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Abstract 

Introduction: Muscle-invasive bladder cancer (MIBC) has high rates of recurrence with poor survival 
rates.  There is a need to improve response to radiotherapy and survival outcomes.  Both hypoxia 
and the immune tumour microenvironment (TME) are therapeutically targetable in MIBC using 
hypoxia-modifying therapy and immune checkpoint inhibitors (ICIs), respectively.  Recent data 
showed hypoxia drives an immunosuppressive TME via various mechanisms including upregulation 
of programmed death ligand 1 (PD-L1) and the inhibition and exclusion of cytotoxic CD8 T cells.  
Published literature also demonstrates hypoxia-driven upregulation of inflammation.  There is 
currently no single biomarker that stratifies MIBC patients for both hypoxia-modifying therapy and 
ICIs.  Therefore, the main thesis aims were to: 1) investigate if hypoxia is associated with 
upregulation of PD-L1 in MIBC, 2) investigate whether patients with low tumour CD8 T cells benefit 
from hypoxia-modifying therapy, 3) investigate the role of HIF and hypoxia in immune-related 
signalling in MIBC, 4) develop a hypoxia-driven immune gene signature that could be used to stratify 
MIBC patients for hypoxia-modifying therapy and ICIs.   

Materials and methods: 1) Three human MIBC cell lines (T24, J82, UMUC3) were cultured in 
normoxia (20% oxygen) or hypoxia (1% and 0.1% oxygen) for 24 h.  Differences in PD-L1 expression 
were measured using Western blotting, qPCR and flow cytometry.  Published gene signatures were 
used to correlate hypoxia with PD-L1 expression and IFNy signalling in BCON and TCGA MIBC 
cohorts.  The BCON trial randomised bladder cancer patients to radiotherapy +/- hypoxia-modifying 
carbogen plus nicotinamide (CON).  2) Tissue microarrays of diagnostic biopsies from 116 BCON 
patients were stained using multiplex immunohistochemistry (IHC) for CD8, CD4, FOXP3, CD68, and 
PDL1.  Hypoxia was assessed using CA9 IHC.  Relationships with overall survival (OS) were 
investigated using Cox proportional hazard models.  3) ChIPseq and microarray data from MIBC cell 
lines and the TCGA cohort were used to analyse relationships between HIF/hypoxia and immune-
related signalling and to identify prognostic hypoxia-driven immune genes.  A LASSO regression 
model defined a final six-gene signature.  Validation and analysis was performed on four bladder 
cancer cohorts.  All in silico analyses were carried out using R and RStudio. 

Results: 1) Increasing seeding density decreased PD-L1 protein (p<0.001) and mRNA (p=0.001) 
expression in T24 cells at 20% and 1% oxygen.  Only when 100% confluent were PD-L1 protein and 
mRNA levels higher in 1% versus 20% oxygen (p=0.056 and p=0.037).  Hypoxia was positively 
associated with both PD-L1 expression and IFNγ signalling in both BCON (p=0.003 and p<0.001) and 
TCGA (both p<0.001) cohorts.  2) Low vs high CD8+ T-cell counts were associated with a worse OS 
across the whole BCON cohort (HR 0.47, p=0.003) and in the radiotherapy alone group (HR 0.39, 
p=0.005).  Patients with low CD8+ T-cells benefited from CON (HR 0.63, p=0.05) and CA9 positive 
tumours had fewer CD8+ T-cells (p=0.03).  3) HIF1/2 bound to ~10% of all immune-related genes in 
T24 cells and associated with T cell activation signalling.  MIBC cells in hypoxia were enriched for 
myeloid and neutrophil signalling pathways.  Hypoxia upregulated both suppressive and anti-tumour 
immune signalling in MIBC tumours.  4) Low vs high gene signature scores associated with a 
significantly worse OS in TCGA (HR 2.71, p<0.0001), GSE32894 (HR 8.72, p<0.0001) and GSE13507 
(HR 1.96, p=0.0054) cohorts.  Signature scores were not prognostic in BCON (p=0.37) for the overall 
cohort, however, patients with high scores benefitted from having CON with radiotherapy (HR 0.57, 
p=0.043).  Scores correlated positively with hypoxia scores and associated with basal/squamous and 
stroma-rich molecular subtypes.  Hallmark pathways associated with inflammation were significantly 
enriched, and TGF-β signalling significantly decreased when gene scores were high vs low.  

Conclusions: 1) Hypoxia increases PD-L1 expression in confluent MIBC cells and cell density needs to 
be considered when studying PD-L1 expression in vitro.  2) Low CD8 T cell counts predict benefit 
from CON and is a potential marker for patient stratification.  3) Hypoxia upregulates both anti-
tumour and immune suppressive signalling in MIBC.  4) A derived hypoxia-driven immune gene 
signature identifies poor prognosis MIBC patients who benefit from having CON with radiotherapy.  
The signature reflects a hypoxic and inflamed TME and phenotypes that are likely to respond to ICIs.  
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1 Introduction 

1.1 Bladder cancer 

1.1.1 Statistics and risk factors 

Bladder cancer is the tenth most commonly diagnosed cancer worldwide (Sung et al., 2021).  

In the UK it is the 11th most commonly diagnosed cancer and the ninth most common cause 

of cancer mortality, which increases to seventh for males.  The disease causes 5,600 deaths 

every year in the UK, amounting to 15 deaths each day.  Bladder cancer disproportionately 

affects males, which account for 73% of all cases.  Incidence rates are also strongly related 

to age with almost six in ten new cases presenting in people aged 75 and over, and 

diagnoses peaking at 85-89 years (Office for National Statistics, 2019a; Northern Ireland 

Cancer Registry, 2020; Public Health Scotland, 2020; Public Health Wales, 2020).   

In England, 32.5% of patients have non-muscle-invasive disease at initial presentation, 

whilst the rest present with disease that has either invaded into the muscle layer of the 

bladder or the disease stage is unknown (NHS Digital, 2019).  Despite bladder cancer 

survival rates improving by over 10% in the last ten years, the overall ten-year survival rate 

is only 46% in the UK.  Between 2013 and 2017 the five-year survival rates for stage 1 

bladder cancer were 79.4%, decreasing to 45.7% and 41.2% for stages 2 and 3 respectively 

(Office for National Statistics, 2019b).   

There are established risk factors associated with bladder cancer.  The main risk factor is 

smoking, which causes 45% of all bladder cancer cases, but also includes exposure to 

ionising radiation and occupational exposure to aromatic amines, polycyclic hydrocarbons 

(formed during fossil fuel combustion), paint, mineral oils (aluminium production) and 

asbestos (Cumberbatch et al., 2018).   

1.1.2 Stages and grading 

Transitional cell carcinomas (TCCs) account for the majority of all bladder cancers, which are 

then classified into superficial and invasive subtypes.  Superficial tumours are non-muscle-

invasive bladder cancers (NMIBC) that are confined to the urothelium, whilst muscle-

invasive bladder cancers (MIBC) are tumours that have spread into the surrounding muscle 

layer of the bladder wall.  Less common are bladder cancers arising from other cell types 

within (adenocarcinoma, squamous cell carcinoma) or outside (e.g. lymphoma, 

leiomyosarcoma, small cell carcinoma) the urothelium (Reynard 2013, Resnick 2003).  The 
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tumours are staged depending on the extent of invasion into surrounding tissue according 

to the TNM system (Table 1.1) and graded according to both the 1973 and 2016 World 

Health Organisation (WHO) systems (Table 1.2) (European Association of Urology, 2018).  

Table 1.1. Staging system for bladder cancers 

Tumour stage Description 

TIS Carcinoma in situ: very early tumour contained to the urothelium (“flat” 
tumour) 

Ta Non-invasive tumour contained to the urothelium 

T1 Tumour has invaded to the subepithelial connective tissue layer 
T2 Tumour has invaded to the muscle tissue layer 

   T2a    Tumour in muscle layer is only superficial (inner half) 
   T2b    Tumour in muscle layer is deeper (outer half) 

T3 Tumour has invaded to the perivesical tissue layer 

   T3a    Tumour in perivesical layer has invaded microscopically 
   T3b    Tumour in perivesical layer has invaded macroscopically 

T4 Tumour has invaded other organs outside of the bladder 
   T4a    Tumour has invaded the womb, vagina or prostate 

   T4b    Tumour has invaded further to the pelvis or abdomen 
Information was taken from the European Association of Urology Pocket Guidelines 2018 Edition 

 
Table 1.2. WHO grading systems for bladder cancers 

1973 WHO grading 2016 WHO grading (papillary lesions) 

Grade 1: well differentiated Papillary urothelial neoplasm of low malignant 
potential 

Grade 2: moderately differentiated Low-grade papillary urothelial carcinoma 
Grade 3: poorly differentiated High grade papillary urothelial carcinoma 

Information was taken from the European Association of Urology Pocket Guidelines 2018 Edition 

1.1.3 Treatment  

Treatment for bladder cancer depends on the stage and grade of the cancer and is generally 

based on whether the tumour has invaded to muscle layer.  For NMIBC (stages CIS, Ta, and 

T1) the treatment depends on the patient’s risk category; either low, intermediate or high 

risk.  Risk status is determined by considering the number and size of the tumours, the 

grade of the cancer cells, and the state of recurrence.  Treatments include transurethral 

resection of a bladder tumour (TURBT), intravesical chemotherapy, a course of Bacillus 

Calmette-Guerin (BCG) treatment, or a cystectomy to surgically remove the bladder (NHS, 

2021).  

In the UK, for patients who have MIBC the treatment options are either radical 

cystectomy, or radiotherapy with a radiosensitiser, depending on the extent of spread into 
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the surrounding tissue.  The National Institute for Health Care Excellence (NICE) guidelines 

stipulate that intravenous neoadjuvant cisplatin based chemotherapy should be offered to 

newly diagnosed patients who are suitable (National Institute for Health and Care 

Excellence, 2015).  Radiotherapy is given either in 32 fractions over 6.5 weeks to deliver 64 

Gy or in 20 fractions over 4 weeks for 55 Gy.  Recently, a meta-analysis was performed on 

two radiotherapy bladder cancer trial cohorts (n=782) to determine if there is a difference 

between the two fractionation regimens regarding invasive locoregional control or toxicity.  

No difference in toxicity was found between the two radiotherapy delivery methods, but 55 

Gy delivered in 20 fractions was superior for invasive locoregional control and therefore 

recommended as the standard-of-care for bladder preserving treatments (Choudhury et al., 

2021).  Radiosensitisers that are used include mitomycin C (MMC) combined with 5-

fluorouracil (5-FU; chemotherapy) or carbogen combined with nicotinamide (CON; hypoxia-

modifying therapy) (National Institute for Health and Care Excellence, 2015).  A meta-

analysis of 10,108 patients in 86 randomised trials investigating the use of hypoxia-

modifying therapies as radiosensitisers found that hypoxia-modification significantly 

improved radiotherapy efficacy for both overall survival (OR = 0.87, 95% CI 0.8-0.95) and 

locoregional control (OR = 0.77, 95% CI 0.71-0.86) (Overgaard, 2007).  Radical cystectomy 

involves the surgical removal of the bladder, pelvic lymphadenectomy with urinary diversion 

(Kamat and Black, 2021).  

Compared to the UK, treatment approaches differ in the USA where radical cystectomy is 

the preferred first-line standard-of-care treatment option.  Radiotherapy is considered an 

alternative treatment that is referred to as multi-modality bladder sparing therapy, or some 

variation thereof, and is usually reserved for patients considered unfit for surgery (Vashistha 

et al., 2017; European Association of Urology, 2018).  A meta-analysis comparing 

cystectomy to combined modality bladder-preservation treatment (radiotherapy, 

chemotherapy and TURBT) showed that despite cystectomy being the standard treatment 

option there was no difference in overall survival between the surgery and combined 

modality groups (56.2% and 55%, respectively).  Further to this, there were fewer major 

complications attributed to the radiotherapy group (Vashistha et al., 2017).   

However, recurrence of disease after treatment is common.  The BC2001 trial 

investigated the benefit of chemoradiation using MMC and 5-FU in MIBC.  The two-year 

relapse-free survival rates were 54% for radiotherapy alone and 67% when patients were 
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given synchronous chemotherapy (James et al., 2012).  The BCON trial showed when 

patients were given CON concurrently with radiotherapy three-year relapse-free survival 

rates for tumours stage 2 and above improved from 41% to 52% (Hoskin et al., 2010).  These 

low relapse-free survival rates demonstrate the very high rate of disease recurrence after 

radiotherapy +/- radiosensitisers, with around 50%-60% of patients relapsing after 2-3 years 

respectively.  Therefore, continuing to improve responses and the efficacy of radiotherapy is 

vital to decrease rates of recurrence and improve overall survival in MIBC.  One such 

approach is to individualise treatments based on the molecular classification of the tumour.  

1.1.4 Molecular subtypes 

Molecular subtypes are useful classifications that associate with distinct biological 

characteristics, differing prognoses and response to treatments.  As bladder cancers are 

highly heterogeneous, molecular subtypes provide useful insight into biological mechanisms 

underlying the differing survival outcomes between patients.  In recent years there have 

several groups contributing, refining and updating molecular classifications of MIBC, which 

has led to a number of different of classifications (McConkey and Choi, 2018).   

Firstly, the University of North Carolina broadly assigned MIBC into basal and luminal 

subtypes that reflect the same biological characteristics as seen in breast cancer molecular 

subtyping.  Despite further classifications by other groups increasing the number of 

molecular subtypes, these all have underlying concordant biological characteristics that 

broadly associate with either basal or luminal subtypes.  Basal tumours reflect those with 

high expression of basal cell markers such as KRT5/6 and KRT14 and are enriched with 

squamous features.  Luminal tumours reflect those with high expression of luminal 

differentiation markers such as FOXA1, GATA3 as well as KRT20 and ERBB2 (Fong et al., 

2020).  MD Anderson cancer centre further classified tumours to include a third group of 

p53-like tumours, whilst the Lund group created a classification of five molecular subtypes: 

basal, urobasal B, infiltrated, genomically unstable and urobasal A (Sjödahl et al., 2012, 

2017; Choi et al., 2014).  Next, The Cancer Genome Atlas (TCGA) created a classification of 

six subtypes: neuronal, squamous, luminal infiltrated, luminal and luminal-papillary 

(Robertson et al., 2017).  There is underlying concordance between these different 

classification systems and basal subtypes are generally shown to associate with a worse 
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prognosis.  However, there is currently no predictive value associated with these 

classifications (Satyal et al., 2019).  

Having many different molecular classifications each with distinct nomenclature impedes 

integration into clinical practice and there is currently no use for molecular subtypes seen 

clinically.  Hence, Kamoun et al generated a consensus molecular subtype classification for 

MIBC using the existing published classification schemes.  Their consensus classification has 

six molecular subtypes each with unique biological and clinical characteristics regarding 

immune and stromal infiltration, histological and clinical characteristics and oncogenic 

mechanisms.  These six consensus molecular subtypes are: luminal papillary (LumP), luminal 

non-specified (LumNS), luminal unstable (LumU), stroma-rich, basal/squamous (Ba/Sq), and 

neuroendocrine-like (NE-like) (Kamoun et al., 2020).  The main characteristics of each 

subtype are summarised in Figure 1.1.  Although the consensus classification is based on 

biological differences and not clinical classes, having a consensus on molecular subtypes for 

MIBC should aid the identification of biomarkers to help develop personalised treatment for 

MIBC patients by providing the ability to link clinical findings with specific molecular 

contexts.  Kamoun et al have demonstrated this potential by analysing several clinically 

useful gene signatures that predict response to targeted treatments and showing the 

expression of each in the context of the molecular subtypes.  For example, they show that 

basal and stroma-rich subtypes have high expression of a hypoxia gene signature that 

predicts unfavourable response to radiotherapy and that basal subtypes have the highest 

expression of a CD8 effector gene signature that predicts response to immune checkpoint 

inhibitors.  The relationship between the subtypes and response to treatments needs 

further elucidation and validation. 
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Figure 1.1 Summary of the characteristics of each subtype from the consensus molecular classification of MIBC. 
Luminal subtypes have urothelial differentiation and both stroma-rich and ba/sq have basal differention, whilst NE-like is 
uniquely differentiated as neuroendocrine.  LumNS and stroma-rich both have higher levels of fibroblasts whilst stroma-
rich and ba/sq are characterised by increased levels of myofibroblasts.  Stroma-rich and ba/sq have higher levels of 
immune infiltrates than the other subtypes.  NE-like has the worst survival, followed by ba/sq.  LumP is associated with the 
best survival outcome. 

  

1.1.5 Prognostic factors  

Due to the particularly poor survival rates of MIBC compared to the more favourable 

NMIBC, most bladder cancer research focuses on improving the treatment options and 

patient survival outcomes for MIBC (Sung et al., 2021).  Prognostic information is useful as it 

can be used to inform which patients are likely to have a poor disease outcome and 

therefore require an intensified treatment regimen.  Furthermore, some prognostic 

biomarkers may also have predictive utility where they can be used to identify which 

patients are likely to respond to specific treatments (Song et al., 2019).  A number of 

markers have been identified as prognostic factors in MIBC, although none have been 

successfully implemented into clinical care.  Immune and hypoxia prognostic biomarkers are 

discussed in Section 1.2.4 and Section 1.3.4, respectively.  Other prognostic markers include 

those related to DNA damage response and cell signalling.  For example, the presence of 

altered p53, p21 and phosphorylated RB proteins due to genetic mutations are all 

independently associated with a poor prognosis and early disease recurrence, and 

combining them together enhances their prognostic value (Chatterjee et al., 2004).  

Overexpression of HER2 (ERBB2) protein has been shown to associate with a poor prognosis 

and disease recurrence, as well as disease aggressiveness (Chakravarti et al., 2005).  It has 

been shown that HER2 overexpression predicts patients likely to fail chemoradiotherapy 
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and benefit from anti-HER2 antibody, trastuzumab, to enhance their response to 

chemoradiotherapy (Michaelson et al., 2017).  High MRE11 protein expression was shown 

to associate with better prognosis for radiotherapy, but not for cystectomy treated patients, 

indicating its potential use as a biomarker for patient treatment selection (Choudhury et al., 

2010; Laurberg et al., 2012).  However, a subsequent study investigating the validation of 

the clinical use of an MRE11 IHC scoring assay found no association between MRE11 and 

survival in three bladder cancer cohorts.  There was a lack of concordance between IHC 

scoring across the centres and a conclusion of a need for alternative scoring methods to be 

developed (Walker et al., 2019).  

1.2 Tumour immune microenvironment in bladder cancer 

1.2.1 Tumour immune microenvironment as a hallmark of cancer 

A tumour consists of cancer cells and the cellular environment in which the tumour exists.  

This cellular environment includes cancer-associated fibroblasts (CAFs), pericytes, 

endothelial cells, and immune cells, which make up the tumour microenvironment (TME) 

along with blood vessels, the extracellular matrix and signalling molecules.  The TME is 

important because it contributes significantly to the biology of a tumour and affects all 

stages from tumour initiation to progression and metastasis (Arneth, 2020).  The hallmarks 

of cancer are a set of principles that provide a framework for understanding the biological 

characteristics of cancer, as established by Hanahan and Weinberg (Hanahan and Weinberg, 

2000, 2011).  There are eight hallmarks and two enabling characteristics stipulated to 

enable tumour growth and progression.  One of the hallmarks is evading immune 

destruction.  One of the enabling characteristics is the inflammatory state of the tumour, 

whereby certain immune cells can encourage tumour progression.  Therefore, the immune 

TME appears to have an important role in the initiation, growth, and progression of cancers 

(Hanahan and Weinberg, 2011).   

1.2.1.1 Evading immune destruction 

The immune system can mount effective anti-tumour immunity to kill nascent and 

developing tumour cells, which occurs via the tumour immunity cycle as characterised by 

Chen and Mellman in 2013 (Figure 1.2).  Briefly, cancer cells release neoantigens that are 

recognised and processed by dendritic cells (DCs) and other antigen presenting cells (APCs) 
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using MHC I and MHC II molecules.  These DCs cross-present the antigens to prime and 

activate effector T cells (CD8+ T cells).  Activated T cells then migrate to the tumour site and 

infiltrate the tumour.  In the tumour, T cells recognise and kill the cancer cells, thereby 

resulting in cancer cell death that releases neoantigens and initiates the start of the cycle 

again (Chen and Mellman, 2013).   

 
Figure 1.2. The steps involved in the cancer immunity cycle, as described in Section 1.2.1.1.  Adapted from Chen and 
Mellman, 2013. 

There is a range of mechanisms that tumours employ to evade destruction by the 

immune system and disrupt the cancer immunity cycle (Figure 1.3).  These include the 

tumour cell-mediated release of chemokines such as CCL22 and TGF-β that recruit 

suppressive immune effector cells such as regulatory T cells (Tregs), tumour-associated 

macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) to the TME.  Together, 

these cells repress the functionality of T cells to inhibit anti-tumour immune responses and 

create a pro-inflammatory TME, which will be discussed in Section 1.2.1.2.  Another function 

of tumour cell-mediated TGF-β release is to prevent DCs from maturing and presenting 

antigens, which inhibits the subsequent cross-presentation and activation of T cells (Vinay et 

al., 2015).  Tumours can also release prostaglandin E2 (PGE2), driven by cyclooxygenase 2 

(COX-2) signalling, which suppresses anti-tumour immunity and fuels tumour promoting 

inflammation enabling tumour progression and growth (Zelenay et al., 2015).    
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Tumour cells can directly inhibit the adaptive immune response by inducing immune 

tolerance.  Tolerance is a necessary mechanism in normal immune function to prevent over-

activation of the immune response that results in non-functioning, anergic, T cells.  If T cells 

are engaged without co-stimulation molecules present, such as CD80/CD86 and OX40, then 

anergy is induced.  Many tumour cells therefore exploit this process to directly suppress T 

cell activity by decreasing the expression of these co-stimulatory molecules.  As well as 

suppressive cytokines and chemokines, and immunoregulatory cells, tolerance is maintained 

by the presence of checkpoint pathways.  Checkpoint molecules expressed on the cell 

surface, such as PD-L1 and CTLA-4, bind to the complementary receptor on the active T cell, 

which induces anergy.  PD-L1 appears to be a frequently upregulated checkpoint molecule 

expressed in the TME, causing T cell anergy and deletion (Vinay et al., 2015; Topalian et al., 

2016).  Targeting the PD1-PD-L1 axis has been a breakthrough in cancer therapy as 

discussed in Section 1.2.3.  

Tumour cells also create a defective antigen presentation mechanism.  They 

downregulate antigen processing machinery, such as components of the MHC I pathway 

including transporter associated with antigen processing (TAP) protein, tapasin and LMP2 

and LMP7.  This inhibits the processing and presentation of antigens, to prevent activation 

of cytotoxic T cells by the recognition of antigens cross-presented to them (Restifo et al., 

1993; Vinay et al., 2015). 
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Figure 1.3 A diagram illustrating some of the mechanisms that tumours employ to evade destruction by the immune 
system as described in Section 1.2.1.1.   
Tumour cells downmodulate the expression of MHC I to evade recognition; downmodulate CD80 and increase PD-L1 to 
induce T cell anergy; and release immune suppressive chemokines such as TGF-B and CCL22 that induce immune evasion 
by recruiting suppressive immune cells Tregs and MDSCs, which dampen anti-tumour immunity.  Created using BioRender.  

1.2.1.2 Tumour promoting inflammation 

The presence of certain types of immune cells in the TME and their signalling molecules 

create a niche that is capable of promoting tumorigenesis and tumour progression.  These 

inflammatory cells (TAMs, MDSCs and DCs) mostly belong to myeloid cell lineage of the 

innate immune system, and are associated with processes such as wound healing and tissue 

remodelling.  Hanahan and Weinberg categorised this tumour-promoting inflammation as 

an enabling characteristic, as these inflammatory cells release molecules that contribute to 

multiple hallmark of cancer capabilities.  These molecules include: growth factors that 
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induce tumour cell proliferation signalling; proangiogenic factors that induce formation of 

new blood vessels; survival factors that inhibit tumour cell death; inductive signals that 

induce epithelial-to-mesenchymal transition (EMT); and cytokines and chemokines that 

further the pro-tumour inflammatory state of the TME (Hanahan and Weinberg, 2011).   

Macrophages, representing a diverse subset of myeloid cells, are one such population of 

immune cells that can contribute towards pro-tumour inflammation and appear to have a 

high degree of plasticity (Qian and Pollard, 2010).  Previous dogma regarding macrophage 

function states that undifferentiated macrophages (M0) can be polarised into one of two 

types, which contribute towards either pro-tumour or anti-tumour activity as depicted in 

Figure 1.4.  This central idea presents M1 macrophages as classically activated and 

stimulants of Th1 T cell responses to pathogen and tumour cell killing.  They can be 

characterised by their expression of inducible nitric oxide synthase (iNOS).  M2 

macrophages are alternatively activated phenotypes that are often characterised by 

arginase 1 production.  M2 macrophages are characterised as stimulants of Th2 T cell 

responses for wound healing, tissue remodelling and angiogenesis, amongst other functions 

that stimulate pro-tumour inflammation (Mills et al., 2000; Mantovani et al., 2004).   

Recent literature has expanded from the binary dichotomisation of macrophages to 

instead regard these cells as a continuum of states that broadly reflect phenotype and 

function of M1 or M2-like macrophages. Furthermore, whilst M1 and M2 polarisation tends 

to cause opposing inflammatory functions, importantly the TME context can induce either 

phenotype to be both pro and anti-inflammatory (Rath et al., 2014).  In tumours, the TAMs 

present tend to be polarised towards the pro-tumour M2-like phenotype, which release 

suppressive cytokines such as IL-10 and TGF-β to recruit more pro-tumour inflammatory 

cells to the TME via a positive feedback loop.  Overall, the M2-like macrophages are tumour-

promoting due to pro-angiogenic effects and functions that suppress the adaptive immunity 

responses allowing for tumour growth and metastatic spread (Mantovani et al., 2008).  
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Figure 1.4 Diagram depicting the phenotypic differences between M1 and M2 macrophages as described in Section 1.2.1.2.  
TNFα = tumour necrosis factor alpha, IFNγ = interferon gamma, LPS = lipopolysaccharide, iNOS = inducible nitric oxide 
synthase, ROS = reactive oxygen species, IL-x = interleukin x, TGF-β = transforming growth factors beta, Th1 = T helper 1 
cell, Th2 = T helper 2 cell.  Created using BioRender freely available software. 

Neutrophils are a polymorphonuclear phagocytic subset of myeloid cells.  These cells 

have a strong role in tumour angiogenesis, which is essential in promoting tumour 

progression.  They release a number of molecules that promote endothelial proliferation 

and microtubule formation such as VEGF, CXCL8, and CXCL11.  These molecules in turn 

create a positive feedback loop to recruit more neutrophils to the tumour site which further 

stimulate angiogenesis.  Neutrophils also release MMP9, which is an enzyme that degrades 

the extra-cellular matrix (ECM), thereby contributing to tumour progression and metastasis 

(Murdoch et al., 2008).  

Myeloid-derived suppressor cells (MDSCs) are a population of functionally 

immunosuppressive immature myeloid progenitor cells.  MDSCs suppress the activity of 

anti-tumour effector cells such as CD8+ T cells and NK cells by releasing iNOS and arginase 1.  

They also inhibit DC maturation and promote tumour vascularisation.  The significant effect 

MDSCs have on tumour progression has been well characterised and the presence of these 

cells strongly correlate with clinical stage and disease progression (Murdoch et al., 2008; 

Quail and Joyce, 2013).   

Whilst B and T cells, cells belonging to the lymphoid lineage, are instrumental in anti-

tumour immunity, subclasses of these cell types also have a role in pro-tumour 
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inflammation.  Regulatory T cells (Tregs) are an immune suppressive subset of CD4+ T cells 

that are characterised by their expression of the transcription factor FOXP3.  They are 

potent suppressors of anti-tumour immunity via different mechanisms, of which the main 

one is the expression of the checkpoint molecule CTLA-4, which is induced by FOXP3 

(Takeuchi and Nishikawa, 2016).  CTLA-4 binds to CD80 and CD86 on APCs with stronger 

avidity than the co-stimulatory molecule CD28 and its binding blocks the maturation and 

ability of APCs to stimulate anti-tumour CD8+ T cell mediated immunity (Walker and 

Sansom, 2011).  Amongst other mechanisms, Tregs also produce granzyme and perforin, 

which exhibit direct cytotoxicity against effector CD8+ T cells, and suppressive cytokines 

such as TGF-β and IL-10, which recruit other suppressive inflammatory cells like 

macrophages, neutrophils, and MDSCs that overall encourage tumour promotion and inhibit 

anti-tumour immunity (Takeuchi and Nishikawa, 2016). 

The balance and interaction between these different types of immune cells to induce 

either an anti-tumour or pro-tumour immune TME form the focus of intense current 

research in tumour immunology and has a vital role in patient prognosis and responses to 

various treatments, as will be discussed in Section 1.2.4. 

1.2.2 Radiotherapy and the immune tumour microenvironment 

Radiotherapy can induce profound immunomodulatory effects in the TME, which can have 

both pro-tumour and anti-tumour effects.  Whether the effect of radiotherapy is 

immunostimulatory or immunosuppressive depends the tumour type, microenvironment 

and cytokine milieu present (Grivennikov, Greten and Karin, 2010). 

