
An Investigation of Green Software Engineering

Martina Freed1, Sylwia Bielinska1, Carla Buckley1, Andreea Coptu1,
Murat Yilmaz2 [0000-0002-2446-3224], Richard Messnarz3, and Paul M.

Clarke1,4 [0000-0002-4487-627X]
1 School of Computing, Dublin City University, Dublin, Ireland

{martina.freed2,sylwia.bielinska2,carla.buckley38,andreea.coptu2
} @mail.dcu.ie

2 Department of Computer Engineering, Gazi University, Ankara, Turkey
my@gazi.edu.tr

3 ISCN, the International Software Consulting Network, Graz, Austria
rmess@iscn.com

4 Lero, the Science Foundation Ireland Research Center for Software
paul.m.clarke@dcu.ie

Abstract. The urgency of sustainability concerns has intensified in recent years,
sounding alarm bells over the planet's condition and prompting nearly every in-
dustry and practice to reassess their contributions to the climate crisis. Software
engineering is not immune to this scrutiny. Software engineering practices sig-
nificantly affect the environment and may not align with sustainability goals. Alt-
hough sustainability is a relatively recent focus in software engineering, it has
garnered increased attention, with numerous studies addressing various concerns
and practices. Green software engineering aspires to develop dependable, endur-
ing, and sustainable software that fulfills user requirements while minimizing en-
vironmental impacts. As this green paradigm gains traction in software engineer-
ing, practitioners must incorporate sustainability considerations into future soft-
ware designs. However, despite the surge in green software engineering research,
a universally accepted definition and framework remain elusive. This paper out-
lines green software engineering by explaining its principles, challenges, and
methods for measuring and evaluating software effectiveness in this context.

Keywords: sustainability, energy efficiency, software engineering, green soft-
ware engineering

1 Introduction

Software has the power to support the environment, and create environmentally friendly
solutions to processes that previously contributed to the carbon footprint and climate
change [1]. However, it also has the potential to worsen the climate crisis if proper steps
are not taken to manage energy use and the carbon footprint of the software itself. Green
software development is becoming a discipline of its own: some have even suggested
a new green software engineering (hereafter referred to as “Green SE”) process that is
a change on the traditional software development life cycle with a focus on lowering

mailto:%7d@mail.dcu.ie
mailto:my@gazi.edu.tr
https://www.researchgate.net/publication/272086338_Green_software_and_green_software_engineering_-_definitions_measurements_and_quality_aspects
https://www.researchgate.net/profile/Asoke-Nath-4/publication/276146350_GREEN_SOFTWARE_ENGINEERING_PROCESS_MOVING_TOWARDS_SUSTAINABLE_SOFTWARE_PRODUCT_DESIGN/links/55518b1108ae12808b392a1e/GREEN-SOFTWARE-ENGINEERING-PROCESS-MOVING-TOWARDS-SUSTAINABLE-SOFTWARE-PRODUCT-DESIGN.pdf

2

resource use [2]. With this new discipline comes new implications for software devel-
opers, new practices, new challenges, and new ways of evaluating if the software is
effective in respect of sustainability objectives.

Green IT has been described as a discipline that considers and optimizes the resources
consumed by the life cycle of Information and Communication Technology [1]. This
idea can also be applied to Green SE. However, no single universally accepted defini-
tion of Green SE has been identified in the literature. This research sets out to explain
Green SE by examining its practices, concerns, challenges, and analysis.

The objectives of this paper are to:
1. Provide a contemporary understanding of Green SE in the context of the
growing urgency for sustainability.
2. Examine the environmental implications of traditional software engineering
practices and their alignment with sustainable objectives.
3. Review the evolution and current state of Green SE research, addressing its
various concerns and practices.
4. Elucidate the principles, challenges, and potential methods for measuring
and evaluating the effectiveness of Green SE.
5. Contribute to the development of a universally accepted definition and
framework for Green SE, paving the way for future sustainable software design prac-
tices.

This paper is organized as follows: Section 2 details the research methodology, eluci-
dating our inclusion/exclusion criteria and delineating the related research questions.
Section 3 encompasses the analysis, featuring subsections addressing each of the four
specific research questions. Section 4 contemplates the limitations of our study, while
Section 5 highlights avenues for future research. Finally, Section 6 offers the research
conclusions.

2 Research Methodology

2.1 Search Strings

A multivocal literature review (MLR) [49] was conducted for this research. While most
of the sources cited are peer reviewed (published academic literature), grey literature is
also included. The grey literature included is from platforms which ostensibly incorpo-
rate robust oversight and moderation.

Google Scholar was used to identify the literature sources. Search strings included
‘green software engineering’, ‘energy efficiency software’, ‘green software engineer-
ing practices’, ‘green software engineering sustainable design’, ‘disadvantages of green
software engineering’, ‘cost of green software engineering’, ‘green software engineer-
ing universal framework’, ‘life cycle assessment’, ‘green metrics’.

https://www.researchgate.net/publication/272086338_Green_software_and_green_software_engineering_-_definitions_measurements_and_quality_aspects

3

2.2 Inclusion/Exclusion

When searching on Google Scholar, we defined our inclusion/exclusion criteria to be
the first 20 articles from 2019 or later. Software engineering, and especially Green SE,
is an evolving discipline, so we wanted to ensure our research was current. We also
took a brief look into the topics of the papers that came up to decide if they were rele-
vant to our research questions. Although we limited our results on Google Scholar to
papers since 2019, we did include some sources that were older. This was because they
were cited by a paper published in 2019 or later, and they provided useful background
information on the topic. 180 papers were identified as potential sources. We read the
titles, key words, and/or the abstracts to evaluate the relevance and credibility. We also
looked into sources that were cited by the original sources to find more information.
Ultimately, we included a total of 48 sources.

