

King’s Research Portal

DOI:
10.1007/978-3-031-42753-4_4

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Ayala-Rincón, M., Fernández, M., Silva, G. F., Kutsia, T., & Nantes-Sobrinho, D. (2023). Nominal AC-Matching.
In C. Dubois, & M. Kerber (Eds.), Intelligent Computer Mathematics - 16th International Conference, CICM 2023,
Proceedings (pp. 53-68). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics); Vol. 14101 LNAI). Springer Science and Business Media
Deutschland GmbH. https://doi.org/10.1007/978-3-031-42753-4_4

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 27. Nov. 2023

https://doi.org/10.1007/978-3-031-42753-4_4
https://kclpure.kcl.ac.uk/portal/en/publications/c8e7cc46-6d25-408d-9641-21f239c0b5d5
https://doi.org/10.1007/978-3-031-42753-4_4

Nominal AC-Matching

Mauricio Ayala-Rincón1[0000−0003−0089−3905], Maribel
Fernández2[0000−0002−1959−8730], Gabriel Ferreira Silva1[0000−0003−1679−3597],

Temur Kutsia3[0000−0003−4084−7380], and Daniele
Nantes-Sobrinho1,4[000−0002−1959−8730]

1 University of Brasília, Brazil
ayala@unb.br, and gabrielfsilva1995@gmail.com

2 King’s College London, U.K. maribel.fernandez@kcl.ac.uk
3 Johannes Kepler University Linz, Austria kutsia@risc.jku.at

4 Imperial College London, U.K dnantess@ic.ac.uk

Abstract. The nominal syntax is an extension of the first-order syn-
tax that smoothly represents languages with variable bindings. Nominal
matching is first-order matching modulo alpha-equivalence. This work
extends a certified first-order AC-unification algorithm to solve nominal
AC-matching problems. To our knowledge, this is the first mechanically-
verified nominal AC-matching algorithm. Its soundness and completeness
were verified using the proof assistant PVS. The formalisation enriches
the first-order AC-unification algorithm providing structures and mech-
anisms to deal with the combinatorial aspects of nominal atoms, permu-
tations and abstractions. Furthermore, by adding a parameter for “pro-
tected variables” that cannot be instantiated during the execution, it en-
ables nominal matching. Such a general treatment of protected variables
also gives rise to a verified nominal AC-equality checker as a byproduct.

Keywords: Nominal Matching · Nominal AC-Matching · Formal Meth-
ods · PVS

1 Introduction

The nominal approach to the specification of systems with binders [20,25] ex-
tends first-order syntax with notions of name and binding that allow us to rep-
resent systems with binders smoothly. Such systems frequently appear in the
formalisation of mathematics and when reasoning about the properties of pro-
gramming languages. Taking into account α-equivalence is essential to represent
bindings correctly. For example, the formulas ∀x : x+ 1 > 0 and ∀y : y + 1 > 0
should be considered equivalent despite being syntactically different. From the
user point of view it is easier to use systems with variable names than systems
with indices. Hence, instead of using indices to represent bound variables, as
in explicit substitution calculi à la de Bruijn, the nominal theory uses atoms,
atom permutations and freshness constraints to represent binders more natu-
rally [25,19].

2 M. Ayala-Rincón et al.

Given terms t and s, syntactic unification is the problem of finding a sub-
stitution σ such that σt = σs and syntactic matching is the problem of finding
a substitution σ such that σt = s. Algorithms to solve matching problems are
an essential component of functional languages and equational theorem provers:
matching is used to decide if an equation can be applied to a term. The problem
of syntactic matching can be generalised to consider an equational theory E. In
this case, called E-matching, we must find a substitution σ such that σt and s are
equal modulo E, which we denote σt ≈E s. For example, if the system includes
associative and commutative (AC) operators, such as + in the example above,
then the matching algorithm should consider the AC axioms. Furthermore, equa-
tional programming languages, such as Maude, require efficient implementations
of AC-matching to deal with AC-theories (see [16]).

If the system under study includes binders and AC operators, then α-equiva-
lence should also be considered: for example, ∀x : x+1 > 0 should be considered
equivalent to ∀y : 1 + y > 0. This paper focuses on the matching problem for
languages that include binders and AC operators.

Nominal matching is the extension of first-order matching to the nominal syn-
tax, replacing the notion of syntactic equality by α-equivalence. It has applica-
tions in rewriting, functional programming, and metaprogramming. For instance,
various versions of matching modulo α-equivalence are used in functional pro-
gramming languages that provide constructs for manipulating abstract syntax
trees involving binders (e.g. [29,26]). In this work, we specify a nominal matching
algorithm modulo AC function symbols (nominal AC-matching, for short) and
prove its correctness and completeness using the proof assistant PVS.

Related Work. Nominal syntactic (i.e. modulo α-equivalence) equality-check,
matching and unification were solved since the beginning of the development of
the nominal approach; more than twenty years ago, Urban et al. [34] developed
the first rule-based algorithm for nominal syntactic unification and further, Ur-
ban mechanised its correctness and completeness in Isabelle/HOL as part of the
formalisation of the nominal approach in this proof assistant [32,33]. Further-
more, different approaches were designed to deal with nominal syntactic uni-
fication efficiently. Calvès and Fernández [12,11] and Levy and Villaret [22,23]
developed efficient nominal syntactic unification algorithms to solve nominal
unification problems. Furthermore, Ayala-Rincón et al. [6] developed a nominal
syntactic unification algorithm specified as a functional program and verified
it in the proof assistant PVS. Enriching the nominal equational analysis with
equational theories started with developing rule-based techniques for commuta-
tive operators. Such developments were initially checked in the proof assistant
Coq and further in PVS [1,4]. Remarkable differences between nominal unifi-
cation and nominal C-unification were discovered, such as the fact that when
expressing solutions as pairs consisting of a freshness context and substitutions,
nominal unification is unitary whereas nominal C-unification is not finitary [2,3].

Avoiding freshness constraints through a fixed-point approach was also stud-
ied as a mechanism to obtain finite complete sets of solutions [5]. Such fixed-point

Nominal AC-Matching 3

equations also appear in nominal techniques designed to deal with higher-order
recursive let operators [27,28].

