most common prior posterior pairs and approximation techniques are 
therefore typically applied. The most widespread approximation, the Monte Carlo Approxi-
mation, follows the law of large numbers and approximates the expected value by the mean 
of N stochastic networks, f�1 ,… , f�N , parameterized by N samples, �1, �2,… , �N , from the 
posterior distribution of the weights, i.e.

 Wilson and Izmailov (2020) argue that a key advantage of BNNs lies in this marginali-
zation step, which particularly can improve both the accuracy and calibration of modern 
deep neural networks. We note that the use cases of BNNs are not limited to uncertainty 
estimation but open up the possibility to bridge the powerful Bayesian toolboxes within 
deep learning. Notable examples include Bayesian model selection (MacKay 1992a; Sato 
2001; Corduneanu and Bishop 2001; Ghosh et  al. 2019), model compression (Louizos 
et al. 2017; Federici et al. 2017; Achterhold et al. 2018), active learning (MacKay 1992b; 
Gal et  al. 2017b; Kirsch et  al. 2019), continual learning (Nguyen et  al. 2018; Ebrahimi 
et al. 2020; Farquhar and Gal 2019; Li et al. 2020), theoretic advances in Bayesian learning 
(Khan et al. 2019) and beyond. While the formulation is rather simple, there exist several 
challenges. For example, no closed-form solution exists for the posterior inference as con-
jugate priors do not typically exist for complex models such as neural networks (Bishop 
and Nasrabadi 2006). Hence, approximate Bayesian inference techniques are often needed 
to compute the posterior probabilities. Yet, directly using approximate Bayesian inference 
techniques has been proven to be difficult as the size of the data and the number of param-
eters are too large for the use cases of deep neural networks. In other words, the integrals of 
the above equations are not computationally tractable as the size of the data and the num-
ber of parameters grows. Moreover, specifying a meaningful prior for deep neural networks 
is another challenge that is less understood.

In this survey, we classify the BNNs into three different types based on how the pos-
terior distribution is inferred to approximate Bayesian inference:

•	 Variational inference (Hinton and Van Camp 1993; Barber and Bishop 1998)
	   Variational inference approaches approximate the (in general intractable) poste-

rior distribution by optimizing over a family of tractable distributions.
•	 Sampling approaches (Neal 1992)
	   Sampling approaches deliver a representation of the target random variable from 

which realizations can be sampled. Such methods are based on Markov Chain Monte 
Carlo and further extensions.

•	 Laplace approximation (Denker and LeCun 1991; MacKay 1992c)
	   Laplace approximation simplifies the target distribution by approximating the log-

posterior distribution and then, based on this approximation, deriving a normal dis-
tribution over the network weights.

(18)p(y∗|x∗, x, y) = ∫ p(y∗|x∗, �)p(�|x, y)d�.

(19)y∗ ≈
1

N

N∑

i=1

y∗
i
=

1

N

N∑

i=1

f�i (x
∗).
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These three types differ in multiple criteria that are of interest for applicants. While varia-
tional inference and the Laplace approximation offer an analytical expression of the uncer-
tainty and are derived in a deterministic manner, the sampling approaches generate sam-
ples and lack such an analytical expression and determinism. Here, it is important to note 
that the variational inference is deterministic, even though many approximations of it are 
based on stochastic sampling. On the other hand, the sampling approaches are not biased 
from the network’s predictions and have the theoretical capability to combine multiple 
modes (i.e. multiple local solutions), where variational inference and the Laplace approxi-
mation only operate in the neighbourhood of a single mode. At the same time, a possi-
ble convergence to a solution is significantly harder to asses for the sampling approaches. 
Considering the computational costs, the Laplace approximation scales down to a normal 
neural network training, while the variational inference is slowed down by regularization 
and additional parameters that are needed for representing the uncertainty. The sampling 
approaches are most costly at training time since the training is already based on sampling. 
Further, the Laplace approximation has the advantage that it can be applied to pre-trained 
networks without any changes needed. At inference all the presented approaches are rela-
tively costly since all are based on multiple forward passes in order to approximate the 
underlying probability distribution. An overview of the main differences in the three types 
can be found in Table 3.

While limiting our scope to these three categories, we also acknowledge several 
advances in related domains of BNN research. Some examples are (i) approximate infer-
ence techniques such as alpha divergence (Hernández-Lobato et al. 2016; Li and Gal 2017; 
Minka et al. 2005), expectation propagation (Minka 2001; Zhao et al. 2020), assumed den-
sity filtering (Hernández-Lobato and Adams 2015) etc, (ii) probabilistic programming to 
exploit modern Graphical Processing Units (GPUs) (Tran et al. 2016, 2017; Bingham et al. 
2019; Cabañas et al. 2019), (iii) different types of priors (Ito et al. 2005; Sun et al. 2018), 
(iv) advancements in theoretical understandings of BNNs (Depeweg et  al. 2017; Khan 
et al. 2019; Farquhar et al. 2020), (iv) uncertainty propagation techniques to speed up the 
marginalization procedures (Postels et al. 2019) and (v) computations of aleatoric uncer-
tainty (Gast and Roth 2018; Depeweg et al. 2018).

3.2.1 � Variational inference

The goal of variational inference is to infer the posterior probabilities p(�|x, y) using a pre-
specified family of distributions q(�) . Here, this so-called variational family q(�) is defined 
as a parametric distribution. An example is the Multivariate Normal distribution where its 
parameters are the mean and the covariance matrix. The main idea of variational inference 
is to find the settings of these parameters that make q(�) to be close to the posterior of 
interest p(�|x, y) . This measure of closeness between the probability distributions is given 
by the Kullback–Leibler (KL) divergence

Due to the posterior p(�|x, y) the KL-divergence in (20) can not be minimized directly. 
Instead, the evidence lower bound (ELBO), a function that is equal to the KL divergence 
up to a constant, is optimized. For a given prior distribution on the parameters p(�) , the 
ELBO is given by

(20)KL(q‖p) = �q

�
log

q(�)

p(��x, y)

�
.
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and for the KL divergence

holds.
Variational methods for BNNs have been pioneered by Hinton and Van Camp (Hin-

ton and Van Camp 1993) where the authors derived a diagonal Gaussian approximation 
to the posterior distribution of neural networks (couched in information theory—a mini-
mum description length). Another notable extension in the 1990s has been proposed by 
Barber and Bishop (1998), in which the full covariance matrix was chosen as the vari-
ational family, and the authors demonstrated how the ELBO can be optimized for neural 
networks. Several modern approaches can be viewed as extensions of these early works 
(Hinton and Van Camp 1993; Barber and Bishop 1998) with a focus on how to scale the 
variational inference to modern neural networks.

An evident direction with the current methods is the use of stochastic variational 
inference (or Monte-Carlo variational inference), where the optimization of ELBO is 
performed using a mini-batch of data. One of the first connections to stochastic vari-
ational inference has been proposed by Graves (2011) with Gaussian priors. In 2015, 
(Blundell et al. 2015) introduced Bayes By Backprop, a further extension of stochastic 
variational inference (Graves 2011) to non-Gaussian priors and demonstrated how the 
stochastic gradients can be made unbiased. Notable, (Kingma et al. 2015) introduced the 
local reparameterization trick to reduce the variance of the stochastic gradients. One of 
the key concepts is to reformulate the loss function of the neural network as the ELBO. 
As a result, the intractable posterior distribution is indirectly optimized and variational 
inference is compatible with back-propagation with certain modifications to the training 
procedure. These extensions widely focus on the fragility of stochastic variational infer-
ence that arises due to sensitivity to initialization, prior definition, and variance of the 
gradients. These limitations have been addressed recently by Wu et al. (2018), where a 
hierarchical prior was used and the moments of the variational distribution are approxi-
mated deterministically.

Above works commonly assumed mean-field approximations as the variational fam-
ily, neglecting the correlations between the parameters. In order to make more expres-
sive variational distributions feasible for deep neural networks, several works pro-
posed to infer using the matrix normal distribution (Louizos and Welling 2016; Zhang 
et  al. 2018a; Sun et  al. 2017) or more expressive variants (Bae et  al. 2018; Mishkin 
et  al. 2018) where the covariance matrix is decomposed into the Kronecker products 
of smaller matrices or in a low-rank form plus a positive diagonal matrix. A notable 
contribution towards expressive posterior distributions has been the use of normalizing 
flows (Rezende and Mohamed 2015; Louizos and Welling 2017)—a hierarchical prob-
ability distribution where a sequence of invertible transformations are applied so that a 
simple initial density function is transformed into a more complex distribution. Inter-
estingly, (Farquhar et al. 2020) argue that mean-field approximation is not a restrictive 
assumption, and the layer-wise weight correlations may not be as important as captur-
ing the depth-wise correlations. While the claim of Farquhar et al. (2020) may remain 
to be an open question, the mean-field approximations have an advantage on smaller 
computational complexities (Farquhar et  al. 2020). For example, (Osawa et  al. 2019) 

(21)L = �q

[
log

p(y|x, �)
q(�)

]

(22)KL(q‖p) = −L + log p(y�x)
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demonstrated that variational inference can be scaled up to ImageNet size data sets and 
architectures using multiple GPUs and proposed practical tricks such as data augmenta-
tion, momentum initialization, and learning rate scheduling.

One of the successes in variational methods has been accomplished by casting exist-
ing stochastic elements of deep learning as variational inference. A widely known example 
is Monte Carlo Dropout (MC Dropout) where the dropout layers are formulated as Ber-
noulli distributed random variables, and training a neural network with dropout layers can 
be approximated as performing variational inference (Gal and Ghahramani 2015, 2016; 
Gal et al. 2017a). A main advantage of MC dropout is that the predictive uncertainty can 
be computed by activating dropout not only during training but also at test time. In this 
way, once the neural network is trained with dropout layers, the implementation efforts 
can be kept minimum and the practitioners do not need expert knowledge to reason about 
uncertainty—certain criteria that the authors are attributing to its success (Gal and Ghah-
ramani 2016). The practical values of this method have been demonstrated also in several 
works (Eaton-Rosen et al. 2018; Loquercio et al. 2020; Rußwurm et al. 2020) and resulted 
in different extensions [evaluating the usage of different dropout masks for example for 
convolutional layers (Tassi and Rovile 2019) or by changing the representations of the pre-
dictive uncertainty into model and data uncertainties (Kendall and Gal 2017)]. Approaches 
that build upon a similar idea but randomly drop incoming activations of a node, instead 
of dropping an activation for all following nodes, were also proposed within the literature 
(Mobiny et  al. 2021) and called drop connect. This was found to be more robust on the 
uncertainty representation, even though it was shown that a combination of both can lead 
to higher accuracy and robustness in the test predictions (McClure and Kriegeskorte 2016). 
Lastly, connections of variation inference to Adam (Khan et al. 2018), RMS Prop (Khan 
et al. 2017), and batch normalization (Atanov et al. 2019) have been further suggested in 
the literature.

3.2.2 � Sampling methods

Sampling methods, also often called Monte Carlo methods, are another family of Bayesian 
inference algorithms that represent uncertainty without a parametric model. Specifically, 
sampling methods use a set of hypotheses (or samples) drawn from the distribution and 
offer the advantage that the representation itself is not restricted by the type of distribution 
(e.g. can be multi-modal or non-Gaussian)—hence probability distributions are obtained 
non-parametrically. Popular algorithms within this domain are particle filtering, rejec-
tion sampling, importance sampling, and Markov Chain Monte Carlo sampling (MCMC) 
(Bishop and Nasrabadi 2006). In the case of neural networks, MCMC is often used since 
alternatives such as rejection and importance sampling are known to be inefficient for such 
high-dimensional problems. The main idea of MCMC is to sample from arbitrary distribu-
tions by a transition in state space where this transition is governed by a record of the cur-
rent state and the proposal distribution that aims to estimate the target distribution (e.g. the 
true posterior). To explain this, let us start defining the Markov Chain: a Markov Chain is a 
distribution over random variables x1,⋯ , xT which follows the state transition rule:

i.e. the next state only depends on the current state and not on any other former state. In 
order to draw samples from the true posterior, MCMC sampling methods first generate 

(23)p(x1,⋯ , xT ) = p(x1)

T∏

t=2

p(xt|xt−1),
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samples in an iterative and the Markov Chain fashion. Then, at each iteration, the algo-
rithm decides to either accept or reject the samples where the probability of acceptance 
is determined by certain rules. In this way, as more and more samples are produced, their 
values can approximate the desired distribution.

Hamiltonian Monte Carlo or Hybrid Monte Carlo (HMC) (Duane et  al. 1987) is an 
important variant of MCMC sampling method (pioneered by Neal (1992, 1994, 1995); 
Neal et  al. (2011) for neural networks), and is often known to be the gold standards of 
Bayesian inference (Neal et al. 2011; Dubey et al. 2016; Li and Gal 2017). The algorithm 
works as follows: (i) start by initializing a set of parameters � (either randomly or in a 
user-specific manner). Then, for a given number of total iterations, (ii) instead of a random 
walk, a momentum vector—an auxiliary variable � is sampled, and the current value of 
parameters � is updated via the Hamiltonian dynamics:

Defining the potential energy ( V(�) = −logp(�) and the kinetic energy T(�|�) = −logp(�|�) , 
the update steps via Hamilton’s equations are governed by,

The so-called leapfrog integrator is used as a solver (Leimkuhler and Reich 2004). (iii) For 
each step, a Metropolis acceptance criterion is applied to either reject or accept the samples 
(similar to MCMC). Unfortunately, HMC requires the processing of the entire data set per 
iteration, which is computationally too expensive when the data-set size grows to million to 
even billions. Hence, many modern algorithms focus on how to perform the computations 
in a mini-batch fashion stochastically. In this context, for the first time, (Welling and Teh 
2011) proposed to combine Stochastic Gradient Descent (SGD) with Langevin dynamics 
[a form of MCMC (Rossky et al. 1978; Roberts and Stramer 2002; Neal et al. 2011)] in 
order to obtain a scalable approximation to MCMC algorithm based on mini-batch SGD 
(Kushner and Yin 2003; Goodfellow et al. 2016). The work demonstrated that performing 
Bayesian inference on Deep Neural Networks can be as simple as running a noisy SGD. 
This method does not include the momentum term of HMC via using the first-order Lan-
gevin dynamics and opened up a new research area on Stochastic Gradient Markov Chain 
Monte Carlo (SG-MCMC).

