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Abstract
The macroscopic properties of open-porous cellular materials hinge upon the microscopic skeletal architecture and features
of the material. Typically, bulk material properties, viz. the elastic modulus, strength of the material, thermal conductivity,
and acoustic velocity, of such porous materials are expressed in terms of power-scaling laws against their density. In
particular, the relation between the elastic modulus and the density has been intensively investigated. While the Gibson and
Ashby model predicts an exponent of 2 for ideally connected foam-like open-cellular solids, the exponent is found to lie
between 3 and 4 for silica aerogels. In this paper, we investigate the origins of this scaling exponent. Particularly, the effect
of the pearl-necklace-like skeletal features of the pore walls and that of the random spatial arrangement is extensively
computationally studied. It is shown that the latter is the driving factor in dictating the scaling exponent and the rest of the
features play a negligible or no role in quantifying the scaling exponent.
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Highlights
● Presents a microstructure-informed model to study mechanics of silica aerogels.
● Views a fundamental issue of the scaling exponent in power law relations.
● Accounts for the effect of pearl-necklace-like cell walls.
● Describes the random spatial arrangement of the aerogel network using a DLCA model.
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1 Introduction

Silica aerogels represent a class of nanoporous materials
with an unusual combination of properties such as ultralow
density (0.003 g/cm3) and large specific surface areas (in the
order of 1000 m2/g) resulting from their highly mesoporous
structure resulting in very low thermal conductivity (less
than 0.015W/mK) [1]. These properties make silica aero-
gels suitable for numerous applications such as acoustic and
thermal insulators, drug delivery, cosmetics, (bio)catalysis,
Cherenkov detectors, Knudsen pumps and construction
applications as well as space applications [2]. The potential
applications of silica aerogels with engineered properties
has manifested in an increased research on the accurate
understanding of their unique structure-property relation-
ships. Within this context, the mechanical structure-
property relations become very interesting because silica
aerogels are classically known to be brittle materials. Sev-
eral chemical and physical modifications have shown to be
successful in synthesizing silica-based aerogels with high
strength and high flexibility [3–6]. One significant property
that is used to quantify the properties in (silica) aerogels is
their density [7]. This can be achieved, for e.g., by applying
power scaling relations. A classical example of such a
relation is E∝ ρα or λs∝ ρβ, where E, λs and ρ represent the
elastic modulus, solid thermal conductivity, and density of
the material while α and β are exponents resulting from the
power scaling [8, 9]. In the case of silica aerogels, the
exponent α falls between 3–4 [10, 11]. Woignier et al. [11]
suggested that the pore volume and the spatial arrangement
of the particles may be possible factors responsible for the
scaling relation of their elastic properties. While it may
prove challenging to critically investigate the reasons at the
morphological level, computational approaches may be
utilized to design a detailed study.

Gibson and Ashby [12] showed analytically that the
scaling exponent in the case of foam-like ideally connected
open-cellular materials would be 2. This is found to be true
for many experimentally-tested foam-like materials [13], as
well as some aerogels, particularly those from biopolymers,
owing to their foam-like network architecture [14]. This was
computationally justified in a recent study [15]. Rege et al.
[16] demonstrated the effect of pore-size distributions on
the mechanical properties of open-porous cellular materials
within the framework of a constitutive model. This study
was further extended by accounting for the influence of the
pore space on the elastic properties of open-porous material
[17]. It was shown that while density is a critical and sig-
nificant factor controlling the quantification of their
mechanical properties, the role of pore-size distributions
and pore-wall thickness cannot be neglected.

In contrast to conventional foam-like materials, silica
aerogels typically exhibit a scaling exponent between 3 and 4.

This poses a question: What really affects this scaling relation
in silica aerogels? To the best of the knowledge of the
authors, there seem to arise three factors that may eventually
control the scaling relationships, particularly for their elastic
properties. These are the randomness in the spatial arrange-
ment or network connectivity of the particles through the
aerogel network, the amount of dangling mass, and the pearl-
necklace-like morphology of the pore walls. It seems feasible
to investigate these three features at a computational level.
This can be realized by modeling silica aerogels and simu-
lating their mechanical behavior.

A perspective on the applicability of the different mod-
eling and computational reconstruction approaches for a
variety of aerogels was recently reported by Rege [18]. In
particular, the morphology of silica aerogels can be well
described by aggregation algorithms [19–21]. Here, the
diffusion-limited cluster-cluster aggregation (DLCA) or the
ballistic aggregation algorithms have been applied. Such
models account for the random spatial arrangement of the
particles in the aerogel network. While, these models are
merely mathematical constructs, they can be used to
describe the mechanical properties of aerogels as described
in previous reports [21, 22], however, this will be discussed
in greater detail in subsequent sections. Within the context
of spatial arrangement, the concept of a backbone becomes
predominantly interesting. Colloid-like material networks
exhibit a critical backbone path within the material’s net-
work that bears the majority of the load being transmitted
through the material. The remaining network paths remain
nearly stress-free. This was shown to be the case in aerogels
too [21]. Furthermore, the role of dangling mass toward the
power-scaling relation was an interesting subject and has
already been intensively investigated by Ma et al. [22] who
illustrated that the dangling mass plays no role in the scaling
behavior in aerogels. The final feature that may be
responsible for the scaling relation is the pearl-necklace-like
morphology. This was initially investigated by Woignier
et al. [23] on the basis of a unit cell model, whose edges
were described as arrays of spheres with no overlap. In a
subsequent report, the effect of overlap was analyzed by
Morales-Florez et al. [24], where they described the silica
aerogel morphology as hierarchical overlapped particle
clusters and studied the effect of the overlapped volume on
the mechanical properties. They particularly focused on the
influence of these overlaps and the subsequent change in
porosity on the resulting tensile strength. By accounting for
the overlaps, the effect of varying neck sizes on the axial,
bending and buckling behavior of the pore walls was
recently investigated by Rege et al. [25]. Large deviations
resulting from varying the particle overlaps were observed.
The model was further improved to account for accurately
describing a particle neck and the improvised model was
numerically and computationally exploited to characterize
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the mechanical properties of silica aerogels [26]. Given the
importance to the subject in the literature, it seems feasible
to investigate the effect of particle necking on the scaling
relation.

Unfortunately, due to the mesoporous nature of the silica
aerogel morphology, there have been no experimentally-
driven concluding remarks on the origins of this unusual
scaling exponents. However, with the effect of dangling
mass being negated with computational investigations, the
effect of two structural features, viz., the randomness in the
spatial arrangement and the inter-particle necks on the
scaling exponent has yet to be extensively analyzed. Thus,
the effect of the pore-wall structure and the random network
connectivity are independently investigated in the following
sections.

2 Effect of pore-wall morphology

The effect of the corrugated pore-structure is investigated
as an extension of the open-cell foam model proposed by
Gibson and Ashby [12]. Lei and Liu [27] also developed a
finite element model for silica aerogels by accounting for

the dangling mass but not the pearl-necklace-like mor-
phology. While they could show that the dangling mass
did not have an effect on the scaling exponent for the
elastic modulus, the model assumed constant cross-section
of the pore-walls and the effects resulting from such
corrugations were not accounted and the model simply
resulted in an exponent of 2.04. In the following, a model
describing the relations between the elastic properties and
the density in the form of scaling laws is demonstrated.
The effect of accounting for the pearl-necklace-like mor-
phology of the pore-wall structure on the mechanical
properties has been recently studied by our group [25, 26]
and in this work, we have integrated the corrugated pore-
wall morphology within the unit cell model to study
their influence on the scaling of the elastic properties
(see Fig. 1).

The degree of the corrugation can be expressed in terms
of the neck size. As seen in Fig. 1, the smaller the neck size
(2x in terms of the diameter), the more corrugated the pore-
wall appears. In this study, we use five different neck sizes
which are a function of the particle radius (0.4R, 0.8R,
1.2R, 1.6R, 2R) and five different t/L ratios (0.05, 0.045,
0.04, 0.035, 0.03) corresponding to five different solid

Fig. 1 a Unit cell, b with corrugated pore-walls, c geometric model describing the model of inter-particle necks (figure reused from Ratke et al.
[26]), Corners of the corrugated unit cell for neck sizes, d 0.4R, e 0.8R, f 1.2R, g 1.6R, h 2R
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fractions. Here, t denotes the effective diameter and L the
length of the pore-wall. The last case, in which the neck size
is equal to the particle diameter, corresponds to the case of
simulating the pore-wall with constant cross-section. This
serves as a benchmark to compare the effect of the corru-
gations. Since the pore-walls are simulated as slender
beams, only the corners of the unit cell are visualized in
Fig. 1d–h. The geometry of the neck can be modeled in 2D
as shown in Fig. 1c, essentially as a fillet with tangent
continuity before transforming to 3D geometry.

All the finite element simulations presented to investi-
gate the influence of the pore corrugations were performed
using Abaqus. A single unit cell in accordance with the
Gibson-Ashby model [12] was considered to effectively
compare the results (influence of the pore corrugations on
scaling exponents). The unit cells are compressed up to
20% and the Young’s modulus is obtained from the slope
of the stress-strain curve in the elastic region. This is
simulated as a displacement-driven problem with con-
centrated loads and point supports (see Fig. 1) in accor-
dance with the open-cell foam model [12]. The
deformation of the unit cells is depicted in Fig. 2. It is
observed that for larger particle necks, i.e., lower degree
of corrugations, the stresses are uniformly distributed and
homogeneous while in case of smaller particle necks
corresponding to higher degree of corrugations, there are

stress concentrations at the necks which can be expected
considering elementary mechanics. These stress con-
centrations at the particle necks could be a reason for the
brittle nature of fracture in such materials.

Furthermore, to correlate the structural features of the
unit cells with their material properties, we obtain the
scaling exponents for the Young’s modulus vs. density
power law, E∝ ρα. This scaling law can be expressed in
terms of the bulk (.)b and skeletal (.)s properties as:

Eb

Es
/ ρb

ρs

� �α

; ð1Þ

where the bulk properties correspond to the unit cell while
the skeletal properties correspond to the individual beams
constituting the unit cell. The relative density can be
expressed in terms of the geometrical features of the unit
cell. Since the mass is the same for skeletal and bulk
density, the ratio of the densities is obtained from the ratio
of the volumes as follows:

ρb
ρs

¼ Vs

Vb
; ð2Þ

where Vs is the skeletal volume corresponding to the cell
walls and Vb is the bulk volume corresponding to the unit

Fig. 2 Deformation of unit cells for neck sizes, a 0.4R, b 0.8R, c 1.2R, d 1.6R, e 2R
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cell. Thus:

ρb
ρs

¼ C
t

L

� �2
: ð3Þ

Considering the geometry, the constant C can be obtained
and the densities can be correlated to the t/L ratio.

The scaling exponents α are obtained for the five dif-
ferent particle neck sizes considered and are illustrated in
Fig. 3. It is observed that the deviations in the scaling
exponent (1.9 ± 0.03) due to the considerations of the cor-
rugated pore wall are rather insignificant and these marginal
differences do not follow any specific trend. Thus, it can be
concluded that the inter-particle necks purely do not affect
the scaling relationship between the elastic modulus and the
density. Of course, as can be visualized from Fig. 2, the
stress distribution varies largely and thus, these necks will
strongly have an effect on the deformation and mode of
failure of the material. The effect of these neck-sizes on the
maximal axial and bending stresses and the critical buckling
load have been previously reported [25]. However, within
the context of the exponent, it seems to be not influential.
Moreover, an exponent of nearly 2 is obtained for all the
simulated cases. This primarily implies that the pore-wall
corrugations do not contribute to the high scaling exponent
observed in the case of silica aerogels.

3 Effect of random spatial arrangement of
particles

It can now be established that neither the pore-wall
morphology nor the dangling mass contribute toward the
high scaling exponent in silica aerogels. Thus, it must
ultimately lie with the effect of the spatial arrangement of
the particles through the aerogel network. This spatial

arrangement for silica aerogels can be described by their
Hausdorff or fractal dimension. Silica aerogels have been
reported to exhibit a fractal morphology [28]. Models
based on DLCA have successfully demonstrated this
feature [19, 21]. The more dense the aerogels, the higher
is their fractal dimension [21]. However, the fractal
dimension does not alone uniquely define structural fea-
tures in silica aerogels [29]. Owing to previously estab-
lished successful validations between experimental and
computational results, we have applied the DLCA algo-
rithm to model silica aerogels. The algorithm is a
numerical simulation of the aggregation resulting from the
sol-gel process that takes place during the gelation of the
silica gel network. Unlike the diffusion limited aggrega-
tion (DLA) models, the DLCA takes into account the
cluster-cluster aggregation as per the Smoluchowski the-
ory [30], thus providing a better numerical algorithm to
model the chemical kinetics behind the gelation process.
In some previous works, the DLCA has been applied to
model the structural morphology and also the mechanical
properties of silica aerogels with reasonable accuracy
[19, 21]. For this study, the DLCA algorithm as developed
by Meakin and Family [31] was applied. The DLCA
algorithm generates a representative volume element
(RVE) for further simulations and has four model para-
meters: the relative density of the RVE (ϱ), the radius of
particles (r), the step size of the particles (u) and the
domain size (L). The relative density of the RVE can
calculated as:

ϱ ¼ N
4πr3

3L3
; ð4Þ

where N is the number of particles in the system. The
particles undergo a spherical random walk periodically,
given by the equation:

xnewi ¼ xoldi þ ui cosϕ sin θ;

ynewi
¼ yoldi þ ui sinϕ sin θ;

znewi ¼ zoldi þ ui cos θ;

ð5Þ

where xi, yi and zi are the coordinates of the ith particle in
the cluster, and ϕ and θ are the spherical angles selected
randomly. For the given study, particles of radius
r= 2 nm were randomly initiated in a domain of size
L= 300 nm. The particles move randomly with a step
size u= 1 nm per unit time. On initialization of the
algorithm, when two particles come within a critical
distance of each other, defined by ϵ= 2.15 × r, the two
particles aggregate to form a cluster. The simulation
continues till there is only one connected cluster left in
the RVE, resulting in the silica aerogel microstructure, as
visualized in Fig. 4a.

Fig. 3 Scaling exponent for the unit cell model with varying neck sizes
under compression
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In this study, we define four structures generated by
implementing the DLCA approach with four different relative
densities, viz. 0.03, 0.04, 0.05, and 0.06. These structures are
compressed up to 10% strain in an uniaxial compressive mode
of deformation, and the elastic modulus is obtained from the
slope of the stress-strain curve of the elastic region. The
aggregated particle positions obtained from the DLCA algo-
rithm are exported to a finite element program. The connections
between the particle centers were modeled as a bond with a
length of 2.15 × r. To capture all the modes of deformation
undergoing in a particle bond, viz. torsion, bending and axial
stretching, these particle bonds were simulated as beam ele-
ments with the finite element program Abaqus. Hence, the
bond (beam) diameter is the only geometrical input for the
simulation other than the structure itself.

Although the pore-wall morphology was shown to have a
negligible effect on the scaling exponent, we include different
neck sizes while simulating the DLCA structures for com-
pleteness. This is achieved by using an effective beam diameter
calculated based on volume balance for the particle bonds. This

effective diameter is obtained such that the volume of the
constant cross-section it represents is equal to the volume of the
corresponding corrugated pore-wall with the given neck size
(see Fig. 5). The deformation of one of the RVEs under
compressive stresses can be visualized in Fig. 6. The unde-
formed RVE shown in Fig. 4b corresponds to a relative density
of 0.03 and 24,171 particles are aggregated using the DLCA
algorithm. Under uniaxial compression, while a majority of the
RVE remains stress-free (comparing Figs. 4b and 6a) even at
10% compression, the stresses are transmitted through the
skeletal backbone chain (Fig. 6b). This, as described pre-
viously, is the critical load-bearing path typically known from
colloidal mechanics. This trend of backbone-path-formation in
silica aerogels was also previously reported [21].

The scaling exponent is calculated for the five different neck
sizes (in the form of effective diameter) considered in the
previous section for the four different DLCA structures and is
illustrated in Fig. 7. It can be observed that the scaling exponent
is nearly 3.6 irrespective of the neck-size considered. Before
drawing a conclusion, a short remark: Note that while an
effective diameter is considered, it eventually models a constant
cross-section of the simulated beams. This indicates that the
random network connectivity is the primary reason for an
unusual scaling exponent in the case of silica aerogels.

To further scrutinize this conclusion, we add one more
parameter to the model. In the above-mentioned model, the
effective diameter was assumed constant throughout a given
simulated microstructure. In reality, it is highly improbable that
all the neck sizes of the particle-aggregated structures will be
exactly the same. Thus, we explored the use of a distribution of
neck sizes for any given DLCA structure. For simplicity, we
considered three very coarse normal distributions as shown in
Fig. 8 with different mean neck sizes. The particle bonds
simulated as beams were divided into five sets of different
beam diameters depending upon their frequency. Thus, DLCA
structures with different neck sizes and beam diameters were
simulated. This approach can be further extended for finer
distributions for enhanced accuracy of the results.

Fig. 4 a Exemplary particle-aggregated network generated using
DLCA algorithm with fewer number of particles illustrating the
particle-aggregated morphology as observed in silica aerogels, b the
exported network of bonds from the actual model simulated in the
finite element program with 24,171 particles

Fig. 5 Effective diameter for considering the pore-structure with dif-
ferent neck sizes, a 0.4R, b 0.8R, c 1.2R, d 1.6R, e 2R

Fig. 6 Deformation of the simulated DLCA-based silica aerogel
model. a Deformed RVE demonstrating nearly the entire network
remaining stress-free under 10% uniaxial compression and b zoomed
part of the load-bearing backbone paths in model silica aerogels
showing high stress-concentrations
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The DLCA structures were simulated with each of the
three distributions and the scaling exponents were obtained.
The scaling exponent for the different distribution of the neck
sizes was also found to be close to 3.6 (see Fig. 9). Thus, even
the particle neck-size distributions do not influence the scaling
exponent. It may thus be said with reasonable accuracy that
the driving factor behind the power-scaling exponent is the
random spatial arrangement of the particles, i.e., the network
connectivity. This does not exclude the possibility of further
parameters that may be additionally responsible for the scal-
ing relation, however, since the random network connectivity
precisely predicts the exponent, it may certainly be estab-
lished as the primary factor.

4 Conclusions

In this paper, the origin of the scaling exponent between
the elastic modulus and density in the case of silica

aerogels has been investigated in a heuristic manner.
Three factors, viz., the pore-wall morphology, the ran-
dom spatial arrangement of particles in the aerogel net-
work, and the dangling mass, are proposed as possible
physical aspects responsible for the high scaling expo-
nent in silica aerogels. However, since the effect of the
dangling mass has been negated by previous studies, a
detailed computational investigation has been presented
considering the effect of the pore-wall morphology
within the framework of the unit cell model and the
effect of the random spatial arrangement of particles.
Based on the results from this study, it may be concluded
that the pore-wall morphology, i.e., the pearl-necklace-
like structure of the pore walls, has nearly no effect on
the scaling exponent. Changing the inter-particle neck
sizes also shows no significant changes in the exponent.
However, accounting for the random network con-
nectivity, within the framework of a DLCA model,
directly results in an exponent of 3.6, which is in good
agreement with previous experimental results. Adding
the effect of constant or a distribution of inter-particle
neck sizes shows no further changes in the exponent. It
can thus be established that the random spatial arrange-
ment of particles in the aerogel network is the primary
reason behind the origin of the scaling exponent within
the context of the relation between the elastic modulus
and density in the case of silica aerogels.
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Fig. 7 Scaling exponent for DLCA structures with different effective
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Fig. 8 Distribution of neck sizes with different mean neck sizes

Fig. 9 Scaling exponent for DLCA structures with different neck size
distributions
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