First-order AC-unification algorithms were proposed almost half a century
ago, when Stickel [30,31] showed the connection between solving this problem
and computing solutions to linear Diophantine equations until a certain bound.
Almost a decade later, Fages [17,18] fixed a mistake in Stickel’s proof of termi-
nation. Since then, ideas to obtain more efficient AC-unification algorithms have
been proposed, either by using a smaller bound when computing the solutions
to the linear Diophantine equation [14], or by solving those equations more effi-
ciently [14], or even by solving whole systems of linear Diophantine equations and
using suitable data structures to represent the problem [10,8]. First-order AC-
unification algorithms were not formalised until recently when a version of Fages’
AC-unification algorithm was proved correct and complete using the proof assis-
tant PVS [7]. This mechanisation applies the linear-Diophantine AC unification
method discovered and fixed in works by Stickel and Fages [30,31,17,18], and can
easily be adapted to deal with AC-equality and AC-matching problems as well.
It is important to stress that such mechanisation was not a routine-formalisation
effort; before this formalisation, only a formalisation of AC-matching (which has
simpler combinatorics) was reported in the proof assistant Coq [15].

Contributions. Adapting first-order syntactic AC unification to the nominal set-
ting is challenging since the new variables included in the Diophantine systems
(used to generate new possible AC combinations) give rise to new AC-unification
problems of the same complexity as the input problems. This paper shows that
such cyclicity is not possible when only nominal AC-matching problems are con-
sidered. We present a novel nominal AC-matching algorithm adapted from the
Stickel-Fages linear-Diophantine approach and prove its termination, correctness
and completeness in the proof assistant PVS.

Organisation. Section 2 recalls the main concepts and notations needed in
the paper. In Section 3, we present and explain the pseudocode for the al-
gorithm specified in PVS. Section 4 discusses the main features of the for-
malisation, while Section 5 discusses the challenges in adapting our approach
to nominal AC-unification. Finally, in Section 6, we conclude the paper and
suggest possible paths for future work. We assume familiarity with PVS (see
[24]) and include hyperlinks (with the � icon) to specific points of interest
of the PVS formalisation. An extended version of this paper is available at
https://www.mat.unb.br/ayala/publications.html.

2 Background

2.1 Nominal Terms, Permutations and Substitutions

Assume disjoint countable sets of atoms A = {a, b, c, . . .} and of variables X =
{X,Y, Z, . . .}, and a signature Σ of function symbols which contains associative-
commutative function symbols. A permutation π is a bijection of the form π :

https://github.com/gabriel951/nominal_ac_match_CICM
https://www.mat.unb.br/ayala/publications.html

4 M. Ayala-Rincón et al.

A → A such that the domain of π (i.e., the set of atoms modified by π) is
finite. Permutations are usually represented as a list of swappings, where the
swapping (a b) exchanges atoms a and b and fixes all the other atoms. Therefore,
a permutation is represented as π = (a1 b1) :: ... :: (an bn) :: nil. The inverse
of this permutation, denoted by π−1, can be computed simply by reversing the
list. The identity permutation is denoted by id.

Definition 1 (Nominal Terms �). The set T (Σ,A,X) of nominal terms is
generated according to the grammar:

s, t ::= a | π ·X | ⟨⟩ | [a]t | ⟨s, t⟩ | f t | fAC t (1)

where ⟨⟩ is the unit, a is an atom term, π·X is a moderated variable or suspension
(the permutation π is suspended on the variable X), [a]t is an abstraction (a term
with the atom a abstracted), ⟨s, t⟩ is a pair, f t is a function application and
fAC t is an associative-commutative function application.

Remark 1. We represent moderated variables of the form id ·X simply as X. We
follow Gabbay’s name convention, which says that atoms differ in their names.
Therefore, if we consider atoms a and b, it is redundant to say a ̸= b.

Definition 2 (Well-formed Terms �). We say that a term t is well-formed
if t is not a pair and every AC-function application that is a subterm of t has at
least two arguments.

As was done in [7], we have restricted the terms that our algorithm receives
to well-formed terms to ease our formalisation (more details in the extended
version). Excluding pairs is a natural decision since they are used to encode a
list of arguments to a function.

Definition 3 (Permutation Action). The action of permutations on atoms
� is defined recursively: nil · c = c and ((a b) :: π) · c = a, if π · c = b;
((a b) :: π) · c = b, if π · c = a; ((a b) :: π) · c = π · c otherwise. The action of
permutations on terms � is defined recursively:

π · ⟨⟩ = ⟨⟩ π · (π′ ·X) = (π :: π′) ·X π · [a]t = [π · a]π · t
π · ⟨s, t⟩ = ⟨π · s, π · t⟩ π · f t = f π · t π · fACt = fACπ · t

Notation 1 When convenient, we may mention that a function symbol f is an
AC-function symbol, omit the superscript and write simply f instead of fAC .

A substitution σ is a function from variables to terms, such that σX ̸= id ·X
only for a finite set of variables, called the domain of σ and denoted as dom(σ).
The image of σ is then defined as im(σ) = {σX | X ∈ dom(σ)}. We denote the
identity substitution by id. From now on, when composing substitution σ with
δ we may omit the composition symbol and write σδ instead of σ ◦ δ.

A well-formed substitution � only instantiates variables to well-formed terms.
In the proofs of soundness and completeness of the algorithm, we restrict our-
selves to well-formed substitutions. Let V be a set of variables. If dom(σ) ⊆ V

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L1-L11
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L638-L643
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/atoms.pvs#L13-L23
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/atoms.pvs#L13-L23
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L669-L680
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L669-L680
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/substitution.pvs#L127-L130

Nominal AC-Matching 5

and Vars(im(σ)) ⊆ V we write σ ⊆ V . In our PVS code, substitutions are rep-
resented by a list, where each entry of the list is called a nuclear substitution
and is of the form {X → t}.

Definition 4 (Nuclear substitution action on terms �). A nuclear sub-
stitution {X → t} acts over a term by induction as shown below:

{X → t}⟨⟩ = ⟨⟩ {X → t}⟨s1, s2⟩ =
{X → t}([a]s) = [a]({X → t}s) ⟨{X → t}s1, {X → t}s2⟩

{X → t}(f s) = f ({X → t}s) {X → t}π · Y =

{
π · Y if X ̸= Y
π · t otherwise

{X → t}a = a {X → t}(fAC s) = fAC ({X → t}s)

Definition 5 (Substitution acting on terms �). Since a substitution σ is
a list of nuclear substitutions, the action of a substitution is defined as:

– nil t = t, where nil is the null list, used to represent the identity substitution.
– cons({X → s}, σ) t = {X → s}(σt).