To address the central research question of this paper, "What is Green Software Engi-
neering?", we have identified the following four subsidiary research questions:

• What are the fundamental principles and practices of green software engineer-
ing?

• In what ways can software developers decrease the energy consumption of
software?

• What are the primary challenges confronting green software engineering?
• How can we assess and quantify the environmental impact of green software

engineering?

3 Analysis

3.1 What are the principles and practices of Green Software Engineering?

The growing demand for software products and services has led to an increase in the
energy consumption and carbon footprint of the IT industry. As a result, it has become
critical to adopt sustainable practices in software engineering to mitigate the environ-
mental impact of the software development lifecycle [3]. The adoption of a green mind-
set is essential for all stakeholders, including software developers, software develop-
ment organisations, end-users, and society as a whole. According to Professor San
Murugesan [4], the IT sector and users must develop a positive attitude toward address-
ing environmental concerns and adopt forward-looking, green-friendly policies and
practices.

Green SE consists of a set of principles and practices aimed at reducing the environ-
mental impact of software development. The principles are high-level guidelines that
describe the core values and concepts of Green SE, while the practices are specific
actions that can be taken to implement those principles. The principles provide a con-
ceptual framework for Green SE, while the practices offer practical guidance on how
to achieve the goals set out by the principles. By adopting Green SE principles and
practices, software developers can aspire to reduce the carbon footprint of software

4

development and contribute to a more sustainable future. The principles help to guide
decision-making and provide a sense of direction, while the practices ensure that ac-
tions are aligned with the principles and contribute to the overall goal of environmental
sustainability.

This section explores the key principles and practices of Green SE. The key principles
include energy efficiency, sustainable design, life cycle assessment, and renewable en-
ergy sources. For each principle, we discuss the key practices that can be implemented
to achieve the goals set out by the principles.

Energy efficiency is one of the key principles of Green SE. It involves optimizing en-
ergy usage at every stage of the software development lifecycle. This principle can be
achieved by employing best practices such as reducing computational complexity,
power management, and using cloud-based services. Minimizing computational com-
plexity involves optimizing the algorithms and data structures used in the software to
reduce the amount of processing power required. Power management involves optimiz-
ing the hardware and software settings to minimize energy consumption [5]. Finally,
using cloud-based services is another way to achieve energy efficiency. Cloud-based
services enable software to be run on remote servers, which are optimized for energy
efficiency [6]. This means that the energy required to power the software is not con-
sumed on the user's hardware, which can be less energy-efficient.

Sustainable design is a key principle focused on designing software systems that are
environmentally friendly and sustainable. Essential practices for sustainable design in-
clude minimizing energy consumption, reducing waste, and designing for the future
[7]. Minimizing energy consumption involves designing software systems to be energy-
efficient at every stage of the software development lifecycle, while reducing waste
involves designing software systems that minimize the amount of waste generated at
every stage of the software development lifecycle. Designing for the future involves
designing software systems that are flexible, scalable, and adaptable to future changes
in technology and user needs [8].

Life cycle assessment is the principle of evaluating the environmental impact of soft-
ware throughout its entire lifecycle. A comprehensive life cycle assessment involves
practices such as carbon footprint analysis, energy consumption analysis, and waste
generation analysis. Carbon footprint analysis involves measuring the amount of carbon
emissions generated by the software at every stage of the software development lifecy-
cle. This can be achieved by using tools such as the Software Sustainability Assessment
Framework, which helps to measure the environmental impact of software [9]. Energy
consumption analysis involves measuring the amount of energy consumed by the soft-
ware at every stage of the software development lifecycle. This can be achieved by
using tools such as the Energy Consumption Analysis Tool, which helps to measure the
energy consumption of software.

Renewable energy sources are a key principle of Green SE that can help to reduce the
environmental impact of software development. By using renewable energy sources,

5

such as solar or wind power, software development can be made more sustainable, re-
ducing the reliance on non-renewable energy sources [10]. The use of renewable energy
sources can be achieved through practices such as the use of green hosting services, the
adoption of green data centres, and the implementation of energy-efficient hardware.
One practice is the use of green hosting services. These services provide data centres
that are powered by renewable energy sources such as solar or wind power. By using
green hosting services, the environmental impact of software development can be min-
imized. Another practice involves the adoption of green data centres. Green data centres
are data centres that are designed to be energy-efficient and are powered by renewable
energy sources [11]. Green data centres can help to reduce the carbon footprint of soft-
ware development by minimizing energy consumption.

In summary, Green SE is essential for mitigating the environmental impact of the soft-
ware development lifecycle. The key principles of energy efficiency, sustainable de-
sign, life cycle assessment, and renewable energy sources provide a framework for
achieving environmental sustainability. The key practices associated with each princi-
ple offer practical guidance on how to achieve the goals set out by the principles, con-
tributing to a more sustainable future.

