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ABSTRACT 
 

Grasslands are one of the most extensive biomes on Earth, are integral to global 

biogeochemical cycling, and are directly depended upon by human societies for food and fuel. 

Important functions of grassland ecosystems include carbon storage, biomass production and 

nutrient cycling, which are driven by closely interlinked grassland plant and soil communities. 

Measuring and monitoring these communities across large spatial extents is vital in order to 

understand and predict the impacts of climate and land-use changes which affect grasslands 

currently and are forecast into the future. However, current field-based methods are intensive 

and time-consuming to carry out, and therefore limited in their spatial and temporal coverage. 

Remote sensing technologies including imagery from airborne and satellite platforms have 

transformed capabilities to measure the biosphere at large scales. However, grassland 

ecosystems are under-represented in remote sensing research, and the application of remote 

sensing to belowground ecosystem functions remains relatively unexplored. The aim of this 

thesis is to investigate how remote sensing data can be used to retrieve important information 

about the above- and belowground portions of grassland ecosystems, across large spatial 

extents. This aim is achieved by pairing in-situ soil and plant community data from large-scale 

ecological monitoring networks with hyperspectral and multispectral imagery from airborne 

and satellite platforms, to answer three specific research objectives. 1) to predict variation in 

soil microbial communities from airborne hyperspectral imagery, 2) to retrieve community-

level plant functional traits from multispectral satellite data and 3) to predict ecosystem 

multifunctionality using long-term (decadal) timeseries of satellite-derived vegetation indices. 

All objectives are addressed using observations from varied natural grassland communities 

distributed at continental and global scales. The results of the three research chapters 

demonstrate that soil microbial communities, in particular microbial community structure, 

can be retrieved with high accuracy (up to R2 0.68, NRMSE 9%) from hyperspectral sensing. 

Satellite multispectral data was able to retrieve variation in 13 out of 20 foliar traits, in some 

cases with comparable accuracy to recent hyperspectral mapping (up to R2 0.76, NRMSE 12%). 

The ability of satellite systems to facilitate a multitemporal perspective on the ecosystem was 

valuable for predicting ecosystem multifunctionality, where past vegetation dynamics and 

stability have important legacy effects on contemporary functioning. Overall, the thesis shows 

that remote sensing technologies have the potential to contribute to understanding of above- 

and belowground grassland functions by capturing ecological properties of the vegetation 

surface which are not able to be measured in the field, and by expanding the spatial and 

temporal scales across which relationships can be found. Remote sensing should be 

incorporated into the design of future large-scale ecological monitoring efforts, with a view to 

understanding and preserving grassland ecosystem functions for the future.  
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1. Introduction 

1.1 Background 

Grasslands are some of the most extensive and exploited ecosystems worldwide, 

integral to the subsistence of human societies, and under a plethora of climate and land-use 

pressures which act across continental and global spatial scales (Reinermann et al., 2020). In 

order to monitor and predict changes taking place in grasslands, understanding of both the 

above- and belowground portions of grassland ecosystems is necessary, because plant and soil 

communities together drive vital grassland functions. The study of aboveground-belowground 

links and feedbacks has become a major research theme in ecology (Bardgett, 2018), but is 

limited in scale by practical constraints of field sampling. Remote sensing is able to gather 

information about the surface of vegetation communities rapidly and in a spatially continuous 

manner across global scales, and so has great potential to contribute to grassland research.  

Evidence from grasslands worldwide has shown that grassland soil communities, 

belowground and aboveground functions and whole-ecosystem multifunctionality can be 

predicted from plant community attributes which are measurable above ground including 

plant functional traits, productivity, diversity and phenology (de Vries, Manning, et al., 2012; 

Delgado-Baquerizo et al., 2018). There have been efforts to retrieve these vegetation properties 

from remote sensing data at a range of spatial scales and in different ecosystems worldwide; 

for example, productivity is routinely retrieved from remote sensing using vegetation indices 

(Pettorelli et al., 2005), whereas plant functional traits and diversity are more recent avenues 

of research interest, with promising early results (Cavender-Bares et al., 2020a). For the 

purpose of linking remote retrieval of vegetation properties to aboveground-belowground 

ecology, several key research gaps remain. 

First, research explicitly linking remote sensing of the vegetation surface to 

belowground communities has been sparse. Though remote sensing data has been used in 

models of soil physical and chemical properties, such as soil carbon stocks (S. Liu et al., 2019; 

Wilson et al., 2017), there is increasing recognition that the dynamic populations of bacteria 

and fungi in soils are both key drivers of ecosystem functions at global scales and closely 

connected to plant communities at the surface (Bardgett & Van Der Putten, 2014). Recent 

work has demonstrated remarkably strong relationships between canopy imaging 

spectroscopy and the size, structure and functions of soil microbial communities in forest 

ecosystems (Madritch et al., 2014; Sousa et al., 2021), but it is not known to what extent these 

links may be found in grasslands. 
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Second, the use of multispectral satellite data to retrieve grassland functional traits. 

Grassland remote sensing to date has focused on the use of extremely detailed hyperspectral 

data, which has been used to retrieve grassland foliar traits at local to continental scales with 

success (Cavender-Bares et al., 2022; Van Cleemput et al., 2018; Z. Wang et al., 2019). 

Multispectral satellite data is of much coarser spectral and often spatial resolution, but has 

global spatial coverage and so has the most potential for assessing grassland functioning at 

global scales. Recent work has successfully retrieved foliar functional traits from multispectral 

Sentinel-2 data across tropical forest ecosystems (Aguirre-Gutiérrez et al., 2021), 

demonstrating that such data may also have potential in grasslands.  

A key opportunity presented by the use of multispectral satellite data is its regular 

availability over long time periods, up to decades (Wulder et al., 2022). Relationships between 

plants, soils and reflectance are dynamic on multiple interacting timescales (Bardgett et al., 

2005), for example throughout the course of a single growing season (R. Wang, Gamon, 

Montgomery, et al., 2016), up to the decades it takes to build up soil carbon pools (Millard & 

Singh, 2010). Multitemporal, multispectral timeseries of reflectance have been used to retrieve 

plant phenology (Dronova & Taddeo, 2022), and to improve remote assessments of 

community diversity in grasslands (Rossi et al., 2021), and therefore have great potential to 

contribute to the study of belowground ecosystems.  

Third, remote sensing of grasslands has most often taken place across landscape scales 

and in the context of grassland management, with much less work taking place in diverse 

natural grasslands across broad ecoclimatic gradients. Globally, grassland ecosystems are 

extremely diverse in terms of their productivity, levels of vegetation density and coverage, and 

also in their relative composition of herbaceous and woody plant lifeforms, particularly 

marginal grasslands which are at the forefront of environmental change (Ratnam et al., 2011; 

Veldman et al., 2015). All of these factors can affect both modes of aboveground-belowground 

functioning (Grigulis et al., 2013) and the relationship between land surface spectral 

reflectance and ecological properties (Hacker et al., 2022), and so are likely to impact the 

ability of remote sensing to retrieve ecological functions (Cavender-Bares et al., 2022). 

Ecological studies have revealed relationships such as productivity-multifunctionality, and 

covariation of certain plant traits, to be generalisable across ecosystems worldwide (Borer et 

al., 2014; I. J. Wright et al., 2004), and it is important to identify the extent to which remote 

sensing is also able to identify patterns which are generalisable across global scales. 
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1.2 Thesis aims and objectives 

The aim of this thesis is to investigate how remote sensing can be used to 

characterise aboveground and belowground functions of grasslands across large 

spatial extents.  

This aim is achieved through the following research objectives. 

1. To evaluate the extent to which soil microbial biomass, community structure and 

processes can be predicted from airborne imaging spectroscopy in grasslands and 

shrublands spanning broad ecoclimatic gradients. This builds on previous work which 

has demonstrated strong links between vegetation canopy spectroscopy and 

underlying soil microbial communities in forests (Madritch et al., 2014; Sousa et al., 

2021). 

2. To establish to what extent aboveground plant functional traits, including those which 

can represent soil communities and functions at the surface, can be retrieved in 

grasslands across large spatial extents from multispectral satellite data. This builds on 

previous work retrieving grassland foliar traits from airborne hyperspectral imagery 

(Z. Wang et al., 2019, 2020) and forest foliar traits from multispectral satellite imagery 

(Aguirre-Gutiérrez et al., 2021). 

3. To identify the relationships between above- and belowground ecosystem functions, 

plant diversity and phenology across diverse natural grasslands at the global scale, and 

investigate whether these links can be used to predict grassland ecosystem 

multifunctionality from multitemporal satellite data. This builds on previous work 

demonstrating that ecosystem multifunctionality is associated with aboveground plant 

diversity across global grasslands (Hautier et al., 2018) and that plant diversity and 

ecosystem multi-functioning are linked to longer growing seasons, faster rates of 

green-up (Zaret et al., 2022) and greater phenological stability in managed grasslands 

(Weber et al., 2018), wetlands (Dronova et al., 2022) and forests (Paruelo et al., 2016) from 

different parts of the world. 

 

1.3 Thesis structure 

The thesis is structured around three separate research chapters (Chapters 3-5), each 

of which primarily addresses one of the research objectives along with some more specific 

objectives and hypotheses. Overall, the research chapters in this thesis present empirical 
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models between remote sensing imagery and field observations of above- and belowground 

grassland properties. Field-measured properties used in this thesis are sourced from large-

scale ecological networks, the National Ecological Observatory Network (NEON) and the 

Nutrient Network (NutNet). Using secondary field data enabled the research to be completed 

without the planned fieldwork which was cancelled due to the COVID-19 pandemic, and 

enabled the scope of the work to be expanded to continental and global scales.  

Chapter 3 addressed the first research objective using coincident soil microbial properties, 

aboveground plant traits and airborne hyperspectral imagery sourced from NEON. Data from 

13 network field sites were used, representing grassland and shrubland ecosystems spanning 

a wide productivity gradient and distributed across North America. Random forest and partial 

least squares regression were used to predict variation in six soil properties representing the 

size, structure and functions of bacterial and fungal communities. The key outcomes of 

Chapter 3 are models of the soil microbial properties from field-measured plant traits, 

including variable importance scores identifying which plant traits are most closely linked to 

which soil properties (random forest), and models of soil microbial properties directly from 

canopy spectra (partial least squares regression). 

To address the second objective, aboveground plant trait measurements from NEON were 

matched with coincident Sentinel-2 satellite imagery (Chapter 4). Eleven grassland sites were 

selected from the NEON network, distributed across North America and representing a range 

of grassland types, from homogenous pasture landscapes to those with a mixed matrix of 

herbaceous and woody vegetation. Random forest regression models of 20 plant functional 

traits were created using Sentinel-2 satellite bands, vegetation indices derived thereof, and 

ancillary climate and location variables as predictors. Sub-questions addressed the effects of 

grassland vegetation composition on the success of modelling traits from spectra, and the 

effect of temporal offset between field and satellite data sampling on model accuracy. 

The third objective was addressed using ecosystem multifunctionality and species richness 

measured at 90 grassland sites distributed worldwide as part of the Nutrient Network, along 

with 30-year Landsat satellite timeseries (Chapter 6). The satellite timeseries were used to 

retrieve phenology metrics of the vegetation community at each site, including rate of growth 

and senescence, peak biomass, growing season length, and phenological stability over the 30-

year period. Relationships between satellite-derived phenological properties, individual 

ecosystem properties, multifunctionality and diversity were characterised using Pearson’s 

correlations, to explore whether ecosystem multifunctionality is detectable in the seasonal 

patterns of surface reflectance. To investigate the potential of satellite-derived phenology to 

predict ecosystem multifunctionality, phenological properties were used together along with 
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climate and location variables to predict ecosystem multifunctionality using random forest 

regression. 

Each research chapter contains a background, detailed methodology and discussion 

specific to the chapter. The thesis literature review (Chapter 2) gives more detail about 

previous work which is relevant to all three research chapters and the overall aim of the thesis. 

Finally, evidence from across the three research chapters is brought together in the discussion 

and conclusion sections (Chapters 6 and 7), which draw out common themes and place the 

chapter conclusions in the context of the overall thesis objectives. 
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2. Literature review 

2.1 The global importance of grassland ecosystem functioning 

Grasslands cover up to 40% of the Earth’s land surface, span a wide range of latitudes 

and support a multitude of natural and human systems (O’Mara, 2012; R. White et al., 2000). 

The ecosystem functions that take place in grasslands support services which are fundamental 

to human societies at local to global scales. Of these, three are considered to be crucial at the 

global scale. First, the production of aboveground biomass for food, fuel, fibre and supporting 

livestock (I. Ali et al., 2016; Reinermann et al., 2020; Svoray et al., 2013). Grasslands 

constitute 70% of the global agricultural area and so directly facilitate human subsistence 

(Reinermann et al., 2020). Second, the storage of carbon (C). Over 10% of the total biosphere 

C store is found in grasslands, and up to 98% of this is stored below ground in grassland soils 

(Eswaran et al., 1993; Jones & Donnelly, 2004). These C stocks are essential for maintaining 

the structure and quality of the soil, which enables grasslands to support plant life including 

crops, and are globally significant in terms of climate regulation (Bardgett, 2017; van der 

Putten et al., 2016). The third key function of grasslands is their role in the cycling of nutrients, 

particularly nitrogen (N) (Risch et al., 2019). When nutrient cycling is not maintained 

nutrients are leached from the system, resulting in decreased soil fertility and soil degradation, 

and causing ecological problems downstream if excessive levels of nutrients are introduced 

into natural ecosystems (de Vries, Bloem, et al., 2012; Wall et al., 2010). 

There are a multitude of biologically-driven processes that operate together above- and 

belowground to provide ecosystem functions and services in grasslands (Bardgett & Van Der 

Putten, 2014). Photosynthesis and nutrient uptake by the vegetation community convert 

atmospheric carbon and mineral nutrients into organic forms, constituting plant growth 

(primary productivity). These organic materials are then transferred to the soil, both as litter 

inputs and as exudates from roots. Here, the soil biological community decompose organic 

structures, returning carbon to the atmosphere through respiration, making nutrients 

available for plant uptake through mineralization, or alternatively transforming the materials 

into more stable forms which will be stored in the soil (carbon and nutrient cycling). The 

composition and diversity of the plant and soil communities determines the rates at which 

these processes take place, and thus the overall functioning of the ecosystem.  

While the dynamics of aboveground communities have been extensively studied in 

relation to ecosystem functions and services, the contribution of the belowground community 

has historically been overlooked. Recent work in ecology has sought to address this research 

gap (Delgado-Baquerizo et al., 2016; Guo et al., 2021; Legay et al., 2014; Pommier et al., 2018; 
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Van Der Heijden et al., 2008). However, as soil communities are under the ground and highly 

variable in time and space, assessment of their conditions and dynamics continues to present 

a challenge. Addressing this knowledge gap is a particularly urgent research priority given the 

multitude of pressures that are affecting grasslands worldwide. 

Grasslands are one of the most exploited biomes worldwide due to their close links 

with human societies, but have historically been overlooked in terms of conservation priorities 

(Nerlekar & Veldman, 2020; Veldman et al., 2015). More than two-thirds of grasslands 

worldwide have been converted into anthropogenic ecosystems (Ellis & Ramankutty, 2008; 

Foley et al., 2005). Changing management regimes including intensification or abandonment 

of agricultural land (I. Aneece & Epstein, 2015; Tardy et al., 2015; Weber et al., 2018), and 

conservation or restoration efforts to anthropogenically reverse these processes (Fry et al., 

2017; Tian et al., 2022) all have significant implications for aboveground and belowground 

grassland functioning. Grasslands are also dynamic ecosystems that can shift to forests or 

deserts with changing climatic conditions, and so are vulnerable to ongoing and predicted 

climate changes, such as rising temperatures and increased incidence and severity of drought, 

and associated indirect effects such as the range expansion of invasive species (Borer et al., 

2017; Brooks et al., 2006; Eisenhauer & Scheu, 2008; Schirpke et al., 2017). Because soil 

communities and plant communities both respond to these pressures, as well as influencing 

each other, there is potential for varied and complex feedback mechanisms to be triggered, 

leading to consequences which are difficult to predict and may be unexpected (Baxendale et 

al., 2014). To predict and monitor how pressures impact grassland ecosystems across short 

and long timescales, it is important to be able to retrieve above- and belowground functions 

accurately, rapidly, and across large spatial extents. 

2.2 The potential of remote sensing for large-scale monitoring of the biosphere 

There is a need to study grasslands across large spatial scales. Experiments at the plot 

or site scale are important for isolating effects and identifying mechanisms and processes that 

take place under certain conditions, but the findings may not be applicable to other sites and 

systems (Borer et al., 2014). In order to be able to predict ecosystem responses to pressures 

which act at regional or global spatial scales, such as climate changes, it is necessary to conduct 

ecological research across equivalent scales, incorporating a range of natural systems that are 

representative of the diversity of environments that are found in nature (Oehri et al., 2017; 

Reichstein et al., 2014). Only then can generally-applicable relationships be identified. In 

recognition of the need for joined-up, large-scale ecology are a number of continental and 

global ecological monitoring networks, such as the National Ecological Observatory Network 

(Kampe et al., 2010), and the Nutrient Network (Borer et al., 2014), and open databases such 
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as TRY (Gallagher et al., 2020; Kattge et al., 2011), which aim to collect or collate standardised 

reproducible datasets from a range of widely distributed ecosystems. These networks have 

provided valuable insights on the generality of key ecological relationships such as between 

productivity and diversity (Borer et al., 2017), response of ecosystems to widespread pressures 

such as nutrient additions (Leff et al., 2015), or covariation of plant functional properties 

worldwide (Díaz et al., 2016). 

However, despite the large and growing scope of these networks, substantial gaps 

remain in sampling of vegetation and soil communities worldwide. The time and effort 

required to thoroughly sample across time and space results in clustered data points, with a 

geographical bias towards more easily accessible regions while more remote regions of the 

globe are under-represented (Anderson, 2018; Jetz et al., 2016). Gaps can be filled by 

interpolating between data points using abiotic factors such as climate and geological 

properties (Griffiths et al., 2011, 2016), but such approaches are of coarse spatial and temporal 

resolution, and unable to capture the dynamic nature of vegetation communities (Díaz et al., 

2016; Moreno-Martínez et al., 2018). Remote sensing can generate data across large spatial 

extents and at spatial and temporal detail that is impossible to achieve using field-based 

measures; therefore there has been recent interest in the potential for remote sensing to be 

applied to global monitoring of the biosphere. 

Remote sensing data captured from drones, planes and satellites enables many of the 

practical limitations of field sampling to be overcome, and therefore expands the spatial and 

temporal extent and detail with which environmental data can be gathered. Remote sensing 

data is spatially continuous, viewing the Earth’s surface as a grid of pixels, which can range 

from millimetres to hundreds of metres in size. The spatially continuous nature of remotely 

sensed data makes it suitable for interpolating between point-based samples collected on the 

Earth’s surface. It also makes it easy to increase or decrease the spatial detail of data and thus 

integrate or compare perspectives of ecosystems across multiple spatial scales (Davidson & 

Csillag, 2001; Helfenstein et al., 2022; Rossi et al., 2022). Remote sensing data has extensive 

coverage of the Earth and is therefore able to gather data on remote regions with ease (Aguirre-

Gutiérrez et al., 2021), although data availability is constrained by other factors such as 

frequent cloud cover in tropical and polar regions. There is usually a trade-off between spatial 

extent or coverage and spatial and spectral detail when choosing remote sensing datasets. 

Spectroscopy or hyperspectral imagery captures large amounts of spectral detail which can be 

used to identify spectral absorption features associated with specific leaf chemicals, such as 

photosynthetic pigments (Gitelson et al., 2001, 2002; Ustin, Asner, et al., 2009), or phenolic 

compounds (Couture et al., 2016). Imaging spectroscopy has been used to capture plant 

functional traits and diversity in grasslands (Schweiger et al., 2018; Van Cleemput et al., 2018). 
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However, hyperspectral imaging systems are usually hosted on airborne platforms and used 

for plot and landscape-scale studies, and as such do not currently have the large-scale 

geographic coverage which is available from satellite remote sensing, although planned 

hyperspectral satellite missions are expected to change this in the near future (Pettorelli et al., 

2018a).  

 Multispectral sensors found on satellite platforms have reduced spectral detail relative 

to hyperspectral sensors but are able to cover the entire globe with frequent return periods of 

up to one day, facilitating global-scale and multi-temporal studies. Different satellite sensors 

have various benefits; for example the recent Sentinel-2 multispectral instruments feature 

narrow bands in the red edge spectral region, specifically for retrieving vegetation properties 

(Clevers & Gitelson, 2013; Delegido et al., 2011), and the Landsat missions have a data archive 

spanning over 30 years and so facilitate long-term studies (Günal et al., 2021; Vermote et al., 

2016; Wilson et al., 2017; Wulder et al., 2022). Satellite multispectral datasets have been used 

to create or enhance large-scale maps of many important environmental properties including 

plant traits (Aguirre-Gutiérrez et al., 2021; Butler et al., 2017; Moreno-Martínez et al., 2018), 

habitats (Tuanmu & Jetz, 2015) and productivity (Oehri et al., 2017; Wallis et al., 2019), among 

others (Meyer & Pebesma, 2022). 

Historically, grasslands have been under-studied using remote sensing, compared to 

forest ecosystems, with remote sensing of grasslands often carried out from an agricultural or 

management perspective (I. Ali et al., 2016; Reinermann et al., 2020; Weber et al., 2018). 

Remote sensing of the belowground biosphere has also been relatively sparse, except for work 

modelling carbon stocks, which incorporates a significant belowground component 

(Bartholomeus et al., 2011; Schimel et al., 2015; Wilson et al., 2017), and some other recent 

efforts, such as linking satellite data to soil salinity (Günal et al., 2021) and nematode 

abundance (van den Hoogen et al., 2019). A growing body of research in ecology which links 

aboveground to belowground ecosystems, and predicts whole ecosystem functioning from 

proxies which can be assessed at the surface, may provide a link for remote sensing 

methodologies to extend to the belowground portion of the ecosystem.  

The identity, diversity and functions of plant and soil organisms exert strong influences 

over each other within ecosystems (Wardle David A. et al., 2004). Understanding these 

ecological linkages has become a research focus in recent decades, and is now a major theme 

in terrestrial ecology (Bardgett, 2018). Specific plant and soil microorganism species form 

associations with one another, which can be mutually beneficial and are in many cases 

required for plant growth, for example the association of mycorrhizal fungi with plant root 

systems (Bradford et al., 2002; López-García et al., 2017; Van Der Heijden et al., 2008). 
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Relationships between co-occurring plant and soil organisms can also be antagonistic, for 

example the build-up in soils over time of microbial pathogens limit the growth of particular 

species with which they interact (Klironomos, 2002; Kulmatiski et al., 2008). These 

associations form the basis of plant-soil feedback mechanisms that influence species growth, 

competition and succession over time (Baxendale et al., 2014). At the community scale, 

relationships between plant and soil organisms can be understood not only through specific 

species-species interactions, but through other integrated aspects of the plant community such 

as diversity including species richness and evenness (De Deyn et al., 2011; Eisenhauer et al., 

2010; Lange et al., 2015), presence or abundance of particularly influential species (Laughlin, 

2011; Soliveres et al., 2016), and community-level functional traits (Cantarel et al., 2019; 

Grime, 1998; Lavorel et al., 2011; Lavorel & Grigulis, 2012; Legay et al., 2014). 

2.3 Plant functional traits for linking aboveground and belowground ecology 

Plant trait based approaches investigate how the functional properties of plants, such 

as growth rate, leaf area or root length, as opposed to their taxonomic identity are related to 

other components of the ecosystem, including belowground communities and functions 

(Bardgett, 2017; Delgado-Baquerizo et al., 2018; Funk et al., 2017). There are several benefits 

to the use of functional traits to understand the aboveground community. First, in determining 

the functional traits of plants that cause and respond to changes in the environment, soils, or 

other ecosystem components, the mechanisms that drive the links can begin to be identified 

(Legay et al., 2014). For example, traits facilitating rapid nitrogen uptake may enable plants 

to out-compete soil nitrogen-reducing bacteria for nutrients, and therefore explain the 

influence of plants on the composition of soil microbial communities (Moreau et al., 2015). 

Trait-based approaches can therefore help to answer the question of why above- and 

belowground communities form the spatial associations that are observed, and therefore how 

they may be expected to respond to environmental change, for example (Bardgett, 2017; Green 

et al., 2008). Second, trait-based approaches are sensitive to phenotypic variation that occurs 

between individuals of the same species (intraspecific) as well as between species 

(interspecific). Intraspecific variation can account for up to 30% of total biological variation 

observed within populations, and is therefore significant for ecosystem functioning and, at 

large scales, biogeochemical cycling (Albert et al., 2010; Siefert et al., 2015). Approaches to 

scaling-up functioning which use species mean trait values, for example aggregating to 

community-weighted means by species abundance (Grime, 1998), are not able to fully account 

for intraspecific variation, where direct trait-based approaches can (Funk et al., 2017). For this 

reason, trait-based approaches are more suitable than species-based approaches for assessing 

functioning over large spatial scales. 
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The best-established links between aboveground plant traits and soil communities are 

centred around leaf and whole-ecosystem economics, on a spectrum from exploitative to 

conservative resource use. Plant traits of a wide variety of species across the globe have been 

shown to have consistent associations with one another, described by the leaf economics 

spectrum (LES) (Reich, 2014; I. J. Wright et al., 2004). Traits which facilitate rapid 

photosynthesis, plant growth and nutrient uptake include high specific leaf area (SLA) and 

high leaf nutrient content, in particular nitrogen. These leaves covary to promote rapid growth 

at the expense of leaf longevity (exploitative), and the high-quality, nutrient-rich leaf litter is 

rapidly broken down by microbes in the soil. On the other end of the spectrum are higher 

values of traits which promote leaf longevity at the expense of growth rate (conservative), 

including robust complex structures such as lignin and other secondary metabolites, which 

are slow to decompose. These sets of associated, covarying plant traits, or trait syndromes, 

have been shown to be mirrored belowground in the size, structure and functioning of soil 

communities (Pérez-Ramos et al., 2012). High-quality litter, which is more readily 

decomposed, promotes the bacterial component of the soil microbial community as bacterial 

species are adapted to break down such material rapidly. Conversely, soil fungi are better 

adapted to decompose tough, lower-quality litter, so soil community structure with a higher 

biomass of fungi in relation to bacteria, or a higher F:B ratio, is associated with a conservative 

plant trait syndrome (de Vries, Manning, et al., 2012; Fry et al., 2018; Schellberg & Pontes, 

2012).  

The fast-slow economics of associated aboveground and belowground ecosystems are 

driven by factors including climate, geological or edaphic properties, and feedback 

mechanisms between the two communities (de Vries, Manning, et al., 2012; Delgado-

Baquerizo et al., 2018). Plant and soil community economics have also been shown to drive 

ecosystem functions and services. For example, fast-cycling communities promote rapid 

turnover of carbon and nutrients, which reduces the provision of C and N retention in the soil 

in favour of greater productivity (Faucon et al., 2017; Grigulis et al., 2013; Lavorel, 2013; 

Lavorel et al., 2011; Lavorel & Grigulis, 2012). These associations between plant traits, soil 

communities and ecosystem functioning provide a pathway by which aboveground 

measurements of plant traits can be used to predict belowground ecosystems and whole-

ecosystem functioning (de Vries, Manning, et al., 2012; Leff et al., 2018; Manning et al., 2015). 

This is particularly valuable given the challenging nature of measuring soil communities in the 

field, which highly variable across fine spatial and temporal scales, and given the potential of 

remote sensing to retrieve plant traits. 
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2.3.1 Remote sensing of plant functional traits 

Spectral datasets are particularly suitable for application to trait-based approaches, 

because reflectance of light by vegetation is directly related to morphological and chemical 

traits as opposed to species identity (Lausch et al., 2018). There are a number of methods by 

which reflectance data can be used to retrieve plant traits. These include the development of 

spectral indices, where reflectance in specific portions of the spectrum, which are known to 

respond differently to certain leaf properties, are used to create a metric, which is then 

evaluated empirically using field data. Indices have been created to isolate and respond to 

many different foliar properties, in particular vegetation pigments (chlorophyll and carotene) 

(Clevers & Gitelson, 2013; Gitelson et al., 2002, 2006), water content (Gao, 1996) and total 

greenness or density. The most well-known vegetation index is the NDVI, which responds to 

vegetation greenness or density, and is widely used as a proxy measure of biomass and 

productivity (Pettorelli et al., 2005). Indices are designed to directly capture one aspect of the 

vegetation canopy, but can be used in combination as predictor variables for many associated 

ecosystem properties (A. M. Ali, Darvishzadeh, Skidmore, et al., 2017; Gaitán et al., 2013; 

Räsänen et al., 2021; Rivero et al., 2009; Tan et al., 2022; Tuanmu & Jetz, 2015). The 

covariation of many plant traits enables those that are not associated directly with particular 

spectral absorption features to be inferred by their covariation with those that do, termed 

constellation effects (Nunes et al., 2017).  

There has been a recent move towards using more computationally-complex 

multivariate approaches which utilise the whole spectrum simultaneously, such as partial least 

squares regression (PLSR), to retrieve ecosystem properties. These are particularly powerful 

when used in combination with high-dimensionality hyperspectral data, and this combination 

of data and method have been used recently to retrieve foliar traits from grasslands, with 

success at landscape to continental scales (Homolová et al., 2013a; Van Cleemput et al., 2018; 

Z. Wang et al., 2019, 2020). The other key approach to retrieving foliar traits from remote 

sensing is radiative transfer models, which are physically-based as opposed to empirically-

based, produce relationships that are more applicable across a range of ecosystems, but also 

require more known values to be inputted (Darvishzadeh et al., 2011). Radiative transfer 

models are valuable but currently limited in the number of traits they can successfully retrieve 

and have generally been developed for forest ecosystems, although have been applied to 

grasslands with varying success (Pau et al., 2022; Rossi et al., 2020). There is great potential 

for spectral retrieval of plant traits to contribute to understanding and prediction of 

belowground and whole-ecosystem functioning in grasslands, however in order to realise this 

further research is needed in several key aspects. 
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First, there has been a significant bias towards forest ecosystems in remote sensing of 

plant traits, and much less is known about grasslands. Grasslands pose different challenges to 

forest ecosystems, due to small sizes of organisms relative to sensor resolution and therefore 

of mixing of species at sub-pixel scales, which has been found to decrease the strength of 

relationships at the leaf level (Hacker et al., 2022), compared to studies in forests where it is 

often possible to retrieve individual tree crowns from imagery (Aguirre-Gutiérrez et al., 2021; 

Schneider et al., 2017). In many grasslands, the vegetation surface at the spatial scale of remote 

sensing imagery (metres to tens of metres) is likely to include a mixture of herbaceous plants 

and isolated shrubs or trees (Reinermann et al., 2020), particularly at marginal grasslands or 

areas where active land cover change is taking place, and mixing of different plant life forms 

with different leaf structures and ecology can decrease the strength of relationships between 

spectra and vegetation properties (Hacker et al., 2022; House et al., 2003; Pau et al., 2022). 

Very few studies have been carried out retrieving traits across mixed grassland-woodland 

ecosystems (Z. Wang et al., 2020), despite the prevalence and importance (Ratajczak et al., 

2012; Ratnam et al., 2011; Sexton et al., 2015; Y. Xu et al., 2022). Herbaceous and woody 

species differ in their physiology and ecology. For example, functional importance of leaves, 

stems and roots is not consistent among plant life-forms, and a whole-plant perspective, rather 

than just foliar traits, may be more appropriate in herbaceous communities where root 

exudates constitute a larger proportion of total inputs from above to belowground (De Long et 

al., 2019; Freschet et al., 2010; Funk & Cornwell, 2013; Laliberté, 2017; Poorter et al., 2014). 

Bare soil areas in imagery are also likely to be more prevalent at sub-pixel scales in grasslands 

than forest ecosystems, because of the lower density of vegetation overall (Hauser et al., 2021; 

Y. He et al., 2020; R. Wang et al., 2018a).  

What work there is on trait retrieval in grasslands has been almost exclusively based 

on imaging spectroscopy or hyperspectral sensing, where extremely high levels of spectral 

detail are able to identify small absorption features associated with particular leaf properties 

(Homolová et al., 2013a; Obermeier et al., 2019; Van Cleemput et al., 2018; Z. Wang et al., 

2019). Multispectral sensors have been demonstrated to retrieve foliar traits in forest 

ecosystems (Aguirre-Gutiérrez et al., 2021; Ma et al., 2019) and at very coarse resolution across 

mixed biomes globally (Butler et al., 2017; Moreno-Martínez et al., 2018). However, there have 

been very few attempts to retrieve grassland traits using multispectral remote sensing 

imagery, which is of coarser spatial and spectral resolution than hyperspectral imagery, but 

has a much greater global availability and coverage, and therefore has the most potential for 

trait retrieval at large geographic scales.  

Finally, it isn’t known to what extent the plant traits which are successfully retrieved 

from spectra are in common with those which are useful for retrieving belowground 



28 

properties. Ecology and remote sensing studies tend to have different sets of plant traits that 

are the focus of studies, based on which are the easiest to retrieve using field-based or spectral 

techniques. For example, chlorophyll content is one of the most common target traits in 

remote sensing due to its strong photosynthetic properties and therefore influence on 

reflectance (Croft et al., 2017; Kozhoridze et al., 2016; Ustin, Asner, et al., 2009). However, 

chlorophyll is not often included in the suite of traits used to investigate aboveground-

belowground linkages in the field, so it is unknown to what extent this trait could represent 

belowground properties at the surface. Conversely, traits which are usually the focus in 

ecology, such as relative growth rate, vegetation height and structural properties like SLA and 

LDMC are not as clearly represented in an aerial perspective of the vegetation surface as they 

are from the ground and so are less often retrieved, although SLA has been more commonly 

modelled in recent years (A. M. Ali, Darvishzadeh, Skidmore, et al., 2017). This discrepancy 

could make it challenging to link the fields of remote sensing and ecology in this context, or 

alternatively could pose an opportunity for spectral data to make a unique contribution to the 

understanding of aboveground-belowground linkages. A significant portion of variation in 

soils remains unexplained by the set of plant traits which is usually and practicably measured 

in the field, leading authors to conclude that there are remaining, unmeasured traits that have 

influence belowground (Leff et al., 2018). Traits retrieved from remote sensing, for example 

pigments chlorophyll and carotene, could contribute additional explanatory power. Previous 

work linking soil properties directly to spectroscopy in aspen forests identified tannins as the 

most important linking foliar chemical (Madritch et al., 2014). However, tannins are not 

present in meaningful quantities in the leaves of herbaceous plants and so are unlikely to 

provide a link in grasslands (Bernays et al., 1989). Recent work across landscape scales in two 

grasslands identified leaf nitrogen and cellulose as important traits representing soil microbial 

biomass and functions, although the important traits were not the same in the two contrasting 

grassland sites studied (Cavender-Bares et al., 2022). Identifying which plant traits are both 

retrievable from spectra and useful for representing belowground conditions at the surface is 

an important objective towards linking understanding of grassland functions from the fields 

of remote sensing and ecology. 

2.4 Aboveground productivity 

Biomass production is one of the most important functions of grassland ecosystems, 

and drives the rates of other above- and belowground processes by determining the quantity 

of inputs from the aboveground to the belowground system, in the form of litter and root 

exudates. The quantity of aboveground biomass has been demonstrated to influence 

decomposition processes and microbial communities belowground. For example, plant 
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biomass has been shown to predict soil fungal communities more than plant diversity or 

community composition in an experimental grassland (Cline et al., 2018). Quantity of plant 

inputs belowground has also been found to be more influential than quality in a forest 

ecosystem (Lohbeck et al., 2015). The relative importance of litter quality and quantity may 

change across an ecosystem fertility gradient (Wardle David A. et al., 2004). In a comparison 

of two grasslands, quantity of aboveground inputs was more important for predicting soil 

communities in the infertile system, where overall quantity of inputs was low, and quality was 

more important in the productive system where the quantity of biomass ceased to be a limiting 

factor (Cavender-Bares et al., 2022).  

Remote sensing is able to retrieve the productivity of ecosystems effectively. Many 

spectral indices capture the quantity of aboveground biomass, including the aforementioned 

NDVI and others for example which are tailored to dense or sparse vegetation environments 

(Oehri et al., 2017; Ren & Feng, 2015). Remote sensing indices of productivity are extensively 

used as proxies in models of other ecological properties (Delgado-Baquerizo et al., 2016; 

Pettorelli et al., 2005). Vegetation coverage is another productivity-related property 

retrievable from remote sensing and has been found to indicate belowground communities 

and biodiversity (Cavender-Bares et al., 2022; Hauser et al., 2021; Z. Wang et al., 2019). At 

the community level, productivity and trait syndromes are often studied together in ecology 

and remote sensing, because plant functional traits are drivers of productivity (Reich, 2014).  

2.5 Plant diversity and ecosystem functioning 

As well as individual plant functional traits, community-level trait syndromes and 

productivity, the diversity of plant functional traits in an ecosystem has strong implications 

for ecosystem functioning and ecosystem services (Lavorel, 2013). The taxonomic and 

functional diversity of aboveground plant communities can be considered important 

ecosystem properties or services in their own right, and are known to be positively associated 

with many other important above- and belowground functions (Maestre et al., 2012; Soliveres 

et al., 2016). The greater the range of functional attributes present in the plant community, 

the greater the ability at the community level to take advantage of spatial and temporal 

environmental niches, and therefore the more thorough and efficient the use of resources. 

Through this mechanism, plant diversity has been linked to higher levels of multiple 

ecosystem functions individually and simultaneously, termed multifunctionality, across a 

wide range of different ecosystems (Dooley et al., 2015; Lavorel, 2013; Lavorel et al., 2011; 

Schellberg & Pontes, 2012). Productivity in particular has been associated with greater plant 

diversity, and the productivity-diversity relationship has been explored among grasslands 

worldwide (Grace et al., 2016). Although there is a wealth of evidence to show that greater 
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plant diversity enhances productivity, the relationship between the two properties is not 

linear, with productivity often found to peak at intermediate levels of biodiversity (Fraser et 

al., 2015), and there is contrasting evidence in the literature (Adler et al., 2011; Cardinale et 

al., 2007; Knapp et al., 2014; Schittko et al., 2022; R. Wang, Gamon, Emmerton, et al., 2016). 

Plant diversity aboveground has been linked to diversity of soil microbial communities 

belowground, because inputs from different plant species provide suitable substrate for 

different soil microbes (Bardgett & Van Der Putten, 2014; Guo et al., 2021; Porazinska, Dorota 

L., Farrer, Emily C., Spasojevic , Marko J., 2018; Yang et al., 2018). Therefore, plant diversity 

represents another important aspect of the aboveground biosphere that can be used to infer 

belowground communities and functions from the surface. 

There are many ways of assessing biodiversity in the plant community, and it is not 

clear which axes of diversity are the most important for linking aboveground and belowground 

ecosystems. Taxonomic, phylogenetic and functional diversity are all connected yet distinct 

axes of biological variation with implications for ecosystem functioning (Lausch et al., 2018). 

