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ABSTRACT
The concept and design of High Temperature Heat Pumps

(HTHP) including their components for specific temperature
needs is a time consuming and interdisciplinary task. Especially,
the design of compressor geometries has a big impact on the
overall performance and the initial costs of the system. For this
reasoning, in this work an automated aerodynamic gradient-free
optimization including structural constraints for the geometry of
a radial compressor impeller blade as well as diffusor vane ge-
ometry for water steam, that is applied in a reverse Rankine cycle
based HTHP, is presented. Objective of the optimization is the
isentropic efficiency in the aerodynamic design point (ADP) of the
compressor. Constraints for the pressure ratio, mass flow rate and
limits for stresses in blade and disk geometry satisfy requirements
of the cycle simulation of the whole HTHP system and structural
needs. The optimization method is based on evolutionary algo-
rithms and stochastical surrogate models. Additionally, a highly
throttled operating point is regarded to achieve an acceptable
distance to the surge line. These types of optimization problems
are often characterized by lots of unconverged iterations due to
unstable computational fluid dynamic simulations (CFD). To en-
counter this, a study of the optimization process with different
surrogate models is presented. The results are discussed with
respect to convergence history as well as objective and constraint
improvement.
Keywords: radial compressor, aero-structure optimization,
water steam

NOMENCLATURE
Abbreviations
𝐻𝑇𝐻𝑃 High Temperature Heat Pump
𝐶𝑂𝑃 Coefficient of performance
𝐶𝐹𝐷 Computational fluid mechanics
𝐶𝑆𝑀 Computational structure mechanics
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𝐴𝐻𝑃𝑇 Automatic hyperparameter tuning
𝑅𝐴𝑁𝑆 Reynolds-averaged Navier-stokes equation
𝐺𝐶𝐼 Grid convergence index
𝐴𝑅 Asymptotic range
𝐴𝐷𝑃 Aerodynamic design point
𝐻𝑇𝑂𝑃 Highly throttled operating point
𝐸 Expected improvement
𝑃 Prediction minimization
𝑁 Neural gas

Roman letters
𝑆 Meridional length [−]
𝑚 Meridional coordinate [−]
𝑀 Mach number [−]
𝑚′ Normalized meridional coordinate [−]
𝑛 Rotational speed [ 1

𝑚𝑖𝑛
]

𝑟 Radial coordinate [𝑚]
𝑟 Refinement ratio [−]
𝑝 Order of convergence [−]
𝐸 Discretization error [−]
ℎ Spatial discretization [−]
𝑤𝐸 Weight of Expected improvement [−]
𝑤𝑃 Weight of Prediction minimization [−]
𝑤𝑁 Weight of Neural gas [−]
𝑚̇ Mass flow rate [ 𝑘𝑔

𝑠
]

Greek letters
𝛽 Beta angle of blade [°]
𝜃 Circumferential coordinate [°]
𝛾 Rake angle [°]
𝜋 Pressure ratio [−]
𝜂 Isentropic efficiency [%]
𝜎 Von Mises stress [𝑀𝑃𝑎]

Superscripts and subscripts
𝑡𝑡 Total to total property
𝑡𝑠 Total to static property
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1. INTRODUCTION

Global warming is one of the key challenges of the 21th cen-
tury with wide ranging impact on ecosystems as well as human
systems [1]. Especially, the industrial sector is responsible for
almost 25% of green house gas emissions. Besides reducing the
usage of primary energy sources, the reuse of waste heat is a key
for achieving reduction targets. The investigation of high temper-
ature heat pumps (HTHP) is a promising approach to achieve a
leap-frogging step in the decarbonization of industrial processes.
One of the key components of a high temperature heat pump is
the compressor. In many heat pump systems with heat sink tem-
peratures below 100 °C, displacement compressor systems are
used. However, turbocompressors are promising alternatives due
to higher efficiencies and the ability to operate at high pressure
ratios [2, 3]. Especially for the application of heat pump systems
in industrial processes, the demand for optimized compressors is
rising. In case of medium-sized systems, centrifugal compres-
sors are suitable due to higher pressure ratios and lower mass flow
rates (Cordier diagram, [4]).
The optimization of a radial compressor is an interdisciplinary
task because of aerodynamic and structural-mechanical require-
ments, manufacturing limitations and demands on acceptable op-
erating range. Furthermore, the aerodynamic evaluation of com-
pressor geometries with CFD methods is very time-consuming,
thus high performance computing systems are needed.
Besides the operating efficiency, the pressure ratio requirements
for the specific application defines the design objectives of tur-
bocompressors. Because of that, lots of optimization problems
are either constrained by pressure ratio limitations or the pressure
ratio is one of the objectives. This leads to shifted aerodynamic
design points near the surge line in the performance map of the
compressor. To encounter this, different strategies can be found
in the literature. A common way is to regard a highly throttled
operating point (HTOP) near the surge line during the optimiza-
tion [5, 6]. By using that operating point, it is possible to define
the Cumpsty margin, which is a measure for the distance between
the ADP and the surge line. This can be used during the op-
timization to generate geometries that have a specific distance
to the surge line [7]. Otherwise, if the distance is not directly
necessary, the highly throttled operating point achieve optimiza-
tion results that are not located at unstable operating conditions.
Another approach is presented by J. Ratz et al. by using local
flow parameters to define an objective function for the surge mar-
gin, that does not need a highly throttled operating point during
the optimization [8]. The advantage is a more stable optimiza-
tion process, but the initial computational cost is higher, because
of preliminary surge line calculations. It could be shown, that
the optimization result with an objective function based on flow
parameters is comparable to a common approach with a highly
throttled operating point. Similar suggestions can be found in
[9, 10].
The elevated number of optimization parameters of the com-
pressor geometry require an automated optimization process.
Gradient-based and gradient-free methods could be successfully
applied on radial compressor optimization tasks [11–13]. The
advantage of gradient-free methods is that they are suitable to
reach a global optimum and can handle non-differentiable objec-