3.2 How can software developers reduce the energy consumption of software?

Energy use tend to increase with larger populations and increased reliance on technol-
ogy. Reducing energy consumption has become critical, as has concern with carbon
emissions. Refactoring code is the practice of editing code to improve its design without
changing its functionality. Refactoring may mean a number of different things: editing
methods to make them more concise, remove duplicate code, or shorten a class [12].
Refactoring code has many potential benefits, including decreasing the use of energy
while the program does the same job. For example, a triple refactoring combination on
applications for portable devices written in C# and Java can considerably lower power
consumption [13]. By refactoring code, software developers can not only make their
code more readable and elegant, but also improve its energy efficiency.

The programming languages employed in a system may also influence the energy con-
sumption of an application. Researchers utilized The Computer Languages Benchmark
Game framework to collect 13 problems, finding that C used the least energy, memory,
and was the fastest [14]. They also stated that “Compiled languages tend to be, as ex-
pected, the fastest and most energy efficient ones” (14) as opposed to interpreted and
virtual machine languages. However, faster languages are not always more energy ef-
ficient [14]. This also does not mean that there is one best programming language to
use for a piece of software if the developer is considering energy, time, and memory
usage.

When searching for Green SE, one may find many resources about the usefulness of
cloud computing. Cloud computing can enable customers to pay for software on de-
mand instead of owning all of the hardware [15]. Before the cloud, companies and in-
dividuals often had more hardware and servers than were necessary. The cloud fixed

6

this problem since these services are delivered over the internet when they are needed.
It can be cheaper and more energy efficient for companies [16]. However, simply be-
cause something uses the cloud does not necessarily mean it is energy efficient. Many
large companies have cloud data centers, which consume massive amounts of energy
to operate, take up space, and require significant energy to cool [15]. Power consump-
tion of the cloud is on the rise, which inevitably contributes to carbon emissions. De-
creased carbon emissions is a central focus of Green SE [2]. Virtualization (running
multiple virtual computers on one piece of hardware), consolidation (consolidated the
number of servers so there are less idle servers), a thermal aware approach to data cen-
ters, and static and dynamic power management are some cloud-based energy saving
approaches [17].

Software defined networking (SDN) is a similar approach to cloud computing because
it “is capable of providing the solutions without the knowledge of underground com-
plex network architecture” [18]. SDN allows software developers to manage network
operation through software. In a traditional network architecture where elements are
not globally controlled [19]. In a traditional network, specific knowledge of the infra-
structure may be a necessity [20]. Due to the similarities with cloud computing, there
are similar concerns of energy efficiency in software defined networking. Using sleep
state of end devices and managing traffic have been suggested as techniques to achieve
this [18].

Beyond the energy efficiency of programs being difficult to measure, there has been
uncertainty as to how aware software developers are of energy efficiency. When ques-
tions regarding energy efficiency on Stack Overflow were compared with other ques-
tions on the platform, it was discovered that questions about energy efficiency are pop-
ular and diverse in themes (code design, energy use, noise, general questions), but the
answers are not always good quality [21]. Improving the answers to these questions
would help software developers be prepared to write energy efficient programs.

Although energy efficiency is difficult to measure, some researchers sought out to es-
tablish commonly agreed upon terminology surrounding energy efficiency of software.
The results noted that this terminology did not exist, leading to the creation of a Green
Software Measurement Ontology (GSMO) that includes terms and definitions such as
Test Case, Test Case Measurement, and a Measuring Instrument [22]. A hardware-
based approach was used to measure energy use, with an Energy Efficiency Tester
(EET) and software tool called ELLIOT used to process the data. The EET includes a
power source, sensors, and a system microcontroller to gather the information gathered
by the sensors and store them in memory. The Green Software Measurement process
includes defining the requirements, configuring the measurement environment with the
measuring instrument, performing the measurement, and doing data analysis on that
test case [22]. Published in 2021, and the authors hoped that it would establish a practice
on measuring energy use. Creating energy efficient software is easier if developers can
gauge the energy use of software. A focus on energy efficiency can only be useful if
there exists a way to measure energy use and gauge the impact.

https://reader.elsevier.com/reader/sd/pii/S2210537921000494?token=19F50456E1DAB68CD001BCCF743EE64F68BF1A176F55118961F39DA900A1BFC8F644D5D3DB137EBFF2D897AE9AFDBBB1&originRegion=eu-west-1&originCreation=20230219174718

7

3.3 What are the challenges facing Green Software Engineering?

As the topic of environmental sustainability becomes a widespread concern throughout
many areas of computer science, there has been a recent spike in research into Green
SE and sustainable computing. Although green software is a topic of increasing interest
within the IT industry, it is not a technology that is commonly implemented within
these industries. The reason for the lack of green software implementation can come
down to three main challenges that a company may be faced with when implementing
such technology. These challenges being the lack of awareness, lack of a universal
framework and the cost of implementation.

Green software is still a relatively new concept. Results from a recent survey indicates
that sustainable software is a new concern for software engineers and, despite a high
interest in the subject, they have a low perception of the impacts of sustainability
throughout the development cycle [23]. A study carried out in 2017 found that, while
viewing software sustainability as important, software engineers are primarily con-
cerned with the technical aspects of software sustainability rather than the environmen-
tal aspects [24]. When referring to software sustainability, they address organisational
and economic issues but lack considerations for environmental issues. Through this
study, there is a diverse understanding of what sustainable software is which suggests
that a clear definition of sustainable software has yet to be refined and distributed within
the IT industry. The results of this survey further reveal that software practitioners have
a skewed understanding of sustainability concepts in the software development process
[23]. This is due to their targeted perceptions on the reuse of code in regard to sustain-
able software. This perception is still relevant to Green SE as it does have a positive
environmental impact. However, it prevents companies from becoming green as they
have their focus only on one dimension of the four major dimensions of software sus-
tainability as defined in a proposed sustainability framework [25].