1.2.2.1 Anti-tumour immune effects of radiotherapy 

Radiotherapy both directly, and indirectly via the induction of reactive oxygen species (ROS), 

triggers pro-inflammatory cytokines such as IL-1 and tumour necrosis factor alpha (TNFα) to 

recruit immune cells to the irradiated site.  The cellular damage from radiation also exposes 

damage-associated molecular patterns (DAMPs), which activate the innate immune system 

via the stimulation of cell survival and pro-inflammatory pathways.  The overall result is 

immunogenic cell death of the tumour cells, which involves the formation of cell debris and 

apoptotic bodies that are recognised as tumour antigens by the innate immune system.  

ATP, calreticulin and HBMG-1 are all released as DAMPs and cause the priming and 

activation of DCs to become antigen presenting cells.  These DCs process the tumour-
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associated antigens and cross-present them to the T cells of the adaptive immune response, 

resulting in immunogenic cell death by a tumour-specific T cell response (Barker et al., 2015; 

Van Limbergen et al., 2017).  

Sufficient recruitment and activation of antigen-specific effector CD8+ T cells is essential 

to elicit an effective anti-tumour immune response.  Radiotherapy causes increased 

production of interferon gamma, IFNγ, which upregulates T cell-recruiting chemokines such 

as CXCL9 and CXCL10 and stimulates antigen-specific T cell mediated anti-tumour immune 

responses by enhanced DC priming (Lugade et al., 2008; Burnette et al., 2011).  Components 

of the complement pathway such as C3a and C5a are upregulated by radiotherapy-mediated 

cell death and promote tumour-specific CD8+ T cell-mediated anti-tumour immunity (Surace 

et al., 2015).  Radiotherapy also makes tumour cells more susceptible to tumour-specific T 

cell killing by inducing the overexpression of MHC I and NKG2D receptors (Gasser et al., 

2005; Reits et al., 2006).  Despite this radiation-induced priming of the CD8+ T cell mediated 

immunity, radiotherapy alone is not always sufficient to create a complete anti-tumour 

immune response.  Therefore, combination therapy strategies are needed to maintain a 

potentially curative radiotherapy-induced immune response against the tumour (Van 

Limbergen et al., 2017). 

1.2.2.2 Pro-tumour immune effects of radiotherapy 

In contrast, the immune suppressive consequences of radiotherapy are potentiated from 

chemotactic signals that induce extrinsic radioresistance by the recruitment of several 

myeloid cell populations with distinct roles in T cell suppression, such as Tregs and MDSCs.  

As outlined in Section 1.2.1.2, these suppressive immune cells contribute towards tumour 

progression, treatment resistance and disease recurrence.  The chemotactic signals induced 

after radiotherapy include the immunosuppressive cytokine TGF-β, which suppresses DCs 

and CD8+ T cells, and stimulates the conversion of CD4+ T cells into Tregs.  Overall, this 

increase in TGF-β results in the inhibition of the adaptive immune response that is needed 

to maximise radiotherapy effectiveness (Demaria and Formenti, 2012).   

Sufficient co-stimulation is required for effective activation of the T cells upon antigen 

presentation, which is hampered by the upregulation of checkpoint pathways (Barker et al., 

2015).  As discussed in the previous section, IFNγ production is increased by radiation.  

Alongside its role as a key regulator of T cell mediated tumour killing, IFNγ also upregulates 
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the expression of the checkpoint molecule PD-L1 on tumour cells.  PD-L1 binds to its PD-1 

receptor on T cells to induce T cell anergy and deletion, thus dampening T cell-mediated 

anti-tumour immune responses (Weichselbaum et al., 2017).  

Furthermore, pro-tumour radiotherapy-induced effects can occur due to intrinsic 

radioresistance mechanisms as Tregs are more radioresistant than other lymphocyte cell 

subsets, resulting in their proportional increase and contribution towards immune evasion 

during radiotherapy (Kachikwu et al., 2011).  Radiotherapy also affects other elements of 

the TME as well as the immune system.  Radiotherapy modulates cancer-associated 

fibroblasts, which contributes towards ECM remodelling and fibrosis, leading to tumour 

recurrence.  As will be discussed in Section 1.3.3, radiotherapy responses are also affected 

by hypoxia and lead to tissue revascularisation which contributes towards tumour 

recurrence and metastasis.  All of these elements of the microenvironment interplay 

together to have a potential overall negative effect on radiotherapy responses (Figure 1.5) 

(Barker et al., 2015).  

 

Figure 1.5. A schematic illustrating the potential mechanisms of radioresistance and tumour recurrence in bladder cancer. 
Radiotherapy (RT) can cause the increased proportion of Treg cells, increased expression of PD-L1 on tumour cells and 
recruitment of MDSCs, all of which result in decreased CD8 cytotoxic T cell functionality and a suppressive TME. RT can also 
cause the polarisation of macrophages from M1 phenotype to the immunosuppressive M2 phenotype. RT modulates CAFs 
which results in fibrosis and tissue remodelling. Hypoxia alters responses to radiotherapy and contributes to tumour 
progression. Overall, an immunosuppressive environment is created by RT which results in tumour progression and 
recurrence 



 
35 

A study analysing the gene expression of 136 MIBC tumours showed that a higher 

expression of genes reflecting CD8+ T cell infiltration and IFNγ signalling was associated with 

improved disease specific survival for patients who received TMT, but not for patients who 

had radical cystectomy +/- neoadjuvant chemotherapy (Efstathiou et al., 2019).  These 

results demonstrate that the underlying immune contexture alters the effectiveness of 

radiotherapy in inducing immune-mediated tumour cell killing and highlights the usefulness 

of considering the immune contexture in MIBC for predicting radiotherapy responses.  

1.2.3 Immunomodulatory agents  

There are many immune TME targets that could increase the radiosensitivity of tumour cells 

by immunomodulation of the TME and extrinsic radioresistance factors to enhance 

radiotherapy-induced anti-tumour immune responses.  Of these, the most prevalent and 

successful are immune checkpoint inhibitor (ICI) treatments.  Other examples of 

immunomodulatory agents include CD40 and TLR agonists, and CCL2/5 and TGF-β inhibitors.  

CD40 is a receptor of the TNF family and its ligation induces DC activation and priming, 

and stimulates tumoural T cell infiltration.  In pre-clinical models, combining radiotherapy 

with CD40 agonists have resulted in successful anti-tumour immune responses, mediated by 

DCs and CD8+ T cells (Honeychurch et al., 2003; Rech et al., 2018).  In a study using in vitro 

and in vivo bladder cancer models, a CD40 agonist activated DCs by the upregulation of 

CD80 and CD86, and IL-12 production.  The CD40 agonist induced the proliferation of 

antigen-specific T cells and in vivo results demonstrated anti-tumour effects (Mangsbo et al., 

2015).  Phase I clinical trials investigating CD40 agonists with chemotherapy or ICIs in 

patients with advanced solid tumours have reported well-tolerated toxicities, but limited 

clinical efficacy (Li and Wang, 2020).  A phase II clinical trial investigating the use of a CD40 

agonist with chemoradiation in patients with oesophageal or gastroesophageal carcinoma 

has yet to report results (NCT03165994).  There remains clinical potential for CD40 agonists 

with careful consideration into the scheduling and combination of the therapy, along with 

robust biomarker selection for patients who will likely see clinical benefit (Colton et al., 

2020).   

Radiotherapy upregulates the production of CCL2 and CCL5 chemokines in tumour cells, 

which recruit Tregs and suppressive monocytes (Mondini et al., 2019).  The use of a CCL2/5 

antagonist with radiotherapy has been shown to reduce intratumoural monocytes and 
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increase radiotherapy efficacy in pre-clinical models (Connolly et al., 2016).  More recently, 

a study using pancreatic adenocarcinoma murine models showed that a CCL2/5 dual 

inhibitor used in conjunction with radiotherapy and an ICI increased tumoural effector T cell 

infiltration and suppressed intratumoural infiltration of Tregs, M2 macrophages and MDSCs 

resulting in enhanced anti-tumour efficacy of radiotherapy (Wang et al., 2022).  Clinical 

development of CCL2/5 inhibitors are a recent development and a phase I clinical trial using 

a CCL2 inhibitor in combination with chemotherapy in pancreatic cancer patients confirmed 

safety and tolerance, and recommended progression to a phase II clinical trial (Nywening et 

al., 2016).  Studies investigating the use of CCL2/5 inhibitors in bladder cancer are lacking.  

There are several toll-like receptors, one of which is toll-like receptor-7 (TLR7).  TLR7 

stimulation is a potent activator of cells of both the innate and adaptive immune response 

such as MDSCs, macrophages and DCs (Spinetti et al., 2016).  In pre-clinical models, TLR7 

agonists have been shown to alter the suppressive phenotype of monocytic MDSCs by 

acquiring APC functionality to induce antigen-specific T cell proliferation and by stimulating 

their differentiation into tumouricidal M1 macrophages (Wang et al., 2015; Spinetti et al., 

2016).  Several pre-clinical studies have investigated the use of TLR7 agonists combined with 

radiotherapy.  Radiotherapy was shown to enhance the efficacy of TLR7 agonists to result in 

long-term anti-tumour immunity via CD8+ T cell activity induced by DCs (Dewan et al., 2012; 

Schölch et al., 2014; Dovedi et al., 2016).  These results led to a phase II clinical trial 

investigating the use of TLR7 agonist with cyclophosphamide and radiotherapy for breast 

cancer patients with skin metastases (NCT01421017), the results of which are yet to be 

published.  Many early clinical trials failed due to unacceptable toxicities when the agent 

was delivered systemically, but improvements in formulations and scheduling has resulted 

in locally delivered TLR agonists and a renewed interest in their clinical potential (Walshaw 

et al., 2020).  Other research investigating TLR9 agonists have shown similar anti-tumour 

immunity mediated by CD8+ T cells and NK cells, and synergy with the addition of 

radiotherapy (Walshaw et al., 2020).  To my knowledge, there is currently no research 

investigating the use of TLR agonists in the bladder cancer setting.   

TGF-β inhibitors are another potential immune modulator that could be used in the 

clinical setting.  As discussed in Section 1.2.2, radiotherapy induces TGF-β production, which 

can alter the balance of radiotherapy-induced immune effects to dampen anti-tumour 

immune effects and strengthen pro-tumour inflammation.  Pre-clinical studies have shown 
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that the blockade of TGF-β during radiotherapy synergistically resulted in CD8+ T cell-

mediated anti-tumour immune responses.  Resultant PD-1 upregulation was found to limit 

tumour rejection and cause recurrence, which was shown to be ameliorated by the addition 

of ICIs (Vanpouille-Box et al., 2015; Rodríguez-Ruiz et al., 2019).  A study investigating the 

combination of ICIs with TGF-β blockade in a bladder cancer mouse model showed that the 

combination treatment caused tumoural T cell infiltration, resulting in anti-tumour 

immunity and subsequent tumour regression (Mariathasan et al., 2018).  An early phase I 

clinical trial of a bifunctional protein, consisting of a monoclonal antibody against PD-L1 

fused to a TGF-β trap, in patients with solid tumours showed a tolerable safety profile and 

early signs of efficacy (Strauss et al., 2018).  

Of these immunotherapies, the most prevalent and successful are immune checkpoint 

inhibitor (ICI) treatments, which work by targeting the immune checkpoint pathways, CTLA-

4 and PD-L1, and inhibiting them.  This prevents the respective receptors binding with their 

ligands and initiating their inhibitory effects, thus preventing T cell exhaustion and allowing 

for successful anti-tumour T cell activity.  The first ICIs approved by the Food and Drugs 

Administration (FDA) were monoclonal antibodies developed for melanoma, with 

ipilimumab binding to CTLA-4 and pembrolizumab and nivolumab binding to PD-L1.  The 

FDA have since approved more ICIs for a variety of different tumours, including six for 

advanced bladder cancer: anti-PD-L1 antibodies atezolizumab in 2016, avelumab and 

durvalumab in 2017; anti-PD-1 antibodies nivolumab in 2017 and pembrolizumab in 2019; 

and anti-CTLA-4 antibody ipilimumab in 2019 (Wei, Duffy and Allison, 2018; Wołącewicz et 

al., 2020).  Although those patients who respond to ICIs perform well, only between 13% 

and 24% of bladder cancer patients respond to the treatments (Cheng et al., 2018).  

Therefore, there is a clinical need to identify those patients who are likely to respond to ICI 

treatments, as well as to further understand why some patients do not see clinical benefit 

and identify successful combination strategies. 

There are many potential combination strategies for ICIs, including the use of anti-

inflammatory drugs that target the COX-2/PGE2 pathway.  Inhibiting the COX-2/PGE2 

pathway was shown to synergise with ICIs to increase intratumoural infiltration of T cells in 

mouse models as well as patient-derived tumour fragments across different cancer types, 

although not including bladder (Pelly et al., 2021).  Furthermore, pharmacological inhibition 

of COX-2 was shown to synergise with chemotherapy and ICI to boost efficacy in mouse 
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models (Bell et al., 2022).  Although not investigated in bladder cancer models, the 

chemotherapy tested included 5-FU, which is routinely given to MIBC patients, highlighting 

its potential use in this disease.  Other combination strategies for potentiating the efficacy 

of ICIs include hypoxia-modifying agents, which will be discussed in Section 1.4.4.  

Many ongoing clinical trials are investigating the use of various ICIs in combination with 

radiotherapy or chemoradiation in MIBC patients (Tripathi, Khaki and Grivas, 2021).  A phase 

II clinical trial, DUART, investigated the combination of radiotherapy and durvalumab in 

cisplatin/surgery ineligible MIBC patients and found the treatment was safe and tolerable.  

Recently, interim efficacy presented at a conference stated that concurrent durvalumab and 

radiotherapy with adjuvant durvalumab resulted in promising 1-year efficacy with PFS 

probability of 73% (Joshi et al., 2021).  Another study investigating durvalumab with 

chemoradiation in MIBC patients with locally advanced lymph node positive tumours is 

ongoing.  There are other ongoing clinical trials investigating pembrolizumab (Keynote-992) 

and atezolizumab concurrently with chemoradiation in MIBC patients (Tripathi, Khaki and 

Grivas, 2021).  If successful, these trials could pave the way for refining bladder-preserving 

treatment modalities to improve overall survival for MIBC patients.  As seen with poor 

response rates in patients with metastatic advanced tumours, patient selection is likely to 

improve treatment response rates and the development of biomarkers to predict patient 

benefit of ICIs is pivotal to this.  

1.2.4  Tumour immune cell infiltrates and the potential effects on clinical prognosis 

Poor overall survival of MIBC and the need to develop biomarkers to determine efficacy of 

ICIs has resulted in intense research efforts to identify specific immune cells, or immune 

contextures, which yield prognostic and predictive value. 

1.2.4.1 CD8 T cells  

A meta-analysis of 124 published articles was performed by Fridman et al to analyse the 

relationship between T cell infiltration and clinical outcome.  It was found that in numerous 

different cancer types, including bladder, high levels of lymphocyte infiltration are 

associated with a better clinical outcome.  Specifically, high densities of CD8+ (cytotoxic) T 

cells result in longer disease-free and overall survival (Fridman et al., 2012).  Another meta-

analysis was performed in 2021 by Li et al, associating CD8+ T cell levels with clinical 

outcome to immunotherapies, namely ICIs.  Analysis of 33 studies across cancer types, 
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including bladder, showed that high numbers of CD8+ T cells significantly associated with 

better overall survival (HR = 0.52, 95% CI 0.41-0.67, p<0.001), progression free survival (HR = 

0.52, 95% CI 0.40-0.67, p<0.001), and overall response rate to ICI treatments.  The improved 

survival and response to ICIs was found to be true regardless of the different treatment 

approaches: combination (PFS HR = 0.27, 95% CI 0.09-0.81, p=0.019) or mono-therapy (PFS 

HR = 0.52, 95% CI 0.40-0.68, p<0.001); CD8+ T cell compartmentalisation: stroma (OS HR = 

0.41, 95% CI 0.29-0.58, p<0.001) or intra-tumoural (OS HR = 0.59, 95% CI 0.40-0.86, 

p=0.007); and different cancer types.  Higher baseline circulating CD8+ T cells in peripheral 

blood did not associate with any clinical benefit (Li et al., 2021).  Whilst they included two 

urothelial cohorts in their meta-analysis, other bladder cancer specific studies also 

corroborated the findings of the meta-analysis.  The results from these studies showed a 

high number of tumour-infiltrating CD8+ T cells correlated with improved survival, patient 

outcome and response to ICIs (Sharma et al., 2007; Faraj et al., 2015; Deng et al., 2018; 

Wang et al., 2019).  These studies illustrate how the abundance of CD8+ T cells in MIBC can 

be used not only as a prognostic marker for relapse and recurrence, but also to predict 

which patients are likely to benefit from ICIs, which is a current unmet clinical need.   

Pfannstiel et al used immunohistochemistry (IHC) in a Cancer Center Erlangen Metropol 

Region Nuremberg (CC-EMN) MIBC cohort to analyse tumour-infiltrating lymphocytes (TILs; 

CD8+, CD4+, NK and B cells) in the TME.  They showed that high stromal infiltration of TILs 

identified patients with a more favourable prognosis and also correlated with a basal 

molecular subtype.  They found that increased levels of stromal TILs correlated with 

increased macrophages present in the TME.  Those patients with high stromal TIL infiltration 

benefited from platinum-based adjuvant chemotherapy, as seen in a subset of MIBC 

patients from the CCC-EMN and TCGA cohorts combined (n=102, HR=0.22, 95% CI 0.10-0.47, 

p<0.001) (Pfannstiel et al., 2019).      

1.2.4.2 T helper cells (CD4 and Tregs) 

The role of both CD4+ T cells and Tregs is more ambiguous, with comparatively little 

evidence to conclusively define their impact on clinical outcome in MIBC (Joseph and Enting, 

2019).  An IHC study performed by Baras et al using 67 MIBC tumours found prognostic 

significance was not associated with the densities of neither CD8+ T cells nor Tregs alone.  

However, the ratio of CD8+ to Tregs was strongly associated with response to neoadjuvant 
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chemotherapy, as shown by a significant positive correlation between ratio and response 

(p<0.001).  Whilst the authors showed that tumours with a ratio of < 1 comprise 0% of 

chemotherapy responders, and those with a ratio of > 1 comprise 60% of chemotherapy 

responders, the study lacked any Cox proportional hazard models or other similar survival 

analyses to confirm the associations (Baras et al., 2016).  A similar study in a cohort of 149 

MIBC patients found the same correlation, but associated high CD8:Treg ratios with 

improved overall survival (HR 1.32, 95% CI 1.06-1.65, p=0.013) after cystectomy  (Horn et 

al., 2016).  Shi et al used four MIBC gene expression datasets (TCGA, GSE31684, GSE5287, 

and CIT) and found that a high CD3D (CD3 delta chain; marker of T cells) to CD4 expression 

ratio had prognostic relevance.  They showed that a higher CD3D:CD4 ratio significantly 

associated with improved survival in the TCGA (n=407, p<0.001 by log-rank test, hazard 

ratios and CIs not shown), GSE31684 (n=78, p=0.02), GSE5287 (n=30, p=0.35) cohorts and 

non-significantly in the CIT cohort (n=73, p=0.07) (Shi et al., 2019).   

However, these studies did not find any prognostic significance for the CD4+ T cells alone.  

This lack of significance could be due to a lack of in-depth characterisation of the CD4+ T 

cells and identification of their tumour compartmentalisation, which is essential to glean 

more conclusive evidence about the roles of these immune cell populations.  The 

importance of further characterisation is demonstrated by a study on prostate cancer 

patients by Yokokawa et al.  They found that although the amount of Treg cells did not vary 

between the cancer and healthy patients, those Tregs present in the cancer patients had a 

higher immunosuppressive functionality than those found in healthy patients (Yokokawa et 

al., 2008).  Despite Tregs being considered as a suppressive immune cell infiltrate in general, 

there are some studies that have shown positive associations with Treg abundance and 

clinical outcome in MIBC (Winerdal et al., 2018).  These studies imply a potential paradoxical 

effect of Tregs in MIBC and highlight the need for further research into the roles of this 

immune cell population in this disease.  

1.2.4.3 Macrophages 

The prognostic value of macrophages in bladder cancer is limited by under-characterisation 

of its phenotype, similar to CD4+ T cells.  CD68 and CD163 are used as markers for cells of 

the monocyte/macrophage lineage, although CD68 is less specific and also detects myeloid 

cells, DCs and fibroblasts (Harris et al., 2012).  A meta-analysis performed by Wu et al in 
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2018 concluded that TAMs identified using CD68 alone had no clinical prognostic relevance 

in bladder cancer (Wu et al., 2018).  There is some evidence that the prognostic relevance of 

macrophage abundance might increase when investigating just MIBC instead of all bladder 

cancers as shown by Xu et al.  They showed that TAMs identified by CD163 had no 

prognostic significance on overall survival for 134 bladder cancer patients, but for the 

subgroup of 115 MIBC patients a high versus low CD163+ TAM infiltration associated with a 

worse survival (p=0.022) (Xu et al., 2018).  In general, studies demonstrate that a high 

number of TAMs associate with a poor prognosis, whereby those tumours with more TAMs 

are associated with a higher risk of tumour progression as well as worse overall and 

progression-free survival (Leblond et al., 2021).  However, most of these studies gained 

more relevant and powerful prognostic information from further characterisation of the 

macrophages, such as whether they express the immune checkpoint molecule CD276 (B7-

H3) or DC-SIGN (dendritic cell type specific C-type lectin) (Xu et al., 2018; Hu et al., 2020).  A 

high ratio of CD68+ to CD3+ cells was found to identify patients with a poor prognosis in 

MIBC (HR = 1.67, 95% CI 1.26-2.21, p<0.001).  Interestingly, in this study there were no 

significant associations with outcome for CD8+ cell counts alone (Sjödahl et al., 2014).   

Other studies deconvoluting the immune populations in bladder cancer associated higher 

numbers of macrophages with higher-risk patients (Fu et al., 2018; P. Li et al., 2021).  When 

analysing the classical phenotypic state of the macrophages, high expression of the M2-like 

phenotype associated with a poor overall and progression-free survival in MIBC, whilst an 

M1-like phenotype correlated positively with a favourable prognosis when found in the 

tumour-draining lymph nodes, but not in the tumour (Asano et al., 2018; Xue et al., 2019; L. 

R. Jiang et al., 2021).  Again, these studies attributed increased prognostic significance to 

further macrophage characterisation, such as PD-1 expression and specific genomic 

alterations.  One study used bulk single cell RNA sequencing on immune infiltrating cells 

from MIBC patients and found six different subsets of macrophages.  The gene signatures of 

these subsets did not correlate with existing classical M1-like and M2-like macrophage 

phenotypes (L. Wang et al., 2021).  These studies illustrate the difficulty with analysing 

macrophages as a prognostic marker due to the complexity of their lineages, plasticity, and 

the markers used to define them and highlights the need for further investigation into their 

prognostic and predictive utility in MIBC. 
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1.2.5 Immune gene signatures 

Large scale transcriptomic data sets such as TCGA, ImmGen and Human Immunology Project 

allow for the characterisation of immune cell contexts.  These datasets can be used to 

develop gene expression profiles to further elucidate the role of immune regulatory genes 

and tumour-immune cell interactions (Xue et al., 2014; Angelova et al., 2015).  

Upon analysing the genes involved with bladder cancer progression, Kim et al found an 

enrichment of genes involving inflammation response and immune cell trafficking (Kim et 

al., 2011).  Mo et al also found that when analysing the genes associated with bladder 

tumour differentiation the most elevated gene enrichments were those involved with 

immune and inflammatory responses (Mo et al., 2018).  Together, the presence and 

quantity of various immune cell infiltrates influences response to treatment as well as 

patient prognoses.  Therefore, the ability to analyse the cells collectively, rather than 

individually, is essential to understand the effects of immune TMEs.  The use of gene 

expression profiles to estimate the immune cell population abundance and analyse the 

landscape of the tumour contexture provides essential information to stratify patient 

treatments (Becht et al., 2016).  For example, immune gene expression profiles could be 

used to identify which patients will benefit from ICIs checkpoint or immunomodulating 

therapy to stimulate an anti-tumour immune response (Van Limbergen et al., 2017; Mo et 

al., 2018).  

Nirmal et al developed a gene signature that represents seven immune cell types and 

their immune pathways, including interferon (IFN) response genes.  They used 

transcriptomic analysis to identify co-expressed genes and derive a resultant signature of 

relevant genes.  The study of gene expression signatures is especially useful for the immune 

microenvironment as there are few markers that are expressed solely to represent one 

immune cell.  The markers change depending on the tissue of origin or activation state.  

Therefore, a signature is based on the co-expression of markers to represent the overall 

profile of the immune contexture and this is more applicable than attempting to identify 

single cells present.  The derived signature known as ImSig was validated in metastatic 

melanoma and showed to be prognostic for survival.  ImSig is a very useful tool for analysing 

the immune TME and exploring the potential to provide prognostic information and predict 

response to treatments (Nirmal et al., 2016, 2018). 



 
43 

The specific utility of gene signatures predicting response to therapies has been 

demonstrated by Ayers et al., who have shown that an IFNγ related gene expression profile 

can be used as a predictive marker for response to PD-1 ICI treatment.  They derived a 

preliminary IFNγ related signature and an expanded one that included genes involved with 

cytolytic activity, chemokine and cytokines that initiate inflammation, T cell markers and 

antigen presentation.  These two gene signatures were able to differentiate melanoma 

patients into responders and non-responders to PD-1 pembrolizumab therapy.  They further 

refined the signature and upon testing in head and neck and gastric cancers it highlighted a 

common biological response that enabled identification of successful response to anti-PD-1 

treatment.  These results demonstrate that a gene expression profile (gene signature) can 

be used to analyse whether the immune contexture enables favourable clinical response to 

ICIs.  It was shown to be more robust than immunohistochemistry (IHC) for PD-1 and the 

authors also showed discrete biology that indicated patient groups unlikely to benefit from 

the therapy, highlighting its potential for patient stratification (Ayers et al., 2017). 

The use of gene signatures for predicting response to ICIs has also been shown with 

development of a gene profile linked to an immunosuppressive microenvironment via the 

dysregulation of TGF-β signalling in cancer-associated fibroblasts.  The derived signature 

across cancer types predicted failure of PD-1 ICI, and out-performed the published 

signatures for stratifying patients for ICIs (Chakravarthy et al., 2018).  These results are 

further supported by a study performed by Mariathasan et al., who found that TGF-β 

attenuates response to a ICIs by excluding T cells from the tumour.  They used a bladder 

cancer clinical trial cohort treated with atezolizumab, an anti-PD-L1 ICI, and showed that 

lack of response to the treatment was associated with increased TGF-β signalling in 

fibroblasts, especially in tumours with an immune-excluded immune phenotype.  

Conversely, response was shown to be associated with functional CD8+ T cell effector 

phenotypes (Mariathasan et al., 2018).   

1.2.5.1 Immune subtyping in bladder cancer 

Classical classification of immunological phenotypes uses histology to stratify solid tumours 

into three different immune phenotypes: inflamed (“hot”), where there is an abundance of 

CD8+ T cells in the tumour; desert (“cold”), where there is no presence of CD8+ T cells; or 

excluded tumours, where CD8+ T cells are confined to the stromal regions of the tumour 
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(Chen and Mellman, 2013; Hegde, Karanikas and Evers, 2016).  In recent years, many studies 

in MIBC have moved beyond CD8+ T cell measurements alone, combining different immune 

cell subpopulations using gene expression data to create various unique immune 

phenotypes that are prognostically significant and can be used to predict response to 

treatment.  

In 2018, Fu et al derived a stromal immunotype in MIBC that was prognostic and 

predicted benefit from adjuvant platinum-based chemotherapy.  They used the Cibersort 

algorithm, which quantifies the fractions of immune cell infiltration into 22 immune cell 

subpopulations (Chen et al., 2018).  Immunotype A represented tumours with a high 

infiltration of CD8+ T and NK cells and a low infiltration of macrophages, Tregs and mast 

cells, with immunotype B representing the opposite.  Patients with immunotype A tumours 

had significantly better overall and disease-free survival than immunotype B tumours in the 

training, testing and validation cohorts (validation cohort: n=287, OS HR 2.065, 95% CI 

1.334-3.198, p=0.001).  It was also shown that patients with immunotype B tumours who 

had stage 3 or 4 disease benefitted from adjuvant chemotherapy (OS HR = 0.598, 95% CI 

0.394-0.904, p=0.016).  Furthermore, immunotype A tumours had significantly higher 

expression of immune checkpoint molecules PD-L1 and CTLA-4 and an inflamed immune 

subtype, indicating that these patients are likely to respond to ICIs (Fu et al., 2018).   

One study used the TCGA bladder cancer gene expression dataset (TCGA-BLCA) to 

compare the relationship between different immune subpopulations and prognosis.  They 

separated patients into three subgroups based on hierarchal clustering of immune cell 

analysis and each subgroup demonstrated distinct prognostic and immune characteristics as 

discovered using the Cibersort algorithm.  In concordance with other published literature 

previously discussed in Section 1.2.4.1, they found that one subgroup had a higher 

abundance of CD8+ T cells and NK cells, which associated with better prognosis (p=0.024).  