tives and even unconverged simulations, but suffer by the number
of objective evaluations. In contrast, the gradient-based methods
require less objective evaluations because of information of steep-
est descent, but most likely will converge to a local minimum. In
their work Hottois et al. showed by applying a gradient-free and
a gradient-based optimization on a turbine vane that both meth-
ods reveal similar results [14]. Nevertheless, their findings also
prove that gradient-based methods can reach the global optimum
in case of highly complex optimization problems. For acceler-
ation of gradient-free methods, surrogate models are commonly
used [12, 13, 15]. The general idea of a surrogate model is to use
information based on already successfully calculated compressor
geometries and create a fast to evaluate mathematical function for
the objective. Now the algorithm can be used to run the optimiza-
tion with the surrogate model instead of the complex and exact
compressor evaluation. Nowadays, Kriging-based methods (also
known as Gaussian process regression) are frequently used as
surrogate model. The Kriging surrogate model can be evaluated
in different ways. The most common infill criterion is expected
improvement and prediction minimization, which is also known
as volume gain in the literature. A third way is entropymaximiza-
tion, but this is a less frequent application of that method, because
of the very explorative character and so it is used effectively only
in the beginning of an optimization. Another surrogate model is
neural gas, based on self-organizing maps, that can be used to
predict well performing geometries. Further information can be
found in [16], [17] and [18].
During an optimization it is possible to use different infill criteria.
In the literature, we could found only one publication with such
an optimization methodology [16]. M.H.Aissa and T.Verstraete
presented a gradient-free aero-structure optimization with alter-
nating infill criteria with expected improvement and prediction
minimization. The application was a radial compressor impeller
geometry. But so far, to the best knowledge of the authors, a com-
prehensive study to different infill criteria during an aerodynamic
optimization with the goal of finding optimal combinations is an
innovative investigation. Probable causes are on the one hand
side the enormous amount of cluster contingent to run an opti-
mization multiple times with different infill criteria and on the
other hand the sparse availability of different surrogate models
implemented in the used design suites.
The structure of the paper is as follows: the following section
presents the optimization methodology and the parametrization
of the compressor geometry. Furthermore, details of the mesh-
ing process, CFD calculations, computational structure mechan-
ics (CSM) calculations and post-processing of the data will be
presented. The third section gives an overview of the applied
surrogate models and infill criteria. The next section presents the
optimization results. This is followed by comparing the baseline
and optimised geometry. Finally, an automatic hyperparameter
tuning (AHPT) is carried out.

2. OPTIMIZATION METHODOLOGY
For solving the optimization problem, AutoOpti is used, see

i.e. [12, 19]. It implements a gradient-free evolutionary al-
gorithm accelerated with different surrogate models and infill
criteria. The evaluation of geometries during each iteration step
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FIGURE 1: SCHEMATIC OVERVIEW OF OPTIMIZATION METHOD-
OLOGY

is enabled by a user defined process chain. AutoOpti is highly
parallelized by multiple process chain evaluations at the same
time, with the goal of fast optimization convergence. The general
optimization procedure is shown in Fig. 1. The optimization
is initiated with a randomly generated database, followed by the
training of surrogate models. Surrogate models that are imple-
mented in AutoOpti are for example Kriging approximation and
neural gas. Furthermore, infill criteria implemented for Kriging
approximation are expected improvement and prediction mini-
mization. An overview of the surrogate models and criteria will
be given in section 3. After successful training of surrogate mod-
els, an infill criterion is selected, which is subsequently imple-
mented by randomized selection with user defined probabilities
for each infill criteria. By using that procedure, it is possible to
combine exploitative and explorative system behaviour. The next
steps describe the geometry parametrization of the impeller and
diffusor and CFD as well as CSM evaluation. Details are given
in subsection 2.1. After successful process chain evaluations,
the convergence criteria are checked. We are using a maximum
number of successful process chain evaluations and a time limit
for terminating the optimization process.