Companies are yet to fully adapt to these dimensions and utilise any other green models,
processes, methods and tools that can support the development of their software in a
meaningful way. This can be further evidenced through a recent study where, out of
nineteen software engineers interviewed, fourteen participants reported that they have
worked on software that was not sustainable [26]. This shows that not only are compa-
nies not implementing all dimensions of green software, but they are also not prioritis-
ing the technical dimension that they put most emphasis on in the development process.
Thus, it can be found that companies do not promote sustainable development within
the company [23]. While companies tend to focus on the technical aspects of sustaina-
ble software, researchers are mainly interested in proposing frameworks, approaches
and models [27]. This shows a gap between the level of interest between academia and
the industry which needs to be aligned. It is important for companies in the IT industry
to recognize the importance of Green SE and the benefits that it can provide in order to
spread awareness within the industry and allow for higher rates of research and imple-
mentation of green software.

The lack of awareness of Green SE means there is an additional deficit in the amount
of research going into developing a universal Green SE framework. While a number of

8

frameworks have been proposed, they are not being widely used in the computing in-
dustry. This is due to the lack of a universal framework that can be used by companies.
Universal frameworks are an essential part of software engineering by acting as a com-
mon reference point for engineers to aid in developing software regardless of where in
the world they are working. Without this framework, the companies that want to im-
plement green software will need to research and develop their own framework to work
from. Existing software engineering models such as ISO 25000 and ISO 25010 do not
consider sustainability as a quality attribute [27]. As a result, over a third of organisa-
tions in Europe do not implement green IT practices and less than one fifth of the or-
ganisations monitor how their employees reduce their energy consumption [28]. The
main reason given for this is that there is no official legislation in their countries en-
forcing green practices. The majority of Green SE research is happening in developed
countries due to the peak in interest. However, in developing countries, there is little
research carried out regarding this topic. The focus of these countries is mostly on de-
veloping software applications and ICT products for the developed countries [29]. As
there is a lack of universal interest in the topic of Green SE, there is insufficient incen-
tive for research to be invested towards a universal green software framework. The
existence of a universal framework is essential to allow for better Green SE processes
and will promote the implementation of green software into their IT businesses and
organisations.

The initial implementation cost of green technology may be significant as there are
many aspects to the implementation. Not only is it necessary to change the coding
standards in accordance with a green framework, but there are also additional payments
involved in research and buying new equipment [30]. Although green technology be-
comes more cost effective over time, this high upfront cost of the technology imple-
mentation process can deter businesses from making the switch [31]. Another addi-
tional payment concerns maintenance costs which may be increased due to the need to
understand the new system and the changes that need to be analysed. Training may also
be necessary to understand the original and new programming languages, systems and
methods [32]. As there is no universal green software framework, there will be addi-
tional charges in order to develop a framework that can be used within the industry.
The cost of designing, implementing, evaluating and deploying a framework may be of
the order of c.USD$15-20 [33]. The total price of all the resources and maintenance
needed for a company to convert from their current software to green software may
deter them from making the switch to a more sustainable approach.

3.4 Green Software Engineering is Part of Green System Engineering?

The European Union supported the development of green and sustainable concepts and
in the last 4 years also blue print projects [52] to develop skills and concepts to move
towards a green economy. European studies about future skills [54] required to em-
power this new development have been performed for e.g. the automotive sector. When
looking at solutions for green technologies in the automotive sector it is obvious that
the product strategy, the system and the software life cycle are interlinked [51], e.g.

9

software implementing an electric powertrain is supporting the green economy. How-
ever, this requires a system design integrating high voltage batteries, electric motors,
sensors, and software on electric control units. Moreover, if the mechanical design of
the car has a high wind resistance the electric power in the battery is inefficiently con-
sumed. So in fact all three layers (product, system, software life cycle) and their inte-
gration play a role for achieving a green solution [53].

A modern car, plane, ship, etc. may be largely controlled by functions that are imple-
mented in software, so software is a key to change functional behavior of systems. For
instance, software can switch to green mode and in this case reduce the consumption
and at the same time would force the driver to an economy mode. Most cars have mean-
while an over the air update functionality. So one strategy could be an over the air
update of a fleet to drive in green economy mode decided by e.g. a region or govern-
ment. This in fact makes software the nearly most important turn key.

3.5 How can we measure and quantify the impact of green software engineering
on the environment?

Green SE is a field that seeks to reduce the environmental impact of software develop-
ment and operation. Measuring and quantifying the impact of Green SE on the envi-
ronment is crucial for promoting sustainable development practices [34]. Quantitative
and qualitative methods can be used to achieve a comprehensive understanding of the
environmental impact of software development and operation [35].

Quantitative methods include life cycle assessment. In the context of Green SE, life
cycle assessment can be applied to assess factors such as energy consumption, green-
house gas emissions, and resource use [36]. Life cycle assessment involves identifying
and quantifying the environmental impacts of each stage of a product or service's life
cycle, from raw material extraction and processing to production, use, and disposal. By
doing so, life cycle assessment provides a comprehensive understanding of the envi-
ronmental impact of the entire life cycle of a product or service, enabling decision-
makers to identify opportunities for improvement [37].