Further to this, they found that the abundance of CD8+ T cells decreased as clinical stage 

increased and that high amounts of CD8+ T cells alone associated with a good prognosis 

(p=0.005).  They also showed that higher abundance of macrophages associated with a poor 

prognosis (p=0.031) and their abundance increased as clinical stage increased.  Interestingly, 

they also looked at the ratio of CD8+ cells to Tregs and found no prognostic significance 

(Wang et al., 2020).   
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Another study demonstrated that a derived risk score based on immune-related gene 

expression in the TGCA-BLCA dataset correlated with response to ICI and prognosis.  They 

showed that a high score of their signature identified poor prognosis patients in the TCGA 

dataset (n=406, HR 3.36, p<0.001) and a validation dataset of a cohort treated with an ICI, 

IMvigor210 (n=348, HR 2.42, p<0.001).  Using Cibersort to analyse the differences in 

immune infiltrates for high versus low risk score groups in both cohorts they found that 

those patients with a high risk score had a significantly lower abundance of CD8+ T cells, 

representing an immune desert phenotype, and also higher presence of macrophages.  

Despite having an ICI treated cohort, they did not show associations between response to 

treatment and their derived risk scores, although one would hypothesise that the high risk 

score would predict non-responders (P. Li et al., 2021).   

A prognostic signature consisting of seven immune related genes was derived by Qiu et al 

in 2020 using TCGA-BLCA.  They showed that patients with a high signature score identified 

a high risk group with worse overall, cancer specific and progression-free survival compared 

to those with a lower score (OS HR = 10, 95% CI 5.6-19, p<0.001).  However, contrary to 

other studies, when analysing the differences in immune infiltrates between the groups 

they found that those in the high risk group had a higher infiltration of CD4+ and CD8+ cells, 

as well as macrophages, neutrophils and DCs.  Whilst they used an external validation 

dataset from the Gene Expression Omnibus (GEO), they analysed the immune contexture in 

the TCGA dataset only (Qiu et al., 2020).  To analyse the immune contexture they used the 

TIMER algorithm, an alternative method of deconvoluting the immune populations to 

Cibersort.  TIMER deconvolutes the immune cell infiltration into six different immune cell 

subpopulations (Li et al., 2016).   

Taken together these studies demonstrate the usefulness of analysing the immune 

infiltrate contexture in MIBC to provide prognostic and predictive value.  The current 

literature also highlights the utility of gene signatures as biomarkers, which is elaborated 

further in Section 1.3.4.1. 
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1.3 Hypoxia in the tumour microenvironment  

1.3.1 Hypoxia and the effect of hypoxia-inducible factors (HIFs) 

Hypoxia is a lack of oxygen availability that occurs when there is an imbalance between the 

supply of oxygen to the tumour and the oxygen consumption rate (Vaupel and Harrison, 

2004).  Intratumoural hypoxia is a common feature found in over half of locally advanced 

solid cancers, such as MIBC (Schito and Semenza, 2014).  Hypoxia-induced cellular changes 

mostly occur due to the transcription factors, hypoxia-inducible factors (HIF), of which there 

are three isoforms, HIF-1, 2 and 3.  HIFs are heterodimers consisting of alpha and beta 

subunits, but in the presence of oxygen, HIF-α is post-translationally marked for 

degradation.  Therefore, as oxygen levels deplete, the HIF-α subunit is able to bind to the 

HIF-ß subunit to create the HIF active dimer (Hill et al., 2015; Infantino et al., 2021).  HIFs 

regulate gene expression by binding to hypoxia response elements (HREs) in the genome.  

HIF-regulated genes are primarily involved in oxygen delivery, angiogenesis and energy 

preservation that help the tumour cells adapt to the low oxygen environment, but also 

include a wide variety of other genes (Vaupel and Harrison, 2004) (Figure 1.6).  Oxygen 

delivery is increased by the activation of genes that induce angiogenesis, such as VEGF, and 

those that increase the oxygen uptake of red blood cells, such as EPO.  Energy preservation 

is driven by a switch to anaerobic versus aerobic respiration supported by the activation of 

genes such as GLUT1 to increase glucose supply and CA9 to facilitate acid excretion 

associated with the build-up of lactic acid.  These genes act to minimise damage that could 

be caused by the lack of oxygen and prevent cell death, which ultimately contribute towards 

tumour cell resistance to radiotherapy, tumour progression and metastasis (Vaupel and 

Harrison, 2004; Manoochehri Khoshinani, Afshar and Najafi, 2016). 
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Figure 1.6. Schematic showing how HIF affects growth, oxygen supply, and metabolism adaptation. 
Hypoxia results in the stabilisation of HIF, which accumulates and activates a plethora of genes by binding to hypoxia 
response elements (HREs). The main targets are genes broadly associated with growth, oxygen supply and metabolic 
adaptations. These include genes that increase proteins involved with proliferation and cell survival (EGF, IGF-2), 
suppression of apoptosis (BCL2), increase haemoglobin and oxygen transport capacity (EPO), increase angiogenesis and 
vasodilation (VEGF, iNOS), increase energy preservation and glucose turnover (GLUT), and regulate pH (CA9). Adapted from 
Vaupel and Harrison, 2004.  

1.3.2 Hypoxia in an adverse prognostic factor and contributes to treatment resistance 

Hypoxia is an adverse prognostic factor in many cancers including bladder cancer, which is 

independent from other clinicopathological prognostic features including tumour stage and 

grade (Schito and Semenza, 2014).  Hypoxia contributes to resistance to many different 

treatments, including chemotherapies, immunotherapies, targeted therapies and 

radiotherapy (Manoochehri Khoshinani, Afshar and Najafi, 2016).  One mechanism of 

treatment resistance is hypoxia-mediated drug efflux.  Chemotherapies and targeted 

therapies rely upon accumulation of the drug in the tumour cells.  A number of genes are 

involved in drug efflux processes that pump the drug out of the tumour, such a multidrug 

resistance proteins and multidrug resistance-associated proteins, which have been shown to 

be upregulated by HIF-1α (Krishnamurthy and Schuetz, 2005; Liu et al., 2008; Xie et al., 

2013).  Another method of chemoresistance is the inhibition of apoptotic pathways, which 

hypoxia has been shown to regulate.  Hypoxic cells have also been shown to receive a lower 

drug concentration due to their increased distances from blood vessels (Karakashev and 

Reginato, 2015).  The relationship between hypoxia and immunotherapies will be discussed 

in Section 1.4.5. 
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The link between hypoxia and resistance to radiotherapy is well established.  Cells are 

approximately three-fold resistant when irradiated with sparsely ionising radiation in the 

absence of oxygen (Gray et al., 1953).  The oxygen effect is due to oxygen fixation of free 

radicals produced when radiation interacts with tissue.  Radiation damages DNA both 

directly or indirectly - most damage is indirect for sparsely ionising radiation and the oxygen 

effect is important for the indirect effects of radiation.  The dominant radiolysis species are 

the •OH and H• radicals formed by interactions with water molecules, because about 80% 

of cells is water.  In the presence of oxygen the radicals formed are ‘fixed’ into a non-

restorable form, that leads to irreparable DNA damage (Grimes and Partridge, 2015).  The 

level of radioresistance due to the oxygen effect can be quantified by the oxygen 

enhancement ratio (OER), which is the ratio of radiation doses needed under hypoxia 

compared to normoxia to induce the same effect.  Normally, the OER for sparsely ionising 

radiation is 2.8-3.5 (Hill et al., 2015). 

Following seminal work by Thomlinson and Gray highlighting the potential importance of 

hypoxia in cancer, numerous studies attempted to measure the level of tumour hypoxia and 

link with radiotherapy outcomes (Thomlinson and Gray, 1955).  An important paper in the 

field was from Höckel et al who used oxygen microelectrodes to show that uterine cervical 

cancer patients with the most hypoxic tumours had a poor outcome following radiotherapy 

(Höckel et al., 1996).  Many studies have since demonstrated that the most hypoxic tumours 

are associated with a poor prognosis, including in bladder cancer (Theodoropoulos et al., 

2004; Chen et al., 2020; M. Jiang et al., 2021; Z. Liu et al., 2021; Z. Zhang et al., 2021).  

1.3.3 Treatment options to overcome hypoxia 

Methods of overcoming tumour hypoxia have been studied since the 1960s, although few 

have progressed into clinical treatments, despite many clinical trials.  In the twentieth 

century most work centred on targeting hypoxia to improve the efficacy of radiotherapy.  

The approaches include increasing oxygen delivery, oxygen mimetic radiosensitisers and use 

of bioreductive agents (Tharmalingham and Hoskin, 2019).  Meta-analyses performed on 86 

clinical trials using hypoxia modification in different cancers found that it significantly 

improved radiotherapy responses for locoregional control (OR = 0.77, 95% CI 0.71-0.86) and 

overall survival (OR = 0.87, 95% CI 0.80-0.95) (Overgaard, 2007).  With increasing 

recognition of the importance of hypoxia across solid tumours and other treatment 
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modalities, approaches of overcoming hypoxia have been explored for use without the 

focus of improving radiotherapy such as targeting hypoxia metabolism, angiogenesis, and 

HIF-1α activity directly (Table 1.3) (Karakashev and Reginato, 2015). 

Table 1.3. Methods of overcoming tumour hypoxia. 

Approach Method Example 

Intratumoural 
oxygenation 

Increase oxygen transfer from lungs   Hyperbaric oxygen 
Improve oxygen diffusion   Carbogen 

Increase vascular perfusion   Nicotinamide 

Oxygen mimetics Mimic radiochemical effects of oxygen   Misonidazole 
  Pimonidazole 

  Nimorazole 
Bioreductive agents Preferentially destroy hypoxic cells   Tirapazamine 

  Apaziquone 

HIF-1α indirect targets 
   

HIF-1α synthesis   2ME2 
  Topotecan 

HIF-1α DNA binding   Bortezomib 
HIF-1α degradation   17-AAG 

  Geldanamycin 

  EZN-2968 
HIF-1α transcriptional activity   Echinomycin 

Hypoxia metabolism Inhibition of GLUT1   WZB117 
Inhibition of LDHA   FX11 

Inhibition of PDK3   Dichloroacetate 
Hyperthermia Increase tumoural oxygenation 

Inhibit DNA repair 
Induce vascular damage to kill tumour cells 

  Heat to 39-45°C 

 
1.3.3.1 Targeting hypoxia by increasing oxygen delivery 

There are different methods that can be used to overcome tumour hypoxia by increasing 

intratumoural oxygen availability.  These approaches include increasing the oxygen available 

in the blood using hyperbaric oxygen, improving diffusion of oxygen into the tumour using 

carbogen, and increasing vascular perfusion using nicotinamide.  Although results from the 

use of hyperbaric oxygen showed clinical efficacy in head and neck and cervical cancers, the 

technical complexity of delivery concurrent with radiotherapy, as well as late toxicities, 

limited its acceptance into clinical practice (Tharmalingham and Hoskin, 2019).  The meta-

analysis mentioned in the above section (1.3.3) investigating the benefit of different 

methods of hypoxia modification in multiple cancers showed no significant benefit in 

bladder cancer specifically for locoregional control (OR = 0.82, 95% CI 0.62-1.08) nor overall 
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survival (OR = 0.88, 95% CI 0.65-1.18) (Overgaard, 2007).  However, a trial comparing 

accelerated radiotherapy with carbogen and nicotinamide (ARCON) with misonidazole or 

hyperbaric oxygen in bladder cancer patients demonstrated benefit for ARCON.  Patients 

were given CON +/- nicotinamide and the outcomes were compared to patients given 

misonidazole or hyperbaric oxygen.  It was shown that patients given CON, with or without 

nicotinamide, had significantly improved recurrence free survival (p<0.001, no hazard ratios 

shown) and overall survival (p=0.04, no hazard ratios shown) than the other approaches of 

hypoxia modification (Hoskin, Saunders and Dische, 1999).  The combined use of CON with 

accelerated radiotherapy has been investigated in many phase I and II trials over the years.  

Although no benefit was seen in gliomas and lung cancers, improved survival was seen in 

bladder and head and necks cancers leading to further phase III trials in these tumour types 

(Tharmalingham and Hoskin, 2019).   

A phase III clinical trial investigating the use of ARCON in head and neck cancers 

demonstrated that ARCON significantly improved 5-year regional control rates (p=0.04).  It 

was further shown that this benefit of treatment was strengthened when patients with high 

hypoxia tumours were identified by pimonidazole staining (Janssens et al., 2012).  A phase 

III clinical trial in bladder cancer, BCON, investigated if CON given concurrently with 

radiotherapy improved patient outcomes.  It was found that compared to radiotherapy 

alone, radiotherapy plus CON improved overall survival (p=0.03) and reduced the risk of 

relapse (p=0.03) (Hoskin et al., 2010).  Similarly, it has subsequently been shown that this 

benefit of CON is seen in patients with the most hypoxic tumours as defined using a bladder 

cancer-specific hypoxia gene signature, which will be discussed in Section 1.3.4.1.  A 

recurring theme in the failure of many of these clinical trials is the lack of patient selection, 

which is further highlighted by the ARCON and BCON trial analyses.  As medicine moves into 

the era of personalised medicine, the need to stratify patients for those who are likely to 

benefit from hypoxia-modifying treatments is increasingly clear.  Therefore, there is an 

existing need to be able to quantify tumour hypoxia and select those patients with the most 

hypoxic tumours for hypoxia-modifying treatments.  

1.3.3.2 Targeting hypoxia with hypoxia-specific radiosensitisers 

Oxygen mimetics, such as nimorazole, pimonidazole, etanidazole and misonidazole, 

sensitise tumours to radiotherapy by mimicking the radiochemical effects of oxygen.  A 
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phase III trial for head and neck patients, DAHANCA 5, was conducted in Denmark in which 

patients were given radiotherapy with either nimorazole or a placebo.  The study found that 

patients who had nimorazole in addition to radiotherapy had significantly improved 

locoregional control compared to those who received the placebo (Overgaard et al., 1998).  

Despite these encouraging results, earlier trials of pimonidazole and etanidazole in head and 

neck and cervical cancers showed no benefit and few investigations have been made further 

into the use of nimorazole to improve the efficacy of radiotherapy (Tharmalingham and 

Hoskin, 2019).  A phase III trial in the UK, NIMRAD, randomised head and neck cancer 

patients to receive radiotherapy with either nimorazole or a placebo, which finished 

recruiting in January 2021 and is yet to publish results (Thomson et al., 2014).  In bladder 

cancer, four clinical trials have investigated the benefit of misonidazole addition to 

radiotherapy and only one of these showed clinical benefit (Lodhi et al., 2021).    

Hyperthermia treatment has been shown to be an effective mechanism for overcoming 

tumour hypoxia as it increases tumoural blood flow and therefore oxygenation, acts as a 

radiosensitiser by inhibiting DNA repair, and can both directly and indirectly kill tumour cells 

by inducing vascular damage.  Hyperthermia, which involves heat treatments of 39-45°C, 

has been shown to improve response to radiotherapy in many clinical trials for various 

tumour types, including bladder, yet it remains unused as a treatment option in most 

countries despite these successes (Elming et al., 2019).  

1.3.3.3 Targeting hypoxia with small molecular inhibitors 

Developing direct inhibitors of HIF-1α has been unsuccessful.  However, many compounds 

indirectly affecting HIF-1α showed preclinical potential and progressed through to clinical 

trials in advanced, metastatic solid tumours, but with limited success (Karakashev and 

Reginato, 2015).  HIF-1α can be indirectly targeted by promoting proteasomal degradation 

(17-AAG/geldanamycin) (Mabjeesh et al., 2002), blocking DNA binding ability (bortezomib) 

(Shin et al., 2008), inhibiting transcriptional activity (echinomycin) (Kong et al., 2005), 

promoting mRNA degradation (EZN-2968) (Jeong et al., 2014), and disrupting synthesis 

(2ME2 and topotecan)  (Mabjeesh et al., 2003; Matei et al., 2009; Kummar et al., 2011).  

None of these indirect HIF-1α targets have been trialled so far in bladder cancer.  

Targeting hypoxia driven changes in metabolism is another therapeutic method for 

exploiting tumour hypoxia.  Small molecule inhibitors that target GLUT1 and LDHA, 
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downstream effectors of HIF, have shown to work synergistically with chemotherapies 

including cisplatin, paclitaxel and daunorubicin in various in vitro and in vivo mouse models 

to improve tumour killing and ameliorate hypoxia-induced treatment resistance (Cao et al., 

2007; Le et al., 2010; Zhou et al., 2010).  No small molecular inhibitors targeting GLUT1 or 

LDHA have currently progressed into clinical trials.   

An inhibitor of the hypoxia-induced molecule PDK3, dichloroacetate (DCA), has 

progressed through to clinical trials.  DCA was shown to overcome hypoxia-induced 

apoptosis inhibition and enhance the efficacy of chemotherapies by inducing apoptosis in in 

vivo preclinical models (Cairns et al., 2007).  Phase II trials have been conducted in both 

glioblastoma and head and neck cancers and showed the treatment was safe.  In head and 

neck cancer, there was no significant survival differences between the groups given DCA or 

placebo with cisplatin and definitive radiation (Powell et al., 2015, 2022). 

Hypoxia activated pro-drugs preferentially destroy hypoxic cells as their activation is 

inhibited by molecular oxygen and thus are only activated under hypoxic conditions.  The 

most notable hypoxia pro-drug is tirapazamine (TPZ).  Compared to normoxia TPZ has a 300-

fold higher toxicity under hypoxia and in vivo models combing TPZ with radiotherapy and 

chemotherapies showed potential, leading to a phase III clinical trials in head and neck, lung, 

and cervical cancers.  However, toxicities were high and the results of these trials that 

concluded no clinical benefit was seen from the addition of TPZ, which has limited its use 

clinically (Williamson et al., 2005; Rischin et al., 2008; DiSilvestro et al., 2014).  It is noted 

that patient selection to enable the targeting of hypoxic tumours is likely to improve overall 

response.  Other hypoxia pro-drugs include PR-104 and apaziquone.  PR-104 showed 

efficacy in phase II trials for lung cancers, but the phase III trial progression was terminated 

due to discovery of a new mechanism of action (NCT00544674).  Apaziquone (APZ) failed to 

show clinical efficacy in phase II trials due to drug delivery barriers.  However, as bladder 

cancer treatments can be delivered intravesically it can circumvent potential drug delivery 

problems (Phillips et al., 2013).  Therefore, two phase III clinical trials investigated the 

benefit of apaziquone after TURBT in NMIBC where patients were randomised to either APZ 

or a placebo after TURBT.  A combined analysis was performed on these trials and no 

significant difference in survival was seen between the two treatment groups.  However, 

when split into subgroups based upon the time APZ was given post-TURBT, significant 

differences in disease recurrence were seen.  No difference between the two treatment 
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groups was seen when patients were given the compound less than 30 minutes post-TURBT 

(n=455), but when it was given a minimum of 30 minutes after (n=690) there was a 25.5% 

relative reduction in the 2-year recurrence rate compared to those given the placebo (HR 

0.61, p=0.001), as well as a reduction in time to recurrence by 33% (HR = 0.67, p<0.001).  

This benefit in time to recurrence was even stronger for those who received APZ 30-90 

minutes post-TURBT (HR 0.48, p<0.001) (Karsh et al., 2018). 

1.3.4 Measuring tumour hypoxia 

The development of methods to measure tumour hypoxia have been studied since the 

1960s, but each has various drawbacks and limitations (Table 1.4).  No approach has been 

integrated into routine clinical practice for MIBC, although many are used for clinical 

research (Lodhi et al., 2021).  

Table 1.4. Methods used to measure tumour hypoxia in muscle-invasive bladder cancer. 

 Advantages Limitations Use in MIBC 

Electrodes  • Prognostic • Accessible tumours 
only 

• Larger than 3cm 

• Invasive 

Not studied 

Histopathology 
(necrosis) 

• Cheap 

• Simple 

• Robustness 

• Reproducibility 

Prognostic 
Predicted benefit of CON 

Endogenous 
markers 
(HIF-1α, CAIX, 
GLUT-1) 

• Cheap 

• Simple 

• Robustness 

• Reproducibility 

• Not hypoxia specific 

Prognostic (HIF-1α - 
borderline, CAIX, GLUT-1) 
Predicted benefit of CON 
(HIF-1α) 

Gene signatures • Well validated 

• Sensitive 

• Multiple tests in 
one 

• Tumour specific Prognostic 
Predicted benefit of CON 

Imaging • Repeat tests 
through treatment 

• Whole tumour 

• Expensive 

• Lack of 
standardisation 

Limited to none 

 

Oxygen sensing electrodes were first used in cervical cancer by Kolstad in 1960 and were 

refined to fine needle microelectrodes by Vaupel in 1974 to minimise bleeding and tissue 

damage (Kolstad, 1964; Vaupel and Kelleher, 2013).  Whilst this approach provides useful 

information on the oxygen levels, it is limited due to it being highly invasive and restricted to 

accessible tumours that are more than 3 cm in diameter.  This technique is also limited due 

to not being applicable to any retrospective clinical material and therefore can only be used 



 
54 

prospectively (Bosco and Varesio, 2014).  Studies using the microelectrodes in soft tissue 

sarcomas and prostate, cervical and head and neck cancers showed that hypoxia correlated 

with a poor prognosis after radiotherapy (Thiruthaneeswaran et al., 2021).  The use of 

oxygen sensing electrodes has not been studied in bladder cancer.  

Another method of measuring tumour hypoxia is with the use of exogenous hypoxia 

markers that can be detected by infusion of tracers, an example of which is pimonidazole.  

Tracers are compounds that are either injected or given orally, which form covalent bonds 

with macromolecules at oxygen levels below 1.3% and can be visualised using subsequent 

IHC on biopsies (Ragnum et al., 2015).  The level of pimonidazole staining was found to 

correlate well with electrode measurements and be successfully applied to formalin-fixed 

paraffin-embedded (FFPE) tumours (Raleigh et al., 1999).  In bladder cancer it was shown 

that pimonidazole staining correlated well with GLUT-1 and CAIX protein expression in FFPE 

sections (Hoskin et al., 2003). 

Endogenous hypoxia markers have also been used on tumour biopsies as a method of 

measuring tumour hypoxia such as HIF-1α and its downstream targets, GLUT-1 and CAIX.  

These markers are limited as accurate measures of true hypoxia because they can be 

upregulated by external factors such as oncogenes and cytokine signalling (Datta et al., 

2021).  Nonetheless, a meta-analysis from 147 studies across multiple cancers analysed the 

relationship between CAIX expression and survival and showed that high expression of CAIX 

associated with worse overall survival (HR = 1.76, 95% CI 1.58-1.98, p<0.001) as well as 

progression-free survival (PFS), disease-specific survival (DSS), metastasis-free survival (MFS) 

and locoregional control (Van Kuijk et al., 2016).  In bladder cancer, various studies have 

shown the prognostic and predictive value of hypoxia assessment using HIF and its 

downstream targets (Table 1.5).  
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Table 1.5. Protein expression of HIF-1α and its downstream markers evaluated for prognostic potential in bladder cancer. 

Study Protein Prognostic Predictive 

Hunter et al., 2014 HIF-1α No Yes - benefit of CON 

Chai et al., 2008 HIF-1α Yes for DFS (p=0.009) Not studied 
Deniz et al., 2010 HIF-1α Significantly related to stage and 

grade 
Not studied 

Theodoropoulos et 
al., 2005 

HIF-1α No for PFS (p=0.058)  Not studied 

Younes et al., 2001 GLUT-1 Yes for OS (p=0.0064) Not studied 

Boström et al., 2016 GLUT-1 Yes for DSS (p=0.0085) – cohort 1 
No for DSS (p=0.15) – cohort 2 

Not studied 

Hoskin et al., 2003 GLUT-1 Yes for CSS (p=0.016) 
Yes for OS (p=0.0045) 

Yes - benefit of CON 

Hunter et al., 2014 CAIX No Yes – benefit of CON 
Hoskin et al., 2003 CAIX Yes for CSS (p=0.041) 

Yes for OS (p=0.034) 
Yes - benefit of CON 

Klatte et al., 2009 CAIX Yes for RFS (p=0.001) – TURBT cohort 
Yes for OS (p=0.003) – cystectomy 
cohort 

Not studied 

Turner et al., 2002 CAIX No Not studied 
DFS = disease specific survival, PFS = progression free survival, OS = overall survival, CSS = cause specific survival, RFS = 
recurrence free survival, CON = carbogen and nicotinamide. 

  The utility of both exogenous and endogenous hypoxia markers are limited by their 

qualitative nature, which makes them difficult to use as an objective and reproducible 

measure of tumour hypoxia.  Furthermore, their application is limited to biopsies, which 

may not provide an accurate reflection of hypoxia levels in the whole tumour (Bosco and 

Varesio, 2014; Datta et al., 2021).  

 Positron emission tomography (PET) and magnetic resonance imaging (MRI) are imaging 

techniques that can be used to measure tumour hypoxia.  These methods are advantageous 

as they can provide non-invasive hypoxic measurements for the whole tumour, including 

inaccessible tumours, and can be used repeatedly as treatment progresses to monitor 

response.  However, these approaches are limited by a lack of standardisation in image 

acquisition, analysis and reporting, and validation is needed to adopt these methods into 

routine clinical practice (Thiruthaneeswaran et al., 2021).  Studies in bladder cancer using 

dynamic contrast enhanced MRI have shown benefit in assessing tumour stage, grade and 

extent of angiogenesis (Tuncbilek et al., 2012; Rabie et al., 2016; Hassanien et al., 2019). 



 
56 

1.3.4.1 Hypoxia gene signatures 

In recent years, assessing hypoxia by the expression of a collection of hypoxia-associated 

genes has shown promising utility as a method of measuring tumour hypoxia with 

prognostic value, resulting in numerous existing prognostic hypoxia gene signatures for 

various cancers (Table 1.6).  Not all of the published hypoxia signatures compare the derived 

signature scores with other measures of hypoxia but those that do report a good 

concordance between the two, indicating the hypoxia gene signatures are accurately 

reflecting levels of tumour hypoxia (Suh et al., 2017; Yang, Forker, et al., 2017; Nie, Qin and 

Zhang, 2022; Salberg et al., 2022).  Some of these signatures also demonstrate predictive 

value by predicting benefit from hypoxia-modifying treatments, as outlined in Table 1.6.   

Methods to derive the gene signature vary between studies as do methods of applying a 

score to each sample and stratification methods for splitting cohorts into low and high 

expression.  Although most of these signatures are limited by their cancer-specific nature, 

there are some pan-cancer hypoxia signatures, most notably a 51-gene common hypoxia 

gene signature developed by Buffa et al, which was shown to be prognostic in lung, breast 

and head and neck cancers (Buffa et al., 2010).  In the last two years there has been an 

increasing number of hypoxia/immune-associated gene signatures being published.  The 

majority of the newly derived hypoxia signatures also analyse the differences in immune 

infiltrates between hypoxia high and low tumours due to the increasing recognition that 

hypoxia affects the immune TME which will be discussed further in Section 1.4.  