For example, the taxonomic identity of a plant determines the range of its functional traits but 

does not explain the intraspecific portion of functional variation which may be driven by short-

term environmental factors (Funk et al., 2017). Taxonomic diversity is the most traditional 

metric for quantifying variation in the biological community, and is one of the Essential 

Biodiversity Variables that have been identified as conservation priorities globally (Jetz et al., 

2019; Pereira et al., 2013). However, taxonomic diversity is subject to the same restraints as 

species-based approaches when compared with trait-based approaches; it is challenging to 

scale, does not account for within-species variation, and indirectly rather than directly drives 

ecosystem functioning. Plant trait-based approaches are more directly associated with 

functional diversity, which describes the variety of functional traits in the plant assemblage, 

as richness, evenness and dispersion (Legendre & Laliberté, 2010; Lepš et al., 2006; Schneider 

et al., 2017). All axes of diversity have multiple spatial components; alpha describes richness 

at the local scale or how many traits or species in the community, and beta describes spatial 

turnover of communities across the landscape. Both have been found to interactively drive 

ecosystem functioning (Albrecht et al., 2021; Hautier et al., 2018; K. He & Zhang, 2009; Jing 

et al., 2021; Pasari et al., 2013; Peng et al., 2022; Thompson et al., 2018; Zemunik et al., 2016). 

Remote sensing can contribute to assessments of aboveground biodiversity by capturing 

multiple axes of diversity simultaneously and by integrating relatively easily across multiple 

nested spatial scales. 
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2.5.1 Remote sensing of plant diversity and phenology 

The potential to utilise remote sensing data to monitor biodiversity has received a lot 

of recent interest (Asner & Martin, 2016; Jetz et al., 2016; Pettorelli et al., 2014; R. Wang & 

Gamon, 2019). Because of the influence of plant functional traits on reflectance spectra, the 

diversity of spectra across time and space, termed spectral diversity, has been proposed as a 

proxy for the diversity of biological communities and their functions (Rocchini et al., 2011, 

2021a; Rossi et al., 2021, 2022; Thouverai et al., 2021). Functional, taxonomic and 

phylogenetic axes of biodiversity are distinct but interlinked; remote sensing is able to 

integrate these different axes of biological variation, because all three influence the 

interactions of leaves and plant community surfaces with light (I. P. Aneece et al., 2017; Lausch 

et al., 2018; Schweiger et al., 2018). Therefore, the spectral diversity of ecosystems has been 

proposed as a metric of biodiversity in its own right, and has been used to explain variation in 

the productivity and belowground communities of grassland (Schweiger et al., 2018). Spectral 

diversity is calculated based on the dissimilarity of pixel-level reflectance profiles across space 

and time, where similar reflectance profiles are grouped into ‘spectral species’ which can be 

related to pixel-sized vegetation communities on the ground (Rocchini et al., 2018, 2021a; 

Rossi et al., 2022). Work characterising spectral diversity as a direct metric of biodiversity is 

in early stages and has to date focused on hyperspectral data (I. P. Aneece et al., 2017; 

Cavender-Bares et al., 2016, 2020b; R. Wang et al., 2018b) although see also (Ma et al., 2019; 

Rocchini et al., 2021a).  

There is also a body of remote sensing research retrieving biodiversity of surface 

vegetation indirectly from multispectral data, utilising the close links between diversity, traits 

and productivity. The availability of multi-temporal multispectral data from satellites with a 

regular return period is particularly valuable for this purpose, as more diverse vegetation 

communities also maintain ecosystem functioning across time, promoting longer and more 

stable growing seasons. The mean and variability of satellite indices such as NDVI have been 

linked with some success to ground-based measures of species diversity (Mapfumo et al., 

2016; Tan et al., 2022). As well as the overall variability in aboveground productivity or NDVI, 

satellite remote sensing data with a regular return period can be used to extract detailed 

temporal patterns of vegetation growth and senescence, termed phenology (Dronova & 

Taddeo, 2022). Phenology (productivity variation throughout a season) and phenological 

stability (phenological variation between seasons) have been shown to respond to the diversity 

of the plant community in wetland ecosystems (Dronova et al., 2022) and mixed ecosystems 

across Switzerland (Oehri et al., 2017). Greater biodiversity in the plant community is 

associated with longer growing seasons, greater stability of growing season timing between 

years, and faster rates of green-up (Zaret et al., 2022), all of which can be retrieved across large 
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extents from satellite timeseries. Previous work has utilised the phenology-biodiversity link to 

predict ecosystem functions and services in grassland and forest systems in the context of 

evaluating land management at landscape scales (Paruelo et al., 2016; Stumpf et al., 2020; 

Weber et al., 2018), but it is not known whether these findings can be replicated across diverse 

natural grasslands. Given the demonstrated correlations between biodiversity and 

belowground ecosystem functioning in grasslands worldwide (Hautier et al., 2018), there is an 

opportunity to apply remotely retrieved vegetation phenology to reveal patterns in whole-

ecosystem functioning across diverse grasslands at large scales. 

Close links between grassland functions above- and belowground mean that variation 

in belowground functioning, which is challenging to capture at large scales from field-based 

techniques, may be able to be retrieved from remote sensing. The functional traits of 

aboveground vegetation, and their temporal dynamics and diversity, are all properties which 

can be characterised using spectral data and are known to represent belowground and whole-

ecosystem functions. However, there are many unknowns, in particular relating to which 

aboveground properties may best represent a link between spectra and soils in grasslands, 

being both valuable predictors of belowground conditions and well-retrieved from spectra. 

The current evidence is uneven; for example, grasslands dominate the ecological literature on 

aboveground-belowground linkages, yet remote sensing-based retrieval of grassland traits are 

relatively understudied, particularly using the multispectral datasets that are available across 

large geographic scales. These disparate research themes must be joined up in order to use 

remote sensing of the vegetation surface to infer variation in belowground functioning.  
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3. Plant traits link imaging spectroscopy to soil 

microbial communities in grasslands and shrublands 

across continental North America. 
 

Abstract 

Measuring the belowground biosphere across large spatial scales is an important 

research priority in the context of global-scale climate and land use changes, which impact soil 

microbial communities and associated biogeochemical cycles. Remote sensing methodologies, 

in particular imaging spectroscopy, have been shown to detect differences in belowground 

communities in forest ecosystems, because canopy foliar traits which are retrievable from 

spectral reflectance express patterns of the underlying soils belowground. However, these 

findings have yet to be replicated in varied natural grassland and shrubland ecosystems. This 

chapter addresses this research gap by linking imaging spectroscopy, plant traits and soil 

microbial properties at 13 grassland and shrubland sites across North America at the 

continental scale. Random forest and partial least squares regression are used to identify the 

extent to which plant traits and reflectance spectra can predict variation in soil microbial 

properties. Imaging spectroscopy was able to predict large amounts of variation in soil 

microbial properties (R2 0.09 – 0.68, NRMSE 8 – 14%), and for microbial biomass and 

structure was a better predictor than plant traits measured in situ. Soil microbial community 

structure (F:B ratio), an important microbial property with implications for carbon storage 

and nutrient cycling, was the best-predicted soil property (R2 0.68, NRMSE 8%). Plant traits 

indicative of leaf economics such as specific leaf area (SLA), along with less commonly studied 

foliar carotenoids, were identified as potential links between soils and reflectance. Other 

factors including quantity of biomass aboveground and the influence of bare soil were also 

inferred to influence the reflectance signal and likely contribute to the enhanced strength of 

spectral predictions. These results demonstrate the potential of imaging spectroscopy to 

predict variation in the belowground biosphere in grassland and shrubland ecosystems at 

continental scales, which is timely with respect to upcoming hyperspectral satellite missions 

and the ongoing pressures affecting the biosphere in the 21st century.  
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3.1 Introduction 

Soil microbial communities are a key component of the belowground biosphere, and 

fundamental to global biogeochemical cycles (Bardgett & Van Der Putten, 2014). Monitoring 

soil microbes across large spatial extents is therefore an urgent priority in order to understand 

the impacts of climate and land use changes on soils and the implications for key ecosystem 

functions and services including carbon storage, nutrient cycling, and food and fuel 

production (Delgado-Baquerizo et al., 2017; Grigulis et al., 2013; Pommier et al., 2018). 

Grasslands and shrublands are particularly important with respect to these ecosystem 

services, being some of the most extensive and exploited ecosystems on Earth (O’Mara, 2012). 

In-situ measurement of soils – especially the microbial component – is a significant 

undertaking, and prohibitively time-consuming and complex at regional to global scales 

(Griffiths et al., 2011, 2016). However, our increasing understanding of the functional links 

between the belowground and aboveground portions of ecosystems may provide a pathway to 

estimate properties of soil microbial communities from the characteristics of the overlying 

vegetation surface; in particular, spectral characteristics which can be retrieved rapidly across 

large areas using remote sensing techniques. 

Plant functional traits aboveground and soil bacteria and fungi populations 

belowground are linked by numerous mechanisms which act on different scales. At the scale 

of individual organisms, strong associations occur between particular plant and soil fungal 

species, which can be symbiotic or antagonistic. For example, mycorrhizal fungi associate 

directly with plant roots, where nutrients, water and carbohydrates are exchanged between 

the two organisms. The presence and abundance of mycorrhizal fungi therefore influences 

plant traits related to nutrient acquisition such as root morphology, nutrient allocations and 

nutrient-use efficiency, and these interactions occur between mycorrhizal fungi populations 

and the current plant community (De Deyn et al., 2011; Leff et al., 2018; Millard & Singh, 

2010). Pathogenic relationships can also occur between specific plant and microbe species, 

which over time can alter plant traits related to defence, stress and resource allocation as 

populations of pathogenic microbes build up in the soil (Baxendale et al., 2014). More general 

(i.e. less species-specific) relationships occur between plant communities and saprophytic 

fungi, which decompose dead plant material inputted to the soil as litter and root exudates. 

The quantity and quality of litter inputs into soil, influenced by plant traits, determines the 

properties of the substrate available for saprophytic fungal populations and therefore their 

community size and composition. In turn, the rates of decomposition and nutrient cycling 

carried out by saprophytes influence plant functional traits related to nutrient availability and 

cycling. The quantity and composition of soil organic matter in the ecosystem is influenced by 

these feedback mechanisms across years and decades (Bardgett et al., 2005). The bacterial 
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component of soil microbial communities is particularly closely associated with the quality of 

soil organic matter, thereby being more influenced by historic vegetation communities and 

their legacy of carbon inputs than by the current vegetation in an ecosystem (Millard & Singh, 

2010). Finally, plant and soil microbial communities may be associated through shared 

preferences for other environmental properties such as pH, moisture and nutrient levels. 

These properties are influenced over large extents and long timescales by climate and geology, 

and at smaller scales by feedbacks with the biosphere. 

The associations between aboveground vegetation and belowground soil communities 

are largely driven by their two-way regulation of resources; plants determining the quantity 

and quality of resource inputs belowground, and soils the rate at which these inputs are 

transformed and stored (van der Putten et al., 2016; Wardle David A. et al., 2004). Between 

them, they determine the balance between biomass production and retention of carbon and 

nutrients in the ecosystem (Grigulis et al., 2013; Van Der Heijden et al., 2008). Theoretical 

and empirical evidence suggests that where plant communities are dominated by acquisitive 

traits which facilitate fast growth, such as high specific leaf area (SLA) and leaf nitrogen (N), 

soils are more fertile with faster rates of decomposition and nutrient cycling, and have a 

greater abundance of bacteria relative to fungi (Bardgett, 2017; Reich, 2014). These 

associations are termed leaf or ecosystem economics (Reich, 2014; I. J. Wright et al., 2004), 

have been found in diverse ecosystems across the globe, and recently been used to predict the 

size, structure and composition of soil microbial communities from aboveground plant traits 

at scales ranging from the individual plant to global datasets (de Vries, Manning, et al., 2012; 

Delgado-Baquerizo et al., 2018; Leff et al., 2018; Legay et al., 2014; Orwin et al., 2010). Trait-

based approaches, as opposed to species-based approaches, offer a particular opportunity with 

respect to remote sensing, because they characterise the vegetation community as a 

continuous surface which can be scaled to the size of an image pixel, the smallest unit of 

measurement in remote sensing. Moreover, the physical traits of leaves, for example 

concentration of important photosynthetic pigments such as chlorophyll and carotenoids and 

their structure, directly influence their spectral reflectance patterns and therefore appearance 

in imagery (Funk et al., 2017; Lausch et al., 2018; Van Cleemput et al., 2018).  

Remote sensing techniques are able to retrieve a variety of relevant plant functional 

traits from grassland and shrubland canopies at a range of scales (Thomson et al., 2021; Van 

Cleemput et al., 2018; Z. Wang et al., 2020). Imaging spectroscopy, also known as 

hyperspectral data, is especially useful because it records reflectance patterns to an extremely 

high level of spectral detail, which means that narrow absorption features responding to 

particular leaf components, such as carotenoids, lignin and tannins, can be identified (Couture 

et al., 2016; Gitelson et al., 2002; Kokaly et al., 2009; Nunes et al., 2017; A. Singh et al., 2015; 
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Ustin, Asner, et al., 2009; Z. Wang et al., 2020). The use of multivariate statistical techniques 

such as partial least squares regression has also improved modelling capabilities by fully 

exploiting the large amounts of data generated by hyperspectral systems (Pau et al., 2022; 

Schweiger et al., 2018; Van Cleemput et al., 2018). Different plant functional traits are often 

retrieved with varying levels of success, depending on their visibility in the spectral profile; for 

example photosynthetic pigments are generally more accurately retrieved than morphological 

traits such as SLA (Van Cleemput et al., 2018). This represents a mismatch in the selection of 

plant traits most successfully retrieved from spectroscopy in remote sensing studies and most 

strongly linked to belowground systems in ecology studies, where SLA is often the strongest 

predictor and pigments are rarely included (de Vries, Manning, et al., 2012). It remains 

relatively unexplored to what degree the spectral characteristics of aboveground vegetation 

might capture functional trait variation corresponding to belowground microbial 

communities. 

Recent attempts to link canopy spectroscopy directly with soil properties in forest 

ecosystems have found remarkably strong relationships (Madritch et al., 2014; Sousa et al., 

2021). A study on single-species aspen forests in North America found that canopy spectra 

from airborne imaging spectroscopy explained more variation in soil microbial activity than 

did foliar traits measured in the field (Madritch et al., 2014). The explanation for this finding 

is that, while reflectance spectra may not directly capture the pre-determined traits which can 

be sampled in the field and lab, there are many other axes of biological variation, including 

phylogenetic and functional variation, which influence spectral reflectance and may also 

respond to soil conditions, contributing additional explanatory power of the imagery (Lausch 

et al., 2018; Madritch et al., 2014; Schweiger et al., 2018). Relevant foliar traits which do not 

have characteristic absorption features may also be apparent in the reflectance signal via their 

close associations with other properties which do influence foliar reflectance, termed 

constellation effects (Couture et al., 2016; Nunes et al., 2017). Another recent study 

highlighted regions of the spectrum associated with carotenoids, leaf N, and water content as 

being important for the prediction of soil fungal communities from spectroscopy in mixed 

forests, for which they achieved very high prediction accuracies (Sousa et al., 2021). It is not 

well understood to what extent these promising findings may be replicated in non-forest 

ecosystems, where the size of the target organism relative to a single image pixel is likely to be 

much smaller. For example, in a grassland landscape the reflectance signal of a 1x1m pixel is 

influenced by multiple individuals, species and potentially higher-order classifications such as 

herbaceous plants and shrubs, depending on the heterogeneity of the site. Mixing of different 

plant lifeform types at sub-pixel scales can impact the relationship between spectra and traits, 

because the same physical trait may influence reflectance differently among different plant 
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lifeforms, depending on its ecological significance and covariation with other physiological 

properties (Hacker et al., 2022; Schweiger et al., 2018). Additionally, as with all community-

level remote sensing there are other factors besides foliar traits which influence spectral 

reflectance; for example small-scale variations in topography, hydrology, or vegetation 

density, coverage and spatial arrangement and the influence of bare soil. Prevalence of bare 

soil in particular is more likely to impact reflectance in grasslands than in closed-canopy 

forests (Madritch et al., 2020). The only previous study found linking spectroscopy, plant 

traits and soil communities in grassland ecosystems concluded that the productivity of the site 

was key to determine which properties of the vegetation community were relevant links 

between spectra and soils (Cavender-Bares et al., 2022). In the productive site, plant traits 

such as nitrogen and cellulose content were important, and in the unproductive grassland only 

vegetation coverage was an important link. It remains unknown how these differing controls 

may act across grasslands of varying productivity distributed at the continental scale. 

The aim of this study is to evaluate whether soil microbial biomass, community 

structure and processes can be predicted from airborne imaging spectroscopy in grasslands 

and shrublands spanning broad ecoclimatic gradients. Further to this, we seek to establish the 

role of community-level plant traits in translating the belowground signal to surface 

reflectance. In order to do so, we use a subset of data from the National Ecological Observatory 

Network (NEON, www.neonscience.org), comprising 13 grassland and shrubland sites 

distributed across the US continent; a spatial extent of around 4500km. Specifically we aim to 

first determine the extent to which in-situ measured plant traits are related to belowground 

soil attributes and specifically which traits are most strongly associated with soil microbial 

community size, structure and functions. We then determine the extent to which imaging 

spectroscopy of grassland and shrubland surfaces can be used to characterise the same soil 

attributes, and compare the efficacy of in-situ and spectral approaches to retrieving spatial 

variation in belowground microbial properties across North America.  
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3.2 Methods 

3.2.1 Study location & the NEON network 

In-situ field measurements and remote sensing data were sourced from the National 

Ecological Observatory Network (NEON). NEON is a continental-scale network designed to 

collect standardised, reproducible ecological datasets across the United States over a period of 

30 years, with the first datasets available from 2012 and becoming fully operational in 2019 

(Keller et al., 2008). Thirteen sites were sampled from the network for this study (out of 87 

sites in total); sites were selected that had coincident soil microbial, plant trait and airborne 

remote sensing data and were characterised by grassland or shrubland. Sites represent ten 

different ecoclimatic domains, a geographic range of around 4500km and climate gradients of 

26 degrees Celsius and 1167mm rainfall. Figure 1 shows the location of the 13 study sites, a 

description of each sites’ environmental conditions is presented in Table 1. Previous work at 

these sites has established that airborne imaging spectroscopy is able to retrieve pre-selected 

plant traits known to be associated with soil microbe communities, such as SLA and phenolics, 

with some success, but also that the high levels of within-pixel species diversity in grassland 

systems presents a challenge (Pau et al., 2022; Z. Wang et al., 2020). In both these studies, 

multivariate statistical approaches utilising the full range of spectral information were found 

to be the most successful. 

Field sampling plots at NEON sites measure 40x40m and are distributed across each 

site as to capture landscape-scale variation in environmental conditions such as elevation, 

aspect and vegetation type (for a full justification of the NEON spatial sampling design see 

(Barnett et al., 2019a; Thorpe et al., 2016)). Many sites contain a variety of different vegetation 

types; only plots with land cover classified as grassland/herbaceous, shrub/scrub or 

pasture/hay according to the National Land Cover Definition (NLCD) were taken forward, 

resulting in between one and ten plots per site, and 59 plots in total. Soil microbial, plant trait 

and airborne spectroscopy data for the period 2017-2020 was downloaded from the NEON 

data repository. A full list of the NEON data products used, and variables contained therein, 

is presented in Table 2. All data in this study were aggregated to the scale of a single sampling 

plot (40 x 40 m), and analyses carried out at the plot level. 
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Figure 1 Location of the 13 grassland and shrubland sites from the NEON network, and their ecoclimatic domains.

Canada 

USA 

Mexico 
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Table 1. Climate and location background information about the 13 NEON sites in this study. Only plots with grassland/herbaceous, shrub/scrub or pasture/hay NLCD 
definitions were sampled from each site, with the number of sampled plots per site shown. 

Site Name Site ID Domain 
Mean 

Annual 
Temp (°C) 

Mean Annual 
Precipitation (mm) 

Dominant NLCD Classes Elevation n plots 

LBJ National Grassland CLBJ Southern Plains 18 840 
Deciduous Forest, 
Grassland/Herbaceous 

259 m 2 

Delta Junction DEJU Taiga -3 305 
Evergreen Forest, Shrub/Scrub, 
Woody Wetlands 

517 m 3 

Disney Wilderness 
Preserve 

DSNY Southeast 22 1150 Pasture/Hay, Woody Wetlands 15 m 5 

Jornada LTER JORN Desert Southwest 17 173 Shrub/Scrub 1329 m 10 

Konza Prairie Biological 
Station 

KONZ Prairie Peninsula 12 860 
Deciduous Forest, 
Grassland/Herbaceous 

381 m 9 

Moab MOAB 
Southern Rockies & 

Colorado Plateau 
11 200 Evergreen Forest, Shrub/Scrub 1767 m 9 

Niwot Ridge Mountain 
Research Station 

NIWO 
Southern Rockies & 

Colorado Plateau 
0 758 

Evergreen Forest, 
Grassland/Herbaceous 

3513 m 2 

Klemme Range 
Research Station 

OAES Southern Plains 15 670 Grassland/Herbaceous, Shrub/Scrub 516 m 10 

Oak Ridge ORNL 
Appalachians & 

Cumberland Plateau 
14 1340 

Deciduous Forest, Evergreen Forest, 
Pasture/Hay 

344 m 1 

Smithsonian 
Conservation Biology 
Institute 

SCBI Mid-Atlantic 13 1054 
Deciduous Forest, Evergreen Forest, 
Pasture/Hay 

361 m 1 

San Joaquin 
Experimental Range 

SJER Pacific Southwest 17 270 
Evergreen Forest, 
Grassland/Herbaceous, Shrub/Scrub 

368 m 5 

Toolik TOOL Tundra -4 331 Dwarf Scrub, Shrub/Scrub 843 m 1 

The University of 
Kansas Field Station 

UKFS Prairie Peninsula 12 870 Deciduous Forest, Pasture/Hay 335 m 1 
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3.2.2 Field data: soil microbial properties 

Three soil cores (sampled to a depth of 30cm) are collected per sampling plot to capture 

fine-scale spatial heterogeneity (Parnell & Blevins, 2022). The three repeats were averaged to 

give a single mean value of soil properties per plot. All soil measures were transformed from a 

concentration to a per-area or stock basis (per m2 soil to 10cm depth), which is more relevant 

for plant communities and from the spatial perspective used in remote sensing. To do this, the 

bulk density of the soils at third bar pressure was used, from the Soil physical and chemical 

properties, megapit data product (DP1.00096.001, https://data.neonscience.org). Missing bulk 

density data for sites TEAK, HEAL, SRER and TOOL was substituted from nearby sites of the 

same land cover or from other published work at the site (Mack & Schurr, 2013). 

Soil microbial community size and structure were determined from concentrations of 

microbially-synthesised phospholipid fatty acids (PLFAs) in the soil, contained within the Soil 

Microbial Biomass NEON data product (for NEON data product codes see Table 2). We 

attributed the different PLFAs to bacterial or fungal communities following summaries by 

(Quideau et al., 2016; Willers et al., 2015). Soil fungi were represented by the PLFAs 18:2ω6,9, 

the most commonly used fungal marker, and 18:1ω9, which has been attributed to saprophytic 

fungi in grasslands (De Deyn et al., 2011). The total concentrations of the relevant PLFAs are 

used to describe total microbial biomass, bacterial biomass, and fungal biomass. The ratio of 

fungal to bacterial biomass, F:B ratio, was used as a common measure of soil microbial 

community structure (Bardgett et al., 1996; de Vries, Bloem, et al., 2012; de Vries, Manning, 

et al., 2012; Orwin et al., 2010).  

Rates of nitrogen transformations were used to indicate the activity of the microbial 

community, as the transformation of nitrogen from organic to mineral forms is a key function 

that microbial communities perform in the ecosystem (Bengtsson et al., 2003; Risch et al., 

2019). N mineralisation is the transformation of organic nitrogen structures into NH4
+, the 

preferred form of nitrogen for plant metabolism (C. Wang et al., 2018). Nitrification is the 

immobilisation of NH4
+ into nitrate, a major sink of N in biogeochemical cycling (Butterbach-

Bahl et al., 2013). Respectively, rates of these processes represent soil microbial contributions 

to the maintenance of soil fertility and the reduction of nitrogen leaching from soils; two key 

ecosystem service functions (Pommier et al., 2018). These two variables were calculated from 

the Soil inorganic N pools & transformations data product, using the neonNTrans package in 

R (Weintraub, 2021).  

 

https://data.neonscience.org/
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3.2.3 Field data: aboveground plant traits 

Vegetation data were acquired from the NEON data product Foliar physical and 

chemical properties. Nine foliar traits were included in this study, including photosynthetic 

pigments (chlorophyll a & b, combined to give total chlorophyll; carotenoids), secondary 

metabolites (lignin, cellulose), structural properties (specific leaf area, leaf dry matter 

content), carbon and nitrogen from which we derived C:N ratio, an indicator of litter quality. 

This selection of traits is characteristic of the LES and has been used to predict soil microbial 

communities in previous studies (de Vries, Manning, et al., 2012; Leff et al., 2018; Orwin et 

al., 2010). Foliar traits are measured by NEON from unsorted clip strips of herbaceous 

vegetation, giving a community-level mean value. Where woody plants are also present within 

a plot, trait measurements are taken from woody individuals if they are one of the dominant 

three species at plot level (2016-2018 field seasons), or according to site-level target taxa lists 

(2019 field season onwards). Data giving the percentage by biomass of herbaceous and woody 

vegetation in the plot-level community was not available. Therefore, analyses in this chapter 

were carried out using the mean trait value of all herbaceous clip strips and woody individual 

samples collected within a plot. For a detailed explanation of the NEON methodology for 

sampling and measuring foliar traits, see Weintraub (2022).  

 

3.2.4 Imaging spectroscopy data 

The spectrometer on board the NEON Airborne Observation Platform measures 

reflectance of light in the range 380 – 2500nm, in bands of 5 nm width and with a spatial 

resolution of 1 m2 (Kampe et al., 2010). The product is delivered calibrated to scaled reflectance 

(0-1), orthorectified to account for variations in elevation and atmospherically corrected to 

ground-level reflectance. Most sites have a single flight each year, which is timed to coincide 

with the historical peak biomass. Collection of spectral imagery and plant trait data on the 

ground are coordinated so that they take place within two weeks of each other. Reflectance of 

pixels within the bounds of each 40x40m plot (1600 pixels) represented in the field data were 

extracted and averaged to give a mean spectral reflectance signature per plot. Atmospheric 

absorption regions 1350-1460 nm and 1790-1960nm were excluded, leaving 344 spectral 

bands for analysis. 
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3.2.5 Statistical approach 

To identify patterns of plant and soil attribute covariation across the plots we 

performed an exploratory Principal Components Analysis (PCA). It was expected that plant 

traits which facilitate rapid growth (e.g. high SLA and leaf N) and soil traits which facilitate 

rapid nutrient cycling (high total and bacterial microbial biomass and rates of N 

transformations) would be associated along the most significant latent axes of variation 

(Bardgett, 2017; Pérez-Ramos et al., 2012; Saetre & Bååth, 2000; I. J. Wright et al., 2004).  

Random forest regression modelling (Breiman, 2001) was used to determine the 

explanatory power of aboveground community-level plant traits for predicting belowground 

soil microbial properties. A separate model was created for each of the six soil microbial 

properties of interest, with the nine plant traits as predictors. Prior to modelling, foliar trait 

predictors were checked for collinearity (Pearson’s correlation coefficient >0.8) and z-

standardized. Standardization does not impact the overall performance of random forest 

models, but it ensures that the variable importance scores (%increase MSE) are comparable 

between predictor variables measured in differing units. Forests had 1000 trees and used the 

optimum number of variables tested at each node, as identified by the tuneRF() function in 

rfUtilities (Evans & Murphy, 2017). Irrelevant predictors were identified and removed using a 

two-step process; first using the Boruta algorithm, permuted 100 times (Kursa & Rudnicki, 

2010; Räsänen et al., 2021), and second by inspecting the variable importance scores of each 

predictor in the resulting random forest models, and selecting only those with a % increase 

MSE >= 5. Error was based on the out-of-box error. Because random forest is a stochastic 

algorithm, producing a slightly different result each time, models were run 100 times, from 

which the mean explained variance (random forest pseudo R2) and NRMSE (RMSE/observed 

range), as well as mean variable importance for each predictor, were taken as the final model 

outputs. Outputs of the models were overall percentage variance explained, normalised root 

mean square error of prediction, and variable importance of each predictor variable. Variable 

importance is measured using the percentage increase mean square error (MSE); the average 

increase in the MSE that is observed when the variable in question is excluded as a predictor 

when building individual trees in the ensemble forest model. 

To explore the potential of airborne imaging spectroscopy to predict belowground 

microbial attributes, partial least squares regression (PLSR) modelling was used (Wold et al., 

2001). This type of multivariate model is able handle a large number of predictor variables, 

and therefore effectively utilise the fine detail and resulting large number of spectral bands 

that characterise spectroscopy data, often giving stronger results than other methods such as 

using spectral indices (Van Cleemput et al., 2018). PLSR has recently been used to map 
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aboveground plant traits over the NEON sites from the airborne observation platform (AOP) 

dataset (Z. Wang et al., 2020). Individual PLSR models were created to predict each of the six 

microbial attributes in turn, using all 344 spectral reflectance bands as predictors. Models 

were created using leave-one-out-cross-validation, with the overall predictive power of the 

model reported as validation R2, based on the optimum number of model components as 

identified by the PRESS statistic (Garson, 2016; Wakeling & Morris, 1993).  

All statistical analyses were carried out in R using the packages vegan (Oksanen et al., 

2020), randomForest (Liaw & Wiener, 2002), and plsdepot (Sanchez, 2013). 
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3.3 Results 

3.3.1 Field measured community-level plant traits and soil properties 

Table 2 shows the field-measured ranges of plant and soil properties in plots across the 

13 grassland and shrubland sites. These ranges are large compared to others presented in 

studies of aboveground-belowground linkages and retrieval of plant traits from remote 

sensing, at a range of scales (De Long et al., 2019; de Vries, Manning, et al., 2012; Delgado-

Baquerizo et al., 2018; Orwin et al., 2010; Rossi et al., 2020; Z. Wang et al., 2020).  

 

Table 2. Plant and soil properties investigated in this study. Values given are the plot-level averages, calculated 
by averaging the mean trait value of herbaceous and woody samples. Soil properties are the average of three 
repeat soil cores. 

NEON data product Variable Min Max Mean St. Dev. 

Soil microbial biomass, 
(DP1.10104.001) 

Total microbial 
biomass  
(μmol m-2) 

3,826.51 196,740.90 42,998.12 55,290.97 

F:B ratio 0.072 0.605 0.244 0.147 
Fungal biomass 
(μmol m-2)  

247.31 26,921.08 4,523.72 5,508.24 

Bacterial biomass 
(μmol m-2) 

1,962.40 141,698.40 26,239.05 37,775.83 

Soil inorganic N pools 
& transformations 
(DP1.10080.001) 

N mineralisation 
(mgN m-2 day-1) 

-21.067 109.234 13.999 19.728 

Nitrification 
(mgN m-2 day-1) 

-15.322 104.321 10.632 18.368 

Plant foliar physical 
and chemical 
properties, 
(DP1.10026.001) 

SLA (mm2 mg-1) 3.345 23.31 12.088 4.678 
LDMC (g g-1) 0.164 0.99 0.561 0.222 
C (mg g-1) 358.300 518.800 447.750 32.810 

N (mg g-1) 6.000 28.600 15.340 5.890 
C:N ratio 15.9 81.6 34.574 13.999 
Total chlorophyll 
(μmol m-2) 

30.884 451.754 194.592 92.46 

Carotenoids  
(μmol m-2) 

13.393 234.25 87.906 49.877 

Lignin (mg g-1) 26.900 194.770 79.510 41.420 
Cellulose (mg g-1) 124.500 412.700 284.810 77.280 

 

3.3.2 Co-variation of measured plant traits and soil microbial properties 

Principal components analysis was used to determine whether the associations 

between fast-growing plant traits and fast-cycling soil microbes, and slow-growing plant traits 

and slow-cycling microbes, were evident at the community level across the plots. These 



46 

associations are predicted by the leaf economics spectrum (Pérez-Ramos et al., 2012; Reich, 

2014), and form the basis of aboveground-belowground linkages in soil ecology (Bardgett, 

2017). The first two principal components (PC1, PC2) combined explained 53.4% of variation 

in the plant and soil properties across all plots (Figure 2). PC1 broadly described a trade-off in 

the plant traits between acquisitive traits (high SLA and leaf N) and conservative traits (high 

C:N ratio, cellulose and LDMC) (Figure 3). This was matched by the soil microbial properties, 

where high F:B ratio, characteristic of slow-cycling microbial communities suited to breaking 

down tough, low-quality litter, was aligned with conservative plant traits, and all other 

microbial properties including rates of N cycling were aligned with acquisitive plant traits 

along PC1. Sites with these traits included prairie ecosystems such as KONZ and SJER, and 

also high-latitude tundra sites DEJU and TOOL. Photosynthetic pigments chlorophyll and 

carotene were not aligned with other plant traits facilitating rapid plant growth along PC1 and 

PC2, for example aligning in the opposite quarter of the biplot to SLA, but were instead 

associated with resource-conservative trait LDMC. Pigments were however negatively 

correlated with lignin, a tough leaf structural property. This result was replicated when 

pigments were incorporated using both mass-based and area-based units (Westoby et al., 

2013). Observations in the quarter of the biplot representing high levels of photosynthetic 

pigments (bottom-right) but low levels of other acquisitive traits came from only two sites, 

JORN and MOAB, both of which are desert sites (Table 1).  

 

 

Figure 2 Scree plot showing the percentage of explained variance in the combined plant and soil dataset which 
is attributable to each of the first 10 principal components. 
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Figure 3. PCA of plant traits (SLA, C, N, C:N ratio, chl (area), carotene (area), cellulose, lignin) and soil 
microbial properties (total microbes, fungi, bacteria, F:B ratio, nitrification, N mineralisation). Each point 
represents a sampling plot, colours represent the field site.  

 

3.3.3 Prediction of soil microbial community size, structure and functions from community-
level aboveground plant traits 

Random forest was used to model variation in each of the six microbial community 

properties in turn, using the nine plant traits measured in the field as predictor variables 

(Table 2). Table 3 shows the average results from 100 model runs for each of the six microbial 

properties. Plant traits explained between 31% and 59% of variation in soil microbial 

properties, with fungal biomass being the best-modelled (variation explained 58.7%, NRMSE 

13%). For all other soil microbial properties, variation explained was around 30-35%, and 

NRMSE varied from 12 – 23% the measured range of the response variables. 

Variable importance scores of the nine plant traits, for each of the individual soil 

attribute models, are shown in Figure 4, and used to infer which plant traits best represent 

which soil microbial properties. The most important plant traits differed for each microbial 

property, and were consistent with associations found during principal components analysis 

(Figure 3) and expected from theory (Bardgett, 2017; Pérez-Ramos et al., 2012). The most 

important predictor traits for fungal biomass, the best-explained soil microbial property, were 

Site 
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foliar lignin and carbon content, both traits which are indicative of tough leaves which are 

preferentially decomposed by soil fungi. Soil F:B ratio was best predicted by foliar C, N and 

the ratio between them. C:N ratio is a typical indicator of the position of a vegetation 

community on the LES, and F:B ratio the equivalent indicator for the microbial community. 

Similar soil properties were predicted by similar plant traits; for example total and bacterial 

microbial biomass, or the two measures of nitrogen transformations. SLA was the most 

important trait for predicting soil bacteria and rates of N transformations. Finally, 

community-level carotene concentrations emerged as an important plant trait for predicting 

soil microbial properties overall, being in the top three predictor variables in all six models. 

 

 

Table 3. Results of random forest modelling of the six soil microbial properties from nine aboveground plant 
traits. RMSE is normalised by dividing by the range of the response variable. % variation explained and 
NRMSE are the averages of 100 model runs. 

Soil property 
variation 

explained (%) 

 

NRMSE 

 

Total microbial 

biomass 
35.4 0.23 

Bacterial biomass 31.5 0.22 

Fungal biomass 58.7 0.13 

F:B ratio 35.4 0.19 

Nitrification 31.6 0.12 

N mineralisation 27.5 0.13 
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Figure 4. Variable importance scores (% increase MSE) of the plant trait predictor variables in random forest modelling of soil microbial properties. Variable importance 
scores are the mean of 100 model runs; error bars show standard deviation. Labels show the % variation explained in each soil property by plant functional traits

35.4% 31.5% 58.7% 

35.4% 31.6% 27.5% 
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3.3.4 Prediction of soil microbial community size, structure and functions from imaging 

spectroscopy 

Figure 5 shows two example spectral reflectance profiles from sites KONZ and MOAB, 

a prairie and a desert site in Kansas and Utah respectively (Table 1). These spectral profiles 

demonstrate the contrasting reflectance of densely and sparsely vegetated plots. The KONZ 

spectral profile is typical of a dense photosynthetic vegetation surface; a peak in green 

wavelengths at around 500nm, caused by reflectance of green light by chlorophyll, low 

reflectance in red wavelengths (around 650nm) caused by absorption of red light during 

photosynthesis, a steep ‘red-edge’ between red and near-infrared (NIR) wavelengths (680 to 

800nm) caused by leaf structures reflecting NIR light, and absorption in SWIR wavelengths 

above 1500nm caused by leaf moisture. The MOAB spectral profile is much more 

characteristic of bare soil, indicated particularly by higher reflectance in red and SWIR 

wavelengths. This demonstrates the contrast in reflectance profiles caused by contrasts in 

vegetation density, bare soil visibility and plant functional traits such as leaf moisture which 

are key to revealing patterns in belowground communities. 

 

  

Figure 5. Hyperspectral reflectance profiles for sites KONZ, a productive prairie site, and MOAB, a sparse 
desert site.  
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PLSR was used to model variation in the six soil microbial properties representing the 

size (total microbial biomass, bacterial biomass, fungal biomass), structure (soil microbial F:B 

ratio) and functions (rates of nitrification and N mineralisation) of soil microbial 

communities. The results of the PLSR models are shown in Figure 6(a-f). Soil microbial 

properties were predicted from spectroscopy with R2 ranging from 0.09 to 0.61, and NRMSE 

ranging from 8% to 14%. Spectral PLSR models were able to explain the most variation in soil 

F:B ratio (R3 = 0.68, NRMSE = 9%) and fungal biomass (R2 = 0.61, NRMSE = 8%). Rates of N 

transformations had lower overall variation explained (R2 = 0.09 and 0.23) but also low errors 

of prediction (NRMSE = 0.13 and 0.14); it can be seen from the plots that rates of N 

transformations are well-predicted in the middle of the range of variation, giving low overall 

errors, but that extremely high or low rates of N cycling are not captured from spectroscopy 

(Figure 6 e, f).  
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Figure 6, a. - f. PLSR models of six soil microbial properties from spectroscopy, showing 
predicted and measured values. Dashed line shows the 1/1 line. Each point represents a 
single field sampling plot, coloured according to the field site. 

a. 

