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Abstract
Energy system modeling and analysis can provide comprehensive guidelines to integrate renewable
energy sources into the energy system. Modeling renewable energy potential, such as wind energy,
typically involves the use of wind speed time series in the modeling process. One of the most widely
utilized datasets in this regard is ERA5, which provides global meteorological information. Despite
its broad coverage, the coarse spatial resolution of ERA5 data presents challenges in examining
local-scale effects on energy systems, such as battery storage for small-scale wind farms or
community energy systems. In this study, we introduce a robust statistical downscaling approach
that utilizes a machine learning approach to improve the resolution of ERA5 wind speed data from
around 31 km× 31 km to 1 km× 1 km. To ensure optimal results, a comprehensive preprocessing
step is performed to classify regions into three classes based on the quality of ERA5 wind speed
estimates. Subsequently, a regression method is applied to each class to downscale the ERA5 wind
speed time series by considering the relationship between ERA5 data, observations from weather
stations, and topographic metrics. Our results indicate that this approach significantly improves
the performance of ERA5 wind speed data in complex terrain. To ensure the effectiveness and
robustness of our approach, we also perform thorough evaluations by comparing our results with
the reference dataset COSMO-REA6 and validating with independent datasets.

1. Introduction

Renewable energy technologies play a crucial role in
mitigating climate change impacts. As theworld shifts
towards a more sustainable future, many nations
have already started the transition toward renewable
energy sources [1, 2]. In energy system models, val-
ues such as installable capacity and power genera-
tion potentials can be calculated frommeteorological
data, such as wind speed [3, 4]. The most frequently
used meteorological dataset is reanalysis data [5, 6].
Reanalysis data can provide meteorological data in a
spatially and temporally consistent way [7]. However,
its low spatial resolution impedes its ability to capture
small-scale details, which are crucial for the accurate
simulation of local-scale energy systems [8]. Over the
years, in-depth studies of local effects and the devel-
opment of local storage models have drawn more
and more attention in the energy system modeling

community, which cannot be achieved through the
use of coarse-resolution reanalysis data. Therefore, to
capture local effects in energy system models, a data-
set with high spatial resolution is necessary.

Many efforts have contributed to the improve-
ment of the spatial resolution of reanalysis data, with
downscaling being the most widely adopted tech-
nique. Downscaling is a method for obtaining high-
resolution climate or climate change information
from global climate models [9]. Downscaling can be
categorized into dynamic downscaling and statistical
downscaling. Dynamic downscaling refers to the use
of high-resolution regional climatemodels to dynam-
ically extrapolate the impacts of large-scale climate
processes to a regional or local scale of interest [10].
It provides individual variables that are physically
consistent in time and space and is internally con-
sistent across different variables [11]. However, the
complexity of performing large-scale calculations of
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various physical and chemical equations can be limit-
ing and challenging due to the large amount of com-
putational resources required.

On the other hand, statistical downscaling offers
a computationally efficient solution by analyzing
statistical relationships without considering com-
plex physical and chemical processes. For example,
Curry et al [12] investigated the statistical correlations
between climate forecast variables and reanalysis data
to derive monthly Weibull distribution parameters.
Kirchmeier et al [13] and González-Aparicio et al
[14] used vector generalized linear model to pre-
dict a daily-varying probability density function of
local wind speeds conditioned on large-scale daily
wind speed predictors. Other notable works in this
field include [15–17]. These studies are focused on
downscaling the probability distribution parameters
of wind speed, which proves beneficial in quantify-
ing the range of local-scale wind speeds and calculat-
ing energy output.However, for the purpose of energy
system modeling, time series data are often required
and cannot be derived from wind speed probability
distributions.

Meanwhile, other studies developed statistical
downscaling methods in different directions. For
instance, Monahan [18] downscaled monthly wind
speed time series at the buoy locations by using mul-
tiple linear regression. Jung et al [19] employed a least
square boosting approach to downscale the monthly
extreme wind speed value for North America and
Europe. Winstral et al [20] developed an optim-
ization scheme to downscale the wind speed time
series in Switzerland taking the local terrain structure
into consideration. These and other studies such as
[21–23] are explicitly focused on the acquisition of
high spatial resolution time series data, rather than
the probability distribution parameters. However,
many studies only developed site-specific corrections
or aimed at obtaining daily or even monthly wind
speed time series, limiting spatial and temporal cap-
abilities when applied to an energy system model.

In recent years, the emergence of wind atlas
platforms has significantly enhanced the acquisi-
tion of high spatial resolution wind speed data.
Alongside various national and regional wind atlases
in Europe [24], two prominent and widely recog-
nized atlases, namely Global Wind Atlas [25] and the
New EuropeanWind Atlas [26], have gained recogni-
tion for their ability to provide high spatial resolution
and open-access estimations ofwind characteristics at
specific locations.While these wind atlases offer high-
resolution maps of the wind climate, such as long-
term averaged wind speed and variability, they do not
provide wind speed time series data for specific time
spans. To address this limitation, researchers have
explored the use of wind atlases to bias-adjust reana-
lysis data. One common approach involves scaling
the reanalysis time series data to align with the long-
term averaged wind speed provided by the wind atlas

[27–29]. However, this method has a notable draw-
back: the resulting time series tends to be excessively
smooth when compared to point measurements. As
a consequence, it fails to accurately capture the signi-
ficant fluctuations in wind speed commonly observed
in measurements.

To overcome these limitations, we propose
a machine learning-based statistical downscaling
method to improve the spatial resolution of ERA5
wind speed time series data to around 1 km × 1 km.
This method offers robust and computationally con-
venient solutions with simple input requirements by
considering the importance of topographic condi-
tions in local wind speed estimates. By investigat-
ing the relationship between large-scale wind speed,
local-scale wind speed, and topographical metrics,
our approach can improve the quality of reanalysis
data for specific regions, thereby providing wind
speed time series data at high spatial resolution. This
enables us the capability to perform a close examin-
ation of local-scale energy systems, such as battery
storage systems for small-scale wind farms or decent-
ralized community energy systems.