2.1 Parametrization
Thefirst step of the geometry parametrization is the flowpath,

that is designed by a hub and shroud curve in themeridional plane,
see Fig 2. Impeller and diffusor are located inside the flow path
and are visualized with a black mesh. In order to modify the flow
path of the compressor, the hub and shroud curve are splined by
control points. The first and second control points for the shroud
curve are used tomodify the impeller inlet diameter. The first free
variable #1 is used for both control points to achieve a straight
inlet, by modifying the radial component. The next three control
points are individually shifted in the normal direction from hub
to shroud by free variables #2 - #4. Because of the big influence
of the flow path along the impeller length of the ADP, three
control points are used. For simplifying the manufacturing of
the diffusor area, a constant shroud contour is preferred. For the
realization, six control points are included with an axial degree of
freedom, that are controlled by free variable #5. In contrast, the
hub curve is only parametrized by one free variable #6, because
of the reduction of free variables. The location of control point

FIGURE 2: PARAMETRIZATION OF FLOW PATH IN MERIDIONAL
PLANE

FIGURE 3: PARAMETRIZATION OF LEADING EDGE CONTOUR BY
CONTROL POINTS IN MERIDIONAL PLANE
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FIGURE 4: DEFINITION OF β AND θ ANGLE

is within the area of highest curvature, because of the biggest
influence in aero- and structural mechanics and can be shifted in
orthogonal direction to the hub curve.
With defined flow path shifts, the parametrization of blade and
vane can be conducted. The first step is the parametrization of the
leading edge of the blade, see Fig. 3. In the literature, comparable
radial compressor impeller optimization have shown, that huge
geometry modifications of the leading edge can occur during an
automated optimization [6, 12]. Because of that, five equally
distributed control points for the parametrization of the leading
edge are used. For each of these control points, a free variable
#8 - #12 for the axial shift is applied. Furthermore, an overall
shift in the meridional plane of the leading edge is regarded by
free variable #7, by modifying the slope of the blue dashed line,
see Fig. 2. By using that scheme, the limit of free variables #8
- #12 can be reduced, due to the overall shift by free variable
#7. This kind of scheme should result in a more stable blade
parametrization.
The shape of the blade camber line is designed by a distribution
of 𝛽 angle in (𝑚′, 𝜃) coordinate system. The angle 𝛽 is defined as
the angle between the meridional plane and 𝑆, that is calculated
by integration of d𝑠, which is:

d𝑠 =
√︁
(d𝑥)2 + (d𝑟)2 + (𝑟d𝜃)2 (1)

The meridional plane is defined by the arc length

d𝑚 =
√︁
(d𝑥)2 + (d𝑟)2 (2)

and 𝑚′ can be defined as differential normalized arc length with
respect to the impeller radius 𝑟 in the meridional plane by

d𝑚′ =
d𝑚
𝑟

(3)

With the notation defined previously, the 𝛽 angle can be defined
as

tan 𝛽 =
𝑟d𝜃
d𝑚

(4)

The definition of 𝛽, 𝑆, 𝑚 and 𝜃 can be seen in Fig. 4. Further
information can be found in [4, p. 467] and [20].
Because of prescribed notations, it is sufficient to define the

𝛽 angle distribution in (𝑚′, 𝜃) coordinate system. Furthermore,

FIGURE 5: β ANGLE DISTRIBUTION OF BLADE AND VANE IN
MERIDIONAL PLANE

FIGURE 6: DEFINITION OF RAKE ANGLE γ, LOWER BLADE THICK-
NESS AND FILLET STRUCTURE

FIGURE 7: PARAMETRIZATION OF REAR SIDE OF DISK
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the circumferential coordinate 𝜃 has to be defined. The blade is
defined by two profiles along the span, one located at the hub and
the second at the shroud contour. The vane is constant in span-
wise direction, in order to reduce the number of free variables.
Due to the strong impact of the blade to the overall compressor
performance, more free variables are defined for parametrization.
The circumferential coordinate for the hub profile of the blade is
defined as free variable #13, the shroud profile is free variable
#14 and the vane profile is free variable #40. For each profile,
the 𝛽 angle distribution can be seen in Fig. 5. The shape of
the profile is parametrized by control points. The profiles of the
blade consist of 5 and the profile of the vane consist of 4 con-
trol points, respectively. The blade 𝛽 angle at the leading edge
is parametrized by free variable #15 and #16 and at the trailing
edge by free variable #17 and #18 for hub and shroud profile. The
meridional coordinate of the second and fourth control point is
fixed and the 𝛽 angle is being derived by the 𝛽 angle at the leading
and trailing edge, respectively, because of continuous and differ-
entiable condition of the overall profile shape. The meridional
coordinate and 𝛽 angle of the third control point is parametrized
for both profiles. The 𝛽 angles are shifted by free variables #19
and #20 and the meridional coordinate by free variables #21 and
#22 in case of hub and shroud profile. The choice of the control
points and the degrees of freedom is a good compromise between
reduction of the number of free variables and variability of the
blade parametrization. The 𝛽 angle of the leading and trailing
edge of the vane is parametrized by free variable #27 and free
variable #28 respectively. The intermediate control points are
located at 33% and 66% of vane meridional length. The only
degree of freedom is described by the meridional coordinates of
the control points, that are parametrized by free variable #29 and
#30. Furthermore, blades and vanes that are defined by multiple
control points result in wavy geometries with high manufacturing
costs.
The definition of the rake angle, the free variables of the fillet
parametrization and the thickness of the impeller blade can be
seen in Fig. 6. The rake angle is defined by the positive angle
between the line, that connects the trailing edge points of both
design profiles and the vertical line that intersects the hub profile
at the trailing edge location. The rake angle is controlled by the
circumferential shift of the shroud profile with free variable #25.
The thickness of the blade at the leading edge is kept constant
at 1.3 mm. To satisfy structural-mechanical requirements, the
blade thickness at the trailing edge position is parametrized by
free variable #26. The intermediate thickness is linearly interpo-
lated between the leading and trailing edge. The fillet is designed
by two free variables. The first free variable #23 controls the
blow curve that is the increased profile at the hub surface, where
the smooth connection between blade and disk starts. The blade
curve, that is an intermediate profile between hub and shroud
profile, is designed by free variable #24. Based on these two pro-
files, the fillet is designed as a slightly smoothed curve between
them. A perfect circular fillet could not be used, since the fillet
radii are lower than 1 mm, which results in hard to manufacture
geometries. The free parameters for fillet design can be seen in
Fig. 6.
To satisfy structural-mechanical requirements, it is not only suf-