Energy efficiency metrics such as power usage effectiveness and data center infrastruc-
ture efficiency can also be used to measure the amount of energy used by software
systems during development and operation [38]. Power usage effectiveness is a ratio
that measures the amount of energy used by a data center facility compared to the
amount of energy used by the IT equipment it houses [39]. Data center infrastructure
efficiency is similar to power usage effectiveness but takes into account the energy
efficiency of the IT equipment itself. These metrics can help software developers and
data center operators to identify opportunities to improve energy efficiency and reduce
energy consumption [40].

Carbon emissions reduction can also be quantitatively measured by calculating the re-
duction in greenhouse gas emissions achieved through measures such as server consol-
idation, virtualization, and energy-efficient hardware. Server consolidation involves re-

10

ducing the number of physical servers in a data center by consolidating multiple appli-
cations onto a single server [41]. Virtualization involves creating multiple virtual serv-
ers on a single physical server, allowing for more efficient use of hardware resources
[42]. By reducing the number of physical servers in a data center and optimizing the
use of IT equipment, carbon emissions can be reduced.

Overall, these quantitative methods provide a rigorous and systematic approach to
measuring the environmental impact of software development and operation. By quan-
tifying factors such as energy consumption, greenhouse gas emissions, and resource
use, decision-makers can identify opportunities to improve the environmental sustain-
ability of software systems [43]. These methods also provide a basis for comparing the
environmental performance of different software systems and evaluating the effective-
ness of Green SE practices. Qualitative methods can provide valuable insights into the
impact of Green SE on the environment. Surveys, interviews, and case studies are com-
monly used qualitative methods [44].

Surveys can be used to gather data on the attitudes and behaviours of software devel-
opers regarding Green SE practices. For example, a survey might ask developers about
their awareness of energy-efficient coding practices or their use of sustainable software
development tools [45]. The data collected from surveys can be used to identify trends
in Green SE practices, as well as barriers to the adoption of these practices.

Interviews with stakeholders such as customers, employees, and management can pro-
vide insights into the impact of Green SE on business operations and customer satis-
faction. For example, an interview with a customer might reveal that they are more
likely to purchase software products that are developed using sustainable practices [46].
An interview with an employee might reveal that they are more likely to stay with a
company that prioritises environmental sustainability. Interviews with management can
provide insights into the cost-effectiveness of Green SE practices, as well as the impact
of these practices on the company's bottom line.

Case studies can provide detailed information on specific Green SE projects and their
impact on the environment. For example, a case study might examine the development
of an energy-efficient software application and the resulting reduction in greenhouse
gas emissions [47]. Case studies can also provide insights into the challenges and op-
portunities associated with Green SE, as well as best practices for implementing sus-
tainable software development practices [48].

Overall, qualitative methods provide a more nuanced and detailed understanding of the
impact of Green SE on the environment. By gathering data on attitudes, behaviours,
and specific projects, qualitative methods can provide valuable insights into the human
and organisational factors that influence the adoption of Green SE practices [46]. These
methods can also help to identify opportunities for collaboration and communication
among stakeholders, as well as potential barriers to the adoption of sustainable software
development practices.

11

Green SE is a vital field for promoting sustainable development practices. Measuring
and quantifying the impact of Green SE on the environment requires the use of both
quantitative and qualitative methods. Life cycle assessment, energy efficiency metrics,
carbon emissions reduction, surveys, interviews, and case studies are all methods that
can be used to achieve a more comprehensive understanding of the environmental im-
pact of software development and operation. By using these methods, the benefits and
challenges of implementing Green SE practices can be identified, and strategies for
reducing the environmental impact of software development and operation can be de-
veloped.

4 Research Limitations

When discussing Green SE, it is important to consider several limitations that may im-
pact research and implementation. Firstly, the limited literature available may not be
well-established or robust enough to draw solid conclusions, which means that research
may not provide a comprehensive analysis of the topic. Additionally, the availability
and quality of data can pose limitations on research as there may not be enough reliable
data available to support meaningful conclusions. Moreover, the context in which
Green SE practices are implemented may vary depending on industry, organisational
culture, and technology infrastructure, which means that research findings may not be
generalizable across different contexts. Finally, potential biases in the research design
and the lack of a standardized framework or set of practices may impact the validity
and reliability of findings.

Another set of limitations pertains to the implementation of Green SE practices in real-
world settings. Even if practices are identified and validated, implementation may be
challenging due to technical, organisational, or financial constraints. Research may not
fully address these challenges due to time and resource constraints, leading to a narrow
focus on specific aspects of Green SE, such as energy efficiency or sustainable design.
In conclusion, a nuanced understanding of the limitations of Green SE is crucial to
interpret research findings with appropriate caution and to develop effective strategies
for implementing these practices.

It is important to highlight that the initial research was undertaken by four final year
undergraduate students over a 6-week period. Although preliminary training in aca-
demic research and writing was provided, the core primary researchers were essentially
novices. To further mitigate this risk, a senior academic was available on a weekly basis
to address any questions and to direct the work. Later, the work was reviewed and ex-
tended by a team of senior academics. Nevertheless, the experience of the core research-
ers and the limited time frame available for the review has reduced the academic com-
pleteness of the process, as such it might be considered research methodology light,
therefore tending towards an experience report. An obvious area for improvement con-
cerns the consistent treatment of quality characteristics in the included works, which is
not well reported.