2. Data

2.1. Local-scale observation data
In this study, we use two observation datasets:
MeteoSwiss observations for Switzerland and
GermanMeteorological Service (DWD) observations
for Germany. MeteoSwiss observations are used for
training, testing, and cross-dataset validation of our
machine learning model, while the DWD observa-
tions representing an independent dataset are exclus-
ively used for cross-dataset validation.

2.1.1. MeteoSwiss observation data
The MeteoSwiss observations are collected from the
website of the Federal Office of Meteorology and
Climatology of Switzerland [30]. This dataset com-
prises 10-meter hourly wind speed measurements
gathered from weather stations distributed through-
out Switzerland. In total, there are more than 150
measurement stations. However, stations with miss-
ing values accounting for over 10% of the data are
excluded. The final dataset contains measurements
from 116 weather stations for the years 2017, 2018,
and 2019. Of these years, only observations from 2018
are used to develop our model, while measurements
from 2017 and 2019 are used for cross-dataset valida-
tion. The distribution of the MeteoSwiss weather sta-
tions used in this study is presented in figure 1(a).

2.1.2. DWD observation data
The DWD (German Meteorological Service) obser-
vations, accessible from the DWD Open Data Server,
also provide 10-meter hourly wind speed observa-
tions from over 500 weather stations [31]. As the
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Figure 1. The study incorporates data from observation stations, including (a) the distribution of 116 MeteoSwiss stations across
Switzerland and (b) the distribution of 272 DWD (German Meteorological Service) stations across Germany.

focus of this study is on topographic influence, off-
shore weather stations are excluded. In addition, sta-
tions with missing values exceeding 10% of the data
are also excluded. The final dataset contains measure-
ments from 272 stations in 2018. Figure 1(b) shows
the distribution of these DWD weather stations.

2.2. Large-scale reanalysis data
Reanalysis data are gridded datasets that represent
the atmosphere state, incorporating observations and
outputs of numerical weather predictionmodels from
past to present-day [32]. ERA5 is a widely used reana-
lysis dataset due to its extensive temporal and spa-
tial coverage [8, 33–35]. Moreover, it also provides
more than 200 other variables, some of which are
topography-related and have significant impacts on
wind speeds. Leveraging the advantages of ERA5, we
employ ERA5 as the source datasets for our down-
scaling model development, where the wind speed
and wind direction time series are calculated from the
‘10 meters U-component of wind’ and ‘10 meters V-
component of wind’ in ERA5. In addition to ERA5,
we also utilize COSMO-REA6 [36], another reana-
lysis dataset, as the reference dataset for result com-
parison. Compared to ERA5, COSMO-REA6 has a
higher spatial resolution, approximately 6 km× 6 km,
offering valuable insights when assessing the per-
formance of our results. We then employ nearest-
neighbor interpolation to identify the nearest grid
point based on the latitude and longitude of each
weather station to obtain continuous time series data.

2.3. Topographic metrics
To thoroughly examine the effect of topography on
local-scale wind speed, we calculate and analyze six
crucial topographic metrics: elevation, slope, aspect,
small and large-scale topographic position index
(TPI), and terrain diversity index (TDI). These met-
rics offer insight into the complexities of the terrain

and provide a comprehensive picture of its impact on
wind dynamics [20, 34, 37].

These topographicmetrics can all be derived from
a Digital Elevation Model (DEM). The DEM used
in this study is Global Land One-Kilometer Base
Elevation (GLOBE), which has a spatial resolution of
0.0083 degrees (around 1 km × 1 km) [38]. Among
these topographic metrics, elevation data can be dir-
ectly retrieved from DEM. Slope can be calculated by
dividing the vertical change in elevation by the hori-
zontal distance [39]. Aspect is the orientation of slope,
measured clockwise in degrees from 0 to 360 [40].
TPI, first proposed by Weiss in 2001 [41], provides a
broad description of the elevation of a particular loc-
ation relative to its surroundings. The TPI value of a
point is a measure of its relative elevation, determ-
ined by subtracting the average elevation of all pixels
within a specified radius from the elevation of the
point. In this study, a radius of 75 km and 5 km
TPI are calculated respectively to better capture both
major landscape units and smaller local features.

In addition to these widely recognized and estab-
lished topographic metrics, we introduce an index
called TDI. It quantifies the topographic variety of an
area by computing the ratio of the range of elevations
to the mean elevation as indicated in equation (1),
thus reflecting the diversity of the terrain. In our
study, we employ an 11 km radius window for TDI
calculation. The value of TDI serves as an indicator of
the degree of topographic diversity in a given region.
A higher TDI value signifies a greater range of eleva-
tions, thereby implying a more intricate topography.
Conversely, a lower TDI implies amore uniform land-
scape. The maps of these topographic metrics for
Switzerland are provided in figure 2.

TDI=
Hmax −Hmin

Hmean
(1)
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Figure 2. The following maps illustrate various topographic metrics in Switzerland: (a) DEMmap, (b) slope map, (c) aspect map,
(d) 75 km radius TPI map representing major landscape features, (e) 5 km radius TPI map capturing smaller local features, and
(f) TDI map.

where:

TDI= Terrain diversity index

Hmax =Maximum elevation of an area

Hmin =Minimum elevation of an area

Hmean =Mean elevation of an area

3. Methods

Our statistical downscaling approach involves a
regression analysis aimed at establishing the relation-
ship between ERA5, observed data, and topographic

metrics. Before this process, we conduct a data pre-
processing step that classifies the study region into
various categories based on the aforementioned topo-
graphic metrics, thereby ensuring a thorough consid-
eration of the terrain impact.

3.1. Data preprocessing
When comparing ERA5 with observations, we dis-
cover that the biases of ERA5 vary based on the site
location. More specifically, in mountainous areas or
valleys, ERA5 tends to have large biases, whereas,
in plain areas, the biases are usually small. This is
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Table 1. The classification rule employed in this study is based on the RMSE value between the station observations and ERA5. This
scheme is used to determine the observation station classes according to their level of discrepancy with the observed values. Class1
represents a good ERA5 quality with an RMSE less than 1.5 m s−1, Class2 represents a moderate ERA5 quality with an RMSE bigger
than 1.5 m s−1 but less than 3 m s−1, while Class 3 indicates a poor ERA5 quality with an RMSE greater than 3 m s−1.