FIGURE 8: DEFINITION OF DIAMETERS OF IMPELLER AND DIFFU-
SOR

ficient to consider the blade, but also the disk geometry of the
radial compressor. The parametrization of the disk is shown in
Fig. 7. The overall thickness of the disk is designed by free
variable #31. Intermediate shifts of the rear side according to x
direction are controlled by free variables #32 - #36. The shift
locations start at the radius of the trailing edge of the blade and
end at the radius of the leading edge.
Furthermore, the general radii of impeller and diffusor are con-
sidered. The parametrization can be seen in Fig. 8. The impeller
radius is controlled by free variable #37, the vaneless space by
free variable #38 and the radius of the diffusor by free variable
#39. Additionally, a constraint is regarded that the vaneless space
is always positive and atleast 5 mm. Moreover, the location of
the mixing plane is always shifted in the middle of the vaneless
space. In the same way, the outlet domain is moved right behind
the trailing edge.
All of the parametrization of blade geometry is done with the
DLR internal tool BladeGenerator. The number of blades is
being kept at 19 and the number of vanes at 14. For more infor-
mation see [19].

2.2 CFD Mesh generation and grid convergence
For evaluation of compressor performance, a CFD calcula-

tion of impeller and diffusor geometry is carried out. Based on
the parametrized geometry, the CFD mesh is computed by us-
ing a DLR internal meshing tool PyMesh [21]. It implements
an O-C-H mesh topology, with shape modifications done by cell
spacings, block relationships and dimensions. Because of the
coupled rotor-stator computation, two individual meshes are cal-
culated. The connection is done at the mixing plane, see Fig. 8.
In order to run low-reynolds CFD models, the mesh was itera-
tively refined. The evaluated y+ values at boundaries are below
1. An exception is the tip clearance of the impeller geometry,
where wall functions are used in order to reduce the mesh dimen-
sion. The complete compressor mesh is visualized in Fig. 9 and
a detail view of the leading edge mesh is shown in Fig. 10. Both
visualizations show the mesh at 50% span.
For proofing the mesh resolution, a grid convergence study is

5 Copyright © 2023 by ASME



TABLE 1: RESULTS OF GRID CONVERGENCE STUDY FOR RADIAL COMPRESSOR STAGE

# Cells 𝜋𝑡𝑠 [−] 𝜂𝑡𝑡 [%] Rel. Error 𝜋𝑡𝑠 Rel. Error 𝜂𝑡𝑡
Coarse Grid 580.944 1,97294 0,68261 0,000968 0,006947
Medium Grid 883.932 1,97594 0,67644 0,000553 0,002156
Fine Grid 1.413.027 1,97514 0,67762 0,000147 0,000413

Richardson Extra. 1,97485 0,67790 0 0

FIGURE 9: FINEST MESH OF IMPELLER AND DIFFUSOR AT
MIDSPAN

carried out. Therefore, the mesh was coarsened two times with a
refinement ratio 𝑟 of approximately 1.2 in every dimension. The
process was done by adapting the major block dimensions and
constant near boundary cell spacing to enable successful sim-
ulation without the necessity of wall functions, except the tip
clearance. Based on the fact, that only integer numbers of block
dimensions are modified, the theoretical refinement ratio of 1.2
could not be reached exactly at some mesh modifications. The
CFD simulation is solved on every mesh.
In order to compare the results to a theoretical on an infinitesimal
finemesh, themethod ofRichardson extrapolation is applied. The
theory behind the Richardson extrapolation can be described by
the relation 𝐸 = 𝐶 ∗ℎ𝑝 , where 𝐸 is the error, 𝑝 is the convergence
order and ℎ is spatial discretization. By applying Taylor approx-
imation, the value of the computed parameter on an infinitesimal
fine mesh can be calculated by equation 5

𝑓ℎ=0 = 𝑓fine +
𝑓fine − 𝑓medium

𝑟 𝑝 − 1
. (5)

The calculation of 𝑝 can be seen in equation 6.

