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ABSTRACT 

 

Recent advances in machine learning and the rise of new 

large-scale remote sensing datasets have opened new 

possibilities for automation of remote sensing data analysis 

that make it possible to cope with the growing data volume 

and complexity and the inherent spatio-temporal dynamics 

of disaster situations. In this work, we provide insights into 

machine learning methods developed by the German 

Aerospace Center (DLR) for rapid mapping activities and 

used to support disaster response efforts during the 2021 

flood in Western Germany. These include specifically 

methods related to systematic flood monitoring from 

Sentinel-1 as well as road-network extraction, object 

detection and damage assessment from very high-resolution 

optical satellite and aerial images. We discuss aspects of 

data acquisition and present results that were used by first 

responders during the flood disaster.  

 

Index Terms— Disaster response, flood monitoring, 

road network extraction, object detection, damage 

assessment 

 

1. INTRODUCTION 

 

Rapid disaster response is critical for saving lives and 

minimizing the impact of natural disasters. Traditional 

methods of analyzing remote sensing data (satellite, aerial or 

drone imagery) for supporting an up-to-date situational 

awareness during disasters can be slow and labor-intensive, 

which might delay response efforts. Recent advances in 

machine learning and the rise of new large-scale remote 

sensing datasets have opened new possibilities for the 

automation of remote sensing data analysis to cope with the 

growing data volume and complexity and the inherent 

spatio-temporal dynamics of disaster situations. 

 

In this work, we provide insights into machine learning 

methods developed by the German Aerospace Center (DLR) 

for rapid mapping activities and used to support disaster 

response efforts during the 2021 floods in Western 

Germany. We discuss several aspects of the data acquisition 

and present results that were used by first responders during 

the flood disaster. On the basis of the acquired data, we 

further show experimental results of research activities that 

have been conducted within the projects Drones4Good (safe, 

targeted and autonomous humanitarian transportation) [1], 

AIFER (artificial intelligence for analysis and fusion of earth 

observation and internet data to support situational 

awareness in emergency response) [2] and Data4Human 

(demand-driven data services for humanitarian aid) [3]. 

 

2. DATA AND STUDY AREA 

 

The German districts of North Rhine-Westphalia and 

Rhineland-Palatinate were severely affected by rainfall-

triggered floods on 14.07.2021 and 15.07.2021. The Center 

for Satellite based Crisis Information (ZKI) of the DLR 

supported the emergency and rescue teams with satellite data 

and aerial images that have been acquired, processed and 

analyzed within hours after notification. Flight campaigns 

were carried out on 15.07.2021, 16.07.2021 and 20.07.2021 

using DLR's 3K [4], 4k [5] and MACS [6] camera systems 

from helicopters and aircraft platforms, obtaining data with a 

ground sampling distance between 10cm and 20cm. 

Continuous surface water monitoring with Sentinel-1 

Synthetic Aperture Radar (SAR) images over Germany 

provided further information about flood extent on a daily 

basis between 14.07.2021 and 20.07.2021. In the aftermath 

of the disaster, several drone-based surveys were conducted 

in the most severely affected areas on 23.10.2021 and 

29.10.2022. 

 

3. FLOOD MONITORING 

 

We deployed a modular processing chain for surface water 

monitoring that can autonomously handle satellite data 

search, preprocessing, analysis and dissemination over a 

predefined area of interest [7]. Sentinel-1 images are 

analyzed using a pre-trained water segmentation model to 

extract binary water masks. A pre-computed reference water 

mask is used to separate temporary flooded from permanent 

water bodies over a reference time period of two years [8]. 

To train the U-Net based water segmentation model, we 



developed an extensive globally sampled reference dataset 

with more than 150,000 256 x 256 pixels tiles. As input 

feature space we use VV and VH polarization as well as 

slope information derived from the Copernicus Digital 

Elevation Model. As reported in Helleis et al. (2022) [9] the 

model trained on data showing no distinct inundation 

performs well in mapping the water extent during flood 

events, reaching Intersection over Union (IoU) scores of 

>0.8. Moreover, we continuously improve the reference 

dataset and hence the model based on experiences gained 

during operational usage. Fig. 1 shows a flood inundation 

map of Euskirchen and surroundings derived from Sentinel-

1 images on 15.07.2021.  
 

 
Fig. 1: DLR-ZKI flood inundation map of Euskirchen and 

surroundings derived from Sentinel-1 on 15.07.2021. 

https://activations.zki.dlr.de/images/products/ACT152/P01/

ZKI-004-P01-V02-low.jpg 

 

4. ROAD NETWORK EXTRACTION 

 

By accurately identifying flooded areas, emergency 

responders can plan support routes under consideration of 

up-to-date avoidance areas and focus on areas where help is 

needed most. 