Class Number of stations RMSE range

Class1 276 RMSE⩽ 1.5ms−1

Class2 88 1.5ms−1 < RMSE⩽ 3ms−1

Class3 24 RMSE> 3ms−1

Figure 3. Distribution of measurement stations classified into three classes based on ERA5 quality. Class1 (276 stations)
represents stations with good ERA5 quality, Class2 (88 stations) indicates moderate ERA5 quality, and Class3 (24 stations)
corresponds to stations with poor ERA5 quality.

consistent with other studies [8, 20, 42]. To examine
the influence of topography on the quality of ERA5,
we first employ the method proposed by Winstral
et al [20] who utilized TPI to assess the perform-
ance of COSMO-REA6. They observed that COSMO-
REA6 overestimates wind speeds in regions with
low TPI values and underestimates wind speeds in
regions with high TPI values. However, our find-
ings differ in the case of ERA5, where we observe
that ERA5 often underestimates wind speed even
for regions with low TPI values. This discrepancy
could be due to the coarser spatial resolution of
ERA5 compared to COSMO-REA6 and the insuffi-
ciency of relying on a single topographic metric such
as TPI.

To investigate the impact of various topographic
metrics on the accuracy of ERA5 and predict the
potential quality of ERA5 for any given region solely
based on the topographic conditions, we propose a
preprocessing step. This involves integrating multiple
topographic metrics, as outlined in section 2.3, into

a random forest classification model implemented
using the scikit-learn python package [43].

Initially, all weather stations are classified into
three classes based on the root mean square error
(RMSE) value between observations and ERA5, as
indicated in table 1. These classes are used as the target
variables in the classification process. Additionally, we
calculate elevation, slope, aspect, TPI (with 5 km and
75 km radii), and TDI for each station and include
them as input features for the classification process. It
is worth noting that due to the limited sample size of
MeteoSwiss stations, the classification process is per-
formed for both MeteoSwiss and DWD weather sta-
tions. The distribution of the stations across different
classes is illustrated in figure 3. To assess the model
performance, a data split of 80% training data (310
stations) and 20% testing data (78 stations) is applied.

3.2. Regression of wind speed time series
After the preprocessing step, a regression ana-
lysis is performed for each class to investigate the
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correlations between input features and the target
variable. In our case, input features include both
large-scale ERA5 data and local-scale topographic
metrics. These large-scale ERA5 data are time-
dependent and provided as time series, including
ERA5 wind speed, ERA5 wind direction, and grav-
ity wave dissipation (GWD). The local-scale topo-
graphic metrics in our study are time-independent
and provided as constants, including 5 km and 75 km
Radius TPI. And the target variable is observed
wind speed, which is also a time-dependent vari-
able and provided as time series. Including GWD as
an input feature in our analysis serves a specific pur-
pose. GWD is the cumulative conversion of kinetic
energy into thermal energy in the mean flow over
the entire atmospheric column per unit area, which
is due to the effects of stress associated with low-
level, orographic blocking and orographic gravity
waves [7]. Incorporating GWD can provide addi-
tional insights into the impact of unresolved valleys,
hills, and mountains at a scale between 5 km and the
ERA5 grid. This added dimension provides a bet-
ter understanding of the topography influences on
local-scale wind speed.

Before being introduced to the machine learning
model, all predictors are normalized to set the fea-
tures on a common scale. The regression process is
then implemented using the eXtreme gradient boost-
ing (XGBoost) algorithm, a scalable and optimized
tree-boosting framework [44]. XGBoost offers great
accuracy, scalability, and efficient handling of miss-
ing data, while its regularization capabilities can pre-
vent overfitting [44]. Data for both input features
and target variables are collected for all MeteoSwiss
stations in 2018. Similar to the preprocessing step,
all time series data are split into 70% for training
and 30% for testing. To estimate the performance
of the regression model, we use four crucial statist-
ical metrics: RMSE, Pearson Correlation Coefficient
(PCC), R2 score, and Kolmogorov-Smirnov D stat-
istic (KSD). KSD can quantify the degree of match-
ing between two distributions, with D= 0 indicating
a perfect match.

4. Results and cross-dataset validation

4.1. Results
4.1.1. Preprocessing results
In the preprocessing phase, our random forest clas-
sification model yields a model accuracy of 0.76 for
the entire testing data set. However, when specific-
ally considering Class3 stations, the model accuracy
increased to 0.90. Figure 4 compares the relative sig-
nificance of each input feature. A comprehensivemap
of the region class predictions in Europe is presented
in figure 5. Thismap is generated by applying our ran-
dom forest classification model to regions where no
observation data is available.

4.1.2. Regression results
To determine if a machine learning model is prone
to overfitting, it is important to compare its per-
formance on training and testing datasets, as a
comparable error in both datasets suggests that
the model is generalized. Therefore, we compare
the statistical metrics for both training and test-
ing datasets as summarized in table 2. Meanwhile,
table 3 showcases the improvements resulting from
the regression process. To visually demonstrate these
improvements, figure 6 presents scatter plots and his-
tograms for a randomly selected station in each class.
Meanwhile, the extent to which various input fea-
tures impact the target variables is demonstrated in
figure 7.

4.2. Cross-dataset validation
To verify the robustness of our regression model,
we conduct a cross-dataset validation scheme in two
ways. Firstly, we apply the regression model to all
MeteoSwiss weather stations but using data from dif-
ferent years. Secondly, we test the model for DWD
observations.

4.2.1. Cross-dataset validation across different years
To acquire the downscaled wind speed time series
for MeteoSwiss observation stations across multiple
years, the time-dependent input features are first
adjusted for the current year prior to being fed
into the regression model. The results of this cross-
validation are summarized in table 4. To provide a
visual representation of these results, scatter plots
and histograms for three representative stations are
shown in figure 8, and time series plots are dis-
played in figure 9. Due to limited data availabil-
ity in COSMO-REA6 after August 2019, the com-
parison for the year 2019 is focused on the first 8
months.

4.2.2. Cross-dataset validation across different
locations
To perform cross-validation with DWD observation
stations, the input features are first computed at
DWD station locations before being fed into the
regressionmodel. The results are presented in table 5.
To delve deeper into the improvement observed in
Class3 stations, table 6 presents a comparison of stat-
istic metrics for all Class3 DWD stations. For a more
visual representation of the results, figures 10 and 11
present scatter plots, histograms, and time series plots
for selected Class 3 stations.

