
Innovations in Systems and Software Engineering
https://doi.org/10.1007/s11334-023-00531-4

S . I . : VECOS 2021

Contract-based specification of mode-dependent timing behavior

Janis Kröger1 · Björn Koopmann2 · Ingo Stierand2 ·Martin Fränzle1

Received: 18 March 2022 / Accepted: 14 June 2023
© The Author(s) 2023

Abstract
The design of safety-critical systems calls for rigorous application of specification and verification methods. In this context,
a comprehensive consideration of safety aspects, which inevitably include timing properties, requires explicit addressing of
operating modes and their transitions in the systemmodel as well as in the respective specifications. As a side effect, this helps
to reduce verification complexity. This paper presents an extension of a framework for the specification of timing properties
following the contract-based design paradigm. It provides enhancements of the underlying specification language, which
enables specifying modes, mode transitions, and mode-dependent behavior. A formal semantics is given in order to enable
reasoning about such specifications as well as about contract operations like refinement and composition, thus enabling to
make statements about mode composition. The results are discussed using a real-world example.

Keywords Contract-based design · Operating modes · Timing specifications · Mode-dependent specifications · Mode
composition

1 Introduction

The design of safety-critical systems heavily relies on the
comprehensive elicitation and verification of relevant system
properties. Fault tree analysis, for example, is a well-
established—and in some application domains mandatory—
method to investigate the impact of potential failures on the
correctness of system functions and serves as an input for
the development of counter-measures in the design. The same
applies to failure mode and effects analysis, which is devoted
to reveal potential propagation paths of failures in the sys-
tem. The development and verification of systems that are

J. Kröger, B. Koopmann, I. Stierand contributed equally to this work.

B Janis Kröger
janis.kroeger@uni-oldenburg.de

B Björn Koopmann
bjoern.koopmann@dlr.de

Ingo Stierand
ingo.stierand@dlr.de

Martin Fränzle
martin.fraenzle@uni-oldenburg.de

1 Department of Computing Science, Carl von Ossietzky
Universität Oldenburg, Oldenburg, Germany

2 Institute of Systems Engineering for Future Mobility, German
Aerospace Center, Oldenburg, Germany

hardened against failures calls for system models that incor-
porate operating modes. This enables, for example, detailing
the behavior of redundancy mechanisms to check whether a
takeover of safety-critical functions of components in failure
modes by their backups is performed as expected. Modeling
operating modes is also helpful for managing design com-
plexity. For example, modern adaptive cruise control (ACC)
systems in road vehicles are able to function in twomodes. In
Cruise mode, the vehicle’s velocity is kept to a value set by
the driver. In Followmode, the ACC is controlling the veloc-
ity such that a safe distance to a previously detected vehicle in
front is maintained. The active mode is selected according to
the current traffic situation. The authors of Damm et al. [10]
developed an approach in which operating modes are real-
ized by individual components that interact via a dedicated
protocol to transfer activity tokens. The approach allows to
split the verification of system properties into the verifica-
tion of the individual components and the correctness of the
mode transition protocol, thus reducing the overall verifica-
tion complexity. The reason for this is that modes provide an
automaton-like view that significantly constrains the set of
state pairs that can actually follow each other, thus focusing
and thereby easing proofs of sequential consistency.

Correctness of mode transitions generally concerns two
entangled aspects. First, theymust occur consistently as spec-
ified and do not result in unexpected behavior. In case of the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-023-00531-4&domain=pdf
https://orcid.org/0009-0002-4146-340X
http://orcid.org/0000-0003-1982-8396
https://orcid.org/0009-0000-7936-6969
https://orcid.org/0000-0002-9138-8340

J. Kröger et al.

ACCexample, thismeans that at any point in time exactly one
mode is active. The second aspect is timing, which is closely
related to the first, since mode transitions typically do not
occur simultaneously among the involved components but
must be propagated in the system. Other timing aspects may
also play an important role. Safety mechanisms, for exam-
ple, are specified with respect to fault-tolerant time intervals,
which define the maximum period of time allowed from the
occurrence of a failure until the measures take effect.

Reasoning about these aspects calls for suitable specifi-
cation means. Previous work [5, 6] established a framework
for the specification and verification of timing requirements,
which employs the contract-based design paradigm [4].
According to this framework, systems are modeled in terms
of components. Timing requirements of the individual com-
ponents are expressed in terms of Assume/Guarantee (A/G)
contracts. In addition, a set of specification patterns has been
defined that allows engineers to express many relevant tim-
ing aspects. However, it was already stated there that the
incorporation of operating modes would be desirable. This
paper aims at closing this gap. Thus, the contributions are as
follows:

1. Integration of operating modes into pattern-based timing
contracts, including specification of modes, transitions,
and mode-dependent timing behavior.

2. Investigation of mode decomposition and resulting proof
obligations for common contract operations such as com-
position and refinement.

3. Demonstration of the practical applicability based on a
realistic example.

This article is an extended version of the conference paper
[19] at the 15th International Conference on Verification
and Evaluation of Computer and Communication Systems
(VECoS’21). It mainly includes refined pre- and post-phase
definitions formode transitions,mode combinatorics for con-
tract composition, and generally improved explanations and
application examples.

The paper is structured as follows. Section2 summarizes
previous work and places our contribution in its scientific
context. Section3 introduces the basic concepts that serve
as building blocks to describe system models and to reason
formally about operating modes. In Sect. 4, we investigate
general properties and identify relevant timing phenomena
using a simple example system that incorporates mode-
dependent behavior. Based on this, we extend two commonly
used timing specification patterns in Sect. 5. In Sect. 6, the
developed concepts are applied to a realistic example system
to examine their practical suitability. Furthermore,wediscuss
mode decomposition and relevant proof obligations when
applying mode-dependent timing specifications in Sect. 7.

Section8 concludes the paper and gives an outlook on future
activities.

2 Related work

Existing research that is particularly relevant in the context of
our work can be split into two areas. The first area comprises
classical approaches to model internal states and modes for
system design. Related work from this area is presented in
Sect. 2.1. The second area focuses on approaches in the field
of contract-based design, which are discussed in Sect. 2.2.
Previous work includes concepts that facilitate the reuse of
existing components in new environments and application
contexts (see Sect. 2.2.1) and address the use of operating
modes as a tool to achieve coordinated behavioral changes
(see Sect. 2.2.2).

2.1 Classical modeling approaches

In his seminal work [14], Harel introduces statecharts that
extend classical state machines by concurrency and hierar-
chy to address the problem of state and arc explosion. It
introduces a notion of event-based communication by adding
constructs to generate and receive events in different sub-
charts. Over the years, numerous variants and dialects have
been developed [31]. Statecharts rely on a powerful seman-
tics to consider hierarchical states. In terms of our approach,
this would be equivalent to establishing a gray box perspec-
tive on component specifications, which is contrary to the
principles of contract-based design. In the following, we will
therefore rely on an explicit mapping between higher-level
and lower-level modes to reason about their relations.

Maraninchi and Remond propose mode-automata [22] as
a formal and executable formalism to describe mode struc-
tures of reactive systems. It enables themodeling of operating
modes and mode transitions by means of automata, whose
states are assigned to dataflow programs. The authors also
introduce operations for parallel and hierarchic composition,
the latter adding support for hierarchical modes. In contrast
with our approach, mode-automata do not provide descrip-
tive means to express temporal properties.

Finally, modes are also included in languages special-
ized for the design of safety-critical systems likeGiotto [15],
which adopts a task semantics for modes. In this context, a
mode is defined as a fixed set of tasks that are called according
to a certain pattern. Giotto also supports mode switches that
enable or disable the invocation of tasks. However, since it is
dedicated to technical system design, its focus is clearly on
implementation and it is not intended for formulating timing
specifications.

All three formalisms have in common that there is no
direct relation to contract-based design and thus no easy way

123

Contract-based specification of mode-dependent timing behavior

to integrate them into the existing methodology [5, 6]. How-
ever, they define a set of basic concepts that are essential for
handling operating modes in the context of our work.

2.2 Contract-based design

Contract-based design facilitates component reuse by allo-
cating responsibilities in specifications. A contract specifies,
on the one hand, all environments in which a component is
supposed to operate and, on the other hand, the expected
behavior of the component if it is used in such an envi-
ronment. The present work relies on the particular contract
theory of A/G contracts developed in [4], in which the
assumption A specifies the behavior of the environment, and
the guarantee G specifies the behavior of the component.
The explication of responsibilities between the environment
and a component is a major advantage with respect to “flat”
specifications. In addition, the use of natural language or
semi-formal requirements, for example, the specification pat-
terns proposed in [5], helps engineers to capture the meaning
of specifications more intuitively than by using formal lan-
guages like linear temporal logic [26] or metric temporal
logic [18] formulas.

2.2.1 Reuse of existing components

The idea of A/G contracts is further developed by the con-
cept of fine-grained contracts [29]. Here, weak assumptions
are employed for specifying alternative contexts in which
components can be used. Corresponding guarantees allow to
specify the behavior of the components individually for each
of the assumed environments. The work is closely related to
our approach, as both refine classical A/G contracts. Nev-
ertheless, whereas fine-grained contracts allow to specify
intended behavior for different environments, the concepts
presented in this article can be used to describe dynamic
behavior within an unaltered context.

