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ABSTRACT
Existing research mostly improves the fairness of Machine Learn-
ing (ML) software regarding a single protected attribute at a time,
but this is unrealistic given that many users have multiple protected
attributes. This paper conducts an extensive study of fairness im-
provement regarding multiple protected attributes, covering 11
state-of-the-art fairness improvement methods. We analyze the
effectiveness of these methods with different datasets, metrics, and
ML models when considering multiple protected attributes. The re-
sults reveal that improving fairness for a single protected attribute
can largely decrease fairness regarding unconsidered protected at-
tributes. This decrease is observed in up to 88.3% of scenarios (57.5%
on average). More surprisingly, we find little difference in accuracy
loss when considering single and multiple protected attributes, in-
dicating that accuracy can be maintained in the multiple-attribute
paradigm. However, the effect on precision and recall when han-
dling multiple protected attributes is about five times and eight
times that of a single attribute. This has important implications
for future fairness research: reporting only accuracy as the ML
performance metric, which is currently common in the literature,
is inadequate.

CCS CONCEPTS
• Software and its engineering → Extra-functional proper-
ties; • Social and professional topics→ User characteristics; •
Computing methodologies→Machine learning.

KEYWORDS
Fairness improvement, machine learning, protected attributes, in-
tersectional fairness
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1 INTRODUCTION
Machine Learning (ML) software is being increasingly applied to
assist decision-making in social-critical scenarios. This has raised
surging concerns on the fairness of such software [52]. Indeed, ML
software frequently exhibits unfair behaviors related to protected
attributes such as sex [6, 8] and race [10, 49]. Unfair behaviors may
compromise the benefits of historically disadvantaged groups, and
lead to consequences for Software Engineering (SE) if and when the
software is found to contravene laws against discrimination [66].

Reducing software unfairness has become an ethical duty of
software researchers and engineers [23, 26]. The SE community is
endeavoring to address unfairness issues in ML software [23, 26].
In the SE domain, unfairness issues are also referred to as ‘fairness
bugs’ [25]. SE researchers have been extensively exploring various
techniques to fix fairness bugs and improve software fairness [16,
17, 23, 24, 35, 39, 40, 66].

In practice, software systems can have multiple protected at-
tributes that need to be considered simultaneously [26]. From the
humanities’ perspective, unfair software systems built into soci-
ety lead to systematic disadvantages along multiple intersecting
attributes, such as sex, race, age, disability status, and so on [33].
From the SE perspective, these protected attributes pose multiple
fairness requirements, some of which can be competing or conflict-
ing, raising issues of negotiation, mediation, and conflict resolution
for software engineers [32].

The intersection of these attributes creates different levels of priv-
ilege or disadvantage for various possible subgroups. For instance,
black women may be vulnerable to both sexism and racism [29]. To
cater for this, the literature measures intersectional fairness as the
maximum disparity between subgroups that combine membership
from different protected attributes [34, 68]. Intersectional fairness
has been encoded in legal regulations [2]. It clearly has implica-
tions for software researchers and engineers, who must consider
the fairness regarding multiple protected attributes simultaneously
as multiple non-functional software requirements.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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However, the current software fairness literature is lacking in
this critical aspect. Existing fairness improvement research mostly
focuses on singleton sets of protected attributes [16, 17, 24, 27, 35,
40, 50, 66]. Unfortunately, the implications of this prevalent prac-
tice remain unclear. We have yet to fully understand the potential
impact on desirable fairness properties concerning other protected
attributes when catering for fairness according to a single protected
attribute. Moreover, considering the legal and ethical fairness re-
quirements [2, 34, 59], there is an urgent demand to apply fairness
improvement methods to deal with multiple protected attributes.
Consequently, a comprehensive study on the effectiveness of these
methods in such situations becomes imperative.

Furthermore, there is an important interplay between fairness
and other functional SE requirements. Specifically, it is widely rec-
ognized that fairness improvement typically comes at the cost of ML
performance (e.g., accuracy), known as the fairness-performance
trade-off [15, 27, 28, 40, 63]. Based on the current literature, it re-
mains unclear how existing fairness improvement methods would
trade-off between fairness and performance when multiple pro-
tected attributes are considered.

To fill these gaps in the literature, we conduct an extensive study
of fairness improvement regarding multiple protected attributes,
with 11 state-of-the-art fairness improvement methods. We eval-
uate these methods on five widely-adopted datasets, which cover
financial, social, and medical application domains, with widely-
studied ML models, fairness metrics, and performance metrics. We
investigate the effect of these methods on the fairness regarding
unconsidered protected attributes. We also check the performance
decrease when multiple protected attributes are considered. We
analyze the effectiveness of these methods for intersectional fair-
ness improvement and fairness-performance trade-offs. If our study
reveals their effectiveness, no alternative approaches would be
needed; otherwise, one can build on our study’s results to seek
improvements in current methods or to devise novel methods that
could better tackle the problem at hand.

Our study reveals the following findings: 1) Existing methods
can largely decrease fairness regarding unconsidered protected at-
tributes. This decrease happens in up to 88.3% of scenarios (57.5%
on average), with a significantly large effect in up to 69.2% of sce-
narios (29.1% on average). 2) There is a similar decrease in accuracy
when considering single and multiple protected attributes, with
a 0.3% difference in decrease rate. However, precision and recall
are greatly affected, with the impact on precision and recall when
dealing with multiple protected attributes being about five times
and eight times that of a single attribute. 3) According to a state-of-
the-art benchmarking tool [40], existing methods outperform the
fairness-performance trade-off baseline constructed by the tool in
9.5%∼71.3% of cases (less than 50% on average) when dealing with
multiple protected attributes. These methods even decrease both
intersectional fairness and ML performance in 6.5%∼42.6% of cases
(18.6% on average).

Additionally, our results on the effectiveness of each studied
method in addressing intersectional fairness and fairness-performance
trade-offs offer references for software engineers when selecting
fairness improvement methods. Furthermore, these results can
serve as easy-to-access baselines for researchers to evaluate new
fairness improvement methods.

In summary, this paper makes the following contributions:

• A rigorous empirical study on the impact of fairness improvement
methods on fairness regarding unconsidered protected attributes.

• An extensive study of the effectiveness of state-of-the-art fair-
ness improvement methods in enhancing intersectional fairness
and achieving fairness-performance trade-offs when considering
multiple protected attributes.

• A publicly-available package [11], containing all scripts and data
in this study, to facilitate replication and extension.

2 PRELIMINARIES
We start with introducing the background knowledge of this study.

2.1 Protected Attributes and Fairness
Fairness has emerged as an important research topic in the SE
research community, with a particular focus on fairness of ML
software [67]. The ML software fairness literature primarily con-
centrates on ML classification that predicts class labels for individ-
uals based on their personal features [18, 23, 26, 27, 56, 66]. These
class labels can be categorized as favorable or unfavorable. For in-
stance, in the context of credit scoring, a good credit is considered
a favorable label, while a bad credit is deemed unfavorable.

During the classification, certain personal attributes need to be
protected against discrimination. These attributes are referred to as
protected attributes, also known as sensitive attributes. Common
protected attributes include sex, race, age, religion, disability status,
and national origin. In real-world applications, ML software often
needs to consider multiple protected attributes simultaneously.