Consequently, several extensions are available which include the use of 2nd order infor-
mation such as preconditioning and optimizing with the Fisher Information Matrix (FIM) 
(Ma et al. 2015; Marceau-Caron and Ollivier 2017; Nado et al. 2018), the Hessian (Sim-
sekli et al. 2016; Zhang and Sutton 2011; Fu et al. 2016), adapting preconditioning diago-
nal matrix (Li et al. 2016a), generating samples from non-isotropic target densities using 
Fisher scoring (Ahn et al. 2012), and samplers in the Riemannian manifold (Patterson and 
Teh 2013) using the first order Langevin dynamics and Levy diffusion noise and momen-
tum (Ye and Zhu 2018). Within these methods, the so-called parameter-dependent diffu-
sion matrices are incorporated with the intention to offset the stochastic perturbation of the 
gradient. To do so, the “thermostat” ideas (Ding et al. 2014; Shang et al. 2015; Leimkuh-
ler and Shang 2016) are proposed so that a prescribed constant temperature distribution 
is maintained with the parameter-dependent noise. Ahn et al. (2014) devised a distributed 

(24)H(�, �) = −logp(�, �) = −logp(�|�) − logp(�).

(25)
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computing system for SG-MCMC to exploit the modern computing routines, while (Wang 
et al. 2018b) showed that Generative Adversarial Models (GANs) can be used to distill the 
samples for improved memory efficiency, instead of distillation for enhancing the run-time 
capabilities of computing predictive uncertainty (Balan et  al. 2015). Lastly, other recent 
trends are techniques that reduce the variance (Dubey et al. 2016; Zou et al. 2018) and bias 
(Durmus et al. 2016; Durmus and Moulines 2019) arising from stochastic gradients.

Concurrently, there have been solid advances in the theory of SG-MCMC methods and 
their applications in practice. Sato and Nakagawa (Sato and Nakagawa 2014), for the first 
time, showed that the SGLD algorithm with constant step size weakly converges; (Chen 
et al. 2015) showed that faster convergence rates and more accurate invariant measures can 
be observed for SG-MCMCs with higher order integrators rather than a 1st order Euler 
integrator while (Teh et al. 2016) studied the consistency and fluctuation properties of the 
SGLD. As a result, verifiable conditions obeying a central limit theorem for which the 
algorithm is consistent, and how its asymptotic bias-variance decomposition depends on 
step-size sequences have been discovered. A more detailed review of the SG-MCMC with 
a focus on supporting theoretical results can be found in Nemeth and Fearnhead Nemeth 
and Fearnhead 2021. Practically, SG-MCMC techniques have been applied to shape clas-
sification and uncertainty quantification (Li et  al. 2016b), empirically study and validate 
the effects of tempered posteriors (or called cold-posteriors) (Wenzel et al. 2020) and train 
a deep neural network in order to generalize and avoid over-fitting (Ye et al. 2017; Chandra 
et al. 2019).

3.2.3 � Laplace approximation

The goal of the Laplace Approximation is to estimate the posterior distribution over the 
parameters of neural networks p(� ∣ x, y) around a local mode of the loss surface with a 
Multivariate Normal distribution. The Laplace Approximation to the posterior can be 
obtained by taking the second-order Taylor series expansion of the log posterior over the 
weights around the MAP estimate 𝜃̂ given some data (x, y). If we assume a Gaussian prior 
with a scalar precision value 𝜏 > 0 , then this corresponds to the commonly used L2-regu-
larization, and the Taylor series expansion results in

where the first-order term vanishes because the gradient of the log posterior 
�� = ∇ log p(� ∣ x, y) is zero at the maximum 𝜃̂ . Taking the exponential on both sides and 
approximating integrals by reverse engineering densities, the weight posterior is approxi-
mately a Gaussian with the mean 𝜃̂ and the covariance matrix (H + �I)−1 where H is the 
Hessian of log p(� ∣ x, y) . This means that the model uncertainty is represented by the Hes-
sian H resulting in a Multivariate Normal distribution:

In contrast to the two other methods described, the Laplace approximation can be applied 
on already trained networks and is generally applicable when using standard loss func-
tions such as MSE or cross entropy and piece-wise linear activations (e.g. RELU). Mac-
Kay (1992c) and Denker and LeCun (1991) have pioneered the Laplace approximation for 

log p(𝜃 ∣ x, y) ≈ log p(𝜃̂ ∣ x, y)

+
1

2
(𝜃 − 𝜃̂)T (H + 𝜏I)(𝜃 − 𝜃̂),

(27)p(𝜃 ∣ x, y) ∼ N
(
𝜃̂, (H + 𝜏I)−1

)
.
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neural networks in the 1990s, and several modern methods provide an extension to deep 
neural networks (Botev et al. 2017; Martens and Grosse 2015; Ritter et al. 2018; Lee et al. 
2020).

The core of the Laplace Approximation is the estimation of the Hessian. Unfortunately, 
due to the enormous number of parameters in modern neural networks, the Hessian matri-
ces cannot be computed in a feasible way as opposed to relatively smaller networks in 
MacKay (1992c) and Denker and LeCun (1991). Consequently, several different ways for 
approximating H have been proposed in the literature. A brief review is as follows. Instead 
of diagonal approximations [e.g. Becker and LeCun (1989), Salimans and Kingma (2016)], 
several researchers have been focusing on including the off-diagonal elements [e.g. Liu 
and Nocedal (1989), Hennig (2013) and Le Roux and Fitzgibbon (2010)]. Amongst them, 
layer-wise Kronecker Factor approximation of Grosse and Martens (2016), Martens and 
Grosse (2015), Botev et al. (2017) and Chen et al. (2018) have demonstrated a notable scal-
ability (Ba et al. 2016). A recent extension can be found in George et al. (2018) where the 
authors propose to re-scale the eigenvalues of the Kronecker factored matrices so that the 
diagonal variance in its eigenbasis is accurate. The work presents an interesting idea as one 
can prove that in terms of a Frobenius norm, the proposed approximation is more accurate 
than that of Martens and Grosse (2015). However, as this approximation is harmed by inac-
curate estimates of eigenvectors, (Lee et al. 2020) proposed to further correct the diagonal 
elements in the parameter space.

Existing works obtain Laplace Approximation using various approximations of the Hes-
sian in the line of fidelity-complexity trade-offs. For several works, an approximation using 
the diagonal of the Fisher information matrix or Gauss-Newton matrix, leading to indepen-
dently distributed model weights, has been utilized in order to prune weights (LeCun et al. 
1989) or perform continual learning in order to avoid catastrophic forgetting (Kirkpatrick 
et al. 2017). In Ritter et al. (2018), the Kronecker factorization of the approximate block-
diagonal Hessian (Martens and Grosse 2015; Botev et al. 2017) have been applied to obtain 
scalable Laplace Approximation for neural networks. With this, the weights among differ-
ent layers are still assumed to be independently distributed, but not the correlations within 
the same layer. Recently, building upon the current understanding of neural network’s loss 
landscape that many eigenvalues of the Hessian tend to be zero, (Lee et al. 2020) developed 
a low-rank approximation that leads to sparse representations of the layers’ co-variance 
matrices. Furthermore, (Lee et al. 2020) demonstrated that the Laplace Approximation can 
be scaled to ImageNet size data sets and architectures, and further showed that with the 
proposed sparsification technique, the memory complexity of modelling correlations can 
be made similar to the diagonal approximation. Lastly, (Kristiadi et al. 2020) proposed a 
simple procedure to compute the last-layer Gaussian approximation (neglecting the model 
uncertainty in all other layers of neural networks), and showed that even such a minimalist 
solution can mitigate overconfidence predictions of ReLU networks.

Recent efforts have extended the Laplace Approximation beyond the Hessian approxi-
mation. To tackle the widely known assumption that the Laplace Approximation is for the 
bell-shaped true posterior and thus resulting in under-fitting behavior (Ritter et al. 2018; 
Humt et al. 2020) proposed to use Bayesian Optimization and showed that hyperparameters 
of the Laplace Approximation can be efficiently optimized with increased calibration per-
formance. Another work in this domain is by Kristiadi et al. (2021), who proposed uncer-
tainty units—a new type of hidden units that changes the geometry of the loss landscape so 
that more accurate inference is possible. While (Shinde et al. 2020) demonstrated the prac-
tical effectiveness of the Laplace Approximation to the autonomous driving applications, 
(Feng et al. 2019) showed the possibility to (i) incorporate contextual information and (ii) 
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domain adaptation in a semi-supervised manner within the context of image classification. 
This is achieved by designing unary potentials within a Conditional Random Field. Several 
real-time methods also exist that do not require multiple forwards passes to compute the 
predictive uncertainty. So-called linearized Laplace Approximation has been proposed in 
Foong et al. (2019), Immer et al. (2021) using the ideas of MacKay (1992b) and has been 
extended with Laplace bridge for classification (Hobbhahn et al. 2022). Within this frame-
work, (Daxberger et al. 2020) proposed inferring the sub-networks to increase the expres-
sivity of covariance propagation while remaining computationally tractable.

3.2.4 � Sum up Bayesian methods

Bayesian methods for deep learning have emerged as a strong research domain by combin-
ing principled Bayesian learning for deep neural networks. A review of current BNNs has 
been provided with a focus on mostly, how the posterior p(�|x, y) is inferred. As an obser-
vation, many of the recent breakthroughs have been achieved by performing approximate 
Bayesian inference in a mini-batch fashion (stochastically) or investigating relatively simple 
but scalable techniques such as MC-dropout or Laplace Approximation. As a result, several 
works demonstrated that the posterior inference in large-scale settings are now possible 
(Maddox et al. 2019; Osawa et al. 2019; Lee et al. 2020), and the field has several practical 
approximation tools to compute more expressive and accurate posteriors since the revival 
of BNNs beyond the pioneers (Hinton and Van Camp 1993; Barber and Bishop 1998; Neal 
1992; Denker and LeCun 1991; MacKay 1992c). There are also emerging challenges on 
new frontiers beyond accurate inference techniques. Some examples are: (i) how to specify 
meaningful priors? (Ito et  al. 2005; Sun et  al. 2018), (ii) how to efficiently marginalize 
over the parameters for fast predictive uncertainty? (Balan et al. 2015; Postels et al. 2019; 
Hobbhahn et al. 2022; Lee et al. 2022) (iii) infrastructures such as new benchmarks, evalu-
ation protocols and software tools (Mukhoti et al. 2018; Tran et al. 2017; Bingham et al. 
2019; Filos et al. 2019), and (iv) towards better understandings on the current methodolo-
gies and their potential applications (Farquhar et al. 2020; Wenzel et al. 2020; Mukhoti and 
Gal 2018; Feng et al. 2019).

3.3 � Ensemble methods

3.3.1 � Principles of ensemble methods

Ensembles derive a prediction based on the predictions received from multiple so-called 
ensemble members. They target a better generalization by making use of synergy effects 
among the different models, arguing that a group of decision-makers tend to make bet-
ter decisions than a single decision-maker (Sagi and Rokach 2018; Hansen and Salamon 
1990). For an ensemble f ∶ X → Y  with members fi ∶ X → Y  for i ∈ 1, 2,… ,M , this 
could be for example implemented by simply averaging over the members’ predictions,

Based on this intuitive idea, several works applying ensemble methods to different kinds of 
practical tasks and approaches, for example bio-informatics (Cao et al. 2020; Nanni et al. 
2020; Wei et  al. 2017), remote sensing (Lv et  al. 2017; Dai et  al. 2019; Marushko and 

f (x) ∶=
1

M

M∑

i=1

fi(x).
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Doudkin 2020), or reinforcement learning (Kurutach et al. 2018; Rajeswaran et al. 2017) 
can be found in the literature. Besides the improvement in accuracy, ensembles give an 
intuitive way of representing the model uncertainty on a prediction by evaluating the vari-
ety among the member’s predictions.

Compared to Bayesian and single deterministic network approaches, ensemble meth-
ods have two major differences. First, the general idea behind ensembles is relatively clear 
and there are not many groundbreaking differences in the application of different types of 
ensemble methods and their application in different fields. Hence, this section focuses on 
different strategies to train an ensemble and some variations that target making ensem-
ble methods more efficient. Second, ensemble methods were originally not introduced to 
explicitly handle and quantify uncertainties in neural networks. Although the derivation of 
uncertainty from ensemble predictions is obvious, since they actually aim at reducing the 
model uncertainty, ensembles were first introduced and discussed in order to improve the 
accuracy on a prediction (Hansen and Salamon 1990). Therefore, many works on ensemble 
methods do not explicitly take the uncertainty into account. Notwithstanding this, ensem-
bles have been found to be well suited for uncertainty estimations in neural networks (Lak-
shminarayanan et al. 2017).

3.3.2 � Single‑ and multi‑mode evaluation

One main point where ensemble methods differ from the other methods presented in this 
paper is the number of local optima that are considered, i.e. the differentiation into single-
mode and multi-mode evaluation.

In order to create synergies and marginalise false predictions of single members, the 
members of an ensemble have to behave differently in case of an uncertain outcome. The 
mapping defined by a neural network is highly non-linear and hence the optimized loss 
function contains many local optima to which a training algorithm could converge. Deter-
ministic neural networks converge to one single local optimum in the solution space (Fort 
et al. 2019). Other approaches, e.g. BNNs, still converge to one single optimum, but addi-
tionally, take the uncertainty on this local optimum into account (Fort et al. 2019). This 
means, that neighbouring points within a certain region around the solution also affect the 
loss and also influence the prediction of a test sample. Since these methods focus on single 
regions, the evaluation is called single-mode evaluation. In contrast to this, ensemble meth-
ods consist of several networks, which should converge to different local optima. This leads 
to a so-called multi-mode evaluation (Fort et al. 2019).