𝑝 =

𝑙𝑛

(︂
𝑓coarse− 𝑓medium
𝑓medium− 𝑓fine

)︂
𝑙𝑛(𝑟) (6)

By the help of the Richardson extrapolation, the error between
every solved mesh and the solution on theoretical infinitesimal
fine mesh can be calculated. After that, the grid convergence
index (GCI), which is a measure to display the grid quality, can

FIGURE 10: FINEST MESH OF IMPELLER LEADING EDGE AT
MIDSPAN

be calculated for refinement steps from coarse to medium and
medium to fine by

𝐺𝐶𝐼coarse,medium =
𝐹𝑠 ∗ 𝜖coarse,medium

𝑟 𝑝 − 1
(7)

and
𝐺𝐶𝐼medium,fine =

𝐹𝑠 ∗ 𝜖medium,fine

𝑟 𝑝 − 1
(8)

with 𝐹𝑠 as safety factor, which is usually around 1.25 and
𝜖coarse,medium and 𝜖medium,fine are the relative errors between coarse
and medium and medium and fine grid, respectively. Finally, it
is possible to ensure, that all grids are in asymptotic range (AR).
That can be done by calculating

𝐴𝑅 =
𝐺𝐶𝐼coarse,medium

𝑟 𝑝 ∗ 𝐺𝐶𝐼medium,fine
. (9)

For AR, equation 9 has to be close to 1.0. The results of the
CFD calculations for isentropic efficiency 𝜂𝑡𝑡 and total to static
pressure ratio 𝜋𝑡𝑠 on every mesh as well as the results of the
Richardson extrapolation can be seen in Table 1. Furthermore,
the relative error for 𝜂𝑡𝑡 and 𝜋𝑡𝑠 betweenRichardson extrapolation
and mesh solution is plotted in Fig. 11. The error of 𝜂𝑡𝑡 is
higher for coarse meshes compared to the error of 𝜋𝑡𝑠 , because
of the more complex structure and dependencies of the efficiency
definition. The corresponding asymptotic ranges are 0.99959
in case of 𝜋𝑡𝑠 and 1.0017 for 𝜂𝑡𝑡 . Further information on the
Richardson extrapolation and grid convergence studies can be
found in [22] and [23]. For the optimization, the finest mesh was
used.
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FIGURE 11: RELATIVE ERRORS BETWEEN DIFFERENT MESH
RESOLUTIONS AND RICHARDSON EXTRAPOLATION

FIGURE 12: CSM MESH FOR BLADE AND DISK (LEFT) AND IG-
NORED CELLS (RED) IN STRESS POST PROCESSING (RIGHT)

2.3 CFD simulation
The performance of the radial compressor stage is carried

out by CFD calculation of steady state Reynolds-averagedNavier-
Stokes equation (RANS). The inlet and outlet domain can be seen
in Fig. 8. Because of the periodicity of the geometry, only one
segment is calculated. Therefore, a mixing plane is used be-
tween the rotating and stationary stage. For the calculation of the
thermodynamic properties of water steam, the ideal gas model
is applied. The viscosity is calculated by using the Sutherland
model. The influence of the turbulence is considered by Menter
SST turbulence model. The solver is back-pressure controlled
and a second order spatial discretization scheme is used. At the
compressor inlet, the stagnation pressure and stagnation temper-
ature and at the outlet the static pressure are defined, respectively.
For successful convergence, the variation of mass flow rate, pres-
sure ratio and isentropic efficiency between inlet and outlet have
to be smaller than 0.0005 for 200 time steps. The calculation
is initialized by a circumferential averaged solution of the base-
line geometry. The simulation is conducted by using the solver
TRACE [24].

2.4 CSM simulation
For satisfaction of structural-mechanical requirements, a

static CSM simulation for the rotating stage is executed. The
meshing process is implemented by using a DLR internal mesh-

ing software. The blade and disk geometry are individually
discretized by hexahedral mesh and connected by multi-point
constraints (MPC). Based on the aerodynamic simulation, the
pressure and temperature loads are considered. In addition, the
rotation of the geometry is a further mechanical load for the sys-
tem. By using cyclic boundary conditions, only one blade and
disk segment is taken into account. For the solution, the open
source solver CALCULIX with compiled solver SPOOLES is
applied [25]. Because of the MPC, stresses in the connection
area are potentially unreliable. To encounter this, the MPC cells
are not taken into account for automatic post-processing during
the optimization process. The CSM mesh and the cells, that are
neglected in post-processing, are shown in Fig. 12. Besides that,
the first 5% of the blade height are neglected to not sophisticate
the post-processing process. Preliminary simulations revealed,
that the maximum stress values are not located in that region,
therefore the limited post-processing has no influence on the final
CSM result.

2.5 Objective and constraints

The optimized compressor geometry will be integrated in a
HTHP with water steam as working fluid. To achieve a high tem-
perature lift, the heat pump consists of three compressor stages.
The goal of the presented optimization methodology is to max-
imize the efficiency in the ADP of the second stage. Because
of already existing performance maps of the first and third stage,
constraints for the mass flow rate and the pressure ratio are nec-
essary. The mass flow rate in the ADP should be above 0.175
kg
s to reach the design criteria of the heat exchangers and be-
low 0.275 kg

s to satisfy the power consumption limit of the gear
system. Furthermore, the pressure ratio of the compressor stage
should be above 2.3. The material of rotor and stator will be
the titanium alloy Ti-6Al-4V, hence the stresses in the impeller
should be below 600 MPa. Besides the ADP, a highly throttled
operating point will be regarded, to ensure a decent distance of
the ADP to the surge line. That operating point will be at the
same speed line, but with an increased back pressure by 2%.
During the optimization, no surge margin distance will be calcu-
lated, therefore no Cumpsty margin is calculated either. For the
highly throttled operating point, only the convergence of CFD is
required. The objective will be the maximization of the efficiency
in the ADP. The initial design does not satisfy the pressure ratio
and structural-mechanical needs and is derived by a design of an
already existing compressor test rig. The optimization problem
can be formulated as:

Minimize 𝑂𝑏 𝑗 ≡ − 𝜂𝑡𝑡

𝜂Baseline
𝑡𝑡

subject to Constraint 1 ≡ 𝑚̇

0.25 kg
s

∈ [0.7, 1.1]

Constraint 2 ≡ 𝜋𝑡𝑠

2.3
∈ [1, inf]

Constraint 3 ≡ 𝜎𝑚𝑖𝑠𝑒𝑠

600
∈ [0, 1]

Constraint 4 ≡ 𝐻𝑇𝑂𝑃 𝐶𝐹𝐷 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑

(10)
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3. SURROGATE MODELS

Gradient-free optimization approaches suffer from low con-
vergence rates, hence new designs are created by genetic oper-
ations like mutation or cross over. To encounter this, surrogate
models are used. In this section, three different types of surrogate
models are presented at a glance. For detailed explanations, as
well as implementation strategies, further references in the liter-
ature are given.
A classical and well-known surrogate model is the Gaussian pro-
cess regression, also known as Kriging. In case of ordinary
Kriging, the idea is to approximate the function by the main trend
with one regression function combined with a Gaussian random
process with zero mean. The covariance of the random process
is assumed to be only depended on the distance of two arguments
multiplied with a constant variance. The free parameters of the
regression function and of the random process are determined,
such that the Kriging model is the best linear unbiased predictor.
This process is called training of the surrogate model. The re-
sult is a surrogate model, that does not only give predictions of
function values, but also a value of the variance of the prediction.
The variance of the prediction is small in the area of already
existing datasets, and increases with increasing distance. Based
on that, it is possible to define the different infill criteria. The
first and very common approach is called Expected Improvement
(E). The idea is to scan the surrogate model for arguments with
the biggest chance of getting better than the current best dataset
in the database. Another infill criteria is called Prediction Min-
imization (P), with the goal in only going to minimize the value
of the prediction without consideration of the variance. Further
information on Kriging surrogate models can be found in [16]
and [17].
Another surrogate model is called Neural Gas (N). The idea is to
use self-organizing maps, also known as Kohonen net, that is a
kind of artificial neural network. Each neuron of the Kohonen net
consists of a weight out of the argument set and a position in 2-
dimensional space. Higher dimensions are also possible. During
the training phase, the weights of the neurons are adapted, such
that similar samples are located closer and adjective samples far
more apart. New samples are generated through the evaluation
of the artificial neural network. Further information on Neural
Gas can be found in [18].

4. OPTIMIZATION PROBLEM

The optimization process is started by 100 randomly gener-
ated geometries based on the baseline geometry. Next, all of the
new iterations are generated by surrogate model evaluations. The
rotational speed in the ADP is 100.000 rpm. The inlet condition
was defined by a total pressure of 3.8 bar and a total temperature
of 420.0 K. The infill criteria is selected by a random process
with weight 𝑤𝐸 for Expected Improvement, 𝑤𝑃 for Prediction
Minimization and 𝑤𝑁 for Neural Gas. Each weight has to be in
𝑅+ := [0, inf). The ratio 𝑤·

𝑤𝐸+𝑤𝑃+𝑤𝑁
describes the probability of

selecting the surrogate model ·. A maximum number of 1500
iterations was used for terminating the optimization process.
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FIGURE 13: COMPARISON OF THREE OPTIMIZATION RUNS WITH
SAME INFILL CRITERIA AND CALCULATED 95% CONFIDENCE IN-
TERVAL
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4.1 Optimization results

The first optimization run was conducted with infill criteria
probabilities (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (3, 1, 1). Because of the stochas-
tic nature of both the infill criteria selection and the surrogate
model structure as well as the evolutionary algorithm for solv-
ing the optimization problem, the optimization was repeated five
times. The optimization process can be seen in Fig. 13. The
figure shows only iterations, that satisfy all of the constraints and
have a converged highly throttled operating point. It can be seen,
that neither the baseline geometry nor one of the 100 randomly
generated members for the initial dataset, are satisfying all of the
constraints. Moreover, the first member that fulfills all of the con-
straints can be found after approximately 300 iterations. Besides
the objective decrements, a confidence interval with a 95% level
is shown. It can be seen, that the confidence interval is wide in
the early phase and narrow in the late phase of the optimization.
Possible reasons are the strong dependence of the objective pro-
cess on the infill criteria selection, which are depending on the
selected criteria. During the ongoing optimization, the ratio of
the selected infill criteria is converging to the predefined prob-
ability distribution, hence the confidence interval is decreasing.
Besides that, all objective decrements are not fully converged
within the iteration limit. This motivates to investigate different
infill criteria probabilities.
The comprehensive study is shown in Fig. 14. The con-
vergence trajectories with only one kind of surrogate model
(𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (0, 0, 1), (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (0, 1, 0) and
(𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 0, 0) are shown with squares as symbol,
combinations of two different surrogate models (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) =
(1, 1, 0), (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 0, 1) and (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) =