12

5 Directions for Future Research

These findings emerged from a six-week project. Future research efforts can try to an-
swer the question with a broader scope. Ideally, a consensus regarding the definition of
Green SE would be reached, along with mutually agreed-upon methods for implement-
ing Green SE practices. One possible solution involves conducting further surveys of
software developers to gauge their understanding of Green SE. Additionally, now that
sustainability has been a concern in software engineering for at least several years, the
effectiveness of these Green SE practices can be evaluated. Consequently, software
practitioners can discern which practices yield the most significant environmental ben-
efits and are worth incorporating into their work.

Inefficient code and associated algorithmic implementation can increase the hardware
and indeed maintenance costs, and therefore it is perhaps an appropriate time to refo-
cus efforts on efficiency in existing system. This can be as simple as unnecessary
code included in systems but never actually used, it nevertheless requires hardware re-
sources and associated electrical supply.

6 Conclusions

The urgency to address sustainability concerns has led to a growing interest in Green
SE, which aims to create reliable, sustainable software that meets the needs of users
while reducing environmental impacts. Despite the recent spike in research, there is
still no universally accepted definition or framework for Green SE. Through a multivo-
cal literature review, this paper examines the fundamental principles and practices of
Green SE, the obstacles confronting the field, and methods for curbing the energy con-
sumption of software systems. As software practitioners embrace the green agenda,
they will need to take sustainability into account in the future of software design, and
work towards creating software that not only meets the needs of users but also mini-
mizes the environmental impact of their work.

To achieve this goal, software developers need to adopt practices such as code reuse,
energy-efficient design, and sustainable software lifecycle management. Part of this
task will inevitably involve embracing emerging cloud computing paradigms such as
function-as-a-service (FaaS) [50]. However, implementing Green SE practices can pose
significant challenges, including technical, economic, and social barriers. To overcome
these challenges, developers can leverage green metrics, quantitative and qualitative
methods, and life cycle assessment to evaluate the environmental impact of their soft-
ware and make data-driven decisions.

In conclusion, Green SE signifies an essential stride towards forging a sustainable fu-
ture, with software developers holding a pivotal role in this pursuit. By adopting Green
SE practices, developers can reduce the carbon footprint of software systems and con-
tribute to global efforts to mitigate climate change. However, achieving this goal will
require ongoing research, collaboration, and innovation in the field of software engi-
neering.

13

Acknowledgements. This research is supported in part by SFI, Science Foundation
Ireland (https://www.sfi.ie/) grant No SFI 13/RC/2094 P2 to–Lero - the Science Foun-
dation Ireland Research Centre for Software.

References

1. Kern, E., Dick, M., Naumann, S., Guldner, A., Johann, T.: Green software and green soft-
ware engineering–definitions, measurements, and quality aspects. In First International Con-
ference on Information and Communication Technologies for Sustainability, pp. 87-91.
ETH Zurich, Zurich, Switzerland (2013).

2. Ray, S.: Green software engineering process: moving towards sustainable software product
design. Journal of Global Research in Computer Science 4(1), 25-29 (2013).

3. Raja, SP.: Green computing and carbon footprint management in the IT sectors. IEEE Trans-
actions on Computational Social Systems (2021).

4. Murugesan, S.: Harnessing green it: Principles and practices. IT Professional, pp. 24-33
(2008).

5. Georgiou, S., Rizou, S., Spinellis, D.: Software development lifecycle for energy efficiency.
ACM Computing Surveys (2019).

6. Chauhan, NS., Saxena, A.: A green software development life cycle for cloud computing.
IT Professional (2013).

7. Saputri, TR., Lee, S-W.: Integrated Framework for incorporating sustainability design in
software engineering life-cycle: An empirical study. Information and Software Technology
(2021).

8. Moises, AC., Malucelli, A., Reinehr, S.: Practices of energy consumption for Sustainable
Software Engineering. 2018 Ninth International Green and Sustainable Computing Confer-
ence (IGSC) (2018).

9. Erdélyi, K.: "Special factors of development of green software supporting eco sustainabil-
ity," 2013 IEEE 11th International Symposium on Intelligent Systems and Informatics
(SISY), Subotica, Serbia, pp. 337-340 (2013).

10. Verdecchia, R., Lago, P., Ebert, C., de Vries, C.: "Green IT and Green Software," in IEEE
Software, Vol. 38, no. 6, pp. 7-15, Nov.-Dec (2021).

11. Yuan, H., Liu, H., Bi, J., Zhou, MC.: Revenue and energy cost-optimized Biobjective task
scheduling for Green Cloud Data Centers. IEEE Transactions on Automation Science and
Engineering, pp. 817-830 (2021).

12. Fowler, M.: Refactoring. Addison-Wesley Professional, Boston, MA, USA (1999).
13. Şanlıalp, İ., Öztürk, MM., Yiğit, T.: Energy Efficiency Analysis of Code Refactoring Tech-

niques for Green and Sustainable Software in Portable Devices. Electronics 11(3), 442
(2013).

14. Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, JP., Saraiva, J.: Ranking
programming languages by energy efficiency. Science of Computer Programming 205,
102609 (2021).

15. Jain, A., Mishra, M., Peddoju, SK., Jain, N.: Energy efficient computing-green cloud com-
puting. In: 2013 international conference on energy efficient technologies for sustainability,
pp. 978-982. IEEE, Nagercoil, India (2013).