 
R2 = 0.56, NRMSE = 0.12, 8 components 

 

b. 

 
R2 = 0.43, NRMSE = 0.13, 8 components  

 

c. 

 
R2 = 0.61, NRMSE = 0.08, 8 components 

 
d. 

 
R2 = 0.68, NRMSE = 0.09, 6 components  

 

e. 

 
R2 = 0.09, NRMSE = 0.13, 3 components 

 

f. 

  
R2 = 0.23, NRMSE = 0.14, 3 components 
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The contributions of individual spectral bands to the PLSR models are represented in 

Figure 7 (a-f), which show the coefficients between each of the 344 spectral bands used as 

predictors, and all PLSR components. Wavelengths and wavelength ranges which were 

important for each soil microbial property, identified from the plots, are shown in Table 4, 

along with the interpretation of the wavelength range from the literature (Z. Wang et al., 

2020). The coefficient plots of total microbial biomass and bacterial biomass were very 

similar, with key peaks between 700-750nm (red-edge), 1050-1120nm, 1300-1350nm 1700-

1750nm and 1950-2000nm. Fungal biomass had slightly different wavelength peaks to total 

and bacterial biomass models, with overall greater amplitude. Peaks in visible and NIR 

portions of the spectrum were similar, but the fungal PLSR model also had key peaks at 1500-

1550nm, 1700-1750nm, and 2350-2400nm, which are absent for bacterial and total biomass. 

These wavelengths are related to starch and cellulose (1500-1550), cellulose and protein 

(1700-1750) and protein (2350-2400), and were important in recent modelling of foliar 

carbon from spectroscopy across the NEON sites (Z. Wang et al., 2020). The PLSR model of 

F:B ratio had much smaller correlation coefficients across the wavelength range, likely due to 

the smaller number of components used to build this model, with key peaks at 675nm, 760nm, 

940nm, 1130nm and 2000nm. Peaks were in similar wavelength ranges to measures of 

microbial biomass, but in the opposite direction, for example a positive coefficient with red 

visible wavelengths (around 675nm), indicating inverse relationships between F:B ratio and 

the wavelengths, relative to microbial biomass. PLSR models of nitrification and N 

mineralisation had virtually no coefficient peaks across the wavelength range, with some in 

the visible and red-edge regions (400nm – 750nm) and again at 940nm and 1130nm. Peaks 

at 940 and 1140nm in PLSR coefficient graphs have been interpreted by others as artefacts of 

atmospheric correction (Z. Wang et al., 2019). 
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Figure 7 (a. - f.). Coefficient plots showing the coefficient of each individual wavelength in the PLSR models of 
soil microbial properties, based on all components used to build the final model.  

 

a.  

 
 

b.  

 

c.  

 

d.  

 
 

e.  

 

f.  
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Table 4. Important wavelengths and wavelength ranges during PLSR modelling of the six soil microbial 
properties, identified from the coefficient plots. Wavelengths identified as being important for modelling 
aboveground foliar traits from spectroscopy across NEON sites are indicated. 

Soil microbial property Important wavelengths 
Known absorption 

features 

Total microbial biomass & 
bacterial biomass 

700-750 Red-edge 
1050 - 1120  

1300-1350 
Important for modelling leaf 
mass per area, water and 
carotene  

1700-1750 

Important for modelling a 
variety of foliar traits, 
ascribed to cellulose and 
protein 

1950-2000 
Important for modelling a 
variety of foliar traits, 
ascribed to protein 

Fungal biomass 

(as above for total and 
bacterial biomass) 

 

475  

1500-1550 
Starch, 
cellulose 

Wavelengths 
above 
1500nm are 
also 
influenced 
by soil  

1700-1750 
Cellulose, 
protein 

2350-2400 Protein 

F:B ratio 

675 
Red visible wavelengths; 
soils and photosynthesis 

760  

940 
Important for modelling leaf 
mass per area 

1130 

Important for modelling 
foliar carbon, cellulose, 
carotene, chlorophyll, starch 
and water 

2000 Water 

Nitrification & 
N mineralisation 

400-750 Visible and red-edge 

940 
Identified as an artefact of 
atmospheric correction by 
(Z. Wang et al., 2019) 

1130 

Important for modelling 
foliar carbon, cellulose, 
carotene, chlorophyll, starch 
and water  
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3.4 Discussion 

The aim of this study was to establish the extent to which imaging spectroscopy of the 

vegetation canopy can be used to predict variation in soil microbial community size, structure 

and functions across grasslands and shrublands distributed at the continental scale. The 

results demonstrate that continental-scale spatial variation in belowground microbial 

communities is evident in the spectral reflectance patterns of the aboveground vegetation 

surface, and that this link can be used to predict the soil microbial component of grassland 

and shrubland ecosystems, over large spatial extents, from imaging spectroscopy. 

Furthermore, imaging spectroscopy was able to retrieve more variation in soil microbial 

community size and structure than were plant traits measured in-situ. This study adds to the 

growing body of evidence that the potential of imaging spectroscopy to offer new perspectives 

on the biosphere at unprecedented detail and scale is not limited to the aboveground biosphere 

but extends belowground as well (Madritch et al., 2014; Sousa et al., 2021). 

 

3.4.1 Associations between in-situ measured aboveground plant traits and belowground 
microbial properties 

One of the objectives of the study was to establish the extent to which aboveground 

plant traits measured in-situ represented the soil microbial communities below, with a view 

to providing a link between soils and spectroscopy. This was assessed using principal 

components analysis (Figure 3) and random forest (Table 3, Figure 4). PCA showed that 

aboveground and belowground ecosystem properties broadly aligned across the plots in 

groups predicted by the LES; with properties indicative of fast-cycling ecosystems grouped 

together and opposing those indicative of slow-cycling ecosystems. Random forest showed 

that these associations can be used to predict variation in soil communities from aboveground 

traits (variation explained 29% - 57%, Table 3), and that the traits which were important for 

predicting different microbial properties were often those which were aligned with the 

microbial property across the plots, as shown by PCA (Figure 3). 

Relationships between field-measured community-level plant traits and soil microbial 

communities at the 13 NEON sites studied broadly described the LES continuum: from 

acquisitive to conservative plant growth strategies aboveground, matched belowground with 

large, rapid-cycling to small, slow-cycling microbial communities. In particular, SLA was 

closely associated with soil microbial community biomass (Figure 3), which is consistent with 

previous studies finding SLA to be a key trait for predicting soils (de Vries, Manning, et al., 

2012; Grigulis et al., 2013). This finding adds this large-scale grass and shrubland dataset to 
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the existing evidence base for these relationships across a plethora of ecosystems worldwide 

(Cornwell et al., 2008; Freschet et al., 2010; Pérez-Ramos et al., 2012). This is an important 

finding, given that several previous studies have reported that leaf economics relationships are 

less evident among herbaceous relative to woody plants, due to smaller variation in leaf 

lifespan (undermining the fundamental trade-off of the LES) or differing contributions of leaf, 

stem and root traits to overall plant functioning (Freschet et al., 2010; Funk & Cornwell, 2013; 

Pierce et al., 2007).  

Our results suggest that above ground plant traits can be used to predict soil microbial 

communities at the continental scale (variation explained 27% - 59%) (Table 3). The 

proportions of variation explained in microbial properties were comparable to others’ results 

at national and global scales (de Vries, Manning, et al., 2012; Delgado-Baquerizo et al., 2018). 

Soil fungal biomass was the most predictable soil attribute (variation explained 59%; NRMSE 

13%). It has been suggested that soil fungal communities are particularly sensitive to the trait 

syndrome of the aboveground plant community because they tend to be abundant in 

ecosystems with relatively low rates of aboveground biomass production, rendering the 

quality of those inputs more crucial (Grigulis et al., 2013). However, other authors report the 

opposite effect, whereby the quality of inputs is unimportant relative to their quantity in 

unproductive systems (Cavender-Bares et al., 2022). In our study, plant traits indicating litter 

quality were used successfully to distinguish between sites spanning a large gradient from high 

to low productivity. The quantity and quality of litter inputs belowground is not independent, 

as high-quality litter is inherently associated with rapid biomass production (Reich, 2014), 

therefore although only the quality (plant traits) of inputs was explicitly investigated during 

random forest modelling, it is likely that both quantity and quality of inputs contribute to the 

explanation of soil microbial properties across these sites.  

Traits which were most important for predicting belowground microbial properties 

tended to be those which covaried with them according to LES relationships. For example, 

foliar C:N ratio is the key indicator of litter quality, and was an important predictor of soil F:B 

ratio, a key indicator of soil microbial community preference for high or low quality litter. SLA 

was an important predictor trait across for all microbial properties, which was expected from 

previous studies (de Vries, Manning, et al., 2012). However, the other most important 

predictor trait overall was carotene, which was unexpected as this foliar pigment is rarely 

included in field-based studies of aboveground-belowground linkages, and is not clearly 

associated with the LES across these sites (Figure 3). Although the majority of foliar traits 

covaried consistent with LES relationships in this study, the role of photosynthetic pigment 

concentration in ecosystem economics was not clear from our analyses. Chlorophyll indicates 

photosynthetic capacity and would therefore be expected to covary with fast-growth traits such 
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as leaf N and SLA (Croft et al., 2017); however our results showed that the opposite was true 

(Figure 3). This finding suggests that concentrations of foliar pigments are not clearly 

associated with any particular type of soil microbial community, and therefore may not be able 

to contribute to predictive models of soils from aboveground. Random forest models partially 

supported this suggestion in that chlorophyll was not an important predictor for any soil 

microbial properties (Figure 4); carotene however was one of the top three most important 

predictors for five out of six microbial properties.  

Reasons for the unexpected foliar pigment relationships in this study could be the 

interaction of site-specific relationships with the broad-scale, general LES relationships 

evident across the sites at the continental scale. Specifically, the two desert sites MOAB and 

JORN had extremely high levels of foliar pigments despite otherwise conservative 

aboveground and belowground traits, such as low microbial community biomass and SLA 

(Figure 3). Desert plants produce large amounts of carotene to protect leaves against the high 

levels of harmful UV rays experienced in deserts (Mibei et al., 2017). This indicates that 

although there are some associations and trends which are common across diverse grasslands, 

there are other site-specific factors which influence ecosystem processes and community 

traits. Across the continental-scale selection of sites, there were other instances where 

seemingly contrasting ecosystems had similar plant trait and microbial communities. For 

example, plots from the two high-latitude Alaskan sites with sub-zero mean annual 

temperatures, TOOL and DEJU, had acquisitive plant trait syndromes and large microbial 

communities similar to those found in productive, temperate prairie sites such as KONZ 

(Figure 3). A local reason for this rapid-growth plant trait strategy, seemingly at odds with the 

overall patterns of productivity and leaf economics, could be the highly seasonal nature of the 

herbaceous community at the high-latitude sites, characterised by short-lived plants which 

exhibit an acquisitive trait syndrome for their limited seasonal lifespan. This points to 

suggestions made by previous authors (Bardgett et al., 2005) that relationships between 

above- and belowground communities may have an element of seasonal variation; multi-

seasonal monitoring could be an important avenue for further research in efforts to 

understand and monitor the belowground biosphere. From a remote sensing perspective, 

satellite systems produce imagery at regular time intervals and therefore could be valuable for 

such seasonal investigations. However, field sampling efforts would also need to take place 

across seasons to produce coincident in-situ and remote data. 
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3.4.2 Predicting soils from spectral reflectance by remote sensing 

Spectral reflectance of the land surface was able to predict large portions of the 

variation in belowground soil microbial communities, evidencing that strong links between 

imaging spectroscopy and soil communities found by other authors in forests are also evident 

in mixed grasslands and shrublands at the continental scale (Madritch et al., 2014; Sousa et 

al., 2021). PLSR models predicted between 43 and 68% of the variation in soil microbial 

community size and structure, with small errors between 8 and 13% the measured variable 

range. Further to this, for soil total microbial biomass, bacterial biomass, fungal biomass, and 

F:B ratio imaging spectroscopy bands were able to predict more variation than were the set of 

plant traits measured in the field, indicating that a spectral perspective of the vegetation 

community may be able to offer more important information than can be given by the limited 

number of pre-determined plant traits which it is practically feasible to measure in the field. 

Of the six microbial properties studied, canopy spectral reflectance was able to predict 

microbial community structure (F:B ratio) the best using PLSR (R2 0.68; NRMSE 9%). F:B 

ratio is an important, broad measure of soil microbial structure that is widely used in ecology 

as an indicator of soil microbial communities and associated functions, for example the carbon 

storage capacity of the soil biome (Bardgett et al., 1996; de Vries, Bloem, et al., 2012; de Vries, 

Manning, et al., 2012; Orwin et al., 2010). Being able to characterise this soil F:B ratio rapidly 

and over large spatial scales would be valuable for monitoring change in carbon storage 

capacity of ecosystems (Malik et al., 2016). For soil microbial functions, here indicated by rates 

of nitrification and N mineralisation, spectroscopy was able to predict less variation than were 

field-measured plant traits. Nitrogen transformations were modelled well from spectroscopy 

in the middle of their measured range, but that for plots with unusually fast or slow rates of N 

transformations the link to aboveground reflectance was lost. In a contrast to the other trends 

shown, the outlying nitrogen transformation observations were caused by isolated plots rather 

than a whole site. This suggests that localised environmental variables, for example unusual 

topography or a historic soil event which are not evident in the spectral reflectance, are 

influencing the unusual rates of nitrogen transformations in these plots.  

Identifying the links and mechanisms that connect imaging spectroscopy to 

environmental properties on the ground is a challenge for remote sensing (Cavender-Bares et 

al., 2020b). Often, mechanism-led approaches whereby the spectral regions associated with 

known aboveground traits are first isolated, for example through the use of spectral indices, 

are less effective than multivariate approaches, where all spectral bands are used as predictors 

in statistical models and the important spectral regions and potential mechanisms must be 

inferred afterwards (Pau et al., 2022; Van Cleemput et al., 2018). This study supports these 
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conclusions; multivariate PLSR models of soil properties from imaging spectroscopy were able 

to predict more variation than were models of soils from field-measured plant traits, similar 

to previous findings in forests (Madritch et al., 2014). Relationships between remote sensing 

imagery and belowground properties presented here are also stronger than those in a recent 

similar experiment in two contrasting US grasslands, in which remote sensing data was first 

used to derive aboveground vegetation properties, which were then linked to soils (Cavender-

Bares et al., 2022). For a trait to provide a link between imaging spectroscopy and soil 

communities, it must be both important for predicting soils and well-retrieved from imagery. 

SLA and carotene are the two identified traits which link spectra to soils in this dataset. SLA 

is well-known as a key trait indicator of belowground communities in ecology (de Vries, 

Manning, et al., 2012; Delgado-Baquerizo et al., 2018; Leff et al., 2018), but has historically 

been overlooked in remote sensing, though recent studies are addressing this (Van Cleemput 

et al., 2018). Carotene however is not routinely included in field-based trait assessments, 

perhaps due to the expensive gas chromatography needed to measure it. A spectral perspective 

of vegetation surfaces is relatively successful in retrieving carotene (Gitelson et al., 2002; 

Kozhoridze et al., 2016; Ustin, Asner, et al., 2009; Van Cleemput et al., 2018), which could be 

a valuable contribution to plant-trait-based approaches for predicting belowground 

conditions.  

Imaging spectroscopy was overall able to explain more variation in soil microbial 

properties than were the set of field-measured plant traits, indicating that there is some other 

environmental variable or variables represented in the reflectance signal that convey patterns 

of soil microbial communities aboveground. These could be other ‘traits’ not explicitly 

measured in the field survey. For example, pigments and water content, phylogenetic 

variation, species variation, and functional variation (Lausch et al., 2018; Schweiger et al., 

2018). Many of these traits vary together via constellation effects, even if they do not have a 

specific absorption feature. The PLSR coefficient plots show that the red-edge region (700-

800nm) is important for prediction of all three types of soil microbial biomass (Figure 7). This 

region is associated with vegetation greenness or density, therefore describing aboveground 

productivity of the vegetation community which translates into the quantity of plant inputs to 

the soil via litter and root exudates. Quantity of inputs is a key control on soil microbial 

populations, determining the amount of carbon and nutrient resources available (Cavender-

Bares et al., 2022). This was not directly captured through field-measured community-level 

traits, and could therefore be a key reason for the additional explained variation from spectra. 

Besides other sources of biological variation in the vegetation community, there are 

many other environmental and physical variables which canopy-level imagery is influenced 

by. These include an element of random parameters like leaf angles, sun angles, topographic 
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variation, hydrologic variation. In this dataset, a key signal likely contributing to explained 

variation is influence of soils in the canopy reflectance. Total vegetation coverage across the 

plots ranges from 15 to 270%, and low-vegetation pixels were not masked out via NDVI 

threshold before making the plot-level mean spectra, because it was envisaged that the 

coverage of vegetation could be an important environmental variable in itself and therefore 

contribute valuable information to the plot-level spectra (Cavender-Bares et al., 2022; Hauser 

et al., 2021). It can be seen in Figure 5 that an example plot from the MOAB site, a desert site 

in Utah with low vegetation coverage, has a spectral profile characteristic of bare soil. Spectral 

wavelengths in the SWIR region, above 1500nm, respond to soil properties and therefore 

represent a combination of the amount of bare soil visible over the plot (i.e. vegetation 

coverage) and the properties of the soil itself such as soil moisture or biological soil crusts 

(Gaitán et al., 2013; Ustin, Valko, et al., 2009). These wavelengths were important for 

predicting soil fungal biomass much more than total microbial or bacterial biomass, which is 

consistent with expectations that the former would be more dominant in less productive plots 

where the soil surface is more influential on canopy reflectance. This result indicates that bare 

soil areas in sparsely vegetated plots may not necessarily weaken links between spectra and 

belowground communities, and therefore it may be valuable not to mask out bare pixels when 

modelling belowground communities. 

3.4.3 Limitations of PLFA 

The use of phospholipid fatty acid (PLFA) analysis is well-established in the ecological 

literature and is common in studies that use aboveground plant traits to predict properties of 

belowground microbial communities (e.g. De Long et al., 2019; de Vries et al., 2012; Fry et al., 

2017; Grigulis et al., 2013; Lange et al., 2015; Orwin et al., 2010; Waldrop et al., 2017). PLFA 

gives a measure of the biomass of broad microbial groups, such as fungi vs bacteria, or 

saprophytic vs mycorrhizal fungi. However, PLFA is in general an imprecise measure of 

microbial communities, and has some important limitations. 

It is challenging to attribute PLFAs to specific microbial groups, and criticisms of PLFA 

analyses are often related to over-confident attribution of PLFAs to specific groups 

(Frostegård et al., 2011). PLFAs are present in fungi, bacteria and plants in varying quantities 

and even the most commonly used marker PLFAs are not truly exclusive to any one group. For 

example, the PLFAs used in this chapter to indicate fungal biomass (18:2ω6,9; 18:1ω9) are 

common in fungi and two of the most commonly used fungal marker PLFAs in the literature 

(Quideau et al., 2016). However, these PLFAs are also present in plants and bacteria to some 

extent, and therefore some authors have recommended that in the presence of plant material, 

these PLFAs should not be used to indicate fungi (Joergensen, 2022). However, others argue 
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that the proportion of root material remaining in soils after sieving is small enough that 

variations in 18:2ω6,9 are still overwhelmingly derived from fungi and therefore these PLFAs 

should continue to be used (Frostegård et al., 2011; Kaiser et al., 2010). Because of the 

uncertainty inherent in attributing PLFAs to specific groups, PLFA markers may be more 

confidently attributed to a specific group in some ecosystems than in others. For example, the 

small amount of fungal marker 18:1ω9 which is present in bacteria has a greater effect on the 

PLFA concentration in bacteria-rich agricultural soils than bacteria-poor coniferous forests 

(Frostegård et al., 2011). It may consequently be particularly challenging to use PLFAs to 

indicate microbial groups across a range of contrasting ecosystems, compared to using PLFAs 

to compare a single ecosystem over time. Therefore, in this chapter a cautious approach was 

taken and only the PLFAs most widely used to indicate either fungi or bacteria across different 

ecosystems were attributed to the group. As a result, estimated biomass of the fungi or bacteria 

group may be conservative at some sites.  

In order to enhance the PLFA analysis presented in this chapter, more detailed 

attribution of PLFAs to different groups could be carried out on a site-by-site basis, taking into 

consideration the wider environmental conditions at each site. In particular, the PLFA 16:1ω5 

is associated with arbuscular mycorrhizal fungi and has recently been recommended for use 

as an indicator for this group (Joergensen, 2022). In this chapter, 16:1ω5 was not included in 

the fungal biomass estimate due to the conservative approach to attributing PLFAs to specific 

groups. 16:1ω5 has also been observed in bacteria and therefore is sometimes recommended 

for use as a fungal marker only in ecosystems with low bacterial abundance (Willers et al., 

2015). In addition, mycorrhizal fungi are considered to be less directly related to ecosystem-

level decomposition rates than saprotrophic fungi, being more closely associated with root 

traits and specific plant species, which are not the focus of this thesis. However, mycorrhizal 

fungi are becoming more of a research focus, and have been found to have significant indirect 

effects on ecosystem carbon and nutrient cycling, for example influencing saprotrophic fungi 

populations by competing with them for nutrients (Orwin et al., 2011). Therefore, the PLFA 

analysis in this chapter could be enhanced by the inclusion of 16:1ω5 to indicate arbuscular 

mycorrhizal fungi. 

Alternative measures of soil microbial communities include measuring the activity of 

specific enzymes in the soil which are associated with different microbial groups and functions  

(e.g. Madritch et al., 2014), and analysis of marker genes which can be attributed with high 

precision to microbial taxa. The NEON data product Soil microbial group abundances 

(DP1.10081.001) was tested for relationships with other aboveground and belowground 

properties in the initial stages of this research chapter, but no relationships were found and 

the data product has since been discontinued due to issues widely reported from the 
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community. Comparison of multiple independent measures for soil microbial communities 

increases confidence in results, and could be used to enhance the research presented in this 

chapter should data become available in the future. 

 

3.5 Conclusions and further work 

These results demonstrate the powerful potential of imaging spectroscopy to retrieve 

important information about spatial variation in the belowground biosphere, which is an 

important component of biogeochemical cycles and under significant interacting pressures 

worldwide from climate and land use changes. This potential is not limited only to forest 

ecosystems, where promising results have previously been demonstrated (Madritch et al., 

2014; Sousa et al., 2021), but as shown here also applies to mixed grassland and shrubland 

communities which are traditionally more challenging to interpret with remote sensing due to 

communities being heterogenous at the sub-pixel scale (Van Cleemput et al., 2018). 

Grasslands and shrublands are extensive across the Earth’s surface and dynamics within and 

between them are especially relevant to human activities including agriculture, making these 

ecosystems, including their soil component, especially crucial to study. The contribution of 

imaging spectroscopy lies both in offering a different perspective of the vegetation community, 

which simultaneously accounts for multiple axes of biological variation including traits, 

species and genetics which it is impractical or even impossible to fully account for in the field, 

and in scaling-up studies to unprecedented spatial extents and detail. The plot size used in this 

study, 40x40m, is comparable to the pixel resolution of forthcoming hyperspectral satellite 

missions such as EnMAP and HyspIRI (Anderson, 2018; Pettorelli et al., 2018a), which could 

be invaluable for scaling up relationships. Conversely, this work demonstrated the ability of 

imaging spectroscopy to distinguish between soil communities at highly contrasting grassland 

and shrubland sites; it would also be valuable to attempt to resolve more subtle differences in 

soil microbial communities from airborne imaging spectroscopy, for example over a single 

site. This would be a step towards being able to resolve temporal differences in soil 

communities – i.e. change over time – which are likely to be smaller than broad scale spatial 

differences. Airborne data across single NEON sites over multiple years will continue to 

become available in the coming decades, and will enable future studies to be carried out across 

smaller spatial extents which are more relevant for monitoring, land management and 

identifying mechanisms than the continental set of sites presented here. Multivariate 

statistical methods were found in this study, in agreement with previous work (Van Cleemput 

et al., 2018), to be highly effective at utilising the spectral detail of imaging spectroscopy in 

grasslands, but they can also obscure mechanistic links. Further work is needed to disentangle 
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the physical and biological properties of the vegetation community that translates patterns of 

soil microbial communities into aboveground reflectance. As the NEON network progresses 

through its projected lifespan and more data becomes available from the sites, this will provide 

a valuable resource for such studies, improving our understanding of the belowground 

biosphere at a range of spatial scales. 
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4. Retrieving aboveground plant functional traits from 

Sentinel-2 across North American grasslands 
 

Abstract 

Foliar traits are important ecosystem parameters which control ecosystem 

functioning, indicate ecosystem response to changing environmental conditions and can be 

used as proxies for biological diversity (Funk et al., 2017; Hauser et al., 2021). There have been 

significant recent efforts to document and characterise plant trait variation across the worlds 

biomes, using databases of networked field sampling campaigns and recently using remote 

sensing data. Spectral properties of the vegetation community surface, captured remotely by 

sensors aboard aircraft and satellites, can reflect a number of important foliar traits relating 

to plant growth strategies and carbon capture, including chlorophyll content, carbon and 

nitrogen and morphological properties such as specific leaf area (SLA). However, there has 

thus far been a significant bias towards forests in trait retrieval from remote sensing, with 

grassland systems remaining relatively understudied at large scales, and complex systems 

incorporating mixed areas of grassland and woodland even less frequently investigated despite 

being of significant conservation importance. Recent work characterising grassland traits 

from detailed hyperspectral remote sensing has shown promising results, but it remains 

unknown to what extent satellite data, which has greater global coverage but at coarser 

spectral and spatial resolution, may also be able to retrieve grassland plant traits. Here, we 

determine the potential of the Sentinel-2 satellite for estimating 20 grassland foliar traits at 

the continental scale, using field sites from the National Ecological Observatory Network 

(NEON). Morphological and biochemical traits were modelled successfully by random forest, 

using Sentinel-2 satellite data along with climate variables, with variation explained 

comparable to that found in hyperspectral studies (23.1% - 75.8%). The most successfully-

modelled traits were Specific Leaf Area (SLA) (66.5%, NRMSE 13%), a morphological trait 

relatively under-studied in grasslands but central to plant growth strategies, along with 

biochemical traits carbon (58.7%, NRMSE 13%), and cellulose (variation explained 44.9%, 

NRMSE 12%), and leaf macronutrients phosphorus (variation explained 75.8%, NRMSE 11%), 

and potassium (variation explained 63.4%, NRMSE 11%). The results also suggest that 

knowledge of vegetation composition, specifically the proportion of woody vegetation present 

in the community, are important for effective trait retrieval. These results indicate that satellite 

remote sensing, and Sentinel-2 in particular, has the potential to retrieve grassland foliar traits 

across large, continental geographic extents, expanding the reach of trait-based approaches to 

an extensive and globally important ecosystem. 
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4.1 Introduction 

Foliar traits are the physical and chemical properties of leaves such as leaf area, water 

content, concentrations of nutrients and elements and proportions of complex carbohydrates 

such as lignin and cellulose. The traits of a leaf control the rate at which important plant 

processes and interactions with the environment take place; for example greater leaf area and 

chlorophyll content in leaves facilitates faster rates of photosynthesis, or larger proportions of 

dry matter in the form of tough, complex carbon structures such as lignin promote leaf 

longevity and slow decomposition of leaves when they are transferred to the soil as litter. When 

traits are considered together as a trait ‘syndrome’ there are consistent associations between 

traits which facilitate acquisitive or conservative plant growth strategies, which have been 

found across a range of plant life forms all over the globe (Díaz et al., 2016; Reich, 2014; I. J. 

Wright et al., 2004). When plant traits and associated growth strategies are scaled up to the 

community, landscape or even regional level, they are important drivers of global 

biogeochemical cycles (Funk et al., 2017; Lavorel & Grigulis, 2012). Trait composition can be 

used to infer the rates of important plant-driven ecosystem processes such as carbon storage 

at the ecosystem scale, to predict ecosystem-level responses to environmental disturbance 

(Grigulis et al., 2013; Gross et al., 2008, 2009), and to infer other closely linked aspects of the 

system, such as the abundance and structure of microbial communities belowground 

(Bardgett, 2017; de Vries, Manning, et al., 2012; Legay et al., 2014; Orwin et al., 2010; Wardle 

David A. et al., 2004). The diversity of plant functional traits is also emerging as an important 

axis of biodiversity (Hauser et al., 2021; Jetz et al., 2016; Rossi et al., 2020, 2021). Therefore, 

understanding the variation of plant traits in space and time across large geographical extents 

is an emerging field of research effort in ecology.  

Plant trait variation occurs both between and within species, termed interspecific and 

intraspecific variation. Variation in traits between species contributes the largest proportion 

of trait variation, and species mean trait values can be aggregated to the community level using 

species composition data to create community-weighted mean (CWM trait values), which have 

been linked to ecological functioning across a wide range of environments (de Vries, Manning, 

et al., 2012; Grigulis et al., 2013; Manning et al., 2015; Rossi et al., 2020). CWM approaches 

to ecosystem-level trait assessment can be used in conjunction with trait values sourced from 

worldwide trait databases such as TRY, which constitute an important resource for trait-based 

research (Gallagher et al., 2020; Kattge et al., 2011). However, CWM and database approaches 

that use species means are not able to effectively capture the portion of trait variation that 

occurs within a species, or intraspecific variation, which contribute around 30% of total trait 

variation (Albert et al., 2010; Siefert et al., 2015; Violle et al., 2012). As well as varying between 

individuals of the same species, traits can vary plastically over time in response to change, for 
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example root length among individuals increasing as a response to lowering of water tables 

(Mao et al., 2018). Community-level trait change from species-based approaches occurs 

through succession, as species’ relative competitiveness leads to an increase or decrease in 

abundance in the changed environment, and with it a change in CWM traits (Suding et al., 

2003). For many ecosystems, succession takes place over long timescales and so accounting 

for the plastic, intraspecific component of trait variability in large scale models is crucial (Funk 

et al., 2017).  

Being able to effectively capture intraspecific variation and trait plasticity are 

important steps towards realising the potential of plant trait-based approaches, which despite 

advances are still regularly out-performed by species based approaches in efforts to model 

environmental properties (Hauser et al., 2021; Leff et al., 2018). Many authors recommend 

more extensive and thorough field measurement of plant traits, especially in regions of the 

globe which are under-sampled, and while this is a fundamentally important research effort, 

it is challenging and possibly unfeasible to be able to capture the variation of plant traits 

worldwide at sufficient spatial and temporal detail using ground-based methods alone (Asner, 

2013; Jetz et al., 2016; Schimel et al., 2015). Remote sensing offers a new perspective for 

assessing plant trait variation, by retrieving spectral properties of the vegetation community 

that are known to be closely linked to functional traits, rapidly and across large spatial extents. 

Remote sensing is increasingly recognised as a valuable and promising tool to augment 

fundamental field-based data collections and expand our understanding of plant trait 

variation across the worlds biomes (Asner, 2013; Asner & Martin, 2016; Dana Chadwick & 

Asner, 2016; Jetz et al., 2016). 

Remote sensing of plant traits is fundamentally based on the relationships between 

foliar traits and the reflectance and absorption of electromagnetic radiation which is detected 

by the sensor (Asner et al., 2015; Cavender-Bares et al., 2017; Kokaly et al., 2009; Ustin, Asner, 

et al., 2009). Some traits which directly interact with radiation have characteristic absorption 

features in reflectance spectra; for example chlorophyll is a trait commonly retrieved using 

remote sensing because it directly absorbs blue and red wavelengths for photosynthesis 

(Clevers & Gitelson, 2013; Revill et al., 2019; Ustin, Asner, et al., 2009). Other traits are 

detected through constellation effects, where the trait itself does not have a particular 

absorption feature but covaries with other traits which do (Dana Chadwick & Asner, 2016; 

Nunes et al., 2017). The traits most commonly retrieved from remote sensing are not always 

those for which ecological understanding is the most developed – for example, there is a 

remote sensing bias towards chlorophyll and other pigments, and an ecological bias towards 

structural properties such as vegetation height and SLA which are relatively easy to assess in 

the field. Previous reviews have recommended that future remote sensing studies include 
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morphological traits SLA and LDMC in order to be able to link spectral trait retrieval with 

ecological understanding at large scales (Van Cleemput et al., 2018). The current body of 

research retrieving foliar traits from remote sensing includes studies carried out at the local 

(A. M. Ali, Darvishzadeh, & Skidmore, 2017; Pau et al., 2022; Rossi et al., 2020; Schneider et 

al., 2017), regional (Asner et al., 2015; Ma et al., 2019; Z. Wang et al., 2020) and global 

(Aguirre-Gutiérrez et al., 2021; Butler et al., 2017; Moreno-Martínez et al., 2018) scale.  

Despite a growing body of evidence linking remote sensing data to plant traits across 

forests, and imaging spectroscopy to traits in grasslands (Van Cleemput et al., 2018), grassland 

ecosystems remain under-studied, and rarely studied using satellite data (Pau et al., 2022; 

Rossi et al., 2020; Veldman et al., 2015). One challenge of using satellite data to retrieve field-

measured traits is acquiring satellite imagery which is temporally matched to field data. In 

hyperspectral studies, the sensor is often deployed specifically to gather data equivalent to the 

field campaign; for example NEON coordinates airborne observation platform (AOP) flights 

with plant trait sampling on the ground. Satellite systems have regular return periods, which 

makes it possible to temporally coordinate satellite overpasses with field data collection, as 

some authors have begun to do recently (Hauser et al., 2021). However, accounting for satellite 

schedules is not common when planning field campaigns, where many other factors impact 

the logistics of data collection (Cavender-Bares et al., 2020a). Temporal offset between field 

and remote measurements is important, because some plant traits such as pigments and water 

content are variable over short timescales (Croft et al., 2017). However, it has yet to be 

explicitly tested the effect of increasing temporal offset on the link between satellite-derived 

reflectance and various plant functional traits. 

Another challenge for satellite remote sensing particular to grasslands is the size of 

individual organisms relative to the size of image pixels; where in a forest individual tree 

crowns can often be delineated in remote sensing imagery, in grasslands there are likely to be 

mixtures of species and also higher-order plant lifeforms such as graminoids, shrubs and trees 

within a single image pixel. This mixing becomes more likely with increasing size of the image 

pixel, so is particularly pertinent to satellite remote sensing which typically has pixel sizes of 

over 10x10m. While trait-based approaches which characterise the surface as a continuous 

grid of trait values, rather than a mix of categorical species or functional types, could be 

particularly relevant to the biological assessment of such mixed pixels, spectral mixing of 

multiple species and lifeforms is known to reduce the strength of relationships between 

spectra and foliar traits, relative to homogenous single-species reflectance signals (Hacker et 

al., 2022). Mixing of grassland and woodland occurs at sub-pixel scales in ecosystems which 

are widespread and of particular importance for conservation and human livelihoods, 

including in savannah ecosystems, at grassland-woodland boundaries and in places where 
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land cover change from grassland to woodland or vice-vera is taking place (House et al., 2003; 

Ratajczak et al., 2012; Sexton et al., 2015; Soliveres et al., 2014; Veldman et al., 2015). It is 

therefore important to include these mixed grassland-woodland areas in empirical models of 

plant traits from remote sensing, despite the challenges. Trait mapping over mixed grassland-

woodland landscapes has only been attempted by a handful of studies using hyperspectral 

imaging spectroscopy, from which results have been mixed and the diversity of the grassland 

community at small spatial scales identified as a reason for model errors (Dahlin et al., 2013; 

Hacker et al., 2022; Hacker & Coops, 2022; Z. Wang et al., 2020).  

This study will address these research gaps by modelling variation in 20 foliar traits 

across diverse grassland ecosystems at the continental scale, using multispectral satellite data 

from Sentinel-2 in combination with climate information to answer the overall research 

objective; establishing to what extent aboveground plant functional traits can be retrieved in 

grasslands across large spatial extents from Sentinel-2. Further to this overall aim are two 

specific objectives. First, to establish the extent to which heterogeneity of land cover and 

vegetation composition at grassland sites impacts the ability of spectral data to retrieve foliar 

traits, and whether the herbaceous and woody portions of vegetation at these grasslands can 

be modelled together. Finally, we will test the impact on model performance of varying the 

maximum temporal offset between satellite imagery and field sampling that is permitted when 

matching in-situ observations to spectral data. This is an important methodological 

consideration when carrying out investigation of surface properties from satellite data, as it 

simultaneously affects the quality and the quantity of matched field and spectral observations.  
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4.2 Methods 

4.2.1 Study sites and sampling strategy 

Study sites and in-situ data for this study were sampled from the National Ecological 

Observatory Network (NEON). NEON is a network of sites distributed across North America, 

which collect ecological and climate data with the purpose of understanding the impacts of 

climate and land use change on continental-scale ecology (Kampe et al., 2010). The sampling 

design of NEON has been created with a view to linking ecological data on the ground with 

remote sensing data, both the network airborne spectroscopy platform and satellite data such 

as Sentinel-2. The 81 sites in the network span many different ecosystem and land cover types, 

and many sites are characterised by more than one type of ecosystem. Plant traits are 

measured every five years at NEON sites as part of the broad suite of terrestrial and aquatic 

environmental data collection which is standardised and reproducible across the network 

(Barnett et al., 2019b; Kampe et al., 2010). For this study, 11 sites were sampled from the 

network. These were sites at which grassland is a dominant land cover type, according to a 

site-wide classification based on the National Land Cover Definition (NLCD), and which had 

plant trait data available between 2017 and 2020. The eleven grassland sites chosen for this 

study from the NEON network span a latitudinal gradient of 18 -47° (Figure 8) and climate 

gradients of 0.7 - 26°C mean annual temperature and 367 – 1081mm mean annual 

precipitation (Table 5). Values of the Global Aridity Index (GAI) for sites range from 2142 

(semiarid) to 5901 (dry subhumid) (Zomer et al., 2022). 

 

Figure 8 Location map of the eleven NEON grassland sites, distributed across the North American continent 
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Table 5. Details of the eleven grassland sites in this study, including location and site level averages of the five climate variables used in modelling. 
Temperature seasonality is given by the annual standard deviation of temperature x 100, precipitation seasonality is the coefficient of variation (C.V.) of 
annual precipitation. Global Aridity Index (GAI) is unitless, and has been multiplied by a factor of 1000; lower GAI indicates more arid sites. 