Reussner et al. address specifications for components that
require interface changes in order to be deployed in cer-
tain contexts by parametric contracts [27]. The concept can
be used to explore different dimensions of compositional-
ity when adapting components to new environments. Since
parametric contracts are capable of modeling the depen-
dencies between provided and required functionalities, they
support predictions about the quality of service, analysis of
architectural design, and automated protocol adaptation. In
[28], specialized graph grammars are used to reason about
these aspects. Firus et al. apply parametric contracts for
measuring the performance of software components [13].
The approach determines discrete response time distributions
while considering statistical distributions of response times
of environmental services.With regard to our work, paramet-
ric contracts do not provide support for handling operating

modes.Nevertheless, they allow the adaptation of component
behavior and interfaces to changing contexts, thus ensuring
interoperability in composite systems.

Kugele et al. introduce a component model enriched
with interface assertions and mode-based contracts [20],
which are formulated by means of predicate logic formulas.
The approach provides support for determining composed
interface assertions for given architecture configurations. It
is complemented by algorithms for checking underspec-
ification, overspecification, and specification compliance.
Compared to our approach, mode-based contracts do not
focus on timing aspects and lack support for hierarchical
component models.

2.2.2 Coordination of behavioral changes

Contract-based design has also been employed to model
dynamic behavioral changes and coordination mechanisms.
In [10], Damm et al. exploit contract specifications to rea-
son about the stability and safety of systems that consist of
components, which provide the desired properties only in
certain contexts. Control between the individual components
is actively passed in terms of a token protocol. The method
enables compositional reasoning to reduce the verification
complexity.

Champion et al. have designed a mode-aware specifi-
cation language called CoCoSpec [7], which extends the
A/G paradigm and is designed to specify synchronous reac-
tive systems. It provides benefits like rigorous feedback for
fault localization, a scalable and adequate compositional
analysis as well as defensive semantic analysis to identify
oversights. The approach is developed as an extension of
the synchronous programming language Lustre and provides
support for mode-aware verification by using the Kind 2
model checker [8]. In contrast with our approach, CoCoSpec
is an implementation-oriented language that is particularly
suited for use in later design phases. It is therefore not specif-
ically tailored to early requirements engineering. In addition,
the focus is on functional aspects, without providing spec-
ification means for timing behavior. Similar to the present
article, the relations between hierarchical modes are estab-
lished by an explicit mapping.

The present work goes along the same line as those men-
tioned in Sect. 2.2. It builds on top of our previous work on
contract specifications [5, 6] that are devoted to the timing
aspect. The envisaged extensions will allow the specification
of component modes and, in particular (the timing of), mode
transitions and mode-dependent behavior, thus enabling a
consistent reasoning about mode composition and the effects
of individual modes on the behavior of the overall system.

123

J. Kröger et al.

3 Basic concepts

In the context of this work, we rely on an extended version
of the system model defined in [5], which was later refined
in [6]. According to this model, a system S consists of a set C
of hierarchically nested components. Each component c ∈ C
is equipped with three disjoint sets of input ports Pi , output
ports Po, and variable ports Pv , which together represent
the observables of the encapsulated component behavior. In
order to provide a meaningful functionality, each component
must have at least one port belonging to one of these classes,
i.e., Pc := Pi∪Po∪Pv �= ∅. The set of systemportsP = Pi∪
Po ∪Pv is defined as the union of all ports of all components
that are part of the system.

The interaction of two or more components c1, . . . , cn ∈
C is represented by the definition of so-called signals s :
P → Pn . A signal usually connects an output port po ∈ Po

with a set of input ports Pi ⊆ Pi . For connections between
two hierarchy levels, however, signals can also be defined
between two or more input ports sin : pi1 �→ (pi2 , . . .) as
well as between two or more output ports sout : po1 �→
(po2 , . . .) with pi1 , pi2 ∈ Pi and po1, po2 ∈ Po.

Figure 1 depicts a simple example system. The System
is decomposed into two main components Function and
Observer, each of which has multiple input and output ports
as well as a variable port calledMode, whose characteristics
are detailed in Sects. 3.1 and 3.2. An interaction compo-
nent CC serves as a converter channel, which forwards only
selected events from the variable port Function.Mode to
the Observer.Status input port. The ports of the lower-level
components are interconnected with three signals that pass
occurring events and value changes along the connections.
In addition, the lower-level input and output ports Input and
Verdict are linked to the respective ports of the top-level
component. A dotted arrow connects theObserver.Mode and
System.Mode ports, indicating a dependency between the two
ports. The exact semantics of this relation is explained later
in Sect. 4.

In order to characterize desired system behavior, each
component c ∈ C can be annotated with a set of specifica-
tions �c. Naturally, each element ϕ ∈ �c must refer only to
the component ports Pc to make statements about behavior.
Formally, the behavior observable at the components’ inter-
faces is defined in terms of infinite timed traces. In order to
specify �c, we rely on declarative specifications in terms of
A/G contracts within a compositional reasoning approach,
which is detailed in Sect. 3.3.

3.1 Event ports

The sets of input and output ports are collectively referred to
as event ports Pi/o = Pi ∪ Po. The behavior observable at
port p ∈ Pi/o is restricted to its value domain�p specified by

the port type. We assume a special value ⊥ to be a member
of every value domain, which represents the absence of a
value. A notion of dense time is used to characterize the
occurrence of events. Therefore, we define T = R≥0 to be
the time domain. Each event port has non-absent values for
all t ∈ T ⊂ T. A single event e occurring at port p ∈ Pi/o is
defined as a tuple e = (σ, t) that consists of an event value
σ ∈ �p and a time of occurrence t ∈ T . This allows us to
describe the semantics of event ports in terms of timed traces,
for which we use definitions from Böde et al. [6].

A timed trace over p is defined as an infinite sequence
ωp = (σi , ti)i∈N, in which σi ∈ �p are elements from
the value domain and (ti)i∈N forms a monotonic sequence
of time instances. We require all timed traces to be non-
zeno, i.e., for each t ∈ T exists (σi , ti) such that ti ≥ t .
Moreover, we denote the set of timed traces observable at
port p by �p = {ω = (σi , ti)i∈N}. For each port set P ,
we define a set of timed traces (�σi , ti)i∈N over P , where
�σi = (σ1, . . . , σn) ∈ �p1 × · · · × �pn holds. Similar to the
consideration of individual ports, we denote the set of traces
over port set P by �P = {ωP = (�σi , ti)i∈N}. Based on
this, the set of possible timed traces observable at the com-
ponent interfaces can be characterized by a timed language
LP ⊆ �P .

3.2 Variable ports

In order to enable specifying modes, we also define variable
portsPv . Just like event ports, each variable port has a clearly
defined value domain Vp. In contrast with event ports, vari-
able ports have a specified value at each point in time t ∈ T,
which evolves at discrete time points, i.e., no absent values
exist. The behavior of a variable port p ∈ Pv can thus be
characterized as a value history vp : T → Vp that maps a
well-defined value to each time point t ∈ T.

To enable the interaction between event and variable
ports, we introduce two new event types, namely set() and
change(), that occur on an implicitly defined, virtual event
port pi/o(p) ∈ Pi/o that is assigned to each variable port
p ∈ Pv:

1. set(p, v) events represent the assignment of a value v ∈
Vp to p and is called to initiate value changes. Assuming
a set() event occurring at time ti ∈ T, the value of p is
updated to vp(ti) = v.

2. change(p, v) events indicate a change in the value of
p ∈ Pv that results from a set() event. They can be used
to react to value changes. Whenever a time point ti ∈
T exists such that vp(ti) �= vp(ti−1) ∧ vp(ti) = v, a
change() event occurs at time ti .

For both events, the explicit specification of v ∈ Vp is
optional. In case of a set() event, omitting v means that

123

Contract-based specification of mode-dependent timing behavior

Status

Function Observer

Mode

Output OutputInput

CC
change()

Verdict

Mode
A'

B'

A

B

v v

v

System

v

Mode

Fig. 1 Component model of the example system

an arbitrary value from Vp is set to p. Omitting v in a
change() event allows any change of the value of p. Later on,
we will need to reason about traces of change() events and
hence define a change event trace (change()i , ti)i∈N for each
pi/o(p), which contains all change(p) events. Concerning
the observable behavior of a component, note that each event
port pi/o(p) is a (virtual) member of Pi ∪ Po, and thus, set()
and change() events are “visible” in the timed language LP .

3.3 Specifications

Components can be equipped with specifications, which in
our case consist of A/G contracts. To keep things simple, we
assume exactly one contractCc to be assigned to each compo-
nent c ∈ C, whereCc = (�A

c ,�G
c) such that�c = �A

c ∪�G
c .

In other words, the specifications in �c are partitioned into
those that specify the assumption of the contract and those
that specify the guarantee. Each specification defines a set
of valid timed traces of c, which is denoted by Lϕ . As
said above, all specifications are defined over the compo-
nents’ interfaces, i.e., Lϕ ⊆ �Pc . Furthermore, we define
L� = ⋂

ϕ∈� Lϕ and designate the set of timed traces that
complywith a givenA/Gcontract as LCc = �Pc\L�A

c
∪L�G

c
.

