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Abstract 18 

The effects of molecular and crystalline structures on the tensile mechanical properties of 19 

thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were 20 

investigated. Starch structural variations were obtained through extrusion and hydrothermal 21 

treatment (HTT). The molecular and crystalline structures were characterized using size-22 

exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose 23 

maize showed higher elongation at break and tensile strength than those from normal maize 24 

and waxy maize starches when processed with 40% plasticizer. Within the same amylose 25 

content, the mechanical properties were not affected by amylopectin molecular size or the 26 

crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, 27 

crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on 28 

the mechanical properties. Further crystallization of normal maize TPS by HTT increased the 29 

tensile strength and Young’s modulus, while decreasing the elongation at break. The results 30 

suggest that the crystallinity from the remaining ungelatinized starch granules has less 31 

significant effect on the mechanical properties than that resulting from starch 32 

recrystallization, possibly due to a stronger network from leached-out amylose surrounding 33 

the remaining starch granules. 34 

Abbreviations 35 

ANOVA, analysis of variance; CF, cryo-fractured; CM, compression molding; DSC, 36 

differential scanning calorimetry; HAMS, high-amylose maize starch; HTT, hydrothermal 37 

treatment; NF, non-fractured; NMS, normal maize starch; RH, relative humidity; SEC, size-38 
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exclusion chromatography; SME, specific mechanical energy; TPS, thermoplastic starch; 39 

WMS, waxy maize starch; XRD, X-ray diffraction 40 

Key words 41 

starch, molecular structure, crystallinity, mechanical properties, hydrothermal treatment 42 

43 



Page 4 of 38

Acc
ep

te
d 

M
an

us
cr

ip
t

4 
 

 43 

1. Introduction 44 

Replacing non-biodegradable conventional synthetic plastics with renewable, 45 

biodegradable alternatives has become more and more desirable, as petroleum-based plastics 46 

are non-renewable and degrade slowly in the environment. One potential replacement is the 47 

class of thermoplastic starch (TPS) materials. Some successful TPS products are already 48 

available in the market; however, their applications are limited because of the poor 49 

mechanical properties and moisture resistance. To improve the properties of TPS, it is 50 

important to understand better the influences on properties of starch structural changes 51 

brought about by processing.  52 

Native starch granules are composed of mainly two glucose macromolecules, amylose and 53 

amylopectin. Amylose is mostly linear with long branches and has a molecular weight of ~ 54 

105–106; it is present either in amorphous or in a single helical conformation in native starch 55 

granules (Jane, Xu, Radosavljevic & Seib, 1992; Lopez-Rubio, Flanagan, Gilbert & Gidley, 56 

2008). Amylopectin is highly branched and has a molecular weight of ~ 107–109. The 57 

branches of amylopectin are arranged into clusters of double helices that aggregate into 58 

crystallites in native starch granules, while the branching points are located in amorphous 59 

regions; together they form the crystalline-amorphous lamellae (Pérez & Bertoft, 2010; 60 

Vamadevan, Bertoft & Seetharaman, 2013; Zhu, Bertoft & Seetharaman, 2013) and 61 

subsequently the growth rings.  62 

Improving the mechanical properties of TPS, such as increasing tensile strength and 63 

Young’s modulus or decreasing the elongation at break, has been achieved by increasing 64 

starch crystallinity with aging (Shogren & Jasberg, 1994; van Soest, Hulleman, de Wit & 65 
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Vliegenthart, 1996). In addition, TPS materials produced from high-amylose starch have 66 

good mechanical properties (Li et al., 2011; Lourdin, Valle & Colonna, 1995). By producing 67 

starch materials from acid-hydrolyzed starch, van Soest et al. (van Soest, Benes, de Wit & 68 

Vliegenthart, 1996) found that the tensile strength of TPS was not affected by molecular 69 

weight, but the elongation at break and tearing energy were higher for starch materials with 70 

higher molecular weight. However, it is difficult to separate the effects of molecular weight 71 

on the mechanical properties of TPS films from those of the amylose content (Walenta, Fink, 72 

Weigel & Ganster, 2001) and of starch retrogradation (van Soest, Benes & De Wit, 1995). 73 

Inconsistent conclusions can be found on the relationship between starch molecular weight 74 

and the mechanical properties of TPS from different studies in the literature (Lloyd & Kirst, 75 

1963; van Soest, Benes, de Wit & Vliegenthart, 1996; Walenta, Fink, Weigel & Ganster, 76 

2001), partly due to different testing conditions and techniques, such as aging time before 77 

mechanical testing.  78 

In the present study, the molecular and crystalline structural changes induced by 79 

processing are correlated to the mechanical properties in order to obtain a more precise 80 

correlation, as distinct from previous studies (van Soest, Benes & De Wit, 1995; van Soest, 81 

Benes, de Wit & Vliegenthart, 1996) correlating the acid-hydrolyzed starch structures, which 82 

may be further degraded by processing, with mechanical properties. Extrusion brings multi-83 

level starch structural changes, including degradation of large amylopectin molecules and 84 

disruption of crystalline and granular structures (Li, Hasjim, Xie, Halley & Gilbert, 2013; 85 

Liu, Halley & Gilbert, 2010), and a higher degree of crystallinity is brought by 86 

retrogradation. Previous studies often involve changing of molecular structure by acid (van 87 

Soest, Benes, de Wit & Vliegenthart, 1996) or enzyme hydrolysis (Walenta, Fink, Weigel & 88 