Remark 2. The notion of substitution used here differs from the more traditional
view of a substitution as a simultaneous application of nuclear substitutions,
although both are correct. The way we defined substitution here is closer to tri-
angular substitutions [21]. In the definition of action of substitutions the nuclear
substitution in the head of the list is applied last. This lets us, given substitutions
σ and δ, obtain the substitution σ ◦ δ in our code simply as append(σ, δ).

2.2 Freshness and α-equality

Freshness and α-equality are two valuable notions in nominal theory and are
represented by the predicates # and ≈α. Intuitively, a#t means that if a occurs
in t then it does so under an abstractor [a], and s ≈α t means that s and t
are α-equivalent, that is, they are equal modulo the renaming of bound atoms.
These concepts are given in Definitions 6 and 7.

Definition 6 (Freshness �). A freshness context ∇ is a set of constraints of
the form a#X. We denote contexts by letters ∆,Γ,∇, . . . An atom a is said to
be fresh on t under a context ∇, denoted by ∇ ⊢ a#t, if it is possible to build a
proof using the rules:

(#⟨⟩)
∇ ⊢ a#⟨⟩

(#atom)∇ ⊢ a#b
(π−1 · a#X) ∈ ∇

(#X)∇ ⊢ a#π ·X

(#[a]a)
∇ ⊢ a#[a]t

∇ ⊢ a#t
(#[a]b)

∇ ⊢ a#[b]t

∇ ⊢ a#s ∇ ⊢ a#t
(#pair)

∇ ⊢ a#⟨s, t⟩

∇ ⊢ a#t
(#app)∇ ⊢ a#f t

∇ ⊢ a#t
(#AC)

∇ ⊢ a#fAC t

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/substitution.pvs#L25-L40
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/substitution.pvs#L49-L58
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/freshness.pvs#L15-L29

6 M. Ayala-Rincón et al.

Definition 7 (α-equality with AC operators �). Let f be an AC function
symbol, Sn(f t) be an operator that selects the nth argument of f t (considering
the flattened form) and Dn(f t) be an operator that deletes the nth argument of f t
(considering the flattened form). If there exist i and j such that ∆ ⊢ Si(f

ACs) ≈α

Sj(f
ACt) and ∆ ⊢ Di(f

ACs) ≈α Dj(f
ACt), then ∆ ⊢ fACs ≈α fACt. In other

words, the rule of α-equality for an AC-function application is:

∆ ⊢ Si(f
ACs) ≈α Sj(f

ACt) ∆ ⊢ Di(f
ACs) ≈α Dj(f

ACt)
(≈α AC)

∆ ⊢ fACs ≈α fACt

Two terms t and s are said to be α-equivalent under the freshness context ∆
(∆ ⊢ t ≈α s) if it is possible to build a proof using rule (≈α AC) and the rules:

(≈α ⟨⟩)
∆ ⊢ ⟨⟩ ≈α ⟨⟩

(≈α atom)
∆ ⊢ a ≈α a

∆ ⊢ s ≈α t
(≈α app)

∆ ⊢ f s ≈α f t

∆ ⊢ s ≈α t
(≈α [a]a)

∆ ⊢ [a]s ≈α [a]t

∆ ⊢ s ≈α (a b) · t, ∆ ⊢ a#t
(≈α [a]b)

∆ ⊢ [a]s ≈α [b]t

ds(π, π′)#X ⊆ ∆
(≈α var)

∆ ⊢ π ·X ≈α π′ ·X
∆ ⊢ s0 ≈α t0, ∆ ⊢ s1 ≈α t1 (≈α pair)

∆ ⊢ ⟨s0, s1⟩ ≈α ⟨t0, t1⟩

Notation 2 We define the difference set between two permutations π and π′ as
ds(π, π′) = {a ∈ A|π ·a ̸= π′ ·a}. By extension, ds(π, π′)#X is the set containing
every constraint of the form a#X for a ∈ ds(π, π′).

2.3 Solution to Quintuples and Additional Notation

For the proofs of soundness and completeness of the algorithm, we need the
notion of a solution to a quintuple (Definition 8). This definition depends on a
parameter X , a set of “protected variables”, i.e., variables that cannot be instan-
tiated.

Let P be a finite set of equational constraints. We denote the left-hand side
of P by lhs(P) � and the right-hand side of P by rhs(P) �. The set of variables
in t ≈? s is denoted as Vars(t, s) �. Finally, if Γ is a context then we denote by
Vars(Γ) � the set {X | a#X ∈ Γ, for some atom a}.

Notation 3 Let ∇ and ∇′ be freshness contexts and σ and σ′ substitutions. We
need the following notation to define a solution to a quintuple:

– ∇′ ⊢ σ∇ denotes that ∇′ ⊢ a#σX holds for each (a#X) ∈ ∇.
– ∇ ⊢ σ ≈V σ′ denotes that ∇ ⊢ σX ≈α σ′X for all X in V . When V is the

set of all variables X, we write ∇ ⊢ σ ≈ σ′.

Definition 8 (Solution for a Quintuple �). Suppose that Γ is a context, P
is a set of freshness constraints (of the form a#?t) and equational constraints
(of the form t ≈? s), σ is a substitution, V is a set of variables and X is a

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/equality.pvs#L16-L45
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L54-L54
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L55-L55
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L64-L66
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/freshness.pvs#L123-L128
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L132-L136

Nominal AC-Matching 7

set of protected variables that cannot be instantiated. A solution for a quintuple
(Γ, P, σ, V,X) is a pair (∆, δ), where the following conditions are satisfied:

1. ∆ ⊢ δΓ .
2. if a#?t ∈ P then ∆ ⊢ a#δt.
3. if t ≈? s ∈ P then ∆ ⊢ δt ≈α δs.

4. there exists λ such that
∆ ⊢ λσ ≈V δ.

5. dom(δ) ∩ X = ∅.

Remark 3. Note that if (∆, δ) is a solution of (Γ,nil, σ,X,X) this corresponds to
the notion of (∆, δ) being an instance of (Γ, σ) that does not instantiate variables
in X .