5. Discussion

In the preprocessing step, we investigated the impact
of various topographic metrics on the accuracy of
ERA5. Our findings reveal that all of the topo-
graphic metrics considered in this study play a cru-
cial role in determining the performance of ERA5.
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Figure 4. Feature importance plot for the Random Forest classification trained on all the available observation stations. The plot
showcases the relative importance of different features in predicting the station classes. The analysis reveals that 75 km Radius TPI
has the most pronounced impact on the local-scale wind speed, with Elevation, 5 km Radius TPI, TDI, Slope, and Aspect
following in that order.

Figure 5.Map displaying the prediction of region classes after implementing the Random Forest classification method across
Europe. It showcases the division of areas into Class 1 (small biases of ERA5), Class 2 (moderate biases of ERA5), and Class 3
(significant biases of ERA5) regions. The spatial resolution of the map is 1 km× 1 km.

Table 2. Comparison of statistical metrics (RMSE, PCC, R2, KSD) for training and testing data for different classes in the machine
learning model. The comparison reveals variations in the model’s performance for each class between the training and testing phases.
A comparable error in both datasets suggests a robust generalization of the model.

Class

RMSE (m s−1) PCC R2 KSD

training testing training testing training testing training testing

Class1 0.85 0.85 0.76 0.76 0.58 0.58 0.23 0.23
Class2 1.33 1.35 0.72 0.72 0.52 0.52 0.30 0.30
Class3 2.08 2.12 0.82 0.81 0.67 0.66 0.19 0.19
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Table 3. Comparison of statistical metrics (RMSE, PCC, R2, KSD) across the stations for each class between observations and three
datasets: the original ERA5, COSMO-REA6, and the corrected wind speed time series obtained from the machine learning model. The
comparison highlights the effectiveness of the machine learning model, as evidenced by improved statistical indicators. The results
reveal a decrease in RMSE and KSD and an increase in PCC and R2 for all classes, with the greatest improvement observed in Class3
stations, where RMSE decreases from 4.22 m s−1 to 2.05 m s−1, PCC increases from 0.47 to 0.73, R2 increases from 0.22 to 0.53, and
KSD decreases from 0.59 to 0.24.

Class Statistic metrics ERA5 COSMO-REA6 Corrected

Class1

RMSE (m s−1) 1.03 1.39 0.84
PCC 0.54 0.59 0.67
R2 0.29 0.35 0.49
KSD 0.20 0.18 0.35

Class2

RMSE (m s−1) 1.70 1.58 1.32
PCC 0.52 0.62 0.65
R2 0.27 0.38 0.42
KSD 0.25 0.09 0.36

Class3

RMSE (m s−1) 4.22 4.03 2.05
PCC 0.47 0.51 0.73
R2 0.22 0.26 0.53
KSD 0.59 0.40 0.24

Figure 6. Scatter plots and histograms comparing observations with three datasets (original ERA5, COSMO-REA6, and corrected
wind speed) are shown for three MeteoSwiss stations: (a) Station REH in Zürich Affoltern (Class1), (b) Station HAI in
Salen-Reutenen (Class2), and (c) Station DOL at the mountain peak La Dôle (Class3). Notably, for Class3 station DOL, the scatter
plot of the corrected wind speed aligns much closer with the diagonal line, and the histogram distribution more closely resembles
the observations compared to ERA5 and COSMO-REA6 data. In contrast, the scatter plots and histograms of the original ERA5
and COSMO-REA6 indicate an underestimation of the wind speed. These comparisons suggest a significant reduction in biases
and a better agreement with the observations for the corrected wind speed, particularly for Class3 station DOL.

Figure 7. Feature importance plot for the XGBoost regression process for (a) Class1, (b) Class2, and (c) Class3. The plot
showcases the relative importance of different features in predicting the wind speed time series at the local scale. The analysis
reveals that ERA5 wind speed is the most dominant feature among all classes, and its importance significantly surpasses all other
features in Class1 and Class2 regions. However, this is not observed in Class3 regions, where the influences of all features are more
evenly distributed. For Class3 regions, GWD is the second most crucial predictor, following ERA5 wind speed, and is followed by
75 km Radius TPI, 5 km Radius TPI, and wind direction.

8
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Table 4. Comparison of statistical metrics (RMSE, PCC, R2, KSD) across the stations for each class in 2017 and 2019 between
observations and three datasets: the original ERA5, COSMO-REA6, and the corrected wind speed time series. The regression model
demonstrates notable improvements across all classes, particularly in Class3 stations. In 2017, the RMSE decreases to 2.48 m s−1, the
PCC increases to 0.77, the R2 increases to 0.59, and the KSD decreases to 0.18. Similar improvements are observed in 2019. These results
showcase the model’s robustness when applied to independent datasets.

Class Statistic metrics

ERA5 COSMO-REA6 Corrected

2017 2019 2017 2019 2017 2019

Class1

RMSE (m s−1) 1.03 1.10 1.41 1.45 0.92 0.95
PCC 0.51 0.61 0.57 0.57 0.61 0.72
R2 0.26 0.37 0.32 0.32 0.37 0.52
KSD 0.21 0.11 0.22 0.18 0.37 0.23

Class2

RMSE (m s−1) 1.64 1.77 1.52 1.63 1.41 1.40
PCC 0.50 0.57 0.61 0.60 0.60 0.70
R2 0.25 0.32 0.37 0.36 0.36 0.49
KSD 0.24 0.20 0.07 0.08 0.41 0.29

Class3

RMSE (m s−1) 5.03 5.18 4.56 4.64 2.48 2.45
PCC 0.53 0.55 0.51 0.54 0.77 0.78
R2 0.28 0.30 0.26 0.29 0.59 0.61
KSD 0.62 0.62 0.48 0.48 0.18 0.15

Figure 8. The scatter plots and histograms compare observations with three datasets (original ERA5, COSMO-REA6, and
corrected wind speed) in 2017 and 2019. (a) Station REH (Class1) in 2017, (b) Station HAI (Class2) in 2017, and (c) Station DOL
(Class3) in 2017. Similarly, (d)–(f) depict the same stations in 2019. For Class3 station DOL in both 2017 and 2019, the scatter
plot of the corrected wind speed more closely aligns with the diagonal line, and the histogram distribution more closely resembles
the observations compared to ERA5 and COSMO-REA6 data. This suggests a significant reduction in biases and a better
agreement with the observations, suggesting the model’s robustness when applied to independent datasets.