Ganster, 2001) prior to starch processing. However, these hydrolysis procedures bring 89 

significant molecular degradation: acid can hydrolyze both amylose and amylopectin in the 90 
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amorphous regions and enzyme randomly acts along starch chains. Such changes may be 91 

different from the molecular degradation induced by extrusion.  92 

In this study, waxy, normal, and high-amylose maize starches (WMS, NMS, and HAMS, 93 

respectively) were used as samples providing a variation in the amylose content. Starch 94 

extrudates prepared in a previous study (Li, Hasjim, Xie, Halley & Gilbert, 2013) with 95 

variations in the molecular and crystalline structures, while maintaining the same amylose 96 

content, were used. The crystalline structure was further altered by hydrothermal treatment 97 

(HTT). Size-exclusion chromatograph (SEC), X-ray diffractometry (XRD), and scanning 98 

electron microscope (SEM) were used to investigate the changes in starch molecular, 99 

crystalline, and film surface structures, respectively, after compression molding, aging and 100 

HTT.  101 

2. Materials and Methods 102 

2.1. Materials 103 

WMS and HAMS (Gelose 80) were obtained from National Starch Pty. Ltd. (now 104 

Ingredion, Lane Cove, NSW, Australia), and NMS was supplied by New Zealand Starch Ltd. 105 

(Auckland, New Zealand). The amylose contents of WMS, NMS, and HAMS starches are 0, 106 

28 and 63%, respectively, as measured in a previous study (Vilaplana, Hasjim & Gilbert, 107 

2012). Starch extrudates used were those prepared in a previous study (Li, Hasjim, Xie, 108 

Halley & Gilbert, 2013), where glycerol and water with a ratio of 2:3 were used as 109 

plasticizer, and the extrudate strands were cut using S. F. Scheer pelletizer (Model SGS25 E4, 110 

Reduction Engineering, Inc., Kent, OH, USA). The extrusion processing conditions 111 

(temperature, screw speed, and plasticizer content) and the average hydrodynamic radius –Rh 112 

(analyzed in the previous study (Li, Hasjim, Xie, Halley & Gilbert, 2013)) are shown in 113 
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Table 1. The post-extrusion treatments and characterization techniques applied to the starch 114 

extrudates are summarized in Table 2. 115 

2.2. Compression molding  116 

WMS, NMS, and HAMS pellets were compression-molded into starch films using a lab 117 

compression molding (CM) machine. CM was carried out at 100 °C for WMS and NMS and 118 

at 130 °C for HAMS, with a pressure of 7.5 MPa for 5 min, as WMS, NMS can be 119 

compression-molded into homogeneous films at 100 °C, while HAMS can only form films at 120 

130 °C. The resulting films were quench-cooled using a water cooling system to 35 °C before 121 

they were removed. Polytetrafluoroethylene films (Dotmar EPP Pty. Ltd., Acacia Ridge, 122 

QLD, Australia) were used during CM as release agents.  123 

2.3. Water sorption  124 

Representative films of WMS and HAMS were dried in a BenchTop 2K freeze dryer 125 

(VirTis, Gardiner, NY, USA) overnight, and then kept in humidity chambers at 33, 54, and 126 

75% relative humidity (RH, which were achieved using MgCl2, Mg(NO3)2, and NaCl 127 

solutions, respectively (Ferreira, Grossmann, Mali, Yamashita & Cardoso, 2009)), for 2, 4, 128 

17.5, 21, and 112.5 hours. The moisture content, Mt, at time t, as the result of moisture 129 

absorption, was calculated as follows: 130 

Mt (%) = 
wt - wo

wo
 × 100%  [1] 131 

Here wo and wt are the weight after freeze drying prior to storage and that after storing in 132 

humidity chambers for time t, respectively.  133 
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2.4. Hydrothermal treatment 134 

NMS films and tensile dumbbell specimens were placed on petri dishes covered with 135 

cellulose filter papers, and then kept in an oven at 105 °C for three days (the RH in the oven 136 

was assumed to be 100%). Beakers with water were also placed in the oven to supply the 137 

moisture for HTT. After the HTT, the materials were slowly cooled in the oven for an 138 

additional 2 hours with the presence of moisture to prevent breakage due to the rapid drying 139 

of the films at ambient humidity, which would result in brittleness. The moisture contents of 140 

starch films before and after HTT were determined from weight difference after being dried 141 

in the oven at 105 °C overnight. 142 

2.5. Size-exclusion chromatography 143 

WMS and HAMS extrudates and their CM films were molecularly dissolved in dimethyl 144 

sulfoxide (DMSO; GR for analysis ACS, Merck & Co, Inc., Kilsyth, VIC, Australia) 145 

containing 0.5% wt LiBr (ReagentPlus, Sigma–Aldrich Pty. Ltd., Castle Hill, NSW, 146 

Australia) (DMSO/LiBr solution) to yield a final concentration of 1 mg/mL, and analyzed in 147 

duplicates using an SEC system (Agilent 1100 series, Agilent Technologies, Waldbronn, 148 

Germany) equipped with a refractive index detector (RID-10A, Shimadzu, Kyoto, Japan), 149 

following the method described elsewhere (Li, Hasjim, Xie, Halley & Gilbert, 2013). Since 150 

SEC separates molecules based on size (hydrodynamic volume, Vh, or the corresponding 151 

hydrodynamic radius, Rh), the results are presented as SEC distributions of starch molecules, 152 

denoted by w(logVh) (Cave, Seabrook, Gidley & Gilbert, 2009).  153 

2.6. X-ray diffractrometry  154 

Representative WMS, NMS and HAMS films were stored in humidity chambers at 54% 155 

RH for different days at room temperature (23 °C) before the XRD measurements, while the 156 
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NMS films with and without HTT were stored in the same humidity chamber for 14 days. 157 