16. What is cloud computing?, https://aws.amazon.com/what-is-cloud-computing/, last ac-
cessed 2023/22/12.

https://aws.amazon.com/what-is-cloud-computing/

14

17. Bharany, S., Sharma, S., Khalaf, O.I., Abdulsahib, G.M., Al Humaimeedy, A.S., Aldhyani,
T.H., Maashi, M., Alkahtani, H.: A systematic survey on energy-efficient techniques in sus-
tainable cloud computing. Sustainability 14(10), 6256 (2022).

18. Rout, S., Sahoo, K.S., Patra, S.S., Sahoo, B., Puthal, D.: Energy efficiency in software de-
fined networking: A survey. SN Computer Science 2(4), 308 (2021).

19. Singh, S., Jha, R.K.,: A survey on software defined networking: Architecture for next gen-
eration network. Journal of Network and Systems Management 25, 321-374 (2017).

20. What is Software-Defined Networking (SDN)?, https://www.vmware.com/topics/glos-
sary/content/software-defined-networking.html, last accessed 2023/22/12.

21. Pinto, G., Castor, F., Liu, Y.D.: Mining questions about software energy consumption. In:
Proceedings of the 11th Working Conference on Mining Software Repositories, pp. 22-31.
Association for Computing Machinery, Hyderabad, India (2014).

22. Mancebo, J., Calero, C., García, F., Moraga, M.Á. and de Guzmán, I.G.R.,: FEETINGS:
framework for energy efficiency testing to improve environmental goal of the software. Sus-
tainable Computing: Informatics and Systems 30, 100558 (2021).

23. Karita, L., Mourão, B.C., Machado, I.C.,: Software industry awareness on green and sus-
tainable software engineering: a state-of-the-practice survey, SBES (2019).

24. Groher, I., Weinreich, R.,:An Interview Study on Sustainability Concerns in Software De-
velopment Projects, 2017 43rd Euromicro Conference on Software Engineering and Ad-
vanced Applications (2017).

25. Lago, P., Aklini Kocak, S., Crnkovic, I., Penzensradler, B,: Framing Sustainability as a Prop-
erty of Software Quality, Communications of the ACM 70-78. (2015).

26. Souza, M.R., Haines, R.,Vigo, M., Jay, C,:What Makes Research Software Sustainable? An
Interview Study With Research Software Engineers., 2019 IEEE/ACM 12th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE) (2019).

27. Mourão, B.C., Karita, L., Machado, I.C.,: Green and Sustainable Software Engineering - a
Systematic Mapping Study, SBQS (2018).

28. Lago, P.; Gu, Q.; Bozzelli, P. ,: A systematic literature review of green software metrics,
VU Technical Report (2014).

29. Kumar, A.,: An Empirical Study on Green and Sustainable Software Engineering, 14th
WSEAS International Conference on Software Engineering, Parallel and Distributed Sys-
tems (SEPADS '15), Vol. 27 (2015)

30. Iravani, A,., Hasan, M., Zohoori, M.,: Advantages and Disadvantages of Green Technology;
Goals, Challenges and Strengths , International Journal of Science and Engineering Appli-
cations, Vol 6 Issue 09, ISSN-2319-7560 (2017).

31. Applover.com. Pros and cons of green computing – is it worth the cost?, https://ap-
plover.com/blog/pros-and-cons-of-green-computing-is-it-worth-the-cost/, last accessed
2023/02/23.

32. Ibrahim, S.R.A., Yahaya, J., Salehudin, H., Deraman, A.,: The Development of Green Soft-
ware Process Model A Qualitative Design and Pilot Study, (IJACSA) International Journal
of Advanced Computer Science and Applications, Vol. 12, No. 8 (2021).

33. David, O., Ascough II, J.C., Lloyd, W, Green, T.R., Rojas, K.W., Leavesley, G.H.,Ahuja,
L.R.,: A software engineering perspective on environmental modelling framework design:
The Object Modeling System, Environmental Modelling and Software, Vol. 39, pp 201-213
(2013).

34. Calero, C., Piattini, M.: Introduction to green in software engineering. Green in Software
Engineering, pp. 3–27 (2015).

35. Turkin, I., Vykhodets, Y.: Software engineering master's program and Green IT: The design
of the software Engineering Sustainability course, pp. 662-666. Kyiv, UKraine (2018).

https://www.vmware.com/topics/glossary/content/software-defined-networking.html
https://www.vmware.com/topics/glossary/content/software-defined-networking.html
https://applover.com/blog/pros-and-cons-of-green-computing-is-it-worth-the-cost/
https://applover.com/blog/pros-and-cons-of-green-computing-is-it-worth-the-cost/

15

36. Mohankumar, M., Anand Kumar, M.: A GREEN IT STAR MODEL APPROACH FOR
SOFTWARE DEVELOPMENT LIFE CYCLE. International Journal of Advanced Technol-
ogy in Engineering and Science, Vol. 03, No. 01 (2015).

37. Wolfram, N., Lago, P., Osborne, F.: Sustainability in software engineering. Sustainable In-
ternet and ICT for Sustainability, pp. 1-7. SustainIT, Funchal, Portugal (2017).

38. Kern, E., Guldner, A., Naumann, S.: Including software aspects in green it: How to create
awareness for Green Software issues. Green IT Engineering: Social, Business and Industrial
Applications, pp. 3–20 (2018).