In other words, the logical meaning of a contract is an impli-
cation, �A

c �⇒ �G
c . A component hence is supposed to

adhere to its guarantee only if its environment adheres to the
component’s assumption.

This meaning gives reason to the following definition of
contract satisfaction: If we denote by Lc the possible behav-
ior of component c, we say, c satisfies Cc, written c |� Cc,
if Lc ∩ L�A

c
⊆ L�G

c
. In other words, c satisfies its contract

if it behaves as specified by the guarantee under all possible
behaviors of its environment.

There are two main definitions in contract-based design
that are relevant in the context of this paper. Any con-
tract theory relies on a composition operation that defines
how new components are obtained from the composition
of other (sub-)components. Along this operation on compo-

nents, contract composition defines how to obtain a contract
from the contracts of other lower-level contracts, written
C = C1 ⊗ C2. The refinement relation defines under which
circumstances a component can be replaced by another with-
out violating existing specifications. We say, C ′ refines C ,
written C ′ � C , if L

�A′
c

⊇ L�A
c
and L

�G′
c

⊆ L�G
c
. It means

that component c′ allows for more behavior of its environ-
ment and has a more confined behavior than c. Note that
C ′
1 � C1 and C ′

2 � C2 implies C ′
1 ⊗C ′

2 � C1 ⊗C2. We refer
the interested reader to Benveniste et al. [4] for more details.

Exploiting contract composition and refinement, we can
define what it means for a system (component) S to satisfy
a specification. Given that S is specified by a contract CS ,
and S is composed by a set of components C, S satisfies its
specification, i.e., S |� CS , if ⊗c∈CCc � CS .

4 Operatingmodes

In general, an operating mode represents an internal state of
a component. In the context of this work, we assume that the
mode of a component does not change spontaneously, but
is triggered by interactions via its event and variable ports.
We define each c ∈ C to possess a dedicated variable port
pm ∈ Pv called Mode, which has a mode history

mc(t) = vpm (t) (1)

with t ∈ T. The active mode mc(t) of c results from the
initial mode mc(0) ∈ Vpm as well as the sequence of set()
events over pi/o(pm) that have occurred up to the current
time t . The set of modes Mc of a component is given by
Mc = Vpm , where Vpm has either been explicitly defined or
is implicitly derived from the set of values specified in �c.
In the following, the change event trace (change()i , ti)i∈N of
port pi/o(pm) is denoted by (mi , ti)i∈N. We define a time-
bounded mode-set projection

(mi , ti)M,I = {(mi , ti) | mi ∈ M ∧ ti ∈ I } , (2)

123

J. Kröger et al.

where M is a set of modes and I is either a left-closed, right-
open time interval I = [a, b) or an open time interval I =
(a, b) with a, b ∈ T.

To shed some light on the interaction of events occurring at
the components’ interfaces and the evolution of their modes,
we again consider the example system presented in Fig. 1.
Thefigure shows that theFunction component has twomodes
A andB, which are visible at the variable portFunction.Mode.
The Observer component also exhibits two modes, namely
A′ and B ′.

Figure 2 depicts a set of example traces that illustrate the
intended system behavior. The Function and Observer com-
ponents sequentially process a sequence of events. Function
receives periodic Input events that occur every 6ms with an
offset of 5ms. Depending on the value of the Input events,
which is either 0 or 1, the variable port Function.Mode is set
with a delayof 1ms.The effects of the set(Function.Mode, A)
and set(Function.Mode, B) events on the value of the Mode
port are indicated by dotted arrows. Some of the set() events
lead to changes of the mode value and thus to the occur-
rence of change() events at the virtual event port pi/o(pm f un).
They are forwarded to the Status port of theObserver via the
converter channel CC, which filters out events other than
change() events. In addition, the Function component adapts
the frequency of the Output events according to its active
modem f un(t), i.e., by using a period length of 2ms in mode
A and a period length of 5ms in mode B.

The Observer component, on the other hand, receives the
Output events and evaluateswhether the observed behavior is
consistentwith the (time-delayed) knowledge about themode
of the functional component. To this end, it stores the current
mode of the Function component in mobs(t) by updating the
value of the Observer.Mode port according to the received
Status events. The component creates Verdict events to pub-
lish the results of the evaluation. A mode-dependent time
span of 2ms in mode A′ and 5ms in mode B ′ is required to
create the verdict. Again, dotted arrows in Fig. 2 show how
mode changes of the Function component are translated into
Status events, which lead to mode changes of the Observer
component. The mode-dependent delay of the Observer is
visualized by dotted connections between the Output and
Verdict events.

In the course of the paper, we will define mode-dependent
timing specifications that are able to cover component behav-
ior as shown in the example. To determine whether a specific
behavior is valid with respect to a mode-dependent specifica-
tion, we must first evaluate which mode the component is in.
To this end, we have to define time points at which the cur-
rent mode of a component is evaluated. Here, we distinguish
two cases: simple event occurrences and reactions to trigger
events, which correspond to two specification parts that are
used to formulate any Cc. For both cases, the evaluation time
points are fully synchronized with the occurrence of events:

• Instantaneous parts specify the occurrence of events
according to a specific model, such as the periodic Out-
put events generated by the Function component. In this
case, the mode of component c ∈ C is evaluated at each
(anticipated) time of occurrence teval = t↑e ∈ T of the
event e ∈ �p at port p ∈ Pi/o of the component. For a
given set of modes Mcond , we define the corresponding
condition as ∃m ∈ Mcond : mc(teval) = m.

• Reactive parts specify the reaction of a component to
trigger events e ∈ �p, as, for example, the Verdict events
that occur as a result of the Output events. In this case,
the condition ∃m ∈ Mcond : mc(teval) = m is evaluated
at each time teval = t↑e ∈ T of the event e to be reacted to.

Amissingpuzzle piece is amechanism for reasoning about
the relations between modes at different levels of the compo-
nent hierarchy. For the system shown in Fig. 1, an important
verification task is checking whether C f un ⊗ Ccc ⊗ Cobs �
Csys holds. This check is also called virtual integration test
(VIT). In order to perform this test, we need to character-
ize the relation between the top-level modes Msys and the
lower-level modes of its subcomponents.

A simple solution is the definitionof amodemapping func-
tion μc : Msub1 ×· · ·× Msubn → Mc between modes Msubi
and modes Mc for each component c that is decomposed
into lower-level components subi . In the example above, the
mapping function simply maps the observer mode to the sys-
tem. More precisely, μsys : M f un × Mcc × Mobs → Msys

is defined such that μsys(m f un,mcc,mobs) = mobs . It is
important to note that the mapping must be an input of any
verification engine in order to perform the above checking
task. Applying this approach establishes a tree-like hierarchy
betweenmodes, inwhichwell-defined and traceable relations
between modes along the component hierarchy exist.

A drawback of this solution is the fact that it introduces
an additional specification mechanism.Moreover, it does not
explain how such mapping is realized in the system archi-
tecture. An alternative solution is to design specific “mode
management” components into the system, which realize the
mode mapping. An advantage of the approach is the fact that
such components could also be used to control and to orches-
trate modes of individual subcomponents in addition to only
aggregating them. Though the framework presented in this
paper supports this approach without any adaptations, the
specification patterns developed in the following section are
sufficient for specifying only simple use cases. More elabo-
rated scenarios would require specifications beyond purely
event-based patterns. More precisely, it would need to allow
variable ports as input ports of a component, which is out of
scope of this paper. We will come back to this in Sect. 6.

123

Contract-based specification of mode-dependent timing behavior

Fig. 2 Intended behavior of the
example system

AA

A' A'

Input

Mode

Output

Status

Verdict

B B

Mode

A

O
bs

er
ve

r
Fu

nc
tio

n

B'A'B'

1 0 0 0 1 1

0 1 0 1

5 100 15 20 25 30 35 40

1

[ms]

5 Mode-dependent timing specifications

To facilitate the specification of modes and mode-dependent
timing behavior, we will extend two existing specification
patterns that allow to specify repetitive event occurrences and
latencies. The basic idea is to enhance each pattern with an
optional set of modes M in which it has to be fulfilled. Since
we assume a use in contract-based design, we will present
consistent extensions for use in assumptions and guarantees.

On the assumption side, we will allow mode-dependent
counterparts of general assumptions. This enables the formu-
lation of more precise and situation-tailored constraints on
the component’s context. An evenmore significant reason for
introducingmode-dependent assumptions is the advantage in
terms of analyzability, since undefined or inconsistent mode
combinations are made explicit and can thus be detected
more easily. On the guarantee side, we need to define which
mode is valid initially, which mode transitions exist, when
and in what period these may be taken, and how the mode-
dependent timing behavior of the component in focus looks
like. In addition, immediate effects of mode changes in terms
of adaptions in internal or output behavior will be described
with mode-dependent guarantees.

In both cases, wemay need to consider the behavior before
and after a mode change takes effect in order to obtain a
consistent and well-defined set of specifications. Inconsis-
tencies could arise, for example, when leaving a specific
mode and switching to another mode, in which a required
input behavior is not (yet) provided by the interacting com-
ponents. Two conceivable solutions to this problemwould be
to either ensure the provision of corresponding input events
before the mode change is implemented, or to define a lim-
ited period of time in which the absence of the required input
signal is tolerated after completing the transition.