Based on the value of a protected attribute, individuals can be di-
vided into a privileged group and an unprivileged group. In practice,
the privileged group tends to be associated with favorable labels,
while the unprivileged group is more likely to receive unfavorable
labels. For example, in credit scoring tasks, race is often consid-
ered a protected attribute [12]. Due to potential biases favoring the
white group in the credit scoring models, the white group may be
viewed as privileged, while the non-white group may be considered
unprivileged.

To address such biases, legal regulations and the fairness lit-
erature advocate for group fairness [52, 63], which requires ML
software to treat privileged and unprivileged groups equally. Math-
ematical metrics have been developed to measure group fairness.
We describe three metrics that have been widely adopted in the
software fairness literature [16, 17, 26, 27, 40]:

• SPD (Statistical Parity Difference) calculates the disparity in
favorable rates between the privileged and unprivileged groups.

• AOD (Average Odds Difference) captures the average discrep-
ancy in false-positive rates and true-positive rates between the
privileged and unprivileged groups.

• EOD (Equal Opportunity Difference) assesses the disparity in
true-positive rates between the privileged and unprivileged groups.

Let 𝐴 represent the protected attribute, with 1 denoting the
privileged group and 0 denoting the unprivileged group. Let 𝑌
denote the actual label and 𝑌 denote the predicted label, where 1 is
the favorable class and 0 is the unfavorable class. The calculation
methods of these fairness metrics are shown in Table 1.
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Table 1: Fairness metrics.

Metric Definition

SPD 𝑃 [𝑌 = 1 |𝐴 = 0] − 𝑃 [𝑌 = 1 |𝐴 = 1]

AOD
1
2 (𝑃 [𝑌 = 1 |𝐴 = 0, 𝑌 = 0] − 𝑃 [𝑌 = 1 |𝐴 = 1, 𝑌 = 0]
+𝑃 [𝑌 = 1 |𝐴 = 0, 𝑌 = 1] − 𝑃 [𝑌 = 1 |𝐴 = 1, 𝑌 = 1] )

EOD 𝑃 [𝑌 = 1 |𝐴 = 0, 𝑌 = 1] − 𝑃 [𝑌 = 1 |𝐴 = 1, 𝑌 = 1]

Table 2: Intersectional fairness metrics.

Metric Definition

SPD max
𝑠∈𝑆

𝑃 [𝑌 = 1 |𝐴 = 𝑠 ] − min
𝑠∈𝑆

𝑃 [𝑌 = 1 |𝐴 = 𝑠 ]

AOD
1
2 [max

𝑠∈𝑆
(𝑃 [𝑌 = 1 |𝐴 = 𝑠,𝑌 = 0] + 𝑃 [𝑌 = 1 |𝐴 = 𝑠,𝑌 = 1] )

−min
𝑠∈𝑆

(𝑃 [𝑌 = 1 |𝐴 = 𝑠,𝑌 = 0] + 𝑃 [𝑌 = 1 |𝐴 = 𝑠,𝑌 = 1] ) ]

EOD max
𝑠∈𝑆

𝑃 [𝑌 = 1 |𝐴 = 𝑠,𝑌 = 1] − min
𝑠∈𝑆

𝑃 [𝑌 = 1 |𝐴 = 𝑠,𝑌 = 1]

2.2 Intersectional Fairness
To consider multiple protected attributes and their intersectional-
ity, researchers divide a population into subgroups based on the
combination of different protected attributes [33, 34, 68]. The inter-
sectional fairness is measured as the maximum disparity between
any two subgroups [34, 68]. For instance, considering two protected
attributes Sex = {Male, Female} and Race = {White, Non-White}, the
subgroup set S = {(Male,White), (Male, Non-White), (Female,White),
(Female, Non-White)}. If the favorable rates for the four subgroups
are 50%, 40%, 30%, and 20%, SPD is calculated as 50% − 20% = 30%.

Specifically, in the context of intersectional fairness, SPD mea-
sures the maximum difference between subgroups in obtaining
favorable outcomes; AOD measures the maximum of the average
of differences in false-positive rates and true-positive rates between
subgroups; EOD measures the maximum difference between sub-
groups in true-positive rates.

Formally, we use 𝐴 to denote the protected attributes and define
𝑆 as the set of all possible combinations of the protected attributes.
Let 𝑠 be a subgroup, where 𝑠 ∈ 𝑆 . These intersectional fairness
metrics are calculated as shown in Table 2.

Compared to single-attribute fairness, intersectional fairness
can capture unfairness amplified in subgroups that combine mem-
bership from different unprivileged groups [34], especially if such
subgroups are particularly underrepresented in historical platforms
of opportunity, e.g., the (Female, Non-White) subgroup in the afore-
mentioned example.

3 EXPERIMENTAL SETUP
In this section, we describe our research questions and experimental
settings for the study.

3.1 Research Questions
RQ1: How do existing fairness improvement methods affect the fair-
ness regarding unconsidered protected attributes? This RQ investi-
gates the negative side effect of single-attribute fairness improve-
ment by studying its impact on fairness regarding the unconsidered
protected attributes.
RQ2: What intersectional fairness do existing fairness improvement
methods achieve when considering multiple protected attributes? This
RQ evaluates the effectiveness of state-of-the-art fairness improve-
ment methods in improving intersectional fairness.
RQ3:What fairness-performance trade-off do existing fairness im-
provement methods achieve when considering multiple protected at-
tributes? This RQ explores whether fairness improvement for multi-
ple protected attributes can bring more decrease in ML performance
and how state-of-the-art methods make the trade-off between in-
tersectional fairness and ML performance.
RQ4: How well do existing fairness improvement methods apply to
different decision tasks, ML models, and fairness and performance
metrics, when dealing with multiple protected attributes? This RQ
enriches the empirical knowledge of RQ2 and RQ3, and explores
whether existing methods are widely applicable.

3.2 Datasets and Models
We use five real-world datasets for study: Adult [1], Compas [4],
Default [5], Mep15 [3], and Mep16 [7]. A description of each
dataset is presented in Table 3. These datasets have been widely
adopted in the fairness literature [23, 26, 27, 56, 68]. They encompass
tasks that involve individuals’ personal information across diverse
fairness-critical domains, such as finance, social, and medical. In
line with previous fairness research [23, 26, 27, 56, 68], we select
the two protected attributes provided by each dataset for our study.

For each dataset, we train four ML models, including Logistic
Regression (LR), Support Vector Machine (SVM), Random Forest
(RF), and DeepNeural Network (DNN), which have been extensively
adopted in fairness literature [16, 23, 26, 40, 66, 68–70]. LR, SVM, and
RF use default configurations from relevant studies [26, 27, 40, 66],
while the DNN employs a fully-connected architecture with five
hidden layers, containing 64, 32, 16, 8, and 4 units, respectively,
which has been widely used in previous fairness research involving
similar datasets [68–70].