(0, 1, 1) are visualized by circles and those combining three
(𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (3, 1, 1), (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 3, 1) and
(𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 1, 3) are plotted using diamonds. No fur-
ther combinations were conducted. In addition, the confidence
interval is shown. It can be seen, that the convergence behaviour
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FIGURE 16: BASELINE GEOMETRY (BLACK) AND OPTIMIZED
FLOW PATH (GREEN) IN MERIDIONAL PLANE

of only N (red square) is the least optimal. Similar results can be
observed for P (green square). Possible reasons are the very ex-
ploitative and no explorative strategy of these surrogate models.
Only two infill criteria combinations (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 3, 1)
(green diamond) and (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 1, 3) (blue diamond)
reach the best solution with an objective decrement of -1.285. For
both trajectories, a good convergence behaviour can be noticed.
The other combinations of surrogate models performing similar
to the first investigated combination and are in the area of the
confidence interval.
Further statistical comparison of three different infill criteria com-
binations are shown in Fig. 15. Because of limited cluster
contingent, only the combinations (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (3, 1, 1),
(𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 3, 1) and (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 1, 3) are
carried out. Each confidence interval was calculated based on 5
optimizations. It can be clearly seen, that the mean of confidence
interval of (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 1, 3) is lower than the means
of the other confidence intervals. The least optimal mean has
combination (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (3, 1, 1). Furthermore, the width
of all three confidence intervals is comparable.

4.2 Result interpretation
The baseline geometry is compared with the last itera-

tion of the optimization run with infill criteria combination
(𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 3, 1). The geometry is the same as
the result of optimization run with infill criteria combination
(𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 1, 3). The flow path variation and the ra-
dial start and end positions of blade and vane can be seen in Fig.
16. Only slight modifications of the flow path can be noticed.
The diameter of the impeller nearly kept constant, but the radial
starting position of the vane which was decreased by free variable
#38: 0.062→ 0.0585 as well as the diameter by free variable #39:
0.084 → 0.0788. The optimizer was able to reach the required
pressure ratio without increasing the impeller diameter, which
often leads to higher losses due to higher outlet Mach numbers.
The decrement of the vaneless space reduces the logarithmic path
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FIGURE 17: BASELINE (BLACK) AND OPTIMIZED (GREEN) DISK
GEOMETRY IN THE MERIDIONAL PLANE

FIGURE 18: COMPARISON OF BASELINE (BLACK) AND OPTI-
MIZED (GREEN) GEOMETRY WITH FOCUS ON INLET

FIGURE 19: SINGLE BLADE AND VANE COMPARISON OF BASE-
LINE (BLACK) AND OPTIMIZED (GREEN) GEOMETRY

FIGURE 20: FLOW COMPARISON OF ABSOLUTE MACH NUM-
BER AT 50% SPAN BETWEEN BASELINE (LEFT) AND OPTIMIZED
(RIGHT) GEOMETRY

FIGURE 21: COMPARISON OF ABSOLUTE MACH NUMBER IN PAS-
SAGE AT INLET AND INTERMEDIATE POSITION BETWEEN BASE-
LINE (LEFT) AND OPTIMIZED (RIGHT) GEOMETRY

of the fluid behind the impeller caused by the guided stream path
by the vaned diffusor. The reduction of the diffusor diameter
reduces friction losses. The optimized disk geometry is shown
in Fig. 17. Slight modifications in the rear side can be identified
by adapting free variable #35: 0 → 0.0003. The overall disk
thickness was kept constant.
The blade parametrization was highly modified. Figure 18 and
19 shows the redesigned inlet geometry with modified lean angle
and the optimized leading edge contourwith a one-sided S-shaped
contour. The 𝛽 angle was increased in case of hub surface by free
variable #16: 5°→ 9.98°and for the casing by free variable #15:
15°→ 19.4°. The 𝛽 angles at the trailing edge did not changed
significantly. The leading edge contour was designed by huge in-
crement of free variable #9: 0→ 0.2, which is the upper limit for
the optimizer. With an increased limit, the optimizer would prob-
ably select bigger shifts. The shock losses could be significantly
avoided by shifting the impeller from a transonic to nearly sub-
sonic behaviour. The 𝛽 angle of the vane was slightly increased
at the leading edge by free variable #27: -83.5°→ -82.73°and at
the trailing edge by free variable #28: -69.5°→ -65.3°. The 𝜃
angle was reduced by free variable #40: 160°→ 157.1°.
The resulting flow based on the shape modifications can be seen
in Fig. 20. The Mach number at 50% span is shown. The flow
is successfully decelerated at the inlet and outlet area of the im-
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FIGURE 22: COMPARISON OF ABSOLUTE MACH NUMBER IN PAS-
SAGE AT IMPELLER OUTLET BETWEEN BASELINE (LEFT) AND
OPTIMIZED (RIGHT) GEOMETRY
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FIGURE 23: COMPARISON OF AERODYNAMIC LOADING OF BASE-
LINE (BLACK) AND OPTIMIZED (GREEN) GEOMETRY AT 50% SPAN

peller. Additionally, the flow on the suction side is homogenized,
which leads to reduced losses due to secondary flow phenomena.
The flow in the diffusor passage is kept constant, but with a de-
creased diffusor diameter, that reduces the friction. A detailed
view on the passage flow of the impeller is shown in Fig. 21. It
can be seen, that the redesigned lean angle of the leading edge
and the complex leading edge contour reduce the Mach number
significantly. Again, a detailed view on the flow inside the im-
peller passage is given, that shows the deceleration of the flow at
the suction side, that results in lower flow separation. The com-
parison of the flow at the outlet of the impeller can be seen in Fig.
22. Due to the optimized rake angle by free variable #25: 0→
0.0276, the passage flow is reduced, hence the transformation of
kinetic energy to static pressure in the diffusor area is improved.
The aerodynamic loading of the impeller blade at 50% span