The approach presented here aims for the second solution.
We introduce pre- and post-phases that enable to permit tem-
porary deviations from mode-dependent behavior within a
predefined time interval. Pre-phases, on the one hand, spec-
ify a kind of “settling phase” from the time of a mode change

tb ∈ T to a fixed time bound tb + Dpre with Dpre ∈ T,
in which both the specified behavior of the active mode and
(parts of) the behavior of the previous modemay apply. Post-
phases, on the other hand, define a “tail phase” that starts with
another mode change at time td ∈ T and ends at td + Dpost

with Dpost ∈ T at the latest. Within this period, the speci-
fications of the active mode as well as the specifications of
the previous mode pose valid behavior. In the following, we
assumedefault durations Dpre = 0 and Dpost = 0 for instan-
taneous as well as Dpre = 0 and Dpost = ∞ for reactive
specifications, respectively.

Based on the introduction of pre- and post-phases, we con-
sider four specification pattern statesS = {pre, on, post, off}
that are illustrated in Fig. 3. As long as a specification pat-
tern is in the on state, the component behavior must comply
with this pattern. In the off state, the pattern does not need
to apply. In pre and post, the behavior applies as described
in the paragraph before. We require that each pattern passes
through all states in the given order. Note, however, that each
state may also be left after zero time.

For each change event trace (mi , ti)i∈N, we inductively
define a specification state trace st = (statei , ti)i∈N with
statei ∈ S. The trace st contains all changes between the
specification pattern states S, including the exact time t of
occurrence. The initial state of each trace is set to

(state0, t0) =
{

(on, 0) if mc(0) ∈ M

(off, 0) if mc(0) /∈ M
(3)

based on the initial mode mc(0) ∈ M of the component
in focus. For (statei , ti) and (m j , t j)(m j+1, t j+1) · · · =
(mi , ti)(ti ,∞), we extend the state trace based on the sequence
of specification pattern states from Fig. 3 as follows:

1. If statei = off:

(statei+1, ti+1) =
{

(off, t j) if m j /∈ M

(pre, t j) if m j ∈ M
(4)

(statei+2, ti+2) = (on, ti+2) ∧ ti+2 ∈ Tpre if m j ∈ M

(5)

123

J. Kröger et al.

Fig. 3 Specification pattern
states and component modes

off offonpre post

2. If statei = on:

(statei+1, ti+1) =
{

(on, t j) if m j ∈ M

(post, t j) if m j /∈ M
(6)

(statei+2, ti+2) = (off, ti+2) ∧ ti+2 ∈ Tpost if m j /∈ M

(7)

with

Tpre = [t j ,min(t j + Dpre, tk | (mk, tk)Mc\M,[t j+1,∞)))

(8)

and

Tpost = [t j ,min(t j + Dpost , tk | (mk, tk)M,[t j+1,∞))) .

(9)

In order to evaluate st at time t , we define a specification
state function Sst : T → S with

Sst (t) =

⎧
⎪⎪⎨

⎪⎪⎩

s0 if ∃(s1, t1) ∈
(statei , ti)i∈N : t < t1

si if ∃(si , ti)(si+1, ti+1) ∈
(statei , ti)i∈N : ti ≤ t < ti+1

(10)

that returns the active specification state. Given a state trace
st , a subset of states S ⊆ S and a timed trace (σi , ti)i∈N,
the specification state projection

prst,S ((σi , ti)i∈N) = {(σi , ti) | Sst (ti) ∈ S } (11)

extracts all events from the timed trace that occur while one
of the states inS is active. Note that infinitelymany traces st
may exist for every change event trace (mi , ti)i∈N, because
state changes may occur at any point in time within the pre-
and post-phases. Finally, we define

St : (� × T)ω → 2(S×T)ω , (12)

which returns all state traces for a given change event trace.
Since each specification pattern is assigned to exactly one
component that has only a single mode port by definition,
explicitly specifying (mi , ti)i∈N is optional.

5 100 15 20 [ms]

e occurs every 3 ms.

e occurs every 5 ms with jitter 2 ms.

5 100 15 20 [ms]

e

e

Fig. 4 Repetition pattern examples

5.1 Specification patterns

In the following, we will complete the extension consider-
ing two example specification patterns that allow to specify
repetitive event occurrences and latencies. The basic idea is
to extend each specification pattern of a contract C with an
optional set of modes M in which it has to be fulfilled either
by the environment or the behavior of the component itself.
Additionally, pre- and post-phase durations Dpre and Dpost

are defined for each pattern.

5.1.1 Repetition pattern

The repetition pattern specifies an infinite sequence of recur-
ring events. It expresses that a given event occurs every
P = [P−, P+] time units, possibly further delayed by up
to J time units:

Event occurs every P with jitter J.

In order to keep things simple, we require J < P−. The pat-
tern is a member of the class of instantaneous specifications
and can thus be used either in assumptions or guarantees. Its
mode-independent semantics is defined by a family of lan-
guages Lrep(e, P−, P+, J), where e represents the Event:

Lrep = {(e, ti)i∈N | ti = ui + ji ∧ u0 ∈ [0, P+]
∧ ui+1 − ui ∈ P ∧ ji ∈ [0, J]} (13)

Figure 4 depicts two examples of the repetition pattern.
In the upper part, a pattern instance with a period of 3ms is
shown. The resulting e events occur exactly with this peri-
odicity. The lower part contains a repetition pattern with a

123

Contract-based specification of mode-dependent timing behavior

period of 5ms and an additional jitter of 2ms. In this case,
Lrep includes all traces in which an e event occurs at a non-
deterministic time in each jitter interval.

The syntax extensions for adding support of mode-
dependent specifications are as follows:

Event occurs every P with jitter J
in mode M [pre Dpre]? [post Dpost]?.

The additional components allow the definition of a set of
modes M in which the pattern has to be fulfilled. Further-
more, the two optional parts pre Dpre and post Dpost

enable the explicit specification of pre- and post-phase dura-
tions.

Based on the results from the previous sections, the seman-
tics of the mode-dependent repetition pattern is defined as

LM
rep = {prst,{on,post}((e, ti)i∈N) | ∃st ∈ St

∧ ti = ui + ji ∧ u0 ∈ [tini t , tini t + P+]
∧ ui+1 − ui ∈ U ∧ ji ∈ [0, J]}

(14)

such that ∃(on, tini t) ∈ st : �(on, t ′) ∈ st ∧ t ′ < tini t and

U =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P if �(on, ton) ∈ st : ui <

ton ≤ ui+1

ton − ui + [0, P+] if ∃(on, ton) ∈ st : ui <

ton ≤ ui+1

.(15)

5.1.2 Reaction pattern

The reaction pattern expresses a “classical” latency between
two causally related events. It specifies that an Event2 event
occurs I = [I−, I+] after each occurrence of a trigger event
Event1:

Reaction(Event1,Event2) within I.

The pattern belongs to the class of reactive specifications and
can thus only be used in guarantees. Its original semantics is
defined by Lrea(e, f , I−, I+):

Lrea = {(σi , ti)i∈N | ∀(e, ti)∃(f , t j) : t j − ti ∈ I } (16)

Figure 5 shows two examples of the reaction pattern. The
upper part depicts an example trace that results from a pattern
instancewith a latency of 2ms. In this case, all f events occur
exactly 2ms after the corresponding trigger events e. In the
lower part, a reaction pattern with a latency of 2 to 4ms is
shown. Lrea contains all traces in which an f event occurs 2
to 4ms after the e event.

5 100 15 20 [ms]

Reaction(e,f) within 2 ms.

Reaction(e,f) within [2, 4] ms.

5 100 15 20 [ms]

e

e

f

f

Fig. 5 Reaction pattern examples

In analogy to the extensions of the repetition pattern, the
syntax of the reaction pattern is enriched by a set of modesM
as well as optional definitions of pre- and post-phase dura-
tions:

Reaction(Event1,Event2) within I
in mode M [pre Dpre]? [post Dpost]?.

The extended pattern specifies a reaction to each trigger
event e that occurs while amodem ∈ M is active, which only
becomes visiblewithin the validity period and the subsequent
post-phase:

LM
rea = {(σi , ti)i∈N | ∃st ∈ St ∧ ∀(e, ti) ∈ prst,{on}((e, ti)i∈N) :

∃(f , t j) ∈ (f , t j) j∈N : t j − ti ∈ I ∨ ∃(off, t j) ∈ st :
ti < t j ∧ t j − ti ∈ I }

(17)

We are well aware that the extended patterns are only
examples of instantaneous and reactive specifications. How-
ever, they clearly demonstrate the applicability of the
approach and can already be used to cover many relevant
application scenarios, some of which are presented in Sect. 6.

5.2 Fine-grained pre-phase and post-phase
durations

So far, we were able to specify common pre- and post-phase
durations for all modes in which the pattern must be ful-
filled. The pre-phase of a pattern applies when the pattern
becomes active independently from the previously active
mode. Likewise, a specified post-phase applies when the pat-
tern becomes deactivated independently from the following
target mode.

