Flow Determination in Parabolic Trough Power Plants using Temperature Signals

Alex Brenner

DLR Institute of Solar Research

26th Cologne Solar Colloquium, 22 June 2023

Motivation

Hydraulic balancing and performance monitoring

Application 1: Hydraulic balancing

- Relative flow distribution necessary
- Initial hydraulic balancing during commissioning
 - Aim: Equal loop outlet temperatures under nominal conditions
- Throttle valves available for each loop
- Adjustments during operation also possible

Application 2: Performance monitoring

- Absolute values of loop mass flow is necessary
- So far, evaluation of loop performance not possible without additional measurement equipment

From: Noureldin, Kareem (2019): Modelling and Control of Transients in Parabolic Trough Power Plants with Single-Phase Heat Transfer Fluids. Dissertation. University, RWTH Aachen. Faculty of Mechanical Engineering. Available online at https://publications.rwth-aachen.de/record/771557/files/771557.pdf

Motivation

Available measuring equipment

What we do not have:

- Loop (mass)flow is usually not determined
- Measurements only available at certain positions in the field
- Retrofitting is often expensive, or not possible
 - Numerous measuring instruments would be required

What we have:

- Temperature sensors are often already installed at collectors
- Collector can change heat input to HTF by adjusting focus, thus temperature can also be changed

From: Brenner, Alex; Hirsch, Tobias; Röger, Marc; Pitz-Paal, Robert (2021): State-of-the-Art Measurement Instrumentation and Most Recent Measurement Techniques for Parabolic Trough Collector Fields. In *Energies* 14 (21), p. 7166. DOI: 10.3390/en14217166.

Approach

Using temperature gradients as tracer to determine fluid flow

Challenge:

- Thermal interaction with pipe shifts fluid runtime and runtime of temperature signal
 - Correction is required

Generated temperature gradients:

- First collector is defocused: Temperature gradient "flows" through loop
- Gradient measurable at following sensors
- Repeating signal is also possible
- Goal of this procedure: Generation of clearly recognizable temperature gradients with a small disturbance to plant operation
- Proof-of-concept study with Virtual Solar Field (VSF)

Approach

Using temperature gradients as tracer to determine fluid flow

Relative flow distribution

Only relative flow to each loop of a subfield is determined

$$\text{ratio}_{loop,i} = \frac{\dot{m}_{loop,i}}{\dot{m}_{subfield}} = \frac{\dot{m}_{loop,i}}{\sum_{i=1}^{n_{loops}} \dot{m}_{loop,i}}$$

- Requirements:
 - Subfield consists of identical loops: Geometry, components, defocus procedure
 - Simultaneous defocusing to ensure constant conditions
- Due to identical conditions in the loops the temperature runtime can be used directly to infer relative flow:

$$\text{ratio}_{loop,i} = \frac{\frac{1}{t_{Temp}}}{\sum_{i=1}^{n_{loops}} \frac{1}{t_{Temp,i}}}$$

Results

Determine relative flow distributions: Simulation setup

Aim: Relative flow within subfield using temperature gradients

- Subfield with 20 <u>identical</u> loops facing north and south
- First collectors are <u>simultaneously</u> defocused
 - Approximately constant irradiance and constant flow conditions

Temperature signals from collector 2 and 3 taken for

analysis

Results

Determine relative flow distributions: Temperature runtime

Minimum gradient method

- Position of minimum gradient of two temperature signals are taken
- Linearization around this point
- Intersection with undisturbed temperature signal is taken for calculation of temperature runtime t_{Temp}
- Method takes only one part of the signal
 - reduces the duration when conditions must be constant
- Signals do not need to be scaled or normalized
- Very simple method, which showed good results for signals without noise

Results

Determine relative flow distributions

- Challenging case for determination of relative flow is a nearly balanced field
- Simulations with remaining flow imbalances of 3.5% from loop 1 to loop 20
- Relative flow distributions can be accurately determined
 - Calculated $t_{ratio,LMG}$ nearly perfectly fits the reference results $\dot{m}_{ratio,VSF}$ from the VSF simulation

Challenges:

 Assumption of identical loops may not be 100% true in a real field

Conclusions

Relative flow distribution

- Relative flow distribution can be determined very accurately
- Procedure could be used during hydraulic balancing
- Assumption of identical loops may not be 100% true in a real field

- Only built-in instrumentation is used
- Publication of procedure in preparation
- Patent pending

Outlook

- Influence of defocusing procedure on plant operation needs to be investigated
- Procedure for determining absolute values of fluid runtime is also developed
 - Correction function taking into account:
 - $t_{Fluid} = f(t_{Temp}, l, \Delta T, C_{vol})$

t_{Temp}	Temp. runtime
l	Distance between sensors
ΔT	Temp. drop due to defocus
C_{vol}	Vol. heat capacity pipe

 So far only proof-of-concept study: Approach needs to be tested under real conditions

Thank you for your attention.

Any Questions?

Alex Brenner alex.brenner@dlr.de Institute of Solar Research (DLR)

Impressum

Thema: Flow Determination in Parabolic Trough Power Plants using

Temperature Signals

Datum: 22.06.2023

Autor: Alex Brenner

Institut: Institut of Solar Research (DLR)

Bildcredits: Alle Bilder "DLR (CC BY-NC-ND 3.0)"