While ther RHs are not considered here, one expects the trend will be the same: high amylose 158 

starch will retrograde more rapidly and the starch may reach to a higher degree of 159 

crystallinity; however, as showed in (Shogren & Jasberg, 1994), normal maize starch showed 160 

much larger sub-Tg endotherms than high-amylose cornstarch when stored at higher RH, 161 

which might be due to the B-type crystallinity formed during the long-term storage among 162 

the shorter branches of WMS or NMS. The crystalline structure of stored starch films was 163 

analyzed using a D8 Advance X-ray diffractometer (Bruker, Madison, WI, USA), where 164 

diffractograms were recorded over an angular range (2θ) of 3–40°, with a step size of 0.02°, 165 

and a rate of 0.5 s per step. The radiation parameters were set at 40 kV and 30 mA. The 166 

degree of crystallinity was calculated following the method of a previous study (Li, Hasjim, 167 

Xie, Halley & Gilbert, 2013) using PeakFit software (Version 4.12 Systat Software, Inc., San 168 

Jose, CA, USA):  169 

Crystallinity (%) = 

∑
i=1

n
Aci

At
 × 100%  [2] 170 

where Aci is the area under each crystalline peak with index i, and At is the total area 171 

(amorphous background and crystalline peaks) under the diffractogram. Each sample was 172 

only analyzed once; the standard deviation (SD) of XRD results is within 1-3% as reported in 173 

a previous study (Lopez-Rubio, Flanagan, Gilbert & Gidley, 2008). 174 

2.7. Scanning electron microscopy 175 

Starch pellets (before CM) and starch films (after CM) were manually fractured after 176 

being frozen in liquid nitrogen. The fragments of each sample were placed onto a specimen 177 

stub with double-sided carbon tape, and then coated with a thin layer of gold using a sputter 178 
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coater (SPI-MODULE™ , SPI Supplies, West Chester, PA, USA). The surface and inner 179 

structures of starch pellet and film samples were examined using a scanning electron 180 

microscope (SEM, Philips XL30, Eindoven, Netherlands) with an accelerating voltage of 3 181 

kV and a spot size of 6 nm. 182 

2.8. Tensile mechanical analysis 183 

Dumbbell specimens were cut from starch films (including those after HTT) according to 184 

ASTM D638-03 standards (Australian Standard AS 1683:11); the specimens were 12 mm in 185 

length and 2 mm in width, and the thickness of each specimen was measured prior to tensile 186 

tests. The dumbbell specimens were then conditioned for 14 days at 33, 54, and 75% RH. 187 

Each dumbbell specimen was loaded on an Instron® 5543 universal testing machine (Instron 188 

Pty. Ltd., Melbourne, VIC, Australia) with a constant strain rate of 5 mm·min-1. Tensile 189 

strength, Young’s modulus, and elongation at break were determined using BlueHill software 190 

(Instron Ltd., Norwood, OH, USA), following the method of van Soest et al. (van Soest, 191 

Benes, de Wit & Vliegenthart, 1996). Tensile results of each sample were averaged from at 192 

least five measurements.  193 

2.9. Statistical analysis 194 

Pearson’s correlation analysis was performed using Minitab 16 (Minitab Inc., State 195 

College, PA, USA) to analyze any correlations between starch structural features (such as 196 

amylose content, –Rh, and degree of crystallinity) and the tensile mechanical properties of the 197 

resulting films with a confidence level of 95.0%. A t-test with a confidence level at 95.0% 198 

was also applied to compare the water absorption profiles among different starch films stored 199 

at different RH. ANOVA with Tukey’s pairwise comparison was applied to compare the 200 

tensile mechanical properties of different starch films. 201 
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3. Results 202 

3.1. Starch structure 203 

3.1.1. Effect of compression molding on the starch structure  204 

Starch extrudates from various extrusion conditions (Table 1) were obtained from a 205 

previous study (Li, Hasjim, Xie, Halley & Gilbert, 2013) with different degrees of 206 

degradation on the molecular, crystalline and granular structures due to thermal energy 207 

(gelatinization) and mechanical energy (starch damage). In order to measure the tensile 208 

mechanical properties, starch extrudates were compression-molded. In spite of the structural 209 

changes from extrusion, the high hydraulic pressure and heat involved in CM may cause 210 

further degradation on the starch molecular, crystalline and granular structures. Thus, the 211 

compression temperature and time needed to be kept as low and short, respectively, as 212 

possible to reduce undesirable structural changes, which can affect the properties of the films. 213 

In this study, such CM condition were chosen because WMS and NMS can only form into 214 

homogeneous films at ≥ 100 °C, while HAMS can only form into films at ≥ 130 °C with the 215 

pressure and time conditions used here. 216 

Molecular structure and granular morphology were analyzed by SEC and SEM, 217 

respectively, to investigate if there were any changes in these structures after CM. There were 218 

no differences in the SEC distributions of starch molecules before and after CM (Supporting 219 

Information Figure S1), indicating the compression conditions chosen have not induced 220 

further molecular degradation. SEM images of the non-fractured (NF) and cryo-fractured 221 

(CF) surfaces (the latter is the internal structure) of WMS and HAMS films are shown in 222 

Figure 2. Before CM, the HAMS extrudates displayed more roughness on the NF surface 223 

than the WMS extrudates, and also showed greater discontinuity in the internal structure. The 224 
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greater amount of granular starch in the HAMS extrudates is due to its higher gelatinization 225 

temperature (Chen, Yu, Chen & Li, 2006; Liu, Yu, Xie & Chen, 2006). After CM, both starch 226 

films display a smoother surface and internal structure, indicating that the high pressure from 227 

CM can compress or disrupt the granular structure (Tabi & Kovacs, 2007) and produce 228 

continuous films.  229 

3.1.2. Effect of aging, relative humidity and time on starch structures 230 

Starch materials can absorb or desorb water at different RH. Changes in the amount of 231 

water, which acts as plasticizer, can influence the mechanical properties of starch films. As 232 

amylose and amylopectin are the main components of starch, lyophilized representative 233 