123

J. Kröger et al.

A

5 100 15 20 [ms]

e occurs every 3 ms in mode B pre 1 ms, 2 ms {C}.

e

5 100 15 20 [ms]

Reaction(e,f) within 2 ms in mode B post 1 ms {C}.

e

f

mc

mc

AB

A AB B

B

B C

ABC

Fig. 6 Examples of fine-grained pre- and post-phases

In some application scenarios, it is desirable to define
more fine-grained specifications. We hence further extend
our patterns to be able to specify different pre- and post-
phase durations depending on the previous (or following)
mode. To this end, we extend the pattern syntax by replacing
pre Dpre and post Dpost as follows:

Event occurs every P with jitter J
in mode M [pre PreList]?

[post PostList]?.

Reaction(Event1,Event2) within I
in mode M [pre PreList]?

[post PostList]?.

The PreList and PostList elements are defined as lists of
complementary, fine-grained pre- and post-phase durations:

PreList ::= Dprei [{ Mprei }]? [, PreList]?
PostList ::= Dposti [{ Mposti }]? [, PostList]?

With these extensions, we are able to specify optional mode
sets Mprei from which the component changes to a mode
in M such that the corresponding pre-phase duration Dprei
applies. Likewise, the optional Mposti specify mode sets to
which the component switches when it leaves the mode set
M , taking into account the post-phase duration Dposti . Note
that any number of pairs Dpre {Mpre} and Dpost {Mpost}
can be specified.

Figure 6 illustrates two examples of specification patterns
with fine-grained pre- and post-phase durations. The upper
part depicts an example trace of a repetition pattern with a

period of 3ms and fine-grained pre-phases, which are high-
lighted in green. The specified duration of 1ms applies to all
pre-phases (at t = 2ms and t = 7ms in the figure), except
for mode transitions fromC toB. Here, the specified duration
is 2ms (at t = 17ms). In the lower part, an example trace of a
reaction pattern with a latency of 2ms and fine-grained post-
phases is shown. All post-phases are highlighted in orange.
The pattern specifies that for every event e a corresponding
event f occurs. This applies even if the mode in which the
pattern is active has already been left, provided that the post-
phase duration has not yet expired (at t = 5ms). Recall that
the post-phase duration for reaction patterns is∞ by default.
As a result of the post-phase duration of 1ms specified for
transitions from modes B to C, reactions to trigger events
may be suppressed (at t = 14ms).

The extensions still allow specifying common pre- and
post-phase durations Dpre and Dpost without using Mpre

and Mpost , respectively. If there are no other elements spec-
ified in the list, the duration applies to all modes in Mc \ M ,
and thus Mpre = Mc\M and Mpost = Mc\M are implic-
itly defined. Otherwise, it applies to all modes in Mc for
which no other Mprei (or Mposti) is specified in the list, and
Mpre (orMpost) is assumed to be set accordingly. Finally, the
following conditionsmust be fulfilled by allMxi/ j ,which rep-
resent either pre- or post-phasemode setsMprei/ j orMposti/ j ,
respectively:

Mxi ⊆ Mc

M ∩ Mxi = ∅
∀(i �= j) : Mxi ∩ Mx j = ∅ (18)

The required extensions are reflected in the semantics by
replacing Dpre in Eq. (8) by D′

pre, i.e.,

Tpre = [t j ,min(t j + D′
pre, tk | (mk, tk)Mc\M,[t j+1,∞))) (19)

with

D′
pre =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dpre1 if m j−1 ∈ Mpre1
...

Dprei if m j−1 ∈ Mprei

Dpre else

(20)

and Dpost in Eq. (9) by D′
post , i.e.,

Tpost = [t j ,min(t j + D′
post , tk | (mk, tk)M,[t j+1,∞))) . (21)

123

Contract-based specification of mode-dependent timing behavior

with

D′
post =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dpost1 if m j ∈ Mpost1
...

Dposti if m j ∈ Mposti

Dpost else

. (22)

6 Application example

To illustrate the approach for handling operating modes,
we consider an Adaptive Cruise Control with Collision
Avoidance (ACCwCA). The system has been considered and
implemented in the context of the Step-Up!CPS project, and
is detailed in [1]. The main focus was on the timing behavior
of the system, and thus, the overall architecture and time val-
ueswere previously fixed.An issue that became evident in the
previous work was the missing ability to specify operating
modes in order to reflect the system behavior more accu-
rately. Hence, the example presented here can be considered
as an attempt to fix this issue.

Acomponentmodel of the system is depicted inFig. 7.The
example focuses on the early phases of system design, where
the functional viewpoint is in focus. However, the concepts
are not limited to these phases or this particular perspective,
but can also be used in later development stages down to the
hardware/software design.

TheACCwCA is an advanced driver assistance system that
possesses a number of modes, namely Idle (I), Cruise (C),
Follow (F), and Evade (E). Initially, the system is in Idle
mode. It switches into Cruise mode when being activated,
where it maintains a constant speed set by the driver. If a
slower vehicle is ahead of the ego vehicle, the Follow mode
is activated, and the ACCwCA adapts the speed to the leading
vehicle andmaintains a safeminimumdistance.Additionally,
the component provides a collision avoidance functionality.
If the distance between the leading and the ego vehicle falls
below a safety-critical threshold, theEvademode is activated
to perform an emergency braking maneuver.

The top-level specification of the ACCwCA is shown in
Table 1. An upstream sensor processing unit periodically
provides the distance D to the vehicle ahead and the veloc-
ity LV of the leading vehicle (line 1). The ego velocity EV
is received from another external system (line 2). With the
occurrence of a Req event in mode Idle, the system is acti-
vated (lines 3–4). After activation, the ACCwCA computes
regular updates of the control values Ctrl as well as Switch
values that indicate how the values are to be interpreted. A
transition from Idle toEvade is automatically taken in safety-
critical situations, i.e., without the need formanual activation
(line 5). Depending on the activemode, the system shows dif-
ferent timing behaviors. This is partly to save resources and

partly to avoid unnecessary restrictions in the specifications.
In Cruise mode, the system reacts to its inputs within 245
to 250ms (line 6). In modes Follow and Evade, the reaction
requires a shorter period of time (lines 7–9).

Taking into account the traffic situation, the ACCwCA
switches betweenCruise,Follow, andEvade until it is deacti-
vated by a driver request (lines 10–11). To ensure continuous
control, Ctrl and Switch are provided every 3 to 7ms in all
operating modes other than Idle (line 12). When switching
from Idle to Cruise, Follow, or Evade, the internal compo-
nents need some time to adapt their behavior to the requested
mode. Since a maximum delay of 30ms in providing the first
Switch and Ctrl events is acceptable, a pre-phase duration of
30ms is defined (line 12).

When the component switches to Idle mode, it should
not produce any further Ctrl and Switch events. To this end,
we specify a fine-grained post-phase duration of 0ms for
transitions to the Idlemode (line 6–9). However, a post-phase
duration of 25ms remains for the periodic outputs eventsCtrl
andSwitch (line 12),whichdoes not complywith theprevious
requirements. Note that this situation arises for consistency
reasons and is explained in more detail in Sect. 6.2.

6.1 Component-level specifications

The ACCwCA consists of three sub-components, namely
Adaptive Cruise Control (ACC), Collision Avoidance (CA),
and Switching Logic (SL). All components have their own
internal modes as depicted in Fig. 7. Based on the definitions
fromSect. 4, the top-levelmodes aremapped to combinations
of the composed lower-level modes by using the mode map-
ping functionμACCwCA : Macc×Mca×Msl → MACCwCA.
The detailedmapping is shown in Table 2. Each line specifies
a combination of modes of the ACC,CA, and SL components
as well as the resulting mode of the top-level component.

The combinations show that the mode of the overall sys-
tem primarily depends on the lower-level modes of the ACC
and SL components. The CA influences the mode of the
ACCwCA only indirectly by inputs that cause mode changes
of the SL. The interaction of these components is detailed in
Sects. 6.1.2 and 6.1.3. As a result of the combinatorics, mode
combinations that lead to inconsistencies between differ-
ent specifications may arise, especially in transition phases.
However, since these combinations are transient, a careful
definition of suitable pre-and post-phase durations Dpre and
Dpost effectively prevents inconsistent behavior. The effects
are explained in more detail in the following subsections.