Hypoxia-associated gene signatures have high clinical feasibility in theory as routine 

biopsies are easily available for calculating the signature scores at a reasonable cost 

compared to other approaches such as imaging.  Gene signatures also allow for the 

application of multiple tests from a single method (Yang and West, 2019).  However, the use 

of biopsies is also one of their limitations as these do not incorporate the heterogeneity of 

the tumour and the resulting scores may reflect sampling bias and not the hypoxia status of 

the whole tumour.  Furthermore, there are many hurdles to overcome for the transition of a 

gene signature based biomarker from research to clinical use such as multiple cohort 

validation, platform validation and consistency across different centres.  Despite this, the 

prognostic and predictive potential of these sensitive hypoxia gene signatures mean they 

have exciting potential for clinical application.   
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Table 1.6. Published cancer-specific hypoxia gene signatures 

Derived by Cancer Size Prognostically 
derived 

Score 
application 

Signature 
stratification 

Predictive 

M. Jiang et al., 
2021 

Bladder 4 Yes Formula Median No 

Z. Liu et al., 2021 Bladder 16 Yes Formula Median No 
F. Zhang et al., 
2021 

Bladder 8 Yes Formula Mean No 

Yang, Taylor, et al., 
2017 

Bladder 24 Yes Median Median Yes - CON 

Fardin et al., 2010 Brain 62 No K-means 
clustering 

Binary score No 

Gao et al., 2021 Brain 26 No Formula Median No 

Ghazoui et al., 
2011 

Breast 70 No Median Median No 

Hu et al., 2009 Breast 13 No Mean X-tile No 

Seigneuric et al., 
2007 

Breast 14 No Unknown Unknown No 

Fjeldbo et al., 2016 Cervix 6 Yes Formula Binary score No 
Halle et al., 2012 Cervix 31 Yes Mean Clustering No 

Nie, Qin and 
Zhang, 2022 

Cervix 9 Yes Formula Median No 

Dekervel et al., 
2014 

Colorectal 6 No Formula ROC curve No 

Suh et al., 2017 Head and 
neck 

21 No Mean Quartiles No 

Toustrup et al., 
2016 

Head and 
neck 

15 No Formula Binary score Yes - 
nimorazol
e 

Winter et al., 2007 Head and 
neck 

99 No Median Upper quartile No 

Eustace et al., 2013 Head and 
neck 

26 No Median Median Yes - 
ARCON 

Lane et al., 2022 Lung 28 No Shrunken 
centroids 

Shrunken 
centroids 

No 

Van Malenstein et 
al., 2010 

Liver 7 Yes Formula ROC curve No 

Q. Zhang et al., 
2021 

Liver 21 No GSVA X-tile No 

Luo and Du, 2021 Lung 6 Yes Formula Median No 
Mo et al., 2020 Lung 4 Yes Formula Median No 

Khouzam et al., 
2021 

Pancreas 8 No Formula Specific No 

Ragnum et al., 
2015 

Prostate 32 No Median Unknown No 

Yang, Roberts, et 
al., 2018 

Prostate 28 Yes Weighted 
mean 

Median Yes - CON 
(bladder) 

Yang, Forker, et 
al., 2018 

Soft tissue 
sarcoma 

24 No Formula Formula No 

 



 
58 

1.3.4.1.1 Bladder cancer hypoxia gene signatures 

The bladder cancer hypoxia gene signature published by Yang et al was shown to have both 

prognostic and predictive value.  The signature was derived using a list of 611 known 

hypoxia related genes gleaned from literature and then further analysed by generating a co-

expression network in the discovery TCGA bladder cancer cohort.  Two genes were 

considered connected if positively correlated (Spearman correlation ≥ 0.5), and hypoxia 

signature genes were selected as being prognostic (p < 0.05) and associated with poor 

prognosis (HR < 1).  A 24-gene signature was derived and tested for associations with 

survival outcomes by stratifying into hypoxia high or low using the median signature score 

of a cohort as a cut-off.  The final 24-gene signature was prognostic in a meta-analysis of six 

bladder cancer cohorts for overall survival (n=679, HR = 2.32, 95% CI 1.73-3.12, p<0.001) 

and in the radiotherapy alone arm of the BCON cohort for local relapse-free survival (n=75, 

HR = 2.37, 95% CI 1.26-4.47, p=0.008).  Prognostic significance was retained in multivariable 

analyses.  The signature also predicted patients who would benefit from having hypoxia-

modifying CON addition with radiotherapy (n=76, HR = 0.47, 95% CI 0.26-0.86, p=0.015) 

(Yang, Taylor, et al., 2017).  A test for interaction between hypoxia signature score and 

treatment arms was significant (p=0.0094).   

More recently, a 14-gene bladder cancer miRNA signature was developed that was 

prognostic for overall survival in a MIBC cohort using the median as stratification (n=62, HR 

= 2.56, 95% CI 1.19-5.48, p=0.01) and whose performance was improved when using the 

upper quartile as stratification (n=62, p=0.0002, hazard ratios and CIs not stated).  Using the 

same upper quartile value from the 62 patient MIBC cohort, the signature was shown to 

predict benefit from CON in the BCON cohort when signature scores were high for both 

overall survival (HR = 0.44, 95% CI 0.19-1.00, p=0.044) and local relapse free survival (HR = 

0.45, 95% CI 0.21-1.01, p=0.048).  Whilst benefit was shown to be significant, the strength is 

somewhat limited by large confidence intervals.  There was no significant benefit from CON 

seen when using the median as cut-off, or in multivariable analyses (Khan et al., 2021).  

Three other hypoxia-associated bladder cancer gene signatures have been recently 

developed and the resulting differences in immune contexts between signature score high 

and low have been evaluated in all of them.  None of the three hypoxia gene signatures 

were tested for the ability to predict benefit from hypoxia-modifying treatment, but all of 

them were shown to be prognostic.  They will be discussed further in Section 1.4.5.1.  
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1.4 Hypoxia and the immune tumour microenvironment 

Hypoxia results in the regulation of a multitude of genes - roughly 1.25% of the human 

genome (Denko et al., 2003).  Research has shown that hypoxia-induced gene changes, 

either direct or indirect effect of HIFs, can affect tumour immune responses and contribute 

towards an immunosuppressive TME by altering the phenotypes and activities of immune 

cells (Manoochehri Khoshinani, Afshar and Najafi, 2016).   

1.4.1 Hypoxia and its effects on myeloid immune cells 

Elia et al demonstrated that hypoxia inhibits immature DCs from taking up antigens and 

diminished their antigen-presenting functionality by the downmodulation of pathways 

involved in the processing of antigens.  They showed that hypoxia changed the cytokine and 

chemokine expression of DCs to decrease expression of CCL18, which is involved in 

recruiting and promoting migration of T cells and DCs.  Hypoxic DCs were also shown to 

increase production of CXCL1 and CXCL8, both of which recruit neutrophils and stimulate 

VEGF production.  Overall, they showed that hypoxia changes the DC-mediated mechanisms 

by which leukocytes are recruited to create an inflammatory and pro-angiogenic TME (Elia 

et al., 2008).   

A study by Corzo et al demonstrated that under hypoxic conditions MDSCs inhibited T cell 

proliferation due to, amongst other things, the increased production of arginase 1.  Hypoxia 

exposure caused the differentiation of MDSCs to TAMs, which was shown to be dependent 

on HIF-1α expression (Corzo et al., 2010).  In vivo murine studies demonstrated that the 

inflammatory ability of macrophages and neutrophils was dependent on HIF-1α expression.  

They further showed that loss of HIF-1α resulted in decreased invasion of these myeloid 

cells (Cramer et al., 2003).  Neutrophils are regulated by apoptotic mechanisms to prevent 

prolonged inflammation.  A study by Walmsely et al showed that HIF-1α increases the 

expression of NF-kB in human and mouse neutrophils, which inhibits apoptosis and prolongs 

neutrophil survival under hypoxic conditions (Walmsley et al., 2005).  Most of the studies 

investigating the effect of hypoxia on neutrophils used murine inflammation models and 

there is little data on the human immune TME.  Furthermore, the studies have frequently 

used a marker that targets both macrophages and neutrophils (LysM).  Further studies with 

a neutrophil-specific marker (MRP-8 or Ly-6G) are needed to elucidate the relationship 
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between hypoxia and neutrophils, as well studies in human MIBC (Riera-Domingo et al., 

2020).   

It has been shown that TAMs are found in the highest densities in hypoxic or necrotic 

regions of a tumour where they have an altered M2, pro-tumour phenotype (Murdoch et 

al., 2004).  Numerous studies of various cancers, including bladder, found a strong positive 

correlation between the expression of HIF-2α and presence of TAMs (Talks et al., 2000).  

Doedens et al investigated the role of HIF expression in macrophages using a murine breast 

cancer model and demonstrated that deletion of HIF-1α in macrophages inhibited tumour 

growth and progression.  They showed that in hypoxia macrophages inhibit CD8+ T cell 

proliferation and response to stimulation due to HIF-1α dependent induction of arginase 1, 

a hallmark of M2-like macrophages (Doedens et al., 2010).  Hypoxia is likely to have a similar 

effect in bladder cancer where HIF-1α expression correlates positively correlates with 

increased macrophage infiltration, angiogenesis and a worse prognosis (Chai et al., 2008).  

HIF-1α in macrophages has been found in numerous studies to increase angiogenesis by 

both direct and indirect upregulation of VEGF (Riera-Domingo et al., 2020).  Taken together, 

there is increasing evidence that hypoxia potentiates the suppressive effects of myeloid 

immune cells by both HIF-dependent and independent mechanisms.  There is little evidence 

elucidating the relationship between hypoxia and DCs, MDSCs and neutrophils in bladder 

cancer specifically.   

1.4.2 Hypoxia and its effects on tumour infiltrating lymphocytes 

A study performed by Doedens et al used mouse models with VHL deficient T cells to 

investigate hypoxia and HIF-dependent changes in CD8+ T cells.  Using this model they 

showed that hypoxia, in a HIF-dependent manner, upregulated the expression of effector 

and co-activation molecules such as granzyme-B and 4-1BB, GITR and OX40, respectively, as 

well as inhibitory molecules such as LAG-3 and CTLA-4.   They also showed an increased 

abundance of IFNγ mRNA, amongst other soluble factors, at early time points, but their 

expression was not sustained indicating a role of paracrine signalling to other immune cells.  

Overall, they found that HIF signalling limits terminal differentiation of CD8+ T cells and 

enhances their effector functions under hypoxia, despite the increased expression of 

checkpoint molecules (Doedens et al., 2013).  The notion that hypoxia enhances CD8+ T cell 

effector functions is further supported by a study investigating HIF expression in CD8+ T 
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cells.  It was shown showed HIF-1α, but not HIF-2α, was essential in maintaining effector 

functions and states of CD8+ T cells by the expression of the same effector and co-activation 

molecules found in the Doedens et al study (granzymbe B, GITR, OX40) as well as checkpoint 

molecules (LAG-3, PD-1 and TIM-3).  It was shown that CD8+ T cell tumour infiltration and 

killing was reduced as a result of HIF-1α loss (Palazon et al., 2017).  As HIF activity in myeloid 

cells was shown to suppress T cell responses (Doedens et al., 2010), this highlights the 

importance of considering immune infiltrates altogether to fully elucidate the effects of 

hypoxia in the immune TME due to homeostatic cross-talk that occurs between the immune 

cells present.   

The work described above shows that hypoxia can have a positive impact to promote 

CD8+ effector T cells.  However, hypoxia can also negatively regulate CD8+ T cells by HIF-

independent mechanisms such as via adenosine accumulation.  Hypoxia increases 

extracellular ATP release resulting in the accumulation of extracellular adenosine (Bowser et 

al., 2017).  A study by Sun et al showed hypoxia induced apoptosis in human T cells, which 

was mediated by the binding of adenosine to its receptors and downstream signalling of the 

adenosine receptor signalling pathway.  This pathway was also shown to significantly inhibit 

the expression of CCR7 under hypoxic conditions, which is a chemokine essential for T cell 

migration, differentiation and anti-apoptotic signalling (Sun et al., 2009).  Previous studies 

also support this adenosine-mediated, hypoxia-associated role of CD8+ T cell inhibition 

using a tumour murine model as well as in the context of myocardial infarction (Yang et al., 

2005; Ohta et al., 2006).  Adenosine binding to the A2AR receptor on NK cells has been 

shown to negatively regulate their maturation and functional cytotoxic abilities against 

tumour cells (Raskovalova et al., 2005; Young et al., 2018).  

Hypoxia associated adenosine accumulation also affects other immune cell populations 

such as DCs.  Extracellular adenosine was shown to bind to the adenosine receptor and 

increase expression of co-stimulatory molecules CD80/86, MHC I and HLA-DR cell surface 

molecules in both immature and mature DCs thereby increasing their antigen presenting 

ability.  However, in this study the overall result of adenosine increase was to inhibit CD4+ T 

cells from differentiating to Th1 helper cells, resulting in the shifting of the balance between 

Th1 and Th2 subpopulations towards the more suppressive Th2 phenotype (Panther et al., 

2003).   
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Another HIF-independent mechanism that can alter immune cell phenotypes as a result 

of hypoxia is the hypoxia transcription factor Nanog.  A murine melanoma model was used 

to investigate the role of Nanog in immune suppression.  The study confirmed that Nanog 

was selectively induced in hypoxic tumour areas and its inhibition reduced Treg and 

macrophage levels, which led to a subsequent increase in tumour infiltrating CD8+ T cells.  It 

was shown that Nanog increased expression of TGF-β by its direct binding to the TGF-Β1 

gene under hypoxic conditions (Hasmim et al., 2013).  TGF-β was shown to induce naïve 

CD4+ T cells to differentiate into Tregs by the HIF-driven expression of Foxp3 in 

inflammatory bowel disease (Clambey et al., 2012).  There are other studies elucidating the 

relationship between hypoxia and CD4+ cells, but many have been performed in the context 

of inflammatory hypoxia and not the nuanced context of an hypoxic TME.  Overall, the 

studies indicate an hypoxia-mediated increase in suppressive Th2 and Treg cells, and 

inhibition of Th1 cells, although further studies are needed for clarification, especially in the 

context of bladder cancer (Riera-Domingo et al., 2020).   

1.4.3 Hypoxia and its effects on other aspects of the immune TME 

Some studies have demonstrated the upregulation of PD-L1 in response to HIF-1α.  A study 

by Barsoum et al demonstrated that HIF-1α binds to the HRE on the PD-L1 promoter region 

in the DU145 prostate cancer cell line and that the hypoxia-induced upregulation of PD-L1 

was dependent on HIF-1α expression.  They used a murine model to show that hypoxia 

caused resistance of cytotoxic T cell-mediated tumour lysis via a mechanism that is 

dependent on the HIF-1α induction of PD-L1 (Barsoum et al., 2014).  Another study 

investigating the hypoxia-related expression of PD-L1 in a panel of murine and human 

cancer cell lines showed that melanoma cell lines had increased PD-L1 expression under 

hypoxic conditions.  Further to this, HIF-1α was shown to upregulate PD-L1 expression in 

MDSCs, DCs, and macrophages.  In MDSCs, HIF-1α was shown to bind to the HRE on the PD-

L1 promoter region and subsequent blocking of the PD-L1 under hypoxic conditions 

increased MDSC-mediated T cell activation and decreased the release of the 

immunosuppressive cytokine IL-10 (Noman et al., 2014).  

Hypoxia has been shown to downregulate MHC I on the surface of tumour cells, thus 

providing a mechanism of immune escape by evading detection as discussed in Section 

1.2.1.1.  A study using prostate cancer cell lines demonstrated that hypoxia exposure causes 
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tumour cell shedding of MHC I via impaired nitric oxide signalling (Siemens et al., 2008).  

Another study demonstrated that hypoxia-associated downregulation of MHC I was HIF-

dependent using various renal cell carcinoma cell lines (mouse and human) and in vivo 

tumour studies.  It was shown that hypoxia, via HIF, decreased antigen presenting proteins 

such as TAP 1/2 and LMP7.  Hyperoxia (60% O2) reversed this effect as MHC I, TAP 1/2 and 

LMP7 protein and RNA expression levels were all increased in hyperoxia compared to 

hypoxia (Sethumadhavan et al., 2017).  This reversal of hypoxia-mediated immune evasion 

mechanisms highlights the importance of overcoming hypoxia to improve immune-

mediated tumour killing with implications for immune-based therapies.  An HIF-

independent mechanism of hypoxia-mediated tumour cell MHC I shedding was 

demonstrated in a subsequent study by Murthy et al.  They used murine melanoma and 

colon tumour cell lines and showed that tumour cells downregulated MHC I in hypoxia due 

to decreased IFNγ signalling, which also decreased chemokines CXCL9 and CXCL10 essential 

for immune cell infiltration.  They found that this mechanism was independent of HIF and 

that in vitro CD8+ T cells had reduced ability to proliferate and generate IFNγ in hypoxia 

(Murthy et al., 2019).  There are no studies investigating the effects of hypoxia on PD-L1 or 

MHC expression in bladder cancer. 

1.4.4 How hypoxia treatments affect the immune TME 

Studies have investigated how increasing tumour oxygenation affects the immune TME.  In 

mouse melanoma models, Hatfield et al showed breathing hyperbaric oxygen (60% O2) 

decreased tumoural levels of both hypoxia and extracellular adenosine.  They showed that 

respiratory hyperoxia increased the expression of MHC I on tumour cells, tumour killing by 

cytotoxic T cells and overall survival (Hatfield et al., 2014).  The mechanisms of this effect 

was further elucidated by the same group in a study using hyperbaric oxygen breathing on 

mouse melanoma and lung tumour models.  They demonstrated that respiratory hyperoxia 

resulted in tumour regression and increased survival in both tumour models.  Tumour 

regression was shown to result from anti-tumour killing effects of NK and T cells, which 

were shown to avoid hypoxic areas of the tumour and increase tumour infiltration after 

treatment.  They demonstrated a resultant decrease in TGF-β and increase in pro-

inflammatory cytokines after respiratory hyperoxia.  It was further shown that hyperoxia 

weakened the immunosuppressive effects of Tregs by decreasing the amount of tumoural 
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Tregs; reducing their levels of Foxp3 expression; decreasing their expression of enzymes 

that generate adenosine (CD39/CD73); and reducing their expression of CTLA-4 (Hatfield et 

al., 2015).  These results suggest that concurrent hypoxia-modifying treatments would 

improve response to immunotherapies such as ICIs.   

This hypothesis is supported by work showing that in murine prostate tumours the 

hypoxia activated pro-drug TH-302 reduced/eliminated hypoxia, led to an influx of T cells 

and resulted in >80% cures when combined with ICIs (CTLA-4 and PD-1 combination).  The 

study demonstrated that the combination treatment increased CD8+ T cell proliferation, 

cytotoxic potential (shown by granzyme B release), activation (shown by CD44 expression), 

and effector cytokine production (shown by IFNγ and TNF-α).  Combination treatment also 

reduced the density of MDSCs and their capacity to inhibit CD8+ T cells (Jayaprakash et al., 

2018).   

That reversing hypoxia could improve responses to ICIs is also supported by a study using 

a combination of hyperbaric oxygen and an anti-PD-1 ICI in breast, pancreas and liver 

tumour mouse models, as well as patient derived hepatocellular carcinoma cells.  It was 

shown that combining hyperbaric oxygen with an ICI promoted delivery of the ICI and T cell 

infiltration into the tumour and elicited robust anti-tumour CD8+ T cell response that 

inhibited tumour relapse (X. Liu et al., 2021).   

Further support comes from work developing a novel approach to increase oxygen 

delivery to tumours using oxygen-generating cryogels.  The approach was shown to 

successfully deliver oxygen, which inhibited expression of genes regulated by HIF and 

reduced adenosine accumulation in vitro and in vivo melanoma models.  These oxygen 

cryogels were shown to enhance the secretion of cytotoxic proteins in T cells and restore 

their tumour killing ability (Colombani et al., 2021).  Further studies are needed into the 

effects of hypoxia reversal on the immune TME in human tumours, and there is no current 

research in the context of bladder cancer.   

1.4.5 Hypoxia and its effects on the whole immune TME 

Whilst hypoxia, via HIF-dependent and -independent mechanisms, has differential effects on 

individual immune cells, the overall effect on the immune TME is due to how the immune 

cells interact with each other.  As discussed above, the activation of CD8+ T cells by HIF-

dependent mechanisms is contrasted with hypoxia-associated mechanisms of CD8+ T cell 
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inhibition.  These mechanisms of CD8+ T cell inhibition include the hypoxia-associated 

adenosine-mediated inhibition of CD8+ T cells; the hypoxia-mediated PD-L1 expression that 

reduces CD8+ T cell tumour killing by inducing an exhausted phenotype; and hypoxia-

mediated myeloid cell inhibition of CD8+ T cell tumour migration, activation and tumour 

killing.  Therefore, it is useful to look at associations between hypoxia and the inflammatory 

state of the whole TME.  One approach is to use transcriptional information as it can 

potentially provide better information to reflect the complex interactions between the two 

aspects than protein level information as discussed in Section 1.2.5. 

A study by Chen et al used ten different cancer types from TCGA (bladder, breast, colon, 

brain, liver, lung, pancreas, rectal, stomach, and thyroid) to investigate the associations 

between HIF1A gene expression and tumour immunity, microenvironment and clinical 

outcomes.  Firstly, they found a positive correlation between HIF1A gene expression and 

anti-tumour immune signatures in multiple cancer types (between 8-10, bladder included) 

such as CD8+ T cells, B cells, NK cells, M1 macrophages and IFN response as well as immune 

suppressive signatures such as PD-L1, Tregs, M2 macrophages, TGF-ß, T cell exhaustion and 

MDSCs.  They next looked at correlations between HIF1A gene expression and the ratio of 

CD8A to PD-L1 and found a significant negative correlation in eight individual cancer types 

(bladder included) as well as in the pooled pan-cancer expression data.  Although HIF 

associates with increased inflammation overall, the low CD8A:PD-L1 ratio indicates that it 

associates more strongly with suppressive (PD-L1) than anti (CD8+ T cells) tumour immunity.  

As high levels of inflammation and checkpoint molecules indicate benefit from ICIs (see 

Section 1.2.4 and 1.2.5), they investigated HIF1A RNA expression in an ICI treated renal cell 

carcinoma cohort and found that tumours with high HIF1A expression had better response 

than those with low HIF1A expression (Chen et al., 2020).  Although renal cell carcinomas 

are associated with VHL mutations that drive high HIF levels a clear benefit was seen for 

higher HIF-1a expression compared to low (Gao et al., 2017).  The original study also 

showed that deficiency in the gene PBRM1 associated with clinical benefit of ICI and those 

tumours had high transcriptional JAK/STAT, hypoxia and immune signalling (Miao et al., 

2018).  Chen et al showed that all ten cancer types, and the pan-cancer dataset, had a 

significant positive correlation with ESTIMATE stromal scores and vice versa for ESTIMATE 

tumour purity.  Surprisingly, they did not report on associations with ESTIMATE immune 
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scores.  In five of the cancer types, including bladder, there was an enrichment of TGF-β 

signalling in the high versus low HIF1A expression group (Chen et al., 2020).   

The results presented by Chen et al provide further support for the notion that HIF 

enables tumour progression and metastasis and is an adverse prognostic factor in many 

cancers.  Tumours with a stem cell-like phenotype have been previously associated with 

progression, metastasis, immunosuppression and treatment resistance (Miranda et al., 

2019).  Chen et al demonstrated that a signature representing tumour stemness positively 

correlated with HIF1A expression in eight of the cancer types, including bladder cancer.  

Signatures reflecting EMT also positively correlated with HIF1A expression in nine cancer 

types (bladder included), as well as the pan-cancer dataset.  Survival analyses showed higher 

HIF1A expression conferred a worse prognosis as seen in the pan-cancer dataset for overall 

survival (n=3038), progression-free survival (n = 2963) and disease specific survival (3041; 

log-rank test p<0.001 for all, no CIs provided) (Chen et al., 2020).  This study provides useful 

insights into the relationship between HIF expression and the immune TME contexture, 

although it is limited by its use of transcriptomics alone.  Further studies elucidating the 

findings of this study at protein level in human cancers are needed.   

1.4.5.1 Immune-related hypoxia gene signatures 

As discussed in Sections 1.2.5 and 1.3.4.1, gene signatures are useful tools for patient 

stratification and can provide further elucidation between hypoxia and the immune TME.  

Recent studies have used gene signatures to combine information on hypoxia and the 

immune TME.  Brooks et al developed a combined hypoxia and immune classifier for head 

and neck cancer that was shown to be prognostic.  They combined a 26-gene hypoxia 

signature (Eustace, Mani, et al., 2013) and a 28-gene immune response gene signature (Lal 

et al., 2015) to make a 54-gene combined classifier that clustered TCGA head and neck 

cohort into three distinct groups: hypoxiahigh/immunelow, hypoxialow/immunehigh, and mixed.  

They showed that of the groups the hypoxialow/immunehigh subgroup had the best prognosis 

and this was validated on two external head and neck cancer datasets.  Using both gene 

expression analysis and protein staining by IHC they demonstrated that their classifier 

accurately stratified tumours reflective of their names, that is hypoxialow/immunehigh 

tumours had high expression of immune molecules, low expression of hypoxia-associated 

molecules, and were represented by the classical inflamed immunphenotyping as shown by 
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CD3 IHC staining.  The opposite was true of hypoxialow/immunehigh tumours, and mixed 

tumours had a mixture of hypoxia and immune signalling.  Although this classifier has 

implications for benefit of treatment, the study did not extend to investigating this.   

Chang et al also developed a gene signature from a mixture of hypoxia and immune-

associated genes.  They first identified a 45-gene signature in liver cancer that was 

prognostic in three liver cohorts, but then refined this to an 8-gene signature that was also 

prognostic in head and neck, kidney, lung, pancreas and endometrial cancer.  The hypoxia 

genes were identified by using the common hypoxia gene signature from Buffa et al and a 

ChIPseq dataset generated from human liver cancer cell lines to identify genes bound by 

HIF.  They then determined those common hypoxia genes that were significant across 25 

TCGA cancer types (n=29) and which of these genes overlapped with identified HIF targets 

from their ChIPseq dataset (n=23).  For the immune-related genes they identified hypoxia-

driven immune suppressive genes by using literature to determine genes associated with 

Tregs and exhausted CD8+ T cells and which of those genes overlapped with identified HIF 

targets (n=79).  To derive the initial 45-gene signature they used a liver cancer training 

dataset to find which of those immune-related genes were upregulated >1.5 fold (n=26) and 

combined them with the hypoxia genes to derive a signature for testing (n=45; 4 gene 

overlap between two sets).  A final 8-gene signature was derived following Cox regression to 

analyse the prognostic significance in three liver cohorts and found an overlap of eight 

genes.  The study found their 8-gene signature was highly prognostic in multiple cancers, 

including in multivariable analyses, and that it outperformed current TNM staging in three 

of them.  Whilst they show a significant positive correlation between their 8-gene signature 

and hypoxia scores in all of the examined cancer types they did not correlate their signature 

with the immune contexture of the tumours (Chang, Forde and Lai, 2019).  Although the 

signature is derived from immune genes associated with Tregs and exhausted CD8 T cells, 

no analyses were performed to examine the differences in immune landscapes between 

patients stratified into high and low gene signature scores.  The lack of any subsequent 

reflection of their score and the immune TME is a limitation of their study.   

In 2021 three studies were published for de novo hypoxia signatures in bladder cancer 

that were prognostic and reflected differences in the immune TME contexture.  Jiang et al 

identified a four gene hypoxia signature using the 200 hypoxia-related genes from GSEA.  

The signature was prognostic in three external bladder cancer cohorts (aside from the 
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training dataset) for disease-specific survival and overall survival, although no confidence 

intervals were stated.  It was found to be prognostic in multivariable analyses for two of the 

cohorts.  They compared their gene signature with the immune TME using previously 

established signatures for 28 immune cell infiltrates and ESTIMATE scores and found that 

high versus low score correlated with increased abundance of immune cells and ESTIMATE 

immune and stromal scores.  The authors investigated the differences in checkpoint 

molecule expression between high and low score tumours and found that high score 

tumours had increased expression of CTLA-4, LAG-3, PD-L1 and PD-1.  They further analysed 

14 bladder cancer samples using IHC and showed that CTLA-4 and LAG3 protein expression 

(assessed by positive frequencies of German immunoreactive scores) was higher in the high 

versus low signature score tumours (M. Jiang et al., 2021).  Whilst this study highlights the 

prognostic potential of their derived four-gene hypoxia signature in bladder cancer and 

indicates that there are potentially important differences in the immune infiltrates between 

high and low score tumours, more robust elucidation is needed to confirm the results.  An 

established method of deconvoluting the tumour immune cell populations such as ImSig, 

TIMER or Cibersort would improve the study alongside analysis of IHC staining on an 

increased sample number and associations with molecular subtypes.  The signature was 

derived from the 200 genes in the Hallmark hypoxia gene list, but no subsequent 

correlations between their derived signature and Hallmark hypoxia scores, or other 

measures of hypoxia, were shown (M. Jiang et al., 2021).  

Published in the same month as Jiang et al., another group developed a prognostic 

hypoxia-related gene signature in bladder cancer using the GSEA hypoxia-associated genes 

and TCGA-BLCA dataset (F. Zhang et al., 2021).  The validation datasets from GEO were the 

same and both signatures were trained on prognosis with slight differences in subsequent 

signature generation.  Zhang et al had eight genes in their final signature, of which one 

overlapped with Jiang et al (HS3ST1).  Their signature was prognostic in all three cohorts, 

although no hazard ratios or confidence intervals were shown.  The group investigated the 

relationship between the signature and clinical parameters in all three cohorts and found 

that the signature was prognostic regardless of age, stage, gender and grade subgroups.  In 

multivariable analyses the signature maintained independent prognostic significance, 

although this was only stated for the TCGA cohort.  Using Cibersort they showed that high 

score tumours had higher infiltration of M0 and M1 macrophages, and activated memory 
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CD4+ T cells in all of the cohorts.  GSEA was used to identify an enrichment of immune-

related pathways as seen by KEGG pathway analysis, such as cytokine and complement 

signalling pathways.  None of the top pathways enriched in the high score tumours related 

to hypoxia signalling and no correlation was made between the derived signature and 

hypoxia measurements.  The authors used the Genomics of Drug Sensitivity in Cancer 

database to associate their gene signature scores with prediction of response to 

chemotherapies.  They found that certain drugs used in bladder cancer treatments 

(methotrexate, vinblastine, doxorubicin, gemcitabine and cisplatin) had higher IC50s when 

the score was high, in specific cohorts, indicating a potential for those tumours to develop 

chemoresistance (F. Zhang et al., 2021).   

Liu et al also derived a prognostic hypoxia immune signature using the GSEA 200 hypoxia-

associated genes in bladder cancer.  They demonstrated that the signature was prognostic 

in two external bladder cancer cohorts.  They used literature and knowledge-based 

signatures corresponding to the cancer immunity cycle and demonstrated a positive 

correlation between their score and anti-cancer immune responses such as T cell and NK cell 

recruitment.  The methodology behind this is not very clearly explained in their publication.  