 

To create an up-to-date map that includes the portions of the 

road network which are still intact, we compare the pre-

disaster and post-disaster road detections, where differences 

indicate potentially damaged sections of the roads. The first 

step towards this goal is to extract the road network from a 

pre-disaster image acquired at a date as close as possible to 

the event. The second step is to extract the road network 

from an image acquired as early as possible after the event, 

to minimize the impact of changes due to other reasons than 

the disaster in question. To extract the roads from the given 

images, we applied a modified U-Net [10] architecture, 

named Dense-U-Net-121 [11], and trained it on the large-

scale DeepGlobe18 road dataset [12]. This dataset contains 

over 6000 images from Southeast Asia with roads annotated 

pixel-wise manually. 

 

Fig. 2 shows the extracted road network in a pre- and post-

disaster scene, as well as a change map highlighting the 

differences in the road map between the pre- and post-

disaster image. In both scenes, the roads are clearly outlined, 

continuous, and well localized. This observation is reflected 

in the performance metrices where we obtain a completeness 

of about 70% (i.e. the ratio of non-omitted roads) and a 

correctness of 75% (i.e. the ratio of actual roads). Note that 

the ground truth used for evaluating the results was manually 

generated to contain as few inaccuracies as possible. 

 

 
Fig. 2: Road extraction results on an area from the Ahr 

Valley, Germany. From left to right: pre-disaster image and 

extracted roads (left), post-disaster image and extracted 

roads (center), change map of the road network between the 

pre-and post-disaster images (right). Road color coding: 

cyan for all segmented roads in the pre- and post-disaster 

scene, green for intact roads and red for missing roads. 

 

5. OBJECT DETECTION 

 

Object detection in very high-resolution satellite, aerial or 

drone images is an important task that can provide important 

insights into where exposed assets and people are located 

during a disaster. In this work, we trained a YOLOv5 model 

on the xView dataset [13] for the detection of buildings and 

vehicles in multi-modal remote sensing images. The model 

achieves a mAP@0.5 of 0.57 on an independent test-split of 

the reference dataset. Emphasis was given to train a model 

capable of generalizing well across different imaging sensors 

and acquisition platforms. We successfully applied the 

method to images from a wide variety of sensors and 

platforms and further optimized it towards real-time image 

analysis. Fig. 3 shows an example of model predictions on 

four images of different sensors acquired by helicopter, 

plane and drone platforms at various dates around the 

disaster over the same area. 

https://activations.zki.dlr.de/images/products/ACT152/P01/ZKI-004-P01-V02-low.jpg
https://activations.zki.dlr.de/images/products/ACT152/P01/ZKI-004-P01-V02-low.jpg


The object detection allows to track the evolution of the 

building stock from the pre-event situation (28.06.2019) to 

co-event destruction (16.07.2021 and 20.07.2021) and post-

event damage removal (23.10.2021). Furthermore, changes 

in the presence of vehicles become visible throughout the 

disaster phases. During the co-event situation for example, 

we can clearly observe clusters of vehicles along the borders 

of the most severely affected areas (zoom box A). Moreover, 

car wrecks are detected floating in the water (zoom box B) 

or covered by mud (zoom box C). 

 

6. DAMAGE ASSESSMENT 

 

To assess the extent of damage to buildings, we follow a 

two-step approach where we first identify existing buildings 

from the pre-disaster imagery and then classify the damage 

based on the predicted building masks and the 

corresponding pre-disaster and post-disaster satellite image 

pairs. The applied model is based on the solution proposed 

by the winning team [14] of the xView2 challenge [15] in 

combination with the HRNet [16] for the building 

segmentation step. For the network training, we use the xBD 

dataset [17], where the building damage from various 

disaster types are classified into four categories (no damage, 

minor damage, major damage, destroyed). Due to the lack of 

sufficient visual cues to clearly differentiate “minor damage” 

and “major damage” from a top-down view, we merge these 

two classes of the xBD dataset into a single class “damaged” 

for training and testing our model. 

 

For building segmentation, we recorded an F1 score of 87%, 

an IoU of 76%, a precision of 86% and a recall of 87%. On 

the other hand, for the building damage assessment, we 

observed a lower performance with an average IoU of 

around 47%. This result is probably due to the differences 

between the training and test data. An illustration of the 

results for the building damage assessment is shown in Fig. 

4. Note that the ground truth used for evaluating the results 

was manually generated as no public dataset covering this 

test area was available. 

 

7. DISCUSSION AND CONCLUSIONS 

 

Overall, the use of machine learning algorithms for satellite 

image analysis is a promising approach for improving rapid 

disaster response. Automated image processing routines 

together with pre-trained machine learning methods can 

reduce the time between image acquisition and final product 

generation from several hours/days to just a few minutes. It 

therefore allows not only for a faster product delivery but 

also for a higher analysis frequency and thus for a more 

continuous monitoring of the situation. A good 

generalization ability of the deployed machine learning 

models is however crucial to cope with the highly varying 

data availability in disaster situations like the 2021 floods in 

Germany. 
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Fig. 3: Object detection from multi-source images depicting the evolution of buildings and vehicles throughout the disaster 

phases. Object color coding: houses have yellow boundaries, cars have blue boundaries. 
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Fig. 4: Building extraction and damage assessment results on an area from the Ahr Valley, Germany. Building damage 

color coding: green no damage, orange damaged and red destroyed. 
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