In Fig. 7, the considered parameters of a single-mode deterministic, single-mode proba-
bilistic (Bayesian), and multi-mode ensemble approach are visualized. The goal of multi-
mode evaluation is that different local optima could lead to models with different strengths 
and weaknesses in the predictions such that a combination of several such models brings 
synergy effects improving the overall performance.

3.3.3 � Bringing variety into ensembles

One of the most crucial points when applying ensemble methods is to maximize the variety 
in the behaviour among the single networks (Renda et al. 2019; Lakshminarayanan et al. 
2017). In order to increase the variety, several different approaches can be applied:

•	 Random initialization and data shuffle
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	   Due to the very non-linear loss landscape, different initializations of a neural net-
work lead in general to different training results. Since the training is realized on mini-
batches, the order of the training data points also affects the final result.

•	 Bagging and boosting
	   Bagging (Bootstrap aggregating) and Boosting are two strategies that vary the dis-

tribution of the used training data sets by sampling new sets of training samples from 
the original set. Bagging is sampling from the training data uniformly and with replace-
ment (Bishop and Nasrabadi 2006). Thanks to the replacement process, ensemble 
members can see single samples several times in the training set while missing some 
other training samples. For boosting, the members are trained one after another, and the 
probability of sampling a sample for the next training set is based on the performance 
of the already trained ensemble (Bishop and Nasrabadi 2006).

•	 Data augmentation
	   Augmenting the input data randomly for each ensemble member leads to models 

trained on different data points and therefore in general to a larger variety among the 
different members.

•	 Ensemble of different network architecture
	   The combination of different network architectures leads to different loss landscapes 

and can therefore also increase the diversity in the resulting predictions (Herron et al. 
2020).

In several works, it has been shown that the variety induced by random initialization works 
sufficiently and that bagging could even lead to a weaker performance (Lee et  al. 2015; 
Lakshminarayanan et  al. 2017). Livieris et  al. (2021) evaluated different bagging and 
boosting strategies for ensembles of weight-constrained neural networks. Interestingly, it is 
found that bagging performs better for a small number of ensemble members while boost-
ing performs better for a large number. Nanni et al. (2019) evaluated ensembles based on 
different types of image augmentation for bioimage classification tasks and compared those 

Fig. 7   A visualization of the different evaluation behaviours of deterministic neural networks, Bayes-
ian neural networks, and the ensemble of deterministic neural networks. The x-axis indicates the network 
parameters � and the y-axis represents the loss value. While the deterministic network learns the param-
eters based on a pointwise estimation, the Bayesian neural network also takes the surrounding of the single 
point into account. The ensemble of deterministic methods optimizes pointwise but learns several different 
parameter settings



	 J. Gawlikowski et al.

1 3

to each other. Guo and Gould (2015) used augmentation methods within in an ensemble 
approach for object detection. Both works stated that the ensemble approach using aug-
mentations improves the resulting accuracy. In contrast to this, (Rahaman et al. 2021; Wen 
et al. 2021b) stated with respect to uncertainty quantification that image augmentation can 
harm the calibration of an ensemble, and post-processing calibration methods have to be 
slightly adapted when using ensemble methods. Other ways of inducing variety for specific 
tasks have been also introduced. For instance, in Kim et al. (2018), the members are trained 
with different attention masks in order to focus on different parts of the input data. Other 
approaches focused on the training process and introduced learning rate schedulers that are 
designed to discover several local optima within one training process (Huang et al. 2017; 
Yang and Wang 2020). Following, an ensemble can be built based on local optima found 
within one single training run. It is important to note that if not explicitly stated, the works 
and approaches presented so far targeted improvements in predictive accuracy and did not 
explicitly consider uncertainty quantification.

3.3.4 � Ensemble methods and uncertainty quantification

Besides the improvement in the accuracy, ensembles are widely used for modelling uncer-
tainty on predictions of complex models, such as in climate prediction (Leutbecher and 
Palmer 2008; Parker 2013). Accordingly, ensembles are also used for quantifying the 
uncertainty on a deep neural network’s prediction, and over the last years they became 
more and more popular for such tasks (Lakshminarayanan et al. 2017; Renda et al. 2019). 
Lakshminarayanan et al. (2017) are often referenced as a base work on uncertainty estima-
tions derived from ensembles of neural networks and as a reference for the competitive-
ness of deep ensembles. They introduced an ensemble training pipeline to quantify predic-
tive uncertainty within DNNs. In order to handle data and model uncertainty, the member 
networks are designed with two heads, representing the prediction and a predicted value 
of data uncertainty on the prediction. The approach is evaluated with respect to accuracy, 
calibration, and out-of-distribution detection for classification and regression tasks. In all 
tests, the method performs at least equally well as the BNN approaches used for compari-
son, namely Monte Carlo Dropout and Probabilistic Backpropagation. Lakshminarayanan 
et al. (2017) also showed that shuffling the training data and a random initialization of the 
training process induces a sufficient variety in the models in order to predict the uncer-
tainty for the given architectures and data sets. Furthermore, bagging is even found to 
worsen the predictive uncertainty estimation, extending the findings of Lee et al. (2015), 
who found bagging to worsen the predictive accuracy of ensemble methods on the investi-
gated tasks. Gustafsson et al. (2020) introduced a framework for the comparison of uncer-
tainty quantification methods with a specific focus on real life applications. Based on this 
framework, they compared ensembles and Monte Carlo dropouts and found ensembles to 
be more reliable and applicable to real life applications. These findings endorse the results 
reported by Beluch et  al. (2018) who found ensemble methods to deliver more accurate 
and better calibrated predictions on active learning tasks than Monte Carlo Dropout. Ova-
dia et al. (2019) evaluated different uncertainty quantification methods based on test sets 
affected by distribution shifts. The excessive evaluation contains a variety of model types 
and data modalities. As a takeaway, the authors stated that already for a relatively small 
ensemble size of five, deep ensembles seem to perform best and are more robust to data 
set shifts than the compared methods. Vyas et al. (2018) presented an ensemble method for 
the improved detection of out-of-distribution samples. For each member, a subset of the 
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training data is considered as out-of-distribution. For the training process, a loss, seeking a 
minimum margin greater than zero between the average entropy of the in-domain and the 
out-of-distribution subsets is introduced and leads to a significant improvement in the out-
of-distribution detection.

3.3.5 � Making ensemble methods more efficient

Compared to single model methods, ensemble methods come along with a significantly 
increased computational effort and memory consumption (Sagi and Rokach 2018; Malinin 
et al. 2020). When deploying an ensemble for a real life application the available memory 
and computational power are often limited. Such limitations could easily become a bot-
tleneck (Kocić et al. 2019) and could become critical for applications with limited reac-
tion time. Reducing the number of models leads to less memory and computational power 
consumption. Pruning approaches reduce the complexity of ensembles by pruning over 
the members and reducing the redundancy among them. For that, several approaches based 
on different diversity measures are developed to remove single members without strongly 
affecting the performance (Guo et al. 2018; Cavalcanti et al. 2016; Martínez-Muñoz et al. 
2008).

Distillation is another approach where the number of networks is reduced to one single 
model. It is the procedure of teaching a single network to represent the knowledge of a 
group of neural networks (Buciluǎ et al. 2006). First works on the distillation of neural net-
works were motivated by restrictions when deploying large-scale classification problems 
(Buciluǎ et al. 2006). The original classification problem is separated into several sub-prob-
lems focusing on single blocks of classes that are difficult to differentiate. Several smaller 
trainer networks are trained on the sub-problems and then teach one student network to 
separate all classes at the same time. In contrast to this, Ensemble distillation approaches 
capture the behaviour of an ensemble by one single network. The first works on ensemble 
distillation used the average of the softmax outputs of the ensemble members in order to 
teach a student network the derived predictive uncertainty (Hinton et al. 2015). Englesson 
and Azizpour (2019) justify the resulting predictive distributions of this approach and addi-
tionally cover the handling of out-of-distribution samples. When averaging over the mem-
bers’ outputs, the model uncertainty, which is represented in the variety of ensemble out-
puts, gets lost. To overcome this drawback, researchers applied the idea of learning higher 
order distributions, i.e. distributions over a distribution, instead of directly predicting the 
output (Lindqvist et al. 2020; Malinin et al. 2020). The members are then distillated based 
on the divergence from the average distribution. The idea is closely related to the prior net-
works (Malinin and Gales 2018) and the evidential neural networks (Sensoy et al. 2018), 
which are described in Sect. 3.1. Malinin et al. (2020) modelled ensemble members and 
the distilled network as prior networks predicting the parameters of a Dirichlet distribution. 
The distillation then seeks to minimize the KL divergence between the averaged Dirichlet 
distributions of the ensemble members and the output of the distilled network. Lindqvist 
et al. (2020) generalized this idea to any other parameterizable distribution. With that, the 
method is also applicable to regression problems, for example by predicting a mean and 
standard deviation to describe a normal distribution. Within several tests, the distillation 
models generated by these approaches are able to distinguish between data uncertainty and 
model uncertainty. Although distillation methods cannot completely capture the behaviour 
of an underlying ensemble, it has been shown that they are capable of delivering good and 
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for some experiments even comparable results (Lindqvist et al. 2020; Malinin et al. 2020; 
Reich et al. 2020).

Other approaches, as sub-ensembles (Valdenegro-Toro 2019) and batch-ensembles (Wen 
et  al. 2019) seek to reduce the computation effort and memory consumption by sharing 
parts among the single members. It is important to note that the possibility of using differ-
ent model architectures for the ensemble members could get lost when parts of the ensem-
ble are shared. Also, the training of the models cannot be run in a completely independent 
manner. Therefore, the actual time needed for training does not necessarily decrease in the 
same way as the computational effort does.

Sub-ensembles (Valdenegro-Toro 2019) divide a neural network architecture into two 
sub-networks. The trunk network is for the extraction of general information from the input 
data, and the task network uses this information to fulfill the actual task. In order to train a 
sub-ensemble, first, the weights of each member’s trunk network are fixed based on the 
resulting parameters of one single model’s training process. Following, the parameters of 
each ensemble member’s task network are trained independently from the other members. 
As a result, the members are built with a common trunk and an individual task sub-net-
work. Since the training and the evaluation of the trunk network have to be done only once, 
the number of computations needed for training and testing decreases by the factor 
M⋅Ntask+Ntrunk

M⋅N
 , where Ntask , Ntrunk , and N stand for the number of variables in the task net-

works, the trunk network, and the complete network. Valdenegro-Toro (2019) further 
underlined the usage of a shared trunk network by arguing that the trunk network is in gen-
eral computational more costly than the task network. In contrast to this, batch-ensembles 
(Wen et al. 2019) connect the member networks with each other at every layer. The ensem-
ble members’ weights are described as a Hadamard product of one shared weight matrix 
W ∈ ℝ

n×m and M individual rank one matrix Fi ∈ ℝ
n×m , each linked with one of the M 

ensemble members. The rank one matrices can be written as a multiplication Fi = ris
T
i
 of 

two vectors s ∈ ℝ
n and r ∈ ℝ

m and hence the matrix Fi can be described by n + m parame-
ters. With this approach, each additional ensemble member increases the number of param-
eters only by the factor n+m

M⋅(n+m)+n⋅m
+ 1 instead of M+1

M
= 1 +

1

M
 . On the one hand, with this 

approach, the members are not independent anymore such that all the members have to be 
trained in parallel. On the other hand, the authors also showed that parallelization can be 
realized similarly to the optimization on mini-batches and on a single unit.

3.3.6 � Sum up ensemble methods

Ensemble methods are very easy to apply since no complex implementation or major mod-
ification of the standard deterministic model have to be realized. Furthermore, ensemble 
members are trained independently from each other, which makes the training easily par-
allelizable. Also, trained ensembles can be extended easily, but the needed memory and 
computational effort increase linearly with the number of members for training and eval-
uation. The main challenge when working with ensemble methods is the need of intro-
ducing diversity among the ensemble members. For accuracy, uncertainty quantification, 
and out-of-distribution detection, random initialization, data shuffling, and augmentations 
have been found to be sufficient for many applications and tasks (Lakshminarayanan et al. 
2017; Nanni et al. 2019). Since these methods may be applied anyway, they do not need 
much additional effort. The independence of the single ensemble members leads to a lin-
ear increase in the required memory and computation power with each additional member. 
This holds for the training as well as for testing. This limits the deployment of ensemble 
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methods in many practical applications where the computation power or memory is lim-
ited, the application is time-critical, or very large networks with high inference time are 
included (Malinin et al. 2020).

Many aspects of ensemble approaches are only investigated with respect to the perfor-
mance on the predictive accuracy but do not take predictive uncertainty into account. This 
also holds for the comparison of different training strategies for a broad range of problems 
and data sets. Especially since the overconfidence from single members can be transferred 
to the whole ensemble, strategies that encourage the members to deliver different false pre-
dictions instead of all delivering the same false prediction should be further investigated. 
For a better understanding of ensemble behavior, further evaluations of the loss landscape, 
as done by Fort et al. (2019), could offer interesting insights.

3.4 � Test‑time augmentation

Inspired by ensemble methods and adversarial examples (Ayhan and Berens 2018), the 
test-time augmentation is one of the simpler predictive uncertainty estimation techniques. 
The basic method is to create multiple test samples from each test sample by applying 
data augmentation techniques on it and then test all those samples to compute a predic-
tive distribution in order to measure uncertainty. The idea behind this method is that the 
augmented test samples allow the exploration of different views and is therefore capable of 
capturing the uncertainty. In general, test-time augmentation can use the same augmenta-
tion techniques that can be used for regularization during training and has been shown to 
improve calibration to in-distribution data and out-of-distribution data detection (Ashukha 
et  al. 2019; Lyzhov et  al. 2020). Mostly, this technique of test-time augmentations has 
been used in medical image processing (Wang et al. 2018a, 2019; Ayhan and Berens 2018; 
Moshkov et al. 2020). One of the reasons for this is that the field of medical image pro-
cessing already makes heavy use of data augmentations while using deep learning (Ron-
neberger et  al. 2015), so it is quite easy to just apply those same augmentations during 
test time to calculate the uncertainties. Another reason is that collecting medical images is 
costly, thus forcing practitioners to rely on data augmentation techniques. Moshkov et al. 
(2020) used the test-time augmentation technique for cell segmentation tasks. For that, 
they created multiple variations of the test data before feeding it to a trained UNet or Mask 
R-CNN architecture. Following this, they used majority voting to create the final output 
segmentation mask and discuss the policies of applying different augmentation techniques 
and how they affect the final predictive results of the deep networks.