They then used Cibersort and TIMER, alongside four other algorithms, to compare 

correlations between immune infiltrates and their gene signature.  Upon analysing both the 

training cohort and a validation cohort they found positive correlations between the gene 

signature score and levels of immune infiltrates such as CD8+ T cells, NK cells and DCs, 

although the data shown suggests little concordance between the algorithms, making it 

difficult to draw conclusions (Table 1.7).   
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Table 1.7. Correlations between gene signature score and immune infiltrates from different algorithms 

Algorithm Cohort CD8 T cells NK cells Dendritic cells 

TIMER Training 0.42 Null Myeloid: 0.57 

Validation 0.53 Null Myeloid: 0.49 
TIP Training Null 0.10 0.25 

Validation 0.31 Ns Ns 

Cibersort Training 0.20 Null Activated: -0.23 
Resting: 0.10 

Validation Ns Ns Activated: Ns 
Resting: Ns 

QuanTIseq Training 0.25 -0.11 -0.20 
Validation Ns Ns -0.26 

X-cell Training -0.15 Ns Activated: 0.55 
Myeloid: 0.32 

Validation -0.32 Ns Activated: 0.55 
Myeloid: 0.36 

MCP-counter Training 0.25 0.25 Myeloid: 0.31 

Validation Ns 0.49 Myeloid: 0.53 
Modified from Liu et al., 2021. Ns = not significant. Stated to be either Pearson’s or Spearman’s correlations.  

Lui et al also correlated scores for their gene signature with those for other signatures 

from literature that predict ICI efficacy and with checkpoint molecule gene expression.  They 

found a positive correlations, although the figure presented is difficult to decipher.  They 

used seven different methods of molecular stratification, including the consensus method, 

and saw that high risk score for their signature associated with basal subtypes and low 

scores with luminal subtypes (Z. Liu et al., 2021).  Similarly to Jiang’s gene signature, whilst 

the results of this study indicate the potential for their gene signature to reflect different 

immune TME contexts, further validation and more robust analyses are needed to clarify 

this.  There are currently no prognostic gene signatures in bladder cancer combining hypoxia 

and immune genes that clearly define tumours with distinct hypoxia status and immune 

landscapes and predict response to treatments. 
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1.5 Summary, aim and objectives 

1.5.1 Rationale  

Bladder cancer is a highly prevalent disease with poor survival rates (Sung et al., 2021).  

Radiotherapy with radiosensitisers is given as a bladder-preserving alternative to surgery, 

but there are high rates of relapse after treatment (Vashistha et al., 2017).  There is a 

current need to develop biomarkers to identify patients likely to relapse after standard-of-

care treatment and those who will benefit from additional therapeutic agents to improve 

radiotherapy responses and overall survival (Flaig, 2019). 

Hypoxia is a common feature of many solid tumours and is also an adverse prognostic 

factor in bladder cancer (Theodoropoulos et al., 2004; Chai et al., 2008; Hunter et al., 2014; 

Yang, Taylor, et al., 2017).  An immunosuppressive tumour microenvironment is known to 

be a negative prognostic factor contributing to recurrence of disease and tumour 

progression (Hanahan and Weinberg, 2011).  In MIBC both hypoxia and an 

immunosuppressive TME contribute to the failure of radiotherapy and are targetable by 

hypoxia-modifying treatments and immune checkpoint inhibitors, respectively.  (Höckel et 

al., 1996; Barker et al., 2015).  Both are therefore of interest as potential biomarkers.  There 

is growing evidence that hypoxia drives a suppressive immune tumour microenvironment, 

but this is yet to be fully elucidated in bladder cancer.  Therefore, the relationship between 

immunosuppression and hypoxia is of interest when developing biomarkers to guide the 

management of MIBC 

Gene signatures can be used as biomarkers to stratify patients into groups that are likely 

to fail radiotherapy and would therefore benefit from other therapeutic approaches in 

combination.  Independently, existing hypoxia and immune gene signatures have shown 

both prognostic and predictive value.  As both of these factors are targetable in MIBC, a 

prognostic gene signature that also provides predictive information regarding treatment 

strategy would be clinically useful to stratify patients into different groups for combination 

therapeutic approaches to improve treatment outcomes and overall survival.  Currently 

there are no gene signatures that evaluate the hypoxia status of the tumour alongside the 

immune TME contexture for MIBC that predicts benefit of treatment.  
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1.5.2 Hypothesis 

As hypoxia drives an inflammatory TME in MIBC, which contributes towards an 

immunosuppressive TME leading to failure of radiotherapy, a prognostic and predictive 

gene signature can be developed as a biomarker that identifies poor prognosis patients 

likely to benefit from hypoxia-modifying treatments and/or ICIs. 

1.5.3 Aim and objectives 

The overall aim of the project is to investigate the effects of hypoxia on the immune tumour 

microenvironment in muscle-invasive bladder cancer and develop biomarkers that could be 

used to individualise the use of concurrent treatments with radiotherapy.  The specific 

objectives of this thesis were the following: 

1. Investigate the effects of hypoxia on PD-L1 expression in MIBC using in vitro and 

in silico approaches. 

2. Investigate the association between hypoxia and CD8+ T cells (amongst other 

immune markers) at the protein level using tissue available from the BCON study. 

3. Investigate the relationship between HIF-binding, hypoxic conditions, and 

immune-related signalling in MIBC using in vitro studies and at the gene 

expression level using in silico approaches.  

4. Develop an hypoxia-driven immune gene signature that can identify poor 

prognosis MIBC patients and predict benefit of treatment. 
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2 Materials and Methods 

2.1 Cell culture 

2.1.1 Cell lines and reagents 

Three human muscle-invasive bladder cancer cell lines were used for in vitro experiments: 

T24, J82 and UMUC3.  They are all adherent transitional cell carcinoma cell lines and were 

cultured in Eagle’s Minimum Essential Media (Gibco; ThermoFisher Scientific, 

Loughborough, UK) supplemented with 10% filtered foetal bovine serum (Gibco) and 2 mM 

L-glutamine (Gibco).  The cell lines were authenticated by the Cancer Research UK 

Manchester Institute core facilities every six months and tested for mycoplasma monthly.  

Cells were kept in an humidified incubator (37°C, air plus 5% CO2).  To prevent exhaustion of 

nutrients the cell media were replaced every two or three days after removing the previous 

media and washing the cells with phosphate buffered saline (PBS; made by in-house 

services) to remove dead cells and debris before replacing with fresh warmed culture 

media.  Cells were grown to sub-confluence and passaged either to keep cells growing for 

future use or for seeding an experiment.  Cells were passaged by removing media and 

washing the cells with PBS before using 0.25% Trypsin-EDTA (Gibco) to dissociate the cells 

from the culture flask in the incubator for no longer than five min.  Media with 10% FBS was 

used to neutralise the trypsin and the cells were collected into a Universal centrifuge tube 

and centrifuged at 400 g for five min at room temperature to obtain a cell pellet.  The 

supernatant was discarded and the pellet resuspended in fresh culture media.  To maintain 

the cell line for future use the cell solution was reseeded at a desired concentration (usually 

around 1:10) in a new labelled T-75 flask (Corning, New York, USA) containing warmed 

culture media and kept in the incubator.  For use in experiments the cell solution was 

counted using a haemocytometer and trypan blue (Sigma-Aldrich, Missouri, USA) to detect 

and discount dead cells and the desired amount seeded for the experiment in relevant 

culture plates or dishes. 

2.1.2 Treating cells with pharmacological agents 

Human recombinant interferon gamma (IFNγ; Peprotech, London, UK) was reconstituted in 

dimethyl sulphoxide (DMSO) to make a working stock solution of 20 μg/ml.  It was diluted in 

medium to a working concentration of 10 ng/ml.  
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2.1.3 Exposure to hypoxia 

Cells were counted and plated appropriately, usually at a density of 1x105 per well in 6-well 

cell culture plates (Corning) unless otherwise stated, and left to adhere for 24 h in an 

incubator (37°C, air plus 5% CO2).  Plates were then transferred to a hypoxia cabinet (Baker-

Russkin®, Bridgend, Wales), washed with PBS and fresh media added as appropriate. Both 

the PBS and fresh media were pre-equilibrated to the required oxygen concentration in the 

appropriate hypoxia cabinet for 24 h.  

2.2  Western blotting 

Western blotting was performed to visualise the amount of a protein expressed by cells 

subjected to different conditions. 

2.2.1 Protein extraction 

The cells were lysed in situ.  Lysis buffer solution was made by using a 1:10 dilution of lysis 

buffer (Cell Signalling Technology, Massachusetts, USA) in ddH2O and 1:100 protease 

inhibitor cocktail (Cell Signalling Technology) and an appropriate amount added to the 

culture dish after aspiration of media and two PBS washes.  The dishes were left at 4°C, or 

on ice in the hypoxic workstation, for 10 min and then scraped into labelled 1.5 ml 

Eppendorf® tubes (Sigma-Aldrich).  From this stage onwards all samples were kept on ice to 

minimise protein degradation.  Samples were sonicated at 10 amplitude microns for 10 s 

using a Soniprep 150 (MSE, UK).  They were then centrifuged at 14,000 g for 15 min at 4°C 

and the lysate transferred into a new labelled Eppendorf tube.  Quantification was carried 

out using BCA protein assay kit (ThermoFisher Scientific, Massachusetts, USA) according to 

the protocol.  Lysates were diluted with ddH2O to 30 µg/ml of protein and Laemmli SDS 

sample buffer (Alfa Aesar, Massachusetts, USA) was added to make 24 µl volume in a new 

labelled Eppendorf tube.  The lysates were boiled for 5 min on a hot block at 95°C and 

briefly centrifuged for ~3 s using a MiniSpin (Merck, Darmstadt, Germany) to collect the 

entire sample. 

2.2.2 Electrophoresis and transfer 

XCell SureLock™ Mini-Cell Electrophoresis System (ThermoFisher Scientific) was used with 

Novex™ WedgeWell™ 4-20% Tris-Glycine Protein Gels (ThermoFisher Scientific).  Running 

buffer (Alfa Aesar) was added down the middle with a 2 cm overflow. Lysate samples were 

added to the relevant wells, a protein ladder (ProSieve® Color Protein Markers; Lonza, Basel, 
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Switzerland) in the first well and water in empty wells to prevent “smiling”.  The gel was run 

for 1.5 h at 125V using a power pack (Bio-Rad, California, USA).  The gels were removed 

from the cassettes and transferred to a membrane using XCell II™ Blot Module 

(ThermoFisher Scientific) transfer system with.  Sponges, filter paper (Bio-Rad), 

nitrocellulose membrane (Immun-blot PVDF membrane, Bio-Rad) and the gels were layered 

together in a transfer cassette.  The transfer cassettes were placed in the tank with transfer 

buffer (Alfa Aesar) down the middle and overflowing to 2 cm at the bottom and run at 25V 

for 2 h using the same power pack.  The box was surrounded by ice to keep the transfer cool 

and minimise blurring.  

2.2.3 Antibody staining and membrane visualisation 

5% milk (Marvel) in 0.1% Tween 20 (Sigma-Aldrich) PBS (0.1% PBS-T) was used to block the 

membranes for 1 h on a rocker.  All antibodies were diluted using 5% milk in 0.1% PBS-T.  

Table 2.1 lists the antibodies and dilutions used.  The membranes were cut using either the 

visible ladder as a guide or by staining with Ponceau S (Sigma-Aldrich) for 5 min and then 

washed after cutting by three 5 min washes in 0.1% PBS-T on a rocker.  The sections of 

membranes were incubated with diluted antibody and left overnight at 4°C.  The following 

morning the membranes were washed twice for 10 min in 0.1% PBS-T on a rocker and 

incubated in secondary antibody for 1 h on a rocker at room temperature.  The membranes 

were then washed four times for 5 min in 0.1% PBS-T on a rocker. 

Table 2.1 List of antibody dilutions used for western blotting 

 

 

 

 

 

 

 

 

 

 

Target Raised in Dilution Supplier Code 

PD-L1 Rabbit 1:2000 Cell Signalling Technology 13684 

HIF1a Mouse 1:500 BD 610959 

CA9 Rabbit 1:500 Abcam 184006 

GAPDH Rabbit 1:2500 Cell Signalling Technology 2118 

Mouse-HRP Goat 1:7500 Invitrogen 62-6520 

Rabbit-HRP Goat 1:5000 Invitrogen 65-6120 
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Membranes were viewed using a ChemiDoc™ XRS+ imager (Bio-Rad) and Pierce™ 

enhanced chemiluminescent kit (ThermoFisher Scientific). Membrane images were acquired 

using optimised settings for each target of interest to obtain a clear image without 

overexposure.  

2.2.4 Quantification by densitometry 

Densitometry analysis was performed using ImageJ software in order to quantify the 

relative expression of proteins.  Protein densities were calculated relative to the control 

untreated samples, for both proteins of interest and loading control proteins.  Protein 

densities were then calculated relative to the loading control samples.  Relative protein 

densities were plotted using GraphPad Prism software.  

2.3  Flow cytometry 

Changes in the surface expression of proteins were measured at the single cell level using 

flow cytometry.  

2.3.1 Sample acquisition and staining 

Cells were plated in triplicate in 12-well plates (Corning) and placed in a hypoxia cabinet for 

24 h (see Section 2.1).  The cells were then trypsinised and collected into labelled FACS 

tubes (Corning).  All proceeding steps were performed with refrigerated reagents and the 

centrifugation step throughout the protocol was 400 g for 3 min at 4°C.  The cells were 

centrifuged, washed in FACS buffer (1% FBS in PBS) and resuspended in 100 µl per sample of 

live/dead fixable cell stain (Invitrogen, Massachusetts, USA) diluted at a 1:1000 dilution in 

PBS.  The cells were left in the dark at room temperature for 30 min before being 

centrifuged.  The supernatant was discarded and the cell pellets were washed twice in FACs 

buffer.  The cells were then resuspended in 100 µl per sample of human FcR (Miltenyi 

Biotec, Bergisch Gladbach, Germany) diluted at a 1:100 dilution in FACs buffer to block non-

specific binding and left at 4°C for 15 min.  The samples were centrifuged, supernatant 

discarded, and resuspended in 100 µl per sample of phycoerythrin (PE) conjugated PD-L1 

antibody (Invitrogen) diluted at a 1:100 dilution in FACs buffer.  To check the specificity of 

the binding a control of PE mouse IgG1 k isotype antibody (BD Biosciences, New Jersey, 

USA) was added to each repeat of each sample using the same dilution.  Samples were then 

left for 30 min at 4°C, centrifuged, washed twice in FACs buffer, resuspended in 100 µl of 1% 
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paraformaldehyde (PFA) (Biolegend, California, USA) to fix the cells.  Samples were left at 

4°C for a maximum of 3 days before being analysed. 

2.3.2 Analysing samples 

Data were acquired using an LSRII flow cytometer (BD Biosciences).  Compensation controls 

were used to minimise spectral overlap of the channels: unstained cells, cells stained only 

with the PD-L1 PE antibody and cells stained only with the live/dead fixable dye.  

Compensation samples were analysed first and the resulting compensation applied to all 

samples.  At least 10,000 cells were acquired per sample.  The data were analysed using 

FlowJo software (version 10.6.1).  Statistical analysis was performed using GraphPad Prism 8 

software.  Mean values were compared using 2-way ANOVA with Tukey’s multiple 

comparison test.   

2.4  Quantitative Polymerase Chain Reaction (qPCR) 

The mRNA expression of target genes was measured using qPCR.  RNAse free water and 

filter tips were used throughout to prevent RNA degradation.  

2.4.1 RNA extraction and quantification 

Cells were seeded onto 6 cm cell culture dishes (Corning) and treated as previously 

described.  RNA was extracted from the samples using the RNeasy mini kit (Qiagen, Hilden, 

Germany) as follows.  The cells were lysed in-situ with 350 µl Buffer RLT after removal of 

media and a wash with PBS.  The cells were scraped using a cell scraper and collected into 

1.5ml Eppendorf tube and mixed thoroughly by pipetting.  The samples were homogenised 

using a 19-guage needle and syringe and passing the lysate through at least five times.  350 

µl of 70% ethanol was added to each lysate and mixed by pipetting.  The sample was then 

transferred to an RNeasy spin column in a 2 ml collection tube and centrifuged at 8000 g for 

15 s at room temperature.  The flow through was discarded, 700 µl Buffer RW1 added to 

each spin column, and the centrifuge step repeated.  This was repeated again with 500 µl 

Buffer RPE twice, with the second centrifuge step being for 2 min to dry the spin column to 

ensure no ethanol was carried over.  To further ensure the dryness and non-contamination 

of the samples, the optional additional drying step was always included and the spin 

columns were placed into new collection tubes and centrifuged at 20,817 g for 1 min at 

room temperature.  The spin columns were then placed into new 1.5ml collection tubes, 30 

µl RNAse-free water added, and samples centrifuged at 8000 g for 1 min at room 
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temperature to elute the RNA.  The RNA samples were quantified immediately using 1 µl of 

sample and a NanoDrop™ spectrophotometer (ThermoFisher Scientific).  The purity was 

determined using 260/280 ratio values.  RNA was stored at -80°C until further use. 

2.4.2 cDNA synthesis 

cDNA was obtained from the RNA samples using OmniScript RT kit (Qiagen) to make 1 µg 

per sample.  These steps were all performed on ice and reagents thawed on ice prior to use 

to prevent premature cDNA synthesis and minimise RNA degradation.  An aliquot of 10x 

buffer RT was diluted to a 1x working concentration.  RNase Inhibitor (New England Biolabs, 

Massachusetts, USA) was diluted to 10 units/µl in ice cold 1x buffer RT.  A master mix was 

prepared using the supplied OmniScript RT kit reagents and random hexamer primers 

(ThermoFisher Scientific; Table 2.2).  8 µl was added to separate RNase free 0.2ml tubes on 

ice.  RNA samples were made up to 1 µg/µl based on the quantification in the previous step 

and diluted with ddH2O to make 12 µl per sample then added to tube with the master mix 

to make a 20 µl final volume per reaction.  Samples were vortexed for ~3 s, centrifuged in a 

MiniSpin for ~3 s to bring all of the tube’s contents down, and incubated for 60 min at 37°C.  

Resulting cDNA was either used straight away in the next step, or stored at -20°C until 

further use.  

Table 2.2 Reverse transcription reaction master mix components for 1 sample 

Component Volume (µl) 

10x Buffer RT 2 

dNTP mix (5 mM) 2 

Random hexamer primers 2 
Omniscript reverse transcriptase 1 

RNase inhibitor (10 units/µl) 1 

 

2.4.3 Designing primers 

Primers for the target genes were chosen following guideline advice on primer selection.  

First the gene sequence was found using National Center for Biotechnology Information 

(NBCI) and then Primer-BLAST software and Primer3 software was used to find suitable 

forward and reverse primers (Table 2.3).  The primers were checked using Beacon Designer 

software (Premier Biosoft) to ensure their suitability.  Primers were ordered from Eurofins 

Genomics (Ebersberg, Germany) and resuspended as stated on the data sheet in the 

relevant amount of TE buffer (VWR International Ltd, Lutterworth, UK).   
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Table 2.3 Primer sequences used for qPCR and their properties 

Primer Sequence Temperature 
(oC) 

GC-content (%) 

PD-L1 forward TATGGTGGTGCCGACTACAA 57.3 50 
PD-L1 reverse TGGCTCCCAGAATTACCAAG 57.3 50 

SDHA forward CATCCACTACATGACGGAGCA 59.8 52.4 

SDHA reverse ATCTTGCCATCTTCAGTTCTGCTA 59.3 41.7 

2.4.4 Preparing the plate, running the reaction and analysing the results 

cDNA was diluted in water as desired for the experiment: serial dilutions were used for 

primer validation and 1:100 dilution used for other experiments to make a final 

concentration of 10 ng/µl cDNA.  Primer mixes were made using 1 µl forward primer, 1 µl 

reverse primer and 5 µl PowerUp SYBR Green Master Mix (ThermoFisher Scientific) per well.  

A 384-well PCR plate was used as supplied by the CRUK MI molecular biology core facilities.  

7 µl of the prepared primer mix was added to the desired well with 3 µl of cDNA dilution.  A 

no template control consisting of 3 µl nuclease-free water instead of cDNA was plated in 

triplicate in every plate to monitor contamination and primer-dimer formations.  An 

adhesive sticker was placed on top to seal the plate, which was centrifuged for ~3 s to 

remove bubbles and pull down any liquid to the bottom of each well.  The plate was run on 

a QuantStudio 5 Real-Time PCR System (ThermoFisher Scientific) for 384-well plates as 

shown in Table 2.4.  A melting curve was generated after the cycling programme as 

described in Table 2.5.   

Table 2.4 Thermal cycling protocol used for qPCR 

Step Temperature (ºC) Duration (s) Cycles 

UDG activation 50 120 Hold 

Dual Lock DNA 
polymerase 

95 120 Hold 

Denature 95 15  
40 Anneal 60 15 

Extend 72 60 

 
Table 2.5 Dissociation curve conditions used for melt curve stage of qPCR 

Step Ramp rate (°C/s) Temperature (°C) Time (s) 

1 1.6 95 15 

2 1.6 60 60 
3 (dissociation) 0.15 95 15 
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Data were analysed using QuantStudio Design & Analysis software (ThermoFisher Scientific) 

by analysing the Ct values and melt curve peaks.  For primer efficiencies all the graphs were 

created and the goodness of fit R2 values calculated using GraphPad Prism 8 software.  

2.5  Multiplex Immunohistochemistry 

Immunohistochemistry (IHC) allows for the visualisation of proteins of interest in tissue 

sections.  Multiplex IHC was used to visualise multiple proteins on the same tissue section, 

with each protein being represented by a different colour to allow for visualisation of the 

interaction and co-localisation between the different proteins in one tissue section.  This 

allows for the visualisation of the spatial distribution of immune cells in context to the 

tumour microenvironment.  Opal™ detection was used to allow for the use of antibodies of 

the same species without cross-reactivity occurring and for the optimised simultaneous 

measurement of five targets in a single section.  All multiplex protocols had been previously 

optimised on a different tissue type by Anna Maria, a member of Prof Richard Byers’ group 

(Tsakiroglou et al., 2020, 2021).  The protocol was re-optimised for bladder cancer tissue.  

2.5.1 BCON tissue 

BCON was a prospective multicentre phase III clinical trial that recruited patients in the UK 

from 2000 to 2006 (registered as CRUK/01/003).  Patients with bladder cancer were 

randomised to radiotherapy alone or radiotherapy with concurrent carbogen (2% CO2 + 98% 

O2) and nicotinamide (40 or 60 mg kg-1).  At the time of recruitment, patients provided 

written informed consent for the use of their diagnostic biopsies in future research.  

Approval was obtained by a local ethics committee for research using the samples (LREC 

09/H1013/24) and.  The primary end point was cystoscopic control at six months and the 

secondary end points were overall survival, local relapse free survival, urinary and rectal 

morbidity (Figure ). The trial protocol and results are described in further detail elsewhere 

(Hoskin et al., 2010).  FFPE diagnostic biopsies were available to use for the optimisation and 

spectral library creation.  Tissue microarrays (TMAs) were previously created by the 

Histology Facility of the Cancer Research UK Manchester Institute using the muscle-invasive 

tumour FFPE tissue blocks and these were used for the final staining protocol (Eustace, 

Irlam, et al., 2013; Hunter et al., 2014).  For these TMAs, 1 mm cores of up to three per 

tumour region from two regions were taken from tumour areas that had been marked out 

by a histopathologist (Dr Helen Denley).    
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Figure 2.1 BCON trial CONSORT diagram. 

2.5.2 Protocol optimisation and spectral library creation 

The Ventana Discovery Ultra (Roche, Basel, Switzerland) system was used for the automated 

IHC.  Each marker was paired with a specific fluorophore (Table 2.6).  The protocol was 

optimised by using a variety of primary antibody dilutions and Opal dilutions on both the 

single plex and multiplex slides until there was a clear and specific signal for each marker 

with a good signal:background ratio of <1:15.  Final reagent concentrations are listed in 

Table 2.6.  Single plex slides of each marker at the same concentrations were used for 

spectral library creation, along with a slide with no stain to detect autofluorescence and a 

slide with DAPI.  

Table 2.6 Suppliers and dilutions for reagents used during the multiplex immunohistochemistry staining. 

Target Raised in Dilution Supplier Code OpalTM Dilution 

CD4 Rabbit Pre-diluted Roche 790-4423 620 1:300 
CD8 Mouse 1:300 DAKO C8/144B 540 1:600 

CD68 Mouse 1:40 Abcam ab955 650 1:400 

FOXP3 Mouse 1:60 Abcam ab20034 520 1:400 
PD-L1 Rabbit Pre-diluted Roche 790-4905 570 1:1000 
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2.5.3 Multiplex staining protocol 

Final staining was performed on tissue microarray slides from BCON.  The staining protocol 

involved initial deparaffinisation and epitope retrieval at pH 8.5 followed by multiple cycles 

of incubation with primary antibody, secondary antibody and opal detection.  The cycles 

were separated by a short denaturation at pH 6.  UltraMap anti-rabbit/mouse HRP 

conjugated secondary antibodies were used (Roche).  Antibody and OpalTM concentrations 

are listed Table 2.6.  After the automated protocol the slides were manually washed by 

three 5 min cycles of a 1:10 dilution of EZ preparation (Ventana Medical Systems) before 

being counter-stained with a 1:120000 dilution of DAPI (ThermoFisher Scientific) for 5 min.  

The slides were then cover-slipped with ProLongTM Gold Antifade Mountant (ThermoFisher 

Scientific).   

2.5.4 Multispectral scanning and unmixing 

A Vectra 3 microscope (Akoya Biosciences) was used to scan the slides with a Vectra 

Fluorescence Illuminator 200 watt Metal Halide Bulb set to 10%.  Manual annotation of TMA 

core locations was performed using a low resolution scan at 4x magnification.  A multi-

spectral image of each core was then acquired at 20x magnification using DAPI, AF488, 

TRITC, AF594 and AF647 filters.  After multispectral scanning, the slides were spectrally 

unmixed using inForm software 2.4.9 (Akoya Biosciences) and the pre-prepared spectral 

library.   

2.5.5 Image analysis 

Image analysis was done in HALO 3.2 with the TMA Module (Indica Labs, Albuquerque, USA) 

to manually exclude artefacts and then obtain counts of each marker per core.  The marker 

quantification was then exported to R where normalisation was performed by calculating 

the percentage of each marker from the total cell count across all cores of each patient 

(n=116).  This method was chosen to account for cores of different sizes and different 

numbers of cores per patient.  CA9 IHC scores previously generated were used to assign 

patients a CA9 status of present or absent (n=111) (Eustace, Irlam, et al., 2013).  CA9 status 

was used instead of our hypoxia signature as using the hypoxia signature was not significant 

due to constricted patient numbers (n=86).  Gene expression data previously generated 

(Yang, Taylor, et al., 2017) was used to assign each patient a molecular subtype using the 

“consensusMIBC” package in R (Kamoun et al., 2020). 
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2.5.6 Statistical analysis 

All the analyses were performed using R version 4.0.5 and RStudio version 1.3.1093 and 

associated packages used to analyse data and calculate significance.  Non-parametric 

statistics (Wilcox test) were used due to the non-normal distribution of each marker.  

Relationships with overall and local progression-free survival for 16-year follow up were 

assessed in R using Cox proportional hazard models and Kaplan-Meier curves via the 

“survival” and “survminer” packages which uses a log-rank test to calculate p values.  Tables 

of characteristics were tabulated using “table1” package in R.  Cumulative incidence curves 

were plotted and the significance calculated using “cmprsk” package.  Multivariable analysis 

and statistical tests were performed using the “survival” package and the results were 

tabulated using “gtsummary” package. 

2.6  Chromatin Immunoprecipitation sequencing (ChIPseq) 

Chromatin immunoprecipitation Sequencing, ChIPseq, can be used to identify the 

association of proteins with specific genomic regions.  It was used here in a bladder cancer 

cell line, T24, to investigate the binding patterns of HIF1a, HIF2a and HIF1b transcription 

factors.  The process involves cross-linking the protein-DNA interactions before lysing the 

cells and shearing the chromatin into smaller fragments.  Immunoprecipitation uses 

antibodies specific to the protein of interest and magnetic beads to isolate the protein-DNA 

complexes.  The fragments are then de-cross-linked and the DNA eluted and sequenced.   

2.6.1 Preparing antibody/magnetic bead mixture 

Dynabeads Protein G (ThermoFisher Scientific) were used at a concentration of 100 µl per 

100 million cells.  The beads were washed three times in ice cold blocking mixture of 5 

mg/ml Bovine Serum Albumin (Sigma-Aldrich) in PBS using a magnetic stand (Diagenode, 

New Jersey, USA).  The beads were resuspended in 500 µl blocking solution, split into 

enough tubes per antibody, topped up to 500 µl total volume with blocking solution and left 

rotating overnight at 4°C.  Negative and positive controls were used alongside the 

antibodies of interest.  Table 2.7 lists the antibodies and concentrations used.  
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Table 2.7 List of antibodies and dilutions used for ChIP experiment. 