Site ID Dominant landcover classes Lat ° Long ° 
Elevation 

(m) 
MAT 
(°C) 

MAP 
(mm) 

Temperature 
Seasonality (°C) 

Precipitation 
seasonality 

(mm) 
GAI 

DCFS Grassland/Herbaceous 47.179 -99.125 575 4.4 437 1259 71 3830 

WOOD 
Emergent Herbaceous Wetlands, 

Grassland/Herbaceous 
47.138 -99.247 591 4.3 421 1262 74 3695 

NOGP Grassland/Herbaceous 46.785 -100.915 589 5.7 427 1219 65 3454 

YELL 
Evergreen Forest, 

Grassland/Herbaceous, 
Shrub/Scrub 

44.947 -110.511 2133 2.3 543 908 17 4681 

CPER Grassland/Herbaceous 40.826 -104.727 1654 9 367 886 60 2142 

NIWO 
Evergreen Forest, 

Grassland/Herbaceous 
40.045 -105.57 3490 0.7 626 715 18 5207 

KONZ 
Deciduous Forest, 

Grassland/Herbaceous 
39.097 -96.568 414 12.3 890 1028 51 5901 

SJER 
Evergreen Forest, 

Grassland/Herbaceous, 
Shrub/Scrub 

37.104 -119.734 400 16.6 545 721 85 2573 

OAES 
Grassland/Herbaceous, 

Shrub/Scrub 
35.41 -99.062 519 15.5 701 932 50 3598 

CLBJ 
Deciduous Forest, 

Grassland/Herbaceous 
33.394 -97.588 272 17.4 869 829 36 4669 

LAJA 

Cultivated Crops, 
Grassland/Herbaceous, 

Pasture/Hay 
 

18.026 -67.076 16 26 1081 134 53 5471 
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Foliar traits at NEON grassland sites are sampled from 20 sampling plots, measuring 

20x20m, distributed across field sites so as to capture the full variation of environmental 

conditions such as elevation, and also the full range of land cover types across the site. 

Herbaceous vegetation is sampled from plots using a clip strip, measuring 0.1 x 2m, from 

which all aboveground biomass is harvested and homogenised before foliar trait assessment 

in the laboratory. The average foliar trait value from all individual leaves harvested from the 

clip strip is given as the community-level trait value. Many of the grassland-dominated sites 

in NEON have significant portions of woody vegetation present across the landscape, both as 

large woody areas and as isolated individuals in the herbaceous-dominated land cover (Figure 

9). Although this study is focused on grassland ecosystems, the distinction between grassland 

and forest at many of the sites is ambiguous (Figure 9, c.), and one of the study objectives is to 

determine to what extent empirical models are able to capture trait variation from spectral 

reflection across as well as within vegetation types. Therefore trait measurements from woody 

plants across the sites were included in some of the trait modelling from Sentinel-2 in this 

study. Prior to 2019, woody plants present in grassland sites in NEON were sampled according 

to their abundance at the sampling plot level, with species constituting >25% aerial coverage 

of the plot sampled for traits. However, after 2019 the sampling protocol for woody individuals 

changes to reflect a site-based rather than a plot-based approach, with particular taxa targeted 

for sampling according to species richness at the site level (Weintraub, 2022). Target-based 

sampling at the site level means that woody plant trait samples in the NEON plant trait data 

product (DP1.10026.001) are not necessarily representative of community-level traits at the 

scale of the 20x20m field plot. Therefore, rather than aggregating plant trait values to the plot 

level, field samples (clip strips and woody individuals) were precisely geo-located to within 

1.25m using the NEON data product Woody vegetation structure (NEON.DP1.10098). The 

precise location of in-situ plant trait observations was used to identify the single 

corresponding Sentinel-2 pixel from which to source spectral data, making the assumption 

that the clip strip or woody individual sample was the dominant influence on reflectance of 

the land surface for the surrounding 10x10m area covered by the Sentinel-2 pixel. Any plant 

trait samples which were spatially located within the boundaries of the same Sentinel-2 pixel 

were excluded from further analysis.  

Between 13 and 33 field-measured plant trait observations were available for analysis 

from each site (n=11), including both herbaceous clip strip and woody individual samples 

(Figure 9a). Herbaceous samples across the sites originated from areas of seven different land 

cover classes across the grasslands, the proportions of which are shown in Figure 9b. There is 

considerable variation in species composition and landscape heterogeneity across the sites, 

and only three of the eleven grassland sites in the NEON network, comprised of 81 sites in 
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total, were characterised purely by herbaceous vegetation and land cover classed as grassland 

(DCFS, CPER, NOGP). Samples of herbaceous vegetation from all land cover types found 

across the predominantly grassland sites were included in trait models, for example samples 

of herbaceous vegetation originating from a wooded area of the grassland, because it is 

important to capture the full variation of land cover types and heterogeneity present across a 

range of natural and managed grasslands, in order to build models which are representative 

of a range of landscapes found at the continental scale. The extent to which foliar trait-spectra 

relationships in herbaceous plants are consistent across different land cover classes is not well 

understood and is a key part of this investigation. Figure 9, c. shows two aerial photographs of 

sites with various vegetation types spatially arranged both in distinct areas of woodland and 

grassland, and as a mixed matrix which is heterogenous at finer scales than Sentinel-2 

(10x10m).  
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a. 

 

 

b.  

 

 

c.   

Figure 9 a. Bars show the number of matched field and satellite observations from each of the eleven grassland 
sites, coloured by vegetation type. b. Pie charts showing the breakdown of land cover classes represented by 
herbaceous vegetation samples at each site. Land covers are assessed using the National Land Cover Database, 
and sites are ordered left-right from the highest to the lowest proportion of land cover class grassland. Site 
YELL is not shown as there were no herbaceous samples collected from this site. c. Aerial photographs showing 
the distribution across the landscape of mixed herbaceous and woody vegetation types at NEON sites SJER 
(left) and CLBJ (right), taken from the NEON flight survey (Credit: NEON Science).  
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4.2.2 Foliar functional traits 

Twenty foliar traits from the NEON Plant physical and chemical traits data product 

(DP1.10026.001) were modelled from Sentinel-2 MSI imagery. Traits included specific leaf 

area (SLA), leaf dry matter content (LDMC), carbon content and C:N ratio, all of which are 

important traits for determining plant growth strategies and associated ecosystem economics 

and have been identified as priority traits for retrieval with remote sensing (Van Cleemput et 

al., 2018). Plant biochemical traits lignin and cellulose are indicative of leaf longevity and slow 

decomposition in the ecosystem, but are also relatively under-studied and authors often report 

large errors in models (Z. Wang et al., 2020). Nitrogen, phosphorus and potassium are key 

nutrients for plant growth and therefore elements which are strongly associated with 

photosynthesis and biomass production at the vegetation community level. Three 

photosynthetic pigments were modelled; chlorophyll-a (chl-a), chlorophyll-b (chl-b) and 

carotene. These pigments are some of the most commonly retrieved traits in remote sensing 

studies and have direct influence on the reflectance properties of vegetated surfaces (Gitelson 

et al., 2002; Homolová et al., 2013b; Revill et al., 2019; Ustin, Asner, et al., 2009). Finally, 

eight major and minor trace foliar elements were modelled; calcium, magnesium, sulphur, 

manganese, copper, iron, boron and zinc. Units of the 20 foliar traits, their range and 

distribution can be found in Figure 10. Photosynthetic pigments were converted to units of 

concentration per area of leaf (Poorter et al., 2014). Per-area pigment concentration is relevant 

for a spatial remote sensing perspective, and previous trait mapping across NEON sites from 

hyperspectral data found that pigments were retrieved more accurately on a per-area basis 

than a per-mass basis (Z. Wang et al., 2020). Foliar trait records were downloaded from the 

NEON data repository, and geo-located and pre-processed in R using the packages 

neonUtilities and geoNEON (Lunch et al., 2022). 

4.2.3 Satellite data acquisition and pre-processing 

Multispectral satellite data from Sentinel-2 was sourced, pre-processed and 

downloaded using Google Earth Engine (Gorelick et al., 2017a). Sentinel-2 bands representing 

the visible, red-edge (RE), near infra-red (NIR) and short wave infra-red (SWIR) regions of 

the spectrum were selected, details of which can be found in Table 6. RE and SWIR bands were 

resampled to 10 x 10 m spatial resolution, in order to match the resolution of the visible bands. 

In addition to the individual spectral bands, five spectral indices were calculated and included 

as predictors in the foliar trait models (Table 6). These indices have been used by previous 

authors for retrieving foliar traits from satellite and hyperspectral data, in forest and grassland 

ecosystems. The normalised difference vegetation index (NDVI) is the most well-known 

vegetation index, and is strongly associated with vegetation productivity and associated 
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properties such as density, coverage and biomass (Pettorelli et al., 2005; Ren & Feng, 2015). 

The enhanced vegetation index (EVI) is an alternative to the NDVI, also capturing productivity 

but unlike the NDVI does not saturate in scenarios of high vegetation density, and has 

therefore been used to capture traits over forests (A. M. Ali, Darvishzadeh, & Skidmore, 2017; 

A. M. Ali, Darvishzadeh, Skidmore, et al., 2017; Wallis et al., 2019); however, Pau and 

colleagues found that NDVI also showed signs of saturating at the NEON grassland site KONZ, 

which is one of the sites in this study (Pau et al., 2022). Therefore, EVI was also included in 

our selection of indices. By contrast, in areas of low vegetation coverage where surface soil may 

have an influence on reflectance, the modified soil adjusted vegetation index (MSAVI) is used 

to reduce the effect of background soils on apparent vegetation. MSAVI has been used for trait 

retrieval in forests (Aguirre-Gutiérrez et al., 2021; A. M. Ali, Darvishzadeh, & Skidmore, 2017), 

although some have reported that it does not improve spectral retrieval of grassland properties 

relative to NDVI, even in sparsely vegetated areas (Ren & Feng, 2015). The chlorophyll red-

edge index (Clre) was developed specifically to take advantage of the relatively high spectral 

resolution red-edge bands on Sentinel-2, and has been found to retrieve canopy chlorophyll in 

grass and croplands (Clevers & Gitelson, 2013). The normalised difference moisture index 

(NDMI, also termed normalised difference water index) utilises the short-wave infrared 

portion of the spectrum to retrieve the water content of the canopy (A. M. Ali, Darvishzadeh, 

& Skidmore, 2017; I. Ali et al., 2016; Obermeier et al., 2019).  

We selected the nearest suitable (i.e. cloud and shadow -free) satellite image pixel to 

the date of field sampling for each sampling location, up to a maximum of fourteen days either 

side of the field sampling date. Where two satellite images were available and equidistant in 

time, the earlier image was chosen. The resulting dataset consisted of 237 plant trait 

observations, matched with the nearest high-quality Sentinel-2 image pixel within a fourteen-

day window. To determine the influence of temporal offsets between field sampling and image 

acquisition on subsequent trait models, the temporal offset between field and spectral sample 

collection was calculated and categorised into one of four time categories: one-day (offset <= 

1); five-day (offset 2 - 5); seven-day (offset 6 - 7) and fourteen-day (offset 8 - 14). The 

proportion of sampling plots in each time category are shown in Figure 13, a. 
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Table 6. Details of the predictor variables used to model the foliar traits 

Category Index Description References 

Visible 

B2 Blue visible light  

B3 Green visible light   

B4 Red visible light  

Red-edge 

B5 
Narrow Sentienl-2 red edge 

bands 

 

B6  

B7  

Near Infra 

Red 
B8 Near infra red  

 

Short Wave 

Infra Red 

B11 Associated with vegetation 

moisture content and 

phenolic compounds 

(Couture et al., 2016) 

B12 

Spectral index 

NDVI (NIR – Red)/(NIR + Red) 

(A. M. Ali, 

Darvishzadeh, & 

Skidmore, 2017; A. 

M. Ali, 

Darvishzadeh, 

Skidmore, et al., 

2017; Ren & Feng, 

2015) 

EVI 
2.5(NIR-Red)/ 

NIR + 6Red - 7.5Blue + 1 

(A. M. Ali, 

Darvishzadeh, 

Skidmore, et al., 

2017; Vermote et al., 

2016; Wallis et al., 

2019) 

Clre (B7/B5)-1  
(Clevers & Gitelson, 

2013) 

NDMI (NIR-SWIR1)/(NIR+SWIR1) 

(A. M. Ali, 

Darvishzadeh, 

Skidmore, et al., 

2017) 

MSAVI2 

(2 * Band 5 + 1  

– sqrt ((2 * Band 5 + 1)2  

– 8 * (Band 5 – Band 4))) 

/ 2 

(Aguirre-Gutiérrez et 

al., 2021; A. M. Ali, 

Darvishzadeh, 

Skidmore, et al., 

2017; Qi et al., 1994; 

Ren & Feng, 2015) 

Climate 

MAT 

Control the resources 

available for plant growth and 

therefore plant traits 

 

MAP  

Temperature 

seasonality 

 

Precipitation 

seasonality 

 

GAI 
The ratio of precipitation to 

potential evapotranspiration 

(Zomer et al., 2022) 
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4.2.4 Climate data 

Climate is a key driver of aboveground plant traits across large geographic extents, 

therefore variation in traits due to climate was accounted for in the models of foliar traits by 

including climate variables as predictors (Table 6). Climate data was sourced from Worldclim, 

as 30-year averages delivered in 1 km grid squares (Fick & Hijmans, 2017; Hijmans et al., 

2005). Five climate variables were retrieved: mean annual temperature (MAT), mean annual 

precipitation (MAP), and their annual variability, termed temperature seasonality (annual 

standard deviation of temperature) and precipitation seasonality (annual coefficient of 

variation of precipitation). The global aridity index (GAI) was also used, which gives the ratio 

of precipitation to potential evapotranspiration, and is commonly used as a predictor of plant 

traits and associated ecosystem properties at large scales (Delgado-Baquerizo et al., 2018; 

Zomer et al., 2022).  

4.2.5 Statistical analysis 

Random Forest (RF) modelling was used for foliar trait estimation (Breiman, 2001). 

Random forest is a machine learning algorithm which is often used in large-scale remote 

sensing studies, and has been used to retrieve foliar traits (Aguirre-Gutiérrez et al., 2021; 

Moreno-Martínez et al., 2018; Thomson et al., 2021) as well as other ecosystem properties 

such as diversity (Fauvel et al., 2020; Harris & Baird, 2019; Y. Zhao, Yin, et al., 2022). Benefits 

of random forest include the algorithm’s ability to account for multiple types of predictor 

variable and the output of variable importance scores. 

We developed individual RF models to predict each of the 20 traits from a combination 

of spectral reflectance, spectral indices and climate variables. We repeated this analysis using 

different combinations of satellite and field data, to determine the influence of grassland 

vegetation composition on trait retrieval. The first set of RF models used only herbaceous 

vegetation samples collected across the sites (n=167), and the second set of models included 

all vegetation samples together, i.e. both herbaceous clip strip samples and woody individuals 

found across the sites (n= 237). For both model runs, the feature selection algorithm Boruta 

was used to select only the most relevant predictor variables for each trait model (Degenhardt 

et al., 2019; Kursa & Rudnicki, 2010). Each trait model was constructed with 1000 trees and a 

model optimised mtry using the package RFUtilities (Evans & Murphy, 2017). Due to the 

relatively low sample numbers, model accuracy was assessed using out-of-box (OOB) 

validation. For each trait model, we obtained the variation explained (%) and the MSE, which 

was subsequently transformed and reported as the RMSE. We used the variable importance 
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RF output metric (% increase MSE) to identify which predictor variables were the most useful 

for explaining variation in each foliar trait.  

Because random forest is a stochastic algorithm, each trait was modelled 100 times 

and the mean variation explained, RMSE and importance of each predictor variable were 

calculated and are presented as the final model performance statistics for each trait (Aguirre-

Gutiérrez et al., 2021). Standard deviation of variation explained across the 100 model runs 

was <0.01 for all foliar traits, indicating that the models were stable (results not shown). RMSE 

was normalised by the range of the measured trait value in order to be able to compare model 

results directly to those recently achieved over the same sites using hyperspectral data (Z. 

Wang et al., 2020). To investigate the effect of temporal offsets between in-situ data collection 

and satellite data retrieval on model performance, the RF modelling was repeated a further 

three times but this time restricting the dataset to those observations categorised as having (i) 

a seven-day, (ii) five-day or (iii) one-day temporal offset between the image and field data 

collection dates. 

Finally, variation partitioning, based on redundancy analysis, was carried out in order 

to show the proportion of variation in each foliar trait that was attributable to the spectral and 

the climate predictor variable groups uniquely and in combination (Borcard et al., 1992; 

Löfgren et al., 2018; Weber et al., 2018). In a similar manner to the variable importance 

outputs from RF, the redundancy analysis was undertaken to contrast the explanatory power 

of climate and spectral predictor variables.  

All statistical analyses were carried out in R using the packages randomForest, 

RFUtilities, and vegan. 
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4.3 Results 

4.3.1 Distribution of foliar traits across NEON grasslands 

The distribution of in-situ measured trait values among herbaceous vegetation across 

the sites is shown in Figure 10. Woody samples are not included in these distributions, because 

the main random forest trait models are based on herbaceous samples only. LAJA has 

particularly variable trait values, particularly for SLA, N, phosphorus and sulphur content. 

Sites KONZ, SJER, CLBJ and OAES have intermediate trait variability across all traits. Sites 

DCFS, NOGP, CPER and NIWO have relatively small ranges of traits. Site WOOD has high 

values and large inter-quartile ranges of chl-a and chl-b. The single herbaceous clip strip 

sample from site NIWO had unusually large values of C, lignin and manganese. Some sites 

show trait syndromes characteristic of the rapid or conservative ends of the leaf economics 

spectrum; for example OAES has low foliar nutrients nitrogen, phosphorus and potassium, 

matched with a high proportion of dry matter in leaves indicative of conservative growth, and 

site SJER has high foliar nutrients, high SLA and low LDMC indicative of acquisitive growth. 

For most traits, there was overlap in the inter-quartile ranges of trait values between sites. 
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Figure 10. Comparison between sites of the field-measured distributions of 20 foliar traits in this study. These 
are based on herbaceous samples only. The centre line of each box represents the median trait value, the box 
shows inter-quartile range, and whiskers extend to the largest and smallest trait values. Observations that are 
greater or less than 1.5 times the inter-quartile range of the trait are shown as individual dots. Sites are ordered 
in descending latitude, left-right. Site YELL is not shown as there were no herbaceous samples collected from 
this site.  
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4.3.2 Foliar trait model performance 

Table 7 shows the results of all random forest modelling of the 20 foliar traits from 

climate and spectral variables undertaken in this study. These include the model repeats using 

herbaceous samples only vs herbaceous and woody samples together, and the models based 

on differing time windows for matching in-situ and spectral data. The main models of this 

analysis are herbaceous-only, fourteen-day models. These main models are also shown in 

Figure 11, where predicted vs measured trait values are plotted along with the variable 

importance scores. 

4.3.3 Foliar trait retrieval from herbaceous vegetation samples using a 14-day temporal 

window 

The results for the foliar trait modelling of herbaceous vegetation across the sites were 

variable, indicating that some, but not all foliar traits were predictable. The models explained 

between 0% (calcium) to 75.8% (phosphorus) of trait variation, with errors (RMSE), which 

ranged from 9 to 20% of the measured range, within the range (< 25%) considered acceptable 

for foliar trait estimation (Z. Wang et al., 2020). Over half of the models (11/20) were able to 

explain more than 30% of the variation in the target trait. The best-retrieved foliar traits were 

macronutrients phosphorus and potassium (variation explained 78% and 63% respectively). 

Structural properties SLA, LDMC and C:N were also retrieved successfully from Sentinel-2 

data (variation explained 43 – 66%, NRMSE 13 – 14%). Biochemical properties (carbon, 

lignin, cellulose and pigments chl-a, chl-b, carotene) were retrieved with varying success. 

Foliar carbon and cellulose were the best-retrieved biochemical properties (variation 

explained 59% and 43%, NRMSE 13% and 11%). Lignin was mostly well-retrieved, except two 

high values of lignin from sites KONZ and NIWO which were not accurately predicted (Figure 

11). Chl-a and chl-b were also predicted better among lower values, with the high chlorophyll 

content of samples at WOOD not predicted accurately, and thus contributing large errors to 

the models. Carotene was not accurately retrieved from Sentinel-2. Among the foliar trace 

elements modelled, sulphur, copper and zinc were modelled with more than 20% variation 

explained. 

For almost all traits, climate variables were the most important predictors, making up 

at least three of the top five predictors (Figure 11, right-hand panels). Although different for 

different traits, variables that characterised the seasonality of climate, i.e. the variation in 

temperature and precipitation throughout the year, were more important predictors than 

absolute mean temperature and precipitation. Precipitation seasonality was overall the most 

important climate variable among foliar trait models. Among spectral variables, spectral 

indices, comprising two or more spectral bands were, in general, more important model 
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predictors than individual spectral bands. The chlorophyll red-edge index, based on the 

narrow Sentinel 2 red-edge bands, in particular scored highly across most foliar trait models, 

including that of Chl-a. The Chlre and NDMI indices were the most important spectral 

predictors for leaf structural traits SLA, LDMC, and C:N, cellulose, and macronutrients foliar 

nitrogen and potassium.  For models of phosphorus, the trait with highest explained variance, 

individual red-edge and SWIR bands were the most important spectral predictors, after 

climate. SWIR bands (B11, B12) were also the most important for explaining variation in foliar 

copper content (Figure 11).  
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Table 7. Results of the random forest modelling of each plant trait using satellite data from the one, five, seven and fourteen-day time windows, along with climate data. The 
number of plots with suitable satellite data returned in each time window is reported. NRMSE is RMSE/measured trait value range. Models with var explained < 0% are not 
shown 

Trait 

Herbaceous vegetation only 
n = 167 

Mixed vegetation 
n = 237 

Fourteen-day 
window 
n = 167 

Seven-day 
window 
n = 137 

Five-day 
window 
n = 120 

One-day 
window 
n = 70 

Fourteen-day 
window 
n = 237 

Seven-day 
window 
n = 204 

Five-day 
window 
n = 186 

One-day 
window 
n = 106 

% var 
explain

ed 
NRMSE 

% var 
explain

ed 
NRMSE 

% var 
explain

ed 
NRMSE 

% var 
explain

ed 
NRMSE 

% var 
explain

ed 
NRMSE 

% var 
explain

ed 
NRMSE 

% var 
explain

ed 
NRMSE 

% var 
explain

ed 
NRMSE 

SLA 66.47 0.129 68.04 0.131 68.45 0.134 78.46 0.118 29.06 0.185 28.05 0.190 28.14 0.195 44.97 0.168 

LDMC 54.74 0.135 62.56 0.125 68.08 0.118 73.56 0.117 37.31 0.140 43.82 0.132 46.70 0.129 53.72 0.131 

C 58.68 0.128 50.42 0.134 47.04 0.138 46.65 0.151 58.72 0.129 56.31 0.136 52.47 0.142 66.20 0.132 

N 38.77 0.153 43.06 0.158 44.77 0.154 40.56 0.181 32.94 0.132 32.53 0.138 30.49 0.143 34.15 0.142 

C:N 43.67 0.135 46.08 0.143 50.05 0.143 28.43 0.176 46.15 0.134 46.46 0.142 48.33 0.143 51.81 0.144 

Chl-a 26.41 0.163 24.25 0.154 16.53 0.155 32.15 0.167 - - - - - - 3.21 0.145 

Chl-b 48.10 0.091 15.46 0.123 20.54 0.113 29.34 0.130 16.19 0.143 - - 4.66 0.152 5.27 0.146 

Carotene 10.58 0.153 18.54 0.152 13.70 0.155 26.77 0.170 - - - - - - - - 

Lignin 23.15 0.115 25.98 0.112 26.56 0.118 34.06 0.193 62.77 0.111 66.57 0.110 63.65 0.116 75.49 0.110 

Cellulose 44.91 0.121 53.22 0.118 53.61 0.126 44.80 0.164 63.11 0.126 65.33 0.127 61.19 0.137 60.07 0.154 

Phosphorus 75.81 0.117 79.03 0.120 83.02 0.110 81.40 0.118 45.51 0.164 47.07 0.172 46.52 0.175 56.05 0.169 

Potassium 63.36 0.119 69.17 0.117 69.99 0.118 70.88 0.128 25.58 0.178 25.83 0.185 20.75 0.192 47.14 0.159 

Calcium - - 3.92 0.111 0.96 0.118 40.82 0.130 9.49 0.116 3.10 0.126 2.28 0.129 19.02 0.135 

Magnesium 9.56 0.138 15.19 0.145 1.68 0.153 - - 9.11 0.129 15.69 0.135 7.42 0.138 12.39 0.171 

Sulphur 41.12 0.115 50.06 0.105 44.26 0.101 23.26 0.164 36.31 0.112 40.50 0.107 30.09 0.106 21.72 0.169 

Manganese 8.76 0.087 8.23 0.094 6.01 0.100 21.86 0.158 47.04 0.127 45.45 0.137 41.64 0.143 58.82 0.124 

Iron 10.54 0.196 11.89 0.210 12.97 0.219 - - 10.01 0.172 10.18 0.182 12.62 0.184 24.65 0.202 

Copper 29.36 0.145 35.30 0.144 24.19 0.150 16.78 0.172 12.96 0.173 11.81 0.181 9.57 0.186 24.12 0.191 

Boron 11.24 0.140 6.81 0.134 1.12 0.137 - - 28.53 0.149 31.82 0.148 29.93 0.155 40.45 0.160 

Zinc 42.28 0.141 32.73 0.155 29.95 0.160 32.65 0.156 24.35 0.150 16.86 0.162 14.72 0.167 10.61 0.192 
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Figure 11. Models of 20 foliar functional traits, estimated from Sentinel-2 satellite data along with climate data, using random forest. Models are created 
from herbaceous vegetation samples only across 10 grassland sites (n = 167), using satellite data sourced from within a fourteen-day time window of field 
sampling. Scatter plots show measured trait values against those predicted from random forest models, coloured by site. The dashed line represents the 1:1 
line. Variation explained (%) and RMSE of the models, and the units of measurement for each trait are shown in the scatter plot headings. The 
corresponding variable importance scores are plotted alongside each trait model, showing which variables were of greatest utility when modelling traits. 
Predictor variables are coloured according to category. Variable importance scores are not displayed for models which explained <20% of the variation in 
the target trait. 
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4.3.4 Variation partitioning 

Variation partitioning based on redundancy analysis was carried out in order to 

ascertain whether spectral predictor variables were able to explain a unique portion of 

variation in foliar traits, beyond what was explained by climate. Note that this method does 

not remove redundant variables as was done using the variable selection algorithm (Boruta) 

for random forest modelling, therefore all climate and spectral variables contribute to the 

explained variance of their predictor group. Table 8 shows the result of variation partitioning. 

 

Table 8. Variation partitioning of foliar traits to determine the portion of variation explained by climate and 
spectral variables, individually and in combination. Shaded cells indicate the largest partition of variance 
between climate, spectral or shared predictor variables. Negative values for variation explained should be 
interpreted as zero. 

Trait Climate Shared Spectral Residual 

SLA 0.26 -0.13 0.33 0.54 
LDMC 0.03 0.22 0.15 0.59 

C 0.19 0.32 0.07 0.42 
N 0.08 0.17 0.04 0.72 
C:N 0.06 0.16 0.20 0.58 
Chl-a 0.08 -0.11 0.21 0.81 
Chl-b 0.07 -0.01 0.19 0.75 
Carotene 0.04 -0.07 0.13 0.90 

Lignin 0.39 0.09 0.02 0.50 
Cellulose 0.13 0.23 0.16 0.48 
Phosphorus 0.34 0.17 0.11 0.38 
Potassium 0.15 0.35 0.10 0.41 
Calcium 0.02 0.23 0.05 0.70 

Magnesium -0.01 0.11 0.12 0.78 
Sulphur 0.03 0.32 0.06 0.60 
Manganese 0.65 0.15 0.02 0.18 
Iron 0.08 0.07 -0.02 0.87 
Copper -0.02 0.16 0.16 0.70 
Boron 0.08 0.15 0.01 0.76 
Zinc 0.08 0.20 0.09 0.63 

 

For 9/20 traits, the largest portion of explained variation was not able to be attributed 

uniquely to either climate or spectral variables, but was shared between the two predictor 

groups. However, for all traits other than foliar iron, there was a portion of variation uniquely 

explained by spectral variables and not explained by climate variables. Traits for which the set 

of spectral variables explained more unique variation than climate included foliar pigments 

Chl-a, Chl-b and carotene, along with leaf litter quality traits SLA and C:N ratio. Climate 
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explained a small amount of variation in foliar pigments relative to other traits and there was 

no explanatory power shared between climate and spectral properties. This result is not 

consistent with the random forest variable importance plots, which showed climate variables 

to be more important than spectra for photosynthetic pigments. The reason for this 

discrepancy could be that variation partitioning does not exclude any predictors which were 

eliminated during variable selection for random forest, but partitions the variation based on 

all variables in the group. Foliar phosphorus, the best-modelled foliar trait in terms of 

variation explained, was overwhelmingly explained by climate.  

 

4.3.5 Foliar trait retrieval from mixed herbaceous and woody vegetation samples using a 

14-day temporal window 

To explore how applicable climate and spectral data are to the retrieval of foliar traits 

across a range of different plant lifeforms found in grasslands, a second set of random forest 

models were developed, this time incorporating both herbaceous clip strip and woody 

individual samples from the eleven grassland sites (n = 237). 70 woody individual samples 

from five sites were added to the dataset, including samples from site YELL which was 

represented only by woody samples in the field data despite having large areas of grassland 

land cover (Figure 9 b). A comparison of the overall variation explained in the 20 foliar traits 

of mixed vegetation and herbaceous only vegetation is shown in Figure 12.  

When herbaceous and woody vegetation samples were included together in mixed RF 

models, the majority (13/20) of foliar traits were modelled with lower variation explained and 

higher NRMSE. This effect is particularly strong for SLA (37.4% lower), phosphorus (30.3% 

lower) and potassium (37.8% lower), and among photosynthetic pigments, which were 

modelled very poorly using the mixed samples dataset. For carbon, nitrogen, C:N ratio and 

sulphur, the inclusion of woody samples did not affect the amount of variance explained by 

much (<6%), indicating that these traits can be modelled successfully using a universal model 

across grasslands composed of different plant lifeforms. Lignin, cellulose, manganese and 

boron were better-modelled using a mixed dataset, with improvements in variation explained 

from 17.3 – 39.6%.  
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Figure 12. Variation explained in foliar traits of herbaceous vegetation only (n = 167) and mixed herbaceous 
and woody vegetation (n = 237), by climate and satellite-derived variables using random forest. Results of 
modelling where satellite data is taken from within fourteen days of field sampling. 

 

Vegetation sample type 
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4.3.6 Effect of restricting the time window for matching satellite and field data 

Figure 13 shows the proportion of herbaceous field samples which were able to be 

matched with a suitable cloud-free Sentinel 2 image within one, five, seven and fourteen days 

of field sample collection. Reducing the time window from which to source satellite data from 

fourteen days to one day results in a loss of 97 observations from the dataset, or 58% of the 

total number of herbaceous field observations. This includes all observations from sites 

WOOD and KONZ, for which suitable, spatially-matched, cloud-free Sentinel-2 data was only 

available within seven to fourteen days. 

 

a. 

 

b.  

 

 

 

 

Figure 13. a. the number of in-situ foliar trait measurements at each site which were able to be matched with a 
Sentinel-2 image within one day (temporal offset <=1), five days (temporal offset 2-5 days), seven days 
(temporal offset 6-7 days) and fourteen days (temporal offset 8-14 days) of field sample collection. b. the 
number of in-situ foliar trait measurements in total which were able to be matched with a Sentinel-2 image 
taken within each time window. These graphs indicate herbaceous samples only.  
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Figure 14 shows the results of the RF trait models for herbaceous only samples, using 

climate data and satellite imagery from within one, five, seven and fourteen days of field 

sampling. For SLA, LDMC and potassium, and to a lesser extent lignin, there was a clear step-

wise reduction in the amount of variation that could be explained by the RF models from one-

day to fourteen-days. The largest decrease in model performance was for predicting LDMC; 

where 18.8% less variation was explained using a fourteen-day model compared to a one-day 

model. The opposite trend was true for carbon which was best-modelled from the wider 

fourteen-day time window. Other traits including cellulose, nitrogen and C:N ratio were best-

modelled using intermediate five and seven-day windows. The time window of satellite data 

collection also had a large effect on the model of foliar calcium, which was only modelled with 

success using the one-day dataset, which explained variation of 40.8% with a NRMSE of 13%.  

Differences in the NRMSE between models constructed using different time windows 

(Table 9) were lower than 8% for all foliar traits. Despite the larger variation explained in most 

traits from one-day data, prediction errors were slightly larger for all traits except for SLA and 

LDMC when traits were modelled from one-day data compared with 14-day data.  
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Figure 14. Variation explained in 20 foliar traits of herbaceous vegetation types by climate data and satellite 
imagery sourced from within one day (n = 106), five days (n = 186), seven days (n = 204) and fourteen days (n 
= 237) of field sample collection. 
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Table 9. Difference in variation explained (%) and NRMSE between the fourteen-day and one-day models of 
foliar traits from satellite and climate variables. Positive values indicate a larger value for the one-day model 
and vice versa. 

Trait 

Change in % variation 
explained between 

fourteen-day and one-
day window 

Change in NRMSE 
between fourteen-day 
and one-day window 

SLA  + 12.0 - 0.011 

LDMC  + 18.8 - 0.018 

C  - 12.0 + 0.023 

N  + 1.8 + 0.028 

C:N  - 15.2 + 0.041 

Chl-a  + 5.7 + 0.004 

Chl-b  - 18.8 + 0.039 

Carotene  + 16.2 + 0.017 

Lignin  + 10.9 + 0.078 

Cellulose  - 0.1 + 0.043 

Phosphorus + 5.6 + 0.001 

Potassium  + 7.5 + 0.009 

Calcium  + 41.5 + 0.024 

Magnesium - - 

Sulphur  - 17.9 + 0.049 

Manganese + 13.1 + 0.071 

Iron  - - 

Copper  - 12.6 + 0.027 

Boron  - - 

Zinc  - 9.6 + 0.015 
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4.4 Discussion 

The objectives of this study were to establish the potential of Sentinel-2 satellite 

imagery to model grassland foliar traits, and to explore the extent to which the composition of 

vegetation and temporal offset between field and spectral data impacts on the strength of 

empirical trait models. The results suggest that data from Sentinel-2 in conjunction with 

climate variables can explain variation in leaf structural traits and macronutrients (variation 

explained 39 – 76%), and to a lesser degree biochemical traits including pigments (variation 

explained 10 – 59%). Using RF models in conjunction with redundancy analysis, the results 

indicate that even though climate variables were the most important predictors of traits at this 

geographic scale, spectral data contributes a unique portion of explained variation for 19 out 

of 20 foliar traits tested (all traits except foliar iron), with spectral indices capturing 

photosynthetic capacity and moisture content the most useful spectral properties in the 

models. Inclusion of woody vegetation samples in the models generally decreased the accuracy 

of trait retrieval, indicating that prior knowledge of vegetation composition may be important 

when estimating foliar traits across grasslands. Temporal offset between field and satellite 

data of up to fourteen days decreased the strength of models by up to 20%, relative to the 

same-day models. This represents a trade-off between maximising the number of observations 

and ensuring that spectral data is representative of values measured in the field when building 

empirical models using satellite data. Overall, the results show that there is potential to map 

traits of herbaceous plants across diverse natural grassland ecosystems and covering large 

geographic extents using multispectral satellite data, building on previous work retrieving 

foliar traits from remote sensing which has thus far focused on high resolution imaging 

spectroscopy, or forest ecosystems (Aguirre-Gutiérrez et al., 2021; Homolová et al., 2013b; 

Van Cleemput et al., 2018; Z. Wang et al., 2020).  

 

4.4.1 Links between foliar traits and satellite reflectance spectra 

Traits which were modelled well were those which have strong associations to plant 

growth strategies, for example SLA, LDMC, C:N ratio and leaf N, and nutrients phosphorus 

and potassium, all of which were retrieved with comparable accuracy to recent hyperspectral 

mapping (Z. Wang et al., 2020). These traits typically covary as an overall trait syndrome 

facilitating rapid or conservative growth (Díaz et al., 2016; Reich, 2014; I. J. Wright et al., 

2004). These traits are most likely related to spectral reflectance via their association with 

vegetation community productivity and biomass, for which Sentinel-2’s narrow spectral bands 

along the red-edge are important predictors (Clevers & Gitelson, 2013; Delegido et al., 2011; 
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Pau et al., 2022). The spatial estimation of community-level growth strategies from their 

associated plant traits is valuable because growth strategies can indicate the environmental 

functions and services of grassland landscapes, including those which take place belowground 

(Baxendale et al., 2014; Grigulis et al., 2013; Orwin et al., 2010).  

Foliar pigments were unexpectedly poorly modelled across the selected grassland sites 

(variation explained 10 – 48%), given their strong links to photosynthesis and therefore the 

interaction of vegetation surfaces with light. They were particularly poorly modelled compared 

to hyperspectral mapping efforts in grasslands, which report high accuracy for pigment 

retrieval; for example recent hyperspectral mapping over the same sites as this study retrieved 

chlorophyll and carotenoids with R2 of 0.68 and 0.69 respectively (Z. Wang et al., 2020), and 

in a review of hyperspectral trait studies the average strength of pigment retrieval was over 

0.75 (Van Cleemput et al., 2018). This indicates that high levels of spectral detail are important 

for retrieving foliar pigments. Future work incorporating remotely-sensed pigments into 

ecosystem models, for example predictions of belowground communities as suggested by the 

results of Chapter 3, is likely to be more successful using hyperspectral data. Future 

hyperspectral satellite missions may be valuable for this task, combining the high spectral 

detail required with the temporal and spatial benefits of satellite systems (Pettorelli et al., 

2018b). Foliar pigment models were also shown to be highly sensitive to the inclusion of mixed 

vegetation types, being modelled with limited to no explanatory power across mixed 

herbaceous and woody observations (Figure 12), and were also highly sensitive to temporal 

offset; for example the variation explained in carotene increased by 16% when the data was 

reduced to same-day observations. Another possible reason for the low overall explained 

variance in pigments from the models could be the relatively low explanatory power of climate 

for pigments compared to other foliar traits; although the random forest variable importance 

scores indicated that individual climate predictors were more important than individual 

spectral predictors, redundancy analysis showed that as a group, spectral predictors were able 

to explain more unique variation in pigments than climate. Variable importance scores (Figure 

11) showed that the most important spectral predictor for chl-a and chl-b was the Clre index, 

which was specifically developed to retrieve canopy chlorophyll in grassland and cropland 

sites from Sentinel-2 (Clevers & Gitelson, 2013), and the most important spectral predictor for 

carotene was NDMI. Though not explicitly related to SWIR wavelengths, foliar carotenoid 

content has been associated with water stress in trees and crops (Baccari et al., 2020; Mibei et 

al., 2017). These results suggest that spectral information from Sentinel-2 is related to foliar 

pigments across grasslands, but that the relationships are sensitive to mixed ecosystems and 

temporal offsets and may not be applicable across diverse grassland landscape types, but 

better resolved among smaller sets of more similar sites. 
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Among the eight foliar trace elements modelled sulphur, copper and zinc were 

retrieved with success using Sentinel-2 and climate variables (variation explained 41.12%, 

29.36%, 42.28% respectively and all RMSE <25% measured variable range, Figure 11). Though 

plant growth is most commonly limited by nitrogen and phosphorus in terrestrial ecosystems, 

micronutrients can also limit plant growth and therefore have implications for ecosystem-level 

productivity and functioning (Fay et al., 2015; Hayes et al., 2014). After N, P and K, sulphur is 

the most abundant trace element in leaves, and plays an important role in plant growth and 

catalysis. Copper is an essential micronutrient for plant growth, for example being involved in 

the action of enzymes (Shabbir et al., 2020), and zinc is a vital component of many plant 

proteins (Broadley et al., 2007). The mechanisms by which plants uptake and accumulate 

nutrients can be affected by stress conditions such as drought, nutrient deficiencies, 

pathogens, and grazing (J. Liu et al., 2022). For example, higher foliar sulphur concentration 

has been associated with environmental stress across ecosystems distributed across China (W. 