3.3 Fairness Improvement Methods
We employ 11 state-of-the-art fairness improvement methods for
study, covering pre-processing, in-processing, and post-processing
methods. Pre-processing methods focus on reducing bias in training
data to achieve a fairer model; in-processing methods optimize
training algorithms to enhance fairness; post-processing methods
modify ML model predictions to ensure fair outcomes [27, 38].

First, we use eight state-of-the-art methods proposed in the ML
literature [68].
Pre-processing methods:
• RW (Reweighting) [41] employs differential weighting of train-
ing data for each combination of groups and labels to achieve
fairness.

• DIR (Disparate Impact Remover) [31] adjusts feature values to en-
hance fairness while preserving the rank-ordering within groups.
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Table 3: Datasets.

Name #Samples #Features Protected
attributes

Favorable label
(Proportion) Task

Adult 48,843 7 sex, race income > 50k (23.9%) Predicting if a person’s income is greater than $50k
Compas 7,214 7 sex, race no recidivism (54.9%) Predicting if a criminal defendant will re-offend
Default 30,000 23 sex, age default (22.1%) Predicting if a customer will default on payment
Mep15 15,830 42 sex, race utilizer (17.2%) Predicting healthcare utilization of a person
Mep16 15,675 42 sex, race utilizer (16.8%) Predicting healthcare utilization of a person

In-processing methods:
• META (Meta Fair Classifier) [22] employs a meta-algorithm to
optimize fairness regarding protected attributes.

• ADV (Adversarial Debiasing) [65] uses adversarial techniques
to minimize the presence of protected attributes in predictions,
while concurrently maximizing prediction accuracy.

• PR (Prejudice Remover) [45] incorporates discrimination-aware
regularization to mitigate the influence of protected attributes.

Post-processing methods:
• EOP (Equalized Odds Processing) [37] uses linear programming
to calculate probabilities for adjusting output labels, aiming to
optimize equalized odds concerning protected attributes.

• CEO (Calibrated Equalized Odds) [57] optimizes the probabilities
of modifying output labels based on calibrated classifier score
outputs, with the objective of achieving equalized odds.

• ROC (Reject Option Classification) [43] assigns favorable out-
comes to unprivileged instances and unfavorable outcomes to
privileged instances near the decision boundary, particularly
when there is high uncertainty.
Second, we use three state-of-the-art methods proposed in the

SE literature, including Fair-SMOTE [23], MAAT [26], and Fair-
Mask [56].
• Fair-SMOTE [23] generates synthetic samples to achieve bal-
anced distributions not only between different labels but also
among various protected attributes within the training data. Ad-
ditionally, it removes ambiguous samples from the training set.

• MAAT [26] combines individual models optimized for ML per-
formance and fairness concerning each protected attribute, re-
spectively. It ensures that both fairness and ML performance
objectives are met.

• FairMask [56] trains extrapolation models to predict protected
attributes based on other data features. Subsequently, it uses
these extrapolation models to modify the protected attributes in
test data, enabling fairer predictions.
We apply each fairness improvement method to the original

models obtained in Section 3.2. We repeat each experiment 20 times.
Each time we randomize the dataset by shuffling it and then divide
it into 70% training data and 30% test data.

When conducting fairness improvement for multiple protected
attributes, we simultaneously consider these attributes instead of
applying a fairness improvement method independently for each
attribute. It is because individually applying the method for each
protected attribute cannot maintain fairness for previous consid-
ered attributes while also guaranteeing fairness for subsequently
considered attributes. For example, let us consider a dataset with

two protected attributes, and only one attribute is considered for
fairness improvement at a time. Pre-processing methods may not
preserve the optimized characteristics for the first considered pro-
tected attribute when optimizing data characteristics for the second
attribute. For instance, if we use the RW method to assign differ-
ent weights based on the second attribute, it can undermine its
intended weights for the first attribute. In the case of in-processing
methods, training models for one protected attribute results in
models specific to that attribute. Therefore, in-processing methods
can disregard fairness considerations for the first attribute, when
optimizing for the second attribute. Additionally, concerning post-
processing methods, modifying the output to optimize fairness for
the second protected attribute may not ensure the preservation of
fairness for the first attribute.

3.4 Measurement Metrics
We employ three fairness metrics and five ML performance metrics,
resulting in a total of 15 fairness-performance measurements for
study, as detailed in the following.

3.4.1 Fairness metrics. We use three fairness metrics introduced in
Section 2, including SPD, AOD, and EOD, which have been widely
adopted in the fairness literature [16, 17, 26, 27, 40].We calculate the
fairness metric values for individual attributes and intersectional
fairness, as listed in Tables 1 and 2. We use absolute values for all
fairness metrics, whereby these metrics indicate the highest fairness
when they equal 0, and larger values indicate greater unfairness.

3.4.2 Performance metrics. We follow previous work [26, 27] to
use a comprehensive set of five common ML performance met-
rics for study: accuracy, precision, recall, F1-score, andMCC
(Matthews Correlation Coefficient). We provide the formal defini-
tions of these metrics in Table 4, where TP, TN, FP, and FN denote
the number of true positives, true negatives, false positives, and
false negatives, respectively. For precision, recall, and F1-score, we
report the macro-average values, as done in previous research [26],
to enable comparisons of overall performance on the favorable and
unfavorable classes. To achieve this, we average the precision, re-
call, and F1-score results obtained for the two classes. For each of
the five metrics, a higher value indicates better ML performance.

3.4.3 Fairness-performance trade-off measurement. To assess the
fairness-performance trade-off, we rely on Fairea [40], a state-of-
the-art benchmarking tool that offers a unified trade-off baseline
for comparing various fairness improvement methods.
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Table 4: ML performance metrics.

Metric Definition

Accuracy (𝑇𝑃 +𝑇𝑁 )/(𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁 )
Precision 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 )
Recall 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 )
F1-score 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 )
MCC (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁 )/

√︁
(𝑇𝑃 + 𝐹𝑃 ) (𝑇𝑃 + 𝐹𝑁 ) (𝑇𝑁 + 𝐹𝑃 ) (𝑇𝑁 + 𝐹𝑁 )

Fairea visualizes fairness and performance values using a two-
dimensional coordinate system and establishes the trade-off base-
line by connecting fairness-performance points of the original ML
model and a set of mutated models. The mutated models are gen-
erated by gradually transforming the original model into models
that produce only the majority class in the dataset. Throughout this
process, fairness improves as the predictive performance becomes
equally worse for privileged and unprivileged groups. Fairea uses
these naive mutated models to establish the trade-off baseline, as
it expects that fairness improvement methods should outperform
them.

Fairea classifies the trade-off effectiveness of fairness improve-
mentmethods into five levels by comparing the fairness-performance
trade-off achieved by these methods with the established baseline:
• The win-win trade-off level includes methods that increase both
fairness and performance.

• The good trade-off level includes methods that increase fairness,
decrease performance, and achieve a better trade-off than the
baseline generated by Fairea.

• The poor trade-off level includes methods that increase fairness,
decrease performance, and achieve a worse trade-off than the
baseline.

• The inverted trade-off level includes methods that decrease fair-
ness but increase performance.

• The lose-lose trade-off level includes methods that decrease both
fairness and performance.
Different from the original paper of Fairea [40] that focuses on

single-attribute tasks, our study extends the scope to multi-attribute
tasks. We conduct a comprehensive evaluation by considering 15
fairness-performance measurements (i.e., the combination of three
fairness metrics and five ML performance metrics).

