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Knowledge and Pre-trained
Language Models Inside and
Out: a deep-dive into datasets
and external knowledge

Chenyang Lyu

Abstract

Pre-trained Language Models (PLMs) have greatly advanced the performance of
various NLP tasks and have undoubtedly been serving as the foundation of this field.
These pre-trained models are able to capture rich semantic patterns from large-scale
text corpora and learn high-quality representations of texts. However, such models
still have shortcomings - they underperform when faced with tasks that requires
implicit external knowledge to be understood, which is difficult to learn with
commonly employed pre-training objectives. Moreover, there lacks a comprehensive
understanding of PLMs’ behavior in learning knowledge during the fine-tuning
phase. Therefore, in order to address the aforementioned challenges, we propose a
set of approaches to inject external knowledge into PLMs and demonstrate
experiments investigating their behavior of learning knowledge during the
fine-tuning phase, primarily focusing on Sentiment Analysis, Question Answering
and Video Question Answering.
Specifically, we introduce novel approaches explicitly using textual historical reviews
of users and products for improving sentiment analysis. To overcome the problem of
context-question lexical overlap and data scarcity for question generation, we
propose a novel method making use of linguistic and semantic knowledge with
heuristics. Additionally, we explore how to utilise multimodal (visual and acoustic)
information/knowledge to improve Video Question Answering.
Experiments conducted on benchmark datasets show that our proposed approaches
achieve superior performance compared to state-of-the-art models, demonstrating
the effectiveness of our methods for injecting external knowledge. Furthermore, we
conduct a set of experiments investigating the learning of knowledge for PLMs for
question answering under various scenarios. Results reveal that the internal
characteristics of QA datasets can pose strong bias for PLMs when learning from
downstream tasks datasets. Finally, we present an in-depth discussion of future
directions for improving PLMs with external knowledge.



Chapter 1

Introduction

Recent years have witnessed the emergence of Pre-trained Language Models (PLMs),

such as ELMo, GPT, BERT, XLNet, GPT-3 and InstructGPT [Wang et al., 2018,

Peters et al., 2018, Radford et al., 2018, Devlin et al., 2019b, Yang et al., 2019, Brown

et al., 2020, Chen et al., 2021, Ouyang et al., 2022, OpenAI, 2303], which have been

widely used in many NLP tasks and have shown superior performance compared to

previous approaches [Devlin et al., 2019b, Qiu et al., 2020, Brown et al., 2020]. PLMs

are firstly pre-trained on large-scale unlabeled text corpora using self-supervised

objectives, followed either by 1) fine-tuning on downstream tasks with labeled data

using supervised learning or 2) direct prompting to perform a downstream task with

examples (few-shot) or without (zero-shot), resulting in new paradigms for NLP

research. This has been shown to surpass previous neural approaches trained only on

labeled downstream task data [Devlin et al., 2019a]. Diverging from early approaches

producing static word embeddings where each word only has one embedding vector,

PLMs produce contextualized word representations [Peters et al., 2018], where words

have different representation vectors within different contexts. This is in line with the

commonsense assumption that the semantics of a word should not only depend on

itself but also depend on its context. Such modifications, powered with large neural

models [Vaswani et al., 2017] and large-scale corpora, give significant improvements

on a wide range of NLP tasks including sentiment analysis, question answering

and natural language inference. Probing tasks have shown that the representations

learned by PLMs capture aspects of the semantics and syntax of language [Jawahar

et al., 2019, Rogers et al., 2020]. Furthermore, recent advancements in PLMs such as
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GPT-3 and InstructGPT [Brown et al., 2020, Ouyang et al., 2022, Bang et al., 2023]

have again significantly improved the performance of various tasks. Despite the huge

success of pre-trained models in NLP, these models can still lack the knowledge needed

for tasks which require information beyond the text, such as sentiment analysis,

entity typing and question answering [Da and Kasai, 2019, Liu et al., 2020a]. The

incorporation of structured knowledge from knowledge graphs has been explored in

[Zhang et al., 2019, Yu et al., 2020, He et al., 2020, Colon-Hernandez et al., 2021, Wang

et al., 2021c], yielding improvements for various knowledge-intensive tasks including

named-entity recognition, relation classification, entity typing and question answering

especially for domains such as medicine. For example, in entity typing and relation

classification, without external entity knowledge such as knowledge base triples of the

form <Entity1, Relation, Entity2>, it is difficult for a pre-trained language model to

produce the correct prediction even though it has captured rich information from

pre-training on huge volumes of unstructured text. In [Zhang et al., 2019], the use of

entity information from knowledge graphs injected into the joint pre-training process

in [Devlin et al., 2019a] substantially improves model performance on entity-typing

and relation extraction, where the token-entity alignment objective aims to inject

the entity information into the representations learned by the transformer encoder.

While more powerful PLMs such as GPT-4 [OpenAI, 2303] exhibit significantly

better performance compared to previous PLMs, they still underperform on certain

tasks such as multi-step reasoning, numerical reasoning, tasks needing common sense

knowledge, as well as low-resource languages [Bang et al., 2023, Lai et al., 2023].

Earlier work mainly focuses on incorporating structured knowledge from

knowledge graphs (entity knowledge and linguistic knowledge). An exploration of

methods for injecting other external information, beyond that found in text, is

lacking. For example, knowledge of personalized preference is useful for sentiment

analysis as sentiment conveyed by texts can be highly personalized. Approaches for

incorporating knowledge have been limited to learning joint representations of text

and knowledge, requiring substantial modifications to model architecture. Therefore,
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we focus on exploring novel approaches incorporating knowledge beyond

text such as semantic knowledge, personalized preferences and

multi-modal information into PLMs while minimizing model architecture

modifications. Furthermore, despite the success as well as the large volume of

research conducted on PLMs [Qiu et al., 2020, Zhang et al., 2020b], less emphasis

has been placed on the effects of the data used for fine-tuning. A better

understanding of the data has the potential to improve the generalizability of

models [Rogers, 2021, Gardner et al., 2021], as well as providing helpful information

for constructing datasets [Bender and Friedman, 2018, Geva et al., 2019]. Thus, we

will explore three major research questions, 1) how can we utilize the extra

information in the metadata of product reviews to improve document-level

sentiment analysis? 2) how can we leverage linguistic and semantic knowledge to

improve Unsupervised Question Answering, and understand the role of QA data in

neural model learning? 3) how can the utilization of multi-modal information

improve Video Question Answering tasks for Pre-trained Vision-Language Models?

Through these research questions, we aim to advance the understanding and

practical application of incorporating knowledge beyond text into PLMs for three

specific tasks including Sentiment Analysis, Question Answering and Video Question

Answering. Additionally, we recognize the importance of understanding the effects

of fine-tuning data and believe that our findings can contribute to improving model

generalizability and providing insights for dataset construction.

1.1 Research Questions

The primary goal of this thesis is to investigate how to use external knowledge,

beyond the normal fine-tuning data that is commonly employed, to improve the

performance of PLMs on downstream tasks that may require implicit external

knowledge. More specifically, we focus on three tasks: Document-level Sentiment

Analysis, Question Answering and Video Question Answering. Therefore, we propose
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three research questions

RQ1: How can we utilize the extra information in the metadata of

product reviews to improve document-level sentiment analysis?

The goal of Sentiment Analysis is to predict the sentiment conveyed by a piece of

opinionated text (often a review). In document-level sentiment analysis with user

and product information, we also know the user who wrote the review and the

product being evaluated by the review. User and product context can be helpful

for predicting the correct sentiment label: the same user may tend to use the same

or a highly similar narrative style as well as similar word choices when writing

reviews. For example, a user who has high expectations for the product being

evaluated might use words like good, nice but only give a rating medium positive or

even use such positive words sarcastically to give a negative rating; similarly, the

reviews belonging to a particular product may have the same group of opinionated

words and narrative style towards the product being evaluated. Earlier work [Tang

et al., 2015b, Chen et al., 2016b, Ma et al., 2017, Dou, 2017, Long et al., 2018,

Amplayo, 2019, Amplayo et al., 2018] mainly focuses on modeling users and products

as embedding vectors which are updated in the training process, with the expectation

that such embedding vectors can implicitly learn the bias introduced by users and

products. However, such approaches fail to fully make use of the textual information

of historical reviews belonging to a user or a product, since it is difficult to learn

meaningful representations of users and products if they are only updated and learned

by back propagation, especially for users and products who only have small number

of reviews. Therefore, RQ1 will focus on how to model the historical reviews of

a user and product to learn more meaningful representations of user and product

context for the purpose of improving the prediction of sentiment labels.
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RQ2: How can we leverage linguistic and semantic knowledge to

improve unsupervised Question Answering, and understand the role

of QA data in neural model learning?

The goal of Question Generation (QG) is to generate plausible questions for given

<passage, answer> pairs. QG can be applied in dialogue systems as well as educational

applications [Graesser et al., 2005] and as a data augmentation method for Question

Answering (QA) [Puri et al., 2020]. There are two classes of QG approaches: 1)

Template-based QG [Heilman and Smith, 2009, 2010], which uses heuristics induced

from linguistic knowledge to transform declarative sentences into questions; 2)

Supervised QG [Du et al., 2017, Duan et al., 2017, Zhang and Bansal, 2019, Chen

et al., 2019, Xie et al., 2020, Ma et al., 2020, Ji et al., 2021], which uses existing QA

datasets to train a QG system.

Moreover, after the emergence of PLMs, substantial improvements have been

obtained on many NLP tasks, such as QA [Qiu et al., 2020, Bommasani et al., 2021].

However, we still cannot neglect the importance of the dataset, and indeed, this

has become a new focus of NLP research [Søgaard et al., 2021, Lewis et al., 2021,

Liu et al., 2021b]. RQ2 is focused on QA and will explore how to combine the

advantages of the template-based and supervised QG methods, while addressing

their shortcomings, and investigate how the generated questions can be used to train

an unsupervised QA system. We will also analyze how a pre-trained model learns

from QA datasets.

RQ3: How can the utilization of multi-modal information improve

Video Question Answering tasks for Pre-trained Vision-Language

Models?

Video Question Answering (VideoQA) [Lei et al., 2018, Xu et al., 2021b] is a

challenging task that aims to interpret visual information and answer natural

language questions about video content. Despite recent advancements in Pre-trained
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Vision-Language Models for multi-modal NLP tasks, such models still face

significant challenges in handling complex multi-modal information, such as visual

and audio content [Zhong et al., 2022b]. To overcome these challenges and improve

the performance of pre-trained language models in VideoQA tasks, it is crucial to

investigate the potential of utilizing complex multi-modal information. By

integrating visual and audio features into pre-trained vision-language models, it is

possible to enhance their ability to understand complex video content and answer

associated questions more accurately. However, effectively utilizing multi-modal

information remains very challenging, and various approaches have been developed

to address this challenge. RQ3 aims to explore how the utilization of multi-modal

modality information can improve video question answering tasks for Pre-trained

Vision-Language Models.

1.2 Thesis Outline

This thesis is focused on exploring the learning of knowledge for Pre-trained Large

Language Models, for Sentiment Analysis and Question Answering. The remainder

of the thesis is organized as follows:

• Chapter 2 outlines related work on Pre-trained Large Language Models

including various variants of PLMs and knowledge-enhanced PLMs,

demonstrating the evolution of PLMs from multiple dimensions. We also

include related research on Document-level Sentiment Analysis with user and

product context, Question Answering and Multi-modal Question Answering.

• Chapter 3 presents our proposed approaches on incorporating the textual

information of historical reviews belonging to the same user and product

for improving Document-level Sentiment Analysis. We conduct extensive

experiments to validate the effectiveness of our approaches, with a view to

answering RQ1: How can we utilize the extra information in the metadata of

product reviews to improve document-level sentiment analysis?
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• Chapter 4 presents a set of experiments aiming to address RQ2: How can we

leverage linguistic and semantic knowledge to improve Unsupervised Question

Answering, and understand the role of QA data in neural model learning?

We first describe our approach of utilizing linguistic and semantic knowledge

for improving Unsupervised Question Answering via summarization-informed

Question Generation. We discuss the details of our approach, particularly

how we manipulate the semantic roles in the summary sentence to transform

it to an interrogative sentence. The linguistic and semantic knowledge is

explicitly incorporated in the dataset for Question Generation, resulting in

high-quality synthetic data for Unsupervised Question Answering. Furthermore,

to understand how neural QA systems learn from QA dataset during fine-tuning

phase we design experiments to investigate the effect of internal characteristics

on a QA system’s performance.

• Chapter 5 tries to provide answers to RQ3: How can the utilization of multi-

modal information improve Video Question Answering tasks for Pre-trained

Vision-Language Models? We describe our proposed approaches aiming to

effectively incorporate multi-modal information for improving Video Question

Answering. We present the experiments conducted on a set of benchmark

datasets to study how the incorporation of multi-modal information affects

Video Question Answering.

• Chapter 6 summarises the thesis content and presents conclusions drawn from

the experiments and results included in the thesis. We also discuss the potential

promising future directions for research on Pre-trained Large Language Models.

1.3 Publications

The work in this thesis has been published in several papers. The content of Chapter 3

has been published in two papers on incorporating user and product information for

Sentiment Analysis:
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• Chenyang Lyu, Jennifer Foster, Yvette Graham. Improving Document-Level

Sentiment Analysis with User and Product Context, In Proceedings of the 28th

International Conference on Computational Linguistics, COLING 2020 (Oral

presentation)

• Chenyang Lyu, Linyi Yang, Yue Zhang, Yvette Graham, and Jennifer Foster.

Exploiting Rich Textual User-Product Context for Improving Sentiment

Analysis. In Findings of the 61st Annual Meeting of the Association for

Computational Linguistics, ACL 2023

There is another paper on Sentiment Analysis, but its focus is not on incorporating

user and product information, which is not included in the thesis:

• Chenyang Lyu, Tianbo Ji, Yvette Graham. Incorporating Context and

Knowledge for Better Sentiment Analysis of Narrative Text, In Proceedings

of the Third International Workshop on Narrative Extraction from Texts held

in conjunction with the 42nd European Conference on Information Retrieval,

ECIR 2020 Workshop

The major content of Chapter 4 has been published in two papers. One of

them is about summarisation-informed question generation for unsupervised question

answering, the other one is a paper focusing on analysing and understanding the

effect of internal characteristics of QA datasets on model performance:

• Chenyang Lyu, Lifeng Shang, Yvette Graham, Jennifer Foster, Xin Jiang

and Qun Liu. Improving Unsupervised Question Answering via

Summarization-Informed Question Generation, In Proceedings of The 2021

Conference on Empirical Methods in Natural Language Processing, EMNLP

2021 (Oral presentation)

• Chenyang Lyu, Jennifer Foster, and Yvette Graham. Extending the Scope of

Out-of-Domain: Examining QA models in multiple subdomains. In Proceedings

of the Third Workshop on Insights from Negative Results in NLP, ACL 2022
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The research described in Chapter 5 has been published in two papers on Video

Question Answering, one is about incorporating semantic knowledge for improving

the reasoning of VideoQA systems, the other one focuses on injecting graph-level

information from semantic knowledge into VideoQA systems:

• Chenyang Lyu, Tianbo Ji, Yvette Graham, and Jennifer Foster.

Semantic-aware Dynamic Retrospective-Prospective Reasoning for Event-level

Video Question Answering. In Proceedings of the 61th Annual Meeting of the

Association for Computational Linguistics: Student Research Workshop, ACL

2023.

• Chenyang Lyu, Wenxi Li, Tianbo Ji, Longyue Wang, Liting Zhou, Cathal

Gurrin, Linyi Yang, Yi Yu, Yvette Graham, and Jennifer Foster. Graph-Based

Video-Language Learning with Multi-Grained Audio-Visual Alignment. In the

31st ACM International Conference on Multimedia, ACM-MM 2023.

There is another paper relevant to VideoQA; however, since this paper mainly

focuses on improving the efficiency of VideoQA systems and is not directly related

to incorporating multimodal information, it is not included in the thesis:

• Chenyang Lyu, Tianbo Ji, Yvette Graham, and Jennifer Foster. Is a Video

worth n× n Images? A Highly Efficient Approach to Transformer-based Video

Question Answering. In Proceedings of The Third Workshop on Simple and

Efficient Natural Language Processing, ACL 2023.

The paper below initially and significantly inspired my research work on VideoQA.

Since this paper doesn’t focus on incorporating external knowledge into PLMs, it is

not included in this thesis:

• Chenyang Lyu, Manh-Duy Nguyen, Van-Tu Ninh, Liting Zhou, Cathal

Gurrin, and Jennifer Foster. Dialogue-to-Video Retrieval. In Proceedings of

the 45th European Conference on Information Retrieval, ECIR 2023.
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Chapter 2

Background

In this chapter, we will give an overview of the material which is relevant for this

Ph.D. project. In particular, we will first describe the development of pre-training

techniques ranging from Word2Vec to ELMo, GPT and BERT to LLMs such as

GPT-3 and InstructGPT. Lastly, we will discuss the research which is related to

our main research questions concerning how to inject knowledge into Pre-trained

Language Models, including specific tasks such as Document-level Sentiment Analysis,

Question Answering, Question Generation and Video Question Answering.

2.1 Pre-trained Language Models

There are two dimensions to categorizing pre-training techniques. The first is

feature-based pre-training approaches (Word2Vec, GloVe„ ELMo) versus non feature-

based approaches (GPT, BERT). The second is non-contextualized word embeddings

(Word2Vec, GloVe) versus contextualized word representations (ELMo, GPT, BERT).

Some representative approaches will be discussed briefly in the following sections.

2.1.1 Word2vec

Learning meaningful word representations is a long-standing problem [Rumelhart

et al., 1986, Hinton et al., 1986, Elman, 1990, Deerwester et al., 1990, Bengio et al.,

2003]. Following previous work, Mikolov et al. [2013] proposed Word2Vec which

makes use of large text corpora to learn semantically-meaningful word embeddings,

Word2Vec significantly improves the quality of word embeddings over a Neural
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Network Language Model (NNLM) [Bengio et al., 2003] as demonstrated when

measuring syntactic and word semantic similarities. Essentially, there is a word

embedding matrixW ∈ RV×h in Word2Vec, and each word in vocabulary is projected

to a continuous dense vector w with fixed length h. Then there are two training

architectures: 1) Continuous Bag of Words (CBOW), where the goal is to predict

the correct pivot word based on its surrounding words which is called the context

2) Skip-gram model, where the aim is to predict the context words given the pivot

word.

In CBOW, the objective is formulated as:

P (wi|wi−t, ..., wi−1, wi+1, ..., wi+t) =
ew

T
c wi∑V

j=0 e
wT

c wj
(2.1)

the probability of wi given the context words wi−t, ..., wi−1, wi+1, ..., wi+t is a

probability distribution over all the words in vocabulary, where t is the context

window size, wc is the representation of wi’s context, wc is computed by:

wc = mean(wi−t + ...+ wi−1 + wi+1 + ...+ wi+t) (2.2)

i.e wc is the average of all context word embeddings which can be further fed into

a linear layer in practice. The training objective of CBOW is to maximize the

probability of predicting the correct word wi over all samples in the training corpus:

J(θ) =
∑
i

log(P (wi|wi−t, ..., wi−1, wi+1, ..., wi+t)) =
∑
i

(log(ew
T
c wi)−log(

V∑
j=0

ew
T
c wj ))

(2.3)

In the skip-gram model, the aim is to predict the context words given the pivot

word - the inverse of the goal of CBOW. Therefore the probabilistic formulation of

the skip-gram model is:

P (wi−t, ..., wi−1, wi+1, ..., wi+t|wi) =
2t∏

j=0,j!=t

ew
T
i−t+jwi∑V

k=0 e
wT

k wi
(2.4)
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The training objective of skip-gram is to maximize the probability of predicting the

correct context words given a pivot word. Therefore the overall objective of the

skip-gram model over all samples in a corpus is:

J(θ) =
∑
i

log(P (wi−t, ..., wi−1, wi+1, ..., wi+t|wi))

=
∑
i

(
2t∑

j=0,j ̸=t
(log(ew

T
i−t+jwi)− log(

V∑
k=0

ew
T
k wi)))

(2.5)

In practice, skip-gram is the common choice for the implementation of

Word2Vec. The word embeddings of Word2Vec are trained using the skip-gram

objective on Google News (approximately 1 billion words)1. After pre-training, the

word embedding matrix can be used in other tasks as the initial values of word

representations. Hence such approaches are called feature-based pretraining

methods. Besides Word2Vec, other word embedding models such as

GloVe [Pennington et al., 2014], aiming at capturing global word co-occurrence

patterns in text corpora, are also widely used in NLP tasks.

2.1.2 Contextualized Word Representations

Although feature-based pretraining techniques such as Word2Vec and GloVe yield

high-quality word embeddings which substantially improve the performance of many

NLP tasks, there is still a major drawback of such approaches: words tend to have

different semantic meanings within different contexts. In other words, the embeddings

of a word should be different within different contexts. That suggests the need for

context-dependent word representations. However, methods such as Word2Vec only

result in context-independent word representations. In order to address such a

challenge, contextualized word representations are subsequently proposed. We will

introduce three representatives of them: ELMo, GPT and BERT [Peters et al., 2018,

Radford et al., 2018, Devlin et al., 2019a] in the following sections.
1https://code.google.com/archive/p/Word2Vec/
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2.1.2.1 ELMo: Deep Contextualized Word Representations

Peters et al. [2018] propose ELMo, a bidirectional neural language model pre-

trained on a large text corpus, to address this challenge caused by early word

embedding approaches. The forward LM aims to model the probability of a sequence

(w1, w2, ..., wn) by computing the probability of each word wi based on the words

appearing before wi (those words on the left side of wi in a sentence):

P (w1, w2, ..., wn) =

n∏
1

P (wi|w1, ..., wi−1) (2.6)

whereas the backward LM computes the probability of a sequence by modeling the

probability of word wi based on the words appearing after wi (those words on the

right side of wi in a sentence):

P (w1, w2, ..., wn) =
n∏
1

P (wi|wi+1, ..., wn) (2.7)

A bidirectional LM models the probability of a sequence (w1, w2, ..., wn) by

combining the forward LM and the backward LM:

P (w1, w2, ..., wn) =
n∏
1

P (wi|w1, ..., wi−1) +
n∏
1

P (wi|wi+1, ..., wn) (2.8)

The optimization objective for the parameters θ of ELMo is to maximize the log

likelihood of P (w1, w2, ..., wn):

J(θ) = logP (w1, w2, ..., wn) =
n∑
1

logP (wi|w1, ..., wi−1) +
n∑
1

logP (wi|wi+1, ..., wn)

(2.9)

In the practical implementation of ELMo, a bidirectional LSTM [Hochreiter and

Schmidhuber, 1997] is employed as the bidirectional LM, which consumes the context

words and produce a representation that can be used to model a distribution over

the whole vocabulary step by step. After pre-training on a large text corpus by
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jointly optimizing the likelihood of the forward and backward LM. The resulting

bidirectional LM can be used to produce contextualized word representations by

running it on the text of any specific downstream tasks. Specifically, assuming that

the bi-LSTM has L layers, the representations produced can be denoted as hFi,j

and hBi,j , where i represents the i-th word, j is the j-th layer of bi-LSTM and F,B

represent the forward LM and backward LM respectively. To make use of these

representations, ELMo computes task specific representation hELMo
i for the i-th

word wi by:

hELMo
i = λ

L∑
0

sjhi,j (2.10)

where λ is a task-specific factor, sj is the weight coefficient for the representations

of layer j and hi,j = [hFi,j , h
B
i,j ].

In the pre-training stage, ELMo is trained using the bidirectional LM objective

on the 1 Billion Word Benchmark [Chelba et al., 2013]. After ELMo has been

pre-trained, as described in [Peters et al., 2018], we can run ELMo on task-specific

datasets to obtain contextualized word representations which then can be used in

the initial layer (the embedding layer) of any task-specific models: X
′
i = [Xi, h

ELMo
i ],

where Xi is the embeddings of the i-th word. By injecting ELMo representations in

the embedding layer, Peters et al. [2018] show significant improvements on various

NLP tasks including named entity recognition, coreference resolution, semantic role

labeling, sentiment analysis, etc. Moreover, it is observed in Peters et al. [2018]

that using ELMo in the output layer (same as how ELMo is used in the embedding

layer) results in further improvements for some tasks such as SQuAD [Rajpurkar

et al., 2016]. ELMo is a contextualized word representation model. However, it

is worth noting that when using ELMo in downstream tasks the weights of the

bidirectional LM will not be updated and only the word representations produced

by the BiLSTM are injected into the task specific model - this is similar to featured-

based approaches [Mikolov et al., 2013, Pennington et al., 2014] that provide a word
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embedding matrix which is used as the initial word representations. The difference

between ELMo and static word embeddings is that the word representations produced

by ELMo are context-dependent which has been shown to be helpful in boosting

performance of many NLP tasks.

2.1.2.2 GPT: Generative pre-training

Radford et al. [2018] propose a pre-training approach using a neural architecture

different from the BiLSTM [Hochreiter and Schmidhuber, 1997] used in ELMo [Peters

et al., 2018] called a transformer [Vaswani et al., 2017] in which the major component

is the multi-head self-attention mechanism, which has been shown to be more

effective in modeling long-range dependencies in text compared to recurrent neural

networks [Liu et al., 2018]. The GPT model comprises 12 transformer blocks, each

transformer block produces word representations and passes it to next transformer

block:

hj = transformer_block(hj−1) (2.11)

where j represents the j-th block. Different from the bidirectional LM design in

ELMo, GPT uses the causal language model objective, which means GPT only

adopts the forward LM. Therefore the objective of GPT becomes the maximization

of the following log likelihood for a sequence of words (w1, w2, ..., wn):

J(θ) = logP (w1, w2, ..., wn) =

n∑
1

logP (wi|w1, ..., wi−1) (2.12)

In experiments GPT uses BookCorpus [Zhu et al., 2015] as the pre-training text

corpus. Radford et al. [2018] propose a new paradigm for NLP tasks: pre-training +

finetuning. Firstly we pre-train a large transformer-based language model on text

using the self-supervised objective 2.12, then finetune this pre-trained model on

downstream supervised tasks. In the finetuning stage, the objective becomes to

maximize the probability of label y for the given sequence of words (w1, w2, ..., wn),
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which is modeled by adding an extra linear layer to transform the representations

produced by transformer to logits representing probability distribution over labels:

P (y|w1, w2, ..., wn) = linear_layer(hL) (2.13)

where hL is the representations in the last transformer block, linear_layer is the

extra linear layer added on top of the GPT model, in which the parameters θ̃ (the

pre-trained model parameters θ and the extra parameters θtask) also need to be

optimized: J(θ̃) =
∑

j logP (yj |w1, w2, ..., wn). The finetuning stage requires minor

modifications to model architecture, because only a few more components need to be

added into GPT model [Radford et al., 2018]. As shown in Radford et al. [2018], the

GPT model achieves state-of-the-art performance over many NLP tasks including

text classification, textual entailment, textual similarity, reading comprehension,

especially compared to ELMo. Moreover due to its unidirectional LM objective, it

can be used in text generation tasks.

Although the usage of GPT shares some similarities with ELMo, they have

significant differences: (i). ELMo uses a bidirectional LM objective whereas GPT

adopts a unidirectional LM. (ii) ELMo uses LSTM as its neural architecture and

GPT uses transformer (iii). In ELMo, the weights of the pre-trained LM are

frozen in downstream tasks whereas, in GPT, the pre-trained LM will be finetuned in

downstream tasks. (iiii). In the finetuning stage, ELMo provides word representations

which are injected into downstream models without modifications to the architecture

of the task-specific model, whereas GPT provides a model which only needs a few

extra layers added on top of it for downstream tasks.