WMS and HAMS films (WMS-7 and HAMS-7, for which the extrusion processing 234 

conditions prior to CM are listed in Table 1) were used as models to investigate their water 235 

absorption profiles when stored at 33, 54, and 75% RH (Figure 3). The starch films stored at 236 

54 and 75% RH absorbed moisture quickly and the moisture content reached a plateau within 237 

the first 24 h, similar to the results reported by Thunwall et al. (Thunwall, Boldizar & 238 

Rigdahl, 2006). On the other hand, the moisture content of the starch films stored at 33% RH 239 

slightly decreased with the storage time, possibly due to water (plasticizer) remaining in the 240 

starch films lost during the storage at low RH. There were no significant differences in the 241 

water absorption profiles between WMS and HAMS films when stored at 33, 54, and 75% 242 

RH.  243 

Representative WMS, NMS and HAMS films (WMS-7, NMS-7, and HAMS-7, 244 

respectively), were aged for different days to investigate the changes in the crystalline 245 

structure of starch films during conditioning time. After CM, the WMS film was amorphous 246 

and the diffractogram did not show any visible change over 7 days’ storage (Figure 4A); 247 

however, HAMS (Figure 4C) retrograded rapidly within 1 day, but no obvious changes in the 248 
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diffractogram were observed thereafter. WMS and NMS produced less crystallinity than 249 

HAMS due to the speed of amylose retrogradation, and the retrogradation of amylopectin 250 

only changing the degree of crystallinity after long-term storage, which is similar to the 251 

results of van Soest et al. (van Soest, Hulleman, de Wit & Vliegenthart, 1996). The NMS film 252 

showed a weak diffraction pattern of A-type crystallinity (at 15, 17, 18, and 23°), probably 253 

from the remaining ungelatinized granules (Li, Hasjim, Xie, Halley & Gilbert, 2013), after 254 

CM (0 day storage) with a small amount of the V-type crystalline structure (Figure 4B). The 255 

diffraction pattern of the A-type crystallinity became more apparent after 1 day storage, 256 

possibly due to the realignment of the remaining crystallites during storage. The 257 

diffractograms did not show any apparent changes during storage from 8 to 14 days, with the 258 

degree of crystallinity being ~ 6%. Thus, the subsequent mechanical testing experiments were 259 

performed on starch films after being aged for 14 days to ensure structural equilibration.  260 

3.1.3. Effect of hydrothermal treatment on starch crystalline structure  261 

The degree of crystallinity of WMS and HAMS films, observed from the XRD 262 

diffractograms, did not show increases after HTT (Supporting Information Figure S1). This 263 

might be because the crystalline structure formed during HTT is from the leached long-chain 264 

amylose (which can form a more perfect network in a high moisture and temperature 265 

environment), whereas there is no amylose in WMS, and the amount of amylose that can 266 

leach out is negligible for HAMS at the HTT temperature (105°C). On the contrary, more 267 

amylose may leach out from a larger number of gelatinized NMS granules (compared to 268 

HAMS), explaining why it exhibited increased degree of crystallinity after HTT (Figure 5 269 

and Table 3). Hence tensile mechanical testing of hydrothermal treated starch films was only 270 

applied to NMS starch films. Due to sample brittleness, only NMS-1, -2, -3, and -4 were 271 



Page 14 of 38

Acc
ep

te
d 

M
an

us
cr

ip
t

14 
 

suitable for mechanical testing after HTT, and their degrees of crystallinity were analyzed 272 

using XRD (Table 3).  273 

The crystalline patterns of the untreated starch films were the A- and V-types, whereas the 274 

C- and V-types were observed after HTT, indicated by the appearance of a small peak at 5.5° 275 

(Figure 5). The differences in behaviour of NMS 1 and 3 after HTT when compared to NMS 276 

2 and 4 are not explored fully in this paper. The most likely reason for the observed effect is 277 

that an increase in temperature gives greater mobility for chains which do not take part in the 278 

remaining crystalline structures; these chains may be able to be more affected by the HTT. 279 

Previous work (Li, Hasjim, Xie, Halley & Gilbert, 2013) has noted that decreases in 280 

crystallinity occurred with increases in SME; however, the conditions which caused this, low 281 

plasticizer and low temperature, do not seem likely to affect the ability of the starch to 282 

recrystallize after HTT. The diffraction peaks of the HTT starch films were sharper and more 283 

defined, indicating that the crystalline structure became more ordered. DSC results of NMS-1 284 

and -3 (Supporting information Table S1) showed increases in the melting temperatures of 285 

starch crystallites, confirming that the crystalline structure became more stable after HTT.  286 

3.2. Tensile mechanical properties 287 

3.2.1. Effect of relative humidity during aging on starch film tensile properties 288 

The tensile properties of WMS and HAMS films stored at different RH are shown in Table 289 

4. Films stored at a lower RH were generally more rigid, displaying higher tensile strength, 290 

and Young’s modulus, but lower elongation at break than those stored at a higher RH, 291 

consistent with those reported by other researchers (Mali, Sakanaka, Yamashita & 292 

Grossmann, 2005; Mathew & Dufresne, 2002; Shogren & Jasberg, 1994). This is ascribed to 293 

the higher moisture content of film stored at higher RH (Figure 3), which can function as 294 

plasticizer.  295 
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3.2.2. Effect of plasticizer content and amylose content on film tensile properties 296 

Plasticizer content (glycerol and water in this case) has a similar effect on the tensile 297 

mechanical properties to that of RH (Table 1). For starch films with the same amylose 298 

content, significant changes in the mechanical properties only occurred when the amount of 299 

plasticizer was different. Brittle starch films resulted from a lower plasticizer content 300 

displayed higher tensile strength and Young’s modulus, but lower elongation at break, than 301 

films with the higher plasticizer content.  302 

When the mechanical properties were compared among different types of starch films with 303 

the same plasticizer content (Table 1 and Supporting information Table S2), HAMS films 304 

exhibited higher tensile strength than WMS and NMS films, similar to results reported by 305 

others (Li et al., 2011; Lourdin, Valle & Colonna, 1995). At 30% plasticizer content, WMS 306 

film showed a higher tensile strength and Young’s modulus than NMS film. However, at 307 