The model accuracy of the random forest classifica-
tion indicates a strong performance overall, especially
inClass3 region. Additionally, we present amap of the
region classes in Europe, which reveals that most of

Europe falls under Class1 regions with relatively high-
quality ERA5 data. Conversely, Class3 regions, which
indicate complex topographic conditions, occupy a
small fraction of the total area, primarily surrounding
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Figure 9. Time series plots in 2017 and 2019 for the observations, original ERA5, COSMO-REA6, and the corrected wind speed.
For clarity, only the first 1000 hours are displayed. (a) Station REH (Class1) in 2017, (b) Station HAI (Class2) in 2017, and
(c) Station DOL (Class3) in 2017. Similarly, (d)–(f) depict the same stations in 2019. For Station DOL, the stronger overlap
between the corrected wind speed and observation data also suggests a significant reduction in biases, suggesting the model’s
robustness when applied to independent datasets.

Table 5. Comparison of statistical metrics (RMSE, PCC, R2, KSD) across the stations for each class between DWD observations and
three datasets: the original ERA5, COSMO-REA6, and the corrected wind speed time series. This table shows marked improvement in
Class3 stations, with RMSE reducing to 2.77 m s−1, PCC increasing to 0.76, R2 increasing to 0.58, and KSD decreasing to 0.21. However,
this improvement is not reflected in Class2 and Class1 stations, where a slight increase in RMSE and KSD and a corresponding decrease
in PCC and R2 have been observed. Overall, while significant improvement was observed in Class3 stations upon expanding the
regression model to Germany, Class1 and Class2 stations showed no improvement.

Class Statistic metrics ERA5 COSMO-REA6 Corrected

Class1

RMSE (m s−1) 1.40 1.24 1.90
PCC 0.79 0.80 0.78
R2 0.62 0.64 0.61
KSD 0.14 0.05 0.34

Class2

RMSE (m s−1) 1.96 1.71 2.08
PCC 0.73 0.79 0.74
R2 0.53 0.62 0.55
KSD 0.10 0.06 0.19

Class3

RMSE (m s−1) 5.07 4.84 2.77
PCC 0.69 0.71 0.76
R2 0.48 0.50 0.58
KSD 0.62 0.47 0.21

mountainous regions. This suggests the fact that for a
large geographic extent, it is not necessary to apply
downscaling techniques to all regions. Focusing on
areas with complex topographic conditions can save
a significant amount of computational effort.

In the regression process, our results indicate that
the regressionmodel is well-fitted, as evidenced by the
small differences in statistic metrics between train-
ing and testing datasets. The regression results reveal
that our model can significantly improve the quality
of ERA5, particularly in Class3 regions. Furthermore,

the improvement in KSD suggests that this downscal-
ing process not only decreases statistical error but also
maintains a high degree of wind speed variability. The
feature importance analysis indicates that TPI and
GWDplay a crucial role in estimating local-scalewind
speed in Class3 regions. These topographic metrics
serve as important indicators of the topographic con-
ditions. Conversely, Class2 and Class1 regions, which
are predominantly composed of flat terrain, are less
affected by topographic conditions, making the topo-
graphic metrics less significant.
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Table 6. Comparison of statistical metrics (RMSE, PCC, R2, KSD) for all class3 DWD stations between observations and three datasets:
the original ERA5, COSMO-REA6, and the corrected wind speed time series. The results highlight that there are noteworthy
improvements for all Class 3 stations, with some showing significant improvements. For instance, station Brocken exemplifies such
progress, as RMSE decreases from 8.23 m s−1 to 2.96 m s−1, PCC increases from 0.79 to 0.88, R2 increases from 0.62 to 0.77, and KSD
decreases from 0.70 to 0.17.

Station Statistic metrics ERA5 COSMO-REA6 Corrected

Brocken RMSE (m s−1) 8.23 7.94 2.96
PCC 0.79 0.84 0.88
R2 0.62 0.71 0.77
KSD 0.70 0.68 0.17

Kahler RMSE (m s−1) 3.03 2.83 2.11
PCC 0.86 0.84 0.86
R2 0.73 0.71 0.73
KSD 0.49 0.46 0.32

Feldberg RMSE (m s−1) 6.72 6.14 3.49
PCC 0.71 0.80 0.78
R2 0.50 0.64 0.61
KSD 0.69 0.60 0.17

Fichtelberg RMSE (m s−1) 6.08 5.12 4.80
PCC 0.77 0.81 0.84
R2 0.59 0.66 0.71
KSD 0.64 0.49 0.51

Großer RMSE (m s−1) 4.89 4.06 2.29
PCC 0.67 0.75 0.78
R2 0.45 0.56 0.61
KSD 0.63 0.45 0.11

Hornisgrinde RMSE (m s−1) 4.89 4.40 2.34
PCC 0.76 0.76 0.81
R2 0.58 0.58 0.66
KSD 0.59 0.49 0.10

Wasserkuppe RMSE (m s−1) 3.96 3.03 2.00
PCC 0.71 0.80 0.77
R2 0.50 0.64 0.59
KSD 0.53 0.34 0.08

Weinbiet RMSE (m s−1) 3.64 3.94 1.69
PCC 0.81 0.73 0.86
R2 0.66 0.53 0.74
KSD 0.49 0.52 0.11

Zugspitze RMSE (m s−1) 6.22 5.68 3.57
PCC 0.35 0.51 0.61
R2 0.12 0.26 0.37
KSD 0.82 0.72 0.31

Mittenwald RMSE (m s−1) 3.03 2.57 2.40
PCC 0.48 0.58 0.36
R2 0.23 0.34 0.13
KSD 0.60 0.41 0.26