Target Raised in  Concentration Supplier Code 

HIF-1α Rabbit 1mg/ml Abcam Ab2185 

HIF-2α Rabbit 1mg/ml Abcam Ab199 
HIF-1β Mouse 1mg/ml Novus Biologicals H1beta234 

CTCF Rabbit 1mg/ml Diagenode C01010170 

IgG control Rabbit 1mg/ml Millipore 12-370 

2.6.2 Cross-linking and cell collection 

Cells were cultured in hypoxia as previously described (Section 2.1.3), using 15 cm culture 

dishes (Sarstedt, North Carolina, USA).  Cells were dual cross-linked directly in the hypoxia 

cabinet using 10 ml PBS/MgCl2 and 40 µl ChIP cross-link gold (Diagenode) for 10 min 

followed by 15 ml of 1% formaldehyde (Sigma) in PBS for 10 min.  The reaction was 

quenched by adding 0.125 M glycine.  The dishes were removed from the hypoxia cabinet 

and placed on ice.  The cells were manually scraped using ice-cold PBS + Protease Inhibitor 

Cocktail (PIC; Promega, Wisconsin, USA) before being centrifuged at 300 g for 3 min at 4°C.  

The resulting cell pellets were washed twice with PBS + PIC.  

2.6.3 Fragmenting chromatin samples and performing ChIP 

Everything in this step was performed on ice.  Lysis buffer 1 (50 mM Hepes-KOH, pH7.5; 140 

mM NaCl; 1 mM EDTA; 10% glycerol; 0.5% NP-40/Igepal CA-630; 0.25% TritonTM X-100; 

ddH2O) + PIC was added to each sample and incubated for 10 min at 4°C and then 

centrifuged at 300 g for 3 min at 4°C.  The supernatant was removed and the resulting pellet 

was resuspended in lysis buffer 2 (10 mM Tris-HCl, pH 8.0; 200 mM NaCl; 1 mM EDTA; 0.5 

mM EGTA; ddH2O) + PIC.  These were incubated for 5 min at 4°C and the centrifugation step 

repeated.  The pellet was resuspended in lysis buffer 3 (10 mM Tris-HCl, pH 8; 100 mM NaCl; 

1 mM EDTA; 0.5 mM EGTA; 0.1% Na-deoxycholate; 0.5% N-lauroylsarcosine; ddH2O) + PIC 

and the sample split into microtubes for sonication (Diagenode).  Sonication was previously 

optimised per cell line to obtain optimal size fragments of 200-300 bp.  For T24 cell line this 

was 16 cycles of 30 s on and 30 s off using a Biorupter Pico (Diagenode).  Each time the 

experiment was performed the fragment sizes were checked using agarose gel 

electrophoresis, as described below (Section 2.6.4).  50 µl of chromatin was removed for 

input reference and stored at -20°C.  The rest of the chromatin samples was then incubated 

with the pre-prepared magnetic bead/antibody mixes, as previously described in Section 

2.6.1, overnight on a rotator at 4°C. 
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2.6.4 Agarose gel electrophoresis 

The samples were prepared by adding 1 µl of proteinase K (ThermoFisher Scientific) to 10 µl 

of chromatin sample, incubating them at 65°C for 20 min, and adding 1 µl of 10% TritonTM X-

100.  Samples were centrifuged at 20,817 g for 5 min at room temperature, transferred to 

new Eppendorf tubes and 10 µl H2O added with 6 µl gel loading dye (Promega).  The 

samples were run on a 1.5% agarose gel made using agarose powder (Invitrogen), TAE 

buffer (ThermoFisher Scientific) and SYBR safe gel dye (ThermoFisher Scientific).  6 µl 

prepared DNA ladder (Promega) was added into the first well and 24 µl of each prepared 

sample into subsequent wells.  The gel was run at 130 V for 30 min using a power pack (Bio-

Rad) and TAE running buffer (ThermoFisher Scientific).  The gel was visualised using 

ChemiDoc UV light viewer (Bio-Rad).   

2.6.5 Reverse cross-link and harvest chromatin 

The IP samples were washed in RIPA buffer (50mM HEPES pH 7.6, 1mM EDTA, 0.7% Na 

deoxycholate, 1% NP-40, 0.5M LiCL) five times.  Samples were then washed with TE buffer 

and all residual TE buffer removed.  Odom lab elution buffer (50mM TrisHCl, pH8, 10mM 

EDTA, 1% SDS) was added to each sample, including the input sample, and vortexed to mix 

thoroughly.  Samples were incubated overnight for a maximum of 16 h on a shaker at 65°C 

to reverse the protein-DNA cross-link.  The supernatant was then collected using a magnetic 

stand and transferred to a fresh Eppendorf.  After adding 200 µl of TE buffer and 8 µl of 10 

mg/ml RNAse A (Merck) to each sample, the samples were incubated for 1 h at 37°C.  4 µl of 

proteinase K was then added to each sample prior to incubating at 55°C for 2 h.  400 µl 

phenol: chloroform: isoamyl alcohol (25:24:1; ThermoFisher Scientific) was then added and 

samples vortexed and then centrifuged at 10,000 g for 5 min at room temperature.  The top 

aqueous layer containing DNA was removed into a new Eppendorf and the process repeated 

with chloroform: isoamyl alcohol (24:1; Merck).  16 µl of 5 M NaCl (Cambridge Biosciences 

Limited, Cambridge, UK) was added to make a final concentration of 200 mM which was 

mixed with 2 µl of 20 µg /µl glycogen (Merck) to give a visible pellet.  Next, 800 µl 100% 

ethanol was added to each sample, which were then placed in a -80°C freezer for a 

minimum of 30 min to improve precipitation.  After the freezing step, the samples were 

centrifuged at 20,817 g for 20 min at 4°C to precipitate out the DNA.  The resulting pellet 

was washed in 500 µl ice cold 70% ethanol and the centrifugation process was repeated.  

The pellet was air dried at room temperature for 5 min and resuspended in ~30 µl 10mM 
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Tris-HCl pH 8.0 (ThermoFisher Scientific), depending on pellet size, and quantified using 

NanoDrop™ (ThermoFisher Scientific).  Samples were stored at -20°C until further use.  

2.6.6 qPCR verification of ChIP samples 

The IP samples were verified via qPCR using primers for negative and positive loci 

enrichment.  EGLN3, UGP2 and TTLL2 were used as positive controls and beta-actin as a 

negative control for the HIF samples (Eurofins genomics).  Table 2.8 lists the primer 

sequences and properties.  Pre-made primer pairs of H19 and myoglobin were used from 

the iDeal ChIPseq for transcription factors kit (Diagenode; C01010170) as a positive and 

negative control for CTCF, respectively.  For each primer pair the input DNA was run 

alongside the IP samples and the negative Ig control.  Samples were diluted 1:10 in H2O to 

make enough diluted DNA for 5 µl per well and the primer mixes were prepared using a 1:1 

ratio with enough primer mix for 1 µl per well.  Primer master mixes were made for each 

primer using 10 µl SYBR Green master mix (ThermoFisher Scientific), 1 µl primer mix and 4 µl 

H2O per well, scaled for the number of wells needed.  The thermal cycling conditions are 

given in Table 2.4 followed by a melt curve stage as per Table 2.5 (see Section 2.4.4).  

Table 2.8 Primer sequences used for qPCR validation of ChIP and their properties 

Primer Sequence Tm (oC) GC-content (%) 

EGLN3 forward AGTGTCCGTTCCCAGCTCAG 61.4 60 

EGLN3 reverse TAGGCACAGTAAACAGGCC 56.7 52.6 

UGP2 forward GGACTGTTGGGAAGCTTTA 57.3 50 

UGP2 reverse GACGCAAACCACGTACACA 56.7 52.6 

TTLL2 forward CTCTGTATCACCCGCCTAGC 61.4 60 

TTLL2 reverse TTTCACTGGGGTGAGGTAGC 59.4 55 
Beta-actin forward ACCATGGATGATGATATCGCC 57.9 47.6 

Beta-actin reverse GCCTTGCACATGCCGG 56.9 68.8 

 
IP sample enrichment was then calculated by the following formula: 

 % recovery = 2^((Ctinput-compensatory factor)-Ctsample)*100% 

Where Ctinput and Ctsample are the threshold values from the exponential phase of qPCR, 2 

is the amplification efficiency (assumed to be 100%), and the compensatory factor corrects 

for the input dilution.  Compensation factor was calculated by log2[X%] where X is the 

dilution factor.  If there was an enrichment over the positive loci with a low background, 

with no enrichment on the negative control then the IP was considered successful and sent 

for sequencing.  
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2.6.7 Sequencing 

Sequencing was performed by the core facilities at CRUK MI.  ChIPseq libraries were 

prepared using 1ng of ChIP DNA and 12 cycles of amplification with the NEBNext Ultra II 

DNA Library Prep Kit for Illumina (New England BioLabs).  Where applicable a double-sided 

size selection of libraries were performed using AMPure XP Reagent (Beckman Coulter, 

California, USA) with volumes of 0.47x and 0.45x (total 0.92x) of the library volume.  Library 

quality was checked using the Agilent Bioanalyzer/Fragment Analyzer (Agilent Technologies, 

California, USA).  Libraries were quantified by qPCR using a KAPA Library Quantification Kit 

for Illumina (Roche).  Paired-end 100bp sequencing was performed by loading 180-200pM 

pooled libraries on a NovaSeq 6000 sequencer with XP loading (Illumina, California, USA). 

2.6.8 Analysing and mapping samples 

Analysis was performed by the computational biology support team of the CRUK MI.  First, 

the sequencing reads from ChIP and input samples were quality checked using FASTQC.  All 

bases with a Phred quality score ≤ 20 and any adapter sequences present in the data were 

removed using Trim Galore.  Second, the cleaned and trimmed FASTQ files from previous 

steps were mapped to the hg19 reference assembly using bowtie2.v2.2.1. Third, the 

resulting alignment SAM files were processed using samtools v1.3.1 to remove unmapped 

reads, and to retain reads that mapped in proper pair with a mapping quality >= 20.  The 

SAM files were then converted into BAM files and indexed.  Fourth, the alignment results 

(BAM files) were used in MACS2 v2.1.2 (with –keep-dup 1 -q 0.01 parameters for narrow 

peaks and with --broad-cutoff 0.1 for broad peaks) for peak calling to identify the ChIP signal 

enriched genomic regions.  Last, Homer v4.10 was used to annotate the significant peaks 

and TSS/gene body profiles were generated by ngsplot v2.61.  Different filtering parameters 

were then applied to the annotated peaks using the assigned genomic regions.  The filtering 

parameter are as follows:  1) All significant peaks (no subsequent filtering); 2) peaks 

assigned to protein coding regions; 3) peaks assigned to near transcriptional start site (TSS) 

promoter regions; and 4) both protein coding and near TSS.  For visualising tracks bigWig 

files were produced from BAMs using the bamCoverage function and these were 

subsequently subset according set of peaks chosen by MACS2 and visualised using the 

University of California, Santa Cruz (UCSC) genome browser.  All processing was performed 

using the CRUK MI high-performance computing service (Phoenix) with packages deepTools 

(3.5.1), bedops (2.4.39) and ucscsuite (20150630). 
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2.7  Microarray cell line data generation 

Microarray gene expression data from four MIBC cell lines (T24, J82, UMUC3, and HT1376) 

exposed to four different oxygen concentrations (21%, 1%, 0.2%, and 0.1%) was generated 

by Rekaya Shabbir in the TRB group.  

2.7.1 Cell lines and seeding 

The cell lines and media that was used for this experiment are described in Section 2.1.1, 

with the addition of the MIBC cell line HT1376, and exposure to hypoxia performed as 

detailed in Section 2.1.3.  For this experiment 5x105 cells were seeded in 10 cm cell culture 

dishes (Corning) and exposed to each oxygen concentration for 24 h.   

2.7.2 Harvesting RNA 

The cells were manually scraped in PBS and transferred to a 1 ml RNAse free microfuge tube 

(Ambion, Texas, USA) before being centrifuged at 10,000 rpm for 10 min at 4°C.  

Supernatant was discarded and the remaining cell pellet used for RNA extraction using 

RNeasy Plus Mini Kit (Qiagen) as described in Section 2.4.1, with QIAshredder (Qiagen) 

homogenisation method instead of needle and syringe.  The cell suspension with buffer RLT 

was transferred to a QIAshredder spin column and centrifuged at 10,000 rpm for 1 min at 

room temperature.  The lysate was transferred to a gDNA eliminator spin column and 

centrifuged at 10,000 rpm for 30 s at room temperature before continuing from the 

addition of ethanol as described in Section 2.4.1.  The RNA quantity was measured using a 

NanoDrop™ spectrophotometer (ThermoFisher Scientific) and purity measured using a 

Qubit 4 Fluorometer (ThermoFisher Scientific).    

2.7.3 Affymetrix Clariom S microarray 

Gene expression arrays were prepared using 8 ng/µl in 9 µl of the RNA and the Clariom S 

pico HT human assay (ThermoFisher Scientific).  The sample hybridisation was performed by 

Yourgene Health (Manchester, UK) and batches of Affymetrix CEL files were normalised by 

signal space transformation with probe guanine cytosine count correction using Affymetrix 

Array Power Tools (ThermoFisher Scientific).  Batch correction was performed using the 

ComBat function from the R package “sva” to generate log2 summarised gene level 

expression.  



 
89 

2.8  Bioinformatics 

Bioinformatics was used for general in silico analyses to analyse transcriptomic data 

available from the BCON trial and publicly available cohorts such as TCGA.  It was also used 

to analyse the microarray and ChIPseq datasets that were generated.  R and RStudio were 

used throughout, the versions were updated throughout the project but ranged from 4.0.3 – 

4.0.5 and 1.3.1093 – 2022.02.2, respectively.  The package “tidyverse” was used in all 

analyses.  

2.8.1 Cohorts used 

RNAseq data from the TCGA bladder cancer cohort (n=405) was obtained using the R 

packages “TCGAUtils” and “curatedTCGAData”.  Bladder cancer cohort microarray data from 

the gene expression omnibus (GEO) were obtained using the R package GEOquery.  

GSE32894 (n=224) was fresh-frozen resection samples treated with TURBT and GSE13507 

(n=187) was fresh-frozen resection samples treated with TURBT +/- BCG as appropriate.  

BCON transcriptomic data were generated by the TRB group (n=152) and the updated long-

term clinical outcomes were used throughout (Song et al., 2021).  Further details are 

outlined in Section 2.5.1.  TCGA (n=401) and BCON (n=141) datasets were filtered to include 

only tumours stage 2 and above, i.e., MIBC.  

2.8.2 Assigning molecular subtypes 

Consensus molecular subtypes were applied using the R package “consensusMIBC” 

(Kamoun et al., 2020).  First order subtyping was applied by assigning all three luminal 

subtypes (LumP, LumNS and LumU) to luminal and basal/squamous and stroma-rich 

subtypes to basal.  NE-like were removed from the first order analyses due to numbers 

being small.   

2.8.3 Assessing relationships with survival 

Relationships between generated biomarkers and survival were assessed using Cox 

proportional hazard models via the “survival” and “survminer” packages, which generates 

Kaplan-Meier curves and uses a log-rank test to calculate p values.  Multivariable analyses 

and statistical tests were also performed using the “survival” package and the results were 

tabulated using “gtsummary” package. 
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2.8.4 LASSO regression model 

Z scores were calculated from the TCGA expression scores using the scale function from the 

R package “glmnet”.  The optimal lambda was calculated using the package “pcoxtime” and 

the lambda.min was used.  LASSO model was applied and those genes with a coefficient 

shrunken to 0 were removed from the list before running the model again.  The final 

coefficients were used to apply the weighted mean to each sample using the predict 

function from the package “glmnet”.   

2.8.5 Immune cell deconvolution analysis 

ImSig was applied using the R package “ImSig” (Nirmal et al., 2016).  First, the optimal 

correlation threshold was chosen for each dataset using the function gene_stat to choose a 

value that retains a large number of genes after feature selection with a reasonably high 

correlation value across the cell types.  For the BCON dataset this value was set at r=0.6, and 

for TCGA dataset it was r=0.65.  TIMER deconvolution was performed using the website 

http://timer.cistrome.org/ with BLCA as the cancer type (Li et al., 2016).  Immune cell 

fractions were also imputed using the Cibersort algorithm (Chen et al., 2018).  All of the 

cohorts used LM22 as the mixture file with 100 permutations and no batch corrections.  

Only for the TCGA cohort was the quantile normalisation disabled, as recommended by 

Cibersort for RNAseq data.  Significance between groups is shown as the adjusted p values 

from BH method using the t_test function to correct for multiple testing.  

2.8.6 Use of other gene signatures 

Hypoxia scores were assigned using the Yang et al bladder cancer hypoxia gene signature by 

calculating the median score across the genes in the signature and stratifying into low and 

high groups using the median score of the cohort (Yang, Taylor, et al., 2017).  All other gene 

signatures were assigned by calculating the mean score across the genes in the signature.  

The genes in each signature are listed in Table 2.9.   
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Table 2.9 Lists of the genes in each respective gene signature. 

Signature Genes 

Hypoxia 1 

 
CAV1 THBS4 LDLR GULP1 GLG1 FUT11 SLC2A3 

DAAM1 CYP1B1 CAD AHNAK2 SAV1 PDLIM2 LRP1 

TRAM2 SRPX DPYSL2 TGFBI SLC16A1 P4HA2 ITGA5 

DSC2 SYDE1 COL5A1     
IFNγ 
signalling 2 IDO1 CXCL10 CXCL9 STAT1 IFNG 

  

CD8 
signalling 2 

CD3D TAGAP CXCL13 GZMB STAT1 CXCL10 LAG3 

NKG7 IL2RG CD2 GZMK CCL5 CD3E CIITA 

CXCR6 IDO1      

B cells 3 BLK CD19 FCRL2 MS4A1 KIAA0125 TNFRSF17 TCL1A 
PNOC SPIB      

Cytotoxic 3 PRF1 GZMA GZMB NKG7 GZMH KLRK1 KLRB1 

CTSW GNLY KLRD1     

DCs 3 CCL13 CD209 HSD11B1     

Exhausted 
CD8 3 

LAG3 CD244 EOMES PTGER4    

Macrophages 
3 

CD68 CD84 CD163 MS4A4A    

Mast cells 3 TPSB2 TPSAB1 CPA3 MS4A2 HDC   

Neutrophils 3 FPR1 SIGLEC5 CSF3R FCAR FCGR3B CEACAM3 S100A12 

NK cells 3 NCR1 XCL1 XCL2     
T cells 3 CD6 CD3D CD3E SH2D1A TRAT1 CD3G  

Checkpoint 4 CD274 PDCD1LG2 CTLA4 PDCD1 LAG3 HAVCR2 TIGIT 

TGFb ECM 5 FN1 POSTN SULF1 COL3A1 COL1A2 COMP VCAN 
MFAP2 COL5A3 COL7A1 COL5A1 ITGAX MMP12 TIMP1 

ADAM8 FAP SPP1 ACAN ADAM12 LOXL2 MMP9 

MMP1 COL11A1 COL10A1 SERPINH1 ADAMTS14 MMP11 TGFB 

COL5A2 COL1A1      
M1 TAMs CCL2 CCR2 CD36 CD80 CD86 CXCL10 IL1B 

NFKBIA NOS2 TNF CXCL16 CXCL9 IL6  

M2 TAMs ARG1 CCL17 CCL22 CHI3L1 CD163 IGF1 EGR2 
MRC1       

1 = (Yang, Taylor, et al., 2017), 2 = (Ayers et al., 2017), 3 = (Danaher et al., 2017), 4 = (Mariathasan et al., 2018), 5= 
(Chakravarthy et al., 2018).   

 

2.8.7 Over representation analysis 

The top 20 Gene Ontology (GO) biological processes were identified using the R package 

“clusterProfiler” and represented graphically using “enrichplot”.  Significance was set as 

adjusted p value < 0.05 (BH).   
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2.8.8 Gene Set Enrichment Analysis (GSEA)  

The R package “limma” was used to identify differentially expressed genes (DEGs; p<0.1). 

The goana function was used with the DEGs to investigate gene ontologies that were 

significantly (p<0.05) enriched.  Hallmark pathways were downloaded using “msigdb” and 

the package “fgsea” was used to perform GSEA to see which Hallmark pathways were 

significantly increased/decreased (Subramanian et al., 2005).   

2.8.9 Statistics and other bioinformatics tests 

Parametric statistics (t-test, Pearson) were used when data were normally distributed and 

non-parametric statistics (Wilcox test, Spearman) were used when the data were non-

normally distributed.  Data distributions were calculated using the Shapiro-Wilks test.  

Cumulative incidence curves were plotted and the significance calculated using “cmprsk” 

package.  Tables of characteristics were tabulated using “table1” package.  
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3 The effect of hypoxia on PD-L1 expression in bladder cancer 

The work in this chapter was published in BMC Cancer on 25th November 2021 and was re-

formatted and edited for this thesis.  The original article can be found using the DOI: 

https://doi.org/10.1186/s12885-021-09009-7.  

Smith, V., Mukherjee, D., Lunj, S. et al. The effect of hypoxia on PD-L1 expression in bladder 

cancer. BMC Cancer 21, 1271 (2021). https://doi.org/10.1186/s12885-021-09009-7 

3.1 Abstract 

Introduction:  Recent data has demonstrated that hypoxia drives an immunosuppressive 

tumour microenvironment (TME) via various mechanisms including hypoxia inducible factor 

(HIF)-dependent upregulation of programmed death ligand 1 (PD-L1).  Both hypoxia and an 

immunosuppressive TME are targetable independent negative prognostic factors for 

bladder cancer.  Therefore we sought to investigate whether hypoxia is associated with 

upregulation of PD-L1 in the disease. 

Materials and methods:  Three human muscle-invasive bladder cancer cell lines (T24, J82, 

UMUC3) were cultured in normoxia (20% oxygen) or hypoxia (1% and 0.1% oxygen) for 24 h.  

Differences in PD-L1 expression were measured using Western blotting, quantitative 

polymerase chain reaction (qPCR) and flow cytometry (≥3 independent experiments).  

Statistical tests performed were unpaired t tests and ANOVA.  For in silico work an hypoxia 

signature was used to apply hypoxia scores to muscle-invasive bladder cancers from a 

clinical trial (BCON; n=142) and TCGA (n=404).  RStudio was used for analyses and statistics 

performed were linear models and one-way ANOVA. 

Results:  When T24 cells were seeded at <70% confluence, there was decreased PD-L1 

protein (p=0.009) and mRNA (p<0.001) expression after culture in 0.1% oxygen.  PD-L1 

protein expression decreased in both 0.1% oxygen and 1% oxygen in a panel of muscle-

invasive bladder cancer cells: T24 (p=0.009 and 0.001), J82 (p=0.008 and 0.013) and UMUC3 

(p=0.003 and 0.289).  Increasing seeding density decreased PD-L1 protein (p<0.001) and 

mRNA (p=0.001) expression in T24 cells grown in both 20% and 1% oxygen.  Only when cells 

were 100% confluent, were PD-L1 protein and mRNA levels higher in 1% versus 20% oxygen 

(p=0.056 and p=0.037).  In silico analyses showed a positive correlation between hypoxia 

signature scores and PD-L1 expression in both BCON (p=0.003) and TCGA (p<0.001) cohorts, 

and between hypoxia and IFNγ signature scores (p<0.001 for both).  

Conclusion:  Tumour hypoxia correlates with increased PD-L1 expression in patient derived 

bladder cancer tumours.  In vitro PD-L1 expression was affected by cell density and 

decreased PD-L1 expression was observed after culture in hypoxia in muscle-invasive 

bladder cancer cell lines.  As cell density has such an important effect on PD-L1 expression, it 

should be considered when investigating PD-L1 expression in vitro.   

https://doi.org/10.1186/s12885-021-09009-7
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3.2 Introduction 

Bladder cancer is the tenth most common cause of cancer death in the UK with an overall 

ten-year survival rate of only 46% in England (Cancer Research UK, 2022).  Stages two, three 

and four are classified as muscle-invasive bladder cancer (MIBC) for which the five-year 

survival rates are 45%, 40% and 10% respectively (Office for National Statistics, 2019b).  

The two definitive treatment approaches for MIBC are cystectomy, or radiotherapy with 

a radiosensitiser.  Neoadjuvant chemotherapy can be given with either, but has a limited 

contribution to improved survival (Song et al., 2019).  Immunotherapy for bladder cancer 

has an extensive history, with the first immunotherapy (Bacillus Calmette–Guérin) for non-

MIBC being approved in 1990 (Morales, Eidinger and Bruce, 2002).  In the last five years, six 

new immunotherapies were approved for advanced urothelial carcinoma, most targeting 

the PD-1/PD-L1 pathway.  However, despite initial successes the rates of durable responses 

remain low with generally only around one in five patients showing a sustained response 

(Wołącewicz et al., 2020). 

An immunosuppressive tumour microenvironment (TME) is known to be a negative 

prognostic factor contributing to recurrence of disease and tumour progression (Hanahan 

and Weinberg, 2011).  Hypoxia is a common feature of many solid tumours and is also an 

adverse prognostic factor in bladder cancer (Theodoropoulos et al., 2004; Chai et al., 2008).  

Both an immunosuppressive TME and hypoxia contribute to the failure of radiotherapy, 

therefore, the relationship between them is of interest for developing biomarkers to guide 

treatment choices (Höckel et al., 1996; Barker et al., 2015).   

Hypoxia inducible factor (HIF1)-1α is a transcription factor that regulates ~1.25% of the 

human genome in response to decreased oxygen availability (Denko et al., 2003).  Recently, 

it was shown that hypoxia-induced gene changes affect tumour immune responses and 

contribute towards an immunosuppressive TME (Manoochehri Khoshinani, Afshar and 

Najafi, 2016).  The mechanisms involved include direct effects on immune cells that alter 

their functions and indirect effects due to altered cytokine and chemokine expression that 

impact the recruitment and migration of immune cells (Murdoch et al., 2004; Sitkovsky and 

Lukashev, 2005).   

Specifically, hypoxia via HIF-1α was shown to increase expression of the immune 

checkpoint gene PD-L1 in human and mouse cancer cell lines (Barsoum et al., 2014; Noman 
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et al., 2014).  The effect of hypoxia on PD-L1 expression in bladder cancer has not previously 

been reported.  

The aims of this chapter were to investigate the effects of hypoxia on PD-L1 expression in 

bladder cancer using in vitro and in silico approaches.  

3.3 Materials and methods 

3.3.1 Cell culture 

Human MIBC cell lines (T24, J82, UMUC3) were cultured in Eagle’s Minimum Essential Media 

supplemented with 10% foetal bovine serum and L-glutamine as detailed in Section 2.1.1.  

Cell lines were authenticated by the Cancer Research UK Manchester Institute core facilities 

services every 6 months and tested for mycoplasma monthly.  Cells were seeded at a 

density of 1x105 per well, unless otherwise stated, onto 6-well cell culture plates in a 

humidified atmosphere of air plus 5% CO2 (here termed normoxia) and left to adhere for 24 

h.  Some plates were then transferred to a hypoxia cabinet, washed with PBS and fresh 

media added with/without the addition of human recombinant IFNγ to media culture to a 

working concentration of 10 ng/ml.  Both the PBS and fresh media were pre-equilibrated to 

the required oxygen concentration for 24 h.  The other plates were processed in the same 

way but in normoxia.  See Sections 2.1.2 and 2.1.3 for further details.   

3.3.2 Western blotting 

Western blotting was performed as detailed in Section 2.2.  In brief, cells were lysed in situ 

and sonicated at 10 amplitude microns for 10 s before centrifugation at 14,000 g for 15 min.  

Protein concentrations of the lysates were measured using a BCA Protein Assay kit and the 

solution resolved on 4-20% Tris-Glycine Protein Gels prior to transference to a nitrocellulose 

membrane.  The membrane was then incubated with the primary and secondary antibodies 

with PBS washes in between.  

3.3.3 qPCR 

As described in Section 2.4, RNA was extracted using a Qiagen RNeasy Mini Kit and 

quantified using a NanoDrop™.  cDNA was obtained using OmniScript RT Kit with random 

hexamer primers and RNase Inhibitor.  Primers were designed by Primer-BLAST and Primer3 

software, checked using Beacon Design Software and made by Eurofins Genomics before 

being resuspended in Tris – EDTA (TE) buffer.  Serial dilutions of primers were used for 
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validation experiments and primer mixes were made with SYBR Green Master Mix.  384-well 

PCR plates were run using a QuantStudio 5 Real-Time PCR System and appropriate controls.  

3.3.4 Flow cytometry 

Flow cytometry was performed as detailed in Section 2.3.  In brief, cells were trypsinised, 

placed in fluorescence-activated cell sorting (FACS) tubes, washed in FACS buffer (1% FBS in 

PBS), centrifuged and resuspended in a series of solutions with FACS buffer washing steps in 

between.  In order, the cells were resuspended in a live/dead fixable cell stain (1:1000), 

human FcR blocking solution (1:100), then either PD-L1 PE antibody (1:100) or control PE 

mouse IgG1 k isotype antibody (1:100) before being fixed in 1% paraformaldehyde.  Samples 

were acquired on a LSRII flow cytometer with 10,000 viable cells collected per sample.  Flow 

cytometry was performed in either duplicate or triplicate wells as stated and each well was 

split into two FACS tubes for immunoglobulin control alongside a target of interest.  The 

data collected were then processed using FlowJo software (version 10.6.1).  