40% plasticizer content, the Young’s modulus and tensile strength of WMS films were not 308 

significantly different from those of NMS films. Furthermore, the WMS films had similar 309 

Young’s modulus to the HAMS films at both plasticizer contents. At 40% plasticizer content, 310 

HAMS and NMS films had higher values of elongation at break than WMS films; however, 311 

at 30% plasticizer content, NMS films had higher values of elongation at break than WMS 312 

and HAMS films. 313 

3.2.3. Effect of hydrothermal treatment on starch film tensile properties 314 

The tensile mechanical properties, degree of crystallinity and moisture content for the 315 

NMS starch films after HTT are shown in Table 3. Starch films after HTT showed higher 316 

tensile strength and Young’s modulus. There were no significant differences in the moisture 317 

contents, and thus the changes in the mechanical properties were probably largely related to 318 
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the increase in the perfectness of the crystalline structure, which reduced the ability of starch 319 

chains to deform during the tensile tests.  320 

3.3. Correlations between starch structure and tensile mechanical properties 321 

The influence of the structural features of starches on the tensile mechanical properties 322 

was explored separately for WMS and HAMS films at different plasticizer contents (Table 5) 323 

(as there were only two NMS films with the same plasticizer content, the correlation analysis 324 

was not performed on the NMS films). The only significant correlation observed was in the 325 

HAMS films with 30% plasticizer content, showing a negative correlation between –Rh and 326 

tensile strength. 327 

The correlations between amylose content and mechanical properties were also explored 328 

among the films with the same plasticizer content. For starch films at 40% plasticizer content, 329 

there was a negative correlation between elongation at break and –Rh as well as a positive 330 

correlation between elongation at break and amylose content. However, such correlations 331 

were not observed from the starch films with 30% plasticizer content.  332 

Finally, the crystallinity changes induced by HTT were correlated with the various 333 

mechanical properties. The increase in the degree of crystallinity of starch films induced by 334 

HTT was accompanied by an increase in Young’s modulus, although the crystallinity prior to 335 

HTT did not show any significant correlations with the tensile mechanical properties (Table 336 

5). 337 
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4. Discussion  338 

Plasticizer content, amylose content and structural factors all affect the mechanical 339 

properties of TPS materials. As is shown in the results, starch with higher amylose content 340 

(HAMS) showed a higher tensile strength than NMS and WMS when processed with 30% 341 

plasticizer. In addition, an increase in the plasticizer content resulted in a decrease in the 342 

tensile strength and Young’s modulus and an increase in the elongation at break. Those 343 

results are similar to those reported the previous studies (Li et al., 2011; Mali, Sakanaka, 344 

Yamashita & Grossmann, 2005). As the main purpose of this study is to understand the roles 345 

of molecular and crystalline structures on the tensile mechanical properties of starch films, 346 

the correlations among the starch structural features and the mechanical properties are 347 

discussed in greater detail.   348 

For the three types of starches, WMS displays the greatest variations in molecular size 349 

(Table 1) among its extrudates, as the main component (amylopectin) is severely degraded 350 

during extrusion (Li, Hasjim, Xie, Halley & Gilbert, 2013; Liu, Halley & Gilbert, 2010), and 351 

thus it is a good model to understand the relationship between the degraded molecular 352 

structure and the tensile mechanical properties. However, there were no significant 353 

correlations between –Rh and the tensile mechanical properties of WMS films (Table 5). 354 

Different from acid and enzyme hydrolysis, the mechanical shear only cleaved a small 355 

number of glycosidic bonds in amylopectin molecules, as explained previously (Li, Hasjim, 356 

Xie, Halley & Gilbert, 2013), and the degraded amylopectin was still relatively large with a 357 

vast number of short branches. During extrusion and storage, the shorter branches of 358 

amylopectin may form intramolecular interactions; however, these interactions may not be 359 

varied sufficiently by the extrusion processing to cause significant changes in the tensile 360 

mechanical properties of WMS film. On the other hand, a negative correlation between –Rh 361 
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and tensile strength was observed with HAMS films at 30% plasticizer content (Table 5), 362 

probably due to the damage of starch granules along with the degradation of amylopectin, 363 

allowing more amylose to leach out and form stronger network and to co-crystallize with the 364 

partially degraded amylopectin (with longer chain length than in WMS) more effectively. 365 

Similar correlations were not observed from HAMS film with 40% plasticizer content, which 366 

may be attributed to the lesser degree of damage to the starch granules (less shear energy) 367 

than in those with 30% plasticizer content (Li, Hasjim, Xie, Halley & Gilbert, 2013).  368 

Comparing all three types of starch films, an increase in amylose content increases the 369 

elongation at break, which is consistent with previous studies (Li et al., 2011; Lourdin, Valle 370 

& Colonna, 1995). The long branches of amylose (Liu, Halley & Gilbert, 2010; Vilaplana, 371 

Hasjim & Gilbert, 2012) are more flexible than the short branches of amylopectin, and the 372 

random coils of amylose branches can be easily stretched to give higher elongation at break; 373 

however, the shorter branches of amylopectin molecules form a rigid (van Soest & Essers, 374 

1997), inflexible network due to high molecular entanglements. The apparent correlation 375 

between –Rh and the elongation at break was probably because starch with a higher amylose 376 

content inherently has a smaller –Rh (Table 5).  377 

As discussed above, the effective inter-molecular network formed by the longer chains of 378 

amylose improves tensile mechanical properties of starch film (such as higher tensile 379 

strength, Young’s modulus), which is similar to the results from the studies of van Soest et al. 380 