From the cross-dataset validation with
MeteoSwiss observations across various years, we
can observe a large degree of improvement, particu-
larly in Class3 stations. This demonstration of gen-
eralizability suggests that our model can effectively
apply to unseen datasets and is applicable across dif-
ferent years. However, when extending our model
to Germany, the results reveal a marked improve-
ment only for Class3 stations. The corrected wind

speeds in Class1 and Class2 stations show a larger
bias compared to ERA5 and COSMO-REA6. One
possible explanation is that the topographic influ-
ences in these regions are sominimal that considering
topographic-related features in a machine-learning
regression model would result in inaccurate predic-
tions. Therefore, we strongly recommend limiting
the use of our regression process to Class3 regions
alone. This will prevent potential errors in Class1 or

11
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Figure 10. Scatter plots and histogram comparisons for 6 representative DWD stations between observations and three datasets:
the original ERA5, COSMO-REA6, and the corrected wind speed time series. (a) Station Brocken, (b) Station Hornisgrinde,
(c) Station Wasserkuppe, (d) Station Weinbiet, (e) Station Kahler and (f) Station Zugspitze. For all these stations, the scatter plot
of the corrected wind speed aligns closer with the diagonal line, and the distribution of the histogram also exhibits a closer
resemblance to the distribution of the observations compared to ERA5 and COSMO-REA6, suggesting a significant reduction in
biases and a better agreement with the observations for the corrected wind speed, highlighting the robustness of our model when
applied to independent datasets.

Figure 11. Time series plots for 6 representative DWD stations between observations and three datasets: original ERA5,
COSMO-REA6, and the corrected wind speed. For clarity, only the first 1000 hours are displayed. (a) Station Brocken, (b) Station
Hornisgrinde, (c) Station Wasserkuppe, (d) Station Weinbiet, (e) Station Kahler and (f) Station Zugspitze. For all these stations,
the stronger overlap between the corrected wind speed and observation data also suggests a significant reduction in biases and a
better agreement with the observations for the corrected wind speed, highlighting the robustness of our model when applied to
independent datasets.
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Class2 regions while significantly reducing computa-
tional efforts. However, to better correct wind speeds
in Class1 and Class2 regions, one possible approach
is to increase the amount of training data for the
regression model. Given that our regression model
is solely trained for MeteoSwiss data, incorporating
more observations from Class1 and Class2 stations
in diverse regions could lead to improved outcomes.
Another possibility is to incorporate topography-
independent features into the model, such as weather
regimes and air pressure. These features, as previously
noted in studies such as [45, 46], play a more signi-
ficant role in affecting the quality of reanalysis data in
Class1 and Class2 regions, and should be considered
accordingly.

Furthermore, it is important to note that our
study focuses on correcting wind speeds at 10 meters
height, as the availability of wind speed observations
at higher heights is limited. However, the samemodel
can be applied to downscale wind speeds at higher
heights once a sufficient amount of observational data
becomes available.

6. Conclusion

In summary, this study highlights the crucial role
played by topographic conditions in determining the
spatially disparate quality of ERA5 wind speed data.
Complex terrain regions, as characterized as Class3
regions through preprocessing step, show the highest
degree of inaccuracies in the ERA5 wind speed data.
To downscale ERA5 to higher spatial resolution, we
apply a machine learning-based regression model
to interpret the relationship between the large-scale
ERA5 data, local-scale observations, and topographic
metrics. The robustness of the regression model is
evaluated by comparing its output against measure-
ment data across different years and locations. The
results demonstrate that while the method results
in considerable improvement in ERA5 data quality
in Class3 regions, the improvement is not as pro-
nounced in Class1 and Class2 regions, which already
have better ERA5 quality. By utilizing this method,
ERA5 wind speed data can be downscaled from a spa-
tial resolution of 31 km× 31 km to as fine as 1 km×
1 km, depending on the resolution of DEM used.

Data availability statement

The data that support the findings of this study are
openly available at the following URL/DOI: https://
10.5281/zenodo.8100208.

Acknowledgments

This study would not have been possible without the
VERMEER project (support code: 03EI1010A) fun-
ded by the Federal Ministry for Economic Affairs
and Climate Action (BMWK) of Germany. Thanks

also to Ronald Stegen for his valuable program-
ming suggestions, Marion Schroedter-Homscheidt
for her suggestions and insights on the meteorolo-
gical data, and to Hans Christian Gils and Patrick
Jochem for their meticulous comments on the
paper. Additional thanks to European Centre for
Medium-RangeWeather Forecasts (ECWMF), DWD,
MeteoSwiss, and National Oceanic and Atmospheric
Administration (NOAA) for providing the essential
data that greatly contributed to this study.

ORCID iDs

Wenxuan Hu https://orcid.org/0000-0002-6704-
9904
Yvonne Scholz https://orcid.org/0000-0002-1633-
3825
Madhura Yeligeti https://orcid.org/0000-0002-
9643-465X
Lueder von Bremen https://orcid.org/0000-0002-
7072-0738
Ying Deng https://orcid.org/0000-0001-5063-
3015

References

[1] Gielen D, Boshell F, Saygin D, Bazilian M D, Wagner N and
Gorini R 2019 The role of renewable energy in the global
energy transformation Energy Strategy Rev. 24 38–50

[2] Thellufsen J Z and Lund H 2016 Roles of local and national
energy systems in the integration of renewable energy Appl.
Energy 183 419–29

[3] Scholz Y 2012 Renewable energy based electricity supply at
low costs: development of the REMix model and application
for Europe PhD Dissertation University of Stuttgart

[4] Stetter D 2014 Enhancement of the REMix energy system
model: global renewable energy potentials, optimized power
plant siting and scenario validation Universtität Stuttgart

[5] Staffell I and Pfenninger S 2016 Using bias-corrected
reanalysis to simulate current and future wind power output
Energy 114 1224–39

[6] Ritter M, Shen Z, Cabrera B L, Odening M and Deckert L
2015 A new approach to assess wind energy potential Energy
Proc. 75 671–6

[7] Hersbach H et al 2020 The ERA5 global reanalysis Q. J. R.
Meteorol. Soc. 146 1999–2049

[8] Jourdier B 2020 Evaluation of ERA5, MERRA-2,
COSMO-REA6, NEWA and AROME to simulate wind
power production over France Adv. Sci. Res. 17 63–77

[9] Pielke Sr R A and Wilby R L 2012 Regional climate
downscaling: what’s the point? EOS Trans. Am. Geophys.
Union 93 52–53