39. Forti, S., Brogi, A.: Green application placement in the cloud-iot continuum. Practical As-
pects of Declarative Languages, pp. 208–217 (2022).

40. Ganesan, M., Kor. A-L., Pattinson, C., Rondeau, E.: Green Cloud Software Engineering for
big data processing. Sustainability 12:9255 (2020).

41. Almusawi, SMY., Khalefa, MS.: Study of knowledge management framework to enhance
Enterprise Resource Planning system in Green software development process," Interna-
tional Conference on Communication & Information Technology (ICICT), pp. 1-6. Basrah,
Ira (2021).

42. Kern, E., Silva, S., Guldner, A.: “Assessing the sustainability performance of Sustainability
Management software”, Technologies, 6(3), p. 88 (2018).

43. Almusawi, SMY., Khalefa, MS.: Study of knowledge management framework to enhance
Enterprise Resource Planning system in Green software development process, pp. 1-6. Bas-
rah, Iraq (2021).

44. Ahmad Ibrahim, SR., Yahaya, J., Sallehudin, H.: Green Software Process Factors: A quali-
tative study. Sustainability 14:11180 (2022).

45. Abdalkareem, R., Mujahid, S., Shihab, E., Rilling, J.: "Which Commits Can Be CI
Skipped?," in IEEE Transactions on Software Engineering, Vol. 47, no. 3, pp. 448-463
(2021).

46. Raisian, K., Yahaya, J., Deraman, A.: Current Challenges And Conceptual Model Of Green
And Sustainable Software Engineering, Journal of Theoretical and Applied Information
Technology, Vol. 94; Issue 2;428-443 (2016).

47. Shahin, M.: “An empirical study of architecting for continuous delivery and deployment,”
Empirical Software Engineering, 24(3), pp. 1061–1108 (2018).

48. Turkin, I., Vykhodets, Y.: Software engineering sustainability education in compliance with
industrial standards and green IT concept. Green IT Engineering: Social, Business and In-
dustrial Applications, pp. 579–604 (2018).

49. Garousi, V, Felderer, M. and Mäntylä, M.V., Guidelines for including grey literature and
conducting multivocal literature reviews in software engineering, Information and Software
Technology, Volume 106, 2019, Pages 101-121. ISSN 0950-5849.

50. Grogan, J., Mulready, C., McDermott, J., Urbanavicius, M., Yilmaz, M., Abgaz, Y., McCar-
ren, A., MacMahon, S.T., Garousi, V., Elger, P. and Clarke, P., 2020. A multivocal literature
review of function-as-a-service (faas) infrastructures and implications for software develop-
ers. In Systems, Software and Services Process Improvement: 27th European Conference,
EuroSPI 2020, Düsseldorf, Germany, September 9–11, 2020, Proceedings 27 (pp. 58-75).
Springer International Publishing

51. Messnarz R., Much A., Kreiner C., Biro M., Gorner J. (2017) Need for the Continuous Evo-
lution of Systems Engineering Practices for Modern Vehicle Engineering. In: Stolfa J.,
Stolfa S., O'Connor R., Messnarz R. (eds) Systems, Software and Services Process Improve-
ment. EuroSPI 2017. Communications in Computer and Information Science, vol 748.
Springer, Cham. https://doi.org/10.1007/978-3-319-64218-5_36

http://dac.umt.edu.my:8080/jspui/browse?type=author&value=Komeil%2C+Raisian
http://dac.umt.edu.my:8080/jspui/browse?type=author&value=Jamaiah%2C+Yahaya
http://dac.umt.edu.my:8080/jspui/browse?type=author&value=Aziz%2C+Deraman
https://doi.org/10.1007/978-3-319-64218-5_36

16

52. Jakub Stolfa, Svatopluk Stolfa, Christian Baio, Utimia Madaleno, Petr Dolejsi, Federico
Brugnoli, Richard Messnarz, DRIVES—EU blueprint project for the automotive sector—A
literature review of drivers of change in automotive industry, in: Journal of Software: Evo-
lution and Process, Volume32, Issue3, Special Issue: Addressing Evolving Requirements
Faced by the Software Industry, March 2020

53. Messnarz, R., Ekert, D., Grunert, F., Blume, A. (2019). Cross-Cutting Approach to Integrate
Functional and Material Design in a System Architectural Design – Example of an Electric
Powertrain. In: Walker, A., O'Connor, R., Messnarz, R. (eds) Systems, Software and Ser-
vices Process Improvement. EuroSPI 2019. Communications in Computer and Information
Science, vol 1060. Springer, Cham. https://doi.org/10.1007/978-3-030-28005-5_25

54. Samer Sameh Makkar, Selina Meza, Razvan Bogdan, Darius Barmayoun, Jakub Stolfa, Sva-
topluk Stolfa, Marek Spanyik, Richard Messnarz, Ana Toth. et al. (2022). Automotive Skills
Alliance—From Idea to Example of Sys/SW International Standards Group Implementation.
In: Yilmaz, M., Clarke, P., Messnarz, R., Wöran, B. (eds) Systems, Software and Services
Process Improvement. EuroSPI 2022. Communications in Computer and Information Sci-
ence, vol 1646. Springer, Cham. https://doi.org/10.1007/978-3-031-15559-8_9

https://doi.org/10.1007/978-3-030-28005-5_25