Overall, test-time augmentation is an easy method for estimating uncertainties because 
it keeps the underlying model unchanged, requires no additional data, and is simple to put 
into practice with off-the-shelf libraries. Nonetheless, it needs to be kept in mind that dur-
ing applying this technique, one should only apply valid augmentations to the data, mean-
ing that the augmentations should not generate data from outside the target distribution. 
According to Shanmugam et al. (2020), test-time augmentation can change many correct 
predictions into incorrect predictions (and vice versa) due to many factors such as the 
nature of the problem at hand, the size of training data, the deep neural network architec-
ture, and the type of augmentation. To limit the impact of these factors, (Shanmugam et al. 
2020) proposed a learning-based method for test-time augmentation that takes these factors 
into consideration. In particular, the proposed method learns a function that aggregates the 
predictions from each augmentation of a test sample. Similar to Shanmugam et al. (2020), 
Lyzhov et al. (2020) proposed a method, named “greedy Policy Search”, for constructing a 



	 J. Gawlikowski et al.

1 3

test-time augmentation policy by choosing augmentations to be included in a fixed-length 
policy. Similarly, (Kim et al. 2020) proposed a method for learning a loss predictor from 
the training data for instance-aware test-time augmentation selection. The predictor selects 
test-time augmentations with the lowest predicted loss for a given sample.

Although learnable test-time augmentation techniques (Shanmugam et al. 2020; Lyzhov 
et  al. 2020; Kim et  al. 2020) help to select valid augmentations, one of the major open 
questions is to find out the effect on uncertainty due to different kinds of augmentations. 
It can for example happen that a simple augmentation-like reflection is not able to capture 
much of the uncertainty while some domain-specialized stretching and shearing captures 
more uncertainty. It is also important to find out how many augmentations are needed to 
correctly quantify uncertainties in a given task. This is particularly important in applica-
tions like earth observation, where inference might be needed on a global scale with lim-
ited resources.

3.5 � Neural network uncertainty quantification approaches for real life applications

In order to use the presented methods on real life tasks, several different considerations 
have to be taken into account. The memory and computational power are often restricted 
while many real world tasks may be time-critical (Kocić et al. 2019). An overview of the 
main properties is given in Table 1.

The presented applications all come along with advantages and disadvantages, depend-
ing on the properties a user is interested in. While ensemble methods and test-time augmen-
tation methods are relatively easy to apply, Bayesian approaches deliver a clear description 
of the uncertainty on the models parameters and also deliver a deeper theoretical basis. The 
computational effort and memory consumption is a common restriction on real life appli-
cations, where single deterministic network approaches perform best, but the distillation 
of ensembles or efficient Bayesian methods can also be taken into consideration. Within 
the different types of Bayesian approaches, the performance, the computational effort, and 
the implementation effort still vary strongly. Laplace approximations are relatively easy 
to apply and compared to sampling approaches much less computational effort is needed. 
Furthermore, there often already exist pretrained networks for an application. In this case, 
Laplace Approximation and external deterministic single network approaches can in gen-
eral be applied to already trained networks.

Another important aspect that has to be taken into account for uncertainty quantifica-
tion in real life applications is the source and type of uncertainty. For real life applica-
tions, out-of-distribution detection forms the maybe most important challenge in order to 
avoid unexpected decisions of the network and to be aware of adversarial attacks. Espe-
cially since many motivations of uncertainty quantification are given by risk minimization, 
methods that deliver risk-averse predictions are an important field to evaluate. Many works 
already demonstrated the capability of detecting out-of-distribution samples on several 
tasks and built a strong fundamental tool set for the deployment in real life applications 
(Yu and Aizawa 2019; Vyas et al. 2018; Ren et al. 2019; Gustafsson et al. 2020). How-
ever, in real life, the tasks are much more difficult than finding out-of-distribution sam-
ples among data sets (e.g., MNIST or CIFAR data sets) and the main challenge lies in 
comparing such approaches on several real-world data sets against each other. The work 
of Gustafsson et al. (2020) forms a first important step towards an evaluation of methods 
that better suits the demands in real life applications. Interestingly, they show for their 
tests ensembles to outperform the considered Bayesian approaches. This indicates, that the 
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multi-mode evaluation given by ensembles is a powerful property for real life applications. 
Nevertheless, Bayesian approaches have delivered strong results as well and furthermore 
come along with a strong theoretical foundation (Lee et al. 2020; Hobbhahn et al. 2022; 
Eggenreich et  al. 2020; Gal et  al. 2017b). As a way to go, the combination of efficient 
ensemble strategies and Bayesian approaches could combine the variability in the model 
parameters while still considering several modes for a prediction. Also, single determin-
istic approaches as the prior networks (Malinin and Gales 2018; Nandy et al. 2020; Sen-
soy et al. 2018; Zhao et al. 2019) deliver comparable results while consuming significantly 
less computation power. However, this efficiency often comes along with the problem that 
separated sets of in- and out-of-distribution samples have to be available for the training 
process (Zhao et al. 2019; Nandy et al. 2020). In general, the development of new problem 
and loss formulations such as given in Nandy et al. (2020) leads to a better understanding 
and description of the underlying problem and forms an important field of research.

4 � Uncertainty measures and quality

In Sect. 3, we presented different methods for modeling and predicting different types of 
uncertainty in neural networks. In order to evaluate these approaches, measures have to 
be applied to the derived uncertainties. In the following, we present different measures 
for quantifying the different predicted types of uncertainty. In general, the correctness and 
trustworthiness of these uncertainties are not automatically given. In fact, there are several 
reasons why evaluating the quality of the uncertainty estimates is a challenging task.

•	 First, the quality of the uncertainty estimation depends on the underlying method for 
estimating uncertainty. This is exemplified in the work undertaken by Yao et al. (2019), 
which shows that different approximates of Bayesian inference (e.g. Gaussian and 
Laplace approximates) result in different qualities of uncertainty estimates.

•	 Second, there is a lack of ground truth uncertainty estimates (Lakshminarayanan et al. 
2017), and defining ground truth uncertainty estimates is challenging. For instance, if 
we define the ground truth uncertainty as the uncertainty across human subjects, we 
still have to answer questions as “How many subjects do we need?” or “How to choose 
the subjects?”.

•	 Third, there is a lack of a unified quantitative evaluation metric (Huang et al. 2019b). 
To be more specific, uncertainty is defined differently in different machine learning 
tasks such as classification, segmentation, and regression. For instance, prediction 
intervals or standard deviations are used to represent uncertainty in regression tasks, 
while entropy (and other related measures) are used to capture uncertainty in classifica-
tion and segmentation tasks.

4.1 � Evaluating uncertainty in classification tasks

For classification tasks, the network’s softmax output already represents a measure of 
confidence. But since the raw softmax output is neither very reliable (Hendrycks and 
Gimpel 2017) nor can it represent all sources of uncertainty (Smith and Gal 2018), further 
approaches and corresponding measures were developed.
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4.1.1 � Measuring data uncertainty in classification tasks

Consider a classification task with K different classes and a probability vector network 
output p(x) for some input sample x. In the following p is used for simplification and 
pk stands for the k-th entry in the vector. In general, the given prediction p represents a 
categorical distribution, i.e. it assigns a probability to each class to be the correct pre-
diction. Since the prediction is not given as an explicit class but as a probability distri-
bution, (un)certainty estimates can be directly derived from the prediction. In general, 
this pointwise prediction can be seen as estimated data uncertainty (Kendall and Gal 
2017). However, as discussed in Sect. 2, the model’s estimation of the data uncertainty 
is affected by model uncertainty, which has to be taken into account separately. In order 
to evaluate the amount of predicted data uncertainty, one can for example apply the 
maximal class probability or the entropy measures:

The maximal probability represents a direct representation of certainty, while entropy 
describes the average level of information in a random variable. Even though a softmax 
output should represent the data uncertainty, one cannot tell from a single prediction how 
large the amount of model uncertainty is that affects this specific prediction as well.

4.1.2 � Measuring model uncertainty in classification tasks

As already discussed in Sect. 3, a single softmax prediction is not a very reliable way 
for uncertainty quantification since it is often badly calibrated (Smith and Gal 2018) and 
does not have any information about the certainty of the model itself has on this specific 
output (Smith and Gal 2018). An (approximated) posterior distribution p(�|D) on the 
learned model parameters can help to receive better uncertainty estimates. With such a 
posterior distribution, the softmax output itself becomes a random variable and one can 
evaluate its variation, i.e. uncertainty. For simplicity, we denote p(y|�, x) also as p and it 
will be clear from context whether p depends on � or not. The most common measures 
for this are mutual information (MI), the expected Kullback–Leibler Divergence (EKL), 
and the predictive variance. Basically, all these measures compute the expected diver-
gence between the (stochastic) softmax output and the expected softmax output

The MI uses entropy to measure the mutual dependence between two variables. In the 
described case, the difference between the information given in the expected softmax out-
put and the expected information in the softmax output is compared, i.e.

(28)Maximal probability: pmax = max
{
pk
}K

k=1

(29)Entropy: H(p) = −

K∑

k=1

pk log2(pk)

(30)p̂ = �𝜃∼p(𝜃|D)
[
p(y|x, 𝜃

]
.

(31)MI(𝜃, y|x,D) = H
[
p̂
]
− �𝜃∼p(𝜃|D)H

[
p(y|x, 𝜃)

]
.
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 Smith and Gal (2018) pointed out that the MI is minimal when the knowledge about model 
parameters does not increase the information in the final prediction. Therefore, the MI can 
be interpreted as a measure of model uncertainty.

The Kullback–Leibler divergence measures the divergence between two given probabil-
ity distributions. The EKL can be used to measure the (expected) divergence among the 
possible softmax outputs,

which can also be interpreted as a measure of uncertainty on the model’s output and there-
fore represents the model uncertainty.

The predictive variance evaluates the variance on the (random) softmax outputs, i.e.

As described in Sect.  3, an analytically described posterior distribution p(�|D) is only 
given for a subset of the Bayesian methods. And even for an analytically described dis-
tribution, the propagation of the parameter uncertainty into the prediction is in almost all 
cases intractable and has to be approximated for example with Monte Carlo approxima-
tion. Similarly, ensemble methods collect predictions from M neural networks, and test-
time data augmentation approaches receive M predictions from M different augmentations 
applied to the original input sample. For all these cases, we receive a set of M samples, {
pi
}M

i=1
 , which can be used to approximate the intractable or even undefined underlying dis-

tribution. With these approximations, the measures defined in (31), (32), and (33) can be 
applied straight forward and only the expectation has to be replaced by average sums. For 
example, the expected softmax output becomes

For the expectations given in (31), (32), and (33), the expectation is approximated similarly.

4.1.3 � Measuring distributional uncertainty in classification tasks

Although these uncertainty measures are widely used to capture the variability among sev-
eral predictions derived from BNNs (Kendall and Gal 2017), ensemble methods (Lakshmi-
narayanan et al. 2017), or test-time data augmentation methods (Ayhan and Berens 2018), 
they cannot capture distributional shifts in the input data or OOD examples, which could 
lead to a biased inference process and a falsely stated confidence. If all predictors attribute 
a high probability mass to the same (false) class label, this induces a low variability among 
the estimates. Hence, the network seems to be certain about its prediction, while the uncer-
tainty in the prediction itself (given by the softmax probabilities) is also evaluated to be 
low. To tackle this issue, several approaches described in Sect. 3 take the magnitude of the 
logits into account since a larger logit indicates larger evidence for the corresponding class 
(Sensoy et al. 2018). Thus, the methods either interpret the total sum of the (exponentials 
of) the logits as the precision value of a Dirichlet distribution (see description of Dirichlet 
Priors in Sect. 3.1) (Malinin and Gales 2018, 2019; Nandy et al. 2020), or as a collection of 
evidence that is compared to a defined constant (Sensoy et al. 2018; Możejko et al. 2018). 

(32)�𝜃∼p(𝜃�D)
�
KL(p̂ ‖ p)

�
= �𝜃∼p(𝜃�D)

�
K�

i=1

p̂i log

�
p̂i

pi

��
,

(33)𝜎(p) = �𝜃∼p(𝜃|D)
[
(p − p̂)2

]
.

p̂ ≈
1

M

M∑

i=1

pi .
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One can also derive a total class probability for each class individually by applying the 
sigmoid function to each logit (Hsu et al. 2020). Based on the class-wise total probabilities, 
OOD samples might easier be detected, since all classes can have low probability at the 
same time. Other methods deliver an explicit measure of how well new data samples suit 
the training data distribution. Based on this, they also give a measure that a sample will be 
predicted correctly (Ramalho and Miranda 2020).

4.1.4 � Performance measure on complete data set

While the measures described above measure the performance of individual predictions, 
others evaluate the usage of these measures on a set of samples. Measures of uncertainty 
can be used to separate between correctly and falsely classified samples or between in-
domain and OOD samples (Hendrycks and Gimpel 2017). For that, the samples are split 
into two sets, for example, in-domain and OOD or correctly classified and falsely classi-
fied. The two most common approaches are the Receiver Operating Characteristic (ROC) 
curve and the Precision-Recall (PR) curve. Both methods generate curves based on differ-
ent thresholds of the underlying measure. For each considered threshold, the ROC curve 
plots the true positive rate against the false positive rate,3 and the PR curve plots the pre-
cision against the recall.4 While the ROC and PR curves give a visual idea of how well 
the underlying measures are suited to separate the two considered test cases, they do not 
give a qualitative measure. To reach this, the area under the curve (AUC) can be evalu-
ated. Roughly speaking, the AUC gives a probability value that a randomly chosen positive 
sample leads to a higher measure than a randomly chosen negative example. For example, 
the maximum softmax values measure ranks of correctly classified examples higher than 
falsely classified examples. Hendrycks and Gimpel (2017) showed for several application 
fields that correct predictions have in general a higher predicted certainty in the softmax 
value than false predictions. Especially for the evaluation of in-domain and OOD exam-
ples, the Area Under Receiver Operating Curve (AUROC) and the Area Under Precision-
Recall Curce (AUPRC) are commonly used (Nandy et al. 2020; Malinin and Gales 2018, 
2019). The clear weakness of these evaluations is the fact that the performance is evaluated 
and the optimal threshold is computed based on a given test data set. A distribution shift 
from the test set distribution can ruin the whole performance and make the derived thresh-
olds impractical.