is shown in Fig. 23. The black line shows the isentropic Mach
number of the baseline geometry and the loading of the opti-
mized geometry is shown in green. Two highlighted areas can
be identified with negative loading of the baseline impeller. The
optimized geometry has no areas with negative loading. Further-
more, the overall loading behaviour is homogenized throughout
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the blade, that results in higher efficiencies. Furthermore, Mach
number is successfully decreased during the optimization.
The performance map of the radial compressor stage is shown
in Fig. 24 and 25. The first figure visualizes the ratio of total
and static pressure for three speed lines, starting at n=80% up to
n=100%. The ADP with a pressure ratio of 2.3 and a mass flow
rate of 0.26 kg

s has a decent distance to the surge line, at the speed
line with n=100%. Without the integration of the highly throttled
operating point, the optimizer would possibly shift the ADP up
to the surge line. The isentropic efficiency with respect to the
mass flow rate is shown in Fig. 25. It can be noticed, that the
ADP is at the maximum of the speed line n=100%. Furthermore,
higher efficiencies are possible by reducing the rotation speed of
the compressor, that leads to lower pressure ratios.
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5. AUTOMATIC HYPERPARAMETER TUNING

The results of the comprehensive study for different infill
criteria combinations shown in Fig. 14 motivate further investi-
gation of the best choice for the values of the model parameters
𝑤𝐸 , 𝑤𝑃 and 𝑤𝑁 . This is carried out by an AHPT. The hyperpa-
rameter tuning is done by an implemented Bayesian optimization
approach. The optimization process is supported by a Gaussian
process regression surrogate model. Due to the fact that only the
ratio of 𝑤𝐸 to 𝑤𝑃 and 𝑤𝑁 are influencing the performance of the
optimization process, 𝑤𝐸 , 𝑤𝑃 and 𝑤𝑁 can be considered in the in-
terval [0, 1] without loss of generality. The optimization process
is initialized by two randomly generated samples ofmodel param-
eter combinations. Further iterations are generated by evaluating
the surrogate model. The result of the AHPT is shown in Fig. 26.
It can be seen, that iteration eight has the lowest objective value
and is more optimal than the best found solution within the com-
prehensive study. Anobjective value of -1.2918 could be achieved
with model parameters (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (0.344, 0.310, 0.346).
The geometry modified by the AHPT is compared with the opti-
mized geometry with infill criteria combination (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) =
(1, 3, 1). Significant changes of the circumferential coordinates,
the control points of the 𝛽 angle distribution and the control points
of the leading edge interpolation were noted. The circumferential
coordinate was further optimized by modifying #13: 60.83°→
63.00 and #14: 60.00°→ 57.99. Slight modifications of the 𝛽
angle control points #20: 0.06 → 0.10, #21: 0.60 → 0.55 and
#22: 0.073→ 0.032 further optimized the intermediate shape of
the impeller geometry. Another modification could be observed
of the leading edge control points: #8: -0.033 → -0.076, #9:
-0.023→ -0.013, #10: 0.028→ 0.060 and #12: -0.10→ 0.024.
The resulting geometry of the AHPT and the geometry with the
model parameters (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 3, 1) is shown in Fig. 27.

FIGURE 27: COMPARISON OF THE IMPELLER GEOMETRY OF
AUTOMATIC HYPERPARAMETER TUNING AND INFILL CRITERIA
COMBINATION (wE , wP , wN ) = (1, 3, 1)

6. CONCLUSION
The paper presents an aerodynamic optimization for a radial

compressor stage with application in a HTHP test rig. The work-
ing fluid is water steam. The rotational speed was kept constant
at 100,000 rpm.
The optimization was done by a gradient-free algorithm, that
is accelerated by surrogate models. The blade and vane is
parametrized by 40 free variables. A highly throttled oper-
ating point is regarded, to achieve a descent distance of the
ADP to the surge line. Three different surrogate models and
infill criteria were investigated. The best combination of in-
fill criteria was found to be (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 3, 1) and
(𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 1, 3).
The optimized geometry satisfies all constraints. The required
pressure ratio of 2.3 could be realized. An isentropic efficiency
of nearly 75% in theADP for the compressor stagewas calculated.
The effect of negative loading could be successfully avoided in
the optimized impeller geometry.
Furthermore, an automated hyperparameter tuning was carried
out to investigate the most optimal combination of infill criteria.
The result was a geometry with an improved isentropic efficiency
of about 0.68 percentage points compared to the result of the
optimization with (𝑤𝐸 , 𝑤𝑃 , 𝑤𝑁 ) = (1, 3, 1).
Finally, the optimized compressor stage was analyzed in terms of
aerodynamic performance. Special features, like 𝛽 angle, rake an-
gle and leading edge contour were described quantitatively. Dur-
ing the optimization, the leading edge parametrization reached
the parameter limit. Further optimization with refined leading
edge control points could generate more optimal solutions. That
will be investigated in the next design steps of turbocompressors
for HTHP.
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