(van Soest, Benes & De Wit, 1995; van Soest, Benes, de Wit & Vliegenthart, 1996), where an 381 

increase in starch molecular weight (longer branches with less acid hydrolysis) leads to a 382 

higher tearing energy. Larger molecules normally have more molecular entanglements and 383 

thus form a stronger network, which increases the energy required to tear the starch film 384 

during tensile testing. As acid degrades starch molecules to a higher extent than the 385 
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degradation of starch molecules induced by extrusion, this phenomenon is not as apparent for 386 

the films made from starch extrudates in the present study.  387 

On the other hand, there were no significant correlations between starch structural 388 

parameters (molecular size and amylose content) and the mechanical properties from the 389 

different starches at 30% plasticizer content. At this level of plasticizer, the molecules might 390 

be restrained in a more rigid network structure, preventing them from undergoing 391 

retrogradation after extrusion and being fully stretched during tensile test. The results suggest 392 

that plasticizer content is more dominant in governing the tensile mechanical properties of 393 

starch film than amylose content and molecular size.  394 

The degree of crystallinity of the starch films produced under different extrusion 395 

conditions did not show significant correlations with tensile mechanical properties (Table 5). 396 

In a previous paper (Li, Hasjim, Xie, Halley & Gilbert, 2013), it was noted that a proportion 397 

of crystallinity in extruded samples was related to the starch granule remnants not completely 398 

gelatinized during extrusion processing. The lack of a correlation between the starch 399 

crystallinity prior to HTT and tensile mechanical properties implies that either the differences 400 

in the degree of crystallinity were not large enough to induce changes in the tensile 401 

mechanical properties, or this crystalline structure was originated from the starch granule 402 

remnants and did not participate in the continuous network that influenced the tensile 403 

mechanical properties. This is different from the inferences from the study by van Soest et al. 404 

(van Soest, Hulleman, de Wit & Vliegenthart, 1996), which concluded that an increase in the 405 

degree of crystallinity (by aging starch films at room temperature) led to an increase in elastic 406 

modulus and tensile strength. This inconsistency brings the question of whether the 407 

crystallinity source, i.e. within granular starch and that of the continuous network, has an 408 

effect on the tensile mechanical properties. It should be noted that the ungelatinized starch 409 
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granules may act as "filler or defects" in the continuous structure, which may promote the 410 

formation of microcracks, causing decreases in elongation at break (Bartczak, Argon, Cohen 411 

& Weinberg, 1999); however,  this was not observed to any extent in this study. 412 

The higher degree of crystallinity of NMS film after HTT was accompanied by 413 

significantly higher Young’s modulus (Table 3). HTT was applied in the present study to 414 

increase the crystallinity of the starch network surrounding the granular starch, allowing the 415 

investigation of the effects of the crystalline structure from retrograded starch on the tensile 416 

mechanical properties. It should be noted that only the crystalline structure was altered by 417 

HTT, whereas molecular size (Chung, Hoover & Liu, 2009) and plasticizer content (Table 3) 418 

were not changed. Thus the increased Young’s modulus is due to the increased degree of 419 

crystallinity after HTT, and greater entanglements may be formed in the continuous network 420 

(melted molecules) of the starch films, which behaves like physical cross-linking, producing 421 

greater resistance to chain mobility. Although there was some retrogradation in the starch 422 

films aged at 54% RH for at least 14 days, the extent of rearranged crystallinity was less than 423 

in those after HTT, which was carried out at a high-temperature, excessive-moisture 424 

environment, providing greater chain mobility. This is confirmed by sharper crystalline peaks 425 

in the XRD diffractograms (Figure 5) and higher melting temperature (Supporting 426 

Information Table S1).  427 

These results imply that the effects of crystallinity on starch mechanical properties are 428 

more complicated than reported previously, such as by van Soest et al. (van Soest, Hulleman, 429 

de Wit & Vliegenthart, 1996). The crystalline structure originating from the starch granule 430 

remnants did not affect the starch mechanical properties, but that of the starch network 431 

surrounding the starch granule remnants controlled the starch mechanical properties. Thus, it 432 

is important to understand the nature of the crystalline structure in starch film when 433 
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correlating with mechanical properties. 434 
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 435 

5. Conclusion 436 

The effects of starch molecular, crystalline and granular structure on the mechanical 437 

properties of starch films were examined. Degradation on the amylopectin molecules did not 438 

cause any significant changes in mechanical properties, although the molecular size (–Rh) 439 

range of the degraded waxy starch used here had a wide variation (38 – 58 nm). The shear 440 

degradation of amylopectin induced by extrusion might be too small to show any significant 441 

changes in the tensile mechanical properties. On the other hand, the longer branches of 442 

amylose molecules played a more dominant role than –Rh in determining tensile mechanical 443 

properties, as long amylose branches may form more inter- or intra-molecular flexible 444 

network, increasing elongation at break. However, the effects of long branches on the 445 

mechanical properties are limited when the plasticizer content is quite low. As distinct from a 446 

previous finding, which did not separate the sources of crystallinity in TPS to explain their 447 

roles in mechanical properties, the present study showed that the crystallization of leached-448 

out amylose in the continuous phase played a more dominant role on the mechanical 449 

properties of TPS than the crystalline structure from the starch granule remnants, which is not 450 

involved in the continuous network. The presence of native starch granules may act as defect 451 

and negatively affect the mechanical properties (e.g. decrease in elongation). Thus in order to 452 

obtain starch materials with superior mechanical properties, it is essential to increase the 453 

crystallinity of the continuous phase and to use starches with longer branches, but lower 454 

gelatinization temperature to maximize the amount of leached-out amylose. .  455 



Page 23 of 38

Acc
ep

te
d 

M
an

us
cr

ip
t

23 
 

Acknowledgement 456 

The authors acknowledge the facilities, and the scientific and technical assistance, of the 457 

Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and 458 

Microanalysis, The University of Queensland, Brisbane, Australia. Financial assistance from 459 

an Australian Research Council Discovery grant, DP130102461, is highly appreciated. 460 

Supporting information 461 

Supplementary data mentioned in the text is provided. 462 

Figure S1. SEC weight distributions of extrudates from waxy and high-amylose maize 463 

starches (WMS and HAMS, respectively) before and after compression molding (CM). 464 
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 541 

Figure captions 542 

Figure 2. SEM images of non-fractured (NF) and cryo-fractured (CF) surfaces of waxy 543 

and high-amylose maize starch (WMS and HAMS, respectively) films before and after 544 

compression molding (CM). 545 

Figure 3. Moisture absorption curve of waxy (WMS, with filled symbols) and high-546 

amylose maize starches (HAMS, with open symbols) films stored at different relative 547 

humidity (● for 33% RH, ■ for 54% RH, and ▲for 75% RH) 548 

Figure 4. X-ray diffractograms of compression molded starch films after being stored for 549 

different times at 54% RH. Red arrows point at the peaks of V-type crystallinity. (A for waxy 550 

maize starch films, B for normal maize starch films, and C for high-amylose maize starch 551 

films) 552 

Figure 5. X-ray diffractograms of compression molded normal maize starch extrudate 553 

before and after hydrothermal treatment (HTT). The extrusion processing conditions of films 554 

prior to compression molding are listed in Table 3.  555 

556 
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Table 1. Processing conditions, starch structure information of starch extrudates and the corresponding mechanical properties of the starch 568 

films a  569 

Temperature SS Plasticizer Crystallinity 
d

Tensile strength Young’s Modulus Elongation at Starch 
extrudate °C rpm % b 

–Rh/ nm c 
% (MPa) (MPa)  

WMS-1 105 70 40 85.7 22.2 9.4 ± 1.0 e CDE f 515 ± 56 B 6.2 ± 0.7 DE 
WMS-2 105 130 40 88.8 20.2 8.3 ± 2.0 DE 365 ± 107 B 6.8 ± 2.0 DE 
WMS-3 135 70 40 99.1 9.58 11.2 ± 0.4 BCDE 540 ± 71 B 6.2 ± 1.9 DE 
WMS-4 135 130 40 96.7 11.2 10.2 ± 2.6 BCDE 542 ± 50 B 5.9 ± 3.9 DE 
WMS-5 105 70 30 55.1 18.5 18.3 ± 2.1 BCDE 1401 ± 113 A 1.5 ± 0.6 E 
WMS-6 105 130 30 38.4 9.03 14.8 ± 2.2 BCDE 1421 ± 49 A 1.6 ± 0.7 E 
WMS-7 135 70 30 58.7 17.1 15.8 ± 2.8 BCDE 1453 ± 171 A 1.4 ± 0.2 E 
WMS-8 135 130 30 41.4 17.7 19.1 ± 3.6 BCDE 1464 ± 261 A 1.7 ± 0.3 E 
NMS-1 105 130 40 40.0 12.7 5.3 ± 0.5 E 217 ± 15 B 17.1 ± 2.1 BCD 
NMS-2 135 70 40 48.0 11.4 8.2 ± 0.8 BCDE 388 ± 52 B 20.7 ± 1.7 AB 
NMS-3 105 130 30 31.0 10.3 5.5 ± 0.3 E 332 ± 33 B 8.9 ± 1.4 CDE 
NMS-4 135 130 30 30.0 13.9 8.4 ± 0.4 DE 613 ± 17 B 9.9 ± 1.0 BCDE 
HAMS-1 105 70 40 9.3 9.48 11.6 ± 0.9 BCDE 645 ± 76 B 11.2 ± 2.2 BCDE 
HAMS-2 105 130 40 10.1 9.18 12.7 ± 1.6 BCDE 676 ± 52 B 15 ± 2.4 BCD 
HAMS-3 135 70 40 9.0 9.04 12.7 ± 1.1 BCDE 543 ± 95 B 18.9 ± 4.1 ABC 
HAMS-4 135 130 40 9.4 9.99 14.5 ± 1.1 BCDE 623 ± 76 B 29 ± 4.0 A 
HAMS-5 105 70 30 9.4 6.39 23.5 ± 3.6 ABC 1568 ± 85 A 2.2 ± 0.3 E 
HAMS-6 105 130 30 9.9 7.36 22.0 ± 5.0 ABCD 1528 ± 73 A 2.1 ± 0.3 E 
HAMS-7 135 70 30 9.3 8.72 24.5 ± 4.2 AB 1510 ± 141 A 2.5 ± 0.7 E 
HAMS-8 135 130 30 8.5 9.33 35.0 ± 5.1 A 1898 ± 253 A 2.8 ± 0.6 E 
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a Extrudates are obtained in the previous study (Li, Hasjim, Xie, Halley & Gilbert, 2013) 570 

b Plasticizer content is the amount of plasticizer used in extrusion, which is used to describe different films, whereas the aged films with same 571 

plasticizer content may lose similar amount of moisture during storage 572 

c –Rh, average hydrodynamic radius. 573 

d The degree of crystallinity from compression molded starch materials after being stored at 54% relative humidity for 2 weeks 574 

e Means ± standard deviations  575 

f Numbers in the same column with different letters are significantly different at p < 0.05 576 