4.2 � Evaluating uncertainty in regression tasks

4.2.1 � Measuring data uncertainty in regression predictions

In contrast to classification tasks, where the network typically outputs a probability distri-
bution over the possible classes, regression tasks only predict a pointwise estimation with-
out any hint of data uncertainty. As already described in Sect. 3, a common approach to 
overcome this is to let the network predict the parameters of a probability distribution, for 

3  The true positive rate is the number of samples, which are correctly predicted as positive divided by the 
total number of true samples. The false positive rate is the number of samples falsely predicted as positive 
divided by the total number of negative samples [see also (Davis and Goadrich 2006)].
4  The precision is equal to the number of samples that are correctly classified as positive, divided by the 
total number of positive samples. The recall is equal to the number of samples correctly predicted as posi-
tive divided by the total number of positive samples [see also (Davis and Goadrich 2006)].
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example, a mean vector and a standard deviation for a normally distributed uncertainty 
(Lakshminarayanan et  al. 2017; Kendall and Gal 2017). In doing so, a measure of data 
uncertainty is directly given. The prediction of the standard deviation allows an analytical 
description that the (unknown) true value is within a specific region. The interval that cov-
ers the true value with a probability of � (under the assumption that the predicted distribu-
tion is correct) is given by

where Φ−1 is the quantile function, the inverse of the cumulative probability function. For 
a given probability value � the quantile function gives a boundary, such that 100 ⋅ �% of a 
standard normal distribution’s probability mass is on values smaller than Φ−1(�) . Quantiles 
assume some probability distribution and interpret the given prediction as the expected 
value of the distribution.

In contrast to this, other approaches (Pearce et al. 2018; Su et al. 2018) directly predict a 
so-called prediction interval (PI)

in which the prediction is assumed to lay. Such intervals induce uncertainty as a uniform 
distribution without giving a concrete prediction. The certainty of such approaches can, as 
the name indicates, be directly measured by the size of the predicted interval. The Mean 
Prediction Interval Width (MPIW) can be used to evaluate the average certainty of the 
model (Pearce et al. 2018; Su et al. 2018). In order to evaluate the correctness of the pre-
dicted intervals the Prediction Interval Coverage Probability (PICP) can be applied (Pearce 
et al. 2018; Su et al. 2018). The PCIP represents the percentage of test predictions that fall 
into a prediction interval and is defined as

where n is the total number of predictions and c is the number of ground truth values that 
are actually captured by the predicted intervals.

4.2.2 � Measuring model uncertainty in regression predictions

In Sect. 2, it is described, that model uncertainty is mainly caused by the model’s architec-
ture, the training process, and underrepresented areas in the training data. Hence, there is 
no real difference in the causes and effects of model uncertainty between regression and 
classification tasks such that model uncertainty in regression tasks can be measured equiv-
alently as already described for classification tasks, i.e. in most cases by approximating an 
average prediction and measuring the divergence among the single predictions (Kendall 
and Gal 2017).

4.3 � Evaluating uncertainty in segmentation tasks

The evaluation of uncertainties in segmentation tasks is very similar to the evaluation of 
classification problems. The uncertainty is estimated in segmentation tasks using approxi-
mates of Bayesian inference (Nair et  al. 2020; Roy et  al. 2019; LaBonte et  al. 2019; 

(34)
[
ŷ −

1

2
Φ−1(𝛼) ⋅ 𝜎; ŷ +

1

2
Φ−1(𝛼) ⋅ 𝜎

]

(35)PI(x) =
[
Bl,Bu

]

(36)PICP =
c

n
,
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Eaton-Rosen et  al. 2018; McClure et  al. 2019; Soleimany et  al. 2019; Soberanis-Mukul 
et al. 2020; Seebock et al. 2020) or test-time data augmentation techniques (Wang et al. 
2019). In the context of segmentation, the uncertainty in pixel-wise segmentation is meas-
ured using confidence intervals (LaBonte et al. 2019; Eaton-Rosen et al. 2018), the predic-
tive variance (Soleimany et  al. 2019; Seebock et  al. 2020), the predictive entropy (Roy 
et al. 2019; Wang et al. 2019; McClure et al. 2019; Soberanis-Mukul et al. 2020) or the 
mutual information (Nair et  al. 2020). The uncertainty in structure (volume) estimation 
is obtained by averaging over all pixel-wise uncertainty estimates (Seebock et  al. 2020; 
McClure et  al. 2019). The quality of volume uncertainties is assessed by evaluating the 
coefficient of variation, the average Dice score, or the intersection over union (Roy et al. 
2019; Wang et  al. 2019). These metrics measure the agreement in area overlap between 
multiple estimates in a pair-wise fashion. Ideally, a false segmentation should result in an 
increase in pixel-wise and structure uncertainty. To evaluate whether this is the case, (Nair 
et al. 2020) evaluated the pixel-level true positive rate and false detection rate as well as the 
ROC curves for the retained pixels at different uncertainty thresholds. Similar to Nair et al. 
(2020), McClure et al. (2019) also analyzed the area under the ROC curve.

5 � Calibration

A predictor is called well-calibrated if the derived predictive confidence represents a good 
approximation of the actual probability of correctness (Guo et  al. 2017). Therefore, in 
order to make use of uncertainty quantification methods, one has to be sure that the net-
work is well calibrated. Formally, for classification tasks a neural network f� is calibrated 
(Kuleshov et al. 2018) if it holds that

here �{⋅} is the indicator function that is either 1 if the condition is true or 0 if it is false, and 
yi,k is the k-th entry in the one-hot encoded ground truth vector of a training sample (xi, yi) . 
This formulation means that for example 30% of all predictions with a predictive confi-
dence of 70% should actually be false. For regression tasks the calibration can be defined 
such that predicted confidence intervals should match the confidence intervals empirically 
computed from the data set (Kuleshov et al. 2018), i.e.

where confp is the confidence interval that covers p percent of a distribution.
A DNN is called under-confident if the left-hand side of (37) and (38) are larger than p. 

Equivalently, it is under-confident if the terms are smaller than p. The calibration property 
of a DNN can be visualized using a reliability diagram, as shown in Fig. 8.

In general, calibration errors are caused by factors related to model uncertainty (Guo 
et al. 2017). This is intuitively clear, since as discussed in Sect. 2, data uncertainty repre-
sents the underlying uncertainty that an input x and a target y represent the same real world 
information. Following, correctly predicted data uncertainty would lead to a perfectly cali-
brated neural network. In practice, several works pointed out that deeper networks tend to 

(37)∀p ∈ [0, 1] ∶

N∑

i=1

K∑

k=1

yi,k ⋅ �{f�(xi)k = p}

�{f�(xi)k = p}

N→∞
���������������������→ p .

(38)∀p ∈ [0, 1] ∶

N∑

i=1

�
{
yi ∈ confp(f�(xi))

}

N

N→∞
���������������������→ p,
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be more overconfident than shallower ones (Guo et al. 2017; Seo et al. 2019; Li and Hoiem 
2020).

Several methods for uncertainty estimation presented in Sect. 3 also improve the net-
work’s calibration (Lakshminarayanan et  al. 2017; Gal and Ghahramani 2016). This is 
clear since these methods quantify model and data uncertainty separately and aim at reduc-
ing the model uncertainty on the predictions. Besides the methods that improve calibration 
by reducing the model uncertainty, a large and growing body of literature has investigated 
methods for explicitly reducing calibration errors. These methods are presented in the fol-
lowing, followed by measures to quantify the calibration error. It is important to note that 
these methods do not reduce the model uncertainty, but propagate the model uncertainty 
onto the representation of the data uncertainty. For example, if a binary classifier is over-
fitted and predicts all samples of a test set as class A with probability 1, while half of the 
test samples are actually class B, the recalibration methods might map the network output 
to 0.5 in order to have reliable confidence. This probability of 0.5 is not equivalent to the 
data uncertainty but represents the model uncertainty propagated onto the predicted data 
uncertainty.

5.1 � Calibration methods

Calibration methods can be classified into three main groups according to the step when 
they are applied:

•	 Regularization methods applied during the training phase (Szegedy et al. 2016; Pereyra 
et al. 2017; Lee et al. 2018a; Müller et al. 2019; Venkatesh and Thiagarajan 2019)

	   These methods modify the objective, optimization, and/or regularization procedure 
in order to build DNNs that are inherently calibrated.

•	 Post-processing methods applied after the training process of the DNN (Guo et  al. 
2017; Wenger et al. 2020)

	   These methods require a held-out calibration data set to adjust the prediction scores 
for recalibration. They only work under the assumption that the distribution of the left-

Fig. 8   a Reliability diagram showing an overconfident classifier: The bin-wise accuracy is smaller than the 
corresponding confidence. b Reliability diagram of an underconfident classifier: The bin-wise accuracy is 
larger than the corresponding confidence. c Reliability diagram of a well-calibrated classifier: The confi-
dence fits the actual accuracy for the single bins
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out validation set is equivalent to the distribution, on which inference is done. Hence, 
also the size of the validation data set can influence the calibration result.

•	 Neural network uncertainty estimation methods
	   Approaches, as presented in Sect. 3, that reduce the amount of model uncertainty on 

a neural network’s confidence prediction, also lead to a better calibrated predictor. This 
is because the remaining predicted data uncertainty better represents the actual uncer-
tainty on the prediction. Such methods are based for example on Bayesian methods 
(Izmailov et al. 2020; Foong et al. 2019; Zhang et al. 2019; Laves et al. 2019; Wilson 
and Izmailov 2020) or deep ensembles (Lakshminarayanan et al. 2017; Mehrtash et al. 
2020).

In the following, we present the three types of calibration methods in more detail (Fig. 9).

5.1.1 � Regularization methods

Regularization methods for calibrating confidences manipulate the training of DNNs by 
modifying the objective function or by augmenting the training data set. The goal and 
idea of regularization methods are very similar to the methods presented in Sect.  3.1 
where the methods mainly quantify model and data uncertainty separately within a sin-
gle forward pass. However, the methods in Sect. 3.1 quantify the model and data uncer-
tainty, while these calibration methods are regularized in order to minimize the model 

Fig. 9   Visualization of the different types of uncertainty calibration methods presented in this paper
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uncertainty. Following, at inference, the model uncertainty cannot be obtained anymore. 
This is the main motivation for us to separate the approaches presented below from the 
approaches presented in Sect. 3.1.

One popular regularization based calibration method is label smoothing (Szegedy 
et  al. 2016). For label smoothing, the labels of the training examples are modified by 
taking a small portion � of the true class’ probability mass and assigning it uniformly 
to the false classes. For hard, non-smoothed labels, the optimum cannot be reached in 
practice, as the gradient of the output with respect to the logit vector z,

can only converge to zero with increasing distance between the true and false classes’ log-
its. As a result, the logits of the correct class are much larger than the logits for the incor-
rect classes and the logits of the incorrect classes can be very different from each other. 
Label-smoothing avoids this and while it generally leads to a higher training loss, the cali-
bration error decreases and the accuracy often increases as well (Müller et al. 2019).

Seo et al. (2019) extended the idea of label smoothing and directly aimed at reducing 
the model uncertainty. For this, they sampled T forward passes of a stochastic neural 
network already at training time. Based on the T forward passes of a training sample 
(xi, yi) , a normalized model variance �i is derived as the mean of the Bhattacharyya coef-
ficients (Comaniciu et al. 2000) between the T individual predictions ŷ1,… , ŷT and the 
average prediction ȳ = 1

T

∑T

t=1
ŷt,

Based on this �i , (Seo et al. 2019) introduced the variance-weighted confidence-integrated 
loss function that is a convex combination of two contradictive loss functions,

where L(i)
GT

 is the mean cross-entropy computed for the training sample xi with given 
ground-truth yi . LU represents the mean KL-divergence between a uniform target probabil-
ity vector and the computed prediction. The adaptive smoothing parameter �i pushes pre-
dictions of training samples with high model uncertainty (given by high variances) towards 
a uniform distribution while increasing the prediction scores of samples with low model 
uncertainty. As a result, variances in the predictions of a single sample are reduced and the 
network can then be applied with a single forward pass at inference.

Pereyra et  al. (2017) combated the overconfidence issue by adding the negative 
entropy to the standard loss function and therefore a penalty that increases with the 
network’s predicted confidence. This results in the entropy-based objective function LH , 
which is defined as

(39)

∇zCE(y, ŷ(z)) = softmax(z) − y

=
exp(z)

∑K

i=1
exp(zi)

− y ,

(40)

𝛼i =
1

T

T∑

t=1

BC(ȳi, ŷi,t)

=
1

T

T∑

t=1

K∑

k=1

√
ȳi,k ⋅ ŷi,t,k .

(41)LVWCI(�) = −

N∑

i=1

(1 − �i)L
(i)

GT
(�) + �iL

(i)

U
(�) ,
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where H(ŷi) is the entropy of the output and �i is a parameter that controls the strength of 
the entropy-based confidence penalty. The parameter �i is computed equivalently for the 
VWCI loss.

Instead of regularizing the training process by modifying the objective function, (Thu-
lasidasan et al. 2019) regularized it by using a data-agnostic data augmentation technique 
named mixup (Zhang et al. 2018b). In mixup training, the network is not only trained on 
the training data but also on virtual training samples (x̃, ỹ) generated by a convex combina-
tion of two random training pairs (xi, yi) and (xj, yj) , i.e.

According to Thulasidasan et al. (2019), the label smoothing resulting from mixup training 
can be viewed as a form of entropy-based regularization resulting in the inherent calibra-
tion of networks trained with mixup. Maroñas et al. (2020) see mixup training among the 
most popular data augmentation regularization techniques due to its ability to improve the 
calibration as well as the accuracy. However, they argued that in mixup training the data 
uncertainty in mixed inputs affects the calibration and therefore mixup does not necessarily 
improve the calibration. They also underlined this claim empirically. Similarly, Rahaman 
et al. (2021) experimentally showed that the distributional-shift induced by data augmen-
tation techniques such as mixup training can negatively affect the confidence calibration. 
Based on this observation, (Maroñas et al. 2020) proposed a new objective function that 
explicitly takes the calibration performance on the unmixed input samples into account. 
Inspired by the expected calibration error (ECE, see Sect. 5.2) (Naeini et al. 2015) meas-
ured the calibration performance on the unmixed samples for each batch b by the differ-
entiable squared differences between the batch accuracy and the mean confidence on the 
batch samples. The total loss is given as a weighted combination of the original loss on 
mixed and unmixed samples and the calibration measure is evaluated only on the unmixed 
samples:

where Lb(�) is the original unregularized loss using training and mixed samples included 
in batch b and � is a hyperparameter controlling the relative importance given to the batch-
wise expected calibration error ECEb . By adding the batchwise calibration error for each 
batch b ∈ B to the standard loss function, the miscalibration induced by mixup training is 
regularized.

In the context of data augmentation, (Patel et  al. 2021) improved the calibration of 
uncertainty estimates by using on-manifold data augmentation. While mixup training com-
bines training samples, on-manifold adversarial training generates out-of-domain samples 
using adversarial attack. They experimentally showed that on-manifold adversarial train-
ing outperforms mixup training in improving the calibration. Similar to Patel et al. (2021), 
Hendrycks et al. (2019) showed that exposing classifiers to OOD examples at training can 
help to improve the calibration.

(42)LH(𝜃) = −
1

N

N∑

i=1

yi log ŷi − 𝛼iH(ŷi),

(43)x̃ =𝜆xi + (1 − 𝜆)xj

(44)ỹ =𝜆yi + (1 − 𝜆)yj.

(45)LECE(�) =
1

B

∑

b∈B

Lb(�) + �ECEb,
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5.1.2 � Post‑processing methods

Post-processing (or post-hoc) methods are applied after the training process and aim at 
learning a re-calibration function. For this, a subset of the training data is held-out during 
the training process and used as a calibration set. The re-calibration function is applied to 
the network’s outputs (e.g. the logit vector) and yields an improved calibration learned on 
the left-out calibration set. Zhang et al. (2020) discussed three requirements that should be 
satisfied by post-hoc calibration methods. They should 

1.	 preserve the accuracy, i.e. should not affect the predictor’s performance.
2.	 be data efficient, i.e. only a small fraction of the training data set should be left out for 

the calibration.
3.	 be able to approximate the correct re-calibration map as long as there is enough data 

available for calibration.

Furthermore, they pointed out that none of the existing approaches fulfills all three 
requirements.

For classification tasks, the most basic but still very efficient way of post-hoc calibration 
is temperature scaling (Guo et al. 2017). For temperature scaling, the temperature T > 0 of 
the softmax function

is optimized. For T = 1 the function remains the regular softmax function. For T > 1 the 
output changes such that its entropy increases, i.e. the predicted confidence decreases. 
For T ∈ (0, 1) the entropy decreases and following, the predicted confidence increases. As 
already mentioned above, a perfectly calibrated neural network outputs MAP estimates. 
Since the learned transformation can only affect the uncertainty, the log-likelihood based 
losses as cross-entropy do not have to be replaced by a special calibration loss. While the 
data efficiency and the preservation of the accuracy are given, the expressiveness of basic 
temperature scaling is limited (Zhang et al. 2020). To overcome this, (Zhang et al. 2020) 
investigated an ensemble of several temperature scaling models. Doing so, they achieved 
better calibrated predictions, while preserving the classification accuracy and improving 
the data efficiency and the expressive power. Kull et al. (2019) were motivated by non-neu-
ral network calibration methods, where the calibration is performed class-wise as a one-
vs-all binary calibration. They showed that this approach can be interpreted as learning a 
linear transformation of the predicted log-likelihoods followed by a softmax function. This 
again is equivalent to training a dense layer on the log-probabilities and hence the method 
is also very easy to implement and apply. Obviously, the original predictions are not guar-
anteed to be preserved.

Analogous to temperature scaling for classification networks, Levi et al. (2022) intro-
duced standard deviation scaling (std-scaling) for regression networks. As the name indi-
cates, the method is trained to rescale the predicted standard deviations of a given network. 
Equivalently to the motivation of optimizing temperature scaling with the cross-entropy 
loss, std-scaling can be trained using the Gaussian log-likelihood function as loss, which is 
in general also used for the training of regression networks, which also gives a prediction 
for the data uncertainty.

(46)softmax(zi) =
expzi∕T

∑K

j=1
expzj∕T

,
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Wenger et  al. (2020) proposed a Gaussian process (GP) based method, which can be 
used to calibrate any multi-class classifier that outputs confidence values and presented 
their methodology by calibrating neural networks. The main idea behind their work is to 
learn the calibration map by a Gaussian process that is trained on the networks’ confidence 
predictions and the corresponding ground-truths in the left-out calibration set. For this 
approach, the preservation of the predictions is also not assured.

5.1.3 � Calibration with uncertainty estimation approaches

As already discussed above, removing the model uncertainty and receiving an accurate 
estimation of the data uncertainty leads to a well-calibrated predictor. Following several 
works based on deep ensembles (Lakshminarayanan et  al. 2017; Mehrtash et  al. 2020) 
and BNNs, (Izmailov et al. 2020; Foong et al. 2019; Kristiadi et al. 2020) also compared 
their performance to other methods based on the resulting calibration. Lakshminarayanan 
et al. (2017) and Mehrtash et al. (2020) reported an improved calibration by applying deep 
ensembles compared to single networks. However, Rahaman et al. (2021) showed that for 
specific configurations as the usage of mixup-regularization, deep ensembles can even 
increase the calibration error. On the other side, they showed that applying temperature 
scaling on the averaged predictions can give a significant improvement on the calibration.

For the Bayesian approaches, (Kristiadi et al. 2020) showed that restricting the Bayesian 
approximation to the weights of the last fully connected layer of a DNN is already enough 
to improve the calibration significantly. Zhang et al. (2019) and Laves et al. (2019) showed 
that confidence estimates computed with MC dropout can be poorly calibrated. To over-
come this, (Zhang et  al. 2019) proposed structured dropout, which consists of dropping 
channels, blocks, or layers, to promote model diversity and reduce calibration errors.

5.2 � Evaluating calibration quality

Evaluating calibration consists of measuring the statistical consistency between the predic-
tive distributions and the observations (Vaicenavicius et al. 2019). For classification tasks, 
several calibration measures are based on binning. For that, the predictions are ordered by 
the predicted confidence p̂i and grouped into M bins b1,… , bM . Following, the calibration 
of the single bins is evaluated by setting the average bin confidence

in relation to the average bin accuracy

where ŷs , ys , and p̂s refer to the predicted and true class label of a sample s. As noted in 
Guo et al. (2017), confidences are well-calibrated when for each bin acc(bm) = conf(bm) . 
For a visual evaluation of a model’s calibration, the reliability diagram introduced by 
DeGroot and Fienberg (1983) is widely used. For a reliability diagram, the conf(bm) is plot-
ted against acc(bm) . For a well-calibrated model, the plot should be close to the diago-
nal, as visualized in Fig. 8. The basic reliability diagram visualization does not distinguish 
between different classes. In order to do so and hence to improve the interpretability of the 

(47)conf(bm) =
1

|bm|
∑

s∈bm

p̂s

(48)acc(bm) =
1

|bm|
∑

s∈bm

1(ŷs = ys),
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calibration error, (Vaicenavicius et al. 2019) used an alternative visualization named multi-
dimensional reliability diagram.

For a quantitative evaluation of a model’s calibration, different calibration meas-
ures can be considered. The Expected Calibration Error (ECE) is a widely used bin-
ning-based calibration measure (Naeini et al. 2015; Guo et al. 2017; Laves et al. 2019; 
Mehrtash et  al. 2020; Thulasidasan et  al. 2019; Wenger et  al. 2020). For the ECE, M 
equally-spaced bins b1,… , bM are considered, where bm denotes the set of indices of 
samples whose confidences fall into the interval Im = [

m−1

M
,
m

M
] . The ECE is then com-

puted as the weighted average of the bin-wise calibration errors, i.e.

For the ECE, only the predicted confidence score (top-label) is considered. In contrast to 
this, the Static Calibration Error (SCE) (Nixon et  al. 2019; Ghandeharioun et  al. 2019) 
considers the predictions of all classes (all-labels). For each class, the SCE computes the 
calibration error within the bins and then averages across all the bins, i.e.

here conf (bmk
) and acc(bmk

) are the confidence and accuracy of bin bm for class label k, 
respectively. Nixon et  al. (2019) empirically showed that all-label calibration measures 
such as the SCE are more effective in assessing the calibration error than the top-label cali-
bration measures as the ECE.

In contrast to the ECE and SCE, which group predictions into M equally-spaced bins 
(what in general leads to different numbers of evaluation samples per bin), the adaptive 
calibration error (Nixon et al. 2019; Ghandeharioun et al. 2019) adaptively groups pre-
dictions into R bins with different widths but the equal number of predictions. With this 
adaptive bin size, the adaptive Expected Calibration Error (aECE)

and the adaptive Static Calibration Error (aSCE)

are defined as extensions of the ECE and the SCE. As has been empirically shown in Patel 
et al. (2021) and Nixon et al. (2019), the adaptive binning calibration measures aECE and 
aSCE are more robust to the number of bins than the corresponding equal-width binning 
calibration measures ECE and SCE.

It is important to make clear that in a multi-class setting, the calibration measures 
can suffer from imbalance in the test data. Even when then calibration is computed 
classwise, the computed errors are weighted by the number of samples in the classes. 
Following, larger classes can shadow the bad calibration on small classes, comparable 
to accuracy values in classification tasks (Pulgar et al. 2017).

(49)ECE =

M∑

m=1

|bm|
N

|acc(bm) − conf(bm)|.

(50)SCE =
1

K

K∑

k=1

M∑

m=1

|bmk
|

N
|conf(bmk

) − acc(bmk
)|.

(51)aECE =
1

R

R∑

r=1

|conf(br) − acc(br)|,

(52)aSCE =
1

KR

K∑

k=1

R∑

r=1

|conf(brk ) − acc(brk )|
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6 � Data sets and baselines

In this section, we collect commonly used tasks and data sets for evaluating uncertainty 
estimation among existing works. Besides, a variety of baseline approaches commonly 
used as a comparison against the methods proposed by the researchers are also pre-
sented. By providing a review on the relevant information of these experiments, we hope 
that both researchers and practitioners can benefit from it. While the former can gain a 
basic understanding of recent benchmarks tasks, data sets, and baselines so that they 
can design appropriate experiments to validate their ideas more efficiently, the latter 
might use the provided information to select more relevant approaches to start based on 
a concise overview on the tasks and data sets on which the approach has been validated.

In the following, we will introduce the data sets and baselines summarized in Table 4 
according to the taxonomy used throughout this review.

The structure of the table is designed to organize the main contents of this section 
concisely, hoping to provide a clear overview of the relevant works. We group the 
approaches of each category into one of four blocks and extract the most commonly 
used tasks, data sets, and provided baselines for each column respectively. The corre-
sponding literature is listed at the bottom of each block to facilitate lookup. Note that 
we focus on methodological comparison here, but not the choice of architecture for dif-
ferent methods which has an impact on performance as well. Due to the space limitation 
and visual density, we only show the most important elements (task, data set, baselines) 
ranked according to the frequency of use in the literature we have researched.

The main results are as follows. One of the most frequent tasks for evaluating uncer-
tainty estimation methods is the regression task, where samples close and far away from 
the training distribution are studied. Furthermore, the calibration of uncertainty esti-
mates in the case of classification problems is very often investigated. Further notewor-
thy tasks are OOD detection and robustness against adversarial attacks. In the medical 
domain, calibration of semantic segmentation results is the predominant use case.

The choice of data sets is mostly consistent among all reviewed works. For regres-
sion, toy data sets are employed for visualization of uncertainty intervals while the 
UCI (Dua and Graff 2017) data sets are studied in light of (negative) log-likelihood 
comparison. The most common data sets for calibration and OOD detection are 
MNIST (LeCun et  al. 1998; Deng 2012), CIFAR10 and CAFIAR100 (Krizhevsky 
2009) as well as SVHN (Netzer et al. 2011) while ImageNet (Deng et al. 2009) and its 
tiny variant are also studied frequently. These form distinct pairs when OOD detection 
is studied where models trained on CIFAR variants are evaluated on SVHN and visa 
versa while MNIST is paired with variants of itself like notMNIST and FashionMN-
IST (Xiao et al. 2017). Classification data sets are also commonly distorted and cor-
rupted to study the effects on calibration, blurring the line between OOD detection 
and adversarial attacks.

Finally, the most commonly used baselines by far are Monte Carlo (MC) Drop-
out and deep ensembles while the softmax output of deterministic models is almost 
always employed as a kind of surrogate baseline. It is interesting to note that inside 
each approach–BNNs, Ensembles, Single Deterministic Models, and Input Augmen-
tation–some baselines are preferred over others. BNNs are most frequently compared 
against variational inference methods like Bayes’ by Backprop (BBB) or Probabilistic 
Backpropagation (PBP) while for Single Deterministic Models it is more common to 
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compare them against distance-based methods in the case of OOD detection. Overall, 
BNN methods show a more diverse set of tasks considered while being less frequently 
evaluated on large data sets like ImageNet.

Table 4   Overview of frequently compared benchmark approaches, tasks and their data sets among exist-
ing works organized according to the taxonomy of this paper. From left to right, the columns indicate the 
approach considered, the tasks evaluated with the corresponding approaches, the data sets used for this 
evaluation, and the baselines commonly used in these works

1 Gal and Ghahramani (2016),  2Blundell et al. (2015),  3Louizos and Welling (2017),  4Hernández-Lobato 
and Adams (2015),  5Ritter et al. (2018),  6Wu et al. (2018),  7Lee et al. (2020),  8Sun et al. (2018),  9Sun 
et al. (2017),  10Izmailov et al. (2020),  11Maddox et al. (2019),  12Osawa et al. (2019),  13Wen et al. (2021b),  
14Zhang et al. (2018a),   15Neal (1995),   16Welling and Teh (2011),   17Graves (2011), 18Lakshminarayanan 
et al. (2017),  19Lindqvist et al. (2020),  20Rahaman et al. (2021),  21Achrack et al. (2020),  22Huang et al. 
(2017),   23Malinin et  al. (2020),   24Valdenegro-Toro (2019),   25Wen et  al. (2021b),   26Wen et  al. (2019),   
27Beluch et  al. (2018),   28Ovadia et  al. (2019),   29Vyas et  al. (2018),   30Englesson and Azizpour (2019),   
31Pearce et  al. (2018), 32Amini et  al. (2020),   33Tagasovska and Lopez-Paz (2019),   34Kawashima et  al. 
(2021),   35Wu et al. (2018),   36Tsiligkaridis (2021a),   37Tsiligkaridis (2021b),   38Vasudevan et al. (2019),   
39Liang et  al. (2018b),   40Malinin and Gales (2018),   41Malinin and Gales (2019),   42Hein et  al. (2019),   
43Hendrycks and Gimpel (2017),   44Nandy et  al. (2020),   45Możejko et  al. (2018),   46Lee and AlRegib 
(2020),  47Sensoy et al. (2018),  48Van Amersfoort et al. (2020),  49Ramalho and Miranda (2020),  50Raghu 
et al. (2019),   51Oberdiek et al. (2018),   52Lee et al. (2018b),   53Guo et al. (2017), 54Wang et al. (2018a),   
55Wang et al. (2019),  56Ayhan and Berens (2018)

Tasks Task index: data sets Baselines

Bayesian neural 
networks[1–17]

1. Regression[1,2,3,4,5,6,7,8,9,10]

2. Calibration[11,12,13,14]

3. OOD Detection[3,5,7,11,12,13]

4. Adversarial Attacks[3,5,7]

5. Active Learning[4,7,14]

6. Continual Learning[12]

7. Reinforcement Learning 
(Intrinsic

Motivation, Contextual Ban-
dits)[1,14,8]

1. UCI
2., 3., 4. (not)MNIST,
  CIFAR10/100,  SHVN,
  ImageNet
5. UCI
6. Permuted MNIST

Softmax[42],
MCdropout[1],   DeepEnsemble[17],
NormalizingFlow[3],
BBB[2], PBP[4],
SWAG​[11], KFAC[5],
DVI[6], HMC[15],
VOGN[12], INF[7]

Ensembles[18–30] 1. Regression[18,19]

2. Calibration[18,19,20,21,22,23,

24,25,26,27,28]

3. OOD 
Detection[18,19,21,24,25,26,

28,29,30]

4. Active Learning[27]

1. Toy dataset[4], UCI
2., 3. Toy dataset[4], (not)

MNIST, SVHN, LSUN, 
CIFAR10/100,

   (Tiny)ImageNet,
   Diabetic  Retinopathy
4. MNIST

Softmax[43],
MCdropout[1].
DeepEnsemble[18],
NormalizingFlow[3],
BBB[2], PBP[4],
SGLD[16],  MFVI[17],
TemperatureScaling[39, 53]

Single deterministic 
models[32–54]

1. Regression[32,33,34]

2. Calibration[32,33,34,35,36,37,38]

3. OOD Detection[33,39,38,39,

40,41,42,43,44,45,46,47,48,49,50,51]

4. Adversarial Attacks[32,37,47]

1. Toy dataset[4], UCI, NYU 
Depth

2., 3. (E/Fashion/not)MNIST,
  Toy dataset,  CIFAR10/100,
  SVHN,  LSUN,  (Tiny)

ImageNet,
  IMDB,  Diabetic  Retin-

opathy,
  Omniglot
4. MNIST, CIFAR10, NYU 

Depth, Omniglot

Softmax[43],
MCdropout[1],
DeepEnsemble[18,31],
NormalizingFlow[3],
  BBB[2],  DPN[23],
  Dirichlet[41],
Mahalanobis[52],
TemperatureScaling[39,53]

Test-time data 
augmen-tation[54–56]

1. Semantic 
Segmentation[54,55]

2. Calibration[56]

3. OOD Detection[54,55,56]

1., 2., 3. Medical data,
Diabetic Retinopathy

Softmax[43],
  MCdropout[1]
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7 � Applications of uncertainty estimates

From a practical point of view, the main motivation for quantifying uncertainties in 
DNNs is to be able to classify the received predictions and to make more confident deci-
sions. This section gives a brief overview and examples of the aforementioned motiva-
tions. In the first part, we discuss how uncertainty is used within active learning and 
reinforcement learning. Subsequently, we discuss the interest of the communities work-
ing on domain fields like medical image analysis, robotics, and earth observation. These 
application fields are used representatively for the large number of domains where 
uncertainty quantification plays an important role. The challenges and concepts could 
(and should) be transferred to any application domain of interest.

7.1 � Active learning

The process of collecting labeled data for supervised training of a DNN can be labori-
ous, time-consuming, and costly. To reduce the annotation effort, the active learning 
framework shown in Fig. 10 trains the DNN sequentially on differently labelled data sets 
increasing in size over time (Iuzzolino et al. 2020). In particular, given a small labelled 
data set and a large unlabeled data set, a deep neural network trained in the setting of 
active learning learns from the small labeled data set and decides based on the acquisi-
tion function, which samples to select from the pool of unlabeled data. The selected 
data are added to the training data set and a new DNN is trained on the updated training 
data set. This process is then repeated with the training set increasing in size over time. 
Uncertainty sampling is one most popular criteria used in acquisition functions (Settles 
2009) where predictive uncertainty determines which training samples have the high-
est uncertainty and should be labelled next. Uncertainty-based active learning strategies 
for deep learning applications have been successfully used in several works (Gal et al. 
2017b; Chitta et al. 2018; Pop and Fulop 2018; Zeng et al. 2018; Nguyen et al. 2019; 
Feng et al. 2021).

7.2 � Reinforcement learning

The general framework of deep reinforcement learning is shown in Fig.  11. In the con-
text of reinforcement learning, uncertainty estimates can be used to solve the exploration-
exploitation dilemma. It says that uncertainty estimates can be used to effectively balance 

Fig. 10   The active learning 
framework: The acquisition func-
tion evaluates the uncertainties 
on the network’s test predictions 
in order to select unlabelled data. 
The selected data are labelled 
and added to the pool of labelled 
data, which is used to train and 
improve the performance of the 
predictor
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the exploration of unknown environments with the exploitation of existing knowledge 
extracted from known environments. For example, if a robot interacts with an unknown 
environment, the robot can safely avoid catastrophic failures by reasoning about its uncer-
tainty. To estimate the uncertainty in this framework, (Huang et al. 2019a) used an ensem-
ble of bootstrapped models (models trained on different data sets sampled with replace-
ment from the original data set), while Gal and Ghahramani (2016) approximated Bayesian 
inference via dropout sampling. Inspired by Gal and Ghahramani (2016) and Huang et al. 
(2019a), Kahn et al. (2017) and Lütjens et al. (2019) used a mixture of deep Bayesian net-
works performing dropout sampling on an ensemble of bootstrapped models. For further 
reading, (Ghavamzadeh et al. 2015) presented a survey of Bayesian reinforcement learning.

7.3 � Uncertainty in real‑world applications

With the increasing usage of deep learning approaches within many different fields, quan-
tifying and handling uncertainties has become more and more important. On one hand, 
uncertainty quantification plays an important role in risk minimization, which is needed 
in many application fields. On the other hand, many fields offer only challenging data 
sources, which are hard to control and verify. This makes the generation of trust-worthy 
ground truth a very challenging task. In the following, three different fields where uncer-
tainty plays an important role are presented, namely robotics including autonomous driv-
ing, medical image analysis, and earth observation.

7.3.1 � Medical analysis

As there is a significant amount of uncertainty in medical data, it is essential for 
machine learning approaches in this field to provide reliable predictions and confi-
dence values in order to gain trust from physicians and patients (Abdullah et al. 2022; 
Begoli et  al. 2019; Loftus et  al. 2022). For medical applications involving clinical 
background data, distribution shifts are quite common. This is because medical infor-
mation is highly confidential, and machine learning models are often trained on data 
from different sources (e.g., varying patient backgrounds or measurement systems) 

Fig. 11   The reinforcement learning framework: The agent interacts with the environment by executing a 
specific action influencing the next state of the agent. The agent observes a reward representing the cost 
associated with the executed action. The agent chooses actions based on a policy learned by a deep neural 
network. However, the predicted uncertainty associated with the action predicted by the deep neural net-
work can help the agent to decide whether to execute the predicted action or not
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than those they are applied to later (Koh et  al. 2021). This becomes even more rel-
evant when the data samples are highly individualized, such as in the case of patients’ 
electronic health records (EHR). Gianfrancesco et  al. (2018) points out that EHRs 
can be potentially biased due to missing data, small sample sizes for specific sub-
groups, and misclassification or measurement errors in the data. Consequently, quan-
tifying epistemic uncertainty is of critical importance in this field. Heo et al. (2018) 
and Chen et al. (2021) both employ variational inference to represent epistemic uncer-
tainty, demonstrating its effectiveness on various risk prediction tasks based on EHR. 
Qiu et al. (2019) also utilize Bayesian neural networks to model epistemic uncertainty, 
confirming that an increased level of noise adversely affects predictive performance 
but simultaneously increases the predicted uncertainty. Dusenberry et  al. (2020) 
examine the role of epistemic uncertainty in patient mortality prediction and disease 
classification based on electronic health records. They reveal that Bayesian neural 
network designs can capture epistemic uncertainty more efficiently than ensembles 
for these tasks.

Another crucial area of application for uncertainty quantification in medical deep learn-
ing is the detection of diseases across various types of image data (Yang and Fevens 2021). 
Since the size, shape, and location of many diseases vary largely across patients, the esti-
mation of the predictive uncertainty is crucial in analyzing medical images in applications 
such as lesion detection (Nair et al. 2020; Seebock et al. 2020), lung node segmentation 
(Hu et al. 2019), brain tumor segmentation (Eaton-Rosen et al. 2018; Wang et al. 2018a, 
2019; Roy et al. 2019; McClure et al. 2019), parasite segmentation in images of liver stage 
malaria (Soleimany et al. 2019), recognition of abnormalities on chest radiographs (Ghesu 
et  al. 2019), and age estimation (Eggenreich et  al. 2020). Here, uncertainty estimates in 
particular improve the interpretability of decisions of DNNs (Ayhan et al. 2020). They are 
essential to understand the reliability of segmentation results, to detect false segmented 
areas, and to guide human experts in the task of refinement (Wang et al. 2019). Well-cali-
brated and reliable uncertainty estimates allow clinical experts to properly judge whether 
an automated diagnosis can be trusted (Ayhan et al. 2020). Uncertainty was estimated in 
medical image segmentation based on Monte Carlo dropout (Eaton-Rosen et al. 2018; Hu 
et al. 2019; Nair et al. 2020; Roy et al. 2019; Seebock et al. 2020; Soberanis-Mukul et al. 
2020; LaBonte et al. 2019; Reinhold et al. 2020; Eggenreich et al. 2020), spike-and-slab 
dropout (McClure et al. 2019), and spatial dropout (Soleimany et al. 2019). (Wang et al. 
2018a, 2019) used test-time augmentation to estimate the data-dependent uncertainty in 
medical image segmentation.

The tasks discussed thus far have primarily focused on clinical applications; however, 
approaches with a medical background can also be found in areas such as drug design and 
evaluation. For instance, the classification of molecular properties and drug discovery are 
relevant applications. Ghoshal et  al. (2021) incorporate MC dropout into B-cell epitope 
prediction, which could potentially be applied in the evaluation of vaccine candidates. Sev-
eral studies in this field employ Monte Carlo dropout (Kim et al. 2021; Semenova et al. 
2020), and they have already demonstrated that incorporating epistemic uncertainty in pre-
dictions can lead to more reliable outcomes compared to deterministic approaches. Scalia 
et al. (2020) compares different uncertainty quantification methods in molecular property 
prediction tasks, showing that deep ensembles outperform MC dropout-based approaches. 
Liang et al. (2018a) proposes a Markov-Chain Monte Carlo-based approach for identifying 
genes associated with anti-cancer drug sensitivities.
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7.3.2 � Robotics

Robots are active agents that perceive, decide, plan, and act in the real world – all based 
on their incomplete knowledge about the world. As a result, mistakes of the robots not 
only cause failures of their own mission but can endanger human lives, e.g. in the case 
of surgical robotics, self-driving cars, space robotics, etc. Hence, the robotics applica-
tion of deep learning poses unique research challenges that significantly differ from those 
often addressed in computer vision and other off-line settings (Sünderhauf et  al. 2018). 
For example, the assumption that the testing condition comes from the same distribution 
as training is often invalid in many settings of robotics, resulting in deterioration of the 
performance of DNNs in uncontrolled and detrimental conditions. This raises the question 
how we can quantify the uncertainty in a DNN’s predictions in order to avoid catastrophic 
failures. Answering such questions are important in robotics, as it might be a lofty goal to 
expect data-driven approaches (in many aspects from control to perception) to always be 
accurate. Instead, reasoning about uncertainty can help in leveraging the recent advances in 
deep learning for robotics.