As indicated in Sect. 4, the mode mapping and the corre-
sponding mode transitions as depicted in the top-right part
of Fig. 7 could also be modeled as a dedicated Mode Logic
component. Such a component would be equippedwith input
ports that are connected with the mode ports of the ACC and
SL components. An output port would present the aggregated

123

J. Kröger et al.

Fig. 7 Component model of the
Adaptive Cruise Control with
Collision Avoidance

v

v

vMode

LV

LV

PCtrl

Status Status

PCtrl

Ctrl

Decel Decel

Mode

Mode

ACC with Collision Avoidance

ACC

Collision Avoidance

Switching Logic

Switch

D

vMode

D

EV

EV

Req

Evade

Normal
Evade

Normal

Idle FollowCruise

Evade
Idle

Follow

Cruise

Table 1 Top-level specification of the Adaptive Cruise Control with Collision Avoidance

A {D,LV} occurs every 40ms with jitter 5ms. 1

EV occurs every 10ms with jitter 2ms. 2

Req occurs every (0,∞)ms. 3

G Reaction(Req,set(Mode)) within (0, 5]ms in mode I. 4

Reaction((EV,{D,LV}),set(Mode,E)) within (0, 5]ms in mode I. 5

Reaction((EV,{D,LV}),{Ctrl,Switch}) within [245, 250]ms in mode C post 0ms {I}. 6

Reaction((EV,{D,LV}),Ctrl) within [195, 200]ms in mode {F,E} post 0ms {I}. 7

Reaction((EV,{D,LV}),Switch) within [195, 200]ms in mode F post 0ms {I}. 8

Reaction((EV,{D,LV}),Switch.2) within [195, 200]ms in mode E post 0ms {I}. 9

Reaction((EV,{D,LV}),set(Mode)) within (0, 5]ms in mode {C,F,E}. 10

Reaction(Req,set(Mode,I)) within (0, 5]ms in mode {C,F,E}. 11

{Ctrl,Switch} occurs every [3, 7]ms in mode {C,F,E} pre 30ms post 25ms {I}. 12

mode of the ACCwCA component. In turn, the mapping of
the input modes and the aggregated top-level mode could be
specified by means of a specification similar to those of the
other components. An excerpt from an exampleMode Logic
specification is included in Table 3. In this case, the guarantee
contains four reaction patterns that forward mode changes of
the ACC component to the output (line 1–3), as well as a
change of the SL to the Evade mode (line 4). However, if
the SL component switches from Evade mode back to Nor-
mal, the mode previously set by the ACC component must be
reestablished as the new top-level mode. This would require
to store the ACC mode into an internal state of the imagined
ModeLogic component.Conceptually, this could be achieved
by introducing a variable in the component that stores the
mode, which is supported by the framework through vari-
able ports. Note that corresponding specification patterns are
needed, which have not (yet) been defined.

Table 2 Mode combinations and top-level modes

Macc Mca Msl MACCwCA

Idle ∗ Normal Idle

Cruise ∗ Normal Cruise

Follow ∗ Normal Follow

∗ ∗ Evade Evade

∗ = “any value”

As a final remark, there is a fundamental difference
between the two approaches. While mapping functions
“realize” mode changes instantly, components with timing
specifications do not allow for instantaneous reactions. This
has an impact on the top-level specification, as mode changes
become visible to the environment only with a delay.

123

Contract-based specification of mode-dependent timing behavior

Table 3 Excerpt from a mode
logic specification as an
alternative for the explicit mode
mapping

G Reaction(change(ACC.Mode,I),set(Mode,I)) within ... 1

Reaction(change(ACC.Mode,C),set(Mode,C)) within ... 2

Reaction(change(ACC.Mode,F),set(Mode,F)) within ... 3

Reaction(change(SL.Mode,E),set(Mode,E)) within ... 4

6.1.1 Adaptive cruise control

The Adaptive cruise control (ACC) component calculates
control values in terms of PCtrl events. Its specification is
shown in Table 4. The component has Idle (I), Cruise (C),
and Follow (F) modes and is activated and deactivated by
Req events (line 4–5). Situation-dependent changes between
Cruise and Follow are possible at any time (line 6). InCruise
mode, the component takes 220 to 225ms to react to inputs,
whereby it has to react faster in Follow mode to respond
timely to the behavior of the vehicle ahead (lines 7–8). When
the ACC switches out of Cruise mode, we limit the reaction
to already received input events to a maximum duration of
200ms (line 7). If the ACC switches to Idle mode, no fur-
ther PCtrl values are to be calculated based on input events
received (line 7–8). PCtrl events are provided every 5ms in
both modes (line 9).

6.1.2 Collision avoidance

The Collision Avoidance (CA) component, whose specifica-
tion is given in Table 5, checks whether the execution of
an emergency braking maneuver is required. It possesses
Normal (N) and Evade (E) modes. As long as there is no
hazardous situation, the CA is in Normal mode. If a viola-
tion of the critical distance is detected, it switches to Evade
(line 3) and transmits a Status event with value 1 to inform
the SL component (line 4). The CA requires 170 to 175ms
to react to inputs (line 5). After completing of the braking
maneuver, it switches back to Normal mode and emits a Sta-
tus eventwith a value of 0 (line 6). To prevent the system from
running into inconsistent states, additional Decel events are
provided for 5ms after leaving the Evade mode (line 7).

6.1.3 Switching logic

The specification of the Switching Logic (SL) is presented
in Table 6. The component has Normal (N) and Evade (E)
modes. It receives PCtrl, Decel, and Status events as inputs
(lines 1–3). Based on these values, it switches between Nor-
mal and Evade modes. In Normal mode, it forwards the
received PCtrl and provides corresponding Switch events to
enable a correct interpretation of the values (line 4). A mode
change to Evade is triggered by receiving a Status event with
value 1 (line 5). In Evade mode, it passes the Decel values
with a Switch value of 2 (line 6). The occurrence of a Status

event with a value of 0 triggers a transition to Normal mode
(line 7).

6.2 Resulting system behavior

Table 2 shows that the mode of the top-level component
ACCwCA is depends on the mode of the SL component.
Based on the description in Sects. 6.1.2 and 6.1.3, it is evident
that the individual modes of the components have different
criticality for the system behavior. If the safety-critical dis-
tance is violated, the highest priority is that an emergency
braking maneuver is performed to prevent the system from
a collision. Hence, by changing the mode of the SL from
Normal to Evade mode, only the CA values are output and
the ACC component values are ignored. This mode change
propagates up to the top-level component, as can be seen in
Fig. 8. The priority between the output values thus results
indirectly from the combinatorics and the mapping between
top-level and lower-level modes.

Figure 8 shows example traces that illustrate a possi-
ble system behavior resulting from the given specifications.
Here, we focus on the evolution of component modes as well
as the propagation of mode changes through the overall sys-
tem. Again, active pre- and post-phases are highlighted in
green and orange color. The system is activated at t = 0ms
and deactivated at t = 400ms. The top-level mode, which
is presented in the bottom line, directly results from the
composed lower-level modes as described in Sect. 6.1 (see
Table 2). Note that Cruise and Follow modes are ignored, if
the high-critical Evade mode is active. In addition, the need
for defining suitable pre- and post-phases is demonstrated.
In the top-level specification, for example, a pre-phase is
required to account for delays in providing initial results (see
Table 1, line 12). Moreover, post-phases in Cacc ensure that
the control values calculated in Follow mode are not over-
written by outdated values from the previous Cruise mode
(see Table 4, line 7).

In the following, we will examine two significant non-
trivial details of the system behavior more closely. Let us
first take a look at the parts of Fig. 8 that are highlighted by
the overlays 1©, 2©, and 3©. Based on the specification of the
ACC and CA components, which generate periodic output
events every 5ms in their respective modes (see Table 4,
line 9 and Table 5, line 7), and the non-varying delay of
25ms introduced by the SL component (see Table 6, lines 4
and 6), we can conclude that the output of the ACCwCA also

123

J. Kröger et al.

Table 4 Specification Cacc of the Adaptive Cruise Control component

A {D,LV} occurs every 40ms with jitter 5ms in mode {C,F}. 1

EV occurs every 10ms with jitter 2ms in mode {C,F}. 2

Req occurs every (0,∞)ms. 3

G Reaction(Req,set(Mode,{C,F})) within (0, 1]ms in mode I. 4

Reaction(Req,set(Mode,I)) within (0, 1]ms in mode {C,F}. 5

Reaction((EV,{D,LV}),set(Mode)) within (0, 1]ms in mode {C,F}. 6

Reaction((EV,{D,LV}),PCtrl) within [220, 225]ms in mode C post 200ms, 0ms {I}. 7

Reaction((EV,{D,LV}),PCtrl) within [170, 175]ms in mode F post 0ms {I}. 8

PCtrl occurs every 5ms in mode {C,F}. 9

Table 5 Specification Cca of the
Collision Avoidance component A {D,LV} occurs every 40ms with jitter 5ms. 1

EV occurs every 10ms with jitter 2ms. 2

G Reaction((EV,{D,LV}),set(Mode)) within (0, 1]ms {E,N}. 3

Reaction(change(Mode,E),Status.1) within (0, 1]ms in mode N. 4

Reaction((EV,{D,LV}),Decel) within [170, 175]ms in mode E post 0ms. 5

Reaction(change(Mode,N),Status.0) within (0, 1]ms in mode E. 6

Decel occurs every 5ms in mode E post 5ms. 7

Table 6 Specification Csl of the
Switching Logic component A PCtrl occurs every (0,∞)ms. 1

Status occurs every (0,∞)ms. 2

Decel occurs every 5ms in mode E pre 5ms. 3

G Reaction(PCtrl,{Ctrl,Switch}) within 25ms in mode N. 4

Reaction(Status.1,set(Mode,E)) within (0, 1]ms in mode N. 5

Reaction(Decel,{Ctrl,Switch.2}) within 25ms in mode E. 6

Reaction(Status.0,set(Mode,N)) within (0, 1]ms in mode E. 7

occurs periodically every 5ms. Looking at the highlighted
parts of the Ctrl and Switch lines, it can be seen that both
outputs do not occur periodically every 5ms as expected,
but later or earlier. This behavior is due to mode changes
in the SL component. The mode change in the SL and the
resulting change of the forwarded control values of the ACC
and theCA lead to a discrepancy in the output behavior. Based
on this possible temporal variation, the specification of the
ACCwCA for the occurrence of the output does not result in
a 5ms period as assumed, but in an interval of [3, 7]ms.