Zhao et al., 2022). Changes in ecosystem nitrogen levels and pH can also impact the 

mechanisms by which plants uptake nutrients and therefore their foliar concentration (Cai et 

al., 2017). Therefore, changes in the concentration of foliar trace elements across grasslands 

could indicate important changes in environmental conditions. Foliar trace elements are less 

commonly incorporated into models of ecosystem functioning than other traits such as 

structural properties, and though there have been attempts to retrieve trace elements from 

leaf-level spectroscopy (e.g. Nunes et al., 2017), there have been few previous studies 

retrieving foliar micronutrients from remote sensing at large spatial scales (though see Wang 

et al., 2020). The results presented in this chapter indicate that foliar sulphur, copper and zinc 

can be retrieved accurately from Sentinel-2 with comparable accuracy to more commonly-

investigated structural and chemical traits (Figure 11). These results suggest that foliar trace 

elements could be valuable foliar traits to study further using large-scale remote sensing 

methods, as they may provide a link between spectral data and ecosystem functioning.  

Despite some key exceptions, grassland foliar traits were overall predicted with lower 

accuracies than those reported by previous authors using hyperspectral data, but there was 

overlap in the ranges of model strength indicating that some traits were retrieved with 

comparable accuracy (R2 range presented here 0.00 – 0.81; (Z. Wang et al., 2019) 0.57 – 0.87; 

(Z. Wang et al., 2020) 0.28 – 0.82; (Van Cleemput et al., 2018) 0.64 – 0.80; (Obermeier et al., 

2019) 0.51 – 0.94). Less accurate retrieval of foliar traits by satellite data is likely related to 

the reduced spectral detail, as traits are retrieved indirectly via their association with plant 

growth strategies and vegetation density, rather than through their specific narrow absorption 

features. The other major difference between Sentinel-2 imagery and hyperspectral airborne 

imagery used by previous authors is the size of image pixels, or spatial resolution. Research 
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suggests that coarser spatial resolution is not necessarily detrimental to the remote retrieval 

of plant traits, because fine-scale topographical variation is smoothed out and geolocation 

errors are less influential (Pau et al., 2022; Van Cleemput et al., 2018). However, the inevitable 

effect of reducing spatial resolution in all but the most homogenous plant communities is an 

increase in the sub-pixel heterogeneity and mixing of plant species and life forms, which has 

the potential to weaken the relationship between traits and spectra (Hacker et al., 2022). 

Mixing of herbaceous and woody plant observations in empirical models was shown to reduce 

retrieval accuracy of most traits (Figure 12), so it would be expected that sub-pixel mixing of 

spectra might have the same effect.  

Compared to previous trait retrieval efforts from satellite data over forests (Aguirre-

Gutiérrez et al., 2021), grasslands (Li et al., 2018) and mixed ecosystems (Moreno-Martínez et 

al., 2018), the accuracy of the models presented in this study are similar or better. Some foliar 

traits, for example SLA, have been retrieved successfully in grasslands using radiative transfer 

models (Rossi et al., 2020). However, the selection of traits currently included in radiative 

transfer models is limited. In this study, all 20 foliar traits were retrieved with a NRMSE below 

25%, the threshold deemed an acceptable level of precision (Asner et al., 2015). 

Climate variables were identified as the most important predictors by the RF models, 

for almost all of the traits under investigation. This finding was expected given that climate is 

the main driver of ecosystem resources and vegetation communities at continental scales 

(Aguirre-Gutiérrez et al., 2021; Delgado-Baquerizo et al., 2018). Accounting for environmental 

drivers which cause spatial autocorrelations at continental scales, such as climate and geology, 

is important in order not to overestimate the explanatory power of imagery. If spectral data 

does not capture any variation beyond what could be retrieved from climate data then the 

usefulness of remote sensing for monitoring traits at these scales is negated (Ploton et al., 

2020). A spatially-explicit modelling technique such as geographic random forest is one way 

of addressing this issue (Aguirre-Gutiérrez et al., 2021; Georganos et al., 2019), but was not 

undertaken in this study due to a relatively small number of samples at each site. Inclusion of 

key climate variables and variation partitioning in this study confirmed that spectral variables 

explained a unique portion of variation in plant traits beyond that accounted for by climate.  

Variation partitioning (Table 8) indicated that for many traits, there was a large 

portion of residual variation unaccounted for by climate and spectral data. Factors affecting 

this residual portion of variation likely include soil chemical and physical properties, including 

pH, topography and interactions which take place between species in the vegetation 

assemblage to influence traits. The present study as an assessment of the potential of Sentinel-

2 satellite imagery for retrieving plant traits did not include such additional datasets, but they 
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will be important for future studies working to resolve large-scale models of environmental 

processes and fluxes of which plant traits are a component. Alternative methods of integrating 

remote sensing and in-situ data include methods such as FLUXCOM ensemble, whereby 

satellite data is matched with measurements from global flux towers (Jung et al., 2019). This 

method gives global estimates of gross primary productivity (GPP) at a spatial resolution of 

approximately 10km2, which are likely to be closely related to plant traits and phenology and 

therefore could be a valuable additional dataset for estimating plant traits across large spatial 

extents in the future.  

4.4.2 Modelling over heterogenous grassland landscapes 

The results of this study indicated that for most traits (13/20), estimating trait values 

across the herbaceous and woody fraction of grassland landscapes together resulted in lower 

prediction accuracies, compared to when herbaceous areas were isolated. This suggests that 

prior knowledge and quantification of grassland vegetation composition may be important for 

estimating traits from satellite data in grasslands. Grassland ecosystems are rarely 

homogenous. They often include a mix of herbaceous plants, trees and shrubs at multiple 

scales of heterogeneity, from isolated individuals observed in park landscapes to the gradient 

of tree density that is observed in savannahs or at grassland-woodland boundaries (Ratnam et 

al., 2011; Sexton et al., 2015). For example, only four out of the 81 sites in the NEON network 

are characterised exclusively by herbaceous vegetation (Figure 9). For this reason, grasslands 

and shrublands have sometimes been grouped together in large-scale studies (Van Cleemput 

et al., 2018). Image pixels of heterogenous grassland landscapes commonly represent not only 

multiple plant species but multiple plant lifeforms or functional groups; a challenge specific 

to remote sensing of grasslands that is not experienced in forests, where the graminoid and 

shrub fraction of the vegetation community does not impact the canopy reflectance. Mixing 

vegetation types at the sub-pixel scale has been found to weaken the relationships between 

spectral properties and foliar traits, because of differences in growth strategies and leaf 

structures between herbaceous and woody plant life forms (Hacker et al., 2022; Hacker & 

Coops, 2022). For example, stem and root traits as well as foliar traits play a large role in the 

functioning of herbaceous plant communities (Funk et al., 2017; Funk & Cornwell, 2013; 

Poorter et al., 2014), environmental drivers such as water table depth can alter LES 

relationships in wetland communities (J. P. Wright & Sutton-Grier, 2012), and some key foliar 

compounds (tannins) which have been found to link canopy spectroscopy to ecosystem 

functioning in forests are not significantly present in graminoid leaves (Madritch et al., 2014). 

Despite these challenges, a few studies have successfully retrieved foliar traits across mixed 

grassland, shrubland and woodland ecosystems using hyperspectral data (Dahlin et al., 2013; 

Z. Wang et al., 2020).  
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The evidence presented in this study indicates that the retrieval of foliar traits from 

satellite imagery is less successful in mixed vegetation grassland ecosystems. Empirical 

models of foliar traits using only herbaceous samples were more accurate than those including 

a mixture of herbaceous and woody vegetation, for most traits (Figure 12). However, the 

magnitude of this effect differed among traits, suggesting that some traits are more likely to 

be able to be retrieved over mixed vegetation landscapes than others. Foliar carbon, nitrogen 

and C:N ratio which were all modelled relatively successfully (variation explained around 40% 

and NRMSE around 15%) were equally well-modelled over the herbaceous and mixed 

vegetation samples. Lignin and cellulose were better-modelled by a mixed dataset, possibly 

because these two structural traits are typically higher in woody and herbaceous plants 

respectively, so the inclusion of both observations gave a wider range of trait values across 

which the model could distinguish. However, the most successfully modelled traits across all 

models, SLA, LDMC, phosphorus and potassium, were significantly better-retrieved using a 

herbaceous only model. Future work explicitly investigating the effect of increasing shrub or 

woody plant density on spectral retrieval of foliar traits among grassland woodland boundaries 

would be valuable, particularly given the conservation importance of these ecosystems (Sexton 

et al., 2015). 

4.4.3 The impact of temporal offset between in-situ and satellite data collection 

To the best of our knowledge this is the first attempt to explicitly test the influence of 

temporal offset between satellite and field data collection when constructing empirical trait 

models. The results indicate that a temporal offset of up to fourteen days decreases the 

variation explained in traits by satellite data by up to 20% with retrieval of leaf dry matter 

content, SLA and carotene the most impacted. Some traits, including foliar carbon and C:N 

ratio, were better-modelled from the fourteen-day dataset, suggesting that these traits do not 

significantly vary in grassland canopies over the time period and therefore that the larger 

dataset available for the fourteen-day time window was more important for estimating these 

traits. The available time window for matching remote and in-situ data is a relevant question 

for building empirical models of plant traits from optical satellite data, because revisit periods 

of the most commonly used, publicly-available satellite sensors are often a period of days to 

weeks, and the frequency of usable imagery further reduced in many environments by frequent 

cloud cover. The trade-off between gathering spectral data of the highest quality, i.e. the 

smallest temporal offset, and collecting enough observations is demonstrated clearly in this 

study, where the optimum time window of one day between field and satellite data collection 

yielded useable, cloud-free satellite data for only 42% of field observations.  
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Similar satellite-based trait investigations use data with a range of temporal offsets, up 

to several months or years, with success (Aguirre-Gutiérrez et al., 2021; Hauser et al., 2021; 

Ma et al., 2019). These long windows can be justified using detailed knowledge of site history 

such as disturbances and weather conditions. For example, short-term disturbance events 

such as insect outbreaks, fire, and extreme climatic events such as heatwaves or drought can 

rapidly alter the functional traits and spectral reflectance of the vegetation community, and if 

such events take place between field and spectral data collection then the relationship between 

the two is likely to be lost. Therefore, knowledge of site-level disturbance regimes and 

conditions should be used where possible to ascertain the appropriate temporal window for 

spectral data collection, or to further investigate anomalous observations in models. The 

seasonality of studies is important too – for example, temporal offset may have a greater effect 

at crucial stages of phenology such as the start or the end of the growing season. Therefore, 

though the results of this study indicate that across a broad set of grasslands, more temporally 

variable traits such as pigments and water content (LDMC) are likely to be best retrieved using 

empirical models from spectral data with a small temporal offset, it is acknowledged that this 

may not always be possible, and maximising the number of observations is more important 

than minimising the temporal offset between field and satellite data collection when 

empirically modelling foliar traits from remote sensing data across large geographic extents. 

Furthermore, due to the reduction in observations associated with restricting the temporal 

sampling window, the one-day results in this study are based on a small number of 

observations (n = 70); a larger dataset is needed to confirm these findings, possibly available 

from NEON as more data is collected throughout the lifespan of the network. Designing future 

field-based data collection to coincide with the overpass of publicly-available satellite missions 

such as Sentinel-2 (Hauser et al., 2021) would be a valuable step towards aligning field-based 

and remote sensing data collection in the future.  

 

4.5 Conclusions and avenues for future work 

This study presents the retrieval of multiple foliar traits from satellite and climate data 

in heterogenous grasslands across North America using RF modelling. The study builds upon 

previous work modelling traits from satellite data in forests, and hyperspectral data in 

grasslands. Plant structural traits and macronutrients were particularly well-modelled, 

including SLA which is an important trait in terms of leaf economics and linking plant traits 

to above- and belowground ecosystem functioning. Though climate variables were important 

for the retrieval of traits, multispectral satellite data made a valuable contribution to all 

models, and the Sentinel-2 narrow red-edge bands and indices derived thereof were 
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particularly useful. This study also adds to the small body of literature linking remote sensing 

data to traits across different grassland plant lifeforms, which will be essential to interrogate 

and realise the potential of the species-independent perspective of plant trait-based 

approaches. 
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5. Phenology derived from satellite NDVI explains 

variation in ecosystem multifunctionality in 

grasslands at the global scale 
 

 

Abstract 

Multifunctionality is an important concept in ecology for evaluating the provision of 

multiple ecosystem functions and services simultaneously. Multifunctionality has been shown 

to be closely related to the diversity, productivity and stability of aboveground plant 

communities in a variety of ecosystems worldwide, but methods for assessing 

multifunctionality in-situ are limited at large scales by practical constraints of field sampling. 

Here, we apply remote-sensing methods for retrieving phenological information about 

aboveground plant dynamics, including the annual peak biomass, the length of growing 

season, rates of green-up and senescence and the multi-year variability of these properties to 

the retrieval of multifunctionality across a global network of 90 grasslands. Seven satellite 

metrics based on the Normalised Difference Vegetation Index (NDVI) were positively 

associated with and able to explain statistically significant, though small, portions of variation 

in multifunctionality (R2 0.10 – 0.37, p < 0.01), and one measure of phenological stability was 

significantly, though weakly associated with multifunctionality (R2 = 0.07, p = 0.007). The 

most strongly-associated NDVI metrics varied depending on the overall stability of 

ecosystems, with sites experiencing significant change better represented by annual maximum 

NDVI and those with stable productivity overall more closely linked to the more sensitive 

metric time-integrated NDVI. The length of satellite timeseries used to extract NDVI metrics 

affected the amount of variation in multifunctionality retrieved from NDVI metrics, along with 

climate and location variables, using random forest, with decadal timeseries (18-30 years) able 

to retrieve more variation than short (3-year) timeseries (variation explained 50.2% and 61.4% 

respectively). These results indicate that ecosystem multifunctionality of grasslands at global 

scales is evident in the phenology of the aboveground plant community, and that satellite-

derived NDVI timeseries have the potential to retrieve multifunctionality at large spatial scales 

by providing valuable information on current and past plant phenology. 
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5.1 Introduction 

The impacts of ongoing and predicted environmental changes including climate 

change, land use change and biodiversity loss on the functioning of ecosystems is a major 

research concern in ecology. It is increasingly recognised that in order to fully understand the 

effect of environmental pressures, multiple functions which have synergies and trade-offs in 

the real world cannot be considered completely in isolation but should be assessed 

simultaneously; termed ecosystem multifunctionality. Ecosystem multifunctionality generally 

refers to an assessment of ecosystem status and health which incorporates more than one 

ecosystem function. There are different interpretations and definitions of multifunctionality, 

which have been extensively discussed by previous authors (Byrnes et al., 2014; Garland et al., 

2021; Jing et al., 2020; Manning et al., 2018). Here, we refer to ecosystem function 

multifunctionality, aiming to understand how biotic attributes of ecological communities 

shape ecosystem functioning in general or across a variety of ecosystems, as opposed to a land-

management perspective, ecosystem service multifunctionality, where functions are assessed 

relative to local management goals at specific locations (Manning et al., 2018). The most 

relevant functions may not be universal among all sites and contexts, but in general, 

production of biomass and maintenance of soil carbon and nutrients are considered the most 

important ecosystem functions for human societies (Delgado-Baquerizo et al., 2016). Being 

able to monitor these functions simultaneously and across large scales is important to be able 

to ascertain how they respond to large-scale drivers and how whole landscapes can be 

managed for multifunctionality.  

Fundamental drivers of ecosystem functioning at global scales are climate and geology, 

which drive functions both directly through controlling energy and water balances of the 

system, and indirectly through their influence on the plant and soil communities. For example, 

aridity has been shown to alter the respective influence of above- and belowground 

communities on overall ecosystem functioning, with soil communities more influential in arid 

conditions (Berdugo et al., 2017; Delgado-Baquerizo et al., 2013; W. Hu et al., 2021; Jing et 

al., 2015). Underlying landscape geology is a key driver of soil functions, for example shaping 

pH conditions in soil which, while not considered an ecosystem function, is an important soil 

property which determines the conditions in which other functions take place (Allan et al., 

2015; Garland et al., 2021). A large proportion of the research into fundamental drivers of 

ecosystem multifunctionality has focused on biological diversity as a driver (Byrnes et al., 

2014; Dooley et al., 2015; Hautier et al., 2018; Hector & Bagchi, 2007; Isbell et al., 2011; 

Maestre et al., 2012). A greater diversity of species, genetic histories (phylogeny) and 

functional traits better equips the community to fill niche space and maintain functioning over 

time, throughout environmental perturbations (Hautier et al., 2015; Hector et al., 2010; 
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Oliveira et al., 2022). Both the plant and the soil microbe components the biological 

community are important, respectively performing functions relating to aboveground 

acquisition and belowground transformation and storage of resources and energy (Delgado-

Baquerizo et al., 2016; Fry et al., 2018; Guo et al., 2021; Wagg et al., 2014). Multiple spatial 

scales of biodiversity influence multifunctionality and interact with one another; species 

richness (alpha diversity) establishes the total available pool of species in the landscape, and 

spatial turnover (beta diversity) gives the heterogeneity of community composition across the 

landscape (Hautier et al., 2018; Jing et al., 2021; Pasari et al., 2013; Y. Yan et al., 2020). 

Temporal turnover in plant and soil communities is also relevant to multifunctionality; 

contemporary multifunctionality in a landscape is determined by a combination of historic as 

well as current climatic and biological conditions, because feedbacks between plant and soil 

communities propagate the influence of past conditions through time (Garland et al., 2021; 

Löfgren et al., 2018; Wilson et al., 2017). Efforts to retrieve plant biodiversity from remote 

sensing also often incorporate temporal variation, as different species dominate and subside 

over time to fill temporary niches created by short term dynamics (Rossi et al., 2020, 2021). 

Therefore, the multifunctionality of an ecosystem can best be understood using a spatial and 

multi-temporal perspective. However, collecting multi-temporal data in the field which also 

thoroughly captures multiple scales of spatial variation is challenging. Satellite remote sensing 

data can rapidly capture spatially explicit information over global extents, at regular intervals, 

and so is well-placed to fill temporal and spatial gaps between field observations. The close 

links between multifunctionality, plant diversity and productivity may provide a mechanism 

by which the multifunctionality of an ecosystem can be retrieved from spectral properties of 

the aboveground vegetation community and their variation over time.  

Aboveground productivity, or the density and activity of the vegetation community, is 

one of the most extensively researched and successfully retrieved environmental properties 

from remote sensing. Vegetation indices highlight parts of the electromagnetic spectrum 

which are particularly sensitive to vegetation structure and chemistry, the most widely-used 

being the Normalised Difference Vegetation Index (NDVI) (Pettorelli et al., 2005). The NDVI 

has been linked to a wide variety of ecological properties and processes in grasslands, 

including species diversity, species composition, habitat quality, and soil properties (Gaitán et 

al., 2013; García-Gómez & Maestre, 2011; Gholizadeh et al., 2019; K. S. He et al., 2009; Löfgren 

et al., 2018; Mapfumo et al., 2016; Paruelo et al., 2016; Pettorelli et al., 2005; Tan et al., 2022; 

R. Wang, Gamon, Montgomery, et al., 2016; Weber et al., 2018). Fundamentally responding 

to vegetation productivity, the NDVI is useful for the retrieval of such a wide variety of related 

ecosystem properties because plant primary productivity introduces carbon and resources 

into the system and thereby drives almost all other ecosystem functions (Zaret et al., 2022). 
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There is also a well-documented and much-researched, though not necessarily 

straightforward or linear, association between plant productivity and species diversity. Similar 

to ecosystem multifunctionality, productivity is maximised and maintained to a greater degree 

by more diverse communities which are better able to fill ecological niches, including those 

which appear temporarily with environmental fluctuations (Hector et al., 2010; Tilman et al., 

2006). Greater species diversity has been shown to increase ecosystem productivity by 

prolonging the growing season, as different species in the community are active at different 

points throughout the year (Dronova and Taddeo, 2022). Therefore, by capturing the 

dynamics of aboveground productivity over time satellite NDVI may be able to retrieve the 

associated properties of ecosystem biodiversity and multifunctionality. 

Temporal variation in productivity which occurs in regular seasonal cycles is termed 

phenology, and can be retrieved from satellite timeseries of NDVI captured at regular 

intervals, showing the rise and fall of NDVI with plant growth and senescence throughout the 

year. From the seasonal NDVI curve can be derived phenological metrics or phenometrics, 

describing plant community dynamics including the rate, duration and magnitude of plant 

growth and senescence throughout a season (Dronova & Taddeo, 2022; Weber et al., 2018). 

For example, the start and the end of the growing season can be determined by points of 

inflection indicating the rise and fall of NDVI, and the time difference between these two 

points represents the length of the growing season (Eklundh & Jönsson, 2015; R. Singh et al., 

2022). Figure 15 shows a simulated single-year NDVI curve labelled with important 

phenometics, and a description of their ecological significance can be found in Table 10. It is 

not only the absolute value or magnitude of a phenometric, for example maximum NDVI 

(NDVImax), that is relevant to ecology, but also the year-on-year variability of phenometrics 

which indicate the stability of an ecosystem and ecosystem productivity across years. In-situ 

measures of ecosystem stability have been shown to be associated with higher plant 

biodiversity and multifunctionality in grasslands (Hector et al., 2010; Isbell et al., 2015; Liang 

et al., 2022; Oehri et al., 2017; Tilman et al., 2006). Using satellite phenometrics, Dronova, 

Taddeo and Harris (2022) found that lower inter-annual variability of NDVI phenometrics 

across wetland ecosystems (NDVImax and NDVImean) was indicative of more species-rich 

systems, because asynchrony in growth among different species promoted not only longer but 

also more consistent growing seasons year-on-year. Phenometrics and phenological variability 

have been used to estimate multiple ecosystem services in grasslands at the individual 

landscape scale, with the purpose of directing management strategies (Paruelo et al., 2016; 

Weber et al., 2018). There have also been a few studies retrieving indicators of 

multifunctionality from satellite datasets in dryland ecosystems, based on simple measures of 

NDVI and albedo (García-Gómez and Maestre, 2011; Zhao et al., 2018). However, the extent 
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to which links between multifunctionality and plant community phenology may enable 

multifunctionality to be estimated at large scales from satellite data has yet to be explored. The 

long-term data archives available from satellite missions enable the stability of plant 

phenology to be estimated across timescales relevant for variation in belowground properties, 

which may be valuable for this purpose. 

 

 

Figure 15. Example of a seasonal NDVI curve, labelled with phenological properties. 

 

Phenometrics describe the temporal variation in productivity throughout a season, but 

multifunctionality of the ecosystem, particularly the belowground components, is shaped 

across multiple growing seasons, up to decadal scales (Garland et al., 2021). Therefore, more 

than one season of phenology is likely required to retrieve ecosystem multifunctionality. 

Multi-year satellite timeseries are often used to determine phenology and are necessary for 

the estimation of phenological stability; in a selection of studies reviewed here, satellite NDVI 

timeseries were retrieved for between 3 and 27 years (García-Gómez & Maestre, 2011; Paruelo 

et al., 2016; Paruelo & Lauenroth, 1995; Weber et al., 2018; J. Yan et al., 2022; Y. Zhao et al., 

2018). The longest timeseries of 27 years was found to significantly contribute to explained 

variation in soil carbon across a prairie site, where a shorter satellite timeseries of two years 

did not (Wilson et al., 2017). With some of the longest satellite records now spanning multi-

decadal timescales at many locations across the world, it is possible to account for past as well 

as present phenology. It remains untested how a longer-term perspective on vegetation 
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dynamics could contribute to assessments of multifunctionality, which incorporate functions 

which are dynamic over a range of timescales, up to decadal (Garland et al., 2021). 

This study links field-measured ecosystem multifunctionality to satellite-derived 

metrics of aboveground productivity, phenology and phenological stability across a global 

dataset of diverse natural grasslands obtained from the Nutrient Network, in order to test the 

following hypotheses. H1. Landscape-scale multifunctionality is positively associated with 

species richness, aboveground productivity and phenological stability in global grasslands; 

sites with higher plant species richness are more productive and phenologically stable, and 

have higher multifunctionality. H2. Ecosystem multifunctionality is more closely associated 

with the long-term (decadal) average of aboveground productivity and phenology than short-

term, recent (under 10 years) productivity and phenology, because historic site conditions 

shape contemporary multifunctionality through feedbacks, and important constituent 

ecosystem properties such as soil carbon are variable on decadal timescales. H3. Satellite 

phenometrics capturing the magnitude and variability of productivity and the length of the 

growing season, and the long-term stability of these properties, will contribute valuable 

explanatory power to models of multifunctionality at the global scale, beyond what is 

explained by fundamental climate and location drivers. The third hypothesis is a step towards 

assessing the potential of satellite datasets to contribute to measuring and monitoring 

multifunctionality across large scales, by filling temporal and spatial gaps in field-measured 

data. 
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5.2 Methods 

5.2.1 Grassland sites and soil multifunctionality 

The Nutrient Network (NutNet) comprises 156 grassland sites across 27 countries and 

6 continents. The aims of the network are to investigate productivity-diversity relationships in 

diverse herbaceous-dominated communities worldwide, and the effects of nutrient limitation 

and management including grazing and fertilisation on these properties (Borer et al., 2014, 

2017). Each site hosts a replicated experimental setup, in which field plots are distributed 

across the landscape and subject to combinations of nutrient additions, with some plots left 

untreated as controls. Properties of the plant communities are measured every year, and soil 

properties are measured every three years at NutNet sites. The first sites were added to the 

Nutrient Network in 2007, and the most recent sites were established in 2022. Previous work 

on multifunctionality at NutNet sites has shown that plant species diversity promotes 

multifunctionality and stabilises productivity, and that these effects are apparent at both 

community (alpha) and landscape (beta) scales (Hautier et al., 2014, 2018; Jing et al., 2021).  

 

Figure 16. Location map showing the global distribution of the 90 nutrient Network sites used in this study. 

 

For this study, data on five plant and nine soil properties were retrieved from 90 

NutNet sites worldwide (Figure 16). Sites were only included in the selection if they had both 

plant and soil measurements available, although not every property was measured at every 

site; Appendix A lists the individual functions measured at each site. The most recent data 

from each site was taken, which ranged from 2007, for some early NutNet sites at which the 
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experiment was observational-only, to 2021. Only measurements from untreated plots were 

used; either those designated as controls, taken from the baseline pre-treatment year of the 

experiment, or from some sites which are observational-only so no nutrient additions are 

applied. Plots at NutNet sites measure 5x5m, and are arranged in blocks of 10, within which 

each plot is given a different nutrient treatment or designated as a control. There are 3-5 

replicated blocks at each site, distributed across the landscape to capture environmental and 

floristic gradients; therefore, the properties of the untreated control plots from spatially 

distributed blocks are assumed to be representative of the wider landscape at each site. Details 

of the individual properties measured at each site can be found in Table 10, along with 

justification for their inclusion in multifunctionality. Litter turnover is based on the proportion 

of live plant biomass and litter aboveground, after Hautier et al. (2018). Invasion resistance is 

the proportion of native to introduced species. Plant and soil property values were averaged 

across all untreated plots at the site, to give a single site-level mean value of each ecosystem 

property. To investigate the role of aboveground plant diversity in linking multifunctionality 

to aboveground productivity and phenology, plant species richness across the sites was also 

acquired from NutNet. The total site-wide species count for the sampling year was used to 

represent site level species richness, because species richness is highly scale-dependent so the 

average richness among 5x5m blocks would underestimate richness at the whole site level. 

Relationships between the individual functions are presented in Figure 17. Strong correlations 

(> 0.8) were found between soil carbon, nitrogen and organic matter; however all three 

variables were retained because they are indicative of different ecosystem functions, in line 

with previous authors (Hautier et al., 2018; W. Hu et al., 2021). 
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Table 10 Individual ecosystem functions measured at NutNet sites which were combined into ecosystem 
multifunctionality 

Variable name Units Max Min Mean Description 

Belowground properties 

Soil Carbon % 20.51 0.11 4.31 
Indicator of soil carbon 
storage, a key ecosystem 
function 

Soil Nitrogen % 1.17 0.01 0.29 

Macronutrients indicative 
of soil fertility. Can be 
inverted to indicate 
nutrient use efficiency or 
resistance to leaching. 

Soil Phosphorus ppm 237.33 1.00 41.84 

Soil Potassium ppm 1276.07 24.98 222.13 

Soil Zinc ppm 435.20 0.44 31.67 Micronutrients linked to 
aboveground productivity 
in previous work at these 
sites (Radujković et al., 
2021). 

Soil Iron ppm 897.67 23.42 331.75 

Soil C:N ratio  48.26 5.26 15.19 Indicators of soil nutrient 
availability. Soil N:P ratio  1983.33 1.55 189.48 

Soil organic matter % 
35.17 

 
0.32 

 
6.15 

 
Indicator of soil carbon 
storage and soil structure. 

Aboveground properties 

Aboveground biomass gm-2 1609.00 
9.50 

 
362.03 

Indicator of aboveground 
productivity. 

Proportion of 
Photosynthetically 
Absorbed Radiation 
aboveground 

% 
1.00 

 
0.00 

 
0.54 

Indicator of aboveground 
productivity. 

Invasion resistance - 1.00 0.00 0.73 
Ratio of native to 
introduced species. 

Litter turnover - 4.72 0.25 1.68 
Indicator of 
decomposition. 

Species richness count 83.00 1.00 37.20 
Indicator of plant species 
biodiversity 
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Figure 17. Correlation matrix showing relationships between the individual ecosystem properties  

 

There is no single best way to calculate multifunctionality, especially across a broad 

range of grassland sites which are likely to incorporate a variety of habitats and ecosystem 

types (Byrnes et al., 2014; Manning et al., 2018). Therefore, eight different multifunctionality 

measures were initially calculated from plant and soil data at NutNet sites. Previous authors 

have similarly tested different multifunctionality measures; the most thorough approach 

being to test all combinations of all available properties (Delgado-Baquerizo et al., 2016; Jing 

et al., 2020). In this study, the alternative measures have been chosen following 

multifunctionality calculation approaches from the literature for which the same or similar 

plant and soil properties were available in the NutNet data. The ecosystem properties included 

in each measure along with the source publication are shown in Table 11. Two 

multifunctionality measures include inverting the values of N, P and K, by subtracting the 

value from the dataset maximum. This is recommended in ecosystems which are not nutrient-

limited and where a higher concentration of soil macronutrients therefore indicates that 
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nutrients are not being taken up efficiently by the plant community and could be causing 

leaching, negatively contributing to desirable ecosystem functioning (Hautier et al., 2018; 

Manning et al., 2018; Y. Xu et al., 2022). However, inverting macronutrients is not always 

appropriate especially in more nutrient-poor systems such as arid sites, where higher soil 

concentrations of N, P and K instead indicate a build-up of soil fertility and therefore a positive 

contribution to multifunctionality (Delgado-Baquerizo et al., 2016; Y. Hu et al., 2022; Jing et 

al., 2015; Y. Zhao et al., 2018). Because the NutNet dataset presented here incorporates a wide 

range of sites at the global scale, multifunctionality measures using both standard and inverted 

N, P and K were tested. Micronutrients iron and zinc were included in some multifunctionality 

measures; though micronutrients are not often incorporated into multifunctionality, there is 

evidence that they are important components of soil and responsive to plant community and 

environmental change (Dias et al., 2020; Fay et al., 2015; J. G. White & Zasoski, 1999), and 

recent work (Radujković et al., 2021) indicated that zinc and iron were positively associated 

with productivity across sites in the Nutrient Network; therefore these micronutrients were 

included in this study.  

To combine ecosystem properties into a single value of multifunctionality, the selected 

plant and soil properties were tested for normality (Shapiro-Wilk) and log-transformed if 

necessary, z-standardised in order to give equivalent scales across all variables, and then the 

mean taken across the standardised variables. The scale of means-based multifunctionality 

does not have units, and centres around 0. Three threshold-based multifunctionality measures 

were also calculated, to account for possible trade-offs between important ecosystem functions 

at the sites (Byrnes et al., 2014). The threshold-based measures are calculated by counting the 

proportion of plant and soil properties at each site which exceed a given threshold of the total 

range of that property across all sites; thresholds chosen here were 25%, 50% and 75%, giving 

three different threshold-based values of multifunctionality for each site. Distributions of the 

different multifunctionality measures are shown in Figure 19, relationships between the 

different multifunctionality measures are presented in Figure 20. All eight multifunctionality 

measures were tested for associations with satellite-derived NDVI phenometrics; some 

comparison between relationships found using different multifunctionality measures is 

presented, however as the relationships to satellite-derived phenology were broadly 

consistent, the majority of analysis is based on the multifunctionality measure which showed 

the strongest associations. 
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Table 11. The alternative multifunctionality measures calculated and tested across the sites. 

Name Properties included Calculation References 

MF1 

 
Soil Carbon (%) 
Soil Nitrogen (%) 
Soil Phosphorus (ppm) 
Soil Potassium (ppm) 
Aboveground biomass (gm-2) 
Proportion of 
Photosynthetically Absorbed 
Radiation aboveground (%) 
Invasion resistance (%) 
Litter turnover 
 

Mean, NPK 
inverted 

The measure of multifunctionality 
previously linked to multiple 
spatial scales of plant species 
diversity at these sites (Hautier et 
al., 2018) 

MF2 

 
Soil Carbon (%) 
Soil Nitrogen (%) 
Soil Phosphorus (ppm) 
Soil C:N ratio 
Soil N:P ratio 
Soil organic matter (%) 
Aboveground biomass (gm-2) 

Mean The measure of multifunctionality 
shown to be linked to plant 
species diversity and aridity in 
grasslands at a regional scale. 
Does not include soil 
micronutrients (Y. Yan et al., 
2020) 

MF3 

 
Soil Carbon (%) 
Soil Nitrogen (%) 
Soil Phosphorus (ppm) 
Soil Potassium (ppm) 
Soil Zinc (ppm) 
Soil Iron (ppm) 
Soil C:N ratio 
Soil N:P ratio 
Soil organic matter (%) 
Aboveground biomass (gm-2) 
Proportion of 
Photosynthetically Absorbed 
Radiation aboveground (%) 
Invasion resistance (%) 
Litter turnover 
 

Mean Using all the available measured 
ecosystem properties. There is 
evidence that the more functions 
included the stronger the 
relationship of multifunctionality 
to diversity (Delgado-Baquerizo et 
al., 2016, 2018; Jing et al., 2020; 
Maestre et al., 2012) (Jing et al., 
2020) although this has been 
shown in some cases to be a 
statistical artefact (Gamfeldt & 
Roger, 2017). 

MF4 

 
All ecosystem properties, as 
MF3 

Mean, NPK 
inverted 

Inverting macronutrients is done 
in some cases, to represent 
nutrient retention and less 
likelihood of leaching (Byrnes et 
al., 2014; Hautier et al., 2018; 
Manning et al., 2018; C. Xu et al., 
2022) 
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5.2.2 Satellite-derived phenology 

Satellite timeseries for this study were derived from Landsat, a multispectral satellite 

mission with nine bands at a spatial resolution (pixel size) of 30x30m, which is an appropriate 

spatial scale for pairing with field data from the NutNet sites at which plant and soil data is 

collected within spatial blocks measuring 10x25m. Some of the NutNet sites comprise small 

areas of grassland within a larger matrix of mixed land cover types, which is another reason 

for choosing the relatively small pixel size of Landsat over other satellite products which are 

commonly used for time series analysis, such as MODIS at a spatial resolution of 500m (Araya 

et al., 2016; Dronova et al., 2022). The location of a single 30x30m Landsat pixel was chosen 

to represent each site, in an area adjacent to the field plots but not directly over them so as not 

to be impacted by any nutrient addition treatments in plots neighbouring the sampled control 

plots. The spatial location of the representative Landsat pixel was chosen for each site based 

on visual inspection of the site, including the surrounding landscape and specific locations of 

the treatment plots, in Google Earth. Satellite data for each site-representative pixel was 

acquired from Landsat 5 (1984 – 2011), Landsat 7 (1999 – 2021) and Landsat 8 (2013 – 2021), 

from the year of field sampling backwards for as many years as data were available, up to 30 

years. Data was acquired from the Landsat Collection 2, Level-2 data product archive, which 

has had pre-processing including correction to surface reflectance and cloud masking applied. 

MF5 

Soil Carbon (%) 
Soil Nitrogen (%) 
Soil Phosphorus (ppm) 
Soil Potassium (ppm) 
Soil Zinc (ppm) 
Soil Iron (ppm) 
Soil C:N ratio 
Soil N:P ratio 
Soil organic matter (%) 
Aboveground biomass (gm-2) 

Mean A measure of soil 
multifunctionality, using all 
available soil properties plus 
aboveground biomass, as the 
approach of previous authors (Fry 
et al., 2018; Guo et al., 2021; W. 
Hu et al., 2021; Lavorel, 2013; Q. 
Liu et al., 2021; Schittko et al., 
2022; Vazquez et al., 2021; Y. Xu 
et al., 2022; Y. Yan et al., 2020; 
Zwetsloot et al., 2021) 

MF25 

 
All ecosystem properties, as 
MF3 
 

Threshold Multiple threshold-based 
measures of multifunctionality, 
which can account for potential 
trade-offs between ecosystem 
functions. Threshold-based 
multifunctionality measures are 
often included in studies but are 
not the main measure reported, 
due to being more complicated to 
interpret than means-based 
multifunctionality (Byrnes et al., 
2014; Pasari et al., 2013) 

MF50 

 
All ecosystem properties, as 
MF3 
 

Threshold 

MF75 

 
All ecosystem properties, as 
MF3 

Threshold 
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The revisit period of Landsat is 16 days, shortening to 8 for periods which are covered by more 

than one of the three sensors, which orbit asynchronously. The sampling approach yielded 

between 281 and 5449 images, giving satellite timeseries of 1 – 30 years, per site. Data was 

downloaded through Google Earth Engine (Gorelick et al., 2017b).  

NDVI was selected as the appropriate vegetation index to capture seasonal cycles of 

vegetation growth and senescence across a global set of contrasting grasslands. NDVI has 

known limitations at particularly high or low levels of vegetation density. At low levels, 

background soil properties can influence the red and NIR portions of the spectrum and cause 

artificially high NDVI values. Therefore, an alternative soil-adjusted vegetation index (SAVI) 

can be used in cases of low vegetation density (Qi et al., 1994). At high levels of vegetation 

density, the NDVI maxes out and fails to distinguish variation in vegetation density above the 

threshold. The enhanced vegetation index (EVI) is an alternative to NDVI in such cases (Huete 

& Jackson, 1988). All three indices, amongst others, have previously been used to predict 

multiple ecosystem functions in different types of grasslands, including arid grasslands, with 

NDVI and EVI most commonly reported to yield successful results (García-Gómez & Maestre, 

2011; Pettorelli et al., 2005; Ren & Feng, 2015; Wilson et al., 2017; Y. Zhao et al., 2018). In this 

study, both NDVI and EVI were initially calculated and analyses run using each index. NDVI 

was found to have greater variability among sites and stronger relationships with 

multifunctionality and species richness, therefore NDVI was chosen as the final index and only 

the results based on NDVI are presented. 

Phenological metrics were extracted for each year, per site using Timesat software 

(Eklundh & Jönsson, 2017; Jönsson & Eklundh, 2004). Timesat applies gap-filling and 

smoothing to the seasonal NDVI curves. Specific tuning was applied by visually inspecting the 

timeseries for each site in the Timesat graphical user interface (GUI); the fitting method was 

double logistic, and start and end of the growing season were defined relative to the overall 

seasonal amplitude (start = 0.25 and end = 0.15). Any years for which there was insufficient 

data to fit a curve, likely due to prevalence of cloud cover, were removed from timeseries. 

Phenometrics indicating the maximum NDVI, length of the growing season, within-year 

variability, rates of green-up and senescence and overall average NDVI were outputted from 

the Timesat software. The phenometrics used in this study were selected from those outputted 

by Timesat for their ecological relevance, interpretability and uniqueness; description of the 

seven phenometrics along with their ecological significance is shown in Table 12. To 

investigate whether a longer history of phenology is more relevant to ecosystem 

multifunctionality than shorter timeseries, the mean of each phenometric was calculated 

across different lengths of timeseries, from 3 years to 30 years, increasing in three-year 

increments. These multi-year means of phenometrics are used in the statistical analyses 
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described below. To investigate the relationship between ecosystem stability and 

multifunctionality, the inter-annual variation (coefficient of variation, c.v., calculated as 

standard deviation/mean) of each phenometric was also calculated over the different lengths 

of timeseries. This method of ascertaining phenological variability has been used by previous 

authors (Dronova et al., 2022; Paruelo et al., 2016). 
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Table 12. NDVI phenometrics retrieved from timeseries in this study. All phenometrics are used as both 
magnitude (average over the timeseries) and variability (cv over the timeseries) 

Phenometric Abbreviation Min Max 
Ecological interpretation & 

hypothesised relationship to 
multifunctionality 

Annual 
maximum 
NDVI 

NDVImax 

0.15 0.98 

Represents maximum vegetation 
greenness at the peak of the growing 
season, often used to represent peak 
biomass (J. Yan et al., 2022) 

Mean NDVI NDVImean 

0.11 0.80 

The overall average NDVI throughout 
the season, commonly used to represent 
productivity (Paruelo et al., 2016; 
Wilson et al., 2018) 

Time-
integrated 
NDVI or area-
under-curve 

NDVIauc 

30.0 1.9 

Cumulative productivity throughout the 
growing season. Affected by both 
magnitude of NDVI and the length of the 
growing season. Has been found to be a 
sensitive measure of aboveground 
ecosystem properties in managed and 
natural grasslands (Weber et al., 2018; J. 
Yan et al., 2022) 

Length of 
growing 
season (days) 

NDVIlen 

278 98 

The time difference between the start 
and end of the growing season. Longer 
growing seasons are associated with 
more diverse plant communities 
(Dronova & Taddeo, 2022) 

Rate of NDVI 
increase or 
green-up 

NDVIinc 
0.13 0.01 

There is evidence that more diverse 
grassland communities are associated 
with faster rates of green-up and 
senescence (Zaret et al., 2022)  Rate of NDVI 

decrease or 
senescence 

NDVIdec 
0.13 0.00 

Seasonal 
variation in 
NDVI, given 
by the annual 
coefficient of 
variation 

NDVIcv 

0.97 0.02 

Measure of the seasonality of vegetation 
growth. Has been used to retrieve 
species diversity (Gholizadeh et al., 
2019; Tan et al., 2022) and multivariate 
ecosystem services (Paruelo et al., 2016) 
in grasslands 
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5.2.3 Statistical analyses 

Pearson’s correlations were used to explore relationships between satellite-derived 

phenometrics, phenological variability, plant species richness and ecosystem 

multifunctionality. The effect of using historic average values of the phenometrics was 

assessed by comparing the strength of associations between multifunctionality and 

phenometrics averaged across increasing lengths of timeseries, 3 – 30 years. Bivariate linear 

models were also created between individual phenometrics and multifunctionality, using the 

optimum length of timeseries identified by Pearson’s correlations, to ascertain the amount of 

variation in multifunctionality that could be accounted for by variation in each phenometric.  

Overall variability of satellite-derived productivity (NDVI curves) at each site was 

assessed using Mann-Kendall tests, which indicate whether a data series with regular 

fluctuation has a significant trend overall (J. Yan et al., 2022). Pearson’s correlations were 

found among sites with and without significant overall trends in NDVI. It was hypothesised 

that for sites with significant overall trends, a historical perspective of phenometrics i.e. 

averaged over a longer timeseries, would be more important than for sites with no overall 

trend, where phenometrics are likely to be similar throughout the years and therefore 

incorporating more years into the average has little effect. 

Random forest regression was used to ascertain the utility of NDVI phenometrics for 

retrieving variation in multifunctionality in the presence of large scale climate and location 

drivers. Random forest was chosen to look for general associations across the large range of 

sites, rather than creating complex linear models of ecological functioning, which are likely to 

be different at different sites given the large geographic gradients and diverse climate and 

ecosystem types included in this set of 90 global grasslands. The climate parameters included 

were mean annual temperature (MAT), mean annual precipitation (MAP) and global aridity 

index (GAI) (Zomer et al., 2022), and location information latitude, longitude and elevation 

to account for spatial autocorrelation. Climate data was sourced from Worldclim, as 30-year 

averages (Fick & Hijmans, 2017; Hijmans et al., 2005). These covariates have been used 

previously to model multifunctionality in grasslands distributed in contrasting regions of the 

globe (Delgado-Baquerizo et al., 2018). The ranges of the climate and location variables are 

shown in Table 13. The Boruta algorithm, an extension to random forest, was used to test for 

and eliminate non-significant predictor variables from the final models (Degenhardt et al., 

2019; Kursa & Rudnicki, 2010). Random forest models were constructed with 1000 trees, and 

the optimal value of mtry as determined using the RFtune() function of package rfUtilities 

(Evans & Murphy, 2017). Models were run 100 times and the average of the 100 model runs 

taken as the final model output. The model outputs include % variation explained, RMSE 
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(based on out-of-bag samples) and a variable importance score, based on the reduction in 

mean square error (MSE), indicating the contribution of individual predictor variables to the 

final model.  

All analyses were run in R, using packages rfUtilities, randomForest, Boruta, Kendall. 

 

Table 13. The ranges of the climate and location predictor variables incorporated into random forest models of 
multifunctionality 

Variable Mean Min Max 
Mean annual 
temperature (MAT) (°C) 

11.0 -7.6 24.1 

Mean annual 
precipitation (MAP) 
(mm) 

820.3 192.0 2224.0 

Elevation (m) 535.6 0.0 3500.0 
Latitude (°) 28.6 -51.9 78.7 
Longitude (°) -40.6 -124.0 152.9 
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5.3 Results 

5.3.1 Distribution of above- and belowground functions and multifunctionality  

Figure 18 shows the distribution of the ecosystem properties measured in the field at 

the 90 NutNet sites, coloured according to their aridity following published thresholds of the 

GAI (Zomer et al., 2022). There were 62 humid, 7 dry subhumid, 17 semiarid and 4 arid sites 

in the data. Arid and semiarid sites have the lowest values of most ecosystem properties, with 

the exception of soil iron, invasion resistance and plant species richness. A correlation matrix 

of individual ecosystem properties (Figure 17) shows that there are no strong, significant 

negative correlations indicating trade-offs between functions (Manning et al., 2018). Soil 

carbon was collinear with soil nitrogen (R = 0.949) and soil organic matter (R = 0.801). 

However, all three properties were retained as they represent different important functions of 

soils, and previous authors have found the inclusion of collinear soil carbon and nitrogen 

variables not to change the outcome of analyses (Hautier et al., 2018; W. Hu et al., 2021).  

 

 

Figure 18. Distribution of the field-measured ecosystem properties, including the 9 belowground (soil) 
properties and 4 aboveground (plant) properties used to calculate ecosystem multifunctionality. The 
distribution of site-level plant species richness is also shown. 
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Figure 19 shows the distribution of the eight different multifunctionality measures 

calculated from various combinations of above- and belowground properties at each site 

(Table 11), coloured by aridity. Sites which are arid or semiarid have lower values of most 

multifunctionality measures. This effect is less apparent for MF1, the multifunctionality 

measure with inverted macronutrients and a greater proportion of aboveground relative to 

belowground properties. Two sites, Hog Island and Metompkin, have unusually low 

multifunctionality values for most multifunctionality measures, and are outliers in some of the 

relationships between different multifunctionality measures (Figure 20). These sites are the 

only coastal grassland sites in the dataset, and only belowground properties were incorporated 

into multifunctionality at these sites (Appendix A).  

 

 

 

 

Figure 19. The distribution of values of eight different multifunctionality measures, following calculation 
approaches in the literature. Five measures are means-based, and the remaining three are threshold-based 
(Table 11). Colours indicate the aridity class of the site, based on the GAI. 
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5.3.2 Associations between above- and belowground functions 

Figure 20 shows relationships between the eight different multifunctionality 

measures. There are significant positive correlations between all of the measures except MF1, 

the measure which incorporates fewer soil properties than the others, includes some 

aboveground properties, litter turnover and invasion resistance, which are not commonly 

incorporated into multifunctionality measures, and involves inversion of soil N, P and K. 

 

 

Figure 20. Scatter plots (lower) and Pearson’s R values (upper) showing relationships between the eight 
different multifunctionality measures.  

. = p < 0.1, * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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Figure 21 shows the relationship between multifunctionality measures and plant 

species richness across the NutNet sites. There are no strong correlations between site-level 

species richness and multifunctionality. However, four multifunctionality measures (MF2, 

MF3, MF4, MF5) have weak but significant positive correlations with plant species richness, 

at the 0.05 level (Pearson’s R 0.21 – 0.29), with the most significant relationship for MF4, 

including all measured properties and inverted N, P and K. None of the threshold-based 

measures have significant correlations with plant species richness. Arid and semi arid sites 

tend to have low multifunctionality relative to their species diversity, in comparison to the 

sites as a whole, shown by the line of best fit. 

 

 

Plant species richness (count) 

 

Figure 21. Scatter plots showing the association between eight multifunctionality measures and plant species 
richness, counted at the site level. Colours show the aridity class of the sites. Line shows the linear line of best fit, 
and the surrounding grey area represents the 95% confidence level. 
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5.3.3 Associations between NDVI-derived phenometrics and ecosystem functions 

The variability of phenometrics across the whole 30-year timeseries at sites are shown 

in Figure 22. Annual maximum NDVI has the lowest year-on-year variability, and also the 

smallest range of variability among sites, indicated by the narrow box. The most variable 

phenometrics year-on-year, were the rates of increase and decrease in NDVI. 

 

  

Figure 22. Distribution of phenometric variability across the whole 30-year timeseries of all sites. Colours 
indicate the phenometric: auc = area under curve, or time-integrated NDVI; cv = intra-annual coefficient of 
variation, dec = rate of decrease (senescence); inc = rate of increase (green-up); len = length of growing 
season; max = NDVI max; mean = NDVI mean. Phenometric variability is given by the coefficient of variation 
of each phenometric, standard deviation / mean. Boxes show the inter-quartile range of values, the centre line 
shows the median, and whiskers extend to the largest, or 1.5 times the interquartile range. Values which are 
greater than 1.5 times the interquartile range are represented by a dot. 

 

Pearson’s correlations were found between the individual ecosystem properties and 

the seven NDVI phenometrics, averaged over 3 – 30 years of seasonal NDVI curves. The key 

relationships are summarised in Table 14 (correlations for individual properties shown in 

Appendix B). Aboveground biomass is most strongly associated with shorter NDVI timeseries, 

i.e. the phenology of the plant community in the 3 years preceding field measurement. Soil 

properties carbon and organic matter content were more strongly associated with 

phenometrics averaged over longer timeseries of up to 30 years. There are no associations 

between phenometrics and site-level species richness across the sites, for any length of 
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timeseries. Invasion resistance and litter turnover were not strongly associated with 

phenometrics overall, and nor were soil micronutrients zinc and iron.  

Table 14. Key information about the associations between NDVI phenometrics and the individual ecosystem 
functions which are incorporated into measures of multifunctionality. The correlations are shown in Appendix 
B. 

 

Ecosystem 
property 

Key associations with phenometrics 

Soil Carbon (%)  
Significant positive correlations (R = 0.2 – 0.4) with most 
phenometrics. Generally stronger relationships for longer timeseries. 
No significant correlations with phenologic variability. 

Soil Nitrogen (%)  

Significant positive correlations (R = 0.2 – 0.4) with most 
phenometrics. Variable effect of increased length of timeseries for 
different phenometrics. 
No significant correlations with phenologic variability. 

Soil Phosphorus 
(ppm)  

Significant positive correlations with NDVImean and NDVIauc (R = 0.2 – 
0.35). Generally stronger relationships for shorter timeseries. 
No significant correlations with phenologic variability. 

Soil Potassium 
(ppm)  

No significant correlations with NDVI phenometrics. 
Few significant correlations with phenologic variability. 

Soil Zinc (ppm)  
No significant correlations 

Soil Iron (ppm)  
No significant correlations 

Soil C:N ratio  
Few significant correlations 

Soil N:P ratio  

Significant positive correlation (R ~= 0.25) with NDVIauc, for 15-30 year 
timeseries. 
Significant positive correlation with phenometric variability measured 
by NDVImean, strongest for a 3-year timeseries. 

Soil organic matter 
(%)  

Significant positive correlations with most phenometrics (R = 0.2 – 
0.4). Generally stronger relationships for longer timeseries. 
No significant correlations with phenologic variability. 

Aboveground 
biomass (gm-2)  

Significant positive correlations with most phenometrics (R = 0.4 – 
0.5). Generally the strongest relationships for shorter timeseries, 
decreasing from 3-30 years. 
Significant negative correlation with phenologic variability measured by 
NDVImax, around R = -0.3. 

Proportion of 
Photosynthetically 
Absorbed Radiation 
aboveground (%)  

Significant positive correlations with most phenometrics (R = 0.2 – 
0.6). Generally consistent correlation strengths for timeseries from 3 – 
30 years. 
Significant negative correlations with phenologic variability, based on 
most phenometrics, for timeseries from 6 – 30 years. 

Invasion resistance 
(%)  

Significant negative correlation (R = -0.2 – -0.3) with NDVImean 

Litter turnover  
No significant correlations 

Species richness  
No significant correlations 
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Associations between multifunctionality and plant community phenology, measured 

using satellite NDVI, were found for all eight multifunctionality measures. Overall 

relationships and conclusions drawn from the analysis were consistent across all of the means-

based multifunctionality measures. Threshold-based multifunctionality measures had some 

correlations with phenometrics, up to R = 0.4, however the best-correlated phenometrics 

fluctuated with timeseries length and were not consistent among the three different 

thresholds. The multifunctionality measure most strongly correlated with phenometrics 

overall was MF2, therefore the results based on this multifunctionality measure are presented 

from this point forward. 

All phenometrics had significant, positive associations with multifunctionality. 

NDVImax was the phenometric with the strongest correlations to multifunctionality, and the 

second-strongest was NDVIinc, representing the rate of green-up. Length of growing season 

(NDVIlen) had the weakest correlations to multifunctionality (Figure 23 a.). Between 12 and 18 

years is the timeseries length for which positive correlations between NDVI phenometrics and 

multifunctionality are strongest for the majority of phenometrics. However, the variation in 

the R and p values were less than 0.1 and 0.01 respectively, indicating that increasing the 

length of timeseries used to calculate the average phenometric value did not significantly 

improve models. Only one indicator of phenological variability, inter-annual variation in 

NDVImax, was significantly negatively correlated with multifunctionality. Again, timeseries of 

between 12 and 18 years gave the strongest correlations; however, this time there was a larger 

effect of increasing the length of timeseries (R = -0.068 to -0.300, p = 0.551 to 0.005).  

NDVI phenometrics averaged over a timeseries of 18 years had the strongest 

correlations with multifunctionality for most phenometrics. Figure 24 shows scatter plots of 

phenometrics (18-year) and multifunctionality. The four arid sites have lower 

multifunctionality in relation to their phenometrics than the sites as a whole.  
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a.  

Associations between multifunctionality and NDVI phenometrics 

averaged over 3 – 30 years

 

b.  

Associations between multifunctionality and NDVI phenometric 

variability calculated over 3 – 30 years 

 

 

Figure 23. Pearson’s correlations between a. NDVI phenometrics (average over 3 – 30 years) and b. NDVI 
phenometric variability (inter-annual coefficient of variation over 3 – 30 years) and multifunctionality. 
Colours indicate the phenometric: auc = area under curve, or time-integrated NDVI; cv = intra-annual 
coefficient of variation, dec = rate of decrease (senescence); inc = rate of increase (green-up); len = length of 
growing season; max = NDVI max; mean = NDVI mean. Significant correlations (p < 0.05) are shown by 
filled-in points, insignificant correlations are shown by empty points. 



130 

 

 

Figure 24. Scatter plots and Pearson’s correlations between the individual phenometrics, averaged over 18 
years. Black lines show the linear model line of best fit, grey area shows 95% confidence interval. Colours show 
the aridity class of the sites. 

 

Mann-Kendall tests were used to identify which sites had stable NDVI across the whole 

30-year timeseries, and which sites experienced a significant change in NDVI. 58 sites had 

significant changes in NDVI across the 30-year timeseries (p <= 0.01), and 29 sites did not 
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have significant NDVI trends. These two subsets of sites were tested separately for 

relationships between multifunctionality and phenometrics, to investigate whether the overall 

long-term stability of vegetation at the site influences the timescales over which phenology 

most closely represents multifunctionality. Figure 25 shows Pearson’s correlations between 

multifunctionality and NDVI phenometrics averaged over increasing lengths of timeseries, 

from 3-30 years. 

a.  

Associations between multifunctionality and NDVI phenometrics, among 

sites with no significant trends in NDVI over 30 years 

 

b.  

Associations between multifunctionality and NDVI phenometrics, among 

sites with significant trends in NDVI over 30 years 

 

Figure 25. Pearson’s correlations between multifunctionality and NDVI phenometrics among a. sites without (n 
= 29) and b. sites with (n = 58) significant trends in NDVI over the 30 year timeseries, determined by Mann-
Kendall tests. Colours indicate the phenometric: auc = area under curve, or time-integrated NDVI; cv = intra-
annual coefficient of variation, dec = rate of decrease (senescence); inc = rate of increase (green-up); len = 
length of growing season; max = NDVI max; mean = NDVI mean. 
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Separate analysis of sites with and without significant trends in NDVI over 30 years 

showed different relationships between then individual phenometrics and multifunctionality 

within each group. Time-integrated NDVI and growing season length were more strongly 

associated with multifunctionality among sites which were overall phenologically stable 

(Figure 25). The relationship of growing season length to multifunctionality was particularly 

affected by site stability, being one of the most strongly correlated phenometrics among stable 

sites, and not significantly correlated to multifunctionality among sites with significant trends 

in NDVI. Rates of green-up and senescence were oppositely affected, not being associated with 

multifunctionality among stable sites but being some of the most strongly correlated 

phenometrics among unstable sites. Long-term site stability also impacted the effect of longer 

versus shorter timeseries for retrieving phenometrics; among sites with no overall trends in 

NDVI, the shortest timeseries of 3 years gave stronger relationships between phenometrics 

and multifunctionality (Figure 25).  

Bivariate linear models were created to explain variation in multifunctionality from 

each of the NDVI phenometrics and measures of phenologic variability (inter-annual 

phenometric variation). Phenometrics retrieved from timeseries of 18 years were used for 

linear modelling, because this length of timeseries had the strongest Pearson’s correlations 

between phenometrics and multifunctionality (Figure 23). Phenometrics which explained 

significant portions of multifunctionality (p <= 0.05) were the same as those which had 

significant Pearson’s correlations (Figure 23). Results of linear models are presented in Table 

15.  

Table 15. bivariate linear models predicting multifunctionality from average and variability of NDVI 
phenometrics, calculated over an 18-year timeseries 

predictor adjusted R2 intercept slope p RMSE 

Mean average 

max 0.366 -1.167 1.938 0.000 0.506 
mean 0.226 -0.754 2.218 0.000 0.559 
auc 0.262 -0.704 0.058 0.000 0.546 
len 0.086 -0.888 0.005 0.004 0.608 
inc 0.271 -0.682 11.143 0.000 0.543 
dec 0.191 -0.522 10.062 0.000 0.572 
cv 0.097 -0.469 1.052 0.002 0.604 

Variability (inter-annual coefficient of variation) 

max 0.073 0.418 -2.364 0.007 0.612 
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5.3.4 Predicting variation in multifunctionality 

Random forest regression was carried out to explain variation in multifunctionality 

from NDVI phenometrics, climate and location variables. NDVI phenometrics averaged over 

3, 18 and 30 years were used in three separate models, and compared in Table 16. An 

additional 11.21% of variation in multifunctionality was explained using 18-year average 

phenometrics compared to 3-year averages, though there was little difference in explained 

variation between 18-year and 30-year averages. All models including both phenometrics and 

climate & location variables explained more variation than those using just one of the two 

predictor groups. The most successful random forest model is presented along with the 

importance scores of individual predictor variables in Figure 26 (a., b.). The most important 

predictor variable by a large margin is aridity, given by Global Aridity Index. Six phenometrics 

were retained as important predictor variables in model construction, the most important 

being NDVImean. Climate and location variables were also retained as important predictors, 

though less important than four of the phenometrics. Phenological variability (c.v. of NDVImax) 

was not retained during variable selection as an important predictor of multifunctionality. For 

all models, the standard deviation of variation explained among the 100 model runs was 0.006 

or less, indicating that the models were stable. 

 

Table 16. Results of random forest regression of multifunctionality. Average of 100 model runs. 

Length of timeseries 
% variation 
explained 

Standard 
deviation 

RMSE 
NRMSE 
(RMSE/ 
range) 

3-year 50.19 0.006 0.440 0.135 

18-year 61.40 0.005 0.397 0.122 

30-year 61.17 0.005 0.398 0.122 

 
Results of random forest regression of multifunctionality, using only the NDVI 
phenometrics or the climate and location variables as predictors. 
 
NDVI phenometrics 
only (18-year) 

47.13 0.005 0.465 0.142 

Climate & location 
variables  
only 

46.82 0.006 0.473 0.145 
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a. 

 

 

b. 

 

 

Figure 26. a. Random forest model of multifunctionality from phenometrics, climate and location variables. 
Points are coloured according to aridity class. b. The importance of predictor variables in modelling 
multifunctionality. auc = area under curve, or time-integrated NDVI; cv = intra-annual coefficient of variation, 
dec = rate of decrease (senescence); inc = rate of increase (green-up); len = length of growing season; max = 
NDVI max; mean = NDVI mean; AI = aridity index; MAP = mean annual precipitation; MAT = mean annual 
temperature 
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5.4 Discussion 

These results indicate that variation in the multifunctionality of grassland systems at a 

global scale can be detected from satellite NDVI phenometrics representing the magnitude, 

temporal variation and stability of aboveground productivity across multiple growing seasons. 

Higher and more stable aboveground productivity, i.e. an increase in the magnitude of 

phenometrics and a decrease in their inter-annual variability, were both indicative of higher-

multifunctionality systems (Pearson’s R of up to 0.61 and -0.30 respectively). These findings 

build on existing landscape-scale studies which have found that multiple ecosystem services, 

or multivariate indicators of grassland health and status, can be retrieved using satellite NDVI 

across individual grassland landscapes, for the purpose of managing the landscape for 

multiple services (Gaitán et al., 2013; García-Gómez & Maestre, 2011; Paruelo et al., 2016; 

Weber et al., 2018; Y. Zhao et al., 2018). The contribution of the present work is to demonstrate 

that the links between satellite phenology and ecosystem multifunctionality which exist at 

small scales can be found at the global scale, generalised across diverse natural grassland 

ecosystems, and have the potential to be used to enhance field-based assessments of 

multifunctionality by filling temporal and spatial gaps.  

5.4.1 Links between satellite NDVI phenometrics and ecosystem functioning 

Multifunctionality was expected to be linked to NDVI phenometrics via two main 

mechanisms. First, and primarily by phenometrics capturing the magnitude of aboveground 

productivity, the main process by which carbon and energy enter the system and therefore 

control on the amount of resources available to drive other ecosystem functions (Pettorelli et 

al., 2005). The multifunctionality measures all incorporated at least one direct measure of 

aboveground productivity, and some two (aboveground biomass and proportion PAR), which 

were significantly correlated to phenometrics themselves, thereby providing a mechanism for 

at least part of the link. The most strongly correlated phenometric to multifunctionality was 

the annual maximum NDVI, which represents the quantity of vegetation at the height of the 

growing season, and has been widely used in remote sensing as an indicator of productivity 

(Dronova et al., 2022; Weber et al., 2018; J. Yan et al., 2022). However, multifunctionality had 

similar or slightly stronger correlations with NDVI measures overall than did individual 

measures of productivity, and was significantly associated with more different aspects of plant 

phenology, suggesting that the overall relationship between multifunctionality and 

phenometrics was not only driven by aboveground productivity. 
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The second mechanism hypothesised to link multifunctionality and phenometrics was 

via links to aboveground plant diversity. Plant diversity has been shown to enhance 

multifunctionality across a wide range of ecosystems including the NutNet sites (Hautier et 

al., 2018), as well as affecting phenology by prolonging the growing season and promoting 

phenological stability, evidence for which has been found using both in-situ (Liang et al., 2022; 

Oehri et al., 2017; Tilman et al., 2006) and remote sensing datasets (Dronova et al., 2022; 

Dronova & Taddeo, 2022). Across these sites there were significant relationships between 

species richness and multifunctionality, but not between species richness and in-situ 

measured productivity (aboveground biomass or PAR) (Table 14). The link between plant 

species richness and productivity has been widely researched and is one of the key questions 

of the Nutrient Network overall. Generally, the Nutrient Network has found a complex 

relationship between diversity and productivity across the global network of grassland sites, 

with other environmental factors such as climate gradients and soil fertility levels tending to 

have greater influence on diversity than productivity alone; it is noted in the review by Borer 

et al. (2017) that bivariate productivity : diversity relationships are often not in evidence (Adler 

et al., 2011; Borer et al., 2017; Grace et al., 2016). However, there were also no relationships 

between plant species diversity and any of the phenometrics, including growing season length, 

or phenometric stability, which was surprising because these associations have been 

frequently demonstrated in grasslands at a variety of spatial scales, including large scales 

(Hector et al., 2010; Isbell et al., 2015, 2018). Reasons for the lack of relationship could be the 

use of species count as a measure of plant diversity, where species evenness, functional or 

phylogenetic diversity could be more relevant (Rossi et al., 2021; Tan et al., 2022; C. Xu et al., 

2022). Alternatively, it could be that at these large spatial scales and among these contrasting 

sites climate and geological properties exert more influence over plant community phenology 

than do the effects of plant diversity. Overall it is concluded that though plant species richness 

does promote multifunctionality across these sites, there are other drivers which obscure the 

potential effect of species richness on satellite-derived phenology at such large geographic 

scales, and species richness therefore does not provide a direct link. 

Multiple different aspects of annual phenology curves, representing different 

ecological stages of vegetation growth and senescence, were positively correlated with 

ecosystem multifunctionality at the global scale. Of the seven phenometrics investigated, 

annual maximum NDVI was the phenometric most strongly associated with multifunctionality 

during Pearson’s and bivariate linear modelling. Annual maximum NDVI represents the 

quantity of vegetation at the height of the growing season, at peak biomass, and has been 

widely used as an indicator of productivity dynamics (Dronova et al., 2022; Paruelo et al., 

2016; Weber et al., 2018; J. Yan et al., 2022). Annual maximum NDVI is a single-time measure 
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which was relatively stable year-on-year across the whole dataset, having the lowest inter-

annual coefficient of variation of the phenometrics (Figure 22). The inter-annual variation in 

annual maximum NDVI was also the only measure of phenological stability which was able to 

explain significant variation in multifunctionality (Table 15). Given the low overall variation 

in NDVImax, this suggests a large signal-to-noise ratio; i.e. variation in NDVImax is caused by 

significant variations in the plant community, and such significant variations are negatively 

correlated with multifunctionality. Variation in the other phenometrics year-on-year are 

larger do not contribute to distinguishing multifunctionality between sites, suggesting that 

these phenometrics are influenced by other factors which are less important for determining 

multifunctionality. This is further evidenced by the consistent relationships between NDVImax 

and multifunctionality among different lengths of satellite timeseries (Figure 23). These 

results suggest that annual maximum NDVI is less sensitive to variation in the plant 

community, but that for resolving differences in multifunctionality across contrasting and 

geographically disparate sites this insensitivity is beneficial, making the metric insensitive to 

noise and therefore a more stable indicator of ecosystem conditions. 

Annual maximum NDVI is a commonly used metric of productivity in remote sensing, 

but more recent studies have also found time-integrated NDVI (the area under curve of annual 

NDVI, NDVIauc) to be a more sensitive measure of cumulative productivity and associated 

ecosystem dynamics in grasslands. For example, time-integrated NDVI outperformed annual 

maximum NDVI for the retrieval of temporally dynamic aboveground processes in grasslands 

across China (J. Yan et al., 2022). Time-integrated and annual maximum NDVI were 

compared for their utility in retrieving various habitat quality measures in managed dry 

grasslands; in this case, maximum NDVI was found to be more consistently useful overall, but 

time-integrated NDVI was sensitive to different management scenarios (Weber et al., 2018). 

Similar results are found in this study, when comparing phenometric-multifunctionality 

relationships between sites with stable or variable NDVI overall. Time-integrated NDVI and 

growing season length were the most strongly associated phenometrics to NDVI among stable 

sites, though only the short-term averages of 3 years were especially strongly correlated, 

declining over time. These results suggest that the best choice of phenometric for retrieving 

multifunctionality, and the most suitable time period over which to average phenometrics, 

may depend on the overall variability of the site. For more variable sites, the relatively stable 

and insensitive maximum NDVI, averaged over decadal timescales, may be more appropriate, 

whereas for stable sites the more sensitive time-integrated NDVI and growing season length 

from recent seasons is more suitable.  
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5.4.2 Long-term versus short-term satellite timeseries for retrieving ecosystem 
multifunctionality  

The effects of including historic NDVI dynamics over a varying timescale from 3 to 30 

years were mixed. It was expected that different ecosystem functions would correlate to 

surface NDVI over different time periods, for example temporally dynamic aboveground 

functions such as proportion PAR and biomass are related to productivity at timescales of a 

single day and a single growing season respectively. However, belowground functions are 

variable over longer timescales, as they represent the cumulation of aboveground inputs over 

time combined with transformations and feedbacks of these inputs (Garland et al., 2021; 

Kaisermann et al., 2017). These hypotheses were supported by Pearson’s correlations between 

NDVI phenometrics and individual ecosystem properties; more dynamic aboveground 

properties were more strongly associated with recent phenology, and belowground properties 

were more strongly associated with long-term (decadal) average phenology (Table 14).  

When individual functions were considered simultaneously as multifunctionality, 

there were overall only small changes in the strength of correlations from 3-30 year timeseries, 

but for most phenometrics relationships were strongest for 12 to 18-year averages (Figure 23). 

When multifunctionality was retrieved from satellite phenometrics along with climate and 

location data, there was an increase of 11.21% variation explained using 18 years of 

phenometric data compared to only 3, but then little change between 18 and 30 years (Table 

16). Phenological variability, calculated as the inter-annual variation in maximum NDVI, was 

only associated with multifunctionality when calculated across timeseries of 9 years or more. 

These results suggest that the length of timeseries used for the retrieval of phenology and 

phenological variability can have a significant impact on their relationship to ecosystem 

functions. This is important because the length of timeseries used across studies is generally 

not consistent (García-Gómez & Maestre, 2011; Paruelo et al., 2016; Weber et al., 2018; J. Yan 

et al., 2022; Y. Zhao et al., 2018). A previous comparative study of different lengths of satellite 

timeseries on the retrieval of soil carbon in a prairie grassland found that associations between 

a satellite vegetation index (EVI) and soil carbon were highly variable depending on the year 

of satellite data used (Wilson et al., 2017). This work also found that a multi-decadal average 

EVI was more powerful for the retrieval of soil carbon than a short (2-year) average and 

reported a stronger effect than in this study which may be due to the spatial extent of the study 

across a single field (landscape-scale). It could be that at the global scale presented here, the 

contrast between NDVI patterns from site to site overwhelms the influence of year-on-year 

variability at a single site, so when resolving differences between sites the impact of temporal 

variation is less than it would be on a landscape scale. 
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There are many other ways in which current and historical ecosystem processes may 

influence phenology-multifunctionality relationships on an individual site level, which are 

obscured using a global-scale dataset. For example, coupling between NDVI and soils may 

happen at different rates in different ecosystems, depending on whether they are exploitative 

or conservative in terms of nutrient cycling; as this dataset encompasses broad gradients of 

grassland systems there may not be a single temporal trend throughout the data. In arid sites, 

the activity of the aboveground plant community has been shown to be less influential on 

multifunctionality than that of the belowground microbial community (Delgado-Baquerizo et 

al., 2013; W. Hu et al., 2021; Y. Yan et al., 2020), which could explain why the arid sites in this 

dataset were outliers from the overall trend between multifunctionality and satellite-derived 

productivity (Figure 24). The long-term stability of an ecosystem influences the timescales 

over which historic productivity is most related to present-day functioning. For example, at 

sites with very stable phenology, which have not experienced a change in patterns of vegetation 

growth and senescence for 30 years, the inclusion of additional years’ phenological metrics 

has little effect on the multi-year average of phenometrics, and therefore on their relationship 

to multifunctionality (Figure 23). Among sites which have experienced significant trends in 

productivity, the number of years’ timeseries required to capture relevant historic conditions 

may depend on whether the change occurred as a rapid state change, in which case the 

timeseries should cover the year of the change to capture preceding conditions, or as a gradual 

trend in which case the relevant number of years may be less clear (Dronova & Taddeo, 2022). 

Weighting of historic years’ phenology could also be appropriate; though the productivity of 

the plant community at a site 10 years ago may still have some influence on present-day soil 

conditions, it is likely to be less influential than current phenology.  

While this global-scale analysis has suggested that the length of satellite timeseries 

used to retrieve phenology can have a significant effect on its relationships to other ecosystem 

properties, further research is needed at landscape scales to establish the relative influence of 

past and present ecological conditions on contemporary functioning of different ecosystems. 

Based on these results it is recommended that where possible, decadal timeseries of satellite 

data should be acquired for efforts to retrieve multifunctionality, or to retrieve individual 

belowground functions such as carbon storage and nutrient cycling which are also more 

strongly related to longer term averages of phenology. Analysis of historic phenology through 

NDVI timeseries could identify whether the site has experienced significant change, and when 

this occurred, in order to decide how many years phenological data to include in models. The 

Landsat archive is a valuable resource for this purpose, being freely available and extending 

back for decades across many locations worldwide (Wulder et al., 2022). Preliminary 

assessment of phenological stability using Landsat would complement analyses requiring 
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higher spatial and spectral resolution data that can be acquired from more recent, less 

temporally extensive satellite missions such as Sentinel. 

Across this global set of contrasting grasslands, NDVI was chosen as the most 

appropriate vegetation index for detecting phenological patterns, but across smaller spatial 

extents, other indices may be valuable. For example, soil-adjusted vegetation indices may be 

more sensitive to biomass changes during particularly early or late phenological stages in 

sparse grassland sites (Ren & Feng, 2015). Other important phenological stages in grassland 

plants, such as flowering seasons, may have other impacts on the spectral reflectance of the 

land surface and therefore be captured by alternative spectral indices. Indices detecting 

flowering stages of phenology are in the early stages of development and often use high-

resolution UAV and/or hyperspectral data, and focus on clearly identifiable crop flowering, 

such as yellow flowering of rape crops (Gallmann et al., 2022; Shao et al., 2023). The use of 

NDVI is a broad measure which is suitable for distinguishing patterns across large geographic 

extents, but other means of remotely detecting phenological patterns should be explored at 

smaller landscape scales. 

5.5 Conclusions 

The results presented here demonstrate that long-term satellite NDVI timeseries have 

potential to retrieve multifunctionality of varied grassland ecosystems at the global scale, by 

capturing plant community productivity, phenology and stability. Phenological metrics of 

plant community growth including maximum greenness, rate of green-up and annual average 

greenness are associated with multifunctionality and are important predictor variables in 

global models of multifunctionality also incorporating climate and location information. 

Among the range of phenometrics, annual maximum NDVI was the most closely associated 

with multifunctionality overall, though there was evidence that time-integrated NDVI was a 

more sensitive measure of productivity among sites with more stable plant communities. 

There were small differences in the relationships between multifunctionality and 

phenometrics retrieved over long-term (up to 30 years) and short-term (3-9 years) NDVI 

timeseries, but generally timeseries of 12 or more years gave stronger results. It is 

recommended that future efforts to retrieve ecosystem multifunctionality from satellite data 

make use of long-term archives such as Landsat to establish a history of vegetation conditions 

which may have continuing legacy effects on ecosystem functions. The global-scale dataset was 

effective for distinguishing between multifunctionality of highly contrasting grasslands, giving 

evidence that there are general, broad-scale associations between multifunctionality and 

satellite NDVI metrics in natural grasslands. However, across such large spatial extents and 

including grasslands with diverse site histories it was not possible to investigate the individual 
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mechanisms acting at each site to link surface reflectance over time with ecosystem functions; 

future work should explore these further using paired satellite and in-situ data at a range of 

spatial scales. Overall, the contribution of this study is to show that phenometrics derived from 

long-term satellite timeseries can reveal information about aboveground and belowground 

grassland functions at the global scale. 
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6. Discussion 
 

This chapter aims to provide an overarching discussion of the three individual research 

chapters (Chapters 3, 4, 5). The thesis is structured around three main research objectives; 1) 

to predict soil microbial community properties from canopy imaging spectroscopy 2) to 

retrieve important plant functional traits from multispectral satellite data and 3) to use plant 

community phenology retrieved from multispectral satellite timeseries to predict ecosystem 

multifunctionality. All objectives are in the context of diverse grassland ecosystems at 

continental to global spatial scales. The research objectives were addressed through three 

distinct, yet interlinked, pieces of research presented in chapters 3 – 5. Chapter 3 

demonstrated that soil microbial community properties, in particular microbial community 

structure (F:B ratio) could be predicted with success from canopy level imaging spectroscopy 

in grasslands and shrublands spanning large productivity and aridity gradients across North 

America (validation R2 for six microbial properties between 0.09 and 0.68). Chapter 3 further 

identified that field-measured plant traits, in particular SLA, C:N ratio and carotene, were also 

able to represent soil communities at the surface, though predictions from spectra had greater 

accuracy than those made from traits measured in-situ highlighting the value of imaging 

spectroscopy in this context. These results were explored further in Chapter 4, addressing the 

second objective to show that some plant traits identified as being important for representing 

soil communities at the surface (SLA, C:N ratio) were able to be retrieved from multispectral 

satellite data (variation explained 67%, 44%, NRMSE 13%, 14%). The use of satellite data for 

retrieval of grassland functions was also addressed in Chapter 5 for objective 3, this time 

utilizing the multitemporal capabilities of satellite missions to retrieve long-term (up to 30 

years) and contemporary phenology at 90 grassland sites distributed globally. Chapter 5 

demonstrated that different aspects of satellite-derived phenology are able to contribute 

valuable explained variation to large-scale models of grassland functioning. 

Within the individual research chapters is already presented the specific research gaps, 

methodologies, findings and discussion; the purpose of this chapter is to provide a wider 

discussion of the key themes that emerged across the three chapters and place their key 

findings in the context of the overarching thesis aims and objectives. Key themes which 

emerged across the research chapters included the relative value of hyperspectral, 

multispectral and multitemporal perspectives of landscape surfaces for retrieving information 

about grassland ecosystems; the impact of diverse grassland ecosystems and large 

environmental gradients on the ability of remote sensing datasets to retrieve ecosystem 

functions; and interacting effects of plant material quality (functional traits) and quantity 

(biomass and productivity) for linking soils, plants and reflectance. These themes are used to 
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organize this chapter. Finally, this discussion also acknowledges some of the limitations of the 

work, including the inherent limitations of empirical modelling approaches and challenges 

relating to the use of secondary datasets, and makes recommendations for future research. 

 

6.1 To what extent are multispectral satellite data able to retrieve aboveground 

grassland functions? 

Satellite missions have great potential for retrieving information about the biosphere 

at global spatial scales (Pettorelli et al., 2018a). New satellite missions have been launched for 

this purpose in recent years including the European Space Agency’s Sentinel-2 missions, 

which have spectral specifications specifically to enhance vegetation monitoring (Revill et al., 

2019), and the recent launch of Landsat 9, continuing the Landsat missions to provide 

consistent data spanning multiple decades (Wulder et al., 2022). Upcoming hyperspectral 

satellite missions such as EnMAP and HyspIRI are also anticipated to facilitate new 

perspectives on the world’s ecosystems (Anderson, 2018; Pettorelli et al., 2018a). It is 

therefore an important time to establish the potential and the limitations of the application of 

satellite data to grassland ecology. Recent work has explored the use of satellite data to retrieve 

diversity in a range of ecosystems (Ma et al., 2019; Rocchini et al., 2021b), and to study 

productivity patterns in managed grasslands (I. Ali et al., 2016; Punalekar et al., 2018). The 

ease with which satellite systems can generate multi-temporal data has been shown to be 

valuable both for quantifying the temporal portion of biological variation (Fauvel et al., 2020; 

Rossi et al., 2021; Stumpf et al., 2020), though not always (Lopes et al., 2017), and for 

retrieving phenology (Dronova et al., 2022; Oehri et al., 2017; Weber et al., 2018). Some 

methods for estimating diversity from satellites incorporate plant functional traits; for 

example variation in SLA has been increasingly studied using satellites (A. M. Ali, 

Darvishzadeh, & Skidmore, 2017; Li et al., 2018) and used to estimate grassland diversity 

(Rossi et al., 2020). However, there has been a lack of research into the retrieval of a 

comprehensive set of grassland functional traits from satellite systems, despite promising 

results from forests (Aguirre-Gutiérrez et al., 2021), and satellite-derived aboveground 

properties have rarely been linked to soil functions, with some exceptions (García-Gómez & 

Maestre, 2011; Günal et al., 2021; Wilson et al., 2017). Chapters 4 and 5 in this thesis explored 

two different applications of multispectral satellite data to the retrieval of grassland functions. 

First, using Sentinel-2 data explicitly to retrieve a wide set of important plant functional traits 

in North American grasslands, and second by using multi-decadal Landsat timeseries to link 

phenology and ecosystem multifunctionality across global grasslands.  
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Plant functional foliar traits represent an important component of the ecosystem 

which drives many crucial ecosystem functions (Bardgett, 2017; Funk et al., 2017; Grigulis et 

al., 2013; Lavorel, 2013). Retrieval of foliar traits across large spatial extents is important for 

assessment and monitoring of functional diversity and associated ecosystem functions and 

services, and remote sensing technologies offer an opportunity for this at unprecedented 

scales (Jetz et al., 2016; Ma et al., 2019). In grasslands, however, functional trait modelling 

has been heavily biased toward hyperspectral data, with high spectral resolution but a 

restricted geographic coverage (Van Cleemput et al., 2018).  

Chapter 4 tested, for the first time, whether a wide selection of 20 important grassland 

foliar traits were retrievable from Sentinel-2 satellite imagery. The results suggested that 

multispectral reflectance data acquired from satellite platforms is able to retrieve variation in 

key foliar functional traits across grasslands at the continental scale. All 20 foliar traits were 

retrieved with a RMSE below 25%, the threshold deemed an acceptable level of precision 

(Asner et al., 2015; Moreno-Martínez et al., 2018; Z. Wang et al., 2020). The best-modelled 

traits from Sentinel 2 were SLA and leaf nutrients phosphorus and potassium, all of which 

have strong associations with plant productivity and growth strategy (Reich, 2014), indicating 

that a satellite-based method for retrieving functional traits could be particularly useful for 

modelling ecosystem economics and trait relationships to belowground function (see Chapter 

3). The most important spectral variables for retrieving plant traits tended to be vegetation 

indices incorporating multiple spectral regions, with indicators in the red edge and short-wave 

infrared regions particularly valuable, as has been found previously in forests (Ma et al., 2019). 

The value of the narrow red-edge spectral bands specific to Sentinel-2 particularly highlights 

the potential of this satellite for trait mapping (Rossi et al., 2020).  

Comparison to previous studies show that functional traits can be retrieved from 

multispectral satellite data in grasslands with comparable accuracy to those achieved in 

tropical forest ecosystems (Aguirre-Gutiérrez et al., 2021), and across mixed ecosystems 

globally (Moreno-Martínez et al., 2018). This suggests that the small size of herbaceous plants 

relative to pixels and mixed nature of grassland systems at pixel scales, expected to pose a 

challenge in grasslands (Van Cleemput et al., 2018), do not cause the link to be lost between 

traits and spectra. This is in agreement with the results reported in a review of hyperspectral 

retrieval of grassland traits – that coarser spatial resolution of data can serve to smooth out 

noise rather than diminish the influence of traits on the reflectance signal (Van Cleemput et 

al., 2018). Though grassland foliar traits were generally predicted with lower accuracies from 

multispectral satellite data used here (Chapter 4) than those reported using hyperspectral 

data, significant overlap in the ranges of R2 and RMSE values indicate that there were some 

traits retrieved with comparable accuracy. In particular, SLA, potassium and phosphorus were 
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retrieved well from Sentinel-2, with comparable accuracy to the most similar precedent study, 

also using data from NEON and modelling traits with hyperspectral data (Z. Wang et al., 

2020). These comparisons suggest that while the enhanced spectral detail of hyperspectral 

sensors does improve accuracy of trait retrieval, the resolution of Sentinel-2 is sufficient to 

model broad-scale variation in a large number of important foliar traits. However, there are 

some caveats and practical considerations. 

Retrieval of foliar pigments carotene and chlorophyll was relatively unsuccessful using 

Sentinel-2, despite the calculation of a specific chlorophyll-sensitive spectral index (Clevers & 

Gitelson, 2013). Pigments were sensitive to the temporal offset between satellite and field data 

collection, being retrieved with highly variable accuracy across the different time windows 

(Figure 14, Chapter 4). Carotene in particular was not well-retrieved from satellite data 

compared to previous work using hyperspectral data (Z. Wang et al., 2020), suggesting that 

despite field-measured carotene representing soil communities well (Figure 4, Chapter 3), 

there may be limited potential to use this trait as a link between spectra and soils using 

multispectral satellite data. This should however be a research priority for forthcoming 

hyperspectral satellite missions, combining high spectral detail with increased spatial 

coverage. Grassland-woodland mixing will continue to pose a practical challenge for trait 

retrieval across heterogenous natural grasslands, especially at the spatial scale of satellite 

pixels (usually at least 10m). Detailed mapping of the canopy size and location of woody 

individuals, as has begun to be incorporated into the sampling strategy of NEON (Weintraub, 

2022), and other field design methods such as spatially matching field plots to pixel 

boundaries (Hauser et al., 2021) will be valuable for aggregating community-level trait values 

of mixed vegetation grasslands and grassland-woodland boundaries. The limitations inherent 

in aggregation methods such as community-weighted means, for example that they cannot 

account for intraspecific variation, can potentially be overcome by remote sensing approaches 

in the future (Funk et al., 2017). However, the limitations of field-based aggregation will 

continue to affect trait retrieval when finding empirical relationships between community-

level functional traits and reflectance, therefore detailed spatial sampling methods are 

important at this stage of research. 

An avenue of recent remote sensing research which is likely to be advanced by the 

ability to retrieve a large selection of different functional traits from satellite data is the 

retrieval of plant diversity from spectral data, an important current research topic in remote 

sensing in which plant functional traits play a key role (Rocchini et al., 2021a; Rossi et al., 

2020, 2021, 2022; Schweiger et al., 2018). For example, multiple individually-modelled traits 

have been used to calculate functional richness and divergence in forests from remote sensing, 

using both hyperspectral (Schneider et al., 2017) and satellite (Helfenstein et al., 2022) data. 
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Satellite-derived spatial and temporal variation in a single trait, SLA, has also been used to 

infer functional diversity across grassland landscapes (Rossi et al., 2020). Therefore, though 

direct spectra-diversity modelling was beyond the scope of this thesis, the retrieval of 

grassland foliar functional traits from satellite data demonstrated in Chapter 4 is an important 

contribution towards this topic. 

Apart from the estimation of foliar traits, the other important aspect of satellite data 

researched in this thesis was the use of multitemporal timeseries for retrieving grassland 

functions. In Chapter 5, it was shown that Landsat timeseries data spanning 30 years was an 

important contributor to prediction of ecosystem multifunctionality at the global scale (Figure 

26, Chapter 5). First, by capturing different aspects of vegetation community phenology which 

were associated with different individual ecosystem functions. The best models of ecosystem 

multifunctionality used six different phenometrics as predictors, capturing peak biomass, 

average biomass, rate of green-up and senescence, growing season length and time-integrated 

productivity. This result builds on previous work at the landscape scale (Weber et al., 2018), 

by demonstrating that the relationships are not unique to a single site but can be found across 

a wide set of varied sites, and therefore may be applicable to other grasslands around the 

world. However, though the phenometrics with a temporal aspect, such as rate of green-up 

and time-integrated NDVI, were useful predictors, the single-time metric capturing peak 

biomass, annual maximum NDVI, was the most valuable at the global scale, a contrast to 

recent results at landscape scales (Weber et al., 2018; J. Yan et al., 2022). The importance of 

annual maximum NDVI suggests that the overall productivity of the grassland communities 

was a more important link between soils and reflectance than links driven by diversity, which 

were not evident in this data despite being found previously in grasslands and wetlands at 

national scales (Dronova et al., 2022; Oehri et al., 2017).  

The long timeseries of satellite data also contributed to the retrieval of 

multifunctionality by accounting for historic productivity which continues to have a legacy 

effect on soils in particular (Garland et al., 2021; Millard & Singh, 2010). Using phenometrics 

averaged across an 18-year timeseries increased the prediction accuracy of multifunctionality 

by 11% relative to phenometrics averaged across three years (Table 16), which builds on 

previous research finding similar results when predicting soil carbon at the landscape scale 

(Wilson et al., 2017). Finally, the multi-year satellite timeseries were able to contribute by 

quantifying ecosystem stability remotely, both by finding the inter-annual variation in 

individual phenometrics and by identifying which sites experienced significant changes in 

productivity over the 30 years. Ecosystem stability has been incorporated into remote sensing 

studies of vegetation communities for example being linked to diversity, ecosystem services 

and land use change (Dronova et al., 2022; Paruelo et al., 2016). In Chapter 5, inter-annual 
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variability of phenometrics contributed little to predictions of multifunctionality, however the 

overall stability of the ecosystem over the previous 30 years changed which aspects of 

phenology were most closely linked to ecosystem functioning, with the more sensitive time-

integrated metrics being more useful across relatively stable ecosystems. Therefore, a 

recommendation of this study was that future efforts to model slow-changing soil properties 

from spectral reflectance should take advantage of long-term satellite legacy datasets to assess 

historic ecosystem conditions and changes, as a preliminary analysis to inform which aspects 

of phenology may be most valuable and across what timescales. 

Overall, the results from Chapters 4 and 5 demonstrate that satellite data has great 

potential to contribute to understanding of grassland systems. The spectral detail of Sentinel-

2 is able to resolve spatial differences in important plant functional traits, and the ability to 

extract long timeseries from Landsat enhances retrieval of ecosystem multifunctionality at 

large scales. 

 

6.2 Is spectral reflectance able to predict belowground communities and functions? 

A key objective of this thesis was to use remote sensing to retrieve information about 

belowground as well as aboveground functions in grasslands. This was achieved by bringing 

together bodies of research from ecology, demonstrating that belowground communities and 

functions can be predicted from properties of the plant community evident at the surface, and 

from remote sensing demonstrating that plant community properties can be retrieved from 

spectral reflectance. The results presented in this thesis (Chapter 3, Chapter 5) show that 

spectral reflectance of grassland surfaces can reveal variation in both the structure of soil 

microbial communities and the ecosystem functions that take place belowground, and show 

that remote sensing methodologies can make a unique contribution to the study of 

aboveground-belowground linkages by retrieving aspects of the vegetation community which 

do not have equivalent field-based methods for assessing, and by expanding the spatial and 

temporal scope of investigations.  

In Chapter 3, airborne hyperspectral data were used to retrieve soil community 

properties by directly linking canopy spectra to soil properties of interest using multivariate 

statistical techniques, with high accuracy for all four microbial properties tested (prediction 

R2 0.43 – 0.68) (Chapter 3). The best-retrieved property was soil microbial community 

structure (F:B ratio: R2 0.68, NRMSE 0.09) and to our knowledge this thesis presents the first 

attempt to retrieve this important soil microbial property from remote sensing. Soil F:B ratio 
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is frequently used in ecology to represent soil ecosystem economics and infer rates of carbon 

and nutrient turnover (de Vries, Bloem, et al., 2012; de Vries, Manning, et al., 2012; Malik et 

al., 2016). Therefore, the ability to predict soil F:B ratio rapidly and across large spatial extents 

from remote sensing data would be valuable for modelling and monitoring ecosystem service 

provision (Grigulis et al., 2013). 

 The evidence for strong links between spectroscopy and soil microbial communities 

in grasslands demonstrated in Chapter 4 adds to the small, but promising body of studies in 

forest ecosystems where researchers have reported R2 up to 0.92 (Madritch et al., 2014; Sousa 

et al., 2021). Canopy spectra were shown to have greater explanatory power when modelling 

soil communities than what could be achieved using field-measured plant traits, both in this 

thesis (Table 3, Figure 6, Chapter 3) and in previous work (Madritch et al., 2014). The reason 

posed for the enhanced predictive power of spectra over field-measured traits is that using 

spectra directly to predict soil properties enables multiple axes of biological variation to be 

accounted for simultaneously, for example variation in species composition as well as 

functional traits, because all these axes of variation influence the interactions of the vegetation 

surface with light (Kothari & Schweiger, 2022; Lausch et al., 2016; Schweiger et al., 2018; Van 

Cleemput et al., 2018). In previous field-based research, it was found that plant taxonomy, 

phylogeny and traits all contribute to predictions of soil communities but that the use of traits 

was limited by only being able to account for traits of which researchers have prior knowledge 

and the capacity to measure in the field (Leff et al., 2018). Spectral approaches are not 

constrained to a pre-determined and limited set of traits but can potentially respond to other, 

unknown traits of the plant community. The combination of high-dimensionality 

hyperspectral data and multivariate statistical techniques such as PLSR (Sousa et al., 2021) 

and canonical correlation analysis (Madritch et al., 2014) facilitates the inclusion of these 

unknown traits.  

To further explore the use of spectral bands directly to predict soils, the results 

presented in Chapter 3 can be compared to those of a similar recent study, also predicting soil 

communities from spectra in grassland but this time by retrieving a pre-determined selection 

of individual plant functional traits from spectra, and then using the modelled traits as 

predictors of soil communities (Cavender-Bares et al., 2022). The prediction accuracies 

achieved using this two-step method were generally lower than those presented in Chapter 3 

using direct, multivariate statistical approaches and accounting for all hyperspectral bands (of 

the directly equivalent soil properties, (Cavender-Bares et al., 2022) reported R2 of 0.12 – 0.40 

for models of soil microbial biomass, compared to 0.56 in Chapter 3, and 0.05 – 0.15 for N 

mineralisation rate, compared to 0.23). The comparison supports the suggestion that using 

spectral reflectance bands directly accounts for important plant community variation that is 
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not captured by traits which can be measured in the field. From an operational perspective 

this is useful as it removes the need for extensive plant trait sampling in the field, or prior 

knowledge of the important functional traits in a particular ecosystem. However, a powerful 

advantage of the two-step approach used by (Cavender-Bares et al., 2022) is increased 

mechanistic understanding; identifying and quantifying specifically which functional traits 

provide how strong a link between soils and reflectance. For example, the authors identified 

that vegetation coverage was more important than functional traits for predicting soils in a 

relatively unproductive grassland. Similar inferences were made in Chapter 3 of this thesis, 

but could only be inferred through inspection of the wavelength correlations (Figure 7, 

Chapter 3) rather than statistically interrogated. 

The ability of remote sensing data to contribute unique perspectives on aboveground-

belowground linkages was further demonstrated in Chapter 5. This chapter demonstrated that 

satellite-derived phenometrics, including those which do not have a field-based equivalent 

such as time-integrated NDVI, were significantly correlated to belowground functions and 

contributed important explained variation to global models of grassland ecosystem 

functioning. This contributes to recent work suggesting that the temporal aspect of remote 

sensing systems, including archive length and return frequency, enable rapid retrieval of 

under-studied phenological aspects of vegetation communities which may be important for 

understanding ecological functions and resilience (Dronova & Taddeo, 2022). 

Therefore, Chapters 3 and 5 of this thesis add evidence from grasslands across the 

world that hyperspectral and multispectral properties of vegetation canopies and land surfaces 

can be considered important ecological parameters in their own right, rather than just as 

proxies for properties that can be measured in-situ (Cavender-Bares et al., 2017; Kothari & 

Schweiger, 2022; Schweiger et al., 2018). Furthermore, the spectral properties of grassland 

surfaces can aid retrieval of information on soil communities and functions across diverse and 

contrasting grassland environments. 

6.3 How do large geographic and environmental gradients affect the ability of 

remote sensing to retrieve ecosystem functions? 

 Further to retrieving unique properties of vegetation, one of the most 

important ways in which remote sensing can advance understanding of above- and 

belowground properties of grasslands is by expanding the spatial and temporal extents at 

which ecosystems can be studied. The value of multitemporal data stretching across long 

temporal extents for retrieving ecosystem functions, in particular soil functions, has already 

been discussed above. A key contribution of this thesis is to investigate spectra-plant-soil 
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relationships over large spatial extents and across different types of grasslands, where the 

majority of previous work has been focused at the landscape scale. The results of the research 

chapters in this thesis taken together suggest that there is a trade-off when resolving 

relationships between reflectance and ecosystem properties across large scales using a 

universal model. On one hand, the large scales give large gradients in ecological properties 

which may be easier to distinguish using remote sensing (Aguirre-Gutiérrez et al., 2021; Sousa 

et al., 2021; Wallis et al., 2019). On the other hand, relationships between environmental 

properties and reflectance may be different among sites with contrasting conditions, 

weakening models. 

 Chapters 3 and 5 presented evidence that the large gradients inherent in 

continental to global datasets were important for the ability of remote sensing to resolve 

differences in grassland functions between sites. Chapter 3 presented results from one of the 

first studies to investigate the use of canopy spectra for retrieving soil communities in 

grasslands. Previous similar modelling in forests acknowledged that the broad spatial 

distribution of observations and wide range of tree species included in the models was useful 

for resolving differences in canopies and soils from spectra (Sousa et al., 2021). The sites 

included in Chapter 3 spanned a geographic range of 4500km and spanned a large 

productivity gradient, from lush grassy prairies to more barren desert-like sites. The results of 

this investigation suggested that the large gradients were important in the ability of spectra to 

identify spatial differences in soil communities, because strongly contrasting surface 

reflectance at different sites was matched with strongly contrasting soil communities. For 

example the range of F:B ratio was 0.07 – 0.6 (Table 2), compared to 0.04 – o.1 reported by 

previous authors across the UK (de Vries, Manning, et al., 2012). Across the wide range of 

sites, wavelengths representing both the quantity and the quality of vegetation were useful 

predictors in the PLSR models (Table 4, Chapter 3), which is consistent with and builds upon 

previous work which found that quantity was more important in a less productive site, and 

quality more important in a more productive site (Cavender-Bares et al., 2022). 

  Chapter 5 used multispectral, multitemporal data to retrieve above and 

belowground grassland functions and multifunctionality across 90 grasslands distributed at 

the global scale, across five continents. Models presented in Chapter 5 achieved similar or 

slightly stronger results (R2 0.61) as those which have been found in similar previous studies 

using multitemporal indices of vegetation to predict ecosystem functions at landscape scales 

((García-Gómez & Maestre, 2011), R2 0.44 – 0.65; (Paruelo et al., 2016), R2 0.48 – 0.66); 

(Weber et al., 2018), R2 0.34 – 0.57). This result is another piece of evidence to suggest that 

large contrasts improve the capabilities of remote sensing to detect variation in ecosystems. 

However, there were some relationships found in Chapter 5 between above- and belowground 
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ecosystem functions and remote sensing data that were stronger among smaller subsets of 

more similar sites. When sites were subset according to their stability, correlations between 

functions and some phenometrics such as time-integrated NDVI were stronger than when 

stable and unstable sites were modelled together. This result suggests that though there are 

some relationships between multifunctionality and spectral reflectance patterns that are 

general across global grasslands, in particular the overall positive correlation between annual 

maximum NDVI and multifunctionality, retrieval of grassland functions may be more 

successful when empirical models are created using smaller sets of more similar sites. Another 

piece of evidence from Chapter 5 suggesting that contrasting grassland types may be better 

modelled separately was that the small number of arid sites did not have relationships between 

surface properties and functioning that were consistent with the overall set of observations 

(Figure 24, Chapter 5). Aridity is well-known to impact relationships between aboveground 

vegetation and ecosystem multifunctionality by altering the influence of soil and plant 

communities (W. Hu et al., 2021). 

Results from Chapter 4 also indicated that the inclusion of mixed landscape types can 

decrease the strength of empirical models. Plant traits were estimated with most success when 

only the herbaceous fraction of vegetation was included in the models; when observations of 

both herbaceous and woody plants from across the sites were included together in empirical 

models, the overall prediction accuracy was lower for most traits (Figure 12, Chapter 4). The 

reason for the lower prediction accuracies is likely because different plant life forms, i.e. 

herbaceous and woody plants, have different typical functional trait syndromes and different 

relationships between traits and reflectance, due to many factors including plant structure and 

the ecological role of leaves, stems and roots (Funk & Cornwell, 2013; Poorter et al., 2014). 

Therefore when herbs and shrubs are modelled together, either in a mixed empirical model or 

at the sub-pixel scale in more heterogenous sites, relationships between traits and spectra are 

weakened. This effect has been identified previously in mixed models at the leaf level (Hacker 

et al., 2022).  

However, when building empirical models of grassland functions and if applying them 

to new sites in order to comprehensively model the world’s ecosystems, it is important to be 

able to account for the woody and shrubby fraction of grassland systems. If models were 

created only from the most homogenous herbaceous grassland surfaces then it is unlikely that 

they would be applicable to the more heterogenous landscapes found in nature, as 

demonstrated in Chapter 4. Mixed grassland and woodland landscapes, such as savannas, are 

extremely important conservation priorities, as this kind of vegetation matrix occurs at 

marginal grasslands and where climate and land use changes are taking place, resulting in 

grassland-woodland transition zones (Ratajczak et al., 2012; Ratnam et al., 2011; Sexton et al., 
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2015). Though they are challenging to model due to the mixed nature of their vegetation 

assemblage, these types of landscape should not be excluded from remote sensing studies. The 

inclusion of mixed landscapes must take place during field campaign design, where there are 

competing priorities. For example the field protocol of NEON was updated recently to give 

higher sampling priority of rare woody plants at the site-level, following feedback from the 

ecological community (Weintraub, 2022). However from the remote sensing perspective, the 

relative abundance of species in terms of aerial extent is more important for linking vegetation 

surfaces to pixel-level reflectance, and the sampling of rare plants which may account for a 

small fraction of the canopy coverage is not a priority. A new approach to delineate the size 

and location of woody individual crowns in field sampling is an important development in the 

NEON sampling protocol which will facilitate easier matching of field and spectral data in 

future. However, challenges will remain; for example the functional influence of a plant 

belowground may not be proportional to its visibility in spectra (Soliveres et al., 2016). 

Overall, results from the three research chapters in this thesis suggest that remote 

sensing data is able to model grassland ecosystem functions with success across large 

gradients and across different types of grassland. This is important and valuable given the 

global scale of climate pressures and land cover changes which are affecting grassland 

ecosystems (Obermeier et al., 2019). There are some relationships between above- and 

belowground functions and reflectance which are generalizable across disparate grasslands, 

such as the association between annual maximum NDVI and multifunctionality (Chapter 5), 

or soil F:B ratio and hyperspectral wavelengths relating to vegetation biomass, coverage and 

secondary metabolites (Figure 7, Table 4, Chapter 3). However, in some cases such as arid sites 

or those with mixed woodland and grassland the global model is less applicable; it is important 

to collect observations from a variety of sites representing large environmental gradients, in 

order to build models of ecosystem functioning which are applicable across the diversity of 

ecosystems found in nature. 

6.4 How does vegetation link soils to reflectance? 

The final theme that emerged across the three research chapters was the potential 

mechanisms linking soils to surface reflectance. The aboveground vegetation properties 

known to represent belowground conditions in the field are vegetation quantity, functional 

traits or quality, and diversity. These three aspects of the vegetation community are not 

independent; for example functional traits drive aboveground productivity and therefore 

vegetation quantity. Quantitative comparison of the mechanisms linking soils, plant and 

spectra was beyond the scope of this thesis, however the relative influence of the vegetation 

community properties were inferred in Chapter 3 by inspecting the spectral wavelengths 
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important for creating PLSR models of soil communities and comparing these to known 

absorption features, and in Chapter 5 by comparing the importance of different phenological 

metrics representing temporal dynamics of aboveground productivity for predicting 

ecosystem multifunctionality. Evidence from Chapters 3 and 5 suggest that both the quality 

and the quantity of vegetation aboveground provide links between surface reflectance and 

belowground soil communities and functions.  

Plant traits covaried across both the global and continental sites according to growth 

strategy and as predicted by the leaf economics spectrum (Figure 3, Chapter 3; Chapter 4). 

Covariation of traits at the community level and among herbaceous vegetation is less well-

evidenced than among tree leaves (Funk & Cornwell, 2013; Mason & Donovan, 2015; Pierce et 

al., 2007) and is valuable for the purpose of modelling ecosystem properties from spectra 

because it gives a strong whole-community signal which is closely related to aboveground 

productivity (Kothari & Schweiger, 2022). The parallel belowground variation in soil 

communities, as whole-ecosystem economics, also provides a mechanism for aboveground-

belowground relationships which can be utilised to predict soil properties from above 

(Bardgett, 2017). The successful retrieval of soil F:B ratio, one of the most typical indicators of 

soil fast-slow functioning, is evidence that these ecosystem-economics links are a key 

mechanism linking aboveground and belowground properties across these grasslands, and 

therefore facilitating prediction of the belowground system from aboveground reflectance. 

Although satellite-retrieved traits were not directly linked to soils in Chapter 4, the most 

successfully retrieved aboveground plant traits were all those which were indicative of high 

quality, fast-growing vegetation (SLA, phosphorus, potassium). SLA, one of the best-modelled 

properties, is known to be a key indicator trait for the leaf economics spectrum (Shipley et al., 

2006; I. J. Wright et al., 2004), and was also identified as an important plant trait predictor 

of belowground properties in Chapter 3. Evidence presented here that traits which can be 

successfully retrieved from satellite data are also those which are important for revealing 

patterns of soils (Chapters 3 & 4) suggests that there is potential to retrieve belowground 

microbial community properties such as F:B ratio from satellite multispectral data. 

Results of this thesis suggested that across large spatial scales and wide environmental 

gradients the coverage and quantity of vegetation aboveground is key to revealing 

belowground properties. The gradient of productivity was a key axis of variation in all three 

research chapters, driving foliar trait composition, belowground microbial communities and 

ecosystem functioning at continental to global spatial scales. When predicting soil microbial 

community properties from hyperspectral reflectance, wavelengths relating to vegetation 

quantity on the red edge (700-750nm) and to soils in the SWIR (>1500nm) consistently 

emerged as important for the prediction of soil microbial communities. Previous authors have 
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also found that vegetation coverage has a large influence on spectra and is useful for predicting 

belowground properties in ecosystems with significant areas of bare soil visible in the 

vegetation canopy (Cavender-Bares et al., 2022; Hauser et al., 2021). The importance of 

vegetation quantity at large scales offers an opportunity for multispectral sensing in this 

context, which has a much better-established ability to retrieve aboveground vegetation 

quantity than aboveground vegetation quality or traits (Pettorelli et al., 2005, 2018a). This 

thesis (Chapter 5) demonstrated that although sensitive multitemporal spectral phenometrics 

were valuable predictors of ecosystem functioning in grasslands, across global scales the most 

important aspects of aboveground vegetation growth patterns were maximum annual NDVI, 

and mean annual NDVI; relatively simple metrics of productivity which are less complicated 

to retrieve and less sensitive than the other multitemporal measures tested. This finding was 

a contrast to other recent work at landscape scales, which found more sensitive, multi-

temporal phenometrics to be more powerful indicators of grassland conditions (Weber et al., 

2018; J. Yan et al., 2022). Results from Chapters 3 and 5 together suggest that at large 

continental and global scales, and across highly contrasting grassland sites, relatively simple 

remote sensing measures of aboveground productivity and coverage explain a large amount of 

variation in the belowground ecosystem. 

 

6.5 Methodological considerations 

The investigations presented in the research chapters of this thesis are all large-scale 

empirical studies, which are vital for evidencing relationships between interacting properties 

of ecosystems in nature, but have inherent limitations. Empirical models are limited by the 

representativeness of the samples on which they are based and can therefore be site-specific. 

They are known to perform poorly when transferred to different times or places, especially if 

attempting to extrapolate beyond the range of training data (Homolova et al., 2014; Kothari et 

al., 2023). In this thesis, the large geographic scale of observations in all three research 

chapters (Chapters 3-5) aimed to create generalisable models relevant and representative of 

the diversity of grassland ecosystems, as previous authors have done in forests (Aguirre-

Gutiérrez et al., 2021; Sousa et al., 2021). However, observations still have geographical bias 

towards North America and Europe, as is the case for many large-scale networked datasets 

(Borer et al., 2014; Kattge et al., 2011). Sites were also not evenly distributed across all 

environmental gradients and therefore more unusual sites, or those situated at extreme ends 

of gradients, may be poorly captured; for example the NutNet dataset used in Chapter 5 

contained a small number of arid sites (4) compared to non-arid sites (86), and as such the 

arid sites were outliers for some of the empirical relationships (Y. Zhao, Guirado, et al., 2022).  
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Empirical models of environmental parameters often incorporate a degree of spatial 

autocorrelation, which can cause over-optimistic interpretations of the explanatory power of 

remote sensing variables at large scales (Ploton et al., 2020). This is particularly likely where 

observations are spatially clustered, as in Chapters 3 and 4 in this thesis where observations 

originate from plots organised within NEON sites. There is debate in the literature as to the 

best way to address spatial autocorrelation (Meyer & Pebesma, 2022), but many options for 

example Geographic Random Forests (Aguirre-Gutiérrez et al., 2021; Georganos et al., 2019) 

require larger datasets than were available for this thesis. The approach used in this thesis was 

to incorporate climate and location variables, which are a large part of the source of spatial 

autocorrelation, into models following the approach of others (Delgado-Baquerizo et al., 

2013). As more data becomes available from a larger number of sites in the NEON network, 

other more sophisticated approaches to accounting for spatial autocorrelation could be 

applied. 

Temporal mismatch between field measurements and remote sensing data is a 

necessary feature and practical consideration of remote sensing approaches, but can affect 

empirical models (Homolova et al., 2014). Results of Chapter 4 demonstrate both the 

reduction in model strength that is associated with an increase in temporal offset from one to 

fourteen days, but also the limitation of available data (a loss of 42% of field observations) 

when limited to same-day satellite observations. Given that the return frequency of Sentinel 

satellites is five days, it may be possible to time field data collection with satellite overpasses 

in many ecosystems, which would be a valuable consideration for future, remote-sensing-

compatible field campaigns.  

The main alternative to empirical studies in remote sensing are radiative transfer 

models, where relationships between physical parameters and leaf and canopy-level 

reflectance are established and then used to simulate spectra which can be compared to those 

retrieved from remote sensing instruments (Jacquemoud et al., 2009). Physical-based models 

can overcome some of the inherent limitations of empirical studies, such as the necessary use 

of field-based trait aggregation methods such as community-weighted means (Grime, 1998). 

Radiative transfer models are effective at retrieving some plant traits including SLA at the leaf 

and canopy levels, and have been incorporated into landscape-scale models of biomass 

(Punalekar et al., 2018), structure (A. M. Ali et al., 2016) and functional diversity (Hauser et 

al., 2021; Rossi et al., 2020). However, the number of plant traits which can currently be 

retrieved from radiative transfer models is limited, so this approach may not be able to 

sufficiently capture all the axes of biological variation present in vegetation canopy spectra and 

relevant for belowground processes. Radiative transfer models have largely been developed 

for forest ecosystems, and though the use of forest-designed models for retrieving grassland 
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properties has been shown to be effective in some cases, it can also to result in large errors 

(Pau et al., 2022). Radiative transfer models require parameterisation which includes large 

amounts of ancillary environmental data which may not be included in the standard data 

collection of large-scale ecological networks. Therefore, empirical models are a good approach 

for expanding current knowledge and evidence to new traits and new ecosystems.  

A combination of theoretical and empirical evidence is required to develop novel 

understanding of the world’s environments. In ecology, lots of research takes place in 

controlled laboratory and experimental conditions at small scales, developing strong 

theoretical frameworks which then are supported to various degrees using empirical data from 

real-world ecosystems. For example, the ecological literature linking aboveground and 

belowground ecosystem, or linking multifunctionality to various axes of biological diversity, 

have well-established theoretical frameworks but until recently have been lacking in extensive 

empirical evidence to support them (Bardgett, 2017; Delgado-Baquerizo et al., 2018). There is 

a growing body of evidence from increasingly diverse ecosystems around the world to support 

(for example) leaf and whole-ecosystem economics relationships (Funk et al., 2017), but 

empirical evidence is often mixed and highlights the complexity of theoretical systems in the 

real world (Leff et al., 2018). Remote sensing is fundamentally interested in relationships 

which take place and can be measured across large spatial scales and in natural environments. 

It is therefore relatively common to retrieve empirical relationships between reflectance 

spectra and a range of environmental variables, but these can obscure mechanistic 

understanding, especially for example using high-dimensionality hyperspectral data and 

powerful but complex multivariate statistical approaches, as in Chapter 3 in this thesis. The 

solution to this is to incorporate remote sensing compatibility into the spatial design of 

ecological experiments, so that remote sensing methodologies are not precluded from future 

application to field data archives. 

Some of these limitations stem from the use of secondary data sources which may not 

have been collected with remote sensing research objectives in mind. The lack of primary field 

data collection was a limitation of this thesis. Field work was limited by the COVID-19 

pandemic in the summers of 2020 and 2021, and a pilot study (2019) using field spectroscopy 

at the leaf and the canopy level to detect species and trait composition and belowground 

communities along a gradient of management (fertilizer application) was not able to be 

completed or incorporated into the thesis. As a result, there were challenges spatially and 

temporally matching field data from secondary sources with spectral data, which influenced 

the research questions which could and could not be answered. For example, data from many 

Nutrient Network sites (Chapter 5) was collected before 2014, so continuing the exploration 

of Sentinel-2 satellite data which showed promising potential in Chapter 4 was not possible, 
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as Sentinel-2 launched in 2014. Recent remote sensing studies have incorporated extremely 

thorough field campaigns tailored to the matching of field and satellite data, for example by 

GPS-locating sampling plot boundaries in the field to match the boundaries of satellite pixels 

(Hauser et al., 2021). This approach enabled the researchers to quantify which components of 

the vegetation community contributed to satellite spectral diversity in more detail than the 

community-level inferences presented in this thesis (Chapters 3-5), but the spatial extent and 

number of observations in the study was necessarily limited. Arguably, when investigating 

relationships at the global scale there may be no option but to use secondary datasets, because 

of the unfeasible spatial scales and time-consuming nature of field campaigns which are often 

cited as a key reason for using remote sensing technology in the first place.  

Going forward, large-scale, networked field campaigns will be extremely important for 

realizing the potential of remote sensing systems to monitor the biosphere at global scales, 

and designing field campaigns with a spatial arrangement suitable for remote sensing studies 

is an important consideration for future networked data collection (Pettorelli et al., 2014). The 

secondary data used in this thesis was sourced from two large-scale networks, one established 

recently with remote sensing explicitly included (NEON), and one designed without specific 

reference to remote sensing (NutNet). The spatial sampling design of NEON is tailored to 

remote sensing approaches, in particular to gather field data compatible with its airborne 

hyperspectral surveys, but also using a nested design for multiple spatial scales. For example, 

NEON sampling plots measure 20x20m and are distributed widely across the landscape, 

making them broadly compatible with the most widely available satellite missions Sentinel 

and Landsat. However, there are trade-offs to be made when accounting for different research 

priorities; for example sampling to capture incidence of rare plants or those which are 

important at a site level, versus sampling those which will have the most influence on spectral 

reflectance at a plot level. Sampling for rare species posed challenges when linking field-

measured traits to Sentinel-2 pixels in Chapter 4, because it was challenging to aggregate 

functional trait measures to a representative community-level value at the plot level. Going 

forward, NEON have committed to spatially locating all sampled woody individuals and 

creating spatial polygon files delineating their size, which will be valuable for weighting 

individual plant traits when aggregating (this data was not available at the time of this thesis). 

The relative scarcity of coincident plant trait and soil community data across NEON sites will 

also be addressed through the planned continuing data collection campaigns. 

Matching satellite data to field data across the Nutrient Network sites was challenging; 

despite being a prolific global network of ecological research there has been very little remote 

sensing work carried out across NutNet sites. The spatial arrangement of nutrient treatments, 

in contiguous plots measuring 5x5m, is prohibitive for remote sensing approaches with pixel 
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sizes more often 10m or more, as treated and untreated vegetation will combine into a single 

spectral signature. Therefore remote sensing at NutNet is limited to testing untreated control 

plots and assuming that these are representative of the broader landscape, matching control 

plot data with a satellite pixel adjacent to but not covering the treated plots. This approach was 

applied successfully in Chapter 5 in this thesis, but there was potential error introduced by the 

spatial mismatch of field and satellite observations. It would be valuable to spatially distribute 

sampling plots at scales suitable for retrieval using satellite remote sensing in the future. 

However, one of the benefits of the NutNet field sampling design is its simplicity and 

versatility, so proscribing spatial requirements in order to be able to match plots directly with 

satellite pixels may exclude potential new sites from being able to join the network; for 

example if the total area of available grassland is small and surrounded by other land cover 

types such as cropland or forest, as was the case for some sites. Therefore it is acknowledged 

that it may not always be straightforward to incorporate remote sensing compatibility into the 

spatial and temporal design of ecological field surveys. However, given the increasing 

availability of remote sensing datasets and the evidence for their potential to fill gaps in data 

and understanding between disparate field studies, consideration of remote sensing systems 

should be a priority for future large-scale environmental data collection efforts. 

6.5.1 Statistical approach and limitations 

Random forest was the key regression algorithm used across the chapters of this thesis. 

Random forest is a powerful machine learning algorithm which is popular for use in remote 

sensing modelling due to its ability to handle large numbers of predictor variables, such as 

spectral bands, robustness in comparison to simple decision-tree algorithms, ability to handle 

relatively sparse field samples, and the output of the variable importance scores which are 

valuable for comparing the influence of predictor variables (Breiman, 2001; Moreno-Martínez 

et al., 2018; Thomson et al., 2021; Zhao et al., 2022). Random forest often compares 

favourably to other algorithms in remote sensing studies (Aguirre-Gutiérrez et al., 2021; 

Fauvel et al., 2020). However, there are some limitations to random forest which are 

important to acknowledge.  

First, although random forest is generally robust to overfitting, it is known to overfit to 

training data particularly when sample sizes are small, meaning that the relationships 

identified between predictor and response variables may not be applicable beyond the 

observations included in the training data set. Out-of-box samples from each individual 

decision tree are used to derive the variable importance scores (e.g. Aguirre-Gutiérrez et al., 

2021; Delgado-Baquerizo et al., 2018) and can be used to give an overall score of model 

accuracy, but models can be interpreted with greater confidence where an independent 
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validation dataset has been used. In the research chapters presented in this thesis, it was not 

feasible to reserve a portion of observations for independent validation, because of the 

relatively small number of observations available in each of the secondary datasets sourced. 

The datasets cover wide environmental gradients and therefore are assumed to be 

representative of the varied grassland habitats which are found across continental and global 

scales. The models and relationships presented here demonstrate the potential for remote 

sensing and spectral datasets to be used to predict variation in above and belowground 

grassland ecosystem properties; however, before being used for prediction these early models 

need to be developed further using more comprehensive datasets and independent validation. 

Second, Random Forest is known to be sensitive to the quality and characteristics of 

input data. Although the variable importance measure in theory filters out irrelevant predictor 

variables, predictor variables should be chosen as inputs based on theoretical mechanisms 

linking them to the response variable of interest. Importance as a predictor variable, in this 

case indicted by a high mean increase in mean square error (MSE) when the variable is 

permuted in individual trees, does not necessarily indicate a causal relationship to the 

response variable. Similarly, if two predictor variables are collinear or closely related, one may 

be retained by the random forest algorithm over the other, at random in the various decision 

trees. Noisy, irrelevant or missing predictor variables can impact the performance of random 

forest models. In the chapters presented in this thesis, predictor variables for models were 

selected based on a combination of their theoretical linkages to grassland ecosystem 

properties, successful use in previous studies, and availability in the secondary datasets 

sourced for this project. Some variables which may have been valuable, such as soil physical 

characteristics like pH, were not available for all sites and as such their inclusion would have 

incurred a reduction in the already small number of samples.  

Random forest is known to be sensitive to tuning parameters and the input predictor 

variables. The Boruta algorithm (Kursa & Rudnicki, 2010) along with functions from the 

RFUtilities package (Evans & Murphy, 2017) were used for model tuning. These were chosen 

because they are commonly used to tune random forest models in similar remote sensing 

studies in the literature, and Boruta has performed favourably in comparison to other feature 

selection algorithms (Degenhardt et al., 2019). Boruta is known to be sensitive to tuning 

parameters, including number of trees and tree depth. These parameters were selected using 

the tuneRF function from RFUtilities, which runs the model multiple times and selects the 

parameters which give the lowest RMSE. In addition, manual testing using different 

combinations of predictor variables was carried out, for example running the models using 

only variables with importance scores over a certain threshold, or using subsets of the most 

important variables from initial modelling. This was carried out both to explore the data and 
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to increase confidence in the final selection of predictor variables. The models presented in 

each chapter are the highest-performing among these tests.  

In all cases, Random Forest models were run 100 times and the average of these model 

runs taken. The standard deviation of this average is reported and was in all cases very low, 

increasing confidence in the models. In addition, the models presented are the final choice of 

a range of multivariate statistical approaches which were tested. PLSR was used to model 

relationships in Chapter 5, with similar results. Linear modelling was also tested for 

relationships in Chapter 6, but was not chosen finally because of the greater importance of 

researcher input and understanding of the specific ecosystem in question when choosing in 

which order to fit predictor variables, which is challenging when looking for generalisable 

relationships across a dataset that spans a variety of ecosystems in which operate different 

environmental mechanisms. Variation partitioning based on redundancy analysis is used in 

Chapter 5 as a complimentary statistical test to random forest, as has been used by others 

(Delgado-Baquerizo et al., 2018). Where multiple statistical tests give the same or similar 

outcomes, i.e. where the interpretation does not change, this affords extra confidence in the 

results. In cases where the outcomes of multiple tests do not align, for example in Chapter 5 

the relation between spectral predictors and leaf pigments, this indicates that the variables or 

observations need to be further explored before conclusions can be confidently drawn. 

Creating models of ecosystem parameters at the global scale almost always relies upon 

clustered observations in which some regions are sparsely represented, and therefore such 

models should be presented and interpreted with caution even when thorough statistical 

approaches have been applied with the aim of minimising spatial bias (Meyer & Pebesma, 

2022). In the chapters presented in this thesis, such validation approaches were not used due 

to the small number of observations. Therefore, it is important to reiterate that the models 

presented here are intended to demonstrate the potential of spectral data for the novel 

application of retrieving information about the belowground functions of grasslands. More 

thorough training data at multiple spatial scales is required to realise this potential in the 

future.  

Finally, the models presented in this thesis are limited by uncertainty and variability 

in the input datasets, which is carried through to the final model results. For example, the use 

of WorldClim 30-year climate averages rather than contemporary weather and climate records 

from each field site may have resulted in weakened apparent relationships between ecological 

response variables and climate drivers. This effect may have been particularly strong for 

predicting plant traits (Chapter 5) which are likely to adapt to climate and weather changes on 

timescales shorter than 30 years. Recent antecedent conditions, for example an unusually dry 

preceding summer, are likely to impact many of the ecosystem properties under investigation 
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in this thesis and may therefore have weakened links between predictor and response 

variables. For soil properties which are dynamic across longer decadal timescales, the use of 

30-year climate averages rather than current weather conditions may be more appropriate 

(Garland et al., 2021; Millard & Singh, 2010). 

Similarly, many of the models presented are based on variable means, at the plot 

(Chapter 4, Chapter 5) and site (Chapter 6) level. For example, soil measures used are the 

average of three soil cores taken across a 40x40m plot at NEON sites. This averaging approach 

was taken in this case to be able to match soil, plant and spectral data. Models can only be built 

at the spatial resolution of the most coarse dataset. This was most apparent in Chapter 6, 

where the uncertainty in spatial location of the field plots lead to spectral data being collected 

at the site level, at which all subsequent analyses were then required to take place. This 

approach has inherent limitations. Soil microbial communities and properties are highly 

heterogenous across short distances, for instance due to species-specific mycorrhizal 

associations (Leff et al., 2018; Sousa et al., 2021). Therefore an approach which uses plot-level 

or site-level means loses information on small scale; local variability which may be an 

important source of uncertainty when extrapolated to the regional or global scale. In order to 

best take advantage of new remote sensing datasets, matching between remote and in-situ 

data must take place at a range of spatial scales (Rossi et al., 2020), and compatibility with 

remote sensing datasets should become a key consideration when designing field campaigns 

for the future (Hauser et al., 2021; Thorpe et al., 2016). 
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7. Conclusions 

 

This thesis set out to investigate how remote sensing can be used to characterise 

aboveground and belowground functions of grasslands across large spatial scales. The thesis 

aim was addressed through three distinct but linked research chapters, which used empirical 

models to predict variation in plant and soil communities and functions from remote sensing 

data in grasslands distributed across the globe. 

The first key contribution of this thesis is to demonstrate that variation in soil 

microbial communities can be predicted with high levels of accuracy from imaging 

spectroscopy of grassland canopies (Chapter 3). This result contributes important new 

evidence to the small but growing body of research using spectroscopy to directly retrieve 

variation in soil communities, by showing that links previously detected in forests and within 

individual grassland sites are also evident across grassland systems spanning large ecoclimatic 

gradients. This thesis also presents the first retrieval of broad-scale soil microbial community 

structure (F:B ratio) from remote sensing (R2 0.68, NRMSE 9%), which is important because 

F:B ratio is a key indicator of soil microbial community structure and associated carbon 

storage and nutrient cycling functions, which are vital for grassland ecosystem services 

globally. The implications of these findings are that hyperspectral data have the potential to 

estimate continental-scale differences in soil bacterial and fungal populations, expanding the 

practical benefits of remote sensing technologies to the relatively understudied belowground 

portion of the biosphere. 

The second key contribution of this thesis is the finding that multispectral satellite data 

can accurately retrieve community-level plant functional traits in grasslands, including 

structural and biochemical traits which have implications for aboveground and belowground 

ecosystem functioning. Previously, functional trait retrieval in grasslands has focused on the 

use of hyperspectral systems, which are significantly more limited in coverage and accessibility 

than multispectral satellites. Chapter 5 showed that some traits, including SLA and leaf 

nutrients phosphorus and potassium, were able to be retrieved from Sentinel-2 with 

comparable accuracy to hyperspectral data. This finding presents the possibility to monitor 

changes in functional traits of grassland vegetation at unprecedented spatial extents and 

temporal detail; for example trait estimations can be updated at the rate of the satellite return 

period which for Sentinel-2 is five days. If the empirical models developed in this thesis were 

to hold true across grasslands more widely, satellite trait estimations could be incorporated 

into large-scale models of biogeochemical cycles which are driven by the functional traits of 
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vegetation and can be used to monitor and predict the effects of large-scale climate and land 

use changes. Beyond the retrieval of plant functional traits, the thesis also showed that satellite 

data are able to estimate a measure of ecosystem functionality which combines above- and 

belowground grassland functions (Chapter 6). Historic vegetation productivity and variability 

over decadal timescales were important contributions to predictions of multifunctionality, 

demonstrating the unique contributions that satellite systems can make. 

A third important contribution of this thesis was to demonstrate that links between 

soils, plant traits and spectra in grasslands are not only found at landscape scales or within 

individual grassland landscapes, but can be found across a broad spectrum of different 

grasslands found worldwide. Grasslands are a diverse biome, spanning large gradients of 

productivity, vegetation coverage, nutrient status and vegetation composition including the 

fraction of herbaceous and woody vegetation at marginal grasslands, those undergoing change 

and those at grassland-woodland boundaries. The research chapters of this thesis presented 

relationships that are general across grasslands, which is important for being able to apply the 

findings to other sites and systems in the future. Large-scale ecology is vital at a time when 

pressures affecting ecosystems take place across global scales. 

Several opportunities and priorities for further research arose from this thesis. The 

ability to retrieve plant community functional traits from multispectral satellite data in 

grasslands has the potential to contribute to estimations of functional diversity across large 

spatial scales, by enabling spatial and temporal variation in multiple functional traits to be 

included. Multitemporal retrieval of plant functional traits, across and between seasons, 

facilitated by the regular revisit of multispectral satellites could also represent a valuable 

avenue of research. Seasonal patterns of NDVI have been shown to be valuable predictors of 

ecosystem properties including diversity, carbon storage and multifunctionality (e.g. Chapter 

5), suggesting that seasonal patterns of other important functional traits could also have 

important implications for above and belowground functions. In order to realise this potential 

there is a need for in-situ data collection across seasons, to match with multitemporal remote 

sensing data and find empirical relationships. In general, the findings of this thesis should be 

confirmed in future using more spatially intensive (as opposed to extensive) field datasets to 

build empirical models within as well as across sites and regions, bridging the gap between 

the continental-scale relationships presented here and previous work at the landscape scale. 

The data forecast to be provided from NEON over its 30-year lifespan will be valuable for 

building upon the work presented in this thesis. Future field campaigns, particularly large-

scale networks, should be designed with a view to accommodating the application of remote 

sensing imagery. Spatially arranging sampling plots to be discriminated in satellite imagery, 
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i.e. at the scale of tens of metres, is vital and timing field data collection to coincide with 

satellite overpasses, where possible, would be an advantage. 

Overall, this thesis showed that remote sensing can contribute to our understanding of 

aboveground and belowground grassland functioning by capturing aspects of the ecosystem 

beyond what can be measured in the field, such as multitemporal vegetation attributes and 

integrated axes of biological variation. Remote sensing can also contribute by increasing the 

frequency with which information can be gathered, enabling the incorporation of temporal 

dynamics and long-term (decadal) variability into models of contemporary functioning, which 

is particularly important for belowground functions which vary across long timescales. Finally, 

remote sensing can contribute by expanding the spatial extent across which ecosystems can 

be studied, finding relationships which are common to grasslands across the world, which is 

important for monitoring global-scale pressures. To build on these results, future work should 

seek to confirm the relationships presented here within as well as between grassland types, for 

example in dry grassland or woodland-grassland boundaries, at a range of spatial scales, and 

across seasons. Coincident soil and plant data from collaborative ecological monitoring 

networks will be instrumental for such research, along with continuing multispectral and 

forthcoming hyperspectral satellite missions. This future work is needed to realise the 

potential, demonstrated in this thesis, for remote sensing technologies to enable us to 

understand, monitor and predict changes in the vital ecosystem functions which take place in 

grasslands worldwide, and to ensure the continuing ability of human societies to depend on 

grassland ecosystems through the changes to come in the 21st century.  
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APPENDIX A 
 

Data availability at the 90 Nutrient Network sites (Chapter 5). Including sampling year, ecosystem properties 
measured and number and year range of Landsat images available at each sampled site. C = soil carbon, N = 
soil nitrogen, P = soil phosphorus, K = soil potassium, Zn = soil zinc, Fe = soil iron, OM = soil organic matter, 
AB = aboveground biomass, LT = litter turnover, IR = invasion resistance, PAR = photosynthetically absorbed 
radiation, PSR = plant species richness 

Site 
Sam- 
pling 
year 

Field measured ecosystem properties 

Number 
of 

Landsat 
images 

Landsat 
timeseries 
year range 

ahth.is 2019 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1038 1984 - 2019 

amcamp.us 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 496 1984 - 2007 

arch.us 2015 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 886 1984 - 2015 

azi.cn 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 902 1986 - 2007 

badlau.de 2015 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 930 1984 - 2015 

bari.ar 2015 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 855 1984 - 2015 

barta.us 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1070 1984 - 2007 

bldr.us 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 2561 1984 - 2011 

bnbt.us 2021 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 3699 1984 - 2021 

bnch.us 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 3780 1984 - 2016 

bogong.au 2012 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1172 1986 - 2012 

bttr.us 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1007 1984 - 2007 

bunya.au 2013 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PSR 634 1987 - 2013 

burrawan.au 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1879 1987 - 2016 

burren.ie 2015 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 700 1984 - 2015 

cammead.us 2021 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1675 1984 - 2021 

cbgb1.us 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR 3062 1984 - 2016 

cbgb2.us 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR 2980 1984 - 2016 

cbgb3.us 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR 2971 1984 - 2016 

cdcr.us 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 2071 1984 - 2016 

cdpt.us 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 3490 1984 - 2011 

cereep.fr 2018 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 4144 1984 - 2018 

chilcas.ar 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 2228 1984 - 2016 

comp.pt 2012 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 543 1984 - 2012 

cowi.ca 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 3347 1984 - 2016 

derr.au 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 842 1986 - 2007 

elliot.us 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 2316 1984 - 2016 

ethamc.au 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 2657 1987 - 2016 

ethass.au 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 2749 1987 - 2016 

fnly.us 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 773 1984 - 2007 

frue.ch 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PSR 1729 1984 - 2011 

gilb.za 2012 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 563 1984 - 2012 

glac.us 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1531 1984 - 2007 

glacphr.us 2021 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 2793 1984 - 2021 

hall.us 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 1166 1984 - 2011 

hart.us 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 2468 1984 - 2011 

hnvr.us 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 513 1984 - 2007 

hogtwo.us 2017 C, N, P, K, Zn, Fe, OM, C:N, N:P, PSR 887 1984 - 2017 

hopl.us 2019 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1746 1984 - 2019 

jena.de 2014 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1335 1984 - 2014 

jorn.us 2013 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 1623 1984 - 2013 

kbs.us 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1828 1984 - 2016 
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kilp.fi 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1238 1984 - 2016 

kiny.au 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 848 1986 - 2007 

koffler.ca 2013 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1941 1984 - 2013 

konz.us 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PSR 664 1984 - 2011 

lake.us 2015 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 979 1984 - 2015 

lancaster.uk 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 2755 1984 - 2016 

lead.us 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 688 1984 - 2007 

look.us 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 3797 1984 - 2016 

lubb.us 2018 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 898 1984 - 2018 

marcel.us 2021 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1927 1984 - 2021 

mcdan.us 2018 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 894 1984 - 2018 

mcla.us 2019 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 3295 1984 - 2019 

meto.us 2017 C, N, P, K, Zn, Fe, OM, C:N, N:P, PSR 887 1984 - 2017 

mrapids.us 2021 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1433 1984 - 2021 

msla.us 2021 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 5449 1984 - 2021 

msum.us 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 2157 1984 - 2016 

mtca.au 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 686 1984 - 2011 

nilla.au 2019 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1720 1987 - 2019 

pape.de 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 581 1984 - 2007 

ping.au 2013 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1737 1986 - 2013 

pinj.au 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1365 1987 - 2016 

potrok.ar 2015 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1547 1986 - 2021 

saana.fi 2014 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1536 1984 - 2017 

sage.us 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1342 1984 - 2011 

sandhill.us 2019 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 993 1984 - 2019 

sava.us 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 576 1984 - 2007 

sedg.us 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 598 1984 - 2007 

sereng.tz 2008 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 309 1984 - 2008 

sevi.us 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 1155 1984 - 2007 

sgs.us 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 2526 1984 - 2011 

shps.us 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, IR, PAR, PSR 2230 1984 - 2016 

sier.us 2019 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 2324 1984 - 2019 

smith.us 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 2802 1984 - 2016 

spin.us 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 3760 1984 - 2016 

summ.za 2012 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 591 1984 - 2012 

sval.no 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 281 1985 - 2016 

temple.us 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 1037 1984 - 2007 

thth.is 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PSR 486 1984 - 2016 

tmlr.is 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PSR 488 1984 - 2016 

trel.us 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1193 1984 - 2011 

tyso.us 2007 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 538 1984 - 2007 

ufrec.us 2013 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PSR 808 1984 - 2013 

ukul.za 2012 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 298 1984 - 2012 

unc.us 2011 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1244 1984 - 2011 

valm.ch 2016 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 3863 1984 - 2016 

vargrass.no 2018 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 1092 1984 - 2018 

veluwe.nl 2017 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, LT, IR, PAR, PSR 1044 1984 - 2017 

yarra.au 2021 C, N, P, K, Zn, Fe, OM, C:N, N:P, AB, IR, PAR, PSR 3314 1987 - 2021 
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APPENDIX B 
 

Pearson’s correlations between individual ecosystem properties and satellite NDVI phenometrics averaged over 3-30 year timeseries.  

ecosystem 
property 

metric result 3-year 6-year 9-year 
12-

year 
15-year 

18-
year 

21-
year 

24-
year 

27-
year 

30-
year 

biomass_mean auc R 0.451 0.489 0.459 0.464 0.460 0.460 0.423 0.422 0.421 0.421 

biomass_mean auc p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

biomass_mean cv R 0.181 0.113 0.120 0.104 0.071 0.057 0.079 0.074 0.070 0.076 

biomass_mean cv p 0.109 0.314 0.285 0.357 0.522 0.609 0.476 0.504 0.524 0.491 

biomass_mean dec R 0.415 0.356 0.361 0.332 0.262 0.292 0.290 0.296 0.301 0.308 

biomass_mean dec p 0.000 0.001 0.001 0.002 0.017 0.007 0.008 0.006 0.005 0.004 

biomass_mean inc R 0.466 0.333 0.352 0.324 0.352 0.308 0.311 0.306 0.298 0.306 

biomass_mean inc p 0.000 0.002 0.001 0.003 0.001 0.005 0.004 0.005 0.006 0.005 

biomass_mean len R 0.172 0.211 0.186 0.219 0.303 0.301 0.262 0.273 0.268 0.273 

biomass_mean len p 0.128 0.058 0.096 0.049 0.005 0.006 0.016 0.012 0.014 0.012 

biomass_mean max R 0.498 0.498 0.479 0.465 0.428 0.436 0.425 0.418 0.422 0.422 

biomass_mean max p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

biomass_mean mean R 0.418 0.461 0.447 0.444 0.424 0.428 0.385 0.388 0.391 0.391 

biomass_mean mean p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

CN_ratio_mean auc R 0.111 0.124 0.148 0.143 0.130 0.137 0.167 0.157 0.150 0.149 

CN_ratio_mean auc p 0.320 0.261 0.179 0.195 0.232 0.209 0.121 0.147 0.165 0.168 

CN_ratio_mean cv R -0.175 -0.132 -0.059 -0.044 -0.059 -0.049 -0.090 -0.083 -0.074 -0.066 

CN_ratio_mean cv p 0.115 0.230 0.591 0.690 0.589 0.657 0.409 0.445 0.496 0.542 

CN_ratio_mean dec R -0.024 -0.008 0.012 0.029 0.029 0.047 0.030 0.048 0.051 0.063 

CN_ratio_mean dec p 0.830 0.939 0.911 0.794 0.789 0.666 0.785 0.657 0.641 0.561 

CN_ratio_mean inc R -0.092 -0.071 -0.010 -0.010 0.005 0.014 -0.013 -0.003 0.006 0.008 

CN_ratio_mean inc p 0.409 0.524 0.925 0.926 0.961 0.895 0.905 0.977 0.953 0.940 

CN_ratio_mean len R 0.041 0.073 0.104 0.131 0.082 0.100 0.117 0.096 0.085 0.086 
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CN_ratio_mean len p 0.714 0.508 0.346 0.236 0.453 0.357 0.280 0.378 0.432 0.429 

CN_ratio_mean max R 0.115 0.117 0.132 0.120 0.135 0.135 0.146 0.151 0.145 0.149 

CN_ratio_mean max p 0.302 0.288 0.231 0.275 0.214 0.215 0.178 0.162 0.179 0.167 

CN_ratio_mean mean R 0.241 0.213 0.194 0.180 0.182 0.175 0.216 0.209 0.201 0.197 

CN_ratio_mean mean p 0.029 0.052 0.077 0.101 0.094 0.108 0.044 0.052 0.062 0.067 

inv_res_mean auc R -0.137 -0.164 -0.161 -0.174 -0.121 -0.130 -0.133 -0.137 -0.142 -0.141 

inv_res_mean auc p 0.224 0.142 0.149 0.117 0.272 0.238 0.225 0.210 0.196 0.197 

inv_res_mean cv R 0.230 0.211 0.232 0.215 0.170 0.152 0.133 0.121 0.119 0.106 

inv_res_mean cv p 0.039 0.057 0.036 0.052 0.121 0.169 0.224 0.269 0.278 0.333 

inv_res_mean dec R 0.016 -0.032 0.001 0.006 -0.027 -0.030 -0.027 -0.035 -0.023 -0.029 

inv_res_mean dec p 0.891 0.778 0.995 0.955 0.807 0.786 0.807 0.754 0.837 0.792 

inv_res_mean inc R 0.087 0.036 0.036 0.000 0.009 -0.022 -0.036 -0.039 -0.035 -0.038 

inv_res_mean inc p 0.442 0.749 0.748 0.998 0.937 0.842 0.741 0.722 0.751 0.727 

inv_res_mean len R -0.030 -0.026 -0.031 -0.050 -0.003 -0.041 -0.048 -0.070 -0.093 -0.095 

inv_res_mean len p 0.792 0.818 0.781 0.654 0.980 0.712 0.660 0.524 0.397 0.386 

inv_res_mean max R -0.114 -0.180 -0.178 -0.182 -0.165 -0.157 -0.157 -0.152 -0.146 -0.143 

inv_res_mean max p 0.311 0.106 0.110 0.101 0.134 0.154 0.152 0.166 0.184 0.191 

inv_res_mean mean R -0.232 -0.246 -0.269 -0.280 -0.222 -0.223 -0.211 -0.202 -0.196 -0.193 

inv_res_mean mean p 0.037 0.026 0.015 0.011 0.042 0.041 0.052 0.064 0.072 0.077 

litter_turn_mean auc R -0.003 0.022 0.029 0.065 0.048 0.059 0.021 0.011 0.002 0.006 

litter_turn_mean auc p 0.984 0.862 0.818 0.606 0.701 0.640 0.863 0.928 0.986 0.961 

litter_turn_mean cv R -0.051 -0.035 -0.023 -0.032 -0.050 -0.043 0.006 0.012 0.018 0.002 

litter_turn_mean cv p 0.685 0.782 0.857 0.803 0.690 0.733 0.960 0.925 0.883 0.988 

litter_turn_mean dec R 0.180 0.107 0.078 0.023 0.012 -0.001 0.003 0.012 0.058 0.061 

litter_turn_mean dec p 0.152 0.395 0.537 0.857 0.925 0.995 0.983 0.922 0.641 0.625 

litter_turn_mean inc R -0.035 -0.111 -0.057 -0.050 -0.032 -0.030 0.013 0.014 0.032 0.034 

litter_turn_mean inc p 0.785 0.378 0.652 0.690 0.796 0.812 0.917 0.912 0.794 0.787 

litter_turn_mean len R -0.119 -0.055 -0.058 0.023 -0.007 0.044 0.022 0.000 -0.012 0.003 

litter_turn_mean len p 0.344 0.666 0.646 0.854 0.954 0.723 0.862 0.998 0.924 0.979 

litter_turn_mean max R 0.080 0.069 0.078 0.070 0.063 0.051 0.039 0.030 0.024 0.017 
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litter_turn_mean max p 0.526 0.585 0.535 0.579 0.613 0.682 0.753 0.808 0.845 0.888 

litter_turn_mean mean R 0.095 0.094 0.090 0.085 0.067 0.059 0.010 0.003 -0.010 -0.006 

litter_turn_mean mean p 0.452 0.455 0.476 0.500 0.596 0.638 0.936 0.978 0.938 0.961 

NP_ratio_mean auc R 0.027 0.085 0.090 0.096 0.218 0.225 0.216 0.220 0.218 0.235 

NP_ratio_mean auc p 0.812 0.440 0.416 0.387 0.044 0.038 0.044 0.041 0.042 0.029 

NP_ratio_mean cv R 0.094 0.090 0.106 0.088 -0.026 -0.021 -0.010 -0.005 0.008 -0.005 

NP_ratio_mean cv p 0.402 0.416 0.335 0.429 0.815 0.849 0.927 0.964 0.939 0.966 

NP_ratio_mean dec R 0.128 0.067 0.152 0.122 0.004 0.007 0.020 0.026 0.053 0.047 

NP_ratio_mean dec p 0.251 0.546 0.168 0.268 0.968 0.952 0.855 0.809 0.626 0.668 

NP_ratio_mean inc R 0.044 0.055 0.090 0.069 0.042 0.035 0.039 0.051 0.063 0.079 

NP_ratio_mean inc p 0.696 0.617 0.417 0.531 0.699 0.750 0.720 0.642 0.561 0.467 

NP_ratio_mean len R 0.051 0.121 0.105 0.145 0.210 0.213 0.200 0.192 0.176 0.196 

NP_ratio_mean len p 0.648 0.273 0.344 0.189 0.053 0.049 0.063 0.075 0.102 0.069 

NP_ratio_mean max R 0.055 0.070 0.088 0.085 0.150 0.164 0.162 0.169 0.178 0.185 

NP_ratio_mean max p 0.625 0.525 0.428 0.444 0.168 0.132 0.133 0.118 0.099 0.086 

NP_ratio_mean mean R -0.003 0.052 0.041 0.029 0.163 0.171 0.156 0.161 0.160 0.175 

NP_ratio_mean mean p 0.979 0.641 0.709 0.794 0.134 0.116 0.150 0.137 0.140 0.105 

OM_mean auc R 0.235 0.240 0.210 0.241 0.273 0.289 0.263 0.268 0.264 0.266 

OM_mean auc p 0.033 0.028 0.056 0.028 0.011 0.007 0.014 0.012 0.013 0.013 

OM_mean cv R 0.017 0.122 0.212 0.243 0.200 0.206 0.220 0.223 0.228 0.227 

OM_mean cv p 0.876 0.269 0.053 0.026 0.065 0.057 0.041 0.038 0.034 0.035 

OM_mean dec R 0.190 0.313 0.384 0.384 0.303 0.314 0.309 0.302 0.325 0.321 

OM_mean dec p 0.087 0.004 0.000 0.000 0.005 0.003 0.004 0.004 0.002 0.002 

OM_mean inc R 0.072 0.182 0.248 0.287 0.292 0.287 0.302 0.310 0.319 0.323 

OM_mean inc p 0.521 0.097 0.023 0.008 0.006 0.007 0.004 0.004 0.003 0.002 

OM_mean len R 0.128 0.138 0.115 0.144 0.213 0.215 0.184 0.198 0.182 0.192 

OM_mean len p 0.253 0.211 0.297 0.192 0.049 0.047 0.088 0.066 0.092 0.075 

OM_mean max R 0.262 0.281 0.289 0.305 0.304 0.317 0.308 0.304 0.309 0.307 

OM_mean max p 0.018 0.010 0.008 0.005 0.004 0.003 0.004 0.004 0.004 0.004 

OM_mean mean R 0.265 0.255 0.211 0.203 0.219 0.226 0.196 0.196 0.197 0.194 
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OM_mean mean p 0.016 0.019 0.055 0.063 0.043 0.036 0.069 0.068 0.068 0.072 

pct_C_mean auc R 0.279 0.273 0.238 0.254 0.272 0.290 0.272 0.275 0.275 0.275 

pct_C_mean auc p 0.011 0.012 0.029 0.020 0.011 0.007 0.011 0.010 0.010 0.010 

pct_C_mean cv R 0.113 0.162 0.250 0.266 0.226 0.232 0.253 0.248 0.253 0.254 

pct_C_mean cv p 0.313 0.140 0.022 0.014 0.036 0.032 0.018 0.020 0.018 0.018 

pct_C_mean dec R 0.185 0.283 0.360 0.348 0.269 0.265 0.262 0.256 0.269 0.264 

pct_C_mean dec p 0.095 0.009 0.001 0.001 0.012 0.014 0.014 0.017 0.012 0.014 

pct_C_mean inc R 0.215 0.283 0.304 0.317 0.332 0.339 0.360 0.355 0.359 0.364 

pct_C_mean inc p 0.053 0.009 0.005 0.003 0.002 0.001 0.001 0.001 0.001 0.001 

pct_C_mean len R 0.206 0.187 0.158 0.168 0.212 0.234 0.220 0.232 0.227 0.231 

pct_C_mean len p 0.063 0.089 0.150 0.128 0.050 0.030 0.041 0.030 0.035 0.031 

pct_C_mean max R 0.287 0.299 0.306 0.315 0.313 0.322 0.314 0.309 0.312 0.311 

pct_C_mean max p 0.009 0.006 0.005 0.004 0.003 0.002 0.003 0.004 0.003 0.003 

pct_C_mean mean R 0.260 0.260 0.218 0.213 0.222 0.229 0.196 0.199 0.199 0.198 

pct_C_mean mean p 0.018 0.017 0.046 0.052 0.040 0.034 0.069 0.065 0.064 0.067 

pct_N_mean auc R 0.309 0.296 0.259 0.271 0.283 0.295 0.270 0.274 0.276 0.275 

pct_N_mean auc p 0.005 0.006 0.017 0.013 0.008 0.006 0.012 0.010 0.010 0.010 

pct_N_mean cv R 0.177 0.227 0.291 0.304 0.262 0.267 0.286 0.281 0.282 0.287 

pct_N_mean cv p 0.112 0.037 0.007 0.005 0.015 0.013 0.007 0.008 0.008 0.007 

pct_N_mean dec R 0.234 0.332 0.381 0.375 0.299 0.301 0.300 0.289 0.295 0.288 

pct_N_mean dec p 0.034 0.002 0.000 0.000 0.005 0.005 0.005 0.007 0.006 0.007 

pct_N_mean inc R 0.272 0.353 0.359 0.358 0.365 0.373 0.390 0.384 0.383 0.392 

pct_N_mean inc p 0.013 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 

pct_N_mean len R 0.209 0.190 0.166 0.172 0.230 0.236 0.210 0.227 0.225 0.226 

pct_N_mean len p 0.059 0.083 0.132 0.118 0.033 0.029 0.051 0.034 0.036 0.035 

pct_N_mean max R 0.324 0.334 0.329 0.333 0.320 0.333 0.324 0.318 0.322 0.321 

pct_N_mean max p 0.003 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.002 0.002 

pct_N_mean mean R 0.267 0.256 0.220 0.214 0.218 0.225 0.190 0.194 0.197 0.194 

pct_N_mean mean p 0.015 0.019 0.044 0.050 0.044 0.037 0.078 0.072 0.068 0.071 

ppm_Fe_mean auc R -0.063 -0.040 -0.028 -0.018 -0.044 -0.044 -0.065 -0.061 -0.064 -0.065 
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ppm_Fe_mean auc p 0.574 0.721 0.802 0.872 0.687 0.688 0.552 0.577 0.557 0.551 

ppm_Fe_mean cv R 0.089 0.052 0.071 0.112 0.151 0.163 0.190 0.202 0.205 0.205 

ppm_Fe_mean cv p 0.429 0.636 0.520 0.311 0.166 0.134 0.078 0.061 0.057 0.056 

ppm_Fe_mean dec R 0.041 0.016 -0.003 0.018 0.034 0.037 0.054 0.069 0.084 0.096 

ppm_Fe_mean dec p 0.716 0.888 0.976 0.874 0.753 0.736 0.619 0.525 0.439 0.377 

ppm_Fe_mean inc R 0.024 -0.009 0.020 0.033 0.076 0.081 0.128 0.147 0.152 0.148 

ppm_Fe_mean inc p 0.829 0.938 0.858 0.764 0.485 0.457 0.236 0.173 0.161 0.172 

ppm_Fe_mean len R -0.117 -0.062 -0.018 -0.003 -0.024 -0.038 -0.076 -0.074 -0.078 -0.076 

ppm_Fe_mean len p 0.295 0.574 0.874 0.976 0.829 0.726 0.482 0.499 0.473 0.484 

ppm_Fe_mean max R 0.056 0.042 0.036 0.033 0.022 0.024 0.021 0.025 0.023 0.018 

ppm_Fe_mean max p 0.619 0.707 0.744 0.763 0.839 0.827 0.848 0.818 0.830 0.868 

ppm_Fe_mean mean R -0.014 0.007 0.003 -0.006 -0.039 -0.046 -0.075 -0.076 -0.081 -0.082 

ppm_Fe_mean mean p 0.904 0.947 0.979 0.954 0.724 0.674 0.493 0.483 0.455 0.452 

ppm_K_mean auc R -0.153 -0.135 -0.130 -0.136 -0.133 -0.152 -0.175 -0.173 -0.168 -0.175 

ppm_K_mean auc p 0.170 0.220 0.238 0.218 0.224 0.163 0.105 0.109 0.120 0.105 

ppm_K_mean cv R 0.043 -0.011 -0.032 -0.023 -0.008 -0.004 0.012 0.009 0.005 0.012 

ppm_K_mean cv p 0.699 0.917 0.776 0.835 0.939 0.968 0.916 0.936 0.964 0.912 

ppm_K_mean dec R -0.001 0.011 -0.023 -0.043 -0.058 -0.068 -0.047 -0.063 -0.075 -0.075 

ppm_K_mean dec p 0.991 0.919 0.833 0.696 0.596 0.533 0.669 0.561 0.488 0.487 

ppm_K_mean inc R 0.037 -0.008 -0.075 -0.087 -0.066 -0.067 -0.050 -0.048 -0.058 -0.055 

ppm_K_mean inc p 0.739 0.941 0.498 0.434 0.548 0.541 0.642 0.657 0.595 0.614 

ppm_K_mean len R -0.141 -0.121 -0.067 -0.078 -0.039 -0.090 -0.128 -0.114 -0.105 -0.118 

ppm_K_mean len p 0.207 0.272 0.543 0.480 0.721 0.409 0.237 0.293 0.332 0.278 

ppm_K_mean max R -0.140 -0.155 -0.166 -0.162 -0.182 -0.175 -0.171 -0.176 -0.176 -0.175 

ppm_K_mean max p 0.211 0.160 0.132 0.141 0.094 0.108 0.114 0.103 0.104 0.106 

ppm_K_mean mean R -0.177 -0.169 -0.170 -0.172 -0.174 -0.181 -0.193 -0.196 -0.191 -0.196 

ppm_K_mean mean p 0.113 0.125 0.122 0.117 0.110 0.095 0.073 0.069 0.076 0.069 

ppm_P_mean auc R 0.280 0.298 0.301 0.293 0.218 0.218 0.209 0.200 0.195 0.185 

ppm_P_mean auc p 0.011 0.006 0.005 0.007 0.044 0.044 0.052 0.063 0.070 0.086 

ppm_P_mean cv R -0.105 -0.090 -0.036 -0.031 0.005 0.014 0.016 0.020 0.014 0.035 
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ppm_P_mean cv p 0.349 0.415 0.745 0.778 0.965 0.900 0.881 0.856 0.898 0.748 

ppm_P_mean dec R 0.019 0.062 0.059 0.110 0.139 0.163 0.162 0.162 0.148 0.154 

ppm_P_mean dec p 0.867 0.573 0.593 0.321 0.203 0.134 0.134 0.134 0.173 0.156 

 