3.3.5 Bioinformatics and statistics 

BCON is a clinical trial registered as CRUK/01/003 of which the details and conclusions are 

outlined in the initial findings report (Hoskin et al., 2010).  Gene expression data from the 

BCON cohort were obtained as detailed in Section 2.8.1 (Yang, Taylor, et al., 2017).  The 

TCGA-BLCA data were obtained using the R packages “TCGAUtils” and “curatedTCGAData”.  

Both datasets were filtered to include only tumours of a known stage and stage 2 and 

above.  In silico data were tested by linear regression, Pearson’s correlation and ANOVA 

using R (version 4.0.3) and RStudio (version 1.3).  In vitro data were tested by unpaired t test 

or ANOVA using GraphPad Prism 8 software.  

3.4 Results  

3.4.1 Hypoxia decreases expression of PD-L1 in T24 human bladder cancer cells 

To investigate the effects of hypoxia on PD-L1 expression in T24 MIBC cells they were 

cultured at 0.1% oxygen and 20% oxygen and the differences in PD-L1 expression examined.  

PD-L1 expression significantly decreased in hypoxia (0.1% oxygen for 24 h) at both the RNA 

(qPCR) and protein (Western blotting, flow cytometry) level in T24 human bladder cancer 

cells (Figure 3.1).  IFNγ is a known stimulant of PD-L1 and its addition led to the expected 

stimulation of PD-L1 (Garcia-Diaz et al., 2017).  However, when IFNγ stimulated cells were 

cultured in hypoxia, the IFNγ-driven PD-L1 increase was reduced (Figure 3.1).  This finding 
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further highlights the negating effects of hypoxia on PD-L1 expression in T24 cells.  HIF-1α 

protein expression was present in all the samples cultured in hypoxia (0.1% oxygen) and 

absent in those under normoxia, confirming the cells are responding to the hypoxic 

conditions (Figure 3.2).  Comparison of the proportion of viable cells between samples 

showed hypoxia did not induce excessive cell death (Figure 3.3).  

 
Figure 3.1. Hypoxia (0.1%) decreases the expression of PD-L1 in T24 bladder cancer cells. 
PD-L1 expression decreased in T24 cells after 24 h culture in 0.1% oxygen. IFNγ stimulation increased expression of PD-L1 
in 20% O2, but the IFNγ-driven increase was attenuated in cells grown in 0.1% O2. Cells were seeded and left to adhere for 
24 h before placing into a hypoxia chamber for 24 h and/or 10 ng/ml IFNγ added to the culture media. A) Western blotting 
shows the change in protein levels of PD-L1 with GAPDH used as a loading control. Three independent experiments were 
carried out and a representative image is shown. B) Quantification by densitometry analysis was performed using ImageJ 
by calculating the relative densities of both the loading control and the samples to the control untreated lane. These values 
were then scaled to the relative density values to find adjusted relative values from three independent experiments. C) 
Flow cytometry shows the change in surface expression of PD-L1. Data are the mean ± standard error of the mean (SEM) of 
the mean fluorescence intensity of 10,000 viable cells from replicates of four independent experiments normalised to 
normoxia untreated condition to show the relative fold change. D) qPCR shows changes in mRNA levels relative to the 
mRNA levels of T24 cells cultured in 20% O2. Data are the mean ± standard error of the mean (SEM) from three 
independent experiments plated in triplicate with differences calculated using the delta-delta Ct method relative to the 
expression of reference gene SDHA.  Statistical tests are unpaired t tests performed in GraphPad Prism with p values 
represented as follows: ns = not significant, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001. 
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Figure 3.2. HIF-1α is present in T24 cells cultured in hypoxia and absent when cultured in normoxia. 
Western blot showing the presence/absence of HIF-1α across different experimental conditions alongside the changes in 
PD-L1 expression.  GAPDH was used as an experimental loading control. Independent experiments were performed three 
times and a representative blot shown.  

 

Figure 3.3. Hypoxia does not induce excessive cell death in T24 cells. 
Flow cytometry shows there is no excessive cell death induced by culture in 0.1% O2.   A live/dead stain was incorporated 
into the assay, which only enters cells with compromised membranes.  Gating around cells with no dye uptake and 
comparing with total population allows for the analysis of the proportion of viable cells.  Data are the mean ± standard 
error of the mean (SEM) from at least three independent experiments performed in duplicate, of which each sample had 
10,000 viable cells analysed. 

 

3.4.2 Both 0.1% and 1% hypoxia decreases PD-L1 expression in human MIBC cells 

To investigate whether the decrease in PD-L1 might be cell line or oxygen concentration 

dependent, two other human MIBC cell lines were investigated (J82 and UMUC3) and a less 

severe level of hypoxia (1% oxygen).  There was a consistent significant decrease in PD-L1 

protein expression after exposure to hypoxia in all three bladder cancer cell lines and at 

both 0.1% and 1% oxygen concentrations (Figure 3.4; Table 3.1).  Across the three cell lines 

there was also a continued attenuation of the IFNγ-driven PD-L1 induction in hypoxia (Figure 

3.4; Table 3.1).  
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Figure 3.4. Hypoxia (0.1% and 1%) decreases PD-L1 expression in a panel of human bladder cancer cells. 
Flow cytometry analyses show the surface expression of PD-L1 decreases after culture in hypoxia. Culture in 0.1% and 1% 
O2 for 24 h decreases the expression of PD-L1 compared with the levels present when cultured under 20% O2 in T24 (A), 
J82 (B), UMUC3 (C) bladder cancer cells. Cells were seeded and left to adhere for 24 h before placing in 0.1% or 1% O2 for 
24 h and 10 ng/mL IFNγ added to the relevant wells. Data are the mean ± standard error of the mean (SEM) of the mean 
fluorescence intensity of 10,000 viable cells from replicates of at least two independent experiments normalised to the 
normoxia untreated condition to show the relative fold change.  Statistical tests are unpaired t tests performed in 
GraphPad Prism with p values represented as follows: ns = not significant, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001. 
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Table 3.1. Tabulated data from the graphs shown in Figure 3.4. 

 0.1% O2  1% O2 

T24 J82 UMUC3 T24 J82 UMUC3 

20% O2 1.00 1.00 1.00 20% O2 1.00 1.00 1.00 
0.1% O2 0.85 0.83 0.83 1% O2 0.82 0.72 0.93 

20% O2 + IFNγ 1.88 1.74 4.72 20% O2 + IFNγ 2.79 1.78 5.00 

0.1% O2 + IFNγ 1.47 1.21 1.20 1% O2 + IFNγ 1.96 1.33 3.55 
Data are the mean fluorescence intensity of 10,000 viable cells from replicates of at least two independent experiments 
normalised to the normoxia untreated condition to show the relative fold change. 

3.4.3 PD-L1 levels decrease as cell density increases and a PD-L1 increase in hypoxia occurs 
only when cells are highly confluent 

The effects of cell density on hypoxia-induced changes in PD-L1 expression were explored in 

T24 cells.  This cell line was used due to its fast proliferation rate, with a doubling time of 

around 20 h (Bubeník et al., 1973; Masters et al., 1986), which facilitated the assessment of 

increasing cell density.  As similar effects were seen in both 0.1% and 1% hypoxia, the less 

severe 1% hypoxia was taken forward for further experiments to minimise stress on the 

cells.  Density gradient experiments showed PD-L1 protein and mRNA expression decreased 

significantly with increasing cell density in both normoxia and hypoxia (Figure 3.5, Figure 

3.6).  A significant hypoxia-induced increase in PD-L1 expression was only seen in cells 

seeded at the highest densities (Figure 3.5).  Increasing cell density had no effect on viability 

(Figure 3.7). 

 
Figure 3.5. PD-L1 expression decreases with increasing cell density and hypoxia-induced PD-L1 increase occurs only in high-
density cells. 
As T24 cell seeding density increases, the protein and mRNA expression of PD-L1 decrease in both normoxia and hypoxia 
conditions (p<0.001 and p=0.0011 respectively). When the cells are cultured at higher densities (100% confluence) PD-L1 
protein and mRNA expression increases after culture in hypoxia compared with normoxia (p=0.05576 and p=0.03721 
respectively).  Cells were counted and seeded at different densities, left to adhere for 24h and then incubated for 24h. A) 
Flow cytometry shows the change in surface expression of PD-L1. Data are the mean ± standard error of the mean (SEM) of 
the mean fluorescence intensity of 10,000 viable cells from replicates of three independent experiments normalised to 
normoxia untreated condition to show the relative fold change. B) qPCR shows changes in mRNA levels relative to the 
mRNA levels of T24 cells cultured in a 20% O2 incubator. Data are the mean ± standard error of the mean (SEM) from three 
independent experiments plated in triplicate and the difference calculated using the delta-delta Ct method relative to the 
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expression of reference gene SDHA.  Statistical tests are linear models and ANOVA performed using R and RStudio with p 
values represented as follows: ns = not significant, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001. 

 
Figure 3.6 Phase contrast microscopy pictures of the different seeding densities after 24 h incubation in each condition.  
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Figure 3.7. Increased cell seeding density does not induce excessive cell death in T24 cells. 
Flow cytometry shows no increase in cell death neither by culture in 0.1% O2 nor as the cell seeding density increases.   A 
live/dead stain was incorporated into the assay, which only enters cells with compromised membranes.  Gating around 
cells with no dye present and comparing with total population allows for the analysis of the proportion of viable cells.  Data 
are the mean ± standard error of the mean (SEM) from at least three independent experiments performed in duplicates, 
with 10,000 viable cells analysed per sample.  
 

3.4.4 PD-L1 gene expression correlates positively with hypoxia in MIBC patients 

To elucidate further the potential relationship and clinical relevance between hypoxia and 

PD-L1, in silico analyses were performed using gene expression datasets from two bladder 

cancer cohorts.  A bladder cancer specific hypoxia signature previously published was used 

to assign hypoxia scores, which were then correlated with the RNA expression of PD-L1 

(CD274) (Yang, Taylor, et al., 2017).  A significant positive correlation was seen between 

hypoxia signature scores and the expression of PD-L1 in both cohorts (Figure 3.8 A, B).  The 

median hypoxic score across each cohort stratified patients into low and high hypoxia 

groups.  In both cohorts, the high hypoxia tumours had a significantly higher expression of 

PD-L1 compared with low hypoxia tumours (Figure 3.8 C, D).  
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Figure 3.8. In silico analyses show a positive association between hypoxia and PD-L1 in muscle-invasive bladder tumours. 
Analyses involved microarray data from the BCON trial normalised previously using aroma package and filtered to include 
only tumours stage 2 and above (n=142) and the TCGA-BLCA RNASeq2GeneNorm dataset downloaded using the 
Bioconductor package TCGAutils  and filtered to include only tumours of a known stage 2 and above (n = 404).  Hypoxia 
scores were applied to each tumour sample using a previously published 24-gene bladder cancer hypoxia signature. 
Hypoxia signature scores were plotted against the expression of PD-L1 in A) BCON and C) TCGA cohorts. R2 values were 
calculated using Pearson’s correlation coefficient and the p values represent a linear model analysis. Tumours were 
stratified into hypoxia low or high using the median of the hypoxia scores for each cohort, and plotted against the PD-L1 
expression in the B) BCON and D) TCGA cohorts. P values were calculated using a t-test between the two groups. p values 
are represented as follows: ns = not significant, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001.  
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3.4.5 Hypoxia and IFNγ-signalling signature scores correlate positively in muscle-invasive 
bladder cancer patients 

A published IFNγ gene signature representing the extent of IFNγ signalling was used to 

attribute IFNγ scores to the BCON and TCGA cohorts (Ayers et al., 2017).  There were 

positive correlations between hypoxia and IFNγ signature scores (Figure 3.9 A, B).  The 

tumours were again stratified into low and high hypoxia and in both cohorts the high 

hypoxia tumours showed significantly higher IFNγ scores compared with the low hypoxia 

tumours (Figure 3.9 C, D).  

 
Figure 3.9. In silico analyses show a positive association between hypoxia and IFNγ-signalling in muscle-invasive bladder 
tumours. 
Hypoxia scores were applied to tumours from BCON and TCGA cohorts filtered to include stage 2 and above only.  A 
published 6-gene IFNγ gene signature was used to attribute an IFNγ score to each tumour. These scores were plotted 
against the hypoxia scores in the A) BCON and C) TCGA cohorts. R2 values were calculated using Pearson’s correlation 
coefficient and the p values represent a linear model analysis. Tumours were stratified into hypoxia low or high using the 
median of the hypoxia score from each cohort, and plotted against the IFNγ signature score in the B) BCON and D) TCGA 
cohorts. P values were calculated using a t-test between the two groups. p values are represented as follows: ns = not 
significant, * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001. 
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3.5 Discussion 

Several new findings emerged from this study.  First, hypoxia decreased PD-L1 expression 

and abrogated IFNγ-induced increases in PD-L1 in bladder cancer cells.  Second, PD-L1 

expression decreased with increasing cell seeding density, which was pronounced in cells 

cultured in normoxia versus hypoxia.  Third, a hypoxia-induced increase in PD-L1 was only 

seen with the highest cell seeding densities when there was a marked down-regulation of 

PD-L1 in cells grown in normoxia.  Fourth, PD-L1 gene expression, as well as IFNγ-signalling 

expression, correlated positively with hypoxia in bladder cancers in silico.  

The observation that hypoxia decreases PD-L1 expression initially appears to conflict with 

conclusions made in published literature.  Noman et al. (Noman et al., 2014) concluded that 

hypoxia induced an upregulation of PD-L1 in a panel of murine and human cell lines.  

However, the finding appears to be tissue-type specific as only one (B16-F10) of four murine 

cell lines (B16-F10 melanoma; LLC lung; CT26 colon; 4T1 mammary) studied showed an 

increase in the percentage of PD-L1 positive cells after culture in 0.1% oxygen.  There was a 

minimal increase at 72 h in the lung, no change in the colon, and a non-significant decrease 

in the mammary cell line.  In the human cell lines, there was a marked hypoxia-induced 

increase in PD-L1 in melanoma (T1, M4T), a small significant increase in lung (IGR-Heu), and 

no change in breast (MCF-7).  In addition, all the hypoxia results (24 h, 48 h, 72 h) were 

compared with 72 h normoxia data.  Interestingly, across the cell lines, there were no 

significant changes observed at 24 h, except for the murine melanoma cell line, and most of 

the significant changes were seen at the 72 h time-point.  As cell density will increase at the 

later time-point, the results might be affected by the cell density effect we found here.   

Barsoum et al. (Barsoum et al., 2014) also reported hypoxia-induced upregulation of PD-

L1 expression.  They incubated cells in 0.5% oxygen for 24 h and showed an increase in PD-

L1 expression in human prostate (DU145) and breast (MDA-MB-231) cancer cells.  The 

authors stated that all their experiments were conducted using cultures that did not exceed 

70% confluence.  The study also used siRNA knockdown experiments to show that PD-L1 

upregulation was HIF1α dependent.  HIFs bind to gene promoter regions known as hypoxia 

response elements (HREs).  In 2011, Schödel et al. used chromatin immunoprecipitation 

sequencing (ChIPseq) to perform high resolution mapping of HIF binding sites in MCF-7 cells; 

PD-L1 was not in their 300+ list of high stringency HIF1 and HIF2 binding sites (Schödel et al., 

2011).  Given that Noman et al. also saw no effect of hypoxia on the expression of PD-L1 in 
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MCF-7 cells, but Barsoum et al. identified HREs in the PD-L1 gene in DU145 cell lines as well 

as an hypoxia-induced increase in PD-L1 expression, it is possible that the hypoxia-induced 

upregulation of PD-L1 is tissue specific (Barsoum et al., 2014; Noman et al., 2014).  To our 

knowledge this is the first documentation of the effects of hypoxia on PD-L1 expression in 

bladder cancer cell lines.  The current literature outlines a discrepancy between the effects 

of hypoxia on the expression of PD-L1 across cell lines of different tissue origins and further 

comprehensive characterisation across an extensive panel of other cancer cell lines is 

required for more definitive conclusions.  

Hypoxic cells preserve energy by reducing metabolic processes via HIF regulation of 

various genes (Vaupel and Harrison, 2004).  Decreases in cellular metabolism also occur as a 

result of increasing cell density, and a recently published report underlines the importance 

of considering cell density in in vitro experiments and how cell density affects cellular 

metabolic changes (Wright Muelas et al., 2018; Trajkovic et al., 2019).  Therefore, the PD-L1 

decrease we found in cells cultured in hypoxia could be due to reduced cellular metabolism.  

Furthermore, cells proliferate faster in normoxia than in hypoxia due to having higher 

cellular metabolism.  Therefore, in the highly dense cells, a cell density-mediated reduction 

in metabolism should occur faster and be more pronounced in normoxia.  The observed 

effect, therefore, might be an abrogated decreased PD-L1 expression occurring in the 

densely packed hypoxic conditions, rather than a true cellular hypoxia-driven increase and 

warrants further investigation.  In support of this suggestion, several publications showed 

that increasing cell density results in decreased expression of cell surface markers including 

transforming growth factor beta (TGF-β) receptor in fibroblast cells, epidermal growth 

factor receptors (EGFRs) in breast cancer cells, and tumour necrosis factor (TNF) receptors in 

HeLa epithelial and myeloid HL-60 cell lines (Kuszynski, Miller and Rizzino, 1993; Pocsik et 

al., 1994; Petridou et al., 2000).    

Increasing cell density leads to contact inhibition and cell cycle arrest via the Hippo/YAP 

pathway (Gérard and Goldbeter, 2014), and interacts with multiple intracellular signalling 

pathways (Lallemand et al., 1998; Yuan et al., 2011; Pavel et al., 2018) that regulate cyclin D 

expression (Duronio and Xiong, 2013).  PD-L1 expression is also affected directly by the cell 

cycle via cyclin D regulation (Zhang et al., 2018) and via interactions with multiple cell 

signalling pathways, e.g., via PI3K/AKT, JAK/STAT3, WNT, NFkB and MAPK (Shen et al., 2019; 

Han, Liu and Li, 2020).  This complex interplay between cell density, cell cycle, cell signalling 



 
107 

and PD-L1 expression is yet to be fully elucidated and more research is needed to 

understand how hypoxia affects the interactions.  Although we showed cell density affects 

the expression of PD-L1, we have not identified whether it is a direct effect, or due to cell 

density-mediated changes in cell cycle or cell signalling.  The discrepancy in some of the in 

vitro results could potentially be explained by further investigations into the cell cycle and 

cell signalling pathways to determine how these affect the changes in PD-L1 expression in 

response to hypoxia. 

To further explore the relationship between hypoxia and PD-L1 beyond the in vitro cell 

culture experiments I performed in silico analyses in patient tumours.  The BCON trial 

randomised patients to receive either radiotherapy or radiotherapy plus hypoxia-modifying 

carbogen and nicotinamide (CON).  TCGA-BLCA is a cohort of bladder cancer patients who 

underwent surgery and the gene expression dataset from these tumours is publicly 

available.  The positive correlations seen between hypoxia signature scores and PD-L1 

expression in both cohorts indicates that, despite the cell line findings, there is a 

relationship between the extent of hypoxia and increased PD-L1 expression in bladder 

cancer.  This has implications for the treatment of MIBC whereby some patients may 

potentially benefit from a combination of hypoxia-modifying therapy with immunotherapy 

agents.  In the same cohorts, we saw a positive correlation between hypoxia and IFNγ-

signalling signature scores.  IFNγ is known to stimulate PD-L1 and increased PD-L1 

expression in the more hypoxic tumours could be a direct result of increased IFNy signalling 

(Garcia-Diaz et al., 2017).  Current in silico investigations have shown more immune 

infiltrates present as tumour hypoxia increases.  As IFNγ is a central immune signalling 

molecule that is produced by many immune infiltrates, this provides an explanation for the 

increased IFNγ-signalling in the more hypoxic tumours.  This suggestion needs investigating 

further.  Taken together, our in vitro and in silico findings show that, although hypoxia-

mediated cellular PD-L1 upregulation is not seen in bladder cancer cell lines, there is an 

overall increased expression of PD-L1 as tumour hypoxia increases in bladder cancer, which 

could be a result of increased IFNγ-signalling in the more hypoxic TMEs leading to an 

increased PD-L1 expression.  These results highlight the importance of including patient 

sample analysis alongside cell line work when investigating immune-related contexts to 

provide translatable findings that account for the immune tumour microenvironment. 
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In conclusion, I report for the first time that in bladder cancer cells the in vitro cell density 

affects PD-L1 expression in contrast to an absence of hypoxia-induced increase in PD-L1 

expression.  These findings underlie the importance of cell density on the expression of PD-

L1 in vitro and the need to address this in further publications.  The clinical data provide 

evidence that hypoxia may induce an immunosuppressive TME in bladder cancer and 

highlight the importance of further studies to investigate the underlying mechanisms.  
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4 Low CD8 T cell counts predict benefit from hypoxia-modifying 

therapy in muscle-invasive bladder cancer 

The results presented in this chapter are based on a manuscript that is currently under 

consideration in the International Journal of Radiation Oncology, Biology and Physics, which 

has been re-formatted and edited for this thesis.  

4.1 Abstract  

Background:  In the tumour microenvironment, hypoxia has been shown to inhibit CD8+ T 

cells and affect other immune cell populations, such as macrophages and Tregs, and the 

immune checkpoint molecule PD-L1.  For this study, protein level analysis was used to see if 

patients with low tumour CD8+ T-cells benefitted from hypoxia-modifying therapy.  

Methods: The BCON trial randomised patients with muscle-invasive bladder cancer (MIBC) 

to radiotherapy alone or with hypoxia-modifying carbogen plus nicotinamide (CON).  Tissue 

microarrays of diagnostic biopsies from 116 patients were stained using multiplex 

immunohistochemistry (IHC) with immune-related markers (CD8, CD4, FOXP3, CD68, PD-L1).  

Hypoxia was assessed using CA9 IHC (n=111).  Linked transcriptomic data (n=80) identified 

molecular subtype.  Relationships with overall survival (OS) were investigated using Cox 

proportional hazard models.    

Results: Low vs high CD8 T-cell counts associated with a worse OS across the whole cohort 

(n=116; HR 0.47, 95% CI 0.28-0.78, p=0.003) and also in the radiotherapy alone group (n=61; 

HR 0.39, 95% CI 0.19-0.76, p=0.005).  Patients with low CD8+ T-cells benefited from CON 

(n=87; HR 0.63, 95% CI 0.4-1.0, p=0.05), but those with high CD8 T cells did not (n=27; 

p=0.95).  CA9 positive tumours had fewer CD8+ T-cells (p=0.03).  Prognostic significance of 

low CD8+ T-cells in the whole cohort remained after adjusting for clinicopathologic variables 

(HR 0.33, 95% CI 0.18-0.59, p<0.001).  Basal vs luminal subtype had more CD8+ cells 

(p=0.02) but was not prognostic (n=80; p=0.26).  Exploratory analyses with other immune 

markers did not improve on findings obtained with CD8 counts. 

Conclusions:  In MIBC low CD8+ T-cell counts predicted benefit from CON addition to 

radiotherapy.  
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4.2 Introduction 

Hypoxia and an immunosuppressive tumour microenvironment (TME) are both poor 

prognostic factors that contribute to radiotherapy and chemotherapy resistance in MIBC 

(Theodoropoulos et al., 2004; Walshaw et al., 2018).  They are targetable by hypoxia-

modifying therapy and immune checkpoint inhibitors (ICIs) respectively and are therefore of 

interest as potential biomarkers.  Adding hypoxia-modifying carbogen and nicotinamide 

(CON) to radiotherapy improves survival outcomes in bladder cancer patients (Hoskin et al., 

2010; Song et al., 2021).  We showed previously this benefit is only seen in patients with the 

most hypoxic tumours (Yang, Taylor, et al., 2017).   

There is growing evidence that hypoxia contributes to a suppressive immune tumour 

microenvironment (TME).  Specifically, hypoxia decreases CD8+ T cell activity and 

proliferation in the TME (B. Wang et al., 2021).  In mouse models, systemic oxygenation and 

locally delivered oxygen ameliorated this effect, restored the anti-tumour cytotoxic effects 

of CD8+ T cells and improved the efficacy of ICIs (Hatfield et al., 2014, 2015; Colombani et 

al., 2021; X. Liu et al., 2021).  Therefore, patients with low tumour CD8+ T cell counts might 

benefit from hypoxia-targeting CON given with radiotherapy.  

There is a need to find biomarkers that predict ICI response (Cheng et al., 2018; 

Wołącewicz et al., 2020).  A systematic review and meta-analysis of 33 studies involving 

multiple cancers, including bladder, showed high tumour infiltrating CD8+ T cells associated 

with benefit from ICIs whether given as single-agents or as part of combination treatments 

(F. Li et al., 2021).  

Hypoxia can also drive an immunosuppressive TME by increasing pro-tumour immune 

infiltrates, such as regulatory T helper cells (Tregs; CD4+FOXP3+) and macrophages (CD68+), 

and the immunosuppressive immune checkpoint molecule PD-L1 (Aouali et al., 2017).  In the 

previous chapter, I showed that in MIBC the more hypoxic tumours had increased 

expression of PD-L1.  PD-L1 is also of current interest as a potential biomarker and predictor 

of response to ICI treatment (van Wilpe et al., 2020).  

Therefore, the primary objective in this chapter was to investigate whether patients with 

low tumour CD8+ T cell counts benefited from having CON with radiotherapy.  The study 

involved tumour samples collected from patients enrolled in the BCON trial that randomised 

MIBC patients to radiotherapy alone (RT) or with CON (RT+CON).  Secondary objectives 

were to (1) carry out additional exploratory analyses to investigate other suppressive 
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immune markers (CD4, FOXP3, CD68, PD-L1) in the context of hypoxia and prognosis; and 

(2) compare findings with molecular subtypes as an emerging biomarker for bladder cancer.  

4.3 Materials and methods 

4.3.1 BCON Cohort 

BCON was a prospective multicentre phase III clinical trial that randomised patients to 

radiotherapy alone or radiotherapy with carbogen and nicotinamide (CON).  Tissue 

microarrays (TMAs) were previously made from diagnostic biopsies of muscle-invasive 

tumour samples as described in Section 2.5.1.  The updated long-term clinical outcomes 

were used in all analyses (Song et al., 2021).  

4.3.2 Multiplex Staining Protocol  

As detailed in 2.5, multiplex immunohistochemistry (IHC) was performed using the OpalTM 

detection system for CD8, CD4, CD68, FOXP3, and PD-L1.  The protocol involved multiple 

cycles of incubation with primary antibody, secondary antibody and OpalTM detection 

separated by a short denaturation.  The slides were washed, counter-stained with DAPI and 

then cover-slipped.  A multi-spectral image of each core was then acquired at 20x 

magnification on a Vectra microscope.  After multispectral scanning, the slides were 

spectrally unmixed using inForm software with a pre-prepared spectral library.  The library 

was prepared using single-plex controls to acquire the individual spectrum of each 

fluorophore, alongside DAPI and autofluorescence, under the same experimental 

parameters as the multiplexed slides.  

4.3.3 Data Analysis 

Image analysis was performed in HALO 3.2 with the TMA Module to manually exclude 

artefacts and then obtain counts of each marker per core.  The marker quantification was 

then exported to R where normalisation was performed by calculating the percentage of 

each marker from the total cell count across all cores of each patient (n=116).  This method 

was chosen to account for cores of different sizes and different numbers of cores per 

patient.  CA9 IHC scores previously generated were used to assign patients a CA9 status of 

present or absent (n=111) (Eustace, Irlam, et al., 2013).  CA9 status was used instead of our 

hypoxia signature as using the hypoxia signature was not significant due to constricted 

patient numbers.   
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4.3.4 Statistical analysis 

Analyses were performed using R and RStudio with associated packages, as detailed in 

Section 2.5.6.  Non-parametric statistics (Wilcox test) were used.  Kaplan-Meier curves and 

multivariable analysis were generated via Cox proportional hazard models using R packages 

“survival” and “survminer”.  Cumulative incidence curves were plotted and the significance 

calculated using “cmprsk” package.   

 

4.4 Results 

4.4.1 Study cohort 

The study cohort comprised 150 patients and TMAs with 353 cores.  Following staining and 

filtering out poor quality cores due to folds/dropouts/scanning errors, cores (n=301) from 

116 patients were available for analysis (Figure 4.1).  Each patient had 1-3 different 1 mm 

cores analysed, with an average of 2 cores per patient.  A representative multiplex IHC 

image of a core is shown in Figure 4.2.  Table 4.1 shows no differences in the 

clinicopathologic characteristics of the study cohort compared with the BCON trial cohort.  