 577 
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Table 2. Treatments and characterization methods for different thermoplastic starch 578 

extrudates. 579 

a The processing conditions of the extrudates are listed in Table 1 580 

581 

Treatment Extrudates a Characterization 
Untreated pellet WMS-7 and HAMS-7 SEM, SEC 
CM WMS-7 and HAMS-7 SEM, SEC 
CM and conditioning at 33, 54, 
and 75% RH WMS-7, HAMS-7 Water absorption 

CM and conditioning at 54% 
RH 

All of WMS, NMS, and 
HAMS Tensile test 

CM, HTT, and conditioning at 
54% RH NMS-1, -2, -3, and -4 Tensile test, XRD, DSC
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 581 

Table 3. Mechanical properties, degree of crystallinity, and moisture content of normal 582 

maize starch films before and after hydrothermal treatment a 583 

Starch film b Degree of 
crystallinity 

% 

Moisture 
content c 

% 

Tensile strength
MPa 

Young’s Modulus 
MPa 

Elongation at 
break 

% 

NMS-1 11.2 12.7 5.3 ± 0.5 Ad 217 ± 15 D 17.1 ± 2.1 A 
NMS-1 HTT 13.0 11.3 8.6 ± 1.9 A 651 ± 107 AB 10.1 ± 1.3 AB

NMS-2 12.6 11.4 8.2 ± 0.8 A 388 ± 52 BCD 20.7 ± 1.7 A 
NMS-2 HTT 22.2 11.0 10.2± 0.8 A 761 ± 50 A 9.9 ± 2.1 AB 

NMS-3 15.3 10.3 5.5 ± 0.3 A 332 ± 33 CD 8.9 ± 1.4 AB 
NMS-3 HTT 16.6 12.1 8.0 ± 1.1 A 784 ± 64 A 2.9 ± 1.2 B 

NMS-4 13.2 13.9 8.4 ± 0.4 A 613 ± 17 ABC 12.9 ± 4.8 AB
NMS-4 HTT 24.2 11.0 10.2 ± 0.6 A 768 ± 48 A 7.8 ± 3.0 AB 

a Numbers in the same column with different letters are significantly different at p < 0.05. 584 

b The extrusion processing conditions of the film prior to compression molding are listed 585 

in Table 1 586 

c Moisture content of film after being conditioning at 54% RH for 14 days 587 

d Means ± standard deviations 588 

589 
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 589 

Table 4. Mechanical properties of waxy and high-amylose maize starch films after being 590 

stored at different relative humidities for 14 days.a 591 

Starch film b Relative 
humidity (%) Tensile strength (MPa) Young’s 

Modulus (MPa)
Elongation at 

break (%)  
WMS-7 33 13.6 ± 2.8 BCc 1940 ± 171 A 0.9 ± 0.2 A 
WMS-7 54 15.8 ±2.8 BC 1453 ± 171 A 1.4 ± 0.2 A 
WMS-7 75 5.2 ± 1.1 C 197 ± 42 B 10.1 ± 3.0 A 

HAMS-7 33 34.8 ± 4.5 A 1944 ± 223 A 4.2 ± 1.0 A 
HAMS-7 54 24.5 ± 4.2 AB 1510 ± 141 A 2.5 ± 0.7 A 
HAMS-7 75 8.7 ± 1.2 BC 256 ± 70 B 23.1 ± 2.7 B 

a Numbers in the same column with different letters are significantly different at p < 0.05. 592 

b The extrusion processing conditions of the film prior to compression molding are listed 593 

in Table 1 594 

c Means ± standard deviations 595 

 596 

597 
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 597 

Table 5. Correlations between starch structures and the tensile mechanical properties of 598 

starch films stored at 54% RH a 599 

a WMS, NMS, and HAMS represent for waxy maize starch, normal maize starch and high 600 

amylose starch. 601 

b Significant correlations (p<0.05) are represented by *, very significant correlations 602 

(p<0.01) are represented by **. The numbers in the table are the correlation coefficients. 603 

Samples Tensile mechanical 
properties 

Amylose 
content 

–Rh Crystallinity 

Elongation at break NA -0.487 0.561 
Tensile strength NA 0.820 -0.845 WMS films with 40% 

plasticizer content 
Young’s modulus NA 0.492 -0.556 

Elongation at break NA -0.886 -0.225 
Tensile strength NA 0.060 0.776 WMS films with 30% 

plasticizer content 
Young’s modulus NA -0.467 0.320 

Elongation at break NA -0.176 0.645 
Tensile strength NA 0.045 0.632 HAMS films with 40% 

plasticizer content 
Young’s modulus NA 0.876 0.232 

Elongation at break NA -0.946 0.888 
Tensile strength NA -0.954* b 0.743 HAMS films with 30% 

plasticizer content 
Young’s modulus NA -0.895 0.458 

Elongation at break 0.749* -0.756* -0.456 
Tensile strength 0.517 -0.454 -0.483 

All the three types of 
films with 40% 

plasticizer content  Young’s modulus 0.377 -0.314 -0.350 
Elongation at break 0.158 -0.090 -0.048 

Tensile strength 0.492 -0.526 -0.307 
All the three types of 

films with 30% 
plasticizer content Young’s modulus 0.140 -0.206 -0.121 

    ∆Crystallinity
∆ Elongation at break   0.409 
∆ Tensile strength   0.978* NMS films before and 

after HTT 
∆ Young’s modulus   0.413 
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c ∆ crystallinity is the different values between the degree of crystallinity before and after 604 

HTT (values are shown in Table 3) 605 

606 
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 606 
Highlights: 607 
 608 

- Thermoplastic starches (TPS) are “green” but mechanical properties are often poor 609 
- The properties of TPSs were related with varied molecular and crystalline structures 610 

induced by extrusion 611 
- Crystalline structure had the greatest effect 612 
- Mechanisms of property enhancement were explored 613 
- Amylopectin degradation induced by extrusion did not affect mechanical properties   614 

 615 

 616 