Definition 9 (Solution for an AC-unification/matching/equality prob-
lem). A solution for an AC-unification problem with protected variables (Γ, P,X)
is a solution for the associated quintuple (Γ, P, id,Vars(P),X). When X =
Vars(rhs(P)), we have the definition for an AC-matching problem and when
X = Vars(P) we have the definition of solution to an AC-equality checking
problem.

3 Algorithm

We present the algorithm’s pseudocode instead of the actual PVS code for read-
ability. We developed a nominal algorithm (Algorithm 1 �) for matching terms
t and s. The algorithm is recursive and needs to keep track of the current con-
text Γ , the equational constraints P that we have to unify, the substitution σ
computed so far, the set of variables V that are/were in the problem and the
set of protected variables X . Hence, its input is a quintuple (Γ, P, σ, V,X). The
output is a list of solutions, each of the form (Γ1, σ1). The freshness constraints
are treated by auxiliary functions (see Section 3.1), and the equational con-
straints P are represented as a list in our PVS code, where each element of the
list is a pair (ti, si) that represents an equation ti ≈? si. The first call to the
algorithm, in order to match t to s, is done with P = {t ≈? s}; Γ = ∅ and
σ = id (because we have not computed any freshness constraint or substitution
yet); V = Vars(t, s) and X = Vars(s).

Although extensive, Algorithm 1 is simple. It starts by analysing the list P of
terms to match. If it is empty (line 2), it has finished and can return the answer
computed so far, a list with a unique element: (Γ, σ). Otherwise, the algorithm
calls the auxiliary function chooseEq (line 4), which returns a pair (t, s) and
a list of equational constraints P1 such that P = {t ≈? s} ∪ P1. Then, P is
updated by simplifying {t ≈? s} and it does so by seeing the form of t (an atom,
a moderated variable, a unit, and so on).

3.1 Functions chooseEq and decompose

The function chooseEq(P) � selects an equational constraint t ≈? s in P ,
picking the equation with the biggest size. This heuristic aims to aid us in the
proof of termination (see Section 4.2).

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification_alg.pvs#L24-L93
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/ac_step.pvs#L65-L73

8 M. Ayala-Rincón et al.

Algorithm 1 Nominal AC-Matching Algorithm 1 �

1: procedure ACMatch(Γ, P, σ, V,X)
2: if nil?(P) then cons((Γ, σ),nil)
3: else
4: let ((t, s), P1) = chooseEq(P) in
5: if t matches a and s matches a then ACMatch(Γ, P1, σ, V,X)
6: else if t matches π ·X and X ̸∈ Vars(s) and X ̸∈ X then
7: let σ1 = {X 7→ π−1s},
8: (Γ1,flag) = freshSubs?(σ1, Γ) in
9: if flag then ACMatch(Γ1 ∪ Γ, σ1P1, σ1σ, V,X)

10: else nil
11: else if t matches π ·X and s matches π′ ·X then
12: let Γ1 = ds(π, π′)#X ∪ Γ in ACMatch(Γ1, P1, σ, V,X)
13: else if t matches ⟨⟩ and s matches ⟨⟩ then ACMatch(Γ, P1, σ, V,X)
14: else if t matches f t1 and s matches f s1 then
15: let (P2,flag) = decompose(t1, s1) in
16: if flag then ACMatch(Γ, P2 ∪ P1, σ, V,X)
17: else nil
18: else if t matches [a] t1 and s = [a] s1 then
19: let (P2,flag) = decompose(t1, s1) in
20: if flag then ACMatch(Γ, P2 ∪ P1, σ, V,X)
21: else nil
22: else if t matches [a] t1 and s = [b]s1 then
23: let (Γ1,flag1) = fresh?(a, s1),
24: (P2,flag2) = decompose(t1, (a b) · s1) in
25: if flag1 and flag2 then ACMatch(Γ ∪ Γ1, P2 ∪ P1, σ, V,X)
26: else nil
27: else if t matches fAC t1 and s matches fAC s1 then
28: let InputLst = applyACStep (Γ, cons((t, s), P1), σ, V,X),
29: LstResults = map(ACMatch, InputLst) in flatten(LstResults)
30: else nil

The function decompose � (lines 15, 19 and 24) receives two terms t and
s, and if they are both pairs, it recursively tries to decompose them, returning a
tuple (P,flag), where P is a list of equational constraints and flag is a boolean
that is True if the decomposition was successful. This function guarantees that
only well-formed terms are in the matching problem.

Example 1. Examples of the function decompose are given below.

– decompose(⟨a, ⟨b, c⟩⟩, ⟨c, ⟨X,Y ⟩⟩) = ({a ≈? c, b ≈? X, c ≈? Y }, True).
– decompose(a, Y) = ({a ≈? Y }, True).
– decompose(X, ⟨c, d⟩) = (nil, False).

3.2 Handling Freshness Constraints - Functions freshSubs? and
fresh?

Following the approach of [6], freshness constraints are handled separately by the
auxiliary functions fresh? � and freshSubs? �. These functions were already

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification_alg.pvs#L24-L93
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L231-L242
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/freshness.pvs#L78-L91
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/fresh_subs.pvs#L19-L32

Nominal AC-Matching 9

implemented in [6], and extending them to handle AC-functions is straightfor-
ward. freshSubs?(σ, Γ) returns the minimal context (Γ1 in Algorithm 1) in
which a#?σX holds, for every a#X in the context Γ . fresh?(a, t) computes
and returns the minimal context (Γ1 in Algorithm 1) in which a is fresh for t.
Both functions also return a boolean (flag in Algorithm 1), indicating if it was
possible to find the aimed context.

3.3 The Function applyACStep

The function applyACStep � was adapted from the formalisation of first-
order AC-unification (see [7]). It handles equations t ≈? s, where t and s are
rooted by the same AC function symbol. This function returns a list (InputLst
in line 28 of Algorithm 1) with each entry in this list corresponding to a branch
ACMatch will explore. ACMatch explores every branch generated by calling
itself recursively on every input in InputLst (line 29 of the algorithm). The
algorithm’s output is a list of solutions of the form (Γ, σ), where Γ is a con-
text and σ is a substitution. In addition, the result of calling map(ACMatch,
InputLst), LstResults in line 29 of Algorithm 1, is a list of lists of solutions.
Hence, LstResults is flattened and then returned.