[10] Castro C L, Pielke Sr R A and Leoncini G 2005 Dynamical
downscaling: assessment of value retained and added using
the Regional Atmospheric Modeling System (RAMS) J.
Geophys. Res. Atmos. 110 D5

[11] Giorgi F and Gutowski W J 2015 Regional dynamical
downscaling and the CORDEX initiative Annu. Rev. Environ.
Resour. 40 467–90

[12] Curry C L, van der Kamp D and Monahan A H 2012
Statistical downscaling of historical monthly mean winds
over a coastal region of complex terrain. I. Predicting wind
speed Clim. Dyn. 38 1281–99

[13] Kirchmeier M C, Lorenz D J and Vimont D J 2014 Statistical
downscaling of daily wind speed variations J. Appl. Meteorol.
Climatol. 53 660–75

13

https://10.5281/zenodo.8100208
https://10.5281/zenodo.8100208
https://orcid.org/0000-0002-6704-9904
https://orcid.org/0000-0002-6704-9904
https://orcid.org/0000-0002-6704-9904
https://orcid.org/0000-0002-1633-3825
https://orcid.org/0000-0002-1633-3825
https://orcid.org/0000-0002-1633-3825
https://orcid.org/0000-0002-9643-465X
https://orcid.org/0000-0002-9643-465X
https://orcid.org/0000-0002-9643-465X
https://orcid.org/0000-0002-7072-0738
https://orcid.org/0000-0002-7072-0738
https://orcid.org/0000-0002-7072-0738
https://orcid.org/0000-0001-5063-3015
https://orcid.org/0000-0001-5063-3015
https://orcid.org/0000-0001-5063-3015
https://doi.org/10.1016/j.esr.2019.01.006
https://doi.org/10.1016/j.esr.2019.01.006
https://doi.org/10.1016/j.apenergy.2016.09.005
https://doi.org/10.1016/j.apenergy.2016.09.005
https://doi.org/10.1016/j.energy.2016.08.068
https://doi.org/10.1016/j.energy.2016.08.068
https://doi.org/10.1016/j.egypro.2015.07.485
https://doi.org/10.1016/j.egypro.2015.07.485
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.5194/asr-17-63-2020
https://doi.org/10.5194/asr-17-63-2020
https://doi.org/10.1029/2012EO050008
https://doi.org/10.1029/2012EO050008
https://doi.org/10.1029/2004JD004721
https://doi.org/10.1029/2004JD004721
https://doi.org/10.1146/annurev-environ-102014-021217
https://doi.org/10.1146/annurev-environ-102014-021217
https://doi.org/10.1007/s00382-011-1173-3
https://doi.org/10.1007/s00382-011-1173-3
https://doi.org/10.1175/JAMC-D-13-0230.1
https://doi.org/10.1175/JAMC-D-13-0230.1


Environ. Res. Lett. 18 (2023) 094007 W Hu et al

[14] Gonzalez-Aparicio I, Monforti F, Volker P, Zucker A,
Careri F, Huld T and Badger J 2017 Simulating
European wind power generation applying statistical
downscaling to reanalysis data Appl. Energy
199 155–68

[15] Davy R J, Woods M J, Russell C J and Coppin P A 2010
Statistical downscaling of wind variability from
meteorological fields Bound.-Layer Meteorol.
135 161–75

[16] Oh M, Lee J, Kim J and Kim H 2022 Machine learning-based
statistical downscaling of wind resource maps using
multi-resolution topographical dataWind Energy
25 1121–41

[17] Alizadeh M J, Kavianpour M R, Kamranzad B and
Etemad-Shahidi A 2019 A weibull distribution based
technique for downscaling of climatic wind field Asia Pac. J.
Atmos. Sci. 55 685–700

[18] Monahan A H 2012 Can we see the wind? statistical
downscaling of historical sea surface winds in the subarctic
northeast Pacific J. Clim. 25 1511–28

[19] Jung C, Demant L, Meyer P and Schindler D 2022 Highly
resolved modeling of extreme wind speed in North America
and Europe Atmos. Sci. Lett. 23 e1082

[20] Winstral A, Jonas T and Helbig N 2017 Statistical
downscaling of gridded wind speed data using local
topography J. Hydrometeorol. 18 335–48

[21] Tang B H and Bassill N P 2018 Point downscaling of surface
wind speed for forecast applications J. Appl. Meteorol.
Climatol. 57 659–74

[22] Goubanova K, Echevin V, Dewitte B, Codron F, Takahashi K,
Terray P and Vrac M 2011 Statistical downscaling of
sea-surface wind over the Peru–Chile upwelling region:
diagnosing the impact of climate change from the IPSL-CM4
model Clim. Dyn. 36 1365–78

[23] van der Kamp D, Curry C L and Monahan A H 2012
Statistical downscaling of historical monthly mean winds
over a coastal region of complex terrain. II. Predicting wind
components Clim. Dyn. 38 1301–11

[24] Badger J et al 2019 Report on link to global wind atlas and
national wind atlases (Deliverable D4. 7). Tech Rep.

[25] Technical University of Denmark (DTU) 2023 Global wind
atlas (available at: https://globalwindatlas.info/en)

[26] Dörenkämper M et al 2020 The making of the new european
wind atlas–part 2: production and evaluation Geosci. Model
Dev. 13 5079–102

[27] Murcia J P, Koivisto M J, Luzia G, Olsen B T, Hahmann A N,
Sørensen P E and Als M 2022 Validation of European-scale
simulated wind speed and wind generation time series Appl.
Energy 305 117794

[28] Gruber K and Schmidt J 2019 Bias-correcting simulated
wind power in Austria and in Brazil from the ERA-5
reanalysis data set with the DTU wind atlas 11th
Internationale Energiewirtschaftstagung an der TU
Wien

[29] Gruber K, Klöckl C, Regner P, Baumgartner J and Schmidt J
2019 Assessing the Global Wind Atlas and local
measurements for bias correction of wind power generation
simulated fromMERRA-2 in Brazil Energy 189 116212

[30] MeteoSwiss 2013 The data portal of meteoswiss for research
and teaching

[31] DWD Climate Data Center (CDC) 2013 Historical hourly
station observations of wind speed and wind direction for
Germany

[32] Gibson J 1997 ERA description ECMWF re-analysis project
report series 1

[33] Olauson J 2018 ERA5: the new champion of wind power
modelling? Renew. Energy 126 322–31

[34] Molina M O, Gutiérrez C and Sánchez E 2021 Comparison
of ERA5 surface wind speed climatologies over Europe with
observations from the HadISD dataset Int. J. Climatol.
41 4864–78

[35] Doddy Clarke E, Griffin S, McDermott F, Monteiro Correia J
and Sweeney C 2021 Which reanalysis dataset should we
use for renewable energy analysis in Ireland? Atmosphere
12 624

[36] Bollmeyer C et al 2015 Towards a high-resolution regional
reanalysis for the European CORDEX domain Q. J. R.
Meteorol. Soc. 141 1–15

[37] Solbakken K, Birkelund Y and Samuelsen E M 2021
Evaluation of surface wind using WRF in complex terrain:
atmospheric input data and grid spacing Environ. Model.
Softw. 145 105182

[38] GLOBE Task Team The global land one-kilometer base
elevation (GLOBE) digital elevation model, version 1.0
National Oceanic and Atmospheric Administration, National
Geophysical Data Center 325 (available at: http://www.ngdc.
noaa.gov/mgg/topo/globe.html)

[39] ESRI (Environmental Systems Research Institute) Slope ESRI
ArcGIS resource center (available at: https://desktop.arcgis.
com/en/arcmap/10.3/tools/spatial-analyst-toolbox/slope.
htm) (Accessed 27 June 2023)

[40] ESRI (Environmental Systems Research Institute) Aspect
ESRI ArcGIS resource center (available at: https://desktop.
arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/
aspect.htm) (Accessed 27 June 2023)

[41] Weiss A 2001 Topographic position and landforms analysis
Poster Presentation, ESRI User Conf. vol 200

[42] Vanella D et al 2022 Comparing the use of ERA5 reanalysis
dataset and ground-based agrometeorological data under
different climates and topography in Italy J. Hydrol. Reg.
Stud. 42 101182

[43] Pedregosa F et al 2011 Scikit-learn: machine learning in
python J. Mach. Learn. Res. 12 2825–30

[44] Chen T and Guestrin C 2016 Xgboost: a scalable tree
boosting system Proc. 22nd ACM Sigkdd International
Conference on Knowledge Discovery and Data Mining pp
785–94

[45] Brayshaw D J, Troccoli A, Fordham R and Methven J
2011 The impact of large scale atmospheric circulation
patterns on wind power generation and its potential
predictability: a case study over the UK Renew. Energy
36 2087–96

[46] Garrido-Perez J M, Ordónez C, Barriopedro D,
García-Herrera R and Paredes D 2020 Impact of weather
regimes on wind power variability in Western Europe Appl.
Energy 264 114731

14

https://doi.org/10.1016/j.apenergy.2017.04.066
https://doi.org/10.1016/j.apenergy.2017.04.066
https://doi.org/10.1007/s10546-009-9462-7
https://doi.org/10.1007/s10546-009-9462-7
https://doi.org/10.1002/we.2718
https://doi.org/10.1002/we.2718
https://doi.org/10.1007/s13143-019-00106-z
https://doi.org/10.1007/s13143-019-00106-z
https://doi.org/10.1175/2011JCLI4089.1
https://doi.org/10.1175/2011JCLI4089.1
https://doi.org/10.1002/asl.1082
https://doi.org/10.1002/asl.1082
https://doi.org/10.1175/JHM-D-16-0054.1
https://doi.org/10.1175/JHM-D-16-0054.1
https://doi.org/10.1175/JAMC-D-17-0144.1
https://doi.org/10.1175/JAMC-D-17-0144.1
https://doi.org/10.1007/s00382-010-0824-0
https://doi.org/10.1007/s00382-010-0824-0
https://doi.org/10.1007/s00382-011-1175-1
https://doi.org/10.1007/s00382-011-1175-1
https://globalwindatlas.info/en
https://doi.org/10.5194/gmd-13-5079-2020
https://doi.org/10.5194/gmd-13-5079-2020
https://doi.org/10.1016/j.apenergy.2021.117794
https://doi.org/10.1016/j.apenergy.2021.117794
https://doi.org/10.1016/j.energy.2019.116212
https://doi.org/10.1016/j.energy.2019.116212
https://doi.org/10.1016/j.renene.2018.03.056
https://doi.org/10.1016/j.renene.2018.03.056
https://doi.org/10.1002/joc.7103
https://doi.org/10.1002/joc.7103
https://doi.org/10.3390/atmos12050624
https://doi.org/10.3390/atmos12050624
https://doi.org/10.1002/qj.2486
https://doi.org/10.1002/qj.2486
https://doi.org/10.1016/j.envsoft.2021.105182
https://doi.org/10.1016/j.envsoft.2021.105182
http://www.ngdc.noaa.gov/mgg/topo/globe.html
http://www.ngdc.noaa.gov/mgg/topo/globe.html
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/slope.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/slope.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/slope.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/aspect.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/aspect.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/aspect.htm
https://doi.org/10.1016/j.ejrh.2022.101182
https://doi.org/10.1016/j.ejrh.2022.101182
https://doi.org/10.1016/j.renene.2011.01.025
https://doi.org/10.1016/j.renene.2011.01.025
https://doi.org/10.1016/j.apenergy.2020.114731
https://doi.org/10.1016/j.apenergy.2020.114731

	Downscaling ERA5 wind speed data: a machine learning approach considering topographic influences
	1. Introduction
	2. Data
	2.1. Local-scale observation data
	2.1.1. MeteoSwiss observation data
	2.1.2. DWD observation data

	2.2. Large-scale reanalysis data
	2.3. Topographic metrics

	3. Methods
	3.1. Data preprocessing
	3.2. Regression of wind speed time series

	4. Results and cross-dataset validation
	4.1. Results
	4.1.1. Preprocessing results
	4.1.2. Regression results

	4.2. Cross-dataset validation
	4.2.1. Cross-dataset validation across different years
	4.2.2. Cross-dataset validation across different locations


	5. Discussion
	6. Conclusion
	References