For each combination of (dataset, ML model, fairness-performance
measurement), we establish a trade-off baseline. To achieve this,
we first train the original model and then generate the mutated
models based on it. The process is repeated 20 times. Following
the recommendation of Fairea [40], we determine the baseline by
averaging the results of these multiple runs.

3.5 Statistical Analysis
We use three statistical analysis methods in this study: Mann Whit-
ney U-test [51], Cliff’s 𝛿 [47], and Spearman’s correlation coefficient
𝜌 [55]. Since these methods do not assume normality of the data,
they are suitable for our study, where we deal with diverse data
that may not follow a normal distribution.

In RQ1 and RQ2, we use the Mann Whitney U-test [51] to as-
sess whether fairness improvement methods significantly impact
fairness. To establish statistical significance, we follow previous
work [26, 27] to consider a 𝑝-value lower than 0.05. Specifically,

when comparing two sets of fairness values using the test, we con-
clude that the two sets have statistically different fairness if the
𝑝-value of the test is lower than 0.05. Furthermore, to measure the
effect size of the impact, we adopt the Cliff’s 𝛿 [47], a commonly-
used metric in the SE literature [14, 47, 62]. Consistent with the
literature [14, 47, 62], we consider a change with an absolute value
of 𝛿 greater than or equal to 0.428 as indicative of a large effect.
Additionally, in RQ1, we use the Spearman’s correlation coefficient
𝜌 [55] to explore potential factors correlated with the impact on
unconsidered protected attributes. The coefficient 𝜌 ranges from -1
to 1, with 1 representing a perfect positive correlation, 0 indicating
no correlation, and -1 representing a perfect negative correlation.
A correlation is considered statistically significant only when the
coefficient yields a 𝑝-value lower than 0.05 [27].

4 RESULTS
This section answers our RQs based on the experimental results.
Due to the page limit, we primarily report statistical results in the
paper and include the results of each fairness improvement method
for each scenario in our repository [11].

4.1 RQ1: Impact on Unconsidered Protected
Attributes

This RQ investigates how fairness improvement methods affect the
fairness regarding unconsidered protected attributes when target-
ing a single protected attribute. Each dataset-protected attribute
pair, as shown in Table 3, represents a single-attribute fairness im-
provement task. For instance, in the case of the Adult dataset, we
have two tasks: Adult-Sex and Adult-Race. We apply existing meth-
ods to improve fairness for one task and then examine the influence
on the fairness of the other task. Each application is repeated 20
times using four MLmodels and three fairness metrics (more details
in Section 3). We treat each combination of (task, ML model, fairness
metric) as a scenario and calculate the proportions of scenarios
where existing methods reduce fairness regarding unconsidered
protected attributes, based on the average value obtained from the
20 repeated runs.

Table 5 shows the results. The methods that we study decrease
fairness regarding unconsidered protected attributes in up to 88.3%
of the total scenarios (with an average of 57.5% across different
methods). We further analyze the significance and effect size of the
decrease by using Mann Whitney U-test and Cliff’s 𝛿 , and find that
such decrease has a significantly large effect in up to 69.2% of the
scenarios (29.1% on average).

We take the three methods highlighted in Table 5 as examples to
illustrate why they cause a large fairness decrease for unconsidered
protected attributes. Fair-SMOTE aims to balance data for one pro-
tected attribute, which can lead to more severe data imbalance for
other protected attributes, resulting in reduced fairness for those
attributes. ROC targets predictions with high uncertainty and tends
to assign favorable outcomes to the unprivileged members and
unfavorable outcomes to the privileged. For example, if sex is the
considered protected attribute and race is the unconsidered one,
predictions for (Male, Non-White) and (Female, White) members
tend to be uncertain because the two subgroups have both privi-
leged and unprivileged properties. Therefore, improving fairness for
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Table 5: (RQ1) Proportions of scenarios where existing meth-
ods reduce fairness regarding unconsidered protected at-
tributes (the second column) and also have a significantly
large effect (the third column). Significantly large reductions
are highlighted in bold. The top three values in each column
are shaded. The results indicate that existing methods de-
crease fairness regarding unconsidered protected attributes
in up to 88.3% of scenarios (57.5% on average across different
methods), with a significantly large effect observed in up to
69.2% of scenarios (29.1% on average).

Method ↓ unconsidered
fairness

Significantly
large effect

RW 49.1% 2.5%
DIR 54.2% 1.7%
META 81.7% 69.2%
ADV 64.2% 40.0%
PR 70.8% 45.0%
EOP 22.5% 3.3%
CEO 37.5% 4.2%
ROC 85.0% 68.3%
Fair-SMOTE 88.3% 63.3%
MAAT 29.2% 4.2%
FairMask 50.0% 18.3%

Average 57.5% 29.1%

sex can lead to more unfavorable outcomes for (Male, Non-White)
and more favorable outcomes for (Female, White), causing further
unfairness regarding race. META aims to improve fairness for the
protected attribute during training, but this objective may conflict
with fairness for other unconsidered protected attributes, resulting
in reduced fairness for these attributes.

To gain further insight into the fairness reduction, we explore
its potential reasons from the perspective of datasets. If the pro-
tected attributes in a dataset consistently have the same values
(i.e., perfectly positively correlated), improving fairness for one
protected attribute would be equivalent to doing so for the others.
Drawing inspiration from this observation, we hypothesize that as
the correlation between the considered and unconsidered protected
attributes becomes more positive, fairness improvement methods
will have a lesser adverse impact on the fairness concerning the
unconsidered attributes.

To test this hypothesis, we assign 1 to denote the privileged
group and 0 for the unprivileged group for each protected attribute.
For each task, we calculate Spearman’s correlation coefficient 𝜌 to
quantify the correlation between the considered and unconsidered
protected attributes. Additionally, we determine the proportions of
scenarios where existing methods reduce the fairness regarding the
unconsidered attributes. Then, we measure the correlation between
these proportions and the correlation of protected attributes.

Table 6 presents the results. Based on the results, we confirm
our hypothesis with a correlation coefficient of 𝜌 = −0.640 at a
significance level of 0.05 (𝑝-value < 0.05). We illustrate this nega-
tive correlation further using the Default dataset as an example.
This dataset exhibits the most negative correlation (𝜌 = −0.069,
𝑝-value < 0.05) among all the datasets. Meanwhile, on this dataset,

Table 6: (RQ1) Correlation between considered and unconsid-
ered protected attributes (second column) and proportions
of scenarios where existing methods reduce fairness for un-
considered protected attributes (third column). * indicates a
significant correlation with 𝑝-value < 0.05. We find that the
more positive the correlation between the considered and
unconsidered protected attributes, the less existing meth-
ods reduce fairness regarding the unconsidered protected
attributes.

Task Correlation between
protected attributes

↓ unconsidered
fairness

Adult-Sex 0.101* 44.7%
Adult-Race 0.101* 56.8%
Compas-Sex 0.068* 40.9%
Compas-Race 0.068* 33.3%
Default-Sex -0.069* 84.1%
Default-Age -0.069* 76.5%
Mep15-Sex -0.015 74.2%
Mep15-Race -0.015 64.4%
Mep16-Sex -0.016* 48.5%
Mep16-Race -0.016* 51.5%

Correlation between the last two columns -0.640*

existing methods reduce fairness regarding unconsidered protected
attributes in the highest proportion of scenarios.

Finding 1: The fairness improvement methods that we study
can lead to decreased fairness regarding unconsidered protected
attributes to a large extent. Specifically, the decrease occurs in
up to 88.3% of scenarios (on average 57.5%), with a significantly
large effect in up to 69.2% of scenarios (on average 29.1%). Our
correlation analysis suggests that the more positive the cor-
relation between the considered and unconsidered protected
attributes, the less existing methods reduce fairness regarding
the unconsidered protected attributes.

4.2 RQ2: Intersectional Fairness Improvement
This RQ aims to evaluate the effectiveness of existing methods
in improving intersectional fairness when dealing with multiple
protected attributes. To this end, we use five datasets from Table 3,
along with four ML models and three fairness metrics for each
dataset. We consider each (dataset, model, fairness metric) combina-
tion as a scenario and calculate the proportions of scenarios where
existing methods improve intersectional fairness based on the av-
erage results of 20 repeated runs. We also report the proportions of
scenarios where the improvement has a significantly large effect
by using Mann Whitney U-test and Cliff’s 𝛿 .

Table 7 presents the results. The 11 methods studied improve in-
tersectional fairness in a wide range of scenarios, ranging from 6.7%
to 98.3%. In particular, MAAT, FairMask, and RW exhibit the most
consistent improvements, achieving this in 98.3%, 93.3%, and 90.0%
of scenarios, respectively. Furthermore, these three methods sig-
nificantly improve intersectional fairness with a large effect in the
most scenarios, accounting for 71.7%, 68.3%, and 68.3%, respectively.
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Table 7: (RQ2) Proportions of scenarios where existing meth-
ods improve intersectional fairness (the second column) and
also have a significantly large effect (the third column). The
proportions of scenarios where such improvement has a sig-
nificantly large effect are highlighted in bold. The top three
values in each column are shaded. MAAT, FairMask, and RW
improve intersectional fairness in the most scenarios.

Method ↑ intersectional
fairness

Significantly
large effect

RW 90.0% 68.3%
DIR 68.3% 43.3%
META 28.3% 16.7%
ADV 36.7% 31.7%
PR 75.0% 53.3%
EOP 85.0% 51.7%
CEO 61.7% 43.3%
ROC 6.7% 0.0%
Fair-SMOTE 56.7% 38.3%
MAAT 98.3% 71.7%
FairMask 93.3% 68.3%

The superiority of these methods can be attributed to their ability
to mitigate data bias, preventing its amplification during training
or decision-making. However, a common limitation of them is the
need for access of training data. In situations where obtaining such
access is infeasible, (e.g., due to privacy concerns), practitioners
may prefer using post-processing methods that modify prediction
outcomes to ensure fairness without requiring access to training
data. Among the post-processing methods studied, EOP stands out,
improving intersectional fairness in the most scenarios (85.0%),
with a significantly large effect in 51.7% of cases.

We further measure the effectiveness of existing methods by
calculating the absolute and relative changes in fairness metric
values. Table 8 presents the results averaged over the five datasets
and four models under study. Methods that lower fairness met-
ric values to the largest extent contribute the most to improving
intersectional fairness, as smaller fairness metric values indicate
reduced unfairness. Notably, MAAT and FairMask, two state-of-the-
art methods from the SE literature, demonstrate a general advantage
in enhancing intersectional fairness across various fairness met-
rics. Specifically, they improve AOD fairness by 32.4% and 34.9%,
respectively. Additionally, RW, PR, and EOP also yield favorable
results in specific fairness metrics. Among the highlighted methods,
EOP, as a post-processing method, is the only one that does not
require access to training data. This makes EOP a suitable choice
for scenarios where obtaining such access is infeasible.

Finding 2: The fairness improvement methods that we study
improve intersectional fairness in 6.7%∼98.3% of the scenarios.
Notably, MAAT, FairMask, and RW achieve this goal in themost
scenarios, accounting for 98.3%, 93.3%, and 90.0%, respectively;
the improvement has a significantly large effect in 71.7%, 68.3%,
and 68.3% of scenarios. For applications where obtaining access
to training data is impossible (e.g., due to privacy concerns),

Table 8: (RQ2) Absolute and relative changes (in parenthe-
ses) in intersectional fairness achieved by existing methods.
The top three values in each column are highlighted. MAAT
and FairMask demonstrate superiority in improving inter-
sectional fairness across different fairness metrics.

Method SPD AOD EOD

RW -0.030 (-20.0%) -0.036 (-25.7%) -0.040 (-22.8%)
DIR -0.026 (-14.6%) -0.024 (-7.6%) -0.032 (-3.0%)
META 0.192 (236.4%) 0.139 (202.4%) 0.048 (66.0%)
ADV -0.004 (-3.7%) 0.032 (48.6%) 0.046 (57.5%)
PR -0.056 (-41.7%) -0.031 (-13.1%) -0.046 (-6.9%)
EOP -0.038 (-20.6%) -0.035 (-20.5%) -0.037 (-17.2%)
CEO -0.006 (-9.5%) -0.003 (-8.4%) -0.022 (-10.0%)
ROC 0.104 (80.2%) 0.085 (64.6%) 0.069 (39.8%)
Fair-SMOTE -0.004 (15.2%) -0.028 (-4.7%) -0.038 (-14.9%)
MAAT -0.041 (-29.3%) -0.042 (-32.4%) -0.054 (-29.2%)
FairMask -0.034 (-22.2%) -0.050 (-34.9%) -0.067 (-32.0%)

EOP can be a better option, which improves intersectional
fairness in 85.0% of scenarios, with a significantly large effect
in 51.7% of scenarios.

4.3 RQ3: Fairness-performance Trade-off
This RQ aims to evaluate the fairness-performance trade-off achieved
by existingmethodswhen dealingwithmultiple protected attributes.
We investigate this RQ by answering two sub-questions.

4.3.1 RQ3.1: Does the application of existing methods to improve
fairness for multiple protected attributes lead to significantly greater
performance reduction compared to improving fairness for a single
attribute? It is well known that fairness improvement often comes
at the expense of ML performance [15, 27, 28, 40, 63]. Intuitively,
improving fairness for multiple protected attributes might result in
a more substantial performance decrease than doing so for a single
attribute. To explore this, we calculate the absolute and relative
changes in the five performance metrics that we analyze when em-
ploying existing fairness improvement methods for one or multiple
protected attributes. These changes are then averaged over the five
datasets and four models used in our study.

Table 9 presents the results. Different from intuition, we observe
a similar accuracy decrease when considering single and multiple
protected attributes. Specifically, when considering two protected
attributes, accuracy is further decreased by 0.3% (-2.1% vs. -2.4%)
with an absolute change of 0.002 (-0.018 vs. -0.020), compared to
considering a single protected attribute. This indicates that accuracy
can be reasonably maintained in the multiple-attribute paradigm.

In contrast, precision and recall are greatly affected. The impact
on precision and recall when dealing with two protected attributes
is about five times (-2.3% vs. -11.3%) and eight times (1.3% vs. 11.0%)
that of dealingwith a single one. In particular, among all fivemetrics,
only recall shows an overall improvement when multiple protected
attributes are considered. This improvement can be attributed to
existing methods enhancing the predictive power of ML models for
underrepresented groups, resulting in improved recall across the
population. However, since precision and recall often conflict with
each other [19], the increase in recall may lead to a decrease in pre-
cision. Consequently, using the F1-score to compute the harmonic
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Table 9: (RQ3.1) Absolute and relative changes (in parentheses) in ML performance when existing methods improve fairness
for single or multiple protected attributes. On average, the accuracy decrease is similar when considering single or multiple
protected attributes, with only a 0.3% difference in decrease rate. However, precision and recall show significant variations
between the two scenarios.

Method Accuracy Precision Recall F1-score MCC
single-attr multi-attr single-attr multi-attr single-attr multi-attr single-attr multi-attr single-attr multi-attr

RW -0.001 (-0.2%) -0.001 (-0.2%) 0.001 (0.2%) -0.087 (-11.4%) -0.003 (-0.4%) 0.088 (13.7%) -0.002 (-0.3%) 0.002 (0.2%) -0.003 (-0.5%) 0.001 (0.2%)
DIR -0.004 (-0.5%) -0.008 (-0.9%) -0.002 (-0.3%) -0.107 (-14.1%) -0.010 (-1.5%) 0.081 (12.6%) -0.013 (-2.0%) -0.024 (-3.6%) -0.018 (-4.8%) -0.036 (-9.5%)
META -0.063 (-7.4%) -0.079 (-9.4%) -0.064 (-8.3%) -0.039 (-5.0%) 0.056 (8.8%) 0.009 (1.6%) 0.000 (0.3%) -0.011 (-1.4%) 0.001 (1.8%) -0.020 (-3.8%)
ADV 0.002 (0.3%) 0.000 (0.0%) 0.005 (0.7%) -0.091 (-11.9%) 0.005 (0.9%) 0.092 (14.4%) 0.007 (1.3%) 0.000 (0.3%) 0.010 (3.9%) 0.001 (1.8%)
PR -0.003 (-0.4%) -0.014 (-1.6%) 0.012 (1.7%) -0.147 (-19.2%) -0.021 (-3.2%) 0.122 (18.7%) -0.023 (-3.4%) -0.074 (-10.4%) -0.023 (-5.2%) -0.085 (-18.5%)
EOP -0.013 (-1.7%) -0.012 (-1.6%) -0.018 (-2.4%) -0.103 (-13.6%) -0.018 (-2.7%) 0.072 (11.3%) -0.020 (-2.8%) -0.015 (-2.1%) -0.037 (-9.1%) -0.030 (-7.1%)
CEO -0.010 (-1.3%) -0.005 (-0.6%) -0.008 (-1.0%) -0.103 (-13.5%) -0.027 (-4.0%) 0.081 (12.7%) -0.033 (-4.6%) -0.016 (-2.2%) -0.045 (-10.5%) -0.023 (-5.1%)
ROC -0.056 (-6.7%) -0.051 (-6.1%) -0.069 (-9.0%) -0.032 (-4.2%) 0.060 (9.4%) 0.023 (3.8%) 0.007 (1.3%) 0.010 (1.7%) 0.004 (1.9%) 0.004 (2.0%)
Fair-SMOTE -0.044 (-5.4%) -0.044 (-5.4%) -0.061 (-7.9%) -0.042 (-5.6%) 0.051 (7.9%) 0.028 (4.5%) 0.011 (1.8%) 0.009 (1.5%) 0.001 (0.5%) -0.004 (-0.5%)
MAAT 0.000 (-0.1%) -0.003 (-0.4%) 0.009 (1.2%) -0.109 (-14.3%) -0.009 (-1.3%) 0.095 (14.7%) -0.007 (-1.0%) -0.021 (-2.9%) -0.005 (-0.9%) -0.023 (-5.4%)
FairMask -0.001 (-0.2%) -0.003 (-0.4%) 0.000 (0.0%) -0.090 (-11.9%) 0.001 (0.1%) 0.085 (13.3%) 0.001 (0.2%) -0.002 (-0.2%) 0.000 (0.4%) -0.005 (-0.9%)

Average -0.018 (-2.1%) -0.020 (-2.4%) -0.018 (-2.3%) -0.086 (-11.3%) 0.008 (1.3%) 0.071 (11.0%) -0.007 (-0.8%) -0.013 (-1.7%) -0.011 (-2.0%) -0.020 (-4.3%)

mean of precision and recall provides a more balanced measure [36]
. In terms of F1-score, the performance decrease is twice as much (-
0.8% vs. -1.7%) when considering two protected attributes. A similar
decrease pattern is also observed for MCC.

The findings regarding performance decreases carry significant
implications for the use of performance metrics in fairness research.
As mentioned by previous studies [27], the majority of existing
fairness research [20–22, 31, 40–42, 44, 64, 66] relies solely on ac-
curacy as the performance metric. Our results demonstrate that
by exclusively focusing on accuracy, researchers may overlook the
significant impact on other performance metrics when dealing with
multiple protected attributes. In real-world applications, metrics
such as recall and precision are important [27, 53, 54]. Therefore,
solely relying on accuracy may not provide engineers with a com-
plete picture when selecting fairness improvement methods for
such applications.

Furthermore, we find that different methods can exhibit distinct
performance decrease patterns. For instance, we examine the accu-
racy decrease of two top-performing methods identified in RQ2 (i.e.,
FairMask and RW) when considering two protected attributes. Fair-
Mask, which improves fairness by modifying protected attribute
information, experiences a doubled accuracy decrease (-0.2% vs.
-0.4%) when dealing with two protected attributes. This is because
FairMask needs to obfuscate more information to achieve fairness,
resulting in a higher accuracy sacrifice. Compared to FairMask, RW
adjusts only the weights of samples in training without modifying
any attributes, avoiding introducing significant noise when dealing
with more protected attributes. This characteristic enables RW to
maintain a comparable accuracy when dealing with one or two
protected attributes (-0.2% vs. -0.2%).

Finding 3: Different from intuition, we observe a similar accu-
racy decrease when considering single and multiple protected
attributes (with a 0.3% difference in decrease rate), suggest-
ing that accuracy can be maintained in the multiple-attribute
paradigm. However, precision and recall are greatly affected,
showing an impact around five times and eight times greater,
respectively, when dealing with multiple protected attributes
compared to a single attribute. Therefore, considering only

Figure 1: (RQ3.2) Effectiveness level distributions of existing
methods in fairness-performance trade-off when dealing
with multiple protected attributes. FairMask, MAAT, and
RW achieve the best trade-off, with 71.3%, 69.9%, and 68.3% of
cases falling into the win-win or good trade-off, respectively.

change in accuracy (as most fairness studies do) cannot pro-
vide implications for real-world applications where precision
or recall is crucial.

4.3.2 RQ3.2: Which trade-off effectiveness levels do existing fairness
improvement methods fall into according to Fairea? In this RQ, we
use Fairea [40], a state-of-the-art benchmarking tool described in
Section 3.4.3, to evaluate the effectiveness of existing methods in
achieving the trade-off between intersectional fairness and ML
performance when dealing with multiple protected attributes. For
each of the five datasets, we use four ML models and 15 fairness-
performance measurements. We apply each fairness improvement
method to the 5 × 4 × 15 = 300 (dataset, model, measurement)
combinations. We repeat the experiments 20 times and treat each
single run as an individual case. As a result, we have 300×20 = 6, 000
cases for each method. We use Fairea to classify the trade-offs
achieved by each method in these cases into different effectiveness
levels, and then calculate the distribution of the effectiveness levels.

We illustrate the results in Figure 1 and present the methods in
descending order by the proportion of cases where each method
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beats the trade-off baseline constructed by Fairea (i.e., achieving
win-win or good trade-off). These methods surpass the trade-off
baseline in 9.5%∼71.3% of cases, with an average of less than 50% of
cases (46.9%). They also achieve a lose-lose trade-off (i.e., decrease
both intersectional fairness and performance) in 6.5%∼42.6% of
cases (18.6% on average).

Among the 11 methods under study, FairMask, MAAT, and RW
achieve the best trade-off effectiveness. They beat the trade-off
baseline constructed by Fairea in 71.3%, 69.9%, and 68.3% of the
evaluated cases, respectively. In particular, they improve both in-
tersectional fairness and performance (i.e., win-win trade-off) in
36.6%, 31.0%, and 40.4% of cases. Nevertheless, they still suffer from
a lose-lose trade-off (i.e., decreasing both intersectional fairness
and ML performance) in 6.5%, 6.6%, and 8.8% of cases.

Finding 4: The state-of-the-art fairness improvement methods
that we study beat the fairness-performance trade-off baseline
constructed by Fairea in 9.5%∼71.3% of cases (less than 50%
on average) when dealing with multiple protected attributes.
They also lead to a decrease of both intersectional fairness and
performance in 6.5%∼42.6% of cases (18.6% on average). Among
these methods, FairMask, MAAT, and RW are the most effective,
surpassing the trade-off baseline in 71.3%, 69.9%, and 68.3% of
the evaluated cases, respectively.

4.4 RQ4: Applicability
This RQ aims to explore whether existing fairness improvement
methods are widely applicable to different datasets, models, and
fairness-performance measurements. Specifically, we analyze the
effectiveness of these methods in improving intersectional fairness
and achieving the trade-off between intersectional fairness and
performance. For the effectiveness in fairness improvement, we
calculate the proportions of scenarios where existing methods im-
prove intersectional fairness for each dataset, model, and fairness
measurement, respectively. For example, for each dataset, we have
4 × 3 = 12 (model, fairness metric) combinations, and compute the
proportion of the 12 scenarios in which eachmethod improves inter-
sectional fairness. For the effectiveness in the fairness-performance
trade-off, we use the proportion of cases that surpass the trade-off
baseline constructed by Fairea as the indicator [26], and calculate
the proportions achieved by each method for each dataset, model,
and fairness-performance measurement.

We find that for each dataset, model, and measurement, at least
one of the top three methods identified in RQ2 and RQ3 (i.e., RW,
MAAT, and FairMask) can achieve the best intersectional fairness
improvement and the best fairness-performance trade-off. Due to
the page limit, we show only the results of these three methods
in Figure 2, and the results for all methods can be found in our
repository [11].

As shown in Figure 2(a), for each dataset and each model, at
least one of the methods RW, MAAT, and FairMask can improve
intersectional fairness in 100% of scenarios. However, regarding the
fairness measurements, all three methods cannot do so for AOD. It
is reasonable since the AOD fairness is more complex and difficult to
satisfy than SPD and EOD, as demonstrated in previous work [27].

Figure 2(b) reveals that these methods tend to achieve worse
fairness-performance trade-offs on imbalanced datasets compared
to balanced datasets. Specifically, from Table 3, we find that the ma-
jority class in the Adult, Compas, Default, Mep1, and Mep2 datasets
accounts for 76.1%, 54.9%, 77.9%, 82.8%, and 83.2%, respectively.
Among these datasets, Compas, being the most balanced, exhibits
the best fairness-performance trade-off results. This observation is
expected since the classification on balanced datasets is generally
considered easier than on imbalanced ones [58], making it relatively
easier for existing methods to retain performance while improving
fairness on such datasets. Our findings indicate that achieving a
good trade-off between fairness and precision is more challenging
for existing methods compared to the trade-off between fairness
and other performance metrics. This observation aligns with the re-
sults from RQ3.1, where existing fairness improvement methods are
shown to cause the most significant decrease in precision among
all the performance metrics.

Finding 5: It is challenging for fairness improvement methods
to achieve good fairness-performance trade-offs for imbalanced
datasets and applications where precision matters when deal-
ing with multiple protected attributes. RW, MAAT, and Fair-
Mask achieve the best intersectional fairness improvement and
fairness-performance trade-off results for each dataset, model,
and measurement that we study.

5 IMPLICATIONS
Implications for software engineers: 1) There is a substantial
risk of inadvertently exacerbating unfairness for unconsidered pro-
tected attributes and violating anti-discrimination laws when soft-
ware engineers focus on certain protected attributes. This is due
to the presence of a noteworthy trade-off between fairness across
different protected attributes observed in our study. If the trade-off
comes simply because the data is skewed thus creating ‘artificial
contention’ between protected attributes, it can be corrected by
software engineers, as a type of fairness bug. Otherwise, if it is
inherent to the problem that there is a trade-off between the fair-
ness regarding different protected attributes, the competing fairness
requirements raise issues of negotiation, mediation, and conflict
resolution for engineers. 2) We have compared 11 state-of-the-art
fairness improvement methods when dealing with multiple pro-
tected attributes based on several different metrics. The results
offer valuable insights and references for software engineers when
they select fairness improvement methods that address multiple
protected attributes in line with their specific objectives, thereby
mitigating legal risks associated with software discrimination. For
example, the results of RQ2 reveal that when faced with limited
access to training data, the EOP method emerges as a viable choice
for improving intersectional fairness. Conversely, MAAT can be a
suitable option while having access to training data.
Implications for policy makers: Despite many laws and regula-
tions seeking to protect multiple attributes simultaneously [2, 34],
our findings reveal that fairness objectives for protected attributes
such as sex and race may compete with each other. As a result,
expecting software systems to perfectly satisfy these competing
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Figure 2: (RQ4) Effectiveness in intersectional fairness improvement and fairness-performance trade-off of the best three
methods identified in this study (i.e., RW, MAAT, and FairMask) across various datasets, models, and measurements. We
observe that it is challenging for these methods to achieve a good fairness-performance trade-off for imbalanced datasets and
precision-critical applications.

fairness objectives under a single law or regulation can be unrealis-
tic. To achieve a balanced approach towards fairness in software
systems, policy makers and legislative bodies should carefully con-
sider these competing fairness considerations when formulating
laws and regulations.
Implications for researchers: 1) There is a potential risk as-
sociated with the common research practice of focusing on one
protected attribute at a time, as fairness improvement methods
can significantly impact fairness regarding unconsidered protected
attributes (RQ1). This emphasizes the importance of considering
multiple protected attributes, not only in real-world applications,
but also as a crucial objective in research. Researchers should be
mindful of the potential consequences of neglecting the impact on
unconsidered protected attributes and strive to broaden the scope
of their investigations to encompass multiple dimensions of fair-
ness. 2)Considering the well-known fairness-performance trade-off
and the trade-off between fairness regarding different protected
attributes observed in our study (RQ1), researchers have the op-
portunity to develop multi-objective optimization techniques that
address both these trade-offs simultaneously. 3) Researchers can pri-
oritize proposing post-processing fairness improvement techniques
for tackling multiple protected attributes. This focus is driven by
the finding that RW, MAAT, and FairMask are the most effective

methods for enhancing intersectional fairness (RQ2), but they all
require access to training data, posing challenges in real-world
fairness-related applications due to concerns about releasing sen-
sitive personal information. In contrast, EOP, the top-performing
post-processing method that does not require such access, achieves
intersectional fairness improvement in 18.3% fewer scenarios (RQ2).
4) Researchers should include precision and recall in their eval-
uations when dealing with multiple protected attributes, moving
beyond sole reliance on accuracy, as commonly observed in existing
fairness research [20–22, 31, 40–42, 44, 64, 66]. It is because fairness
improvements can have a significant impact on precision and recall
when consideringmultiple protected attributes (RQ3). Precision and
Recall’s wide adoption in real-world applications further empha-
sizes the importance [27, 53, 54]. 5) Researchers can design novel
methods specifically tailored to optimize the fairness-performance
trade-off for imbalanced datasets and precision-critical applica-
tions, because existing methods may not suffice under such circum-
stances (RQ4). This is important especially considering that these
circumstances are common in the real-world applications [46, 48].

6 THREATS TO VALIDITY
Datasets: Due to the lack of public availability of datasets across all
domains with fairness issues, we use five widely-adopted datasets
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that cover common domains frequently explored in the fairness lit-
erature. However, it is important to note that these widely-adopted
datasets can have potential limitations [30], whichmay affect the va-
lidity of our findings. In addition, regarding protected attributes, we
consider only sex, race, and age, which are the most widely-studied
ones in the fairness literature [60]. In the future, one could replicate
this study with more datasets and more protected attributes.
MLmodels: To mitigate potential concerns regarding the selection
of ML models, we have carefully chosen representative models for
our study. Our selection includes both traditionalMLmodels such as
LR, RF, and SVM, as well as DNN. LR, RF, and SVM have been widely
adopted in decision-making scenarios of social significance where
fairness is a critical factor, as supported by existing research [26]
and a recent official report from the UK government [9]. Moreover,
DNN is increasingly adopted in the fairness literature due to their
expanding applications in decision-making contexts [27, 61, 68, 70].
Fairness improvement methods: In recent years, the signifi-
cance of fairness has gained considerable attention, resulting in
an increasing number of fairness improvement methods. Given
the extensive range of methods available, it is challenging to in-
corporate all of them in our study. To address this limitation, we
choose 11 representative methods that have been recognized as
state-of-the-art in the literature [23, 26, 56, 68]. While we have
considered a wide range of fairness improvement methods that can
be applied to different phases of the machine learning pipeline, we
acknowledge that, in practice, they are not always applicable, given
the constraints of the data sources and the application domain.
Evaluationmetrics: Fairnessmetrics have been increasingly emerg-
ing in the literature. It is impractical to incorporate all of these
metrics in our study. To address this limitation, we have followed
previous studies [26] to use three fairness metrics that have gained
significant adoption in the literature. Similarly, for performance
evaluation, we have used the most widely-adopted metrics for ML
classification [26]. We have employed a comprehensive set of 15
fairness-performance measurements, which is the most extensive
range used in the literature.

7 RELATEDWORK
Researchers have made significant efforts to address unfairness
issues in ML software by proposing various fairness improvement
methods. For instance, IBM has launched the AIF360 toolkit that
integrates cutting-edge fairness improvement methods [13], such
as Reweighting [41], Prejudice Remover [45], and Equalized Odds
Processing [37]. These methods can be categorized into pre-, in-,
and post-processing methods, which respectively optimize train-
ing data, the learning process, and decision outputs to improve
fairness [27]. While a plethora of fairness improvement methods
have been proposed, the majority of them primarily concentrate on
addressing individual protected attributes, as emphasized in recent
work [23, 26, 34, 56].

With the increasing number of fairness improvement methods,
previous studies have aimed to empirically evaluate and compare
existing methods. For instance, Biswas and Rajan [16] assessed
seven fairness improvement methods using ML models gathered
from a crowd-sourced platform, analyzing the resulting fairness out-
comes and their impact on performance. Hort et al. [40] introduced

Fairea, a benchmarking tool that provides a unified baseline for
evaluating the fairness-performance trade-off obtained by different
methods. Chen et al. [27] used Fairea to conduct a comprehensive
empirical study of state-of-the-art fairness improvement methods.
However, all these evaluations are limited to tasks involving a single
protected attribute at a time.

Recent SE studies have presented methods capable of handling
multiple protected attributes simultaneously [23, 26, 56]. However,
the systematic comparison of these methods remains understudied.
Specifically, when evaluating their method for dealing with mul-
tiple protected attributes, Chakraborty et al. [23] did not employ
any method for comparison; Chen et al. [26] and Peng et al. [56]
compared the proposed methods with only the one proposed by
Chakraborty et al. [23]. Additionally, the effectiveness of these
methods in improving intersectional fairness was not evaluated
in previous work. Recently, Zhang and Sun [68] adapted fairness
improvement methods previously proposed in the ML community
so that they can handle multiple protected attributes. However,
they did not compare these methods with the recent ones proposed
by the SE community [23, 26, 56], and they used SPD as the only
group fairness metric and accuracy as the only performance metric
for evaluation. In this paper, we systematically study the effective-
ness of 11 state-of-the-art fairness improvement methods (covering
methods from both ML and SE communities) in improving inter-
sectional fairness with multiple widely-adopted fairness metrics.
We also investigate the fairness-performance trade-off achieved by
these methods in the context of multiple protected attributes using
15 fairness-performance measurements.

8 CONCLUSION
This paper presents an extensive study of fairness improvement
with multiple protected attributes. We systematically study 11 state-
of-the-art fairness improvement methods from the literature, on
widely-adopted benchmark datasets, ML models, performance met-
rics, and fairness metrics. We uncover the potential trade-off be-
tween fairness regarding different protected attributes and find
that the correlation between the attributes can be a possible reason.
We also explore the influence on performance when improving
fairness for multiple protected attributes. Moreover, we benchmark
existing methods and compare their effectiveness in improving
intersectional fairness and achieving the trade-off between inter-
sectional fairness and performance. The results provide actionable
implications for researchers, software engineers, and policy makers.

9 DATA AVAILABILITY
We have made the code and data used in this paper publicly acces-
sible [11].
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