Reasoning about uncertainties and the use of probabilistic representations, as opposed 
to relying on a single, most-likely estimate, have been central to many domains of robot-
ics research, even before the advent of deep learning (Thrun 2002). In robot perception, 
several uncertainty-aware methods have been proposed in the past, starting from localiza-
tion methods (Fox 1998; Fox et al. 2000; Thrun et al. 2001) to simultaneous localization 
and mapping (SLAM) frameworks (Durrant-Whyte and Bailey 2006; Bailey and Durrant-
Whyte 2006; Montemerlo et al. 2002; Kaess et al. 2010). As a result, many probabilistic 
methods such as factor graphs (Dellaert et al. 2017; Loeliger 2004) are now the work-horse 
of advanced consumer products such as robotic vacuum cleaners and unmanned aerial 
vehicles. In the case of planning and control, estimation problems are widely treated as 
Bayesian sequential learning problems, and sequential decision-making frameworks such 
as POMDPs (Silver and Veness 2010; Ross et al. 2008) assume a probabilistic treatment 
of the underlying planning problems. With probabilistic representations, many reinforce-
ment learning algorithms are backed up by stability guarantees for safe interactions in the 
real world (Richards et al. 2018; Berkenkamp et al. 2016, 2017). Lastly, there have been 
also several advances starting from reasoning (semantics (Grimmett et  al. 2016) to joint 
reasoning with geometry), embodiment [e.g. active perception (Bajcsy 1988)] to learning 
[e.g. active learning (Triebel et al. 2016; Narr et al. 2016; Cohn et al. 1996) and identifying 
unknown objects (Nguyen et al. 2015; Wong et al. 2020; Boerdijk et al. 2021)].

Similarly, with the advent of deep learning, many researchers proposed new methods to 
quantify the uncertainty in deep learning as well as on how to further exploit such informa-
tion. As opposed to many generic approaches, we summarize task-specific methods and 
their application in practice as followings. Notably, (Richter and Roy 2017) proposed to 
perform novelty detection using auto-encoders, where the reconstructed outputs of auto-
encoders were used to decide how much one can trust the network’s predictions. Peretrouk-
hin et al. (2020) developed a SO(3) representation and uncertainty estimation framework 
for the problem of rotational learning problems with uncertainty. Lütjens et  al. (2019), 
Kahn et al. (2017), Kahn et al. (2018), Stulp et al. (2011) demonstrated uncertainty-aware, 
real world application of a reinforcement learning algorithm for robotics, while (Tchuiev 
and Indelman 2018; Feldman and Indelman 2018) proposed to leverage spatial informa-
tion, on top of MC-dropout. Shinde et al. (2020), Yang et al. (2020), Wang et al. (2017) 
developed deep learning based localization systems along with uncertainty estimates. 
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Other approaches also learn from the robots’ past experiences of failures or detect incon-
sistencies of the predictors (Gurău et al. 2016; Daftry et al. 2016). In summary, the robot-
ics community has been both, the users and the developers of the uncertainty estimation 
frameworks targeted to the specific problems.

Yet, robotics poses several unique challenges to uncertainty estimation methods for 
DNNs. These are for example, (i) how to limit the computational burden and build real-
time capable methods that can be executed on the robots with limited computational capac-
ities (e.g. aerial, space robots, etc); (ii) how to leverage spatial and temporal information, 
as robots sense sequentially instead of having a batch of training data for uncertainty esti-
mates; (iii) whether robots can select the most uncertainty samples and update its learner 
online; (iv) Whether robots can purposefully manipulate the scene when uncertain. Most 
of these challenges arise due to the properties of robots that they are physically situated 
systems.

7.3.3 � Earth observation (EO)

Earth Observation (EO) systems are increasingly used to make critical decisions related to 
urban planning (Netzband et al. 2007), resource management (Giardino et al. 2010), dis-
aster response (Van Westen 2000), and many more. Right now, there are hundreds of EO 
satellites in space, owned by different space agencies and private companies. Like in many 
other domains, deep learning has shown great initial success in the field of EO over the 
past few years (Zhu et al. 2017). These early successes consisted of taking the latest devel-
opments of deep learning in computer vision and applying them to small curated earth 
observation data sets (Zhu et al. 2017). At the same time, the underlying data is very chal-
lenging. Even though the amount of data is huge, so is the variability in the data. This 
variability is caused by different sensor types, spatial changes (e.g. different regions and 
resolutions), and temporal changes (e.g. changing light conditions, weather conditions, sea-
sons). Besides the challenge of efficient uncertainty quantification methods for such large 
amounts of data, several other challenges that can be tackled with uncertainty quantifica-
tion exist in the field of EO. All in all, the sensitivity of many EO applications together 
with the nature of EO systems and the challenging EO data make the quantification of 
uncertainties very important in this field. Despite hundreds of publications in the last years 
on DL for EO, the range of literature on measuring the uncertainties of these systems is 
relatively small.

Furthermore, due to the large variation in the data, a data sample received at test time 
is often not covered by the training data distribution. For example, while preparing train-
ing data for a local climate zone classification, the human experts might be presented only 
with images where there is no obstruction and structures are clearly visible. When a model 
which is trained on this data set is deployed in the real world, it might see images with 
clouds obstructing the structures or snow giving them a completely different look. Also, 
the classes in EO data can have a very wide distribution. For example, there are millions 
of types of houses in the world and no training data can contain the examples for all of 
them. The question is where the OOD detector will draw the line and declare the following 
houses as OOD. Hence, OOD detection is important in earth observation and uncertainty 
measurements play an important part in this (Gawlikowski et al. 2022).

Another common task in EO, where uncertainties can play an important role, is data 
fusion. Optical images normally contain only a few channels like RGB. In contrast to 
this, EO data can contain optical images with up to hundreds of channels, and a variety 
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of different sensors with different spatial, temporal, and semantic properties. Fusing the 
information from these different sources and channels propagates the uncertainties from 
different sources into the prediction. The challenge lies in developing methods that do not 
only quantify uncertainties but also the amount of contribution from different channels 
individually and which learn to focus on the trustworthy data source for a given sample 
(Schmitt and Zhu 2016).

Unlike normal computer vision scenarios where the image acquisition equipment is 
quite near to the subject, the EO satellites are hundreds of kilometers away from the sub-
ject. The sensitivity of sensors, atmospheric absorption properties, and surface reflectance 
properties all contribute to uncertainties in the acquired data. Integrating the knowledge of 
physical EO systems, which also contain information about uncertainty models in those 
systems, is another major open issue. However, for several applications in EO, measuring 
uncertainties is not only something good to have but rather an important requirement of the 
field. E.g., the geo-variables derived from EO data may be assimilated into process models 
(ocean, hydrological, weather, climate, etc) and the assimilation requires the probability 
distribution of the estimated variables.

8 � Conclusion and outlook

8.1 � Conclusion—how well do the current uncertainty quantification methods work 
for real world applications?

Even though many advances on uncertainty quantification in neural networks have been 
made over the last years, their adoption in practical mission- and safety-critical applica-
tions is still limited. There are several reasons for this, which are discussed one by one as 
follows:

•	 Missing validation of existing methods over real-world problems 
	   Although DNNs have become the de facto standard in solving numerous computer 

vision and medical image processing tasks, the majority of existing models are not able 
to appropriately quantify the uncertainty that is inherent to their inferences, particularly 
in real world applications. This is primarily because the baseline models are mostly 
developed using standard data sets such as Cifar10/100, ImageNet, or well-known 
regression data sets that are specific to a particular use case and are therefore not read-
ily applicable to complex real-world environments, such as low-resolution satellite data 
or other data sources affected by noise. Although many researchers from other fields 
apply uncertainty quantification in their field (Rußwurm et al. 2020; Loquercio et al. 
2020; Choi et al. 2019), a broad and structured evaluation of existing methods based on 
different real world applications is not available yet. Works like (Gustafsson et al. 2020) 
already built the first step towards a real life evaluation.

•	 Lack of standardized evaluation protocol 
	   Existing methods for evaluating the estimated uncertainty are better suited to com-

pare uncertainty quantification methods based on measurable quantities such as the 
calibration (Nado et  al. 2021) or the performance on OOD detection (Malinin and 
Gales 2018). As described in Sect. 6, these tests are performed on standardized sets 
within the machine learning community. Furthermore, the details of these experi-
ments might differ in the experimental setting from paper to paper (Mukhoti et al. 
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2018). However, a clear standardized protocol of tests that should be performed on 
uncertainty quantification methods is still not available. For researchers from other 
domains, it is difficult to directly find state-of-the-art methods for the field they are 
interested in, not to speak of the hard decision on which sub-field of uncertainty 
quantification to focus. This makes the direct comparison of the latest approaches 
difficult and also limits the acceptance and adoption of currently existing methods 
for uncertainty quantification.

•	 Inability to evaluate uncertainty associated to a single decision 
	   Existing measures for evaluating the estimated uncertainty (e.g., the expected cali-

bration error) are based on the whole testing data set. This means, that equivalent to 
classification tasks on unbalanced data sets, the uncertainty associated with single sam-
ples or small groups of samples may potentially get biased towards the performance 
on the rest of the data set. But for practical applications, assessing the reliability of 
predicted confidence would give much more possibilities than an aggregated reliability 
based on some testing data, which are independent of the current situation (Kull and 
Flach 2014). Especially for mission- and safety-critical applications, pointwise evalua-
tion measures could be of paramount importance and hence such evaluation approaches 
are very desirable.

•	 Lack of ground truth uncertainties 
	   Current methods are empirically evaluated and the performance is underlined by rea-

sonable and explainable values of uncertainty. A ground truth uncertainty that could be 
used for validation is in general not available. Additionally, even though existing meth-
ods are calibrated on given data sets, one cannot simply transfer these results to any 
other data set since one has to be aware of shifts in the data distribution and that many 
fields can only cover a tiny portion of the actual data environment. In application fields 
such as EO, the preparation of a huge amount of training data is hard and expensive, 
and hence synthetic data can be used to train a model. For this artificial data, artificial 
uncertainties in labels and data should be taken into account to receive a better under-
standing of the uncertainty quantification performance. The gap between the real and 
synthetic data, or estimated and real uncertainty further limits the adoption of currently 
existing methods for uncertainty quantification.

•	 Explainability issue  
	   Existing methods of neural network uncertainty quantification deliver predictions of 

certainty without any clue about what causes possible uncertainties. Even though those 
certainty values often look reasonable to a human observer, one does not know whether 
the uncertainties are actually predicted based on the same observations the human 
observer made. But without being sure about the reasons and motivations of single 
uncertainty estimations, a proper transfer from one data set to another, and even only 
a domain shift, are much harder to realize with guaranteed performance. Regarding 
safety-critical real-life applications, the lack of explainability makes the application of 
the available methods significantly harder. Besides the explainability of neural network 
decisions, existing methods for uncertainty quantification are not well understood on a 
higher level. For instance, explaining the behavior of single deterministic approaches, 
ensembles or Bayesian methods is a current direction of research and remains difficult 
to grasp in every detail (Fort et  al. 2019). It is, however, crucial to understand how 
those methods operate and capture uncertainty to identify pathways for refinement, and 
detect and characterize uncertainty, failures, and important shortcomings (Fort et  al. 
2019).
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8.2 � Outlook

•	 Generic evaluation framework
	   As already discussed above, there are still problems regarding the evaluation of 

uncertainty methods, such as the lack of ’ground truth’ uncertainties, the inabil-
ity to test on single instances, and standardized benchmarking protocols. To cope 
with such issues, the provision of an evaluation protocol containing various con-
crete baseline data sets and evaluation metrics that cover all types of uncertainty 
would undoubtedly help to boost research in uncertainty quantification. Also, the 
evaluation with regard to risk-averse and worst case scenarios should be consid-
ered there. This means, that uncertainty predictions with a very high predicted 
uncertainty should never fail, such as for a prediction of a red or green traffic 
light. Such a general protocol would enable researchers to easily compare different 
types of methods against an established benchmark as well as on real world data 
sets. The adoption of such a standard evaluation protocol should be encouraged by 
conferences and journals.

•	 Expert & systematic comparison of baselines 
	   A broad and structured comparison of existing methods for uncertainty estima-

tion on real world applications is not available yet. An evaluation of real world 
data is even not standard in current machine learning research papers. As a result, 
given a specific application, it remains unclear which method for uncertainty esti-
mation performs best and whether the latest methods outperform older methods 
also on real world examples. This is also partly caused by the fact, that researchers 
from other domains that use uncertainty quantification methods, in general, pre-
sent successful applications of single approaches on a specific problem or a data 
set by hand. Considering this, there are several points that could be adopted for 
a better comparison within the different research domains. For instance, domain 
experts should also compare different approaches against each other and present 
the weaknesses of single approaches in this domain. Similarly, for a better com-
parison among several domains, a collection of all the works in the different real 
world domains could be collected and exchanged on a central platform. Such a 
platform might also help machine learning researchers in providing an additional 
source of challenges in the real world and would pave the way to broadly high-
light weaknesses in the current state-of-the-art approaches. Google’s repository on 
baselines in uncertainties in neural networks (Nado et al. 2021)5 could be such a 
platform and a step towards achieving this goal.

•	 Uncertainty ground truths
	   It remains difficult to validate existing methods due to the lack of uncertain ground 

truths. An actual uncertainty ground truth on which methods can be compared in an 
ImageNet like manner would make the evaluation of predictions on single samples pos-
sible. To reach this, the evaluation of the data generation process and occurring sources 
of uncertainty, such as the labeling process, might be investigated in more detail.

•	 Explainability and physical models
	   Knowing the actual reasons for a false high certainty or a low certainty makes it 

much easier to engineer the methods for real life applications, which again increases the 
trust of people into such methods. Recently, (Antorán et al. 2020) claimed to have pub-
lished the first work on explainable uncertainty estimation. Uncertainty estimations, in 

5  https://​github.​com/​google/​uncer​tainty-​basel​ines.

https://github.com/google/uncertainty-baselines
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general, form an important step towards explainable artificial intelligence. Explainable 
uncertainty estimations would give an even deeper understanding of the decision pro-
cess of a neural network, which, in the practical deployment of DNNs, shall incorporate 
the desired ability to be risk averse while staying applicable in real world (especially 
safety-critical applications). Also, the possibility of improving explainability with phys-
ically based arguments offers great potential. While DNNs are very flexible and effi-
cient, they do not directly embed the domain-specific expert knowledge that is mostly 
available and can often be described by mathematical or physical models, such as earth 
system science problems (Reichstein et  al. 2019). Such physic-guided models offer a 
variety of possibilities to include explicit knowledge as well as practical uncertainty 
representations into a deep learning framework (Willard et al. 2020; De Bézenac et al. 
2019).
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