The second detail refers to the system when switching
to the Idle mode. The corresponding part is highlighted by
annotation 4© in Fig. 8. As described in Sect. 6.1, the system
should not provide any further outputs when being switched
to Idlemode.Contrary to the intended behavior, some trailing
Ctrl and Switch events occur at the outputs after switching to
the Idle mode. According to the specification, this happens
within a maximum time span of 25ms. Due to its function
as a simple arbiter, the output behavior of the SL cannot be
restricted by refining the post-phase durations in the specifi-

cation. To this end, the integration of a mechanism to disable
the SL component would be required. An alternative solution
would be to integrate an additional component that filters the
outputs of the SL depending on the modes of the internal
components.

7 Discussion

The application example illustrates the expressiveness of
the extensions and outlines possible application scenarios
of mode-dependent specifications. In this context, the two
patterns considered in Sect. 5 already enable a detailed for-
mulation of real-time requirements that address operating
modes and mode transitions. Due to the diversity of conceiv-
able applications and the complexity of the combinatorics
of inter-mode relations, the use of mode-dependent specifi-
cations requires a thorough consideration of resulting proof
obligations.

123

Contract-based specification of mode-dependent timing behavior

Fig. 8 Example traces of the
Adaptive Cruise Control with
Collision Avoidance

Mode I

I

N N

Mode

PCtrl

Status

Decel

C C

Mode

F

C
A

AC
C

ENE

50 1000 150 200 250 300 350 400

SL

{D,LV}

N N

Ctrl

Switch

Mode ENE

[ms]

Req

C E ECF F

1 2 3 4

For components that interact with each other, it must be
ensured that operating modes takes place in a coordinated
manner. Here, it is particularly important to ensure that the
pre- and post-phase durations of all transitions defined in
different specifications comply with each other.

When considering mode relations across multiple hierar-
chy levels, the definition of a meaningful mapping is crucial
to enable error-free composition. In order to achieve a con-
sistent specification of the behavior of the overall system,
all mode mapping functions must be well-defined, i.e., they
have to fulfill the following two conditions:

1. The mode mapping μ must be complete, i.e., the modes
of the higher-level component must result from the cross
product of the modes of the respective lower-level com-
ponents.

2. The mode mapping μ must be unambiguous, i.e., it must
indeed specify a function from the combination of sub-
component modes to a well-defined output mode.

If both conditions are met, the mode-dependent specifica-
tion of a higher-level component can be designed in the same
way as the corresponding specifications of the lower-level
components. Checking the above conditions for mapping
function can easily be achieved.

Concerning the consistency between specifications at
different hierarchy levels, the usual proof obligations for
contract-based design [4] can be applied. The specified
behavior in lower-level modes must refine the behavior of

their associated higher-level modes. As a consequence, it is
required to prove that the behavior in all operating modes
is correct with respect to the assumed environments and
that valid transitions are taken whenever the environment
changes. The underlying contract theory allows to check the
validity of refinement relations by means of VITs [12].

Virtual integration testing can also be used to check proper
interaction of components at the same level with respect to
their specifications. For compatibility, we can check whether
the composition of multiple components refines the contract
(f alse, true). If so, then there is no environment inwhich the
corresponding components interact with each other in a “cor-
rect” way. Consistency can be tested by checking refinement
of the contract (true, f alse), meaning that the composition
does not yield a valid implementation.

In order to support engineers in these tasks, automated tool
support would be desirable. Therefore, mode-aware analyses
are an important prerequisite. To close this gap, the extension
of an existing tool prototype [11] that performs simulation-
based VITs for SysMLmodels annotated with A/G contracts
is work in progress.

Viewed from a certain distance, it becomes clear that the
concepts are not only suited for handling timing specifica-
tions, but can also be used to formalize safety properties. A
first step in this direction was the use of mode-dependent
specifications for modeling failure modes and mitigation as
part of the requirements of the Model-based Safety Assess-
ment and Traceability (MobSTr) dataset [30], which is

123

J. Kröger et al.

available on GitHub.1 The results have recently been pub-
lished in [2] together with the presentation of prototypical
tool support for this kind of specifications.

For most specification formalisms hold that verification is
expensive for larger system designs. Contract-based design,
on the other hand, enables managing complexity through a
divide-and-conquer strategy along component hierarchies.
Virtual integration testing ensures that higher-level specifi-
cations are satisfied if their composites do so, thus allowing
to split verification tasks into smaller pieces. Contracts as
a mean of requirement specification can be combined with
modeling languages such as MATLAB/Simulink and stat-
echarts [21, 23] in order to check contract satisfaction.
Contracts as formal specifications are able to cover different
functional, timing, and safety aspects in industrially relevant
applications [17, 24, 25]. Besides tool support in the form
of generalized verification engines such as UPPAAL [3] and
SPIN [16], specialized tools like OCRA [9] exist.

8 Conclusion

The presented approach enables a consistent handling of
operating modes, mode transitions, and mode-dependent
behavior in contract-based design. In contrast with related
work, we performed the extensions on pattern level, which
enables the use of timed traces to characterize system behav-
ior and facilitates seamless integration into an existing
framework. The concepts allow a comprehensive consid-
eration of timing aspects of mode-based systems and help
to reduce verification complexity. In the future, we aim to
investigate additional specification patterns and provide tool
support for automated analyses.

Acknowledgements This work has been partially funded by the
Federal Ministry of Education and Research (BMBF) as part of Step-
Up!CPS (01IS18080B) and PANORAMA (01IS18057G) as well as by
theMinistry of Science and Culture (MWK) of the State of Lower Sax-
ony as part of the Zukunftslabor Mobilität.
An earlier version of this article was published in the conference pro-
ceedings of the 15th International Conference on Verification and
Evaluation of Computer and Communication Systems (VECoS’21)
[19].Wewould like to thank the organizers for the opportunity to present
our results more comprehensively in this article.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,

1 https://github.com/panorama-research/mobstr-dataset.

unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bebawy Y, Guissouma H, Vander Maelen S, et al (2020) Incre-
mental contract-based verification of software updates for safety-
critical cyber-physical systems. In: 2020 international conference
on computational science and computational intelligence (CSCI).
IEEE. https://doi.org/10.1109/CSCI51800.2020.00318

2. Becker JS,KoopmannB, Stierand I, et al (2023) Providing evidence
for correct and timely functioning of software safety mechanisms.
In: Groher I, Vogel T (eds) Software engineering 2023 workshops.
Gesellschaft für Informatik, pp 66–77. https://doi.org/10.18420/
se2023-ws-09

3. Bengtsson J, Larsen K, Larsson F, et al (1996) UPPAAL—a tool
suite for automatic verification of real-time systems. In: Alur R,
Henzinger TA, Sontag ED (eds) Hybrid systems III, lecture notes
in computer science, vol 1066. Springer, Berlin, Heidelberg, pp
232–243. https://doi.org/10.1007/BFb0020949

4. Benveniste A, Caillaud B, Nickovic D et al (2018) Contracts for
system design. Found Trends Electron Des Autom 12(2–3):124–
400. https://doi.org/10.1561/1000000053

5. Böde E, Büker M, Damm W, et al (2017) Design paradigms
for multi-layer time coherency in ADAS and automated driving
(MULTIC). In: FAT series, Research Association for Automo-
tive Technology, vol 302. https://www.vda.de/vda/de/aktuelles/
publikationen/publication/fat-schriftenreihe-302

6. Böde E, Damm W, Ehmen G, et al (2019) MULTIC-tooling.
In: FAT series, Research Association for Automotive Technol-
ogy, vol 316. https://www.vda.de/vda/de/aktuelles/publikationen/
publication/fat-schriftenreihe-316

7. Champion A, Gurfinkel A, Kahsai T, et al (2016a) CoCoSpec: a
mode-aware contract language for reactive systems. In: De Nicola
R, Kühn E (eds) Software engineering and formal methods, lecture
notes in computer science, vol 9763. Springer, Cham, pp 347–366.
https://doi.org/10.1007/978-3-319-41591-8_24

8. Champion A, Mebsout A, Sticksel C, et al (2016b) The kind
2 model checker. In: Chaudhuri S, Farzan A (eds) Computer
aided verification, lecture notes in computer science, vol 9780.
Springer, Cham, pp 510–517. https://doi.org/10.1007/978-3-319-
41540-6_29

9. Cimatti A, Tonetta S (2015) Contracts-refinement proof system
for component-based embedded systems. Sci Comput Program
97(3):333–348. https://doi.org/10.1016/j.scico.2014.06.011

10. Damm W, Dierks H, Oehlerking J, et al (2010) Towards com-
ponent based design of hybrid systems: safety and stability. In:
Manna Z, Peled DA (eds) Time for verification: essays in mem-
ory of Amir Pnueli, lecture notes in computer science, vol 6200.
Springer, Berlin, Heidelberg, pp 96–143. https://doi.org/10.1007/
978-3-642-13754-9_6