2.1.2.3 BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding

Following the significant success of PLMs such as ELMo [Peters et al., 2018] and

GPT [Radford et al., 2018], Devlin et al. [2019a] propose a new pre-trained model,
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BERT, which adopts new objectives in the pre-training stage and has been widely

used in NLP research especially in natural language understanding tasks. BERT

uses the transformer [Vaswani et al., 2017] as its building block, which is the same

as the neural architecture used in GPT. To pre-train the BERT model on large text

corpora [Devlin et al., 2019a], two objectives - Masked Token Prediction and Next

Sentence Prediction are used:

Masked Token Prediction Devlin et al. [2019a] make use of large-scale text

corpora to create a masked token prediction objective by masking a certain proportion

of tokens in the original sequence and then training BERT model to recover the

masked tokens based on the unmasked tokens. Specifically, supposing that for a

given sequence (w1, w2, ..., wn), we randomly mask some tokens w in the original

sequence by replacing a masked token w with a special token [MASK], the indices of

the masked tokens are denoted as Î and the original indices of all tokens including

masked tokens and unmasked tokens are denoted as I, the indices for unmasked

tokens are represented as I − Î. We input the edited sequence (w1, w2, ..., wn) in

which some tokens are replaced with [MASK] to the BERT model and aim to predict

the original replaced tokens. Therefore the objective of Masked Token Prediction

can be formulated as:

J1(θ) = logP (Ŵ |W̃ ) =
∑
i∈Î

logP (wi|wj1 , wj2 , ..., wjn ; jk ∈ {I − Î}) (2.14)

where Ŵ and W̃ represent masked tokens and unmasked tokens respectively. Note

that in BERT the prediction of masked tokens depends on the context on both

directions, which differs from the causal language modeling in GPT where the

prediction of the next token only depends on the historical context. This is also

different from the language modeling objectives in ELMo. Although ELMo adopts a

bidirectional LM, it only makes use of the context from a certain direction (either

forward or backward) when predicting a word. The design of Masked Token

Prediction allows BERT to model language dependencies bidirectionally by utilizing
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the information from bidirectional contexts.

Next Sentence Prediction In order to model the dependencies between units

larger than words, Devlin et al. [2019a] propose Next Sentence Prediction working

with Masked Token Prediction, which concatenates two sentences (A, B), inputs the

sequence to BERT model, then predicts whether sentence B is the sentence following

sentence A in the original article. The positive examples {A,B} can be taken from

articles in the corpus, negative examples {A, B̃} can be created by fixing sentence A

and randomly drawing sentence B̃ from the corpus. The optimization objective of

Next Sentence Prediction can be formulated as:

J2(θ) =
∑

{A,B}∈D

logP (y|A,B) +
∑

{A,B̃}∈D̃

logP (1− y|A, B̃) (2.15)

whereD and D̃ represent the collections of positive and negative examples respectively,

y ∈ {0, 1} is the label for whether B is the next sentence of A. If y is the label for

positive examples, the label for negative examples is 1− y.

The overall objective for the optimization of parameters θ of the BERT model is

J(θ) = J1(θ)+J2(θ). In experiments, BERT is firstly pre-trained on BookCorpus [Zhu

et al., 2015] and English Wikipedia which contain 800 million and 2500 million words

respectively. BERT is then transferred to downstream tasks with minor modifications

to the model architecture - only a few layers need to be added, according to the

experimental results in [Devlin et al., 2019a]. BERT greatly improves the performance

on many NLP tasks compared to state-of-the-art approaches, especially on the GLUE

benchmark [Wang et al., 2018] where the improvement is 7.7% absolute points. When

employing BERT in downstream tasks, the whole model architecture including the

word embedding matrix in the lower layer will be used. That is different from

Word2Vec/GloVe which only transfers the learned static and context-independent

word embeddings to downstream tasks [Mikolov et al., 2013, Pennington et al., 2014]

whereas ELMo generates contextulized word representations. Furthermore, what is

different between BERT and GPT is: 1) BERT employs Masked Language Modeling
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for its pre-training and BERT can utilize bidirectional context to predict the maksed

words. 2) whereas GPT uses Causal Language Modeling that auto-regressively

predicts the next word only from left to right which means GPT can only uses

unidirectional context.

2.1.2.4 BART: Denoising Sequence-to-Sequence Pre-training for Natural

Language Generation, Translation, and Comprehension

Different from the two previous successful PLMs, GPT (a decoder-only model that

focuses on generating text auto-regressively) and BERT (an encoder-only model

designed for bidirectional context understanding), Lewis et al. [2020] proposed BART –

an encoder-decoder model pre-trained under a sequence-to-sequence framework, which

combines the strengths of both encoding for context representation and decoding for

text generation, thereby enhancing its capabilities across a wide range of NLP tasks.

Similar to GPT and BERT, BART is also built on blocks of transformer Vaswani

et al. [2017] for its encoder and decoder. The pre-training objective of BART is

inherited from Auto-Encoders [Hinton and Zemel, 1993, Hinton et al., 2011], which

first encodes the input sentence into hidden states and then generates/recovers the

original sentence based on the hidden representations. Moreover, to prevent the

model from simply learning to copy the original input sentence, Lewis et al. [2020]

introduced several perturbation methods to inject noise into the input sentences,

including 1) Token masking : same as BERT [Devlin et al., 2019a], a certain proportion

of tokens are randomly replaced with [MASK] tokens. 2) Token deletion: a certain

proportion of tokens are randomly removed without inserting any special tokens. 3)

Text infilling : a set of text spans in the input sentence are replaced with a single

[MASK] token. 4) Sentence permutation: the input is divided by full stops into

sentences, which are then randomly shuffled. 5) Document rotation: the input is

rotated so that it begins with a randomly chosen token. With the above perturbation

methods, the BART model is trained to generate the original input text, allowing

the model to learn word dependencies through a generative sequence-to-sequence
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objective. The pre-training objective of BART can be formulated as:

J(θ) = logP (W |Ŵ ) =
∑
i

logP (wi|w0, ..., wi−1, Ŵ ) (2.16)

where Ŵ is the corrupted input text, and W represents the original input text; the

overall objective is to generate the original input text word by word, conditioning on

the corrupted input and the words generated in the previous steps. We can see that

the pre-training of BART differs significantly from BERT. Although the generative

objective is similar to GPT, the generation process in GPT only conditions on the

previously generated words, whereas BART also conditions on the corrupted input.

After being pre-trained on a large collection of books and Wikipedia texts [Liu et al.,

2019b] (approximately 160 GB texts), BART shows superior performance on various

NLP tasks, including text classification, natural language inference, and machine

reading comprehension [Rajpurkar et al., 2016, Vinodhini and Chandrasekaran, 2012],

among others. Moreover, BART is capable of text generation due to its sequence-

to-sequence architecture, while PLMs such as BERT can hardly be employed for

text generation tasks. BART also exhibits strong performance on generation tasks

such as summarization and machine translation [Chen et al., 2016a, Narayan et al.,

2018, Wu et al., 2016], among others. Furthermore, a multilingual version of BART,

mBART, is proposed by Liu et al. [2020b], which is pre-trained on multilingual

corpora, demonstrating superior performance on cross-lingual tasks.

2.2 Large Language Models

Recently, Large Language Models (LLMs) with an increased number of parameters

and extensive pre-training on vast corpora have gained prominence, showing

impressive capability in zero-shot and few-shot learning. Since the training dataset

of LLMs is excessively large (for example, approximately 400 billion BPE [Sennrich

et al., 2016] tokens for GPT-3), the required compute for training LLMs is also

significantly increased compared to previous PLMs such as GPT, BERT and BART.
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Therefore, such models are usually addressed as Large Language Models (LLMs). In

this section, we will introduce the most representative LLMs: GPT-3 and its most

influential successor - InstructGPT (the base model of ChatGPT).

2.2.1 GPT-3: Language Models are Zero-shot Learners

Following the autoregressive generation pre-training objective of GPT and GPT-2,

OpenAI pushes the boundary of generative pre-training even furthe, Brown et al.

[2020] proposed GPT-3, a much larger and more powerful autoregressive language

model consisting of 175 billion parameters (approximately 100× larger than GPT-

large) that is pre-trained on a very large collection of texts including CommonCrawl 2,

internet books, WebText and English Wikipedia [Radford et al., 2019, Raffel et al.,

2020, Kaplan et al., 2020], which is filtered and then mixed to form the training

dataset for GPT-3.

GPT-3 demonstrates impressive zero-shot learning capabilities, i.e. it can

generalize to new tasks without requiring fine-tuning or additional training data.

This is achieved by leveraging its vast knowledge acquired during the pre-training

phase. GPT-3 has been shown to outperform state-of-the-art models on several

natural language processing tasks, such as machine translation, question-answering,

and summarization Brown et al. [2020]. One of the main innovations in GPT-3 is

the use of in-context learning. The model leverages the context provided in the

input prompt to guide its response generation, enabling it to adapt its behavior to a

wide range of tasks. This flexibility allows GPT-3 to perform tasks like translation,

summarization, and even simple programming tasks, all without explicit

task-specific training. Despite its impressive performance, GPT-3 has some

limitations. Its large size makes it computationally expensive to train and deploy,

and its autoregressive nature can lead to errors propagating through the generated

text. Moreover, the model may produce plausible but incorrect or nonsensical

answers, and its behavior can be sensitive to the phrasing of the input prompt.
2https://commoncrawl.org/the-data/
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2.2.2 InstructGPT: Training language models to follow instructions

with human feedback

InstructGPT is a language model that is designed to follow instructions provided in

the input prompt and generate useful outputs [Ouyang et al., 2022]. It builds on top

of GPT-3 [Brown et al., 2020] and GPT-CodeX [Chen et al., 2021]. The primary

difference between InstructGPT and early GPT models is the introduction of human

feedback during the training process, which allows the model to learn from human

demonstrations and comparisons.

The training process of InstructGPT consists of two main steps: pre-training

and fine-tuning. During pre-training, the model is trained on a large corpus of text,

similar to GPT-3. This enables the model to acquire general language understanding

and knowledge. In the fine-tuning (instruction tuning [Wei et al., 2022]) stage,

the model is fine-tuned using a dataset that consists of input-output (instruction-

response) pairs, where each pair represents an instruction and its corresponding

desired output that is annotated by humans.

To incorporate human feedback, a reward model is trained using a dataset of

comparisons. These comparisons consist of two alternative responses for a given

instruction ranked by quality (which one is preferred). The reward model, Rθ, is

trained to maximize the reward score of the preferred response given an instruction,

where θ represents the model parameters. The objective function for the reward

model is as follows:

J(θ) =
1

N

∑
i

∑
j

∑
k

log(Rθ(xi, yj)−Rθ(xi, yk)) (2.17)

where, xi represents the instruction, yj and yk are the two alternative responses

respectively. yj is the preferred response compared to yk. The overall training

objective is to maximize the scalar reward score of yj (the preferred response) over

yk.

After training the reward model Rθ, the language model is then fine-tuned
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based on Rθ using Proximal Policy Optimization (PPO) Schulman et al. [2017],

an algorithm designed for reinforcement learning, the optimization objective is as

follows:

J(φ) =
1

M

∑
m

(Rθ(xm, ym)−βlog
APPO
φ (ym|xm)

ASFT
φ (ym|xm)

)+ γ
1

K

∑
k

(log(APPO
φ (xk))) (2.18)

where φ represents the parameters of the language model Aφ, and APPO
φ is the

language model fine-tuned on ASFT
φ with PPO and ASFT

φ is the language model

trained with Supervised Fine-tuning. The first term is the loss from the reward model

Rθ. The purpose of the second term log
APPO

φ (ym|xm)

ASFT
φ (ym|xm)

) is to penalize over-optimization

of the reward model [Ouyang et al., 2022], in order words - preventing APPO
φ from

being trained too far away from ASFT
φ . The third term is the pre-training objective

of casual language modeling [Radford et al., 2018]. The coefficients β and γ are used

to control the degree of penalty term and pre-training objective.

InstructGPT demonstrates improved performance in following instructions and

generating useful outputs, thanks to the incorporation of human feedback during

training. This approach shows promise for future applications of language models,

where the ability to follow instructions accurately is crucial. Furthermore, an

enhanced variant of InstructGPT - ChatGPT 3 with multi-turn conversational

ability has been developed and released to the public. The presence of ChatGPT

has attracted much attention as it shows excellent ability in handling various

NLP (or even beyond) tasks such as grammar error correction, reading

comprehension, summarization and translation.
3https://openai.com/blog/chatgpt
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2.3 Vision-Language Pre-trained Models: CLIP -

Learning Transferable Visual Models From Natural

Language Supervision

Radford et al. [2021] proposed CLIP, which is a pre-trained vision-language model

that learns transferable visual features from natural language supervision via pre-

training on large-scale web image-text corpora with contrastive learning. The main

idea behind CLIP is to train a visual model alongside a language model to understand

images and text in a multi-modal fashion. This is achieved by optimizing the model

to predict which textual description corresponds to a given image, and vice versa.

The CLIP framework consists of two main components: an image encoder and a

language encoder. The image encoder, fθ, is a deep Convolutional Neural

Network (CNN) [LeCun et al., 1998, He et al., 2016] or Vision

Transformer (ViT) [Dosovitskiy et al., 2020], while the language encoder, gϕ, is a

transformer-based architecture Vaswani et al. [2017], Devlin et al. [2019a]. Both

encoders are trained jointly to align the image representation and the textual

description in a common embedding space.

The training objective for CLIP is to maximize the mutual information between

the image and text representations. Given an image x and a textual description y,

the model computes the similarity between their respective embeddings as follows:

s(x, y) = fθ(x)
⊤gϕ(y) (2.19)

The CLIP model is trained to maximize the similarity between the correct pair

of image and text, while minimizing the similarity between incorrect pairs. The

softmax function is used to compute the probability of a correct match:
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p(y|x) = es(x,y)∑
y′∈Y e

s(x,y′)
(2.20)

p(x|y) = es(x,y)∑
x′∈X e

s(x′,y)
(2.21)

The pre-training objective is to maximize the log-likelihood of the correct image-

text pairs while minimizing the log-likelihood of incorrect image-text pairs within

the same batch (in-batch negatives [Gao et al., 2021]) :

Ji2t(θ, ϕ) = − 1

N

N∑
i=1

p(yi|xi)∑N
j p(yj |xi)

(2.22)

Ji2t(θ, ϕ) = − 1

N

N∑
i=1

p(xi|yi)∑N
j p(xj |yi)

(2.23)

By optimizing this objective, CLIP learns to align the embeddings of images

and their corresponding textual descriptions in a common semantic space. This

makes the model capable of generalizing and transferring knowledge across various

visual tasks and natural language understanding tasks, such as object classification,

image captioning, and visual question answering. More importantly, the alignment of

textual descriptions to images have enabled the use of more flexible labels expressed

in natural language instead of a fixed set of pre-designed labels, showing superior

performance especially in zero-shot setting compared to fully supervised systems on

some vision tasks Radford et al. [2021].

CLIP demonstrates strong performance on a wide range of visual and language

tasks including image classification, image retrieval and even video-related

tasks [Radford et al., 2021, Li et al., 2021, Xu et al., 2021a, Bain et al., 2022, Lei

et al., 2022, Li et al., 2022b], often outperforming traditional supervised learning

methods that rely on large amounts of task-specific labeled data.
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2.4 Fine-tuning, Adaptation and Knowledge

Incorporation for Pre-trained Language Models

In the context of incorporating external knowledge into Pre-trained Language

Models (PLMs), it is important to understand the concepts of fine-tuning and

adaptation. These concepts play an important role in leveraging existing pre-trained

models and enhancing their performance in specific tasks.

2.4.1 Fine-tuning and Adaptation

Fine-tuning and adaptation refer to the process of updating the parameters of a pre-

trained model using task-specific data [Peters et al., 2018, Devlin et al., 2019a, Radford

et al., 2018]. During the fine-tuning phase, the pre-trained model’s parameters are

updated based on the task-specific data, enabling it to learn task-specific patterns

and improve performance on the target task [Sun et al., 2019a, Liu et al., 2019a,

Dodge et al., 2020, Chen et al., 2020a, Yang and Ma, 2022, Chiang and Lee, 2022].

Fine-tuning is an effective way to transfer the knowledge learned during pre-training

to new tasks, as it allows the model to leverage its pre-existing knowledge while

adjusting to the specific requirements of the targeted downstream task [Radford

et al., 2019, Joshi et al., 2020, Beltagy et al., 2020]. Additionally, there are more

efficient fine-tuning approaches that optimize a pre-trained model for a specific

downstream task by updating only a small group of task-specific parameters while

retaining the original pre-trained models [Ding et al., 2023], such as prefix-tuning [Li

and Liang, 2021].

By understanding the concepts of fine-tuning and adaptation, we can effectively

leverage PLMs and enhance their performance in specific tasks by utilizing task-

specific data and making architectural modifications for the purpose of incorporating

external knowledge.

26



Chapter 2. Background

2.4.2 Incorporating Knowledge into Pre-trained Language Models

Although the contextualized word representations learned by large-scale PLMs encode

rich syntactic and semantic information [Jawahar et al., 2019, Clark et al., 2019,

Tenney et al., 2019], they still lack certain knowledge such as world knowledge from

knowledge graphs, factual knowledge, and commonsense knowledge that maybe

important for certain tasks, especially knowledge-intensive tasks. For example,

although models like BERT can capture the co-occurrences among Apple, Tim Cook,

CEO, they cannot establish explicit connections that Tim Cook is the CEO of Apple.

Such knowledge needs to be explicitly injected into pre-trained models [Zhang et al.,

2019]. Also, pre-trained models lack factual knowledge. Taking BERT as an example,

if we mask CEO and substitute Apple with Microsoft in Tim Cook is the CEO of

Apple, the resulting sentence is Tim Cook is the [MASK] of Microsoft. The masked

token predicted by BERT is CEO with a high probability. Moreover, pre-trained

models lack commonsense knowledge. For instance they cannot detect that how

many eyes does the Earth have? is an nonsensical question. Such knowledge cannot

be captured through self-supervised pre-training on text corpus, supervisory signals

from an external knowledge base are needed for Pre-trained Language Models.

Various approaches have been investigated and employed to incorporate knowledge

into PLMs [Sun et al., 2019b, Zhang et al., 2019, Peters et al., 2019, Yu et al., 2020,

Qiu et al., 2020, Roy and Pan, 2020, He et al., 2020, Colon-Hernandez et al., 2021, Lyu

et al., 2020b, Wang et al., 2021c, Wei et al., 2021b]. Most of them focus on injecting

structured knowledge. We will present two examples: ERNIE – incorporating entity

knowledge in pre-training stage – and K-BERT – injecting domain-specific knowledge

information in the fine-tuning and inference phases.

2.4.2.1 ERNIE: Incorporating entity knowledge into language models

In order to enrich text representations with informative entities for better language

understanding, Zhang et al. [2019] propose to inject entity information from an
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external knowledge base into Pre-trained Language Models. The proposed model

ERNIE comprises a text encoder and a knowledge encoder. The text encoder,

which is adopted from BERT, is used to encode the text. The knowledge encoder,

which is the proposed key component, is responsible for fusing entity representations

and textual representations. The objective of ERNIE is to randomly mask aligned

<word,entity> pairs (e.g. by masking <entity> there will be no entity information

fused into the representations of <word>) then train ERNIE model to predict the

masked entity based on the fused representations.

ERNIE is pre-trained on English Wikipedia containing 4500 million

subwords [Johnson et al., 2017, Kudo and Richardson, 2018], and the entity

embeddings are obtained from Wikidata using TransE [Bordes et al., 2013]. The

experimental results show that ERNIE outperforms BERT on knowledge-rich tasks

including relation classification and entity typing. ERNIE also obtains comparable

performance with BERT on other common NLP tasks, demonstrating the efficacy of

the knowledge fusion approach.

Specifically, suppose a sequence of words (w1, w2, ..., wn) and a sequence of entity

tokens (e1, e2, ..., em) that are aligned with words in (w1, w2, ..., wn). Firstly, the text

encoder will encode the word sequence (w1, w2, ..., wn) to generate its representations

H = {h1, h2, ..., hn}. Then the text representations H = {h1, h2, ..., hn} and the

representations of entities E = (e1, e2, ..., em)
4, which are obtained from pre-trained

entity embedding, TransE [Bordes et al., 2013], will be fed into the knowledge encoder

where H and E are fused. For hi supposing its aligned entity token in E is ej , then

wi and ej will be updated by:

dkij = gd(W
k
d [h

k−1
i , ek−1

j ])), hki = gh(W
k
h d

k
ij), e

k
j = ge(W

k
e d

k
ij) (2.24)

where k represents the k-th layer of the knowledge encoder that is composed of L

layers, dkij is the fused representations of word hk−1
i and its aligned entity ek−1

j which

are then updated and assigned as the new values of hki and ekj , and gd, gh, ge are

4For notational simplicity we still use (e1, e2, ..., em) to represent entity embeddings
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corresponding activation functions. After the knowledge fusion stage, the generated

text representations are H̃ = {hL1 , hL2 , ..., hLn}.

The new objective of ERNIE is to randomly mask the aligned <word,entity>

pairs (e.g. by masking ej in <hi, ej> there will be no entity information being

fused into hki ) then train ERNIE model to predict the masked entity based on

H̃ = {hL1 , hL2 , ..., hLn}:

Jentity(θ) =
∑
E

∑
i,j

logP (< wi, ej > |hL1 , hL2 , ..., hLn) (2.25)

where the probability of predicting an entity ej for word wi is modeled by:

P (< wi, ej > |hL1 , hL2 , ..., hLn) =
eψ(h

L
i ,e

L
j )∑

t ψ(h
L
i , e

L
t )

(2.26)

Note that in ERNIE the probability distribution is normalized over the entity list

(e1, e2, ..., em) not the whole entity vocabulary for computational efficiency. Similar

to the practice of the masked token prediction in BERT, Zhang et al. [2019] propose

a masking strategy for a word-entity pair <hi, ej> (i). 5% of the time, ej will be

replaced with another randomly sampled entity eĵ (ii). 15% of the time, ej will be

masked (iii). 80% of the time, ej will stay unchanged. Moreover, ERNIE also uses

the masked token prediction J1(θ) and next sentence prediction J2(θ) as pre-training

objectives, therefore the overall objective of ERNIE is the sum of the three objectives

above: J(θ) = Jentity(θ) + J1(θ) + J2(θ). By using such pre-training objectives

the text representations produced by ERNIE are expected to contain not only the

semantic patterns of words but also the entity information obtained from knowledge

fusion.

2.4.2.2 K-BERT: Injecting knowledge graph into BERT for enhanced

language representations

Different from Zhang et al. [2019] where the entity knowledge is injected during the

pre-training phase, Liu et al. [2020a] propose to incorporate knowledge in the
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fine-tuning and inference phases by explicitly injecting knowledge graph information

into text sequences. Their aim in doing this is to reduce the required computational

resources for pre-training and knowledge graph embeddings. K-BERT firstly uses

the entity information in sequence (w1, w2, ..., wn) to obtain the relevant

< entity1, relation, entity2 > triples from a knowledge graph, then these triples are

injected into the original sequence directly by appending < relation, entity2 > to

< entity1 > in the sequence. For examples, if a triple

< Bill_Gates, CEOof ,Microsoft > is retrieved for sentence Bill Gates calls for

‘Green industrial revolution’ to beat climate crisis, then K-BERT will inject the

triple into the sentence by modifying it to: Bill Gates CEO of Microsoft calls for

‘Green industrial revolution’ to beat climate crisis. It is worth noting that although

CEO of Microsoft is inserted between Bill Gates and calls for ..., CEO of Microsoft

still shares the same position embeddings [Vaswani et al., 2017] with calls for .... In

other words, the injection of CEO of Microsoft won’t affect the original order of the

sentence. After the injection of entity triples, the modified sequence can be fed into

the transformer encoders.

Note that the design of K-BERT enables the incorporation of any domain

knowledge graph for specific tasks without pre-training and knowledge embeddings

since the entity and relation information can be directly injected into the text

sequence. Therefore when employing K-BERT for specific tasks, one should use

the same pre-training objectives as BERT [Devlin et al., 2019a] or directly initialize

the transformer encoders using a public Google BERT model [Devlin et al., 2019a]

then use appropriate knowledge graphs in the fine-tuning stage to inject entity and

relation information into the text sequences and train K-BERT with task-specific

objectives. In the experiments of Liu et al. [2020a], K-BERT is pre-trained on

Chinese corpora including WikiZh and WebtextZh, and the knowledge graphs used in

downstream tasks include CN-DBpedia [Xu et al., 2017], HowNet [Dong et al., 2010]

and MedicalKG. Experimental results show K-BERT outperforms vanilla BERT on

text classification tasks for the e-commerce domain, XNLI [Conneau et al., 2018]
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and domain-specific NER.

2.5 Document-level Sentiment Analysis with User and

Product Context

Document-level sentiment analysis aims to predict the sentiment polarity of text

usually taking the form of a lengthy document. Sentiment analysis with user and

product information [Tang et al., 2015b] is a particular kind of sentiment classification

task in which the corresponding user (or review author) and the product that was

evaluated are taken into consideration when predicting sentiment polarity.

Neural networks have been widely used in sentiment classification [Socher et al.,

2013, Kim, 2014, dos Santos and Gatti, 2014, Tang et al., 2015a, Wang et al., 2016].

Most existing work focuses solely on the text itself, with Tang et al. [2015b] being

the first to identify the importance of incorporating user and product information

for sentiment classification. In their work, a CNN-based encoder was used to obtain

document representations, and user and product information are represented in both

vector and matrix form, and injected in the word embedding layer and classification

layer. Subsequently, many methods were proposed for the purpose of better capturing

user preferences and product-specific sentiment. Chen et al. [2016b] used an LSTM

encoder to obtain the sentence-level representation before combining them into a

document representation. In their model, user and products are represented as vectors

in the embedding matrix and user-product vectors are used to gather important

information at both word and sentence-level through an attention mechanism. Ma

et al. [2017] proposed a cascading multi-way attention to model the dependencies

among user, product and review. Dou [2017], Long et al. [2018] adopted a memory

network to capture user and product information. To alleviate the cold-start problems

Amplayo et al. [2018] proposed to utilize similar user information when a given user’s

reviews are limited. Furthermore, Amplayo [2019] proposed a novel model that

represents users and products as chunk-wise importance weight matrices in order
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to improve the performance by reducing the number of parameters to be optimized.

Zhang et al. [2021b] proposed a multi-attribute encoder using bilinear projections

between attributes and texts on top of BERT [Devlin et al., 2019a] to make better

use of attribute (user and product) information.

Most aforementioned studies focus on capturing user and product preferences.

However they neglect to incorporate the reviews from the same user and product.

We hypothesize that explicitly utilizing such extra context is helpful for sentiment

classification. We explore this further in Chapter 3

2.6 Semantic Role Labeling

Semantic Role Labeling (SRL) is a NLP task that aims to reveal the underlying

semantic structure of a sentence by identifying predicate-argument structure and

classifying their semantic roles. This process is important for understanding the

meaning of natural language sentences and plays a useful role in various NLP tasks

such as information extraction and machine translation systems [Liu and Gildea,

2010, Christensen et al., 2011].

In SRL, predicates are typically verbs that represent an action or a state, and

arguments are phrases representing roles or entities taking part in that action or

state. The semantic roles captured by SRL are defined in frameworks such as

PropBank [Kingsbury and Palmer, 2002, Palmer et al., 2005] and FrameNet [Baker

et al., 1998]. Frameworks such as Propbank use arguments like Arg0, Arg1, Arg2

and ArgM, to represent different arguments in a sentence. For example, in sentence

John ate an apple in the classroom., the verb ate serves as a predicate that conveys

the action eating. The other arguments in this sentence should be tagged as:

• Arg0 : John - The agent who performs the action

• Arg1 : an apple - The object that undergoes the action performed

• ArgM-Loc: in the classroom - The location where the action takes place
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Traditional methods for SRL typically use the syntactic structure of the sentence

and develop hand-crafted rules or employ supervised machine learning techniques

like Support Vector Machines (SVM) [Park et al., 2004]. With the introduction of

deep learning techniques, SRL systems mainly focus on using neural networks such

as Long Short-Term Memory (LSTM) networks [He et al., 2017], and more recently,

PLMs like BERT [Devlin et al., 2019a, Shi and Lin, 2019] are employed for improved

performance.