Remark 4 (solveAC and instantiateStep). applyACStep relies on two func-
tions: solveAC � and instantiateStep �, which are fully described in [7].
In synthesis, the function solveAC finds the linear Diophantine equational sys-
tem associated with the AC-matching equational constraint, generates the basis
of solutions, and uses these solutions to generate the new AC-matching equa-
tional constraints. The function instantiateStep instantiates the moderated
variables that it can.

3.4 An Example of First-order AC-Unification and How We
Adapted It to the Nominal Setting

We give a very high-level example (taken from [31] and more detailed in the
extended version) of how we would solve the first-order AC-unification problem
{f(X,X, Y, a, b, c) ≈? f(b, b, b, c, Z)}. The first step is to eliminate common ar-
guments. Next we associate our unification problem with a linear Diophantine
equation (2U1+U2+U3 = 2V1+V2 in our case) and generate a basis of solutions
to this equation, associating a new variable (Z1, Z2, . . . , Z7 in our case) to each
solution. The algorithm may branch into (possibly) many unification problems
and these new variables will be the building blocks for these unification prob-
lems. Finally, before proceeding to unify the new unification problems, we can
drop the cases where a variable term is paired with an AC-function application.
In the end, the solutions computed are:

σ1={Y 7→ f(b, b), Z 7→ f(a,X,X)} σ2={Y 7→ f(Z2, b, b), Z 7→ f(a, Z2, X,X)}
σ3={X 7→ b, Z 7→ f(a, Y)} σ4={X 7→ f(Z6, b), Z 7→ f(a, Y, Z6, Z6)}

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/ac_step.pvs#L242-L256
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/aux_unification.pvs#L196-L210
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/inst_step.pvs#L89-L117

10 M. Ayala-Rincón et al.

With this example in mind, there are four main modifications (more details
in the extended version) when moving from first-order AC-unification to nom-
inal AC-matching. When eliminating common arguments we do not eliminate
arguments ti and sj of t and s if they are equal modulo AC, we eliminate them
if they are α-equivalent (modulo AC) under the context Γ that we are working
with. Regarding the new variables introduced: the permutation suspended on
them is always the identity. Additionally, we drop the cases where a moderated
variable π ·X, with X ∈ X , is paired with an AC-function application. Finally,
we must guarantee that the new variables Zis introduced by the algorithm can
be instantiated, i.e. Zi ̸∈ X .

4 Formalisation

As is done in [7], to help us in the proofs of termination (Section 4.2), soundness
(Section 4.3) and completeness (Section 4.4) we define the notion of a nice input
(Section 4.1).

4.1 Nice Inputs

Nice inputs are invariant under the action of the ACMatch function with valu-
able properties. Notice that Item 7 of Definition 10 would need to be removed for
the proofs of termination, soundness, and completeness to be used in unification.

Definition 10 (Nice input �). An input (Γ, P, σ, V,X) is said to be nice if:
1. σ is idempotent.
2. Vars(P) ∩ dom(σ) = ∅.
3. σ ⊆ V .
4. Vars(P) ⊆ V .

5. Vars(Γ) ⊆ V .
6. X ⊆ V .
7. Vars(rhs(P)) ⊆ X .

4.2 Termination

For the lexicographic measure used in the proof of termination, we need the
definition of the size of an equational constraint t ≈? s (Definition 11).

Definition 11 (Size of an Equational Constraint �). The size of an equa-
tional constraint t ≈? s is size(t) + size(s), where the size of a term t � is
recursively defined as follows:

– size(a) = 1.
– size(π ·X) = 1.
– size(⟨⟩) = 1.

– size(⟨t1, t2⟩) = 1 + size(t1) + size(t2).
– size(f t1) = 1 + size(t1).
– size(fAC t1) = 1 + size(t1).
– size([a]t1) = 1 + size(t1)

Although the nominal AC-matching algorithm is based on the first-order
AC-unification algorithm ([7]), the proof of termination was much easier for
nominal AC-matching than for first-order AC-unification. Instead of the intricate
lexicographic measure used in [7] (which came from the work of [17]), it was

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/ac_step.pvs#L33-L38
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L154-L156
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L48-L59

Nominal AC-Matching 11

possible to prove that for the particular case of matching (unlike unification)
all the new moderated variables introduced by solveAC are instantiated by
instantiateStep.

Hence, the lexicographic measure used has as its first component the number
of variables in the equational constraints P and as a second component the
multiset order of the size of each equation t ≈? s ∈ P . Although PVS does not
directly implement multiset orders, this part can be emulated easily by analysing
the maximum size n of all equations t ≈? s in P and the number of equations
t ≈? s in P with maximal size (in this order). The algorithm selects an equation
with maximal size to simplify (the heuristic selection is enforced by the function
chooseEq).

4.3 Soundness

As mentioned, to match terms t and s we first call the Algorithm 1 with pa-
rameters Γ = ∅, P = {t ≈? s}, σ = id, V = Vars(t, s) and X = Vars(s).
However, since the parameters of ACMatch change after recursive calls, the
proof of soundness (Corollary 1) cannot be done directly by induction, and we
must instead prove first the Theorem 1 with generic parameters Γ , P , σ, V and
X . Once the Theorem 1 is proved, it is also immediate to adapt the algorithm
to solve nominal AC-equality checking and to prove its soundness (Corollary 2).

Theorem 1 (Soundness for Nice Inputs �). Let the pair (Γ1, σ1) an out-
put of ACMatch(Γ, P, σ, V,X) and suppose that (Γ, P, σ, V,X) is a nice in-
put. If (∆, δ) is a solution to (Γ1,nil, σ1,X,X) then (∆, δ) is a solution to
(Γ, P, σ,X,X).

Corollary 1 (Soundness for AC-Matching �). Let the pair (Γ1, σ1) an
output of ACMatch(∅, {t ≈? s}, id,Vars(t, s),Vars(s)). If (∆, δ) is an instance
of (Γ1, σ1) that does not instantiate the variables in s, then (∆, δ) is a solution
to (∅, {t ≈? s}, id,X,Vars(s)).

Corollary 2 (Soundness for AC-Equality Checking �). Let (Γ1, σ1) be
an output of ACMatch(∅, {t ≈? s}, id,Vars(t, s),Vars(t, s)). If (∆, δ) is an
instance of (Γ1, σ1) that does not instantiate the variables in t or s, then (∆, δ)
is a solution to (∅, {t ≈? s}, id,X,Vars(t, s)).

Remark 5. An interpretation of Corollary 1 is that if (∆, δ) is an AC-matching
instance to one of the outputs of ACMatch, then (∆, δ) is an AC-matching so-
lution to the original problem. Corollary 2 has a similar interpretation, replacing
AC-matching with AC-equality checking.

4.4 Completeness

Completeness of Algorithm 1 is given by the Corollary 3 and similarly to the
soundness proof, it is derived easily after proving the Theorem 2.

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L24-L29
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L32-L36
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L38-L42

12 M. Ayala-Rincón et al.

Theorem 2 (Completeness for Nice Inputs �). Let (Γ, P, σ, V,X) be a
nice input. Suppose that (∆, δ) is a solution to (Γ, P, σ,X,X), that δ ⊆ V and
that Vars(∆) ⊆ V . Then, there exists (Γ1, σ1) ∈ ACMatch(Γ, P, σ, V,X) such
that (∆, δ) is an instance (restricted to the variables of V) of (Γ1, σ1) that does
not instantiate the variables in X .

Corollary 3 (Completeness for AC-Matching �). Suppose that (∆, δ) is
a solution to (∅, {t ≈? s}, id,X,Vars(s)), that δ ⊆ V and that Vars(∆) ⊆ V .
Then, there exists (Γ1, σ1) ∈ ACMatch(∅, {t ≈? s}, id, V,Vars(s)) such that
(∆, δ) is an instance (restricted to the variables of V) of (Γ1, σ1) that does not
instantiate the variables of s.

Corollary 4 (Completeness for AC-equality Checking �). Suppose (∆, δ)
is a solution to (∅, {t ≈? s}, id,X,Vars(t, s)) satisfying δ ⊆ V and Vars(∆) ⊆ V .
Then, there exists (Γ1, σ1) ∈ ACMatch(∅, {t ≈? s}, id, V,Vars(t, s)) such that
(∆, δ) is an instance (restricted to the variables of V) of (Γ1, σ1) that does not
instantiate the variables of t or s.

Remark 6. An interpretation of Corollary 3 is that if (∆, δ) is an AC-matching
solution to the initial problem, then (∆, δ) is an AC-matching instance of one
of the outputs of ACMatch. Corollary 4 has a similar interpretation, replacing
AC-matching with AC-equality checking.

As was the case for first-order AC-unification (see [7]), the hypothesis δ ⊆ V
in the proof of completeness is merely a technicality that was put in order to
guarantee the new variables introduced by the algorithm in the AC-part do not
clash with the variables in dom(δ) or in the terms in im(δ). This mechanism
could be replaced by a different one that assures that the variables introduced
by the AC-part of ACMatch are indeed new. When going from the first-order
setting to the nominal setting, we go from having a unifier δ to a pair (∆, δ) and
hence we must add the hypothesis Vars(∆) ⊆ V .

Remark 7 (High-level description of how to remove hypotheses δ ⊆ V and
Vars(∆) ⊆ V). The critical step to prove a variant of Corollary 3 with V =
Vars(t, s) and without the hypothesis δ ⊆ V and Vars(∆) ⊆ V is to prove that
the outputs computed when we call ACMatch with input (Γ, P, σ, V,X) “differ
only by the name of the new variables” from the outputs computed when we call
ACMatch with input (Γ, P, σ, V ′,X). However, this cannot be proved directly
by induction because if V and V ′ differ and ACMatch enters in the AC-part,
the new variables introduced for each input may “differ only by a renaming”
and once we instantiate those variables, it may happen that the substitutions
computed so far (the third component in the input quintuple) will also “differ
only by the name of the new variables”. Similar to what was done in first-order
AC-unification, the solution is to prove the more general statement that if the
inputs (Γ, P, σ, V,X) and (Γ, P, σ′, V ′,X ′) “differ only by the name of the new
variables”, then the output of ACMatch with the first input “differ only by
the name of the new variables” from the output of ACMatch with the second
input.

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L45-L52
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L54-L61
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L63-L70

Nominal AC-Matching 13

5 Towards a Nominal AC-Unification Algorithm

Stickel’s AC-unification algorithm relies on solving Diophantine equations where
new variables are used to represent arguments of AC operators. Using the same
approach to solve nominal AC-unification problems leads to non-termination in
cases where the same variable occurs as an argument of an AC operator multiple
times with different suspended permutations.

As an example, suppose that we are working under an empty context (i.e. Γ =
∅) and want to solve the equational constraint f(X,W) ≈? f(π ·X,π · Y), with
X = ∅. Additionally, assume that we apply Stickel’s AC-unification algorithm
to this equational constraints and let Z1,W1, Y1, X1 be the name of the new
variables introduced (we choose these names deliberately to make the loop in
nominal AC-unification clearer). Then, 7 branches (more details in the extended
version) are generated and one of them is:

{X ≈? Y1 +X1,W ≈? Z1 +W1, π ·X ≈? W1 +X1, π · Y ≈? Z1 + Y1}

After instantiating the variables we obtain

σ = {X 7→ f(Y1, X1), W 7→ f(Z1,W1), Y 7→ f(π−1 · Z1, π
−1 · Y1)}

and one equational constraint remain: f(X1,W1) ≈? f(π ·X1, π ·Y1). Notice that
our final problem is essentially a renaming of our initial problem:

f(X,W) ≈? f(π ·X,π · Y)

f(X1,W1) ≈? f(π ·X1, π · Y1)

This problem does not arise in first-order AC-unification because, in the
corresponding first-order problem, we would not have two different permutations
(id and π in this case) suspended on the same variable (X in this case). Instead,
we would have the same variable X as an argument to both terms and eliminate
it. Finally, this problem also does not arise in nominal AC-matching because X
would be a protected variable. Hence, we would not compute the substitution
σ = {X 7→ f(Y1, X1),W 7→ W1, Y 7→ π−1 · Y1}, we would instead discard
this branch. In future work, we will consider the alternative approach to AC-
unification proposed by Boudet, Contejean and Devie [10,8], which was used
to define AC higher-order pattern unification [9]. To our knowledge, this AC
unification approach has not been formalised yet. However, it has the advantage
of generating simpler Diophantine systems, which could simplify the task of
nominal AC-unification.

6 Conclusion and Future Work

We propose the first (to the best of our knowledge) nominal AC-matching al-
gorithm, together with proofs of its termination, soundness and completeness.
All proofs were formalised in the proof assistant PVS. As a byproduct, we also

14 M. Ayala-Rincón et al.

obtained a formalised nominal AC-equality checking algorithm. Nominal AC-
matching has applications for nominal AC-rewriting, being the first step towards
a nominal AC-unification algorithm.

Our formalisation extends the formalisation of first-order AC-unification by
Ayala-Rincón et al. [7] to nominal terms and uses the functions that deal with
freshness constraints from [6], extending them to deal with AC-function sym-
bols. Furthermore, by adding a parameter X for protected variables, it enables
both AC-matching and AC-equality checking, according to whether X is the set
of variables in the right-hand side of the problem or the set of variables in the
problem. The .pvs files have a combined size of 290 KB and contain the speci-
fication of functions and the statements of the theorems. The .prf files contain
the proofs of the theorems and have a combined size of 22 MB.

Future work will explore ways to define a nominal AC-unification algorithm,
avoiding the loop described in Section 5. We will consider alternative AC-unifi-
cation algorithms as a starting point [10,9] and explore the connection between
higher-order pattern unification and nominal unification (e.g., [13,23]).

A nominal AC-unification algorithm would have applications in logic pro-
gramming languages that employ the nominal paradigm, such as α-Prolog. A
second possible future work path is to use this formalisation to formalise a more
efficient nominal AC-matching algorithm. Finally, a third future work path would
be formalising matching/unification algorithms for different equational theories
and a fourth path would be investigating if/how nominal unification algorithms
can be used for term indexing.

Acknowledgments. Partially supported by the Austrian Science Fund (FWF)
Project P 35530, Brazilian FAP-DF Project DE 00193.00001175/2021-11, Brazil-
ian CNPq Project Universal 409003/2021-2, and Georgian Rustaveli National
Science Foundation Project FR-21-16725. First author was partially funded by
a CNPq productivity research grant 313290/2021-0.

References

1. Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Nantes-Sobrinho,
D.: Nominal C-Unification. In: Logic-Based Program Synthesis and Transforma-
tion - 27th International Symposium, LOPSTR, Revised Selected Papers. LNCS,
vol. 10855, pp. 235–251. Springer (2017). https://doi.org/10.1007/978-3-319-94460-
9_14

2. Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Nantes-Sobrinho, D.:
On Solving Nominal Fixpoint Equations. In: Frontiers of Combining Systems -
11th International Symposium, FroCoS. LNCS, vol. 10483, pp. 209–226. Springer
(2017). https://doi.org/10.1007/978-3-319-66167-4_12

3. Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Nantes-Sobrinho,
D., Oliveira, A.C.R.: A formalisation of nominal α-equivalence with A,
C, and AC function symbols. Theor. Comput. Sci. 781, 3–23 (2019).
https://doi.org/10.1016/j.tcs.2019.02.020

https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1016/j.tcs.2019.02.020

Nominal AC-Matching 15

4. Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Silva, G.F.,
Nantes-Sobrinho, D.: Formalising Nominal C-Unification Generalised with
Protected Variables. Math. Struct. Comput. Sci. 31(3), 286–311 (2021).
https://doi.org/10.1017/S0960129521000050

5. Ayala-Rincón, M., Fernández, M., Nantes-Sobrinho, D.: On Nominal Syntax
and Permutation Fixed Points. Log. Methods Comput. Sci. 16(1) (2020).
https://doi.org/10.23638/LMCS-16(1:19)2020

6. Ayala-Rincón, M., Fernández, M., Oliveira, A.C.R.: Completeness in PVS of a
Nominal Unification Algorithm. In: Proc. of the 10th Workshop on Logical and
Semantic Frameworks, with Applications, LSFA. ENTCS, vol. 323, pp. 57–74. El-
sevier (2015). https://doi.org/10.1016/j.entcs.2016.06.005

7. Ayala-Rincón, M., Fernández, M., Silva, G.F., Sobrinho, D.N.: A Certi-
fied Algorithm for AC-Unification. In: 7th International Conference on For-
mal Structures for Computation and Deduction, FSCD. LIPIcs, vol. 228,
pp. 8:1–8:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.FSCD.2022.8

8. Boudet, A.: Competing for the AC-Unification Race. J. of Autom. Reasoning 11(2),
185–212 (1993). https://doi.org/10.1007/BF00881905

9. Boudet, A., Contejean, E.: AC-Unification of Higher-Order Patterns. In:
Third International Conference on Principles and Practice of Constraint
Programming CP97. LNCS, vol. 1330, pp. 267–281. Springer (1997).
https://doi.org/10.1007/BFb0017445

10. Boudet, A., Contejean, E., Devie, H.: A New AC Unification Algorithm with an Al-
gorithm for Solving Systems of Diophantine Equations. In: Proc. of the 5th Annual
Symposium on Logic in Computer Science, LICS. pp. 289–299. IEEE Computer
Society (1990). https://doi.org/10.1109/LICS.1990.113755

11. Calvès, C.F., Fernández, M.: Matching and Alpha-Equivalence Check for Nom-
inal Terms. J. of Computer and System Sciences 76(5), 283–301 (2010).
https://doi.org/http://dx.doi.org/10.1016/j.jcss.2009.10.003

12. Calvès, C., Fernández, M.: A polynomial nominal unification algorithm. Theor.
Comput. Sci. 403(2-3), 285–306 (2008). https://doi.org/10.1016/j.tcs.2008.05.012

13. Cheney, J.: Relating nominal and higher-order pattern unification. In: Proc. of the
19th international workshop on Unification, UNIF. pp. 104–119 (2005)

14. Clausen, M., Fortenbacher, A.: Efficient Solution of Linear Diophantine Equations.
J. of Sym. Computation 8(1-2), 201–216 (1989). https://doi.org/10.1016/S0747-
7171(89)80025-2

15. Contejean, E.: A Certified AC Matching Algorithm. In: Proc. of the 15th In-
ternational Conference on Rewriting Techniques and Applications, RTA. LNCS,
vol. 3091, pp. 70–84. Springer (2004). https://doi.org/10.1007/978-3-540-25979-
4_5

16. Eker, S.: Associative-Commutative Rewriting on Large Terms. In: Proc. of the 14th
International Conference on Rewriting Techniques and Applications, RTA. LNCS,
vol. 2706, pp. 14–29. Springer (2003). https://doi.org/10.1007/3-540-44881-0_3

17. Fages, F.: Associative-Commutative Unification. In: 7th International Conference
on Automated Deduction CADE. LNCS, vol. 170, pp. 194–208. Springer (1984).
https://doi.org/10.1007/978-0-387-34768-4_12

18. Fages, F.: Associative-Commutative Unification. J. of Sym. Computation 3(3),
257–275 (1987). https://doi.org/10.1016/S0747-7171(87)80004-4

19. Fernández, M., Gabbay, M.J.: Nominal rewriting. Information and Computation
205(6), 917–965 (2007). https://doi.org/10.1016/j.ic.2006.12.002

https://doi.org/10.1017/S0960129521000050
https://doi.org/10.23638/LMCS-16(1:19)2020
https://doi.org/10.1016/j.entcs.2016.06.005
https://doi.org/10.4230/LIPIcs.FSCD.2022.8
https://doi.org/10.1007/BF00881905
https://doi.org/10.1007/BFb0017445
https://doi.org/10.1109/LICS.1990.113755
https://doi.org/http://dx.doi.org/10.1016/j.jcss.2009.10.003
https://doi.org/10.1016/j.tcs.2008.05.012
https://doi.org/10.1016/S0747-7171(89)80025-2
https://doi.org/10.1016/S0747-7171(89)80025-2
https://doi.org/10.1007/978-3-540-25979-4_5
https://doi.org/10.1007/978-3-540-25979-4_5
https://doi.org/10.1007/3-540-44881-0_3
https://doi.org/10.1007/978-0-387-34768-4_12
https://doi.org/10.1016/S0747-7171(87)80004-4
https://doi.org/10.1016/j.ic.2006.12.002

16 M. Ayala-Rincón et al.

20. Gabbay, M.J., Pitts, A.M.: A New Approach to Abstract Syntax with Vari-
able Binding. Formal Aspects of Computing 13(3), 341–363 (Jul 2002).
https://doi.org/10.1007/s001650200016

21. Kumar, R., Norrish, M.: (nominal) unification by recursive descent with trian-
gular substitutions. In: Interactive Theorem Proving, ITP 2010, Edinburgh, UK,
2010. Lecture Notes in Computer Science, vol. 6172, pp. 51–66. Springer (2010).
https://doi.org/10.1007/978-3-642-14052-5_6

22. Levy, J., Villaret, M.: An Efficient Nominal Unification Algorithm. In: Proc. of the
21st International Conference on Rewriting Techniques and Applications, RTA.
LIPIcs, vol. 6, pp. 209–226. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2010). https://doi.org/10.4230/LIPIcs.RTA.2010.209

23. Levy, J., Villaret, M.: Nominal Unification from a Higher-Order
Perspective. ACM Trans. Comput. Log. 13(2), 10:1–10:31 (2012).
https://doi.org/10.1145/2159531.2159532

24. Owre, S., Shankar, N.: The Formal Semantics of PVS. Tech. Rep. 97-2R, SRI
International Computer Science Laboratory, Menlo Park CA 94025 USA (1997,
revised 1999)

25. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press (2013)

26. Pottier, F.: An Overview of CαML. In: Benton, N., Leroy, X. (eds.)
Proc. of the ACM-SIGPLAN Workshop on ML, ML. Electronic Notes
in Theoretical Computer Science, vol. 148, pp. 27–52. Elsevier (2005).
https://doi.org/10.1016/j.entcs.2005.11.039

27. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M.: Nominal Unifica-
tion of Higher Order Expressions with Recursive Let. In: Logic-Based Pro-
gram Synthesis and Transformation - 26th International Symposium, LOPSTR,
Revised Selected Papers. LNCS, vol. 10184, pp. 328–344. Springer (2016).
https://doi.org/10.1007/978-3-319-63139-4_19

28. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M., Kutz, Y.D.K.: Nominal Uni-
fication and Matching of Higher Order Expressions with Recursive Let. Fundam.
Informaticae 185(3), 247–283 (2022). https://doi.org/10.3233/FI-222110

29. Shinwell, M.R., Pitts, A.M., Gabbay, M.: FreshML: programming with
binders made simple. In: Proc. of the 8th ACM SIGPLAN International
Conference on Functional Programming, ICFP. pp. 263–274. ACM (2003).
https://doi.org/10.1145/944705.944729

30. Stickel, M.E.: A Complete Unification Algorithm for Associative-Commutative
Functions. In: Advance Papers of the Fourth International Joint Conference on
Artificial Intelligence, IJCAI. pp. 71–76 (1975), http://ijcai.org/Proceedings/75/
Papers/011.pdf

31. Stickel, M.E.: A Unification Algorithm for Associative-Commutative Functions. J.
of the ACM 28(3), 423–434 (1981). https://doi.org/10.1145/322261.322262

32. Urban, C.: Nominal Techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–
356 (2008). https://doi.org/10.1007/s10817-008-9097-2

33. Urban, C.: Nominal Unification Revisited. In: Proc. of the 24th Interna-
tional Workshop on Unification, UNIF. EPTCS, vol. 42, pp. 1–11 (2010).
https://doi.org/10.4204/EPTCS.42.1

34. Urban, C., Pitts, A.M., Gabbay, M.: Nominal unification. Theor. Comput. Sci.
323(1-3), 473–497 (2004). https://doi.org/10.1016/j.tcs.2004.06.016

https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/978-3-642-14052-5_6
https://doi.org/10.4230/LIPIcs.RTA.2010.209
https://doi.org/10.1145/2159531.2159532
https://doi.org/10.1016/j.entcs.2005.11.039
https://doi.org/10.1007/978-3-319-63139-4_19
https://doi.org/10.3233/FI-222110
https://doi.org/10.1145/944705.944729
http://ijcai.org/Proceedings/75/Papers/011.pdf
http://ijcai.org/Proceedings/75/Papers/011.pdf
https://doi.org/10.1145/322261.322262
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.4204/EPTCS.42.1
https://doi.org/10.1016/j.tcs.2004.06.016

	Nominal AC-Matching