11. Damm W, Ehmen G, Grüttner K, et al (2019) Multi-layer time
coherency in the development of ADAS/AD systems: design
approach and tooling. In: Proceedings of the workshop on design
automation for CPS and IoT. ACM, pp 20–30. https://doi.org/10.
1145/3313151.3313167

12. Damm W, Hungar H, Josko B, et al (2011) Using contract-
based component specifications for virtual integration testing
and architecture design. In: 2011 design, automation and test

123

https://github.com/panorama-research/mobstr-dataset
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/CSCI51800.2020.00318
https://doi.org/10.18420/se2023-ws-09
https://doi.org/10.18420/se2023-ws-09
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1561/1000000053
https://www.vda.de/vda/de/aktuelles/publikationen/publication/fat-schriftenreihe-302
https://www.vda.de/vda/de/aktuelles/publikationen/publication/fat-schriftenreihe-302
https://www.vda.de/vda/de/aktuelles/publikationen/publication/fat-schriftenreihe-316
https://www.vda.de/vda/de/aktuelles/publikationen/publication/fat-schriftenreihe-316
https://doi.org/10.1007/978-3-319-41591-8_24
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1016/j.scico.2014.06.011
https://doi.org/10.1007/978-3-642-13754-9_6
https://doi.org/10.1007/978-3-642-13754-9_6
https://doi.org/10.1145/3313151.3313167
https://doi.org/10.1145/3313151.3313167

Contract-based specification of mode-dependent timing behavior

in Europe. IEEE, pp 1023–1028. https://doi.org/10.1109/DATE.
2011.5763167

13. Firus V, Becker S, Happe J (2005) Parametric performance con-
tracts for QML-specified software components. Electron Notes
Theor Comput Sci 141(3):73–90. https://doi.org/10.1016/j.entcs.
2005.04.036

14. Harel D (1987) Statecharts: a visual formalism for complex sys-
tems. Sci Comput Program 8(3):231–274. https://doi.org/10.1016/
0167-6423(87)90035-9

15. Henzinger TA, Horowitz B, Kirsch CM (2001) Giotto: a time-
triggered language for embedded programming. In: Henzinger TA,
KirschCM(eds)Embedded software, lecture notes in computer sci-
ence, vol 2211. Springer, Berlin, Heidelberg, pp 166–184. https://
doi.org/10.1007/3-540-45449-7_12

16. Holzmann GJ (2004) The SPIN model checker: primer and refer-
ence manual, vol 1003. Addison-Wesley

17. Kaiser B, Weber R, Oertel M et al (2015) Contract-based design
of embedded systems integrating nominal behavior and safety.
Complex Syst InformatModel Q 4:66–91. https://doi.org/10.7250/
csimq.2015-4.05

18. Koymans R (1990) Specifying real-time properties with metric
temporal logic. Real-Time Syst 2(4):255–299. https://doi.org/10.
1007/BF01995674

19. Kröger J, Koopmann B, Stierand I, et al (2022) Handling of operat-
ing modes in contract-based timing specifications. In: Nouri A,Wu
W, Barkaoui K, et al (eds) Verification and evaluation of computer
and communication systems, lecture notes in computer science, vol
13187. Springer, Cham, pp 59–74. https://doi.org/10.1007/978-3-
030-98850-0_5

20. Kugele S, Marmsoler D, Mata N, et al (2016) Verification of
component architectures using mode-based contracts. In: 2016
ACM/IEEE international conference on formal methods and mod-
els for system design (MEMOCODE). IEEE, pp 133–142. https://
doi.org/10.1109/MEMCOD.2016.7797758

21. Latella D, Majzik I, Massink M (1999) Automatic verification of
a behavioural subset of UML statechart diagrams using the SPIN
model-checker. Formal Aspects Comput 11:637–664. https://doi.
org/10.1007/s001659970003

22. Maraninchi F, Rémond Y (1998) Mode-automata: about modes
and states for reactive systems. In: Hankin C (ed) Programming
languages and systems, lecture notes in computer science, vol 1381.
Springer, Berlin, Heidelberg, pp 185–199. https://doi.org/10.1007/
BFb0053571

23. Nejati S, Gaaloul K, Menghi C, et al (2019) Evaluating model
testing and model checking for finding requirements violations in
Simulink models. In: Proceedings of the 2019 27th ACM joint
meeting on European software engineering conference and sym-
posium on the foundations of software engineering. ACM, pp
1015–1025. https://doi.org/10.1145/3338906.3340444

24. Nuzzo P, XuH, Ozay N et al (2013) A contract-basedmethodology
for aircraft electric power system design. IEEE Access 2:1–25.
https://doi.org/10.1109/ACCESS.2013.2295764

25. Nuzzo P, Sangiovanni-Vincentelli AL (2018) Hierarchical system
design with vertical contracts, Lecture notes in computer science,
vol 10760, Springer, Cham, pp 360–382. https://doi.org/10.1007/
978-3-319-95246-8_22

26. Pnueli A (1977) The temporal logic of programs. In: 18th annual
symposium on foundations of computer science. IEEE, pp 46–57.
https://doi.org/10.1109/SFCS.1977.32

27. Reussner RH, Becker S, Firus V (2004) Component composition
with parametric contracts. In: Tagungsband der Net.ObjectDays,
pp 155–169. https://sdqweb.ipd.kit.edu/publications/pdfs/
reussner2004f.pdf

28. Reussner RH, Happe J, Habel A (2005) Modelling parametric
contracts and the state space of composite components by graph
grammars. In: Cerioli M (ed) Fundamental approaches to software
engineering, Lecture notes in computer science, vol 3442. Springer,
Berlin, Heidelberg, pp 80–95. https://doi.org/10.1007/978-3-540-
31984-9_7

29. Sljivo I, Gallina B, Carlson J, et al (2013) Strong and weak contract
formalism for third-party component reuse. In: 2013 IEEE inter-
national symposium on software reliability engineering workshops
(ISSREW). IEEE, pp 359–364. https://doi.org/10.1109/ISSREW.
2013.6688921

30. Steghöfer JP, Koopmann B, Becker JS, et al (2021) The Mob-
STr dataset—an exemplar for traceability and model-based safety
assessment. In: 2021 IEEE 29th international requirements engi-
neering conference (RE). IEEE, pp 444–445. https://doi.org/10.
1109/RE51729.2021.00062

31. von der Beeck M (1994) A comparison of statecharts variants. In:
Langmaack H, de Roever WP, Vytopil J (eds) Formal techniques
in real-time and fault-tolerant systems, lecture notes in computer
science, vol 863. Springer, Berlin, Heidelberg, pp 128–148. https://
doi.org/10.1007/3-540-58468-4_163

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/DATE.2011.5763167
https://doi.org/10.1109/DATE.2011.5763167
https://doi.org/10.1016/j.entcs.2005.04.036
https://doi.org/10.1016/j.entcs.2005.04.036
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/3-540-45449-7_12
https://doi.org/10.1007/3-540-45449-7_12
https://doi.org/10.7250/csimq.2015-4.05
https://doi.org/10.7250/csimq.2015-4.05
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/978-3-030-98850-0_5
https://doi.org/10.1007/978-3-030-98850-0_5
https://doi.org/10.1109/MEMCOD.2016.7797758
https://doi.org/10.1109/MEMCOD.2016.7797758
https://doi.org/10.1007/s001659970003
https://doi.org/10.1007/s001659970003
https://doi.org/10.1007/BFb0053571
https://doi.org/10.1007/BFb0053571
https://doi.org/10.1145/3338906.3340444
https://doi.org/10.1109/ACCESS.2013.2295764
https://doi.org/10.1007/978-3-319-95246-8_22
https://doi.org/10.1007/978-3-319-95246-8_22
https://doi.org/10.1109/SFCS.1977.32
https://sdqweb.ipd.kit.edu/publications/pdfs/reussner2004f.pdf
https://sdqweb.ipd.kit.edu/publications/pdfs/reussner2004f.pdf
https://doi.org/10.1007/978-3-540-31984-9_7
https://doi.org/10.1007/978-3-540-31984-9_7
https://doi.org/10.1109/ISSREW.2013.6688921
https://doi.org/10.1109/ISSREW.2013.6688921
https://doi.org/10.1109/RE51729.2021.00062
https://doi.org/10.1109/RE51729.2021.00062
https://doi.org/10.1007/3-540-58468-4_163
https://doi.org/10.1007/3-540-58468-4_163

	Contract-based specification of mode-dependent timing behavior
	Abstract
	1 Introduction
	2 Related work
	2.1 Classical modeling approaches
	2.2 Contract-based design
	2.2.1 Reuse of existing components
	2.2.2 Coordination of behavioral changes

	3 Basic concepts
	3.1 Event ports
	3.2 Variable ports
	3.3 Specifications

	4 Operating modes
	5 Mode-dependent timing specifications
	5.1 Specification patterns
	5.1.1 Repetition pattern
	5.1.2 Reaction pattern

	5.2 Fine-grained pre-phase and post-phase durations

	6 Application example
	6.1 Component-level specifications
	6.1.1 Adaptive cruise control
	6.1.2 Collision avoidance
	6.1.3 Switching logic

	6.2 Resulting system behavior

	7 Discussion
	8 Conclusion
	Acknowledgements
	References