Since SRL is capable of producing structured representations of natural language

sentences, so incorporating the knowledge of SRL into PLMs can potentially

improve their performance by providing semantic information that can inform

higher-level reasoning and facilitate machine understanding of natural language. We

will demonstrate approaches incorporating the knowledge of SRL into PLMs in

Chapter 4 and Chapter 5.

2.7 Unsupervised Question Answering and Question

Generation

Question Generation (QG) aims to generate plausible questions according to a given

passage and answer pair. For example, given the passage "The Eiffel Tower is a

wrought-iron lattice tower located in Paris, France. It was completed in 1889 and is

named after the engineer Gustave Eiffel." and the answer "Gustave Eiffel", the QG

model would generate a question such as "Who is the engineer that the Eiffel Tower

in Paris is named after?". Traditional approaches to QG mostly employ linguistic

templates and rules to transform declarative sentences into interrogatives [Heilman

and Smith, 2009]. Recently, Dhole and Manning [2020] showed that, with the help of

advanced neural syntactic parsers, template-based methods are capable of generating

high-quality questions from texts.

Neural seq2seq generation models have additionally been widely employed in

QG, with QG data usually borrowed from existing QA datasets [Du et al., 2017,
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Sun et al., 2018, Ma et al., 2020]. Furthermore, reinforcement learning has been

employed by Zhang and Bansal [2019], Chen et al. [2019], Xie et al. [2020] to directly

optimize discrete evaluation metrics such as BLEU [Papineni et al., 2002]. Lewis

et al. [2020] and Song et al. [2019] show that a large-scale pre-trained model can

achieve state-of-the-art performance for supervised QG [Dong et al., 2019, Narayan

et al., 2020].

BLEU [Papineni et al., 2002], ROUGE [Lin, 2004] and Meteor [Banerjee and

Lavie, 2005] metrics are commonly borrowed from text generation tasks to evaluate

QG where the system-generated question is compared with the ground-truth question

based on n-gram overlap. Even with respect to original text generation tasks, however,

the use of such metrics has been questioned [Callison-Burch et al., 2006, Reiter, 2018].

Such metrics are particularly problematic for QG evaluation since multiple plausible

questions exist for a given passage and answer. Consequently, there has been a shift

in focus to evaluating QG using an extrinsic evaluation that generates synthetic

QA pairs for the purpose of evaluating their effectiveness as a data augmentation

or unsupervised QA approach [Alberti et al., 2019, Puri et al., 2020, Shakeri et al.,

2020].

In unsupervised QA, the QA model is trained using synthetic data based on a

QG model instead of an existing QA dataset. In order to train the QG systems

used to generate synthetic QA data, various approaches have been proposed: 1)

Alberti et al. [2019], Puri et al. [2020], Shakeri et al. [2020] additionally employ

existing QA datasets to train a QG model where the passage and answer serve as

the input and question is used as output target. 2) Instead of resorting to existing

QA datasets, unsupervised QG methods have been employed, such as Unsupervised

Neural Machine Translation [Lewis et al., 2019]. Fabbri et al. [2020], Li et al. [2020]

propose template/rule-based methods for generating questions and employ retrieved

paragraphs and cited passages as source passages to alleviate the problems of lexical

similarities between passages and questions. Those approaches either rely on existing

annotated QA datasets or suffer from low-quality generated questions, we will explore

34



Chapter 2. Background

this problem in Chapter 4.

2.8 Multi-modal Video Question Answering

Video Question Answering (VideoQA) [Yang et al., 2003, Tapaswi et al., 2016, Zhao

et al., 2017, Kim et al., 2020, Xiao et al., 2022a] aims to answer a textual question

based on a video where the question is about the understanding of the video content

and the answer can either be selected from a candidate set or be generated. VideoQA

is a complex and challenging task that requires a deep understanding of the spatio-

temporal nature of videos and the ability to reason about objects, relations, and

events across visual and linguistic domains [Lei et al., 2018, Yun et al., 2021, Xiao

et al., 2022a]. To tackle this task, existing research has focused on cross-modal

interaction with the aim of understanding videos under the guidance of questions.

For example, Visual Relation Grounding in Videos (vRGV) proposed by Xiao et al.

[2020], have addressed the challenges of spatio-temporal localization and the dynamic

nature of visual relations in videos. Hierarchical Object-oriented Spatio-Temporal

Reasoning (HOSTR) networks [Dang et al., 2021] focus on object-oriented reasoning,

maintaining consistent object lifelines within a hierarchically nested spatio-temporal

graph. Invariant Grounding for VideoQA [Li et al., 2022c] is another learning

framework that focuses on grounding question-critical scenes and improving reasoning

abilities by shielding the answering process from the negative influence of spurious

correlations. There has also been a shift towards modeling video as a conditional

graph hierarchy [Xiao et al., 2022a], which aligns with the multi-granular essence of

linguistic concepts in language queries and improves performance and generalization

across different types of questions. These methods have collectively contributed to

advances in the field of VideoQA, enhancing accuracy, visual explainability, and

generalization ability across various tasks and datasets.

However, existing approaches often have limitations, such as the problem of

generally fail to take into account the explicit semantic connection between questions
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and the corresponding visual information at the event level and aligning audio and

visual features in the same vector space with respect to the semantic-level information,

especially when the features have different scales and granularities [Zhong et al.,

2022a, Gan et al., 2022]. We atttempt to address these limitations in our work

described in Chapter 5.
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User-Product Context for

Sentiment Analysis

In this chapter, we will discuss how to utilize user and product context for document-

level Sentiment Analysis. We present two novel approaches explicitly making use of

the textual information in the historical reviews associated with each specific user

and product to improve document-level Sentiment Analysis. This chapter is based

on two papers published at COLING 2020 - Improving Document-Level Sentiment

Analysis with User and Product Context [Lyu et al., 2020a] and the findings of ACL

2023 - Exploiting Rich Textual User-Product Context for Improving Personalised

Sentiment Analysis [Lyu et al., 2023d].

3.1 Sentiment Analysis with User and Product Context

Document-level sentiment analysis aims to predict sentiment polarity of text that

often takes the form of product or service reviews. Tang et al. [2015b] demonstrated

that modelling the individual who has written the review, as well as the product

being reviewed, is worthwhile for polarity prediction, and this has led to exploratory

work on how best to combine review text with user/product information in a neural

architecture [Chen et al., 2016b, Ma et al., 2017, Dou, 2017, Long et al., 2018,

Amplayo, 2019, Amplayo et al., 2018]. A feature common amongst past studies is

that user and product IDs are modelled as embedding vectors whose parameters are

learned during training. We take this idea a step further and represent users and
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products using the text of all the reviews belonging to a single user or product - see

Figure 3.1.

There are two reasons to incorporate review text into user/product modelling.

Firstly, the reviews from a given user will reflect their word choices when conveying

sentiment. For example, a typical user might use words such as fantastic or excellent

with correspondingly high ratings but another user could use the same words

sarcastically with a low rating. Similarly, a group of users writing a review of the

same product may use the same or similar opinionated words to refer to that

product. Secondly, learning meaningful user and product embeddings that are only

updated by backpropagation is challenging when a user or product has a limited

number of reviews. However, even with a small number of reviews, it is still possible

to extract useful information from the text. For example, in the case of a specific

user or product with only a few reviews, their corresponding embeddings will only

be updated several times during the training process, resulting in sub-optimal

representations. On the other hand, the textual information in their historical

reviews is more useful in reflecting their rating preferences. We present two methods

for using the text of historical reviews. The first approach is presented in Chapter

3.2 and the second is presented in Chapter 3.3.

We compare performance with a range of systems and results show that our

approach works, improving on state-of-the-art results for all three benchmark datasets

(IMDB, Yelp-13 and Yelp-14).1 We also compare to a version of our own system

which does not use the review text representations to encode user and product

information. While it performs competitively with other systems, demonstrating the

efficacy of our basic architecture, it does not work as well as our proposed system,

particularly for reviews written by users or products with only a small number of

reviews.
1http://ir.hit.edu.cn/~dytang/paper/acl2015/dataset.7z
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Figure 3.1: Utilizing all historical reviews of corresponding user and products.

3.2 Method-1

A naive approach might compute representations of all the reviews of a given user or

product each time we have a new training sample but this would be too expensive,

and we instead propose the following incremental approach: With each new training

sample, we obtain the review text representation, with BERT [Devlin et al., 2019a] as

our encoder, before using the representation together with user and product vectors

to obtain a user-biased document representation and a product-biased document

representation, which are then employed to obtain sentiment polarity. We then add

the user-biased and product-biased document representations to the corresponding

user and product vectors, so that they are ready for the next sample. In doing

so, we incrementally store and update representations of reviews for a given user

and product. Unlike Ma et al. [2017], who use a hierarchical structure in which

sentence representations are first computed before being combined into a document
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Figure 3.2: Overall architecture of our model, where Eu and Ep are user and product
representations.

representation, We let the words in the text directly attend to each other. The

architecture we propose is depicted in Figure 3.2 and is explained in more detail in

Section 3.2.1.

3.2.1 Methodology

An overview of our model architecture is shown in Figure 3.1. The input to our

model consists of d, u, p, which are the document, the user id and the product id

respectively. u and p are both mapped to embedding vectors, Eu, Ep ∈ Rh. d is fed

into the BERT encoder to generate a document representation Hd ∈ RL×h where

L is the length of document after tokenization. We then inject Eu and Ep, to get

the user-product biased document representation Hbiased ∈ Rh. Finally, we feed the

biased document representation Hbiased into a linear layer followed by a softmax layer

to get the distribution of the sentiment label y. We use cross-entropy to calculate

the loss between the predictions and ground-truth labels.
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Injecting user and product preferences We adopt stacked

multi-head-attention (Q,K, V ) [Vaswani et al., 2017] to model the connections

between the current document and user/product vectors, which correspond to all

historical reviews composed by the user or about the product to date. In a typical

dot-product attention (Q,K, V ), Q ∈ RLQ×h, K ∈ RLK×h, V ∈ RLV ×h. Generally,

LK = Lv. Eu and Ep are regarded as queries, Hd as keys and values. We compute

the user-specific document representation, Ctu, and product-specific document

representation, Ctp as follows:

Ctu = stacked-attention(Eu, Hd, Hd) Ctp = stacked-attention(Ep, Hd, Hd)

(3.1)

where Ctu = attention(Ct−1
u ), C0

u = Eu (similarly for Ctp), and t is the number of

layers of the attention function. In Equation (3.1), Ctu ∈ Rh, Ctp ∈ Rh.

We adopt a gating mechanism to obtain importance vectors, zu and zp, to control

the contribution of user-specific and product-specific document representations to

the output classification:

zu = σ(WzuC
t
u +WzhHd + bu) zp = σ(WzpC

t
p +WzhHd + bp) (3.2)

Finally, we obtain the biased document representation Hbiased by:

Hbiased = Hcls + zu ⊙ Ctu + zp ⊙ Ctp (3.3)

where Hcls ∈ Rh is the final hidden vector of the [CLS] token (which is a special

token that is added at the beginning of texts used for classification) [Devlin et al.,

2019a] and ⊙ is element-wise product.

Updating the user and product matrix To implement our idea of using all

reviews composed by u and all reviews about p, we incrementally add the current
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user/product-specific document representation to the corresponding entries in the

embedding matrix at each step during training:

E
′
u = σ(Eu + λuC

t
u) E

′
p = σ(Ep + λpC

t
p) (3.4)

where λu and λp are both learnable real numbers that control the degree to which

the representation of the current document should be employed.

With Eu being updated every step during training process, it can memorize all

reviews attached to the corresponding user, the same for Ep. Furthermore, we apply

two linear transformations to user and product vectors. The first linear layer is

used to transform user and product vectors to the same dimension as the document

representation, the second layer is used to transform them back into the original

dimension:

Eu =WinUu + bin Ep =WinPp + bin (3.5)

U
′
u =WoutE

′
u + bout P

′
p =WoutE

′
p + bout (3.6)

where U ∈ RM×h
′
is the user embedding matrix, P ∈ RN×h

′
is the product

embedding matrix, M and N are the total number of user and product respectively,

Uu and Pp are rows in U and P corresponding to u and p. In Equations (5) and

(6), Win ∈ Rh×h
′
, bin ∈ Rh and Wout ∈ Rh

′×h, bout ∈ Rh
′
. h

′
is the embedding size,

generally h
′ ≤ h.

Objective function We use Cross-Entropy function to calculate the loss between

the predictions of our model and ground-truth labels:

Loss = −
n∑
i=1

m∑
j=1

yi,jlog(p(yi,j |di, ui, pi)) (3.7)

where n is the number of samples and m is the number of all classes, yi,j represents
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the actual probability of the i-th sample belonging to classj , yi,j is 1 only if the i-th

sample belongs to classj otherwise it’s 0. p(yi,j |di, ui, pi) is the probability the i-th

sample belongs to classj predicted by our model.

3.2.2 Experimental Setup

Our experiments are conducted on the IMDB, Yelp-13 and Yelp-14 benchmark

datasets where the task is to predict the fine-grained sentiment polarity (5 classes

for Yelp and 10 classes for IMDB) from the review texts, statistics of which are

shown in Table 3.1. We use the BERT-base model from HuggingFace [Wolf et al.,

2019]. We train our model with a learning rate chosen from {8e-6, 3e-5, 5e-5},

and a weight decay rate chosen from {0, 1e-1, 1e-2, 1e-3}, the optimizer we use is

AdamW[Loshchilov and Hutter, 2019]. In our experiments, the number of attention

layers t is set to 5. The maximum sequence length to BERT is 512. We select the

hyper-parameters achieving the best results on the dev set for evaluation on the test

set. Evaluation metrics (Accuracy and RMSE) are calculated using scripts from

Scikit-learn [Pedregosa et al., 2011].2

Datasets Classes Documents Users Products Docs/User Docs/Product Words/Doc

IMDB 1–10 84,919 1,310 1,635 64.82 51.94 394.6
Yelp-2013 1–5 78,966 1,631 1,633 48.42 48.36 189.3
Yelp-2014 1–5 231,163 4,818 4,194 47.97 55.11 196.9

Table 3.1: Statistics of IMDB, Yelp-2013 and Yelp-2014.

Datasets Train Dev Test Words/Doc

IMDB 67,426 8,381 9,112 394.6
Yelp-2013 62,522 7,773 8,671 189.3
Yelp-2014 183,019 22,745 25,399 196.9

Table 3.2: Number of documents per split and average doc length of IMDb, Yelp-2013
and Yelp-2014.

2https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
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Datasets Users Products Docs/User Docs/Product

IMDB 1,310 1,635 64.82 51.94
Yelp-2013 1,631 1,633 48.42 48.36
Yelp-2014 4,818 4,194 47.97 55.11

Table 3.3: Number of users and products with average amount of documents for
each user and product in IMDb, Yelp-2013 and Yelp-2014.

3.2.3 Datasets

Our experiments are conducted on three benchmark English document-level sentiment

analysis datasets: IMDb, Yelp-13 and Yelp-14 [Tang et al., 2015b]. Statistics of the

three datasets are shown in Table 3.2. The IMDb dataset has the longest documents

with an average length of approximately 395 words. All three are fine-grained

sentiment analysis datasets: Yelp-2013 and Yelp-2014 have 5 classes, IMDb has

10 classes. Each review is accompanied by its corresponding anonymized user ID

and product ID. The average number of reviews for each user/product is shown in

Table 3.3.

3.2.4 Results

Our experimental results are shown in Table 3.4. Our proposed model is named

IUPC (Incorporating User-Product Context). The first two rows are baseline

models: bert vanilla which is the basic BERT model without user and product

information, i.e. only review text, and IUPC w/o update, which is the same as

our proposed model except that we do not update the user and product embedding

matrix by incrementally adding the new review representations. The third row

shows our proposed model. We also compare with results from the NLP-progress

leaderboard3 of the following models:

3http://nlpprogress.com/english/sentiment_analysis.html
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CHIM [Amplayo, 2019] adopts a

chunk-wise matrix representation

for user/product attributes; injects

user/product information in different

locations.

CMA [Ma et al., 2017] A hierarchical

LSTM encoding the document;

injects user and product information

hierarchically.

DUPMN [Long et al., 2018] encodes

the document using a hierarchical LSTM;

adopts two memory networks, one for

user information and another for product

information.

HCSC [Amplayo et al., 2018] A

combination of CNN and Bi-LSTM as the

document encoder; injects user/product

information with bias-attention.

HUAPA [Wu et al., 2018] adopts two

hierarchical models to get user and

product specific document representations

respectively.

NSC [Chen et al., 2016b] A hierarchical

LSTM encoder incorporating user/ product

attributes with word and sentence-level

attention.

RRP-UPM [Yuan et al., 2019] uses two

memory networks besides the user/product

embeddings to get refined representations

for user/product information.

UPDMN [Dou, 2017] An LSTM model

encoding the document; a memory network

capturing user/product information.

UPNN [Tang et al., 2015b] adopts a CNN-

based encoder and injects user/product

information in the embedding and

classification layers.

IMDB Yelp-2013 Yelp-2014

Acc. (%) RMSE Acc. (%) RMSE Acc. (%) RMSE

bert vanilla 47.90.46 1.2430.019 67.20.46 0.6470.011 67.50.71 0.6210.012
iupc w/o Update 52.10.31 1.1940.010 69.70.37 0.6050.007 70.00.29 0.6010.007
iupc (our model) 53.80.57 1.1510.013 70.50.29 0.5890.004 71.20.26 0.5920.008

upnn 43.5 1.602 59.6 0.784 60.8 0.764
updmn 46.5 1.351 63.9 0.662 61.3 0.720
nsc 53.3 1.281 65.0 0.692 66.7 0.654
cma 54.0 1.191 66.3 0.677 67.6 0.637
dupmn 53.9 1.279 66.2 0.667 67.6 0.639
hcsc 54.2 1.213 65.7 0.660 67.6 0.639
huapa 55.0 1.185 68.3 0.628 68.6 0.626
chim 56.4 1.161 67.8 0.641 69.2 0.622
rrp-upm 56.2 1.174 69.0 0.629 69.1 0.621

Table 3.4: Experimental Results on IMDB, Yelp-2013 and Yelp-2014. Following
previous work, we use Accuracy (Acc.) and Root Mean Square Error (RMSE) for
evaluation. There are 10 classes in IMDB and 5 classes in Yelp 2013 and Yelp 2014.
We run bert vanilla, iupc w/o Update and iupc five times and report the
average Accuracy and RMSE. The subscripts represent standard deviation.
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Our model achieves the best classification accuracy and RMSE on Yelp-2013 and

Yelp-2014, and the best RMSE on IMDB. It outperforms previous state-of-the-art

results by 1.5 accuracy and 0.042 RMSE on Yelp-2013, by 2.1 accuracy and 0.029

RMSE on Yelp-2014, and by 0.01 RMSE on IMDB. Moreover, it outperforms the

two baselines, bert vanilla and iupc w/o update in both classification accuracy

and RMSE on all three datasets.

3.2.5 Analysis

We analyse the results for reviews whose user or product do not have many reviews

in the training set and compare our model’s performance to the iupc w/o update

baseline for one dataset (Yelp-2013 dev). We select only reviews where the number

of reviews by that user or for that product falls below three thresholds: 40%, 60%,

80% (19, 28, 38 reviews respectively), where % stands for the number of reviews for

a given user/product relative to the average number of reviews for all users/products.

Table 3.5 shows that our model performs better than iupc w/o update when there

are only a small number of previous reviews available for a given product/user. In

other words, when a user or product does not have many reviews, its iupc w/o

update embedding which is only updated by gradient descent, cannot capture

user/product preference as well as our model which explicitly takes advantage of

historical review text in its user/product representations.

40% 60% 80%
Acc. (%) RMSE Acc. (%) RMSE Acc. (%) RMSE

iupc w/o Update 63.0 0.608 64.0 0.665 66.8 0.643
iupc (our model) 65.7 0.585 66.8 0.649 67.9 0.631

Table 3.5: Analysis of three lower-resource scenarios where % denotes a threshold
filter corresponding to the proportion of reviews available relative to the average
number in the dataset Yelp-2013 (dev).

In order to get a better idea of where there is room for improvement for iupc,

we examine the 43 Yelp-13 dev set cases, where the predicted label differs from

the gold label by more than two points. There are a handful of cases of sarcasm,
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It 's definitely a 
place for a cool 

date…… 

I wouldn't do 
dinner here 
again…… 

This place has a 
really chill , 

almost a hipster 
feel……

…
…

…
…

…
…

..

The food is the 
reason for the 

rating…… 

It packs heats, 
but for me its 
lacking in the 

heat…… 

The food were 
fine but 

absolutely 
nothing special 

…
…

…
…

…
…

..

What kind of users like this product?

What kind of products this user like?

Similar users Similar products

Historical reviews Historical reviews

Figure 3.3: Our proposed idea of representing users and products with their historical
reviews, which can directly inform user and product preferences, and incorporating
the associations between users and products.

e.g. that lovely tempe waste/tap water taste in the food, but the most noteworthy

phenomenon is mixed sentiment, e.g. tacos were good the soup was not tasty, or the

more subtle brave the scary parking and lack of ambiance. It is not always clear from

the reviews which aspect of the service the rating is directed towards. This suggests

that aspect-based sentiment analysis [Pontiki et al., 2014] might be useful here, and

training an iupc model for this task is a possible avenue for future work.

3.3 Method-2

We proposed a method that explicitly uses historical reviews in the training

process Lyu et al. [2020a]. However, this approach needs to incrementally store

review representations during the training process, which results in a more complex

model architecture.

As shown in Figure 3.3, we propose an alternative approach. We use pre-trained

language models (PLMs) to pre-compute the representations of all historical reviews

belonging to the same user/product. Historical review representations are then used

47



Chapter 3. User-Product Context for Sentiment Analysis

to initialize user/product representations by average pooling over all tokens before

again average pooling over all reviews. This allows historical review text to inform

the user and product preference, while minimizing time and memory costs. since the

representations of historical reviews are average pooled and the pre-computation is

one-time.

In addition, we propose a user-product cross-context module, which cooperates

with historical representations of users and products to gather sentiment polarity

information from the reviews of other users/products. This module interacts on four

dimensions: user-to-user, product-to-product, user-to-product and product-to-user.

The former two are used to obtain similar user (product) information, which is useful

to model user (product) preference especially when a user (product) has limited

reviews. The latter two are used to model the product preference of the user (what

kind of products do they like and what kind of ratings would they give to similar

products?) and user preference associated with a product (what kinds of users like

such products and what kinds of ratings would they give to this product?).

We apply our approach to various English PLMs and test on the same three

benchmark English datasets used for method-1 – IMDb, Yelp-2013, Yelp-2014.

We find that our approach yields consistent improvements across PLMs (BERT,

SpanBERT, Longformer) and achieves substantial improvements over previous state-

of-the-art models. We also show the superior performance of our approach when the

number of reviews for each user is limited.

Our contributions are two effective, cooperative strategies for improving sentiment

analysis with user and product information:

1. initializing user and product representations using their historical reviews

2. a user-product cross-context module which cooperates with Contribution 1 to

efficiently incorporate textual associations between users and products from a

larger context.
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Review

Review

Review

…
…

…
…
…

Review

Review

Review

…
…

…
…
…

Review Text

Encoder

User-Product 
Cross-Context

Sen?ment Classifica?on
Ini$alizing User Matrix 
Using historical reviews

Ini$alizing Product Matrix  
using historical reviews

EU EP

Eui
Epj

Figure 3.4: Our model architecture. We initialize user representation matrix EU and
product representation matrix EP . The user vector Eui and product vector Epj are
fed into user-product cross-context module with document representation HD. The
dashed lines indicate the direct interactions of historical reviews in the cross-context
module.

3.3.1 Methodology

An overview of our approach is shown in Figure 3.4. We firstly feed the review text,

D, into a PLM encoder to obtain its representation, HD. HD is then fed into a

user-product cross-context module consisting of multiple attention functions together

with the corresponding user embedding vector, u and product embedding vector,

p. The output of the user-product module is concatenated with HD and fed into a

linear classification layer to obtain the distribution over all sentiment labels.

Incorporating Textual Information of Historical Reviews For the purpose

of making use of the textual information of historical reviews, we initialize all user

and product embedding vectors using the representations of their historical reviews.

Specifically, assume that we have a set of users U = {u1, ......, uN} and products

P = {p1, ......, pM}. Each user ui and product pj have their corresponding historical

reviews: ui = {Dui
1 , ......, D

ui
ni
} and pj = {Dpj

1 , ......, D
pj
mj}.

For a certain user ui, we firstly feed Dui
1 into the transformer encoder to obtain
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its representation Hui
D1

∈ RL×h, then we average Hui
D1

along its first dimension:

H̄ui
D1

=

∑
Hui
D1

T uiD1

(3.8)

where H̄ui
D1

∈ R1×h, L is the maximum sequence length, h is the hidden size of the

transformer encoder, T uiD1
is the total number of tokens in Dui

1 excluding special

tokens. Therefore, we simply sum the representations of all tokens in Dui
1 and then

average it to obtain a document vector H̄ui
D1

. The same procedure is used to generate

the document vectors of all documents in ui = {Dui
1 , ......, D

ui
ni
}. Finally, we obtain

the representation of ui by:

Eui =

∑ni
k=1 H̄

ui
Dk

ni
(3.9)

where Eui ∈ R1×h is the initial representation of user ui. The same process is applied

to generate the representations of all the other users as well as all products. Finally,

we have EU ∈ RN×h and EP ∈ RM×h as the user and product embedding matrix

respectively. Moreover, in order to control the magnitude of EU , EP to prevent it

from being too large or too small, we propose scaling heuristics, EU and EP :

ÊU = fUEU , fU =
F_Norm(E)

F_Norm(EU )
(3.10)

ÊP = fPEP , fP =
F_Norm(E)

F_Norm(EP )
(3.11)

where F_Norm is Frobenius norm, and E is a normal matrix in which the elements

Ei,j are drawn from a normal distribution N (0, 1).

User-Product Information Integration Having enriched user and product

representations with historical reviews, we propose a user-product cross-context

module for the purpose of garnering sentiment clues from textual associations

between users and products. In this module, we adopt four attention operations:

user-to-user, product-to-product, user-to-product and product-to-user. We use

Multi-Head-Attention [Vaswani et al., 2017] in four attention operations. Specifically,

for Multi-Head-Attention(Q,K,V), we use the user representation Eui or product
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representation Epj as Q and the user matrix EU and product matrix EP as K and

V. It is important to note that, before using Eui and Epj , we fuse the document

information Hcls ∈ R1×h, the representation of the [CLS] token, into them as

follows:

Eui = gu(Eui , Hcls), Epj = gp(Epj , Hcls), (3.12)

where gu and gp represent two linear layers combining Eui/Epj and Hcls.

1. User-to-User Attention We use Eui as the query and EU as the keys and

values to gather information from similar users:

Euuui = Attnuu(Eui , EU , EU ) (3.13)

2. Product-to-Product Attention We use Epj as the query and EP as the

keys and values to gather information from similar products:

Epppj = Attnpp(Epj , EP , EP ) (3.14)

3. User-to-Product Attention We use Eui as the query and EP as the keys

and values to gather information from products associated with ui:

Eupui = Attnup(Eui , EP , EP ) (3.15)

4. Product-to-User Attention We use Epj as the query and EU as the keys

and values to gather information from users associated with pj :

Epupj = Attnpu(Epj , EU , EU ) (3.16)

We also employ two Multi-head Attention between Eui/Epj (query) and

HD (key and value). The corresponding outputs are EDui and E
D
pj . We then combine

the output of the user-product cross-context module and Hcls to form the final
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representations. In Attnuu and Attnpp, we add attention masks to prevent Eui and

Epj from attending to themselves. Thus we also incorporate Eui and Epj as their

self-attentive representations:

Hd =g(E
uu
ui , E

pp
pj , E

up
ui , E

pu
pj , E

D
ui , E

D
pj ,

Eui , Epj , Hcls)

(3.17)

Hd is fed into the classification layer to obtain the sentiment label distribution.

As with method-1, we use Cross-Entropy to calculate the loss between our model

predictions and the gold labels.

IMDB Yelp-2013 Yelp-2014
BS LR BS LR BS LR

BERT-base 16 6e-5 16 6e-5 16 6e-5
BERT-large 8 3e-5 8 3e-5 8 3e-5
SpanBERT-base 16 6e-5 16 6e-5 16 6e-5
SpanBERT-large 8 3e-5 8 3e-5 8 3e-5
Longformer-base 16 3e-5 16 3e-5 16 3e-5
Longformer-large 4 2e-5 4 3e-5 4 3e-5

Table 3.6: The hyperparameters used to fine-tune all models on all datasets including
Learning Rate (LR) and Batch Size (BS).

IMDB Yelp-2013 Yelp-2014
Acc. (%) RMSE Acc. (%) RMSE Acc. (%) RMSE

Vanilla BERT-base Attention 55.4 1.129 69.1 0.617 70.7 0.610
+ Our approach 59.7 1.006 70.7 0.589 72.4 0.559

Vanilla BERT-large Attention 55.7 1.070 69.9 0.590 71.3 0.579
+ Our approach 60.3 0.977 71.8 0.568 72.3 0.567

Vanilla SpanBERT-base Attention 56.6 1.055 70.2 0.589 71.3 0.571
+ Our approach 60.2 1.026 71.5 0.578 72.6 0.562

Vanilla SpanBERT-large Attention 57.6 1.009 71.6 0.563 72.5 0.556
+ Our approach 61.0 0.947 72.7 0.552 73.7 0.543

Vanilla Longformer-base Attention 56.7 1.019 71.0 0.573 72.5 0.554
+ Our approach 59.6 0.990 72.6 0.558 73.3 0.548

Vanilla Longformer-large Attention 57.0 0.967 70.7 0.571 72.2 0.555
+ Our approach 61.8 0.931 73.5 0.540 74.3 0.529

Table 3.7: Results of our approach on various PLMs on the dev sets of IMDb,
Yelp-2013 and Yelp-2014. We show the results of the baseline vanilla attention model
for each PLM as well as the results of the same PLM with our proposed approach.
We report the average of five runs with two metrics, Accuracy (↑) and RMSE (↓).
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3.3.2 Experimental Setup

The pre-trained language models we employed in experiments are BERT-base-uncased,

BERT-large-uncased [Devlin et al., 2019a], SpanBERT-base, SpanBERT-large [Joshi

et al., 2020] and Longformer [Beltagy et al., 2020]. We use the implementations

from Huggingface [Wolf et al., 2019]. The hyperparameters are empirically selected

based on the performance on the dev set. We adopt an early stopping strategy

where we stop training when the performance on dev set decreases. The maximum

sequence is set to 512 for all models in order to fully utilize the textual information

in documents. For evaluation, we employ two metrics Accuracy and RMSE (Root

Mean Square Error), which are calculated using the scripts in [Pedregosa et al.,

2011]4. All experiments are conducted on one Nvidia GeForce RTX 3090 GPU.

We show the Learning Rate and Batch Size used to train our models on all

datasets in Table 3.6.

3.3.3 Results

IMDB Yelp-2013 Yelp-2014
Acc. (%) RMSE Acc. (%) RMSE Acc. (%) RMSE

Pre-BERT models
UPNN [Tang et al., 2015b] 43.5 1.602 59.6 0.784 60.8 0.764
NSC [Chen et al., 2016b] 53.3 1.281 65.0 0.692 66.7 0.654
UPDMN [Dou, 2017] 46.5 1.351 63.9 0.662 61.3 0.720
CMA [Ma et al., 2017] 54.0 1.191 66.3 0.677 67.6 0.637
HCSC [Amplayo et al., 2018] 54.2 1.213 65.7 0.660 67.6 0.639
DUPMN [Long et al., 2018] 53.9 1.279 66.2 0.667 67.6 0.639
HUAPA [Wu et al., 2018] 55.0 1.185 68.3 0.628 68.6 0.626
RRP-UPM [Yuan et al., 2019] 56.2 1.174 69.0 0.629 69.1 0.621
CHIM [Amplayo, 2019] 56.4 1.161 67.8 0.641 69.2 0.622

BERT-based models
IUPC [Lyu et al., 2020a] 53.8 1.151 70.5 0.589 71.2 0.592
MA-BERT [Zhang et al., 2021b] 57.3 1.042 70.3 0.588 71.4 0.573
Ours 59.0 1.031 72.1 0.570 72.6 0.563

Table 3.8: Experimental Results on the test sets of IMDb, Yelp-2013 and Yelp-
2014. We report the average results of of five runs of two metrics Accuracy (↑) and
RMSE (↓). The best performance is in bold.

In order to validate the effectiveness of our approach, we first conduct experiments
4https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
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with several PLMs (BERT, SpanBERT and Longformer). Results on the dev sets of

IMDb, Yelp-2013 and Yelp-2014 are shown in Table 3.7. We compare our approach

to a vanilla user and product attention baseline where 1) the user and product

representation matrices are randomly initialized and 2) we simply employ multi-

head attention between user/product and document representations without the

user-product cross-context module. Our approach is able to achieve consistent

improvements over the baseline with all PLMs on all three datasets. For example,

our approach gives improvements over the baseline of 4.3 accuracy on IMDb, 1.6

accuracy on Yelp-2013 and 1.7 accuracy on Yelp-2014 for BERT-base. Moreover, our

approach can give further improvements for large PLMs such as Longformer-large:

improvements of 4.8 accuracy on IMDb, 2.8 accuracy on Yelp-2013 and 2.1 accuracy

on Yelp-2014. The improvements over the baseline are statistically significant (

p < 0.01)5.

We compare our approach to previous approaches on the test sets of IMDb, Yelp-

2013 and Yelp-2014. These include pre-BERT neural baseline models using CNN [dos

Santos and Gatti, 2014, Kim, 2014] and LSTM [Yang et al., 2016] – UPNN [Tang

et al., 2015b], NSC [Chen et al., 2016b], UPDMN [Dou, 2017], CMA [Ma et al., 2017],

HCSC [Amplayo et al., 2018], DUPMN [Long et al., 2018], HUAPA [Wu et al., 2018],

RRP-UPM [Yuan et al., 2019], CHIM [Amplayo, 2019] – and two state-of-the-art

models based on BERT including our method described in Section 3.2 and MA-

BERT [Zhang et al., 2021b]. We use BERT-base for a fair comparison with IUPC

and MA-BERT, which both use BERT-base. The results are shown in Table 3.8.

Our model obtains the best performance at both accuracy and RMSE on IMDb,

Yelp-2013 and Yelp-2014. Specifically, our model achieves absolute improvements

in accuracy of 1.7, 1.6 and 1.2 on IMDb, Yelp-2013 and Yelp-2013 respectively

compared to previous state-of-the-art results. As for RMSE, which indicates how

close the predicted labels are to ground-truth labels, our models outperforms earlier

state-of-the-art models on RMSE by 0.011 on IMDb, 0.018 on Yelp-2013 and 0.010
5We use a paired t-test to determine the significance of our method’s improvements over the

baseline models.
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on Yelp-2014.

IMDB Yelp-2013 Yelp-2014
Acc. (%) RMSE Acc. (%) RMSE Acc. (%) RMSE

BERT 50.8 1.187 67.2 0.639 67.8 0.629
+ User-Product Information 55.4 1.129 69.1 0.617 70.7 0.610
+ Textual Information 56.9 1.089 70.1 0.593 71.9 0.563
+ User-Product Cross-Context 59.7 1.006 70.7 0.589 72.4 0.559

Table 3.9: Results of ablation studies on the dev sets of IMDb, Yelp-2013 and
Yelp-2014.

Ablation Studies Results of an ablation analysis are shown in Table 3.9. The

first row results are from a BERT model without user and product information. The

next three rows correspond to

1. User-Product Information, where we use the same method in the baseline

vanilla attention model in Table 3.7 to inject user-product information

2. Textual Information, our proposed approach of using historical reviews to

initialize user and product representations.

3. User-Product Cross-Context, our proposed module incorporating the

associations between users and products.

The results show, firstly, that user and product information is highly useful for

sentiment classification, and, secondly, that both textual information of historical

reviews and user-product cross-context can improve sentiment classification. Textual

Information gives ~1 accuracy improvement on the three datasets, while giving

~0.04 RMSE improvement on IMDb and Yelp-2014, ~0.02 RMSE improvement on

Yelp-2013. User-Product Cross-Context achieves large improvements on IMDb of 2.8

accuracy compared to the improvements on Yelp-2013 and Yelp-2014 of 0.6 and 0.5

accuracy respectively.

Varying Number of Reviews We investigate model performance with different

amounts of reviews belonging to the same user/product. We randomly sample a

proportion of each user’s reviews (from 10% to 100%). Then we use the sampled

training data, where each user only has part of their total reviews (e.g. 10%), to
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Figure 3.5: Experimental results of IUPC, MA-BERT and our approach under
different proportions of reviews from 10% to 100% on the dev sets of IMDb (top)
and Yelp-2013 (bottom).
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Figure 3.6: Effect of varying the scaling factor for the User and Product Matrices
on the dev sets of Yelp-2013 (left) and IMDb (right). We include results of BERT-
base (top) and SpanBERT-base (bottom). The left and right y-axis in each subplot
represent Accuracy and RMSE respectively. The x-axis represents the scaling factor.
The vertical green dashed line is the scaling factor from the Frobenius norm heuristic.
The two horizontal dashed lines (blue and orange) are the accuracy and RMSE
produced by the Frobenius norm heuristic respectively.
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train sentiment classification models. We conduct experiments on Yelp-2013 and

IMDb using IUPC (method-1 in Section 3.2), MA-BERT [Zhang et al., 2021b] and

our approach. The results are shown in Figure 3.5, where the x-axis represents the

proportion of reviews that we used in experiments. When the proportion of reviews

lie between 10% and 50%, our approach obtains superior performance compared to

MA-BERT and IUPC while the performance gain decreases when users have more

reviews. The results show the advantage of our approach under a low-review scenario

for users.

Scaling Factor for User/Product Matrix To investigate the effect of varying

scaling factor in Equation 3.10 and 3.11 for user and product matrix. We conduct

experiments with different scaling factor (see Equations 3.10 and 3.11) on the dev

sets of Yelp-2013 and IMDb using BERT-base. We apply the same scaling factor

to both user and product matrix. The results are shown in Figure 3.6, where we

use scaling factor ranging from 0.05 to 1.5 with intervals of 0.05. The results show

that our proposed scaling factor (green dashed lines in Figure 3.6) based on the

Frobenius norm can yield competitive performance: best accuracy according to the

blue dashed line. Although the RMSE of the Frobenius norm heuristic is not always

the optimal, it is still a relatively lower RMSE compared to most of the other scaling

factors (except the RMSE of SpanBERT-base on IMDb). Moreover, the Frobenius

norm heuristic can reduce the efforts needed to tune the scaling factor, since the

optimal scaling factor is varying for different models on different data, whereas

the Frobenius norm heuristic is able to consistently provide a competitive dynamic

scaling factor.

Effect of Maximum Sequence Length Document length can make document-

level sentiment classification more challenging, especially for fine-grained classification,

which requires model to capture the subtle expression of sentiment polarity in

documents. However, PLMs often have a fixed maximum sequence length (usually

512 WordPiece [Wu et al., 2016] tokens). A commonly used method for dealing with

this constraint is to only keep the first 512 tokens for documents longer than the
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Review Vanilla
BERT

IUPC MA-
BERT

Ours

Took travis here for one of our first dates and just
love cibo. It ’s situated in a home from 1913 and
has colored lights wrapped all around the trees. You
can either sit inside or on the gorgeous patio. Brick
oven pizza and cheese plates offered here and it ’s
definitely a place for a cool date. (VP)

VP (✓) VP (✓) VP (✓) VP (✓)

a great sushi bar owned and operated by maggie and
toshi who are both japanese. their product is always
consistent and they always have a few good specials.
service is great and the staff is very friendly and
cheerful. value is really good particularly within their
happy hour menu. our kids love it and they are always
spoiled rotten by maggie and toshi so it is their favorite
place. lastly we did a sake tasting there a few weeks
ago and really had a great time. we all sat family style
int he middle of the restaurant and got to experience
some really interesting rice wines. we had a blast.
great place (P)

VP (✗) P (✓) P (✓) P (✓)

well , i was disappointed. i was expecting this one
to be a jazzed up container store. but ... it was just
average. i used to visit container store in houston
near the galleria. it has a nice selection of things.
people are always ready to help etc.. but , this one
has an aloof sort of customer service crowd. they say
nice things about your kid but do not offer to help.
hmm ... i have seen similar things they were selling
at ikea. the quality did seem a little better than ikea
but if you are buying a laundry room shelf for your
laundry detergent ... who the hell cares. its a shelf !
does n’t matter if it has 15 coats of paint on the metal
or 2 coats. i found one of those sistema lunch boxes
that i have been looking for over here and it was on
sale. will i go back ? probably not. too far out for me
, plus i like ikea better (Ne)

VN (✗) N (✗) VN (✗) Ne (✓)

Unfortunately tonight was the last night this location
was open. The only two locations left in the valley
are desert ridge and arrowhead. Please support them.
(VP)

Ne (✗) N (✗) VN (✗) N (✗)

Table 3.10: Example reviews from the dev sets of Yelp-2013 and the corresponding
predictions of each model. Very Negative (VN), Negative (N), Neutral (Ne),
Positive (P), Very Positive (VP).

maximum length. This has been shown, however, not to be the best strategy [Sun

et al., 2019a], because the expression of sentiment polarity could be towards the

end of a document. Therefore, in order to investigate the importance to sentiment

polarity prediction of text in the tail end of a long review, we conduct experiments on

the dev sets of IMDb and Yelp-2013 using Longformer-base [Beltagy et al., 2020]. We

adopt various maximum sequence lengths, from 64 to up the 2048 tokens handled by
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IMDb
Max Length 128 256 384 512 1024 2048

Truncated Examples (%) 96.3 68.7 46.5 30.8 6.3 0
Accuracy (%) 33.9 37.2 45.0 54.3 58.4 58.9

Yelp-2013
Max Length 128 256 384 512 1024 2048

Truncated Examples (%) 63.7 29.3 13.1 5.6 0.3 0
Accuracy (%) 63.1 66.6 68.1 68.6 69.4 69.4

Table 3.11: Results of Longformer under different maximum sequence length on the
dev sets of IMDb and Yelp-2013. The truncated examples are the percentage of
examples that exceed the corresponding max sequence length.

.

Longformer. In order to purely focus on review texts, we do not include user/product

information in this experiment.

The results are shown in Table 3.11. When reviews longer than the maximum

length are truncated, the performance of sentiment classification is substantially

reduced. For example, in IMDb, when the maximum length is set to 128 and 256,

96.3% and 68.7% examples are truncated and the accuracy drops ~40% compared

to the best performance. However, the effect is lower for Yelp-2013. For example,

when 63.7% and 29.3% examples are truncated, the accuracy only drops ~10% and

~5% compared to the best accuracy. This is not surprising given the shorter review

length of Yelp versus IMDb reviews (see Table 3.2).

Examples Some cases sampled from the dev set of Yelp-2013 and corresponding

predictions from Vanilla BERT w/o user and product information, IUPC [Lyu et al.,

2020a], MA-BERT [Zhang et al., 2021b] and our model are shown in Table 3.10.

1. Example 1This is a straightforward positive review since it clearly conveys

the satisfaction towards the restaurant. Thus all models make the correct

prediction.

2. Example 2 This is similar to the first example in narrative style, but the

ground-truth sentiment label is Positive rather than Very Positive since this

user tends not to give very high ratings. This example shows the importance

of user information.
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3. Example 3 This review conveys a very negative attitude. However, the author

tends not to give very poor ratings plus the reviews this store received are not

bad. With both user and product information, our model makes the correct

prediction of Neutral.

4. Example 4 All models, regardless of whether they use user and product

information, predict Neutral or Negative while in fact the review label is Very

Positive. This is a difficult example where the sentiment is subtly expressed.

3.4 Summary

In this chapter, we discussed how to effectively incorporate user and product context

for document-level Sentiment Analysis. We propose two approaches for using the

textual information in the historical reviews of users and products. Results on

benchmark datasets show that our proposed approaches achieve superior performance

compared to previous state–of-the-art systems, demonstrating the effectiveness of

incorporating user and product context for document-level Sentiment Analysis. We

have presented some answers for RQ-1: How can we utilize the extra information

in the metadata of product reviews to improve document-level sentiment analysis?.

In the next chapter, we will discuss the incorporation of linguistic and semantic

knowledge for Question Generation and Question Answering. We will also present a

set of experiments understanding the role of Question Answering datasets on PLMs

in the next chapter.
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QA Experiments: Improved

Unsupervised QA via improved

Question Generation and

Analysing QA Dataset Bias

In this chapter, we will focus on how to incorporate linguistic and semantic

knowledge for unsupervised Question Answering and Question Generation as well as

the effect of internal characteristics of QA datasets on QA systems’ performance.

We propose a novel approach using linguistic and semantic knowledge to generate

questions from summarization datasets. We will discuss the effect of downstream

task datasets on Pre-trained Large Language Models. We present extensive

experiments investigating how internal dataset characteristics affect the performance

of PLMs. This chapter is based on two papers – Improving Unsupervised Question

Answering via Summarization-Informed Question Generation published at EMNLP

2023 Lyu et al. [2021] and Extending the Scope of Out-of-Domain: Examining QA

models in multiple subdomains published at the Workshop on Insights from Negative

Results in NLP at ACL 2022 [Lyu et al., 2022].
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Figure 4.1: Example questions generated via heuristics informed by semantic role
labeling of summary sentences using different candidate answer spans

4.1 A Novel Approach to Question Generation

The aim of Question Generation (QG) is the production of meaningful questions

given a set of input passages and corresponding answers, a task with many

applications including dialogue systems as well as education [Graesser et al., 2005].

Additionally, QG can be applied to Question Answering (QA) for the purpose of

data augmentation [Puri et al., 2020] where labeled <passage, answer, question>

triples are combined with synthetic <passage, answer, question> triples produced

by a QG system to train a QA system, and unsupervised QA [Lewis et al., 2019], in

which only the QG system output is used to train the QA system.

Early work on QG focused on template or rule-based approaches, employing

syntactic knowledge to manipulate constituents in declarative sentences to form

interrogatives [Heilman and Smith, 2009, 2010]. Although template-based methods

are capable of generating linguistically correct questions, the resulting questions often

lack variety and incur high lexical overlap with corresponding declarative sentences.

For example, the question generated from the sentence Stephen Hawking announced
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the party in the morning, with Stephen Hawking as the candidate answer span, could

be Who announced the party in the morning?, with a high level of lexical overlap

between the generated question and the declarative sentence. This is undesirable in

a QA system [Hong et al., 2020] since the strong lexical clues in the question would

make it a poor test of real comprehension.

Neural seq2seq models [Sutskever et al., 2014] have come to dominate QG [Du

et al., 2017], and are commonly trained with <passage, answer, question> triples

taken from human-created QA datasets [Dzendzik et al., 2021]. This limits

applications to the domain and language of QA datasets. Furthermore, the process

of constructing such datasets involves a significant investment of time and resources.

We subsequently propose a new unsupervised approach that frames QG as a

summarization-questioning process.

By employing freely available summary data, we firstly apply dependency parsing,

named entity recognition and semantic role labeling to summaries, before applying a

set of heuristics that generate questions based on parsed summaries. An end-to-end

neural generation system is then trained employing the original news articles as

input and the heuristically generated questions as target output.

An example is shown in Figure 4.1. The summary is used as a bridge between

the questions and passages. Because the questions are generated from the summaries

and not from the original passages, they have less of a lexical overlap with the

passages. Crucially, however, they remain semantically close to the passages since

the summaries by definition contain the most important information contained in

the passages. A second advantage of this QG approach is that it does not rely on

the existence of a QA dataset, and it is arguably easier to obtain summary data in a

given language than equivalent QA data since summary data is created for many

purposes (e.g. news, review and thesis summaries) whereas many QA datasets are

created specifically for training a QA system.

In order to explore the effectiveness of our method, we train an English QG

model using news summary data. We employ our QG model to generate synthetic
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Figure 4.2: An overview of our approach where Answer and Question are generated
based on Summary by the Question Generation Heuristics, the Answer is combined
with the Article to form the input to the Encoder, the Question is employed as the
ground-truth label for the outputs of the Decoder.

QA data to train a QA model in an unsupervised setting and test the approach with

six English QA datasets: SQuAD1.1 [Rajpurkar et al., 2016], Natural

Questions [Kwiatkowski et al., 2019], TriviaQA [Joshi et al., 2017],

NewsQA [Trischler et al., 2017], BioASQ [Tsatsaronis et al., 2015] and DuoRC [Saha

et al., 2018]. Experimental results show that our approach substantially improves

over previous unsupervised QA models even when trained on substantially fewer

synthetic QA examples.

Our contributions can be summarized as follows:

1. We propose a novel unsupervised QG approach that employs summary data

and syntactic/semantic analysis, which to our best knowledge is the first work

connecting text summarization and question generation in this way;

2. We employ our QG model to generate synthetic QA data achieving state-of-

the-art performance even at low volumes of synthetic training data.
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4.2 Methodology

Diverging from supervised neural question generation models trained on existing

QA datasets, the approach we propose employs synthetic QG data, that we create

from summary data using a number of heuristics, to train a QG model. We provide

an overview of the proposed method in Figure 4.2. We then employ the trained

QG model to generate synthetic QA data that is further employed to train an

unsupervised QA model.

4.2.1 Question Generation

In order to avoid generating trivial questions that are highly similar to corresponding

declarative statements, we employ summary data as a bridge connecting the generated

question and the original article. The process we employ involves, firstly Dependency

Parsing (DP) of summary sentences, followed by Named-Entity Recognition (NER)

and finally Semantic Role Labeling (SRL). DP is firstly employed as a means of

identifying the main verb (root verb), in addition to other constituents such as

auxiliaries. NER is then responsible for tagging all entities in the summary sentence

to facilitate discovery of the most appropriate question words to generate. The

pivotal component of linguistic analysis is then SRL, employed to obtain all semantic

frames for the summary sentence. Each frame consists of a verb followed by a set

of arguments which correspond to phrases in the sentence. An argument could

comprise, for example, an Agent (who initiates the action described by the verb),

a Patient (who undergoes the action), and a set of modifier arguments such as a

temporal ARG-TMP or locative argument ARG-LOC. Questions are then generated

from the arguments according to argument type and NER tags, which means that

wh-words can be determined jointly.

Returning to the example in Figure 4.1: given the SRL analysis [U2’s lead singer

Bono ARG-0] has [had VERB] [emergency spinal surgery ARG-1] [after suffering

an injury while preparing for tour dates ARG-TMP], the three questions shown in
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Figure 4.1 can be generated based on these three arguments.

The pseudocode for our algorithm to generate questions is shown in Algorithm 1.

We first obtain all dependency edges and labels (dps), NER tags (ners) and SRL

Algorithm 1: Question Generation Heuristics
S = summary
srl_frames = SRL(S)
ners = NER(S)
dps = DP (S)
examples = []
for frame in srl_frames do

root_verb = dpsroot
verb = frameverb
if root_verb equal to verb then

for arg in frame do
wh∗ = identify_wh_word(arg, ners)
base_verb, auxs = decomp_verb(arg, dps, root_verb)
Qarg = wh_move(S,wh∗, base_verb, auxs)
Qarg = post_edit(Qarg)
examples.append(context,Qarg, arg)

end
end

end

frames (srl_frames) of a summary sentence. We then iterate through all

arguments in the frame of the root_verb (the verb whose dependency label is root)

and identify appropriate wh-words (wh∗) for each argument using the function

identify_wh_word according to its argument type and the NER tags of entities in

the argument. We follow Dhole and Manning [2020] to use the standard wh-words

in English associated with appropriate argument types and NER tags. We then

decompose the current main verb to its base form (base_verb) and appropriate

auxiliary words (auxs) in the decomp_verb function, before finally inserting the

wh-words and the auxiliary verbs in appropriate positions using the wh_move

function. As can be seen from Algorithm 1, a single summary sentence generates

multiple questions when its SRL frame has multiple arguments.
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4.2.2 Training a Question Generation Model

The summarization data we employ consists of <passage-summary> pairs. Questions

are generated from the summaries using the heuristics described in Section 4.2.1, so

that we have <passage-summary> pairs and <summary-question-answer> triples,

which we then combine to form <passage-answer-question> triples to train a QG

model. We train an end-to-end seq2seq model rather than deploying a pipeline in

which the summary is first generated followed by the question to eliminate the risk of

error accumulation in the generation process. By using this QG data to train a neural

generation model, we expect the model to learn a combination of summarization and

question generation. In other words, such knowledge can be implicitly injected into

the neural generation model via our QG data.

To train the question generation model, we concatenate each passage and answer

to form a sequence: passage <SEP> answer <SEP>, where <SEP> is a special

token used to separate the passage and answer. This sequence is the input and the

question is the target output (objective). In our experiments, we use BART [Lewis

et al., 2020] described in Chapter 2.1.2.4 for generation, which is optimized by the

following negative log likelihood loss function:

L = −
N∑
i=1

logP (qi|C,A) (4.1)

where qi is the i-th token in the question, and C and A are context and answer,

respectively.

4.3 Experiments

We test our idea of using summaries in question generation by applying the questions

generated by our QG system in unsupervised QA. We describe the details of our

experiment setup, followed by our unsupervised QA results on six English benchmark

extractive QA datasets. Extractive question answering (QA) [Rajpurkar et al., 2016,
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Trischler et al., 2017] is a type of QA task where the system is required to provide a

concise answer to a given question by selecting a span of text, typically a sentence or a

phrase, from a given document that contains the answer. Extractive QA has received

significant attention from the research community due to its practical importance

and its potential to solve real-world problems [Zhang et al., 2020b].

4.3.1 Question Generation

Datasets We test the proposed method using news summary data from

XSUM [Narayan et al., 2018], crawled from BBC news website 1. XSUM contains

226,711 <passage-summary> pairs, with each summary containing a single sentence.

QG Details We employ AllenNLP2 [Gardner et al., 2018] to obtain dependency

trees, named entities and semantic role labels for summary sentences, before further

employing this knowledge to generate questions from summaries following the

algorithm described in Section 4.2.1. We remove any generated

<passage-answer-question> triples that meet one or more of the following three

conditions:

1. Articles longer than 480 tokens (exceeding the maximum BART input length);

2. Articles in which fewer than 55% of tokens in the answer span are not

additionally present in the passage (to ensure sufficient lexical overlap between

the answer and passage);

3. Questions shorter than 5 tokens (very short questions are likely to have removed

too much information)

For the dataset in question, this process resulted in a total of 14,830 <passage-

answer-question> triples.

For training the QG model, we employ implementations of BART [Lewis et al.,

2020] from Huggingface [Wolf et al., 2019]. The QG model we employ is BART-base.
1www.bbc.com
2https://demo.allennlp.org/
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We train our system for 3 epochs with a learning rate of 3× 10−5, using the AdamW

optimizer [Loshchilov and Hutter, 2019].

4.3.2 Unsupervised QA

Datasets We carry out experiments on six extractive QA datasets, namely, 1).

SQuAD1.1 [Rajpurkar et al., 2016], a popular dataset from Stanford for machine

comprehension of Wikipedia text, 2). NewsQA [Trischler et al., 2017], a dataset

containing questions about news articles, 3). Natural Questions [Kwiatkowski et al.,

2019], a dataset consisting of real user queries from Google, 4). TriviaQA [Joshi

et al., 2017], a dataset authored by trivia enthusiasts and independently gathered

evidence documents, 5). BioASQ [Tsatsaronis et al., 2015], a dataset focusing on

biomedical questions, and 6). DuoRC [Saha et al., 2018], a dataset derived from

movie scripts. We employ the official data of SQuAD1.1, NewsQA and TriviaQA

and for Natural Questions, BioASQ and DuoRC, we employ the data released by

MRQA [Fisch et al., 2019].

Unsupervised QA Training Details To generate synthetic QA training data,

we make use of Wikidumps 3 by firstly removing all HTML tags and reference links,

then extracting paragraphs that are longer than 500 characters, resulting in 60k

paragraphs sampled from all paragraphs of Wikidumps. We employ the NER toolkits

of Spacy4 [Honnibal et al., 2020] and AllenNLP5 [Gardner et al., 2018] to extract

entity mentions in the paragraphs. We then remove <paragraph, answer> pairs

that meet one or more of the following three conditions: 1) paragraphs with fewer

than 20 or more than 480 words; 2) paragraphs with no extracted answer, or where

the extracted answer is not in the paragraph due to text tokenization; 3) answers

consisting of a single pronoun.

Paragraphs and answers are concatenated to form sequences of the form passage

<SEP> answer <SEP>, before being fed into the trained BART-QG model to obtain
3https://dumps.wikimedia.org/
4https://spacy.io/
5https://demo.allennlp.org/named-entity-recognition/named-entity-recognition
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corresponding questions. This results in 20k synthetic QA pairs, which are then

employed to train an unsupervised QA model.

The QA model we employ is BERT-large-whole-word-masking (which we

henceforth refer to as BERT-large for ease of reference). Document length and

stride length are 364 and 128 respectively. The learning rate is set to 1 × 10−5.

Evaluation metrics for unsupervised QA are Exact Match (EM) that checks if the

predicted answer exactly matches the ground truth answer, and F-1 score which

considers both precision and recall, allowing for partial matches between the

predicted and ground truth answers.

4.3.3 Results

We use the 20k generated synthetic QA pairs to train a BERT QA model and first

validate its performance on the development sets of three benchmark QA datasets

based on Wikipedia – SQuAD1.1, Natural Questions and TriviaQA. The results of

our method are shown in Tables 4.1 and 4.2. The unsupervised baselines we compare

against (also discussed in Section 2.7) are as follows:

1. Lewis et al. [2019] use unsupervised neural machine translation [Artetxe et al.,

2018] to train a QG model; 4M synthetic QA examples were generated to train

a QA model;

2. Li et al. [2020] employ dependency trees to generate questions and employed

cited documents as passages.

For comparison, we also show the results of some supervised models fine-tuned on

the corresponding training sets: Match-LSTM [Wang and Jiang], BiDAF [Seo et al.,

2016], BERT-base and BERT-large [Devlin et al., 2019a].

SQuAD1.1 results are shown in Table 4.1. The results of all baseline models

are taken directly from published work. As can be seen from results in Table 4.1,

our proposed method outperforms all unsupervised baselines, and even exceeds the

performance of one supervised model, Match-LSTM [Wang and Jiang].
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SQuAD1.1

Models EM F-1

Supervised Models
Match-LSTM 64.1 73.9
BiDAF 66.7 77.3
BERT-base 81.2 88.5
BERT-large 84.2 91.1

Unsupervised Models
Lewis et al. [2019] 44.2 54.7
Li et al. [2020] 62.5 72.6
Our Method 65.6 74.5

Table 4.1: In-domain experimental results of supervised and unsupervised methods
on SQuAD1.1. The highest scores of unsupervised methods are in bold.

NQ TriviaQA

Models EM F-1 EM F-1

Supervised Models
BERT-base 66.1 78.5 65.1 71.2
BERT-large 69.7 81.3 67.9 74.8

Unsupervised Models
Lewis et al., 2020 27.5 35.1 19.1 23.8
Li et al., 2020 31.3 48.8 27.4 38.4
Our Method 46.0 53.5 36.7 43.0

Table 4.2: In-domain experimental results: Natural Questions and TriviaQA.

Results for Natural Questions and TriviaQA are shown in Table 4.2. The results of

all baseline models were produced using the released synthetic QA data to finetune a

BERT-large model. Our method outperforms previous state-of-the-art unsupervised

methods by a substantial margin, obtaining relative improvements over the best

unsupervised baseline model of 47% with respect to EM and 10% F-1 on Natural

Questions, and by 34% EM and 12% F-1 on TriviaQA.

In summary, our method achieves the best performance (both in terms of EM

and F-1) out of three unsupervised models on all three tested datasets. Furthermore,

this high performance is possible with as few as 20k training examples. This is

approximately less than 10% of the training data employed in previous work [Li

et al., 2020].
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NewsQA BioASQ DuoRC

EM F-1 EM F-1 EM F-1

Lewis et al. [2019] 19.6 28.5 18.9 27.0 26.0 32.6
Li et al. [2020] 33.6 46.3 30.3 38.7 32.7 41.1
Our Method 37.5 50.1 32.0 43.2 38.8 46.5

Table 4.3: Out-of-domain experimental results of unsupervised methods on NewsQA,
BioASQ and DuoRC. The results of two baseline models on NewsQA are taken
from Li et al. [2020] and their results on BioASQ and DuoRC are from fine-tuning a
BERT-large model on their synthetic data.

Transferability of Our Generated Synthetic QA Data We also validate

our method’s efficacy on three out-of-domain QA datasets: NewsQA, created from

news articles, BioASQ, created from biomedical articles, and DuoRC, created from

movie plots, for the purpose of evaluating the transferability of the Wikipedia-based

synthetic data. Results in Table 4.3 show that our proposed method additionally

outperforms the unsupervised baseline models on the out-of-domain datasets,

achieving F1 improvements over previous state-of-the-art methods by 3.8, 4.5 and

5.4 points respectively. It is worth noting that our data adapts very well to DuoRC,

created from movie plots where the narrative style is expected to require more

complex reasoning. Experiment results additionally indicate that our generated

synthetic data transfers well to domains distinct from that of the original summary

data.

4.4 Analysis

4.4.1 Effect of Answer Extraction

In the unsupervised QA experiments, we extracted answers from Wikipedia passages

before feeding them into our QG model to obtain questions. These <passage, answer,

question> triples constitute the synthetic data employed to train the QA model.

Additionally, we wish to consider what might happen if we instead employ passages

and answers taken directly from the QA training data? Doing this would mean
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SQuAD1.1 NewsQA NQ TriviaQA

Models EM F-1 EM F-1 EM F-1 EM F-1

Our Method (NER-extracted answers)† 65.6 74.5 37.5 50.1 46.0 53.5 36.7 43.0
Our Method (Human-extracted answers) ‡ 68.0 79.5 40.5 59.3 57.3 66.7 54.2 61.1

Table 4.4: Comparison between synthetic data generated based on Wikipedia and
synthetic data generated based on corresponding training set. † are results of QA
model finetuned on synthetic data generated based on NER-extracted answers, ‡ are
results of QA model finetuned on synthetic data based on the answers in the training
set of SQuAD1.1, NewsQA, NQ and TriviaQA.

that the QA system is no longer considered unsupervised but we carry out this

experiment in order to provide insight into the degree to which there may be room

for improvement in terms of our NER-based automatic answer extraction method

(described in Section 4.3.2). For example, there could well be a gap between the

NER-extracted answers and human-extracted answers, and in this case, the NER

could extract answers, for example, that are not entirely worth asking about or

indeed miss answers that are highly likely to be asked about. Results of the two

additional settings are shown in Table 4.4 – answer extraction has quite a large effect

on the quality of generated synthetic QA data. When we employ the answers from

the training set, the performance of the QA model is improved by 5 F-1 points for

SQuAD1.1, and over 10 F-1 points for Natural Questions and TriviaQA.

4.4.2 Effect of Different Heuristics

We additionally investigate the effect of a range of alternate heuristics employed in

the process of constructing the QG training data described in Section 4.2.1. Recall

that the QG data is employed to train a question generator which is then employed

to generate synthetic QA data for unsupervised QA.

The heuristics are defined as follows:

• Naive-QG only employs summary sentences as passages (instead of the original

articles) and generates trivial questions in which only the answer spans are

replaced with the appropriate question words. For example, for the sentence

Stephen Hawking announced the party in the morning, with the party as the
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Heuristics EM F-1

Naive-QG 31.1 43.3
Summary-QG 50.9 59.4
+Main Verb 53.8 63.6
+Wh-Movement 59.5 67.7
+Decomp-Verb 64.1 73.9
+NER-Wh 65.4 74.8

Table 4.5: Experiment results of the effects to unsupervised QA performance on
SQuAD1.1 of using different heuristics in constructing QG data.

answer span, the question generated by Naive-QG would be Stephen Hawking

announced what in the morning? We employ the summary sentences as input

and questions as target output to form the QG training data.

• Summary-QGmakes use of the original news articles of the summaries as passages

rather than summary sentences to avoid high lexical overlap between the passage

and question.

Summary-QG can work with the following heuristics:

– Main Verb: we only generate questions based on the SRL frame of the

main verb (root verb) in the dependency tree of the summary sentences,

rather than using verbs in subordinate clauses;

– Wh-Movement: we move the question words to the beginning of the sentence.

For example, in the sentence Stephen Hawking announced what in the

morning? we move what to the beginning to obtain what Stephen Hawking

announced in the morning? ;

– Decomp-Verb: the main verb is decomposed to its base form and

auxiliaries, e.g what Stephen Hawking announced in the morning?

becomes what did Stephen Hawking announce in the morning?

– NER-Wh: we employ the NER tags to get more precise question words for

an answer. For example, for the answer span NBA player Michael Jordan,

the question words would be which NBA player instead of who or what.
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Questions Answer Comments

who is the frontman of swedish rock band mhiam ? Mattis Malinen ✓

which sultan has been in bosnia for more than a year ? Sultan Mehmed II ✓

what is a major economic driver for the state of ohio ? Ohio’s geographic location ✓

in what time was the first parish council elected ? March 1972 ✓

what do the chattanooga area will host in 2017 ? the Ironman Triathlon ✓grammar error
what have sold five cars in the uk this year ? Surrey Motors missing information
when did the first military college in the us open ? 2009 factual error
what has been described as a " giant fish " ? Darwin mismatch

Table 4.6: Examples of generated questions with corresponding answers.✓represents
correct examples.

We employ the QG data generated by these heuristics to train QG models,

which leads to six BART-QG models. We then employ these six models to further

generate synthetic QA data based on the same Wikipedia data and compare their

performances on the SQuAD1.1 dev set. The results in Table 4.5 show that using

articles as passages to avoid lexical overlap with their summary-generated questions

greatly improves QA performance. Summary-QG outperforms Naive-QG by roughly

20 EM points and 16 F-1 points. The results for the other heuristics show that they

continuously improve the performance, especially Wh-Movement and Decomp-Verb

which make the questions in the QG data more similar to the questions in the QA

dataset.

4.4.3 Effect of the Size of the Synthetic QA Data

We investigate the effects of varying the quantity of synthetic QA data. Results in

Figure 4.3 show that our synthetic data allows the QA model to achieve competitive

performance even with fewer than 20k examples, which suggests that our synthetic

data contains sufficient QA knowledge to enable models to correctly answer a question

with less synthetic data compared to previous unsupervised methods. The data-

efficiency of our approach increases the feasibility of training a QA system for a

target domain where there is no labeled QA data available.
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Figure 4.3: Experimental results on NQ and SQuAD1.1 of using different amount of
synthetic data.

4.4.4 Few-shot Learning

We conduct experiments in a few-shot learning setting, in which we employ a limited

number of labeled QA examples from the training set. We take the model trained

with our synthetic QA data, the model trained with the synthetic QA data of Li

et al. [2020] and a vanilla BERT model, with all QA models employing BERT-

large [Devlin et al., 2019a]. We train these models using increasing amounts of

labeled QA samples from Natural Questions (NQ) and SQuAD1.1 and assess their

performance on corresponding dev sets. Results are shown in Figure 4.4 where

with only a small amount of labeled data (less than 5,000 examples), our method

outperforms Li et al. [2020] and BERT-large, clearly demonstrating the efficacy of

our approach in a few-shot learning setting.
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Figure 4.4: Experimental results of our method with comparison of Li et al. [2020]
and BERT-large using different amount of labeled QA examples in the training set
of NQ and SQuAD1.1.

4.4.5 Effects of Different Beam Size

We also study the effects of different beam sizes in generating synthetic questions

on the performance of the downstream QA task. Experiments are conducted on

the SQuAD1.1 dev set using BERT-large. Questions in the synthetic QA data

are generated with different beam sizes using the same BART-QG model. The

experimental results in Figure 4.5 show that the beam size is an important factor

affecting the performance of unsupervised QA, the largest margin between the highest

score (beam-15) and the lowest score (beam-1) in Figure 4.5 is close to 4 points for

F-1 score.

78



Chapter 4. QA Experiments: Improved Unsupervised QA via improved Question
Generation and Analysing QA Dataset Bias

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Beam Size in Decoding

62.0

62.5

63.0

63.5

64.0

64.5

65.0

65.5
EM

71.5

72.0

72.5

73.0

73.5

74.0

74.5

F-
1 

Sc
or

e

EM
F1 Score

Figure 4.5: Experimental results of the effects of using different beam-size in decoding
process when generating synthetic questions.

4.4.6 Question Type Distribution

We show the distribution of question types of QG data including the training set of

SQuAD1.1 and our synthetic QA data in Figure 4.6, question types are defined as

What, When, Where, Who, Why, How. The QG data has more what, when, where

questions, indicating the existence of more SRL arguments associated with such

question types in the summary sentences.

4.4.7 QG Error Analysis

Despite substantial improvements over baselines, our proposed approach inevitably

still incurs error and we therefore take a closer look at the questions generated by our

QG model. We manually examine 50 randomly selected questions, 31 (62%) of which

were deemed high quality questions (well-structured, clear, relevant to the context
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Figure 4.6: Question type distribution

and answer, and can be used as reliable QA data). The remaining 19 contain various

errors with some questions containing more than one error, including mismatched

wh-word and answer (6) (12%), missing information needed to locate the answer (4)

(8%), factual errors (5) (10%) and grammatical errors (8) (16%) Typical examples

are shown in Table 4.6.

4.5 Extending the Scope of Out-of-Domain: Examining

QA models in multiple subdomains

Examining the out-of-domain performance of QA systems is an important focus

of the research community due to its direct connection to the generalizability and

robustness of QA systems especially in production environments [Jia and Liang, 2017,

Chen et al., 2017, Talmor and Berant, 2019, Fisch et al., 2019, Shakeri et al., 2020].

Even though previous studies mostly focus on coarse-grained general domains [Ruder
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Figure 4.7: We train QA systems on each subdomain and evaluate each system on
all subdomains

and Sil, 2021], the importance of finer-grained subdomains defined by the internal

characteristics of QA datasets cannot be neglected. For example, several studies

exploring specific internal characteristics of QA datasets have been carried out,

including Ko et al. [2020], who reveal that the sentence-level answer position is

a source of bias for QA models, and Sen and Saffari [2020] who investigate the

effect of word-level question-context overlap. Building on this prior work as well

as the definition and discussion of subdomain in Plank and Sima’an [2008], Plank

[2016], Varis and Bojar [2021], we extend the scope of out-of-domain with a view to

assessing the generalizability and robustness of QA systems by investigating their

out-of-subdomain performance. As shown in Figure 4.7, we split a QA dataset into

different subdomains based on its internal characteristics. Then we use the QA

examples in each subdomain to train corresponding QA systems and evaluate their

performance on all subdomains.

We focus on extractive QA as it is not only an important task in itself [Zhang

et al., 2020b] but also the crucial reader component in the retriever-reader model
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for Open-domain QA [Chen et al., 2017, Chen and Yih, 2020]. In experiments with

SQuAD 1.1 [Rajpurkar et al., 2016] and NewsQA [Trischler et al., 2017], we split

the data into subdomains based on question type, text length (context, question and

answer) and answer position. We then train QA systems on each subdomain and

examine their performance on each subdomain. Results show that QA systems

tend to perform worse when train and test data come from different subdomains,

particularly those defined by question type, answer length and answer position.

4.5.1 Experimental Setup

We employ the QA datasets, SQuAD1.1 [Rajpurkar et al., 2016] and

NewsQA [Trischler et al., 2017]. For SQuAD1.1 we use the official dataset released

by [Rajpurkar et al., 2016] and for NewsQA we use the data from MRQA [Fisch

et al., 2019]. For question classification, we use the dataset from Li and Roth [2002].

We use the BERT-base-uncased model from Huggingface [Wolf et al., 2019] for both

question classification and QA.

We adopt the following setup for training and evaluation: We split the original

training set D into several disjoint subdomains Da, Db, Dc, . . .; Then we sample

subsets from each subdomain using sample sizes n1, n2, n3, . . . in ascending order.

The resulting subsets are denoted Dn1
a , D

n2
a , . . . , D

n1
b , D

n2
b , . . .. We train QA systems

on each subset Dn1
a , D

n2
a , . . .. The QA system trained on Dn1

a is denoted QAn1
a .

We evaluate each QA system on the test data T which is also split into disjoint

subdomains Ta, Tb, Tc, . . . similar to the training data D.

The learning rate is set to 3e-5, the maximum sequence length is set to 384 and

the doc stride length is set to 128. We run the training process for 2 epochs for

training each QA system. The training was conducted on one GeForce GTX 3090

GPU and the training batch size is 48.
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Question type Definition Examples
HUM people, individual,

group, title
What contemptible scoundrel stole the cork from
my lunch ?
Which professor sent the first wireless message
in the USA ?
Who was sentenced to death in February ?

LOC location, city, country,
mountain, state

Where is the Kalahari desert ?
Where is the theology library at Notre Dame ?
Where was Cretan when he heard screams ?

ENTY animal, body, color,
creation, currency,
disease/medical, event,
food, instrument,
language, plant,
product, religion, sport,
symbol, technique, term,
vehicle

What relative of the racoon is sometimes known
as the cat-bear ?
What is the world’s oldest monographic music
competition ?
What was the name of the film about Jack
Kevorkian ?

DESC definition, description,
manner, reason

What is Eagle ’s syndrome styloid process ?
How did Beyonce describe herself as a feminist
?
What are suspects blamed for ?

NUM code, count, date,
distance, money, order,
other, percent, period,
speed, temperature,
size, weight

How many calories are there in a Big Mac ?
What year did Nintendo announce a new Legend
of Zelda was in the works for Gamecube ?
How many tons of cereal did Kelloggs donate ?

Table 4.7: Definition of each question type and corresponding examples in SQuAD1.1
and NewsQA.

LOC ENTY HUM NUM DESC

SQuAD1.1
Train set 11.4 27.6 20.7 24.5 15.5
Dev set 10.5 27.6 21.0 23.0 17.4

NewsQA
Train set 11.4 16.9 30.0 18.8 22.6
Dev set 12.3 16.9 32.2 17.8 20.5

Table 4.8: The percentage (%) of question types in the SQuAD1.1 and NewsQA
train and dev sets.
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4.5.2 Question Type

In this experiment we investigate how QA models learn from QA examples with

different question types. We adopt the question classification data in Li and Roth

[2002] to train a question classifier that categorizes questions into the following five

classes: HUM, LOC, ENTY, DESC, NUM [Zhang and Lee, 2003]. The definitions

and examples of each question type are shown in Table 4.7.

The training data is then partitioned into five categories according to their

question type. Question type proportions for SQuAD1.1 and NewsQA are shown

in Table 4.8, with a high proportion of ENTY and NUM questions in SQuAD1.1,

while NewsQA has more HUM and DESC questions. We use QA examples of each

question type to train a QA system, increasing the training set size in intervals of

500 from 500 to 8000. We evaluate it on the test data, which is also divided into five

categories according to question type.

The F-1 scores of the QA systems trained on each question type subdomain are

shown in Figure 4.8, for both SQuAD1.1 and NewsQA. The x-axis represents the

training set size, the y-axis is the F-1 score. The results show that a QA system

learns to answer a certain type of question mainly from the examples of the same

question type – this is particularly true for HUM and NUM questions in SQuAD1.1

and HUM, LOC and NUM questions in NewsQA. Taking NUM questions as an

example, the rightmost plots in Figure 4.8 show that performance on other question

types results in only minor improvements as the training set size increases compared

to the improvements on the NUM question type. The QA system gets most of the

knowledge it needs to answer NUM questions from the NUM training examples and

a similar pattern is present for other question types.

The results in Figure 4.8 show that the subdomain defined by question type is a

source of bias when training and employing QA systems. We suspect that word use

and narrative style vary over question types, injecting bias into QA systems when

learning from QA examples with different question types. Therefore, we need to
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improve the diversity of question types when constructing and organising QA data.

4.5.3 Text Length

The effect of text length on the performance and generalizability of neural models has

been discussed in text classification and machine translation [Amplayo et al., 2019,

Varis and Bojar, 2021]. As for QA, there are three components in a QA example:

context6, question, answer. The length of each component could potentially introduce

additional bias and affect how QA systems learn from QA data. For example, a

short context could be easy since a shorter context could reduce the search space for

QA models to locate the answer; on the other hand, a short context could be hard

as it could contain less information Therefore, the following question arises naturally:

are short and long contexts/questions/answers equivalent?

To answer this question, we split the employed QA datasets into short and long

groups according to the median of the length of contexts/questions/answers.7 Then

we train disinct QA systems on the QA examples randomly sampled from short and

long groups respectively, increasing the training set size in intervals of 500 from 500

to 25000.

The results are shown in Figure 4.9, where the x-axis is the training set size and

the y-axis is the ratio of the performance (EM and F-1 score) of the QAS and

corresponding QAL systems on the text length subdomains of

context/question/answer. If QAL and QAS have no obvious difference in terms of

performance on long and short groups respectively, the ratio of their performance

should be close to 1.

The results show that the performance of QAL and QAS trained on the

subdomains of context and question length have no obvious difference as all three

curves converge to 1, although there are fluctuations when the sample sizes are

small. In contrast, QAL and QAS trained on the subdomain of answer length

behave differently – see the subplots in the two rightmost columns of Figure 4.9.
6We use the terms passage and context interchangeably.
7See the Appendix for more statistics.
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Figure 4.8: Visualization of F-1 learning curves for the QA systems trained on the
subdomains of five question types (HUM,LOC,ENTY,DESC,NUM ), tested on the
subdomains for each question type and the original dev set of SQuAD1.1 (top) and
NewsQA (bottom).
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Figure 4.9: Visualization of performance (EM and F-1 score) ratio curves over long
and short context, question and answer (from left to right) on SQuAD1.1 (top) and
NewsQA (bottom). The green, red lines represent the ratio of the performance on
the long and short groups. The dashed line is 1, indicating that two QA systems
have the same performance. When the sample size increases, curves in context and
question length converge to the dashed line, whereas there are substantial differences
in the performance of QAL and QAS on the answer length subdomain.
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Figure 4.10: Visualization of performance (EM and F-1 score) ratio curves over
front and back answer positions (char-level, word-level and sentence-level from left
to right) on SQuAD1.1 (top) and NewsQA (bottom). The green, red lines represent
the ratio of the performance on the front and back groups. The dashed line is 1,
indicating that two QA systems have the same performance. The curves show that
there are substantial differences in the performance of QAF and QAB in answer
position subdomains, especially for character-level and word-level answer positions.

QAL performs much better than QAS on the test examples with long answers and

much worse than QAS on the test examples with short answers.

The results in Figure 4.9 show that the length of the answer introduces strong bias

to QA systems. We think this stems from the fact that QAL tends to predict longer

answers, whereas QAS tends to predict shorter answers, and they thus underperform

in the counterpart subdomain. We show the average length of the predicted answers

of QAL and QAS in Table 4.9. Therefore, it is important to control the length

distribution of answers when constructing and organising QA datasets, especially

using NER tools in the answer extraction phase since they tend to find shorter

answers.

4.5.4 Answer Position

Ko et al. [2020] study the effect of sentence-level answer position. Building on their
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Context Question Answer

Long Short Long Short Long Short

SQuAD1.1 4.03 4.13 4.00 4.23 6.41 2.78
NewsQA 5.46 5.33 5.16 5.87 9.57 3.51

Table 4.9: The average length of predicted answers of QA systems trained on long
and short subdomains of context, question and answer on SQuAD1.1 and NewsQA.

analysis, we study the effect of two more types of answer position: character-level

position and word-level position. We split the training set into front and back

groups based on the median of the answer start positions at the character, word

and sentence level.8 Then we train QA systems on the examples sampled from

the front (QAF,char, QAF,word, QAF,sent) and back (QAB,char, QAB,word, QAB,sent)

groups respectively, increasing the training set size in intervals of 500 from 500 to

25000.

The results are shown in Figure 4.10, where the x-axis is the training set size

and the y-axis is the ratio of the performance (EM and F-1 score) of QAF and QAB

on the answer position subdomains at the character, word and sentence level. The

results show that answer position is a source of bias at all three levels. QAF performs

much better than QAB on test instances with answer positions in the front, whereas

QAB performs much better than QAF on test instances with answer positions at

the back. The effect of bias is more serious at the character and word level. We

think this answer position bias is happening because words in different positions have

different position embeddings, which could also affect word semantics in transformer

architectures [Vaswani et al., 2017, Wang et al., 2020]. This suggests the need to

make sure answer position distribution is balanced as well as the need to develop

QA systems that are more robust to answer position variation.
8See the Appendix for more statistics.
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4.6 Summary

In this chapter, we describe a novel approach for utilizing linguistic and semantic

knowledge to improve Question Generation informed by summarization data for

Unsupervised Question Answering. Results have shown the effectiveness of our

proposed approach on various benchmark datasets for Question Answering. We also

present extensive experimental results studying the effect of downstream task data

on the performance of Pre-trained Large Language Models. Results demonstrate that

internal characteristics of datasets pose strong bias for neural models, questioning

the robustness and generalizeability of fine-tuning PLMs on downstream tasks

while highlighting the importance of carefully constructing downstream datasets.

This chapter partially answers RQ-2: How can we leverage linguistic and semantic

knowledge to improve Unsupervised Question Answering, and understand the role

of QA data in neural model learning?. In the next chapter, we will discuss how to

incorporate information beyond text to improve multi-modal Question Answering.
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Chapter 5

Semantic-aware Video Question

Answering

The main focus of Chapter 5 is on how to effectively use multi-modal information

from modalities beyond texts to improve Question Answering for videos. In this

chapter, we will discuss two methods aiming to enhance VideoQA performance with

Semantic Role Labeling (SRL).

In Chapter 4, we proposed a method for unsupervised question generation and

question answering that relies on SRL. The method shows promising results. In this

chapter, we extend the use of SRL even further to the video domain and explore its

potential for improving VideoQA. Specifically, we will introduce two methods. The

first uses SRL for improving event-level VideoQA, and is presented in Section 5.1. It

was published as Semantic-Aware Dynamic Retrospective-Prospective Reasoning for

Event-Level Video Question Answering at ACL SRW 2023 [Lyu et al., 2023b]. The

second incorporates SRL and multi-grained representations for improving VideoQA

and retrieval, and is presented in Section 5.2. A paper describing this approach,

entitled Graph-Based Video-Language Learning with Multi-Grained Audio-Visual

Alignment, has been submitted to ACM-MM 2023.
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5.1 Semantic-Aware Event-Level Video Question

Answering

In general, the objective of the VQA task is to provide an answer to a visual-

related question according to the content of an accompanying video. Event-level

VQA (EVQA) [Xu et al., 2021b] is one specific variant of Video Question Answering

(VQA) [Xu et al., 2016, Yu et al., 2018, Zhong et al., 2022b, Lyu et al., 2023a,b].

Despite significant recent progress in VQA, EVQA still remains one of the most

challenging VQA-based tasks since it requires complex reasoning over the events

across video frames [Sadhu et al., 2021, Zhong et al., 2022b, Liu et al., 2022]. To

tackle the challenges in EVQA, a number of approaches have been proposed [Xu

et al., 2021b, Mao et al., 2022].

Mao et al. [2022], for example, propose to construct visual scene graphs to help

VQA. However, directly parsing videos to scene graphs can introduce unexpected

errors due to the highly challenging cross-modal nature of the approach. Luo et al.

[2022] propose a temporal-aware bidirectional attention mechanism for improving

event reasoning in videos, while Zhang et al. [2022] propose a novel model named

Energy-based Refined-attention Mechanism (ERM), which obtains better

performance compared to previous approaches with a smaller model size. Liu et al.

[2022], on the other hand, incorporate visual-linguistic causal dependencies based on

Graph Convolutional Networks [Kipf and Welling, 2017] for enhancing cross-modal

event reasoning for EVQA.

Despite recent advances, conventional EVQA approaches generally fail to take into

account the explicit semantic connection between questions and the corresponding

visual information at the event level. Therefore, we propose a new approach that

takes advantage of such semantic connections, by making use of Semantic Role

Labeling (SRL) [Màrquez et al., 2008, Palmer et al., 2010, He et al., 2017]. The

model uses SRL information to learn an explicit semantic connection between the

text-based questions and visual information in videos. Additionally, we carry out

92



Chapter 5. Semantic-aware Video Question Answering
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Figure 5.1: An overview of our proposed approach.

a multi-step reasoning mechanism over video frames to avoid adapting to spurious

correlations and shortcuts by explicitly learning the reasoning process itself [Yi et al.,

2018, Zhang et al., 2021a, Picco et al., 2021, Hamilton et al., 2022, Zhu, 2022].

Specifically, in each reasoning step, the model should explicitly decide which

frame should be focused on by predicting the reasoning direction (retrospective or

prospective). In terms of the question, in each reasoning step, we focus on one or more

specific SRL arguments with high attention weights, and model its connection with

the visual information (i.e., video frames) contained within the corresponding video.

For example, for a question such as [ARG1: How many cars] were [Verb: involved]

[ARG2: in the accident?], the model concentrates on the ARG2 when locating the

accident, before determining how many cars were involved in the accident (ARG1 ).

In a specific reasoning step, t, we inject the relevant visual information based on the

semantic connection between the question and video frames by updating a hidden

vector. This vector is ultimately expected to contain the necessary information

for predicting the correct answer. In the reasoning process, we employ a coverage

mechanism [Tu et al., 2016] to improve the coverage of the SRL arguments of the

question. Namely, instead of simply focusing on a small number of specific arguments,

the model is capable of including a large range of arguments.
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To investigate the effectiveness of the proposed approach, we conduct experiments

on a benchmark EVQA dataset: TrafficQA [Xu et al., 2021b]. Results reveal that

the model achieve performance superior to that of existing baselines for a range of

reasoning types (e.g., counterfactual, prospective).

5.1.1 Methodology

An overview of our approach is shown in Figure 5.1. Suppose the input of our

model consists of a video V composed of n image frames sampled from it: V =

{f0, f1, ......, fn−1}, and a corresponding question Q = {w0, w1, ......, wm−1} with

associated SRL arguments S = {S0, S1, ......, SN−1} where Si = {wi, wi+1, ......, wk}.

All frames V = {f0, f1, ......, fn−1} are fed into an Image Encoder followed by

temporal attention modeling to produce temporal-aware frame representations V
′
=

{f ′
0, f

′
1, ......, f

′
n−1} ∈ Rn×d. Meanwhile, we use a Text Encoder to obtain the

representations of the question with its corresponding SRL arguments: Q
′ ∈ R1×d

and S
′ ∈ RN×d. We then perform multi-step reasoning in which we iteratively update

the hidden state vector h with the visual information from frame representations

based on the attention weights between them and the SRL arguments of the question.

h ∈ R1×d is updated from the initial step h0 to the final step hT−1 where T is the

total number of reasoning steps. Finally, we predict the most probable answer a

based on hT−1.

5.1.1.1 Multi-step Reasoning

Before the first reasoning step, we initialize:

h0 = Attn(Q
′
, V

′
, V

′
) (5.1)

j = argmax(AttnWeights(Q
′
, V

′
, V

′
)) (5.2)
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where Attn serves as the q, k, v attention1 modeling [Vaswani et al., 2017] and j

represents the index of the frame with the highest attention weight. In each specific

reasoning step t, we firstly use ht−1 as the attention key to obtain the relevant SRL

argument: S
′
t = Attn(ht−1, S

′
, S

′
). Subsequently, we infer the next focused frame

by:

V focus = Attn(rt, V
′
, V

′
) (5.3)

where rt = g(ht−1, S
′
t). Finally, we update the hidden state vector ht−1 based on the

currently focused frame (the frame with the largest attention weight):

ht = δ(ht−1, V
focus) (5.4)

5.1.1.2 Retrospective-Prospective Reasoning

We propose a Retrospective-Prospective Reasoning mechanism for Eq.5.3 in order

to explicitly decide whether the model should move to future frames (prospective

reasoning) or move back to previous frames (retrospective reasoning). We obtain the

retrospective frame V retro and prospective frame V prosp by:

V retro = ψ(g(ht−1, S
′

t), V
′
, RetroMask(j)) (5.5)

V prosp = ϕ(g(ht−1, S
′

t), V
′
, P rospMask(j)) (5.6)

where ψ and ϕ are Masked Attention that are used to obtain retrospective and

prospective frames, g(ht−1, S
′
t) and V

′
serve as query and key, value respectively.

RetroMask(j) means all frames after j (fi>j) will be masked whereas ProspMask(j)

means that all frames before j (fi<j) will be masked. After obtaining V retro and

V prosp we generate a probability:

p = σ(λ(V retro, V prosp)) (5.7)
1In this work, we use a low temperature τ in the softmax to encourage the model to assign more

attention weights to the most relevant frame.
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If p is larger than a pre-defined threshold α, we update ht = δ(ht−1, V
retro)

,otherwise we update ht = δ(ht−1, V
prosp) as in Eq. 5.4. The index for the next-

focused frame j is also updated accordingly. The reasoning process is shown in

Algorithm 2.

5.1.1.3 Coverage Mechanism

We additionally propose to employ a coverage mechanism [Tu et al., 2016] to

encourage the model to include as many SRL arguments as possible in the reasoning

process. Specifically, we track the attention distribution Ct ∈ R1×N of ht−1 on all

SRL arguments S

Ct = Ct−1 +
AttnWeights([ht−1;Ct−1], S

′
, S

′
)

χ
(5.8)

where χ represents the normalization factor.2 We obtain the weighted S
′
t by S

′
t =

Attn([ht−1;Ct−1], S
′
, S

′
) where we concatenate Ct−1 to ht−1 as an additional input

to the Attn function for the purpose of informing the model to assign more attention

weights to previously less-focused SRL arguments, in order to improve the coverage

for all SRL arguments.

5.1.1.4 Training Objective

For the answer prediction, we encode all answer options A = {a0, ......, aM−1}

separately and then select the one with the highest similarity with hT−1. We

optimize our model parameters θ using Cross Entropy loss:

J(θ) = −
∑
i

∑
k

log
e𭟋(ak,hT−1)∑M−1
j=0 e𭟋(aj ,hT−1)

yi,k (5.9)

where 𭟋 is the function measuring the similarity between answer candidate and hT−1

and we use dot product as 𭟋 in experiments, and yi,k represents the answer label for

the i−th example - if the correct answer for the i−th example is the k−th answer

then yi,k is 1,otherwise it is 0.
2In this work, we use the number of SRL arguments of the corresponding question as the

normalization factor.
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Algorithm 2: Multi-step dynamic retrospective-prospective reasoning with
coverage mechanism
V

′
= {f0, f1, ......, fn−1}: representations of video frames

Q
′
: question

S
′
: SRL representations of Q

T : reasoning steps
χ : normalization factor
α: threshold of the probability for using retrospective frame
h0 = Attn(Q

′
, V

′
, V

′
)

j = argmax(AttnWeights(Q
′
, V

′
, V

′
))

C0 = 0
for i in T do

S
′

i = Attn(hi−1, S
′
, S

′
, Ci−1)

Ci = Ci−1 +
AttnWeights(hi−1,S

′
,S

′
,Ci−1)

χ

V retro = ψ(g(ht−1, S
′

t), V
′
, RetroMask(j))

V prosp = ϕ(g(hi−1, S
′

i), V
′
, P rospMask(j))

p = σ(f(V retro, V prosp))
if p > α then

hi = δ(hi−1, V
retro)

j = argmax(ψ(g(ht−1, S
′

t), V
′
, RetroMask(j)))

else
hi = δ(hi−1, V

prosp)
j = argmax(ϕ(g(hi−1, S

′

i), V
′
, P rospMask(j)))

5.1.2 Experimental Setup

We employ a benchmark dataset for EVQA – TrafficQA [Xu et al., 2021b] which

contains 62,535 QA pairs and 10,080 videos. We follow the standard split of TrafficQA

– 56,460 pairs for training and 6,075 pairs for evaluation. We further sample 5,000

examples from training data as the dev set to facilitate the selection of hyper-

parameters. There are two experimental settings for TrafficQA [Xu et al., 2021b]:

1) Setting-1/2: this task is to predict whether an answer is correct for a given

question based on videos; 2) Setting-1/4: this task follows the standard setup of a

multiple-choice task in which the model is expected to predict the correct the answer

from the four candidate options.

We use CLIP ViT-B/16 [Radford et al., 2021] 3 to initialize our image encoder

and text encoder. We evenly sample 10 frames from each video in the TrafficQA

dataset. The SRL parser employed in the experiments is from AllenNLP [Gardner
3https://openai.com/blog/clip/
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Models Setting-1/4 Setting-1/2

Q-type (random) [Xu et al., 2021b] 25.00 50.00
QE-LSTM [Xu et al., 2021b] 25.21 50.45
QA-LSTM [Xu et al., 2021b] 26.65 51.02
Avgpooling [Xu et al., 2021b] 30.45 57.50
CNN+LSTM [Xu et al., 2021b] 30.78 57.64
I3D+LSTM [Xu et al., 2021b] 33.21 54.67
VIS+LSTM [Ren et al., 2015] 29.91 54.25
BERT-VQA [Yang et al., 2020b] 33.68 63.50
TVQA [Lei et al., 2018] 35.16 63.15
HCRN [Le et al., 2020] 36.49 63.79
Eclipse [Xu et al., 2021b] 37.05 64.77
ERM [Zhang et al., 2022] 37.11 65.14
TMBC [Luo et al., 2022] 37.17 65.14
CMCIR [Liu et al., 2022] 38.58 N/A
Ours 43.19 71.63

Table 5.1: Evaluation results on TrafficQA dataset.

Method
Question Type

Basic Attribution Introspection Counterfactual Forecasting Reverse All

HCRN [Le et al., 2020] 34.17 50.29 33.40 40.73 44.58 50.09 36.26
VQAC [Kim et al., 2021] 34.02 49.43 34.44 39.74 38.55 49.73 36.00
MASN[Seo et al., 2021] 33.83 50.86 34.23 41.06 41.57 50.80 36.03
DualVGR [Wang et al., 2021a] 33.91 50.57 33.40 41.39 41.57 50.62 36.07
CMCIR [Liu et al., 2022] 36.10 52.59 38.38 46.03 48.80 52.21 38.58
Ours 37.05 52.68 43.91 50.81 54.26 55.52 43.19

Table 5.2: Results by various question type on the dev set of TrafficQA. The highest
performance are in bold.

et al., 2018, Shi and Lin, 2019]. We train our model over 10 epochs with a learning

rate of 1 × 10−6 and a batch size of 8. The optimizer is AdamW [Loshchilov and

Hutter, 2019]. We set the maximum reasoning step T to 3 and we use a temperature

τ of 0.2 in Attention modeling. The hyper-parameters are empirically selected based

on the performance on dev set.

5.1.3 Results

The experimental results on the test set of TrafficQA are shown in Table 5.1, where

we also include the previous baseline models for EVQA.4 The results show that our
4Some of the baseline results are taken from [Xu et al., 2021b].
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Models Setting-1/4 Setting-1/2

Model w/o MR and CM 42.53 69.61
Model w/o CM 46.15 74.97
Model 47.38 75.83

Table 5.3: Ablation study results on TrafficQA dev set, where MR represents Multi-
step Reasoning and CM represents Coverage Mechanism. MR and CM are coupled
in our approach.

proposed approach obtains accuracy of 43.19 under the multiple-choice setting, which

surpasses previous state-of-the-art approaches including Eclipse [Xu et al., 2021b],

ERM [Zhang et al., 2022], TMBC [Luo et al., 2022] and CMCIR [Liu et al., 2022] by

at least 4.5 points. Furthermore, our approach achieves an accuracy of 71.63 under

Setting 1/2, outperforming previous strong baselines by at least 6 points. The results

show the effectiveness of our proposed multi-step reasoning approach for event-level

VideoQA.

5.1.4 Analysis

5.1.4.1 Ablation Study

We conduct experiments on the dev set of TrafficQA, investigating the contribution

of both the retrospective-prospective reasoning and coverage mechanism on the

performance of our proposed EVQA approach. The results are shown in Table 5.3,

revealing that multi-step reasoning is critical in terms of model performance while the

coverage mechanism can provide additional, albeit less substantial, improvements.

5.1.4.2 Results by Question Type

We take a closer look at model performance on different question types, e.g. reverse

reasoning, counterfactual reasoning, etc. The results are shown in Table 5.2. They

reveal that our proposed approach outperforms previous state-of-the-art models on

all individual question types by a large margin with large improvements seen for

introspection, reverse and counterfactual questions.
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Reasoning Steps Setting-1/4 Setting-1/2

Model w/ 1 step 41.57 71.46
Model w/ 2 steps 44.21 74.95
Model w/ 3 steps 47.38 75.83
Model w/ 4 steps 47.23 75.96
Model w/ 5 steps 47.15 75.87

Table 5.4: The effect of various reasoning steps.

5.1.4.3 Effect of Reasoning Steps

We study the effect of varying reasoning steps. The results are shown in Table 5.4.

Increasing reasoning steps improves performance, especially from 1 step to 3 steps.

Additionally, the performance (both Setting 1/4 and 1/2) is stable with reasoning

steps exceeding three.

5.2 Graph-Based Video-Language Learning with Multi-

Grained Audio-Visual Alignment

In the previous section, we presented a multi-step dynamic retrospective-prospective

approach for Event-level VideoQA. We build on and extend this approach by using

a Semantic Role Labeler and a visual scene parser to fuse text, audio and visual

components in a hierarchical approach to the geenral problem of video-language

learning. Video-language learning has been an active area of research in recent

years, fueled by the growing availability of large-scale video datasets and advances

in machine learning techniques [Ruan and Jin, 2022, Bain et al., 2021, Zhong et al.,

2022b]. The task of video-language learning involves training models to understand

and reason about the content of videos, including object recognition, action detection,

and question answering [Zhong et al., 2022b]. Despite the progress made in this area,

the integration of visual and linguistic information remains a challenging problem.

While the visual information in videos can be processed using computer vision

techniques, natural language processing techniques are required to interpret the
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Is the ukulele being played early than the accordion? 

Figure 5.2: Illustration of the importance of semantic-level information and multi-
grained alignment in video-language understanding. The query terms "ukulele"
and "accordion" are matched to the corresponding objects in the video frames, and
different segments of audio are matched to the corresponding visual information,
allowing for precise determination of the order of the instrument playing.

accompanying text-based queries [Gan et al., 2022].

Graph-based approaches [Wu et al., 2020, 2023a] have emerged as a promising

solution to the challenge of integrating visual and linguistic information in video-

language learning. They have been successfully applied in various tasks, including

image captioning, video captioning, and visual question answering. Graph-based

representations are well-suited for capturing complex relationships and dependencies

between objects, actions, and concepts in videos and text [Mao et al., 2022]. This is

because graphs enable the representation of hierarchical and compositional structures,

as well as the modeling of long-range dependencies between entities. Another key

challenge in audio-aware video-language learning is the unaligned nature of audio

and visual features [Alamri et al., 2019, Lee et al., 2022]. Audio features, such as

speech signals or music, are typically represented in the time-frequency domain,

while visual features, such as images or frames, are usually represented in the pixel

or feature space. As a result, aligning audio and visual features in the same vector

space with respect to the semantic-level information is challenging, especially when

the features have different scales and granularities.
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In this work, we propose a novel approach to video-language learning that

leverages graph-based representations and multi-grained audio-visual alignment. Our

approach involves transforming video and query inputs into visual-scene graphs

and semantic role graphs using a visual-scene parser [Schuster et al., 2015] and a

Semantic Role Labeler [Màrquez et al., 2008], as with our EVQA system described in

Section 5.1. These graphs capture rich semantic-level information about the content

of the video and the query. We then encode the graphs using graph neural networks

to obtain enriched representations that capture the relationships between entities in

the video and the query. By combining the graph-based representations of video and

query, we obtain a joint representation that enhances the semantic expressivity of the

inputs. Moreover, to effectively fuse the audio and visual information in videos, we

propose a multi-grained alignment module that aligns the audio and visual features

at multiple scales. This allows us to accurately match the relevant parts of the audio

and visual features with the semantic-level information captured by the graph-based

representations. An example is shown in Figure 5.2.

To evaluate the effectiveness of our proposed approach, we conduct experiments

on five benchmark datasets for video retrieval and video question-answering tasks.

The datasets include MSRVTT [Xu et al., 2016, Miech et al., 2018], AVSD [Alamri

et al., 2019], AVQA [Yang et al., 2022], MSRVTT-MC [Yu et al., 2018] and Music-

AVQA [Li et al., 2022a]. Our proposed approach achieves state-of-the-art results on

all datasets, demonstrating its effectiveness. Moreover, we perform ablation studies

to analyze the contribution of different components in our approach, showing that our

proposed multi-grained alignment module and semantic-based content understanding

significantly improve the performance of video retrieval and VideoQA.

5.2.1 Methodology

In this section, we present a more detailed description of the methodology for

our proposed approach, which consists of three main steps: (1) parsing video

frames and queries into semantic graphs and encoding them using Graph Neural
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What is the girl watching?
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Figure 5.3: An overview of our approach for video-language learning. Our method
leverages graph-based representations and multi-grained audio-visual alignment to
effectively integrate visual and linguistic information. We transform video and query
inputs into visual-scene graphs and semantic role graphs, encode them using graph
neural networks, and combine them to obtain a video-query joint representation.
Our multi-grained alignment module aligns the audio and visual features at multiple
scales, allowing for accurate fusion in a way that is consistent with the semantic-level
information captured by the graph-based representations.

Networks (GNNs), (2) combining these encodings to obtain a joint graph-based

representation, and (3) encoding visual and audio data using Transformer encoders

and fusing the resulting features through a Multi-grained Alignment (MgA) module.

The final graph-based representations of the video and query are then used to match

relevant visual-audio features.

5.2.1.1 Semantic Graph Parsing and Encoding

We firstly obtain the textual description of each video frame using an image captioning

system, which is then parsed into a semantic graph GV = (VV , EV ) [Schuster et al.,

2015, Wu et al., 2019, Li et al., 2022b], where VV denotes the set of nodes representing

objects and actions, and EV denotes the set of edges representing relationships

between these elements.
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The input query is also parsed by a Semantic Role Labeller into a semantic graph

GQ = (VQ, EQ), representing the relationships between the query’s arguments and

their semantic roles.

Two separate GNNs are used to encode the video frame and query semantic graphs.

These GNNs learn to map nodes and edges in the graphs to continuous feature

vectors, effectively capturing the high-level semantics of the video and query. The

overall general encoding process is: H(k+1) = GNN(H(k), G), where H(k) represents

the graph-level features of the video and query graphs at the k-th GNN layer, and G

represents the adjacency matrices of the graphs. The GNNs are applied iteratively for

K layers to learn more complex graph representations. Specifically, for the node-level

representations in GV (video graph)and GQ (query graph), we update them by:

h
(t)
i = ϕ(t)

h(t−1)
i ,

∑
j∈Ei

W j
i h

(t−1)
j

 (5.10)

where h(t)i ∈ R1×w is the node embeddings for node i at iteration t and w represents

the dimension of node embeddings, ϕ(t) is a node-level update function that takes as

input the node embeddings for node i at iteration t− 1, and the embeddings of the

neighboring nodes in the graph h(t−1)
j , and outputs the updated node embeddings

h
(t)
i . h(t−1)

j is the set of neighbors of node i in the graph, Ei is the set of edges of

node i, W j
i represents the update weights for the edge Eji between node i and node

j .

To gather the information from all the nodes in the graph, we update the

graph-level representations by:

H(t) = ψ(t)

(∑
i∈V

h
(t)
i

)
(5.11)

where H(t) ∈ R1×w is the graph embedding at iteration t, ψ(t) is a graph-level update

function consisting of a linear followed by an activation function that takes as input

the node embedding for all nodes in the graph at iteration t, and outputs the updated
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graph embedding H(t). V is the set of all nodes in the graph.

Specifically, for each video frame with v node features, we obtain

{hV1 , ......, hVv } ∈ Rv×w, whose graph-level features are HV ∈ R1×w which is

combined from {hV1 , ......, hVv } based on Equation 5.11. Then, for n video frames

with n graphs GallV = {G1
V , ......, G

n
V }, the resulting hierarchical graph-level

representations are Hall
V ∈ Rn×w, which consist of n graph-level features for each

frame {H1
V , ......,H

n
V }5. For query Q, we obtain its final graph-based representations

HQ ∈ Rq×w with q node features. In other words, for video frames we firstly encode

each visual scene graph and then obtain their graph-level representations for each

frame, resulting in n hierarchical graph-level features representing graph-based

representations for n video frames. For the query semantic role graph, we directly

use its node-level features to obtain fine-grained interaction between visual graphs

and the query graph.

5.2.1.2 Joint Graph-based Representation

The encoded graph-based representations of the visual scene graphs of video frames

and query semantic role graphs are combined to form a joint graph-based

representation. This is achieved by firstly computing a similarity matrix S ∈ Rn×q

between the visual graph representations and query graph representations:

S = Hall
V H

T

Q (5.12)

Graph alignment is then performed to find the best correspondence between the

nodes, resulting in a joint graph representation J :

J = EBilinear[WV ((
S

τ
)THall

V ),WG((
S

τ
)HQ)] (5.13)

where τ represents the temperature hyperparameter for adjusting the degree of

uncertainty in the similarity distribution S, WV ∈ R1×n and WG ∈ R1×q are weights
5Layer indication (k) omitted for simplicity.
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matrices used to transform visual and query representations, EBilinear is a bilinear

layer used to perform bilinear interaction between the visual graph features and

query graph features, J ∈ R1×w is the joint-graph representation.

5.2.1.3 Audio-Visual Encoding and Multi-grained Alignment

Visual and audio data from the video are separately encoded using two Transformer

encoders [Radford et al., 2021]. We then perform multi-grained alignment between

the visual and audio representations, resulting in feature vectors that capture the

audio-visual content in multiple scales. Let XV and XA denote the input visual

and audio features, and YV and YA denote the output features after applying the

Transformer encoders:

YV = TransformerV (XV ) (5.14)

YA = TransformerA(XA) (5.15)

where YV ∈ Rn×w and YA ∈ Rm×w, n and m are the number of video frames and

number of audio features respectively.

We propose a Multi-grained Alignment (MgA) module to align the visual and

audio features at multiple scales. The MgA module takes the modality-specific

representations of the visual and audio features as input and outputs aligned visual-

audio features in multiple scales. Specifically, we employ a set of 1-D Convolutional

Neural Networks (CNNs) with different kernel sizes, each with a different kernel size

of kn:

xkn = Ckn(x)|Nn=1 (5.16)

where x represents the input feature map, and Ckn(x) denotes a convolution operation

with kernel size kn, xkn is the resulting feature representations. Practically, for a

specific N we employ CNNs with kernel sizes k1, k2, ..., kN , such that 1 ≤ k1 < k2 <
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... < kN ≤ min(n,m)/2. These kernel sizes are uniformly distributed within the

range of 1 to n/2, we generally let k1 = 1. The output of each CNN is a feature map

with a different receptive field, which allows us to capture visual and audio features

at multiple scales.

To align the visual and audio representations, we propose a cross-modal attention

mechanism that operates on the output feature maps of the CNNs. Given the feature

maps Y k
V = Y kn

V |Nn=1 and Y k
A = Y kn

A |Nn=1 for the visual and audio representations,

respectively, we compute a set of attention maps as follows:

αi,j = softmax

(
Y ki
V Wq(Y

kj
A )T√

w

)
(5.17)

where Wq ∈ Rw×w is a learnable weight matrix, Y ki
V ∈ RL

V
n ×w and Y kj

A ∈ RL
A
n×w

are representations produced by Cki and Ckj , and w is the dimensionality of the

feature maps. The attention maps αi,j ∈ RL
V
n ×LA

n indicate the degree of alignment

between the visual and audio features at each scale ki and kj , where LVi and LAj are

the length (the first dimension) of features produced by Cki and Ckj respectively.

To obtain a fused feature representation, we compute a weighted sum of the

feature maps, using the attention maps as weights:

F
ki,j
V = αi,jY

kj
A (5.18)

F
ki,j
A = (αi,j)

TY ki
V (5.19)

The fused feature representation F ki,jV and F ki,jA capture the aligned visual and

audio features at multiple scales, which is expected to enhance the video

representation with multi-grained visual-audio information.

5.2.1.4 Matching with Graph-Based Representations

Finally, we use the joint graph-based representation of the video and query to match

the relevant parts of the aligned visual-audio features. Specifically, we perform a
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hierarchical match where we firstly match and combine the multi-scale visual-audio

representations within the same kernel size kn, taking visual representations as an

example:

βVi,j =
J · g(F ki,jV )T∑N
r=1 J · g(F ki,rV )T

(5.20)

F kiV =

N∑
j=1

βVi,jF
ki,j
V (5.21)

where βVi,j represents the relevance weight between joint graph representation J and

F
ki,j
V aligned between scale i and j, where g is a MeanPooling operation transforming

F
ki,j
V along the first dimension to R1×w. Then we match the relevant parts across

the features of all kernel sizes:

λVi =
J · g(F kiV )T∑N
r=1 J · g(F krV )T

(5.22)

FV =

N∑
i=1

λVi g(F
ki
V ) (5.23)

where λVi represents the relevance weight between joint graph representation J and

F kiV at scale i, and FV is the resulting hierarchical weighted multi-grained visual

representation. The same process is applied to the audio representation, resulting in

two weighted multi-grained representations: FV and FA. Then we combine them

into one multi-modal representation:

zV = σ(J · F TV ) (5.24)

zA = σ(J · F TA ) (5.25)

FM = zV FV + zAFA (5.26)
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where zV and zA are relevance weights between J and FV and FA. FM is the resulting

hierarchical weighted multi-grained multi-modal representation containing the rich

features aligned at multiple scales and relevant information from the graph-based

representations.

5.2.1.5 Training Objectives

In video-language learning, we focus on two tasks - video retrieval and VideoQA. For

video retrieval, we firstly use HQ to interact with all video representations via GNNs

and graph matching, resulting in FM for all videos. Then we use HQ to match with

each FM to obtain the most relevant one. For training our video retrieval systems,

we perform in-batch contrastive learning [Karpukhin et al., 2020]:

Lret = − 1

N

M∑
i=1

eH
i
Q(F i,i

M )T

M∑
j=1

eH
i
Q(F i,j

M )T
(5.27)

where F i,jM is the representation generated by the interaction between the i-th query

H i
Q and the j-th video F jM

For VideoQA, we use Cross-Entropy loss function to train our VideoQA system

in a multiple-choice setting:

Lvqa = − 1

N

M∑
i=1

eH
i
A(F i

M )T

T∑
j=1

eH
j
A(F i

M )T
(5.28)

where H i
A is the answer representation and T is the size of answer candidate set.

5.2.2 Experimental Setup

5.2.2.1 Datasets

We conduct experiments on five benchmark datasets on video retrieval and VideoQA:

1) the MSRVTT dataset [Xu et al., 2016] contains 10,000 web videos with text

descriptions. The dataset has two partitions: MSRVTT Original [Xu et al., 2016,
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Wang et al., 2021b] and MSRVTT Miech [Miech et al., 2018]. MSRVTT Original

has 6,513 clips for training, 497 clips for validation, and 2,990 clips for testing, while

MSRVTT Miech has 6,656 and 1,000 clips for training and testing, respectively.

We evaluated our approach on both partitions. 2) AVSD [Alamri et al., 2019].6 In

AVSD, each video is associated with a 10-round dialogue discussing the content of

the corresponding video. We follow the dataset split of AVSD in [Alamri et al., 2019,

Maeoki et al., 2020], 7,985 videos for training, 863 videos for validation and 1,000

videos for testing. 3) MSRVTT-MC [Xu et al., 2016, Yu et al., 2018], multi-choice

VideoQA datasets - each video in MSRVTT-MC is associated with 5 candidate

options. We follow the standard data split for MSRVTT-MC [Xu et al., 2016, Yu

et al., 2018], where evaluation data have 2,990 videos. 4) AVQA [Yang et al., 2022] is

a novel audio-visual question answering dataset focused on real-life scenario videos. It

consists of 57,015 videos collected from daily audio-visual activities, alongside 57,335

specially-designed question-answer pairs that rely on clues from both modalities.

The dataset contains over 158 hours of content and is divided into three subsets:

34,401 samples for the training set, 5,734 samples for the validation set, and 17,200

samples for the test set. 5) Music-AVQA [Li et al., 2022a], which is designed to assess

multimodal understanding and spatio-temporal reasoning in audio-visual scenes. It

includes 45,867 question-answer pairs that span 9,288 videos, amounting to more

than 150 hours of content. The dataset is divided into training, validation, and

testing sets containing 32,087, 4,595, and 9,185 QA pairs, respectively.

5.2.2.2 Training Setup

During training, we optimize the model parameters using AdamW [Loshchilov and

Hutter, 2019], for which the ϵ is set to 1× 10−8. Our implementation is based on

CLIP [Radford et al., 2021] from Huggingface [Wolf et al., 2019]. CLIP is used to

initialize our Visual-Encoder for encoding video frames and Text-Encoder for

encoding questions and answers. We employ an image captioning system from Li
6https://video-dialog.com
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Table 5.5: Video retrieval performance results on MSRVTT-Original [Xu et al., 2016]
dataset. We compare our method with state-of-the-art approaches, the results of
which are taken from Lee et al. [2022]

Models R@1 R@5 R@10 MedRank

W2VV [Dong et al., 2018] 1.1 4.7 8.1 236
Francis [Francis et al., 2019] 6.5 19.3 28.0 42
VSE++ [Faghri et al., 2017] 8.7 24.3 34.1 28
W2VV++ [Li et al., 2019c] 11.1 29.6 40.5 18
TCE [Yang et al., 2020a] 7.7 22.5 32.1 30
HGR [Chen et al., 2020b] 9.2 26.2 36.5 24
UWML [Wei et al., 2021a] 10.9 30.4 42.3 N/A
HSL [Dong et al., 2021] 11.6 30.3 41.3 17
PSM [Liu et al., 2021a] 12.0 31.7 43.0 16
T2VLAD [Wang et al., 2021b] 12.7 34.8 47.1 12
AVMA [Lee et al., 2022] 14.7 37.0 48.6 11
Our method 19.1 42.7 55.9 9

et al. [2022b]7, and the visual scene parser and Semantic Role Labeler we used

in experiments are from Wu et al. [2019]8 and Gardner et al. [2018]9 respectively,

the representations of nodes in semantic graphs are initialized using contextualized

embeddings from BERT [Devlin et al., 2019a] and CLIP [Radford et al., 2021]. We

train our system with a learning rate of 1× 10−5 and a batch size of 16 for 20 epochs

for video retrieval and a learning rate of 2× 10−5 and a batch size of 12 for 10 epochs

for VideoQA. We uniformly sample 16 frames from each video in all datasets for

video retrieval and VideoQA. For efficiency consideration, we use K = 3 for updating

GNN representations and N = 3 for multi-grained alignment (ki is evenly distributed

between 1 and a half of feature dimension with k1 = 1) in our experiments. We use a

maximum gradient norm of 5. We perform early stopping when the performance on

the validation set degrades. In evaluation, we employ metrics including R@1, R@5,

R@10, MedRank (Median Rank) and Mean rank for video retrieval following Lei

et al. [2022], Madasu et al. [2022], for multiple-choice VideoQA we use Accuracy to

measure the performance [Zhong et al., 2022b].
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Table 5.6: Video retrieval performance results on MSRVTT-Miech [Miech et al.,
2018] dataset. The baseline results are taken from Lee et al. [2022]

Models R@1 R@5 R@10 MedRank

W2VV [Dong et al., 2018] 2.7 12.5 17.3 83
VSE++ [Faghri et al., 2017] 17.0 40.9 52.0 10
W2VV++ [Li et al., 2019c] 21.7 48.6 60.9 6
TCE [Yang et al., 2020a] 17.1 39.9 53.7 9
HGR [Chen et al., 2020b] 22.9 50.2 63.6 5
MMT [Gabeur et al., 2020] 20.3 49.1 63.9 6
HSL [Dong et al., 2021] 23.0 50.6 62.5 5
PSM [Liu et al., 2021a] 24.2 53.0 65.3 5
T2VLAD [Wang et al., 2021b] 26.1 54.7 68.1 4
AVMA [Lee et al., 2022] 27.8 57.3 68.7 4
Our method 30.1 60.7 71.6 3

5.2.3 Results

5.2.3.1 Video Retrieval Results

We conduct video retrieval experiments on MSRVTT-Original, MSRVTT-Miech and

AVSD datasets. The results on MSRVTT-Original and MSRVTT-Miech are shown in

Table 5.5 and Table 5.6. The results on AVSD are shown in Table 5.7. We compare

our method with several state-of-the-art models and report the retrieval performance

in terms of Recall@K (R@K), Median Rank (MedR) and Mean Rank metrics [Lei

et al., 2022, Madasu et al., 2022]. Our method outperforms all the existing models in

terms of all the evaluation metrics. Specifically, on the MSRVTT-Original partition,

our method achieves R@1 of 19.1%, R@5 of 42.7%, R@10 of 55.9%, and MedR of 9,

which are 4.4%, 5.7%, 7.3%, and 2 ranks better than the second-best performing

model, AVMA [Lee et al., 2022]. Table 5.6 shows the results of our method and

other state-of-the-art models on the MSRVTT-Miech partition [Miech et al., 2018].

Our method achieves state-of-the-art performance on this partition as well, with

R@1=30.1%, R@5=60.7%, R@10=71.6%, and MedR=3, which are 2.3%, 3.4%, 2.9%,

and 1 rank better than the second-best performing model AVMA [Lee et al., 2022].

Moreover, our method achieves significant improvements compared to the second-best
7https://huggingface.co/Salesforce/blip-image-captioning-base
8https://github.com/vacancy/SceneGraphParser
9https://demo.allennlp.org/semantic-role-labeling/semantic-role-labeling
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Table 5.7: Experimental results on AVSD [Alamri et al., 2019] dataset. The baseline
results are taken from Madasu et al. [2022], Lyu et al. [2023c]

Models R@1 R@5 R@10 MedRank MeanRank

LSTM [Maeoki et al., 2020] 4.2 13.5 22.1 N/A 119
FiT [Bain et al., 2021] 5.6 18.4 27.5 25 95.4
FiT (Dialogue) [Bain et al., 2021] 10.8 28.9 40.0 18 58.7
ViReD [Madasu et al., 2022] 24.9 49.0 60.8 6.0 30.3
D2V (Script) [Lyu et al., 2023c] 21.4 45.9 57.5 9.0 39.8
D2V (Summary) [Lyu et al., 2023c] 23.4 48.5 59.1 6.0 33.5
D2V (Dialogue) [Lyu et al., 2023c] 25.6 52.1 65.1 5.0 28.9
Our method 28.9 59.2 74.5 4.0 24.2

Table 5.8: Experimental results of VideoQA on AVQA [Yang et al., 2022] test set
divided by question types. The performance of state-of-the-art approaches are taken
from Yang et al. [2022].

Methods Which Come From Happening Where Why Before Next When Used For Total Accuracy

HME [Fan et al., 2019] 82.2 85.9 79.3 76.6 57.0 80.0 57.1 76.5 81.8
HME+HAVF [Yang et al., 2022] 85.6 88.3 83.1 83.5 61.6 80.0 57.1 88.2 85.0
PSAC [Li et al., 2019b] 78.7 80.0 77.0 79.4 44.2 76.0 42.9 58.8 78.6
PSAC+HAVF [Yang et al., 2022] 89.0 91.1 83.2 81.7 61.6 82.0 52.4 76.5 87.4
LADNet [Li et al., 2019a] 81.1 87.1 76.6 81.8 67.4 78.0 47.6 76.5 81.9
LADNet+HAVF [Yang et al., 2022] 84.2 89.0 79.1 81.4 68.6 82.0 52.4 76.5 84.1
ACRTransformer [Zhang et al., 2020a] 82.5 82.8 79.4 82.5 54.7 80.0 47.6 58.8 81.7
ACRTransformer+HAVF [Yang et al., 2022] 88.5 91.7 83.9 84.9 50.0 82.0 57.1 64.7 87.8
HGA [Jiang and Han, 2020] 82.1 84.3 79.5 83.1 59.3 82.0 57.1 88.2 82.2
HGA+HAVF [Yang et al., 2022] 88.6 92.2 83.8 82.6 61.6 78.0 52.4 82.4 87.7
HCRN [Le et al., 2020] 83.7 84.1 80.2 80.9 52.3 74.0 57.1 70.6 82.5
HCRN+HAVF [Yang et al., 2022] 89.8 92.8 86.0 84.4 57.0 80.0 52.4 82.4 89.0
Our method 93.7 97.3 90.4 89.5 61.8 92.0 64.9 88.2 93.0

method, D2V (Dialogue) [Lyu et al., 2023c] 10. Specifically, our method outperforms

D2V (Dialogue) by 3.3% in R@1, 7.1% in R@5, and 9.4% in R@10. Additionally,

our method achieves a lower MedRank and MeanRank, indicating that our method

is better at retrieving relevant videos. Our method achieves a 20% lower MedRank

and a 28% lower MeanRank than D2V (Dialogue). These results demonstrate that

our method is effective for audio-aware video retrieval on different datasets.

5.2.3.2 VideoQA Results

We further evaluate our proposed approach on VideoQA datasets including MSRVTT-

MC, AVQA and Music-AVQA. The results are shown in Table 5.9, Table 5.8 and

Table 5.10. The results in Table 5.9 show that our method achieved a significant

improvement in accuracy of 1.2% compared to the second-best method, HiTeA [Ye

et al., 2022]. The results on AVQA in Table 5.8 demonstrate that our proposed
10Lyu et al. [2023c] is my own research work, which is not focusing on incorporating external

knowledge into PLMs so it is not included in this thesis.

113



Chapter 5. Semantic-aware Video Question Answering

Table 5.9: Evaluation results on MSRVTT-MC [Xu et al., 2016, Yu et al., 2018]
dataset.

Models Accuracy

JSFusion [Yu et al., 2018] 83.4
ActBERT [Zhu and Yang, 2020] 85.7
ClipBERT [Lei et al., 2021] 88.2
MERLOT [Zellers et al., 2021] 90.9
VIOLET [Fu et al., 2021] 90.9
VideoCLIP [Xu et al., 2021a] 92.1
All-in-One [Wang et al., 2023] 92.0
Singularity [Lei et al., 2022] 92.1
Clover [Huang et al., 2022a] 95.2
HiTeA [Ye et al., 2022] 97.4
Our method 98.6

Table 5.10: Experimental results of different models on the test set of Music-AVQA[Li
et al., 2022a]. We compare our proposed method with state-of-the-art approaches on
Music-AVQA, of which the results are taken from Li et al. [2022a].

Method Audio Question Visual Question Audio-Visual Question All
Counting Comparative Avg. Counting Location Avg. Existential Location Counting Comparative Temporal Avg. Avg.

FCNLSTM [Fayek and Johnson, 2020] 70.45 66.22 68.88 63.89 46.74 55.21 82.01 46.28 59.34 62.15 47.33 60.06 60.34
CONVLSTM [Fayek and Johnson, 2020] 74.07 68.89 72.15 67.47 54.56 60.94 82.91 50.81 63.03 60.27 51.58 62.24 63.65

GRU [Antol et al., 2015] 72.21 66.89 70.24 67.72 70.11 68.93 81.71 59.44 62.64 61.88 60.07 65.18 67.07
BiLSTM Attn [Zhou et al., 2016] 70.35 47.92 62.05 64.64 64.33 64.48 78.39 45.85 56.91 53.09 49.76 57.10 59.92

HCAttn [Lu et al., 2016] 70.25 54.91 64.57 64.05 66.37 65.22 79.10 49.51 59.97 55.25 56.43 60.19 62.30
MCAN [Yu et al., 2019] 77.50 55.24 69.25 71.56 70.93 71.24 80.40 54.48 64.91 57.22 47.57 61.58 65.49
PSAC [Li et al., 2019b] 75.64 66.06 72.09 68.64 69.79 69.22 77.59 55.02 63.42 61.17 59.47 63.52 66.54
HME [Fan et al., 2019] 74.76 63.56 70.61 67.97 69.46 68.76 80.30 53.18 63.19 62.69 59.83 64.05 66.45
HCRN [Le et al., 2020] 68.59 50.92 62.05 64.39 61.81 63.08 54.47 41.53 53.38 52.11 47.69 50.26 55.73

AVSD [Alamri et al., 2019] 72.41 61.90 68.52 67.39 74.19 70.83 81.61 58.79 63.89 61.52 61.41 65.49 67.44
Pano-AVQA [Yun et al., 2021] 74.36 64.56 70.73 69.39 75.65 72.56 81.21 59.33 64.91 64.22 63.23 66.64 68.93
Music-AVQA [Li et al., 2022a] 78.18 67.05 74.06 71.56 76.38 74.00 81.81 64.51 70.80 66.01 63.23 69.54 71.52

Our Method 85.97 74.43 81.72 75.46 81.71 78.63 86.20 71.13 77.94 73.79 72.26 76.49 77.87

method outperforms all other methods in terms of total accuracy (93.0%) and also

achieves the best accuracy in all question types [Yang et al., 2022]. Furthermore, the

dataset consists of three types of questions: audio, visual, and audio-visual. Each

question type has several subcategories such as counting, comparative, and location.

Our proposed method outperforms all the baseline methods with an average

accuracy of 77.87%. Specifically, our method achieves the highest accuracy in audio

questions related to counting and comparative categories and visual questions related

to location category. Additionally, our method performs significantly better than

the baseline methods in audio-visual questions related to counting, comparative,

and temporal categories. Our method achieves the highest accuracy in 10 out of

13 question types, including counting, comparative, existential, location, counting,

temporal, and all audio-visual question types.
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Table 5.11: Ablation study on MSRVTT-Original for the contributions of VG, QG
and MgA modules to video retrieval task.

VG QG MgA R@1 R@10 MeanRank

✗ ✗ ✗ 13.2 43.6 50.4
✓ ✗ ✗ 14.9 48.1 45.3
✗ ✓ ✗ 15.4 49.2 44.9
✗ ✗ ✓ 15.9 49.5 43.7
✓ ✓ ✗ 16.8 52.9 39.6
✓ ✗ ✓ 17.6 53.3 38.7
✗ ✓ ✓ 17.1 53.2 39.1
✓ ✓ ✓ 19.1 55.9 36.7

5.2.4 Analysis

5.2.4.1 Ablation Studies

Table 5.11 shows the ablation study results of our proposed method on the MSRVTT

retrieval dataset. We experiment with three components: Visual Graph (VG),

Query Graph (QG), and Multi-grained Alignment (MaG), by either including (✓)

or excluding them from the model architecture (✗ means only using the vanilla

representations of visual/acoustic features without the semantic graph encoding

or multi-grained alignment). The evaluation metrics used are R@1, R@10, and

MeanRank. The first row shows the baseline performance of the model without any

of the three components. We can observe that the model achieves an R@1 score

of 13.2 and a MeanRank of 50.4. By including the VG component, the model’s

performance improves by 1.7 points in R@1 and 4.5 points in MeanRank compared

to the baseline. Similarly, by including QG, the model’s performance improves by 2.2

points in R@1 and 5.7 points in MeanRank compared to the baseline. By including

MaG, the model’s performance improves by 2.7 points in R@1 and 6.7 points in

MeanRank compared to the baseline. When we combine all three components, we

achieve the best performance, with an R@1 score of 19.1, an R@10 score of 55.9,

and a MeanRank score of 36.7. Compared to the second-best performing model

(with VG and QG), our model improves R@1 by 2.3 points, R@10 by 2.9 points,
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and MeanRank by 2.0 points. Overall, these results indicate that each component

contributes to improving the performance of our model, and the combination of all

three components achieves the best results on the MSRVTT retrieval dataset.

Table 5.12: Ablation study on Music-AVQA for the contributions of VG, QG and
MgA modules to VideoQA task.

VG QG MgA Audio Visual Audio-Visual

✗ ✗ ✗ 73.58 72.97 67.81
✓ ✗ ✗ 75.04 75.68 69.92
✗ ✓ ✗ 76.25 75.09 70.67
✗ ✗ ✓ 75.98 75.72 71.54
✓ ✓ ✗ 78.85 76.91 72.73
✓ ✗ ✓ 78.03 77.42 74.79
✗ ✓ ✓ 81.24 77.19 75.95
✓ ✓ ✓ 81.72 78.63 76.49

Table 5.12 shows the performance of different combinations of three components

(Visual Graph, Query Graph, and Multi-grained Alignment) on the Music-AVQA

dataset, evaluated on three question types, Audio, Visual, and Audio-Visual, in

terms of accuracy. The first row shows the baseline performance of the model

without any of the three components, achieving an Audio accuracy of 73.58, Visual

accuracy of 72.97, and Audio-Visual accuracy of 67.81. Each component improves

the performance of the model, with the Visual Graph component improving accuracy

by 1.46 to 2.66 points, the Query Graph component improving accuracy by 2.67 to

4.66 points, and Multi-grained Alignment component improving accuracy by 2.40 to

3.68 points, depending on the modality. The combination of all three components

achieves the best performance, with an Audio accuracy of 81.72, Visual accuracy of

78.63, and Audio-Visual accuracy of 76.49, outperforming the second-best performing

model with VG and QG) by 0.69 to 3.69 points across different modalities. Overall,

the results show that each component contributes to improving the performance of

the model, and the combination of all three components achieves the best results on

the Music-AVQA dataset.
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Figure 5.4: Results of the effect of the number of GNN layers on AVSD and AVQA.
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5.2.4.2 Effect of the Number of GNN Layers

The integration of visual and linguistic information is a critical challenge in the

field of video-language learning. To address this challenge, our proposed approach

leverages graph-based representations and multi-grained audio-visual alignment. We

now investigate the effect of the number of Graph Neural Network (GNN) layers

on the performance of our proposed approach. We evaluate the performance of our

approach on AVSD and AVQA. The motivation for conducting this experiment is

to determine the optimal number of GNN layers that can effectively encode the

graph-based representations of video and query inputs, and enhance the semantic

expressivity of the joint representation. The results are shown in Figure 5.4. We

observed that the metrics firstly improve with the number of GNN layers, then the

performance plateaus before declining. We think the possible reason could be that

the model with more GNN layers tends to overfit, thus resulting in a decrease in

performance.

5.2.4.3 Effect of of Multi-grained Alignment Scales

The proposed Multi-grained Alignment module enables us to effectively fuse audio

and visual information in a way that is consistent with the semantic-level information

captured by the graph-based representations. However, the choice of scales used in

the MgA module can potentially impact the performance of the model. We therefore

investigate the effect of employing different scales in the multi-grained alignment

module (the number of employed CNNs Ckn with N different kernel sizes).

We conduct experiments on the MSRVTT-Original for video retrieval and Music-

AVQA for VideoQA. The results are illustrated in Figure 5.5 consisting of four

subplots, each depicting a different evaluation metric: Recall@1, Recall@10, and

MeanRank for the MSRVTT-Original dataset, and Accuracy for the Music-AVQA

dataset. From the results, we observe that increasing the number of scales in

the MgA module contributes to improved performance across various evaluation

118



Chapter 5. Semantic-aware Video Question Answering

2 3 4 5 6 7 8 9 10 11
Number of Scales

18.8

19.0

19.2

19.4

19.6

19.8

R@
1 

on
 M

SR
VT

T-
Or

ig
in

al

2 3 4 5 6 7 8 9 10 11
Number of Scales

55.0

55.5

56.0

56.5

57.0

57.5

58.0

R@
10

 o
n 

M
SR

VT
T-

Or
ig

in
al

2 3 4 5 6 7 8 9 10 11
Number of Scales

36.0

36.2

36.4

36.6

36.8

37.0

37.2

37.4

M
ea

nR
an

k 
on

 M
SR

VT
T-

Or
ig

in
al

2 3 4 5 6 7 8 9 10 11
Number of Scales

77.00

77.25

77.50

77.75

78.00

78.25

78.50

78.75

Ac
cu

ra
cy

 o
n 

M
us

ic-
AV

QA

Figure 5.5: Results of the effect of employed scales of multi-grained alignment module
on MSRVTT-Original and Music-AVQA.
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metrics for both video retrieval and VideoQA tasks. This suggests that the MgA

module effectively captures different levels of granularity and enriches the video

representations produced by the model.

5.3 Summary

In this chapter, we introduced two sets of experiments on incorporating multi-modal

information into Video Question Answering systems for better performance. Results

on benchmark datasets have demonstrated the superior performance of our proposed

approach. This chapter has provided some answers to RQ3: How can the utilization

of multi-modal information improve Video Question Answering tasks for Pre-trained

Vision-Language Models?. In the next and final chapter, we will summarise the

content of the thesis and present potential directions for future work.
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Conclusion

6.1 Thesis Overview

This thesis explores the learning of knowledge for Pre-trained Large Language

Models, focusing particularly on Sentiment Analysis and Question Answering tasks.

Specifically, the research questions we proposed in this thesis mainly concentrate on

how we can incorporate external knowledge to improve model performance and how

we can understand the impact of fine-tuning data on model performance.

Chapter 1 introduced the research questions, provided background information,

and outlined the structure of the thesis.

Chapter 2 reviewed related work on Pre-trained Large Language Models,

knowledge-enhanced PLMs, Document-level Sentiment Analysis with user and

product context and Question Answering, including Multi-modal Question

Answering.

Chapter 3 presented our proposed approaches for incorporating textual

information from historical reviews of users and products to improve

Document-level Sentiment Analysis.

Chapter 4 presented our approach for utilizing linguistic and semantic knowledge

to improve Unsupervised Question Answering via summarization-informed Question

Generation. We also present analysis studying the effect of downstream datasets on

the performance of PLMs on Question Answering tasks.

Chapter 5 described our approaches for effectively incorporating multi-modal

information to improve Video Question Answering performance.
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6.2 Answering Our Research Questions

• Research Question 1 (RQ1). How can we utilize the extra information in

the metadata of product reviews to improve document-level sentiment analysis?

To address this question, we proposed novel and effective methods for explicitly

incorporating textual information from a user’s historical reviews and product-

specific reviews to enhance the performance of Pre-trained Language Models

(PLMs) in fine-grained Document-Level Sentiment Analysis for English.

• Research Question 2 (RQ2). How can we leverage linguistic and semantic

knowledge to improve Unsupervised Question Answering, and understand the

role of QA data in neural model learning? In response to this question, we

introduced a novel approach that utilizes summarization datasets combined with

linguistic and semantic knowledge to construct synthetic Question Generation

(QG) datasets. These datasets are then used to train a QG system, which

generates synthetic QA examples for Unsupervised QA tasks. Furthermore, we

presented a set of experiments investigating the effect of internal characteristics

of QA datasets on model performance, demonstrating the strong bias introduced

by question type, answer length and answer position.

• Research Question 3 (RQ3). How can the utilization of multi-modal

information improve Video Question Answering tasks for Pre-trained

Vision-Language Models? To tackle this question, we developed techniques for

effectively integrating multi-modal information – such as incorporating

Semantic Role Labeling (SRL) knowledge for injecting semantic information

into question representations and multi-grained alignment for encoding visual

and audio features – into pre-trained vision-language models, thereby

enhancing their performance on Video Question Answering tasks.

These contributions collectively demonstrate the potential of incorporating

external knowledge, such as textual metadata, linguistic and semantic knowledge,
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and multi-modal information, into PLMs. By minimizing model architecture

modifications, we have shown that it is possible to enhance the performance and

capabilities of PLMs, providing valuable insights for various NLP tasks. Overall, our

research findings address the main research question, advancing the understanding

and practical application of incorporating knowledge beyond text into PLMs, by

showcasing novel approaches for incorporating knowledge beyond text into PLMs,

improving their performance in Sentiment Analysis, Unsupervised Question

Answering, and Video Question Answering tasks.

6.3 Contributions

The research presented in this PhD thesis has resulted in significant contributions

to the fields of Sentiment Analysis, Unsupervised Question Answering, and Video

Question Answering. The main contributions of each chapter are summarized below:

• In Chapter 3, we proposed approaches for explicitly incorporating textual user

and product context from historical reviews to improve Sentiment Analysis. A

set of experiments presented in Chapter 3 demonstrate that our approaches

achieve superior performance compared to state-of-the-art systems. The

proposed approaches have resulted in two papers accepted to COLING 2020

and ACL 2023.

• Chapter 4 presented a novel method for improving Unsupervised Question

Answering using summarization-informed Guestion Generation. Empirical

results show that our method obtains state-of-the-art performance on

benchmark datasets. We also present a set of experiments investigating the

effect of internal characteristics of QA datasets on model performance, with

results suggesting that internal characteristics of QA datasets could introduce

strong bias to QA systems. The experiments conducted in Chapter 4 resulted

in two papers accepted to EMNLP 2021 and the Insights Workshop at ACL

2022.
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• Chapter 5 proposed two approaches: 1) incorporating Semantic Role Labeling

knowledge to improve the reasoning of VideoQA systems. 2) a graph-based

video-language learning approach with multi-grained audio-visual alignment.

Experiments conducted on benchmark datasets demonstrate that our

approaches substantially improved the performance of VideoQA systems. The

research presented in Chapter 5 resulted in two papers accepted to ACL SRW

2023 and ACM-MM 2023.

6.4 Limitations

In this work, we have endeavored to highlight the limitations and challenges associated

with the current state of Pre-trained Large Language Models, especially in the context

of Sentiment Analysis and Question Answering tasks. Some specific limitations

include:

• The difficulty in incorporating external knowledge effectively, such as linguistic

and semantic knowledge, has been observed. This limitation suggests that

further exploration of different types of knowledge may be necessary to improve

the performance of these models.

• Our systems still rely on large-scale annotated datasets for tasks like Sentiment

Analysis and Multi-modal QA. This reliance poses challenges in terms of data

collection, annotation, and scalability for real-world applications.

• The experiments presented in this thesis are primarily focused on English

datasets while evaluation on non-English languages is missing. Moreover, the

amount of datasets employed in some experiments is limited, such as the

analysis of the bias of QA datasets, which is only conducted on two datasets.

Therefore, experiments on more datasets including non-English data could be

performed to further verify the effectiveness of our approaches.

• Although we have proposed techniques to incorporate multi-modal
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information, there is still room for improvement in terms of effectively utilizing

and integrating various types of multi-modal data, such as features of sensor

data, to enhance the performance of Pre-trained Vision-Language Models.

Addressing these limitations will be crucial for the development of more robust

and versatile language models capable of handling diverse real-world applications.

We discuss some avenues for future work in the next section.

6.5 Future Work

6.5.1 Incorporating more diverse sources of external knowledge into

PLMs

In this thesis, we proposed approaches in Chapter 3 for incorporating user/product

preference into Sentiment Analysis and in Chapter 4 for injecting semantic and

linguistic knowledge into Question Generation. However, there are more types of

external knowledge needed to be integrated into PLMs. One of the limitations of

PLMs is the deficiency of explicit world knowledge and common sense, resulting

in suboptimal performance on certain tasks Bang et al. [2023], Lai et al. [2023].

Moreover, PLMs have to learn the knowledge of human preference in order to

align with human preference on how tasks should be conducted [Ouyang et al.,

2022] (user/product preference for Sentiment Analysis in Chapter 3 is a kind of

human preference). By integrating this knowledge from various external sources

(such as knowledge graphs as well as knowledge of human preference), PLMs could

potentially demonstrate a more comprehensive, explainable worldview that is closer

to humans.

Future work may involve exploration of more effective methods for diverse

knowledge including world knowledge and common sense into PLMs such as ChatGPT.

We could utilize ontologies or taxonomies to represent hierarchical relationships

between concepts and employ semantic networks to indicate semantic relationships

between concepts. One approach involves utilizing graph embeddings to represent
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structured knowledge, where high-dimensional vectors are embedded to capture the

semantic relationships between nodes in a knowledge graph. Moreover, for PLMs

including ChatGPT and GPT-4, we might use approaches which inject knowledge

into them without directly changing the architecture of such models [Min et al.,

2022]. For example, we could softly inject such knowledge via carefully designing the

prompts or the demonstration examples used in In-context Learning [Dong et al.,

2022].

Another area of interest is investigating effective methods for aligning PLMs

with human preferences [Ouyang et al., 2022]. While PLMs can leverage external

knowledge sources to align with human preference (such as social bias, personalised

preference, etc.), developing effective methods for this alignment remains a challenge.

Future work may involve exploring different approaches beyond Reinforcement

Learning from Human Feedback (RLHF) [Schulman et al., 2017, Stiennon et al.,

2020] for training PLMs to better align with human preferences.

Furthermore, it is important to devise techniques to adapt external knowledge

for domain-specific tasks, such as incorporating external knowledge like accounting

for legal precedents or case law in the legal domain [Katz et al., 2023]. Moreover,

PLMs should use external knowledge with additional information to adapt culture

and behavior difference accordingly for certain tasks or questions when deploying

PLMs for serving people in different countries [Shanahan, 2022, Dev et al., 2023,

Santurkar et al., 2023].

6.5.2 Generating high-quality synthetic data for NLP tasks,

especially in low-resource settings

In low-resource settings such as low-resource languages where annotated data is

scarcely available, generating synthetic examples is a commonly used method for

training a machine learning system [Nikolenko, 2021, He et al., 2022]. But creating

high-quality synthetic data is still a challenging endeavor. Existing approaches

include using generative models like Variational Autoencoders (VAEs) [Kingma
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and Welling, 2013] or Generative Adversarial Networks (GANs) [Goodfellow et al.,

2020] for synthetic data generation Abufadda and Mansour [2021]. Other methods

can also be used in the creation of synthetic data. For example, in Chapter 4

we proposed an approach using heuristics with semantic and linguistic knowledge

for generating synthetic data for Question Generation and Question Answering.

Moreover, recent advancements in LLMs like ChatGPT and GPT-4 have made it

possible to distill desirable data examples from such systems Ding et al. [2022], Wang

et al. [2022], Wu et al. [2023b]. Nevertheless, generating high-quality synthetic data

necessitates careful tuning of generative models, and comprehending the impact of

various hyperparameters, architectures and even prompts used for querying LLMs Wu

et al. [2023b] on the quality of generated data, is crucial for research.

Investigations could also delve into incorporating domain-specific knowledge

into the data generation process. For instance, synthetic data in the medical

domain could involve integrating medical terminology or knowledge from medical

ontologies [Tsatsaronis et al., 2015, Naseem et al., 2022, Wu et al., 2022, Demner-

Fushman et al., 2022], while the legal domain could involve integrating legal precedent

or case law [Katz et al., 2023]. This incorporation of domain-specific knowledge

could potentially enhance the synthetic data’s quality and relevance to the target

task or domain.

Moreover, the quality of synthetic data for different NLP tasks should be

evaluated [Puri et al., 2020, Lyu et al., 2021]. As the usefulness of synthetic data

can vary for different tasks or domains, so understanding its strengths and

limitations could potentially foster the development of more effective NLP models.

6.5.3 Novel multi-modal fusion strategies for better integration of

visual, acoustic, textual and other modality information in

Video Question Answering and other multi-modal tasks

Video Question Answering (VQA) is a complex multi-modal task that necessitates

the integration of visual, audio, and textual information to generate accurate
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answers [Yang et al., 2003, Antol et al., 2015, Lei et al., 2018]. In Chapter 5, we

proposed novel approaches incorporating semantic graph information and

multi-grained alignment, resulting in improved performance for VideoQA systems.

However, fusing multi-modal information can be challenging due to the unaligned

nature of these modalities [Lee et al., 2022, Xiao et al., 2022b], and existing

strategies may not suffice for achieving human-level performance. Moreover, there

are other useful modalities that should be incorporated into VideoQA task as well

as other multi-modal tasks. These include sensor data, depth maps, motion, and

optical flow, which go beyond the commonly employed modalities of visual, acoustic,

and textual information.

One potential area of future research is investigating various methods of fusing

different modalities. Early fusion involves concatenating different modalities and

passing them through a shared encoder, while late fusion processes modalities

separately before combining them later. Hybrid approaches that integrate elements

of early and late fusion might also prove effective. Additionally, developing techniques

to handle missing or noisy modalities is essential [Lee et al., 2022], as real-world

scenarios often present challenges when some modalities are missing or contain noise,

making it difficult for VideoQA models to generate accurate answers. Attention

mechanisms that weight the relevance of different modalities dynamically based

on their relevance to the question can be employed, as well as techniques such as

imputation or denoising to address missing or noisy modalities [Tran et al., 2017,

Zhang et al., 2023].

Lastly, assessing the impact of different fusion strategies on both model

performance and interpretability is crucial [Hu et al., 2021, Huang et al., 2022b].

Knowing the strengths and limitations of each strategy can inform the development

of more powerful VideoQA models as well as other multi-modal systems.
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Appendix A

Question Answering

A.1 A Novel Approach to Question Generation

A.1.1 Generated QA Examples

More Wikipedia-based <passage, answer, question> examples generated by our

BART-QG model are shown in Table A.1, Table A.2 and Table A.3.

A.2 Extending the Scope of Out-of-Domain: Examining

QA models in multiple subdomains

A.2.1 Average Text Length and Answer Position for All Question

Types

We show the average text length of context, question and answer as well as the

average answer position on character-level, word-level and sentence-level for QA

examples in all question types in SQuAD1.1 and NewsQA in Table A.4 and Table A.5.

A.2.2 Question Type Proportions, Average Text Length and

Average Answer Position for Long and Short Text Length

The median of the context, question, answer is shown in Table A.6. We show the

question type proportion, average text length for context, question and answer as

well as the average answer position on character-level, word-level and sentence-level

for QA examples in long and short groups of context, question, answer in SQuAD1.1
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Passage Answer Question
At a professional level, most matches
produce only a few goals. For
example, the 2005–06 season of the
English Premier League produced
an average of 2.48 goals per match.
The Laws of the Game do not
specify any player positions other
than goalkeeper, but a number of
specialised roles have evolved.

the 2005–06 season when did the english football
team produce an average
of 2.49 goals per match ,
according to the laws of the
game ?

The Hebrew Book Week is held each
June and features book fairs, public
readings, and appearances by Israeli
authors around the country. During
the week, Israel’s top literary award,
the Sapir Prize, is presented.

The Hebrew Book Week what is held every june to
celebrate the publication of
books in hebrew ?

On December 12, 2016, Senate
Majority Leader Republican Mitch
McConnell expressed confidence in
U.S. intelligence. McConnell added
that investigation of Russia’s actions
should be bipartisan and held by
the Senate Intelligence Committee.
The next day, Senate Intelligence
Committee Chairman Richard Burr
(R-NC) and Vice Chairman Mark
Warner (D-VA) announced the scope
of the committee’s .

Republican Mitch
McConnell

which republican has called
for a special committee
to investigate russia ’s
alleged meddling in the 2016
presidential election ?

Meanwhile, the Soho Mint struck
coins for the East India Company,
Sierra Leone and Russia, while
producing high-quality planchets,
or blank coins, to be struck by
national mints elsewhere. The
firm sent over 20 million blanks
to Philadelphia, to be struck into
cents and half-cents by the United
States Mint —Mint Director Elias
Boudinot found them to be "perfect
and beautifully polished".

Elias Boudinot who has been working for a
company that made coins for
the us mint ?

Table A.1: Some generated QA examples.
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Passage Answer Question
In March 2008 as part of the
annual budget, the government
introduced several laws to amend the
Immigration and Refugee Protection
Act. The changes would have helped
to streamline immigrant application
back-up, to speed up application
for skilled workers and to rapidly
reject other ones that are judged not
admissible by immigration officers.
Immigrant applications had risen to
a high of 500,000, creating a delay of
up to six months for an application
to be processed.

March 2008 when did the uk introduce new
immigration laws ?

The other group members as far
back as 1996 had noticed Paddy
Clancy’s unusual mood swings. In
the spring of 1998 the cause was
finally detected; Paddy had a brain
tumor as well as lung cancer. His
wife waited to tell him about the
lung cancer, so as not to discourage
him when he had a brain operation.

the spring of 1998 in what time was paddy
diagnosed with lung cancer ?

In 1365 officials were created to
supervise the fish market in the
town, whilst illegal fishing and oyster
cultivation was targeted by the
bailiffs in an edict from 1382, which
prohibited the forestalling of fish
by blocking the river, the dredging
of oysters out of season and the
obstructing of the river. Colchester
artisans included clockmakers, who
maintained clocks in church towers
across north Essex and Suffolk.

north Essex where were hundreds of clocks
made by local artisans ?

Badge numbers for Sheriffs and
Deputies consist of a prefix number,
which represents the county number,
followed by a one to three digit
number, which represents the
Sheriff’s or Deputy’s number within
that specific office. The Sheriff’s
badge number in each county is
always #1. So the Sheriff from
Bremer County would have an ID
number of 9-1 (9 is the county
number for Bremer County and 1 is
the number for the Sheriff).

The Sheriff’s badge
number

what is the number used to
identify the sheriff in each
county ?

Table A.2: Some generated QA examples.

173



Passage Answer Question
Appian wrote that Calpurnius Piso
was sent as a commander to Hispania
because there were revolts. The
following year Servius Galba was
sent without soldiers because the
Romans were busy with Cimbrian
War and a slave rebellion in Sicily
(the [Third Servile War], 104-100
BC). In the former war the Germanic
tribes of the Cimbri and the
Teutones migrated around Europe
and invaded territories of allies
of Rome, particularly in southern
France, and routed the Romans
in several battles until their final
defeat.

Calpurnius Piso who was sent to the south of
italy to fight for the roman
empire ?

The parish churches of
Sempringham, Birthorpe,
Billingborough, and Kirkby were
already appropriated. Yet in 1247,
Pope Innocent IV granted to the
master the right to appropriate the
church of Horbling, because there
were 200 women in the priory who
often lacked the necessaries of life.
The legal expenses of the order at
the papal curia perhaps accounted
for their poverty.

200 there were how many women
in the priory of horbling in the
12th century ?

"Jerry West is the reason I came
to the Lakers", O’Neal later said.
They used their 24th pick in the
draft to select Derek Fisher. During
the 1996–97 season, the team traded
Cedric Ceballos to Phoenix for
Robert Horry. O’Neal led the team
to a 56–26 record, their best effort
since 1990–91, despite missing 31
games due to a knee injury. O’Neal
averaged 26.2 ppg and 12.5 rpg
and finished third in the league in
blocked shots (2.88 bpg) in 51 games.

the 1996–97 season when do the phoenix suns
begin with a trade to the los
angeles clippers ?

Finnish popular music also includes
various kinds of dance music; tango,
a style of Argentine music, is
also popular. One of the most
productive composers of popular
music was Toivo Kärki, and the
most famous singer Olavi Virta
(1915–1972). Among the lyricists,
Sauvo Puhtila (1928–2014), Reino
Helismaa (died 1965) and Veikko
"Vexi" Salmi are a few of the most
notable writers. The composer and
bandleader Jimi Tenor is well known
for his brand of retro-funk music.

Reino Helismaa who has been hailed as one
of finland ’s most important
writers ?

Table A.3: Some generated QA examples.
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Context Question Answer

SQuAD1.1

HUM 123.20 9.79 2.82
LOC 117.18 9.62 2.78
DESC 119.32 9.91 5.82
ENTY 117.43 10.54 3.04
NUM 121.09 10.11 2.08

NewsQA

HUM 495.79 6.55 2.82
LOC 478.84 6.34 2.87
DESC 513.00 6.25 7.62
ENTY 505.94 6.76 4.27
NUM 476.23 7.20 2.07

Table A.4: The average text length of context, question and answer in QA examples
of each question type in the SQuAD1.1 and NewsQA training data.

Char-Level Word-Level Sent-Level

SQuAD1.1

HUM 317.85 54.90 1.61
LOC 308.81 53.71 1.53
DESC 342.97 60.00 1.79
ENTY 317.75 55.16 1.63
NUM 315.78 56.19 1.67

NewsQA

HUM 532.11 101.02 3.71
LOC 566.02 107.99 3.95
DESC 844.13 160.05 5.98
ENTY 751.48 143.90 5.49
NUM 763.73 145.26 5.47

Table A.5: The average answer position of character-level, word-level and sentence-
level in QA examples of each question type in the SQuAD1.1 and NewsQA training
data.

Context Question Answer

SQuAD1.1 110 10 2

NewsQA 534 6 2

Table A.6: The median of the context, question, answer length used to partition
long and short subdomains.

LOC ENTY HUM NUM DESC

SQuAD1.1
Long 11.11 26.68 21.65 24.8 15.43
Short 11.73 28.42 19.68 24.2 15.52

NewsQA
Long 10.4 18.08 29.94 16.81 24.71
Short 12.38 15.86 30.24 20.9 20.55

Table A.7: The percentage of each question type in long context and short context
groups.
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LOC ENTY HUM NUM DESC

SQuAD1.1
Long 10.36 28.59 20.37 24.73 15.63
Short 12.11 26.90 20.84 24.35 15.37

NewsQA
Long 9.45 18.29 29.70 23.66 18.90
Short 12.96 15.91 30.40 14.98 25.63

Table A.8: The percentage of each question type in long question and short question
groups.

LOC ENTY HUM NUM DESC

SQuAD1.1
Long 10.87 27.32 19.69 21.8 19.86
Short 11.79 27.72 21.29 26.29 12.55

NewsQA
Long 9.37 19.87 23.16 9.31 38.17
Short 13.13 14.48 36.03 27.05 9.29

Table A.9: The percentage of each question type in long answer and short answer
groups.

Context Question Answer

SQuAD1.1
Long 84.53 9.99 3.09
Short 155.88 10.14 3.23

NewsQA
Long 350.44 6.54 3.79
Short 641.35 6.69 4.25

Table A.10: The average answer position on character-level, word-level and sentence-
level in QA examples of long context and short context groups.

Context Question Answer

SQuAD1.1
Long 119.12 7.8 3.25
Short 120.76 13.57 3.03

NewsQA
Long 491.15 4.96 4.45
Short 501.55 8.66 3.49

Table A.11: The average answer position on character-level, word-level and sentence-
level in QA examples of long question and short question groups.

Context Question Answer

SQuAD1.1
Long 119.08 10.18 1.42
Short 120.79 9.88 5.77

NewsQA
Long 489.32 6.82 1.5
Short 503.34 6.37 6.95

Table A.12: The average answer position on character-level, word-level and sentence-
level in QA examples of long answer and short answer groups.
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Char Word Sent

SQuAD1.1
Long 402.02 70.36 2.14
Short 239.75 41.78 1.17

NewsQA
Long 864.85 165.73 6.40
Short 510.58 95.94 3.37

Table A.13: The average answer position on character-level, word-level and sentence-
level in QA examples of long context and short context groups.

Char Word Sent

SQuAD1.1
Long 342.02 59.70 1.74
Short 305.65 53.45 1.58

NewsQA
Long 726.78 138.64 5.22
Short 655.98 124.50 4.61

Table A.14: The average answer position on character-level, word-level and sentence-
level in QA examples of long question and short question groups.

Char Word Sent

SQuAD1.1
Long 324.65 57.77 1.71
Short 316.70 54.65 1.60

NewsQA
Long 795.46 150.20 5.61
Short 595.00 114.17 4.26

Table A.15: The average answer position on character-level, word-level and sentence-
level in QA examples of long answer and short answer groups.
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Char Word Sent

SQuAD1.1 262 46 1

NewsQA 358 67 2

Table A.16: The median of the answer position on character-level, word-level and
sentence-level used to partition front and back subdomains.

LOC ENTY HUM NUM DESC

SQuAD1.1
Front 11.74 27.8 20.25 24.97 14.81
Back 11.11 27.32 21.06 24.02 16.14

NewsQA
Front 13.07 15.59 37.2 15.61 18.46
Back 9.71 18.36 22.97 22.1 26.8

Table A.17: The percentage of each question type in front and back groups on
character-level answer position

and NewsQA in Table A.7, Table A.8, Table A.9, Table A.10 Table A.11, Table A.12,

Table A.13, Table A.14, Table A.15.

A.2.3 Question Type Proportions, Average Text Length and

Average Answer Position for QA examples with Front and

Back Answer Positions

The median of the answer position on character-level, word-level and sentence-level

is shown in Table A.16. We show the question type proportion, average text length

for context, question and answer as well as the average answer position on character-

level, word-level and sentence-level for QA examples in front and back groups of

answer positions in character-level, word-level and sentence-level in SQuAD1.1 and

NewsQA in Table A.17, Table A.18, Table A.19, Table A.20, Table A.21, Table A.22,

Table A.23, Table A.24, Table A.25.

LOC ENTY HUM NUM DESC

SQuAD1.1
Front 11.76 28.05 20.28 24.49 14.99
Back 11.16 27.08 21.00 24.45 15.94

NewsQA
Front 13.02 15.59 37.20 15.64 18.48
Back 9.74 18.43 22.85 22.11 26.81

Table A.18: The percentage of each question type in front and back groups on
word-level answer position
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LOC ENTY HUM NUM DESC

SQuAD1.1
Front 11.72 27.83 20.60 24.48 14.95
Back 11.04 27.18 20.71 24.56 16.15

NewsQA
Front 13.19 15.76 36.08 16.36 18.54
Back 9.56 18.54 23.11 22.06 26.67

Table A.19: The percentage of each question type in front and back groups on
sentence-level answer position

Char Word Sent

SQuAD1.1
Front 116.25 20.6 0.44
Back 524.15 91.3 2.85

NewsQA
Front 145.24 28.72 0.61
Back 1230.24 232.96 9.15

Table A.20: The average answer position on character-level, word-level and sentence-
level in QA examples of front and back groups of character-level answer position.

Char Word Sent

SQuAD1.1
Front 127.4 19.34 0.44
Back 515.71 93.09 2.88

NewsQA
Front 151.46 28.04 0.65
Back 1229.77 234.74 9.17

Table A.21: The average answer position on character-level, word-level and sentence-
level in QA examples of front and back groups of word-level answer position.

Char Word Sent

SQuAD1.1
Front 158.46 26.12 0.4
Back 532.52 95.11 3.28

NewsQA
Front 183.56 35.56 0.63
Back 1280.56 242.86 9.89

Table A.22: The average answer position on character-level, word-level and sentence-
level in QA examples of front and back groups of sentence-level answer position.

Context Question Answer

SQuAD1.1
Front 108.80 9.83 3.06
Back 130.77 10.30 3.26

NewsQA
Front 473.52 6.50 3.28
Back 518.08 6.72 4.75

Table A.23: The average text length of context, question and answer in QA examples
of front and back groups of character-level answer position
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Context Question Answer

SQuAD1.1
Front 109.21 9.84 3.03
Back 130.50 10.28 3.30

NewsQA
Front 473.13 6.50 3.32
Back 518.72 6.72 4.72

Table A.24: The average text length of context, question and answer in QA examples
of front and back groups of word-level answer position

Context Question Answer

SQuAD1.1
Front 110.14 9.93 3.04
Back 132.44 10.23 3.33

NewsQA
Front 474.28 6.52 3.58
Back 521.11 6.73 4.54

Table A.25: The average text length of context, question and answer in QA examples
of front and back groups of sentence-level answer position
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Figure A.1: Visualization of performance (EM and F-1 score) difference curves
over short and long context, question and answer (from left to right) on SQuAD1.1
(top) and NewsQA (bottom). The green, red lines represent the difference of the
performance on long group and short group. The dashed line is 0, indicating that two
QA systems have the same performance. When the sample size increases, curves in
context and question length converge to the dashed line, whereas there are substantial
differences in the performance of QAL and QAS in answer length subdomain.
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Figure A.2: Visualization of performance (EM and F-1 score) difference curves over
front and back answer positions (char-level, word-level and sentence-level from left to
right) on SQuAD1.1 (top) and NewsQA (bottom). The green, red lines represent the
difference of the performance on front group and back group. The dashed line is 0,
indicating that two QA systems have the same performance. The curves show that
there are substantially difference in the performance of QAF and QAB in answer
position subdomains especially for character-level and word-level answer positions.

A.2.4 QA examples with long answers and short answers

We give some QA examples with long answers and short answers in Table A.26 and

Table A.27.

A.2.5 QA examples with front answers and back answers

We give some QA examples with character-level answer positions in front group and

back group in Table A.28 and Table A.29.

A.2.6 Performance Difference for Text Length and Answer Position

Experiments

We also show the difference of the performance (EM and F-1 score) between QA

systems (QAL −QAS and QAF −QAB) on subdomains of text length and answer

position in Figure A.1 and Figure A.2.
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Answer Length Question Context
Long Where was the main

focus of Pan-Slavism?
Pan-Slavism, a movement which came into
prominence in the mid-19th century, emphasized
the common heritage and unity of all the Slavic
peoples. The main focus was in the Balkans
where the South Slavs had been ruled for
centuries by other empires: the Byzantine
Empire, Austria-Hungary, the Ottoman
Empire, and Venice . The Russian Empire
used Pan-Slavism as a political tool; as did the
Soviet Union, which gained political-military
influence and control over most Slavic-majority
nations between 1945 and 1948 and retained a
hegemonic role until the period 1989–1991.

Long What is one reason for
homologs to appear?

Genes with a most recent common ancestor, and
thus a shared evolutionary ancestry, are known as
homologs. These genes appear either from gene
duplication within an organism’s genome ,
where they are known as paralogous genes, or
are the result of divergence of the genes after
a speciation event, where they are known as
orthologous genes,:7.6 and often perform the
same or similar functions in related organisms. It
is often assumed that the functions of orthologous
genes are more similar than those of paralogous
genes, although the difference is minimal.

Long How does the water
vapor that rises in warm
air turn into clouds?

Solar radiation is absorbed by the Earth’s land
surface, oceans – which cover about 71% of the
globe – and atmosphere. Warm air containing
evaporated water from the oceans rises, causing
atmospheric circulation or convection. When
the air reaches a high altitude, where the
temperature is low, water vapor condenses
into clouds, which rain onto the Earth’s
surface, completing the water cycle. The latent
heat of water condensation amplifies convection,
producing atmospheric phenomena such as wind,
cyclones and anti-cyclones. Sunlight absorbed
by the oceans and land masses keeps the
surface at an average temperature of 14 °C. By
photosynthesis green plants convert solar energy
into chemically stored energy, which produces
food, wood and the biomass from which fossil
fuels are derived.

Table A.26: Examples of QA examples with long answers where answers are
highlighted.
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Answer Length Question Context
Short Who led the Exodus? According to the Hebrew Bible narrative, Jewish

ancestry is traced back to the Biblical patriarchs
such as Abraham, Isaac and Jacob, and the
Biblical matriarchs Sarah, Rebecca, Leah, and
Rachel, who lived in Canaan around the 18th
century BCE. Jacob and his family migrated to
Ancient Egypt after being invited to live with
Jacob’s son Joseph by the Pharaoh himself. The
patriarchs’ descendants were later enslaved until
the Exodus led by Moses, traditionally dated to
the 13th century BCE, after which the Israelites
conquered Canaan.

Short When did the Duke of
Kent die?

Victoria was the daughter of Prince Edward,
Duke of Kent and Strathearn, the fourth
son of King George III. Both the Duke of
Kent and King George III died in 1820 , and
Victoria was raised under close supervision by
her German-born mother Princess Victoria of
Saxe-Coburg-Saalfeld. She inherited the throne
aged 18, after her father’s three elder brothers
had all died, leaving no surviving legitimate
children. The United Kingdom was already an
established constitutional monarchy, in which
the sovereign held relatively little direct political
power. Privately, Victoria attempted to influence
government policy and ministerial appointments;
publicly, she became a national icon who was
identified with strict standards of personal
morality.

Short What is the evaluator
called in a breed show?

In conformation shows, also referred to as
breed shows, a judge familiar with the specific
dog breed evaluates individual purebred dogs
for conformity with their established breed
type as described in the breed standard.
As the breed standard only deals with the
externally observable qualities of the dog (such
as appearance, movement, and temperament),
separately tested qualities (such as ability
or health) are not part of the judging in
conformation shows.

Table A.27: Examples of QA examples with short answers where answers are
highlighted.
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Answer Position Question Context
Front What are the first names

of the men that invented
youtube?

According to a story that has often been repeated
in the media, Hurley and Chen developed
the idea for YouTube during the early months
of 2005, after they had experienced difficulty
sharing videos that had been shot at a dinner
party at Chen’s apartment in San Francisco.
Karim did not attend the party and denied that it
had occurred, but Chen commented that the idea
that YouTube was founded after a dinner party
ẅas probably very strengthened by marketing
ideas around creating a story that was very
digestiblë.

Front Who became Chairman
of the Council of
Ministers in 1985?

In the fall of 1985, Gorbachev continued to bring
younger and more energetic men into government.
On September 27, Nikolai Ryzhkov replaced
79-year-old Nikolai Tikhonov as Chairman of
the Council of Ministers, effectively the Soviet
prime minister, and on October 14, Nikolai
Talyzin replaced Nikolai Baibakov as chairman
of the State Planning Committee (GOSPLAN).
At the next Central Committee meeting on
October 15, Tikhonov retired from the Politburo
and Talyzin became a candidate. Finally, on
December 23, 1985, Gorbachev appointed Yeltsin
First Secretary of the Moscow Communist Party
replacing Viktor Grishin.

Front During what seasons is
fog common in Boston?

Fog is fairly common, particularly in spring
and early summer , and the occasional tropical
storm or hurricane can threaten the region,
especially in late summer and early autumn.
Due to its situation along the North Atlantic,
the city often receives sea breezes, especially in
the late spring, when water temperatures are
still quite cold and temperatures at the coast
can be more than 20 °F (11 °C) colder than a
few miles inland, sometimes dropping by that
amount near midday. Thunderstorms occur
from May to September, that are occasionally
severe with large hail, damaging winds and heavy
downpours. Although downtown Boston has
never been struck by a violent tornado, the city
itself has experienced many tornado warnings.
Damaging storms are more common to areas
north, west, and northwest of the city. Boston
has a relatively sunny climate for a coastal city
at its latitude, averaging over 2,600 hours of
sunshine per annum.

Table A.28: Examples of QA examples with answers in front group where answers
are highlighted.
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Answer Position Question Context
Back How many murders did

Detroit have in 2015?
Detroit has struggled with high crime for decades.
Detroit held the title of murder capital between
1985-1987 with a murder rate around 58 per
100,000. Crime has since decreased and, in 2014,
the murder rate was 43.4 per 100,000, lower than
in St. Louis, Missouri. Although the murder rate
increased by 6% during the first half of 2015, it
was surpassed by St Louis and Baltimore which
saw much greater spikes in violence. At year-end
2015, Detroit had 295 criminal homicides, down
slightly from 299 in 2014.

Back Who was leading the
Conservatives at this
time?

Despite being a persistent critic of some of
the government’s policies, the paper supported
Labour in both subsequent elections the party
won. For the 2005 general election, The Sun
backed Blair and Labour for a third consecutive
election win and vowed to give him öne last
chanceẗo fulfil his promises, despite berating
him for several weaknesses including a failure
to control immigration. However, it did speak of
its hope that the Conservatives (led by Michael
Howard) would one day be fit for a return to
government. This election (Blair had declared it
would be his last as prime minister) resulted in
Labour’s third successive win but with a much
reduced majority.

Back Who lost the 2015
Nigerian presidential
election?

Nigeria is a Federal Republic modelled after the
United States, with executive power exercised
by the president. It is influenced by the
Westminster System model[citation needed] in
the composition and management of the upper
and lower houses of the bicameral legislature.
The president presides as both Head of State
and head of the national executive; the leader
is elected by popular vote to a maximum of two
4-year terms. In the March 28, 2015 presidential
election, General Muhammadu Buhari emerged
victorious to become the Federal President of
Nigeria, defeating then incumbent Goodluck
Jonathan .

Table A.29: Examples of QA examples with answers in back group where answers
are highlighted.
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