 

Figure 4.1. Study consort flowchart.  
Abbreviations: TMA=Tissue Microarray; FFPE=Formalin Fixed Paraffin Embedded; IHC=immunohistochemistry. 
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Figure 4.2 Multiplexed IHC image of a representative BCON TMA core. 
a) Composite multiplex image of all stains using pseudo-colours with DAPI in blue, PDL1 in red, CD68 in pink, CD8 in orange, 
CD4 in yellow and FOXP3 in green. c) A composite image of the same core but without the DAPI stain displayed. The 
following images use the same pseudo-colours on the same core to represent the visualisation of each marker after 
spectral unmixing b) DAPI, d) PDL1, e) CD68, f) CD8, g) CD4, h) FOXP3, i) CD4 and FOXP3 co-localisation representing Treg 
cells. 
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Table 4.1. Table of characteristics comparing the multiplex study and overall trial cohorts 

Characteristic Multiplex (n=116) Overall (n=296) 

Age 
  

   Mean (SD) 73.9 (7.21) 72.4 (7.64) 
   Median [Min, Max] 75.0 [52.0, 88.0] 74.0 [44.0, 89.0] 

   Missing 0 (0%) 1 (0.3%) 

Gender 
  

   Male 96 (82.8%) 234 (79.1%) 

   Female 20 (17.2%) 61 (20.9%) 

Tumour de-bulking 
  

   Complete 46 (39.7%) 120 (40.5%) 
   Partial 40 (34.5%) 91 (30.7%) 

   Biopsy 28 (24.1%) 74 (25.3%) 

   Missing 2 (1.7%) 10 (3.4%) 

Grade 
  

   2 17 (14.7%) 45 (15.2%) 
   3 98 (84.5%) 249 (84.1%) 

   Missing 1 (0.9%) 2 (0.7%) 
Tumour stage 

  

   2 89 (76.7%) 215 (73.0%) 

   3 22 (19.0%) 67 (22.6%) 
   4 5 (4.3%) 12 (4.1%) 

   Missing 0 (0%) 1 (0.3%) 
Treatment 

  

   RT 61 (52.6%) 148 (50.0%) 

   RT+CON 55 (47.4%) 148 (50.0%) 

Ischaemic heart disease 
  

   Absent 105 (90.5%) 264 (89.2%) 

   Present 11 (9.5%) 31 (10.5%) 

   Missing 0 (0%) 1 (0.3%) 

Hypertension 
  

   Absent 76 (65.5%) 202 (68.2%) 

   Present 40 (34.5%) 93 (31.4%) 
   Missing 0 (0%) 1 (0.3%) 

Diabetes 
  

   Absent 103 (88.8%) 272 (91.9%) 
   Present 13 (11.2%) 23 (7.8%) 

   Missing 0 (0%) 1 (0.3%) 
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4.4.2 Tumours with low tumour CD8+ cells associate with a poor prognosis  

All markers had a non-normal distribution and non-parametric statistics were subsequently 

used (Figure 4.3).  The percentage of CD8+ cells ranged from 0 to 44% per patient (Table 

4.2).  There was a non-linear relationship between the percentage of CD8+ cells and overall 

survival.  CD8+ T cell counts stratified into quartiles showed a significant but non-linear 

relationship with overall survival (p=0.014) with the upper quartile as an outlier (Figure 4.4).  

The upper quartile was used to stratify patients into CD8+ high and low groups.  Patients 

with CD8+ low tumours had significantly worse overall (HR 0.47, 95% CI 0.28-0.78, p=0.003) 

and local progression free (HR 0.52, 95% CI 0.32-0.87, p=0.011) survival (Figure 4.5).  

 
Figure 4.3 The percent of each marker was calculated per patient by dividing the number of cells positive for the marker 
across all cores of one patient by the total number of cells (DAPI count) across all cores for each patient. Histograms were 
plotted using R Studio. 

 

 
Table 4.2. The differences in range (min, max), mean and median population densities for each marker (n=116). 

Marker Min Max Mean Median 

PDL1+ 0 90.26 2.78  0.06  

CD68+ 0 38.29 6.74 4.68  

CD8+ 0 43.52   7.54 3.09   

CD4+ 0 72.73  8.54  4.60  
FOXP3+CD4+ 0 7.85 0.53  0.19  

Values are percentages.  Counts of each marker were obtained by calculating the percentage of each marker from the total 
cell count across all cores of each patient. 
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Figure 4.4. Kaplan-Meier survival curves showing the non-linearity between overall survival and percent of CD8 T cells. 
The percent of CD8+ T cells was stratified into quantiles and Kaplan-Meier curves plotted using the “survival” package in R 
(n=116). 

 
Figure 4.5. Kaplan-Meier plots of survival according to percent CD8+ T cells. 
p values are from log-rank tests calculated by R packages “survival” and “survminer”.  CD8+ T cells are stratified into low 
and high using the upper quartile as the cut-off.  A) Overall survival and B) local progression free survival in the whole 
cohort according to percent CD8+ T cells low vs percent CD8+ T cells high.   
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4.4.3 Low tumour CD8+ cell counts predict benefit from hypoxia modification 

Low CD8+ cells were an adverse prognostic factor in patients who received radiotherapy 

alone for overall (n=61; HR 0.39, 95% CI 0.19-0.76, p=0.005) and local progression free (HR 

0.38, 95% CI 0.19-0.75, p=0.004) survival (Figure 4.6 A, C).  Low counts were not prognostic 

in patients who had radiotherapy plus CON for both overall (p=0.17) and local progression 

free (p=0.55) survival (Figure 4.6 B, D).  Patients with low CD8+ T cell counts had better 

overall (HR 0.63, 95% CI 0.4-1.0, p=0.05) and local progression free (HR 0.63, 95% CI 0.4-1.0, 

p=0.052) survival when CON was given with radiotherapy (Figure 4.7 A, C).  Those with high 

CD8+ T cell counts derived no benefit from hypoxia modification (Figure 4.7 B, D).  Table 4.3 

shows similar clinicopathologic characteristics between the RT versus RT+CON groups and 

low versus high tumour CD8 counts groups.  

 
Figure 4.6. Kaplan-Meier curves for the two treatment arms of BCON with patients stratified by the upper quartile of the 
percentage of CD8+ T cells. 
p values are from log-rank tests calculated by R packages “survival” and “survminer”. Overall survival for patients receiving 
A) RT only or B) RT+CON; and local progression free survival for patients receiving B) RT only or D) RT+CON.  
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Figure 4.7. Kaplan-Meier curves for patients with low versus high CD8+ T cells with patients stratified by treatment with RT 
or RT+CON.  
p values are from log-rank tests calculated by R packages “survival” and “survminer”. Overall survival for tumours stratified 
as A) CD8+ low and B) CD8+; and local progression free survival for C) CD+8 low and D) CD8+ high. 
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Table 4.3. Clinicopathologic characteristics of the multiplex study cohort. 

Characteristic RT 
(N=61) 

RT+CON 
(N=55) 

CD8 low 
(N=87) 

CD8 high 
(N=29) 

Overall 
(N=116) 

Age (years) 
     

   Mean (SD) 74.7 (7.24) 72.9 (7.13) 73.5 (7.63) 75.0 (5.74) 73.9 (7.21) 

   Median [Min, 
Max] 

76.0 [53.0, 
88.0] 

74.0 [52.0, 
85.0] 

75.0 [52.0, 
86.0] 

75.0 [64.0, 
88.0] 

75.0 [52.0, 
88.0] 

Gender 
     

   Male 49 (80.3%) 47 (85.5%) 73 (83.9%) 23 (79.3%) 96 (82.8%) 

   Female 12 (19.7%) 8 (14.5%) 14 (16.1%) 6 (20.7%) 20 (17.2%) 
Tumour stage 

     

   2 44 (72.1%) 45 (81.8%) 67 (77.0%) 22 (75.9%) 89 (76.7%) 

   3 14 (23.0%) 8 (14.5%) 16 (18.4%) 6 (20.7%) 22 (19.0%) 

   4 3 (4.9%) 2 (3.6%) 4 (4.6%) 1 (3.4%) 5 (4.3%) 

Grade 
     

   2 8 (13.1%) 9 (16.4%) 14 (16.1%) 3 (10.3%) 17 (14.7%) 

   3 53 (86.9%) 45 (81.8%) 72 (82.8%) 26 (89.7%) 98 (84.5%)  

   Missing 0 (0%) 1 (1.8%) 1 (1.1%)  0 (0%) 1 (0.9%) 

Tumour debulking 
     

   Complete 22 (36.1%) 24 (43.6%) 35 (40.2%) 11 (37.9%) 46 (39.7%) 

   Partial 23 (37.7%) 17 (30.9%) 30 (34.5%) 10 (34.5%) 40 (34.5%) 

   Biopsy 15 (24.6%) 13 (23.6%) 20 (23.0%) 8 (27.6%) 28 (24.1%) 

   Missing 1 (1.6%) 1 (1.8%) 2 (2.3%) 0 (0%) 2 (1.7%) 
Hypertension 

     

   Absent 40 (65.6%) 36 (65.5%) 57 (65.5%) 19 (65.5%) 76 (65.5%) 

   Present 21 (34.4%) 19 (34.5%) 30 (34.5%) 10 (34.5%) 40 (34.5%) 

CA9 
     

   Absent 34 (55.7%) 30 (54.5%) 47 (54.0%) 17 (58.6%) 64 (55.2%) 

   Present 24 (39.3%) 23 (41.8%) 37 (42.5%) 10 (34.5%) 47 (40.5%) 

   Missing 3 (4.9%) 2 (3.6%) 3 (3.4%) 2 (6.9%) 5 (4.3%) 

Necrosis 
     

   Absent 28 (45.9%) 26 (47.3%) 39 (44.8%) 15 (51.7%) 54 (46.6%) 

   Present 33 (54.1%) 26 (47.3%) 46 (52.9%) 13 (44.8%) 59 (50.9%) 

   Missing 0 (0%) 3 (5.5%) 2 (2.3%) 1 (3.4%) 3 (2.6%) 

Percent CD8+ T cells 
     

   Low 43 (70.5%) 44 (80.0%) n/a n/a 87 (75.0%) 

   High 18 (29.5%) 11 (20.0%) n/a n/a 29 (25.0%) 

Treatment 
     

   RT n/a n/a 43 (49.4%) 18 (62.1%) 61 (52.6%) 

   RT+CON n/a n/a 44 (50.6%) 11 (37.9%) 55 (47.4%) 
n/a=not applicable 
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4.4.4 Low CD8+T cell counts associate with CA9 positivity but retain independent 
prognostic significance 

Analysis of CA9 IHC staining previously performed on the samples and used as a marker of 

hypoxia showed positive versus negative tumours had fewer CD8+ cells (p=0.03, n=111; 

Figure 4.8).  The patients were further stratified into four groups according to both CA9 

status and CD8+ counts.  Cumulative incidence curves showed that regardless of the hypoxia 

status, both groups with high CD8+ had significantly fewer events for both overall (p=0.011) 

and local progression free (p=0.029) survival compared to those groups with low CD8+ 

counts (Figure 4.9).  A multivariable Cox proportional hazard model analyses for overall 

survival taking into account other clinicopathologic factors showed the percentage of CD8+ 

T cells maintained prognostic significance (HR 0.33 95% CI 0.18-0.59; p<0.001) alongside 

necrosis (p=0.006), tumour de-bulking (p=0.038), treatment arm (p=0.033) and age 

(p=<0.001; Table 4.4).  The presence of CA9 had no independent prognostic significance in 

the multiplex cohort (HR 0.65, 95% CI 0.39-1.08, p=0.1).  

 
Figure 4.8. Boxplot showing the population density for CD8+ T cells when grouped into CA9 absent or present. 
p values are represented as: ns = not significant, *<0.05, **<0.01, ***<0.001 
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Figure 4.9. Cumulative incidence of events for A) overall survival and B) local progression free survival according to percent 
CD8+ T cell low/high, hypoxia low/high. 
Tumours were stratified into hypoxia high or low using the CA9 IHC status and CD8+ high or low using the upper quartile as 
done previously.  Graphs and p values were plotted using the “cmprsk” package in R.  
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Table 4.4. Multivariable Cox proportional hazard model analyses of CD8+ T cell counts with other clinicopathologic 
variables for overall survival.  

Characteristic HR1 95% CI1 p-value 

Age 1.05 1.02, 1.08 <0.001 

Gender 
   

  Male — — 
 

  Female 1.36 0.70, 2.61 0.36 

Tumour stage 
   

  2 — — 
 

  3,4 1.14 0.66, 1.96 0.65 

Grade 
   

  2 — — 
 

  3 0.76 0.39, 1.46 0.41 
Treatment 

   

  RT — — 
 

  RT+CON 0.60 0.38, 0.96 0.033 
Tumour de-bulking 

   

  Complete — — 
 

  Partial 0.93 0.54, 1.58 0.78 

  Biopsy 1.94 1.04, 3.63 0.038 

Hypertension 
   

  Absent — — 
 

  Present 1.48 0.89, 2.48 0.13 
CA9 

   

  Absent — — 
 

  Present 0.65 0.39, 1.08 0.10 

Necrosis 
   

  Absent — — 
 

  Present 2.03 1.23, 3.37 0.006 

Percent of CD8+ T cells 
   

  Low — — 
 

  High 0.33 0.18, 0.59 <0.001 
1 HR = Hazard Ratio, CI = Confidence Interval. p values represent log-rank tests as calculated by the ‘survival’ package in R.  
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4.4.5 Tumours with low CD8+ T cell counts are more likely to have a luminal molecular 
subtype 

Tumours were assigned a molecular subtype using the consensus class subtyping (Kamoun 

et al., 2020).  Percentages of tumour CD8+ T cells were higher in the basal/squamous and 

stroma-rich subtypes (Figure 4.10 A).  I further stratified the subtypes into either luminal or 

basal and excluded the five NE-like patients.  The percentage of CD8+ cells were significantly 

higher in tumours with a basal versus a luminal molecular subtype (p=0.02; Figure 4.10 B).  

Kaplan-Meier curves using the first order subtyping showed no prognostic significance for 

survival between the two subtypes in our cohort (n=80; p=0.26; Figure 4.11).  

 
Figure 4.10. Boxplots showing the association between the percent of CD8+ T cells and the molecular subtype.  
Molecular subtypes are assigned as A) using “consensusMIBC” package in R (n=80) and B) further stratification into basal 
(basal/squamous and stroma-rich) and luminal (LumP, LumU, LumNS) sub subtypes with NE-like excluded (n=75).  
Statistical tests are Wilcox tests with p values represented as: ns = not significant, *<0.05, **<0.01, ***<0.001. 
 

 
Figure 4.11. Kaplan-Meier plots for overall survival according to first order molecular subtype. 
Subtypes are stratified from consensus class classifications into basal (basal/squamous and stroma-rich) and luminal (LumP, 
LumU, LumNS) subtypes with NE-like excluded (n=75).  p values are log rank tests calculated using “survival” and 
“survminer” packages in R.   
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4.4.6 Exploratory analyses with PD-L1, macrophages and other T cell types 

Of the other markers, only CD4+ T helper cells counts were positively associated with CA9 

expression (p=0.007;Table 4.5).  However, there was no significant association with overall 

survival (p=0.36).  None of the other markers showed any significant prognostic relevance.  

Table 4.2 summarises the range of counts obtained with the other multiplexed immune 

markers studied.  There was significantly higher expression of CD68 and PDL1 in the basal 

group compared to the luminal group (p=0.037, p<0.001, respectively; Figure 4.12).   

Table 4.5. Relationships between immune markers and hypoxia in 116 BCON patients. 

Marker All patients 
(116) 

CA9 absent 
(64) 

CA9 present 
(47) 

p value 

PDL1+ 0.06 0.06 0.07 0.79 

CD68+ 4.68 5.70 4.39 0.59 

CD8+ 3.09 4.49 1.72 0.03 

CD4+ 4.60 7.23 2.10 0.01 

CD4+FOXP3+ 0.19 0.19 0.19 0.71 
Values are the median of the percentage of each marker, as described in Section 4.3.3, according to all tumours in the 
cohort or stratified by tumours classified as CA9 absent or present.  p values are results from Wilcox tests performed 
comparing the median values between CA9 present or absent.  
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Figure 4.12. Boxplots showing the association between molecular subtype and the density of each marker. 
Molecular subtypes were assigned using “consensusMIBC” package in R and correlated with the percent of each marker 
(n=80; A-D).  Subtypes were then grouped into luminal (LumP, LumU, LumNS), basal (basal/squamous and stroma-rich) and 
NE-Like subtypes were excluded and correlated with the percent of each marker (n=75; E-H).  Statistical tests are Wilcoxon 
tests with p values represented as: ns = not significant, *<0.05, **<0.01, ***<0.001.  
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4.5 Discussion 

This study found low tumour CD8+ T-cell counts associate with a poor overall prognosis, in 

keeping with previously published findings in bladder cancers (Sharma et al., 2007; van 

Wilpe et al., 2020).  Whole TMA cores were used with no tumour/stroma differentiation.  

Some authors reported that tissue compartmentalisation is important when using CD8+ T 

cells as a prognostic marker.  However, a recent meta-analysis found that, although there is 

a slight superiority to quantifying stromal T cells, CD8+ T cell levels are prognostic regardless 

of localisation pattern (F. Li et al., 2021).  Deng et al. also demonstrated prognostic 

significance of CD8+ T cells on FFPE whole tumour sections in bladder cancer (Deng et al., 

2018).  In these results, I show for the first time that patients with low CD8+ T cells benefit 

from hypoxia modifying therapy, CON.  Another novel finding from this study is that bladder 

tumours with low CD8+ counts have higher CA9 expression, but that CD8+ T cell count 

retains independent prognostic significance in multivariable analysis.  

Hypoxia is an adverse prognostic factor in bladder cancer.  Previous research has shown 

that the presence of necrosis associates with hypoxia, is a negative prognostic factor in the 

BCON cohort and that patients with high necrosis benefit from CON (Eustace, Irlam, et al., 

2013; Song et al., 2021).  Similarly, patients with a high expression of the hypoxia markers 

HIF-1α and CA9 had significantly improved 5-year local relapse free survival with RT+CON 

compared to RT alone (Hunter et al., 2014).  An existing 24-gene bladder cancer hypoxia-

associated signature showed that a high hypoxia score was a negative prognostic factor and 

predicted benefit of therapeutic intervention with CON (Yang, Taylor, et al., 2017).   

These results show that assessing CD8+ T cell status provides additional information to 

assessing tumour hypoxia.  Whilst the results presented here show that patients with low 

CD8+ T cell counts benefit from having CON with radiotherapy, the literature indicates that 

a high CD8+ T cell count predicts benefit from ICIs in both bladder and other cancer types 

(Wang et al., 2019; F. Li et al., 2021).  Therefore, using CD8+ T cell counts as a biomarker 

could stratify patients to receive radiotherapy plus CON (low CD8+ tumours) or standard-of-

care treatment with/without an ICI (high CD8+ tumours).  A recent paper showed MIBC 

patients with low stromal TILs (which correlated with CD8+ levels) have a poor prognosis 

following radical cystectomy suggesting it should not be a treatment option (Sikic et al., 

2022).  Further research is needed to investigate the prognostic significance of CD8+ counts 

in MIBC patients undergoing radiotherapy with chemotherapy (another standard-of-care 
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treatment), but I would hypothesise that low CD8+ counts would also be an adverse 

prognostic factor.   

I found that MIBC with low CD8+ counts were more hypoxic than those with high CD8+ 

counts.  Hypoxia might reduce CD8+ T cell infiltration via a mechanism involving increased 

adenosine signalling.  Adenosine accumulation occurs in tissue as hypoxia increases and this 

has a strong role in the regulation of tumour inflammation.  Specifically, extracellular 

adenosine has been linked with decreasing T cell differentiation and activity in hypoxic 

environments.  It has been shown that T cells either avoid going into, or are inhibited by, 

hypoxic and adenosine rich areas due to the adenosine receptor signalling pathway (Hatfield 

et al., 2015).  Adenosine has been shown to bind to adenosine receptors on effector T cells 

reducing activity and differentiation (Bowser et al., 2017).  Further to this, hypoxia has been 

shown to induce T cell apoptosis by the adenosine receptor signalling pathway (Sun et al., 

2009).   

Importantly these results show that CON improves outcomes in low CD8+ MIBC patients.  

Increasing oxygenation with CON might reduce adenosine signalling and promote T cell 

infiltration to increase anti-tumour immunity.  It has previously been shown in a murine 

model that hyperoxic breathing (60% oxygen) decreased levels of HIF-1α and extracellular 

adenosine.  The hyperoxic breathing was also shown to upregulate MHC class I on the 

tumours cells, which is known to enable CD8+ T cell anti-tumour effects (Hatfield et al., 

2014).  A recent study demonstrated that locally delivered oxygen reduced adenosine 

accumulation in hypoxic cells and restored the cytotoxic ability of CD8+ T cells both in vitro 

and in vivo (Colombani et al., 2021).  Another study in a murine model demonstrated that 

hyperbaric oxygen directly increased T cell infiltration (X. Liu et al., 2021).  Both carbogen 

and nicotinamide could be recapitulating these effects to restore anti-tumour capacity of 

CD8+ T cells in the tumour.    

As molecular subtype is increasingly of interest as a biomarker in bladder cancer, I 

assigned a molecular subtype to the tumours in BCON using the consensus classification and 

discovered a higher proportion of most infiltrates in the basal/squamous and stroma-rich 

subtypes, as reported by others (Kamoun et al., 2020).  However, molecular subtype was 

not prognostic in this study cohort.  Molecular subtypes were previously examined on a 

larger BCON sub-cohort with available transcriptomic data where tumours were stratified 

into basal and luminal subtypes using a different methodology (BASE47) and it was also 
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found not to be prognostic (Song et al., 2021).  In this study, I also investigated other 

suppressive immune markers including PD-L1, CD68+ macrophage populations and Treg 

populations characterised by CD4+ and FOXP3+ co-localisation.  In agreement with 

published literature I found PD-L1 had no clinical relevance as a biomarker in this context 

(Faraj et al., 2015).  None of the other markers showed any prognostic relevance or link with 

CA9.  This was unexpected as it has been shown in other cancer types and in vivo models 

that hypoxia drives an increase in both Tregs and macrophages (Hasmim et al., 2013; B. 

Wang et al., 2021).  

 The limitations of this study include the relatively low numbers of samples and limited 

tissue available for analysis.  Further work is needed to elucidate mechanisms of hypoxia 

causing low CD8+ T cells.  Analysis needs to be done on a bladder cancer ICI clinical trial 

cohort with transcriptomics and available FFPE blocks.  It could then be determined if those 

tumours with low CD8+ T cells are more hypoxic and if those patients with high CD8 T cells 

benefitted from the ICI.  Tumour/stroma stratification could be evaluated to see if 

prognostic strength can be further improved.  However, current analysis shows prognostic 

significance is independent of tissue differentiation, which would make any future test 

simpler and cheaper as it would allow use of the tissue and stain indiscriminately, reducing 

costs and turnaround time.  

These results are hypothesis generating and inform the design of clinical a trial where 

patients are stratified using CD8+ T cell count as a biomarker to receive either RT+CON or 

other oxygen modifying approaches (in patient tumours with low CD8+ counts) or 

randomised to standard-of-care alone or with an ICI (high CD8+ counts).    
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5 Hypoxia associates with inflammatory signalling and increased 

immune infiltrates in muscle-invasive bladder cancer 

5.1 Abstract 

Introduction: Hypoxia and a suppressive TME are both independent negative prognostic 

factors in MIBC that contribute to radiotherapy resistance.  Hypoxia has been shown to 

induce an immune suppressive TME by recruiting myeloid cells that inhibit anti-tumour T 

cell responses.  Recent transcriptomic analyses showed hypoxia increases suppressive and 

anti-tumour immune signalling and infiltrates in bladder cancer.  I sought to investigate the 

relationship between HIF, hypoxia and immune signalling and infiltrates in MIBC. 

Materials and methods: ChIPseq was performed to identify HIF-1α, HIF-2α, and HIF-1β 

binding in the genome of the MIBC cell line T24 cultured in 1% and 0.1% oxygen for 24 h.  

Microarray data from four MIBC cell lines (T24, J82, UMUC3, and HT1376) cultured under 

1%, 0.2% and 0.1% oxygen for 24 h was used.  Differences in the immune contexture 

between hypoxia high and low tumours were investigated using in silico analyses of two 

bladder cancer cohorts (BCON and TCGA) filtered to only include MIBC cases.  GO and GSEA 

were used with the R packages “limma” and “fgsea”.  Immune deconvolution was 

performed using ImSig and TIMER algorithms.  RStudio was used for all analyses. 

Results: In hypoxia, HIF-1α and HIF-2α bound to ~11.5-13.5% and ~4.5-7.5% of immune-

related genes, respectively (1-0.1% O2).  HIF-1α and HIF-2α both bound to genes associated 

with T cell differentiation signalling pathways.  HIF-1α and HIF-2α had distinct roles in 

immune-related signalling.  HIF-1α associated with interferon production specifically, whilst 

HIF-2α associated with generic cytokine signalling as well as humoral and toll-like receptor 

immune responses.  Neutrophil and myeloid cell signalling was enriched under hypoxia, 

alongside Hallmark pathways associated with Tregs and macrophages.  High hypoxia MIBC 

tumours had increased expression of suppressive and anti-tumour immune gene signatures 

and associated with increased immune infiltrates.   

Conclusion: Hypoxia associates with inflammation as there was a positive correlation 

between hypoxia and both immune-related signalling and the presence of immune 

infiltrates in MIBC.  This immune-related increase occurs for both suppressive and anti-

tumour related immune signalling as seen in vitro and in situ using patient tumours.  
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5.2 Introduction 

In the UK, the standard-of-care treatment option for MIBC patients is either radical 

cystectomy or radiotherapy with a radiosensitiser, and neoadjuvant chemotherapy if the 

patient is fit enough (National Institute for Health and Care Excellence, 2015).  In addition to 

direct cancer cell killing, radiotherapy effectiveness depends on eliciting an anti-tumour 

immune response driven by DCs and T cells.  However, radiotherapy can also induce a pro-

tumour inflammatory response by the proportional increase of Treg cells alongside the 

release of cytokines and chemokines that recruit myeloid cell populations such as 

neutrophils, macrophages and MDSCs (Kachikwu et al., 2011; Barker et al., 2015).  Recruited 

Tregs and myeloid cells suppress anti-tumour T cell responses and contribute to disease 

progression and recurrence (Grivennikov, Greten and Karin, 2010).  Therefore, an existing 

suppressive TME potentiates the pro-tumour capabilities of radiotherapy-induced immune 

responses and is a poor prognostic factor for radiotherapy outcomes (Barker et al., 2015).  

Hypoxia is also a poor prognostic factor that contributes to radiotherapy resistance, disease 

progression and recurrence in many solid tumours including bladder cancer (Höckel et al., 

1996; Theodoropoulos et al., 2004; Hunter et al., 2014).  

Cellular responses to hypoxia are mostly regulated by HIF transcription factors, which are 

heterodimers consisting of alpha and beta subunits.  There are three different HIFs, driven 

by different HIF-α isoforms binding to the HIF-1β subunit, of which HIF1 and HIF2 are the 

best studied (Vaupel and Harrison, 2004).  Hypoxia has been linked to driving a suppressive 

immune TME by altering the phenotypes and activities of different immune cells 

(Manoochehri Khoshinani, Afshar and Najafi, 2016).  Hypoxia inhibits antigen uptake of DCs 

and alters their cytokine and chemokine expression, which reduces T cell and increases 

neutrophil recruitment to create a suppressive immune TME (Elia et al., 2008).  Hypoxia has 

also been shown to inhibit neutrophil apoptosis to prolong their normal survival time, and 

promote MDSC inhibition of T cell proliferation and their differentiation into TAMs 

(Walmsley et al., 2005; Corzo et al., 2010).  Moreover, HIF can drive the inflammatory 

potential of neutrophils and TAMs (Cramer et al., 2003), and the latter are found in the 

highest densities in hypoxic regions and tend to have a T cell inhibiting suppressive M2 

phenotype (Talks et al., 2000; Murdoch et al., 2004; Doedens et al., 2010).  Hypoxia, and 

associated adenosine accumulation, can also inhibit CD8+ T cell proliferation and infiltration 

into hypoxic areas, and induce CD8+ T cell apoptosis (Ohta et al., 2006; Sun et al., 2009; 
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Hatfield et al., 2015; Jayaprakash et al., 2018).  Little has been reported specifically for 

human bladder cancer, aside from a study showing macrophage infiltration positively 

correlated with HIF-1α expression, angiogenesis and a poor prognosis (Chai et al., 2008).   

Recently, a meta-analysis investigated the relationship between HIF1Α gene expression 

and the immune TME in ten TCGA cohorts.  The authors showed that in bladder cancer 

there was a positive correlation between HIF1Α  expression and both immune suppressive 

(PD-L1, Tregs, MDSCs and M2 macrophages) and anti-tumour immune (CD8+ T cells, NK 

cells, M1 macrophages and IFN response) gene signatures (Chen et al., 2020).  A high 

correlation between HIF1Α expression, EMT gene signatures and a poor prognosis in the 

bladder cancer cohort provided further support that hypoxia contributes to disease 

progression and is a poor prognostic factor in bladder cancer (Chen et al., 2020).  

The overall aim in this chapter was to investigate the relationship between HIF, hypoxia 

and immune-related signalling in MIBC.  The first objective was to investigate hypoxia-

associated, and HIF-specific, regulation of immune-related genes and signalling pathways in 

MIBC using in vitro approaches.  The second objective was to investigate differences in 

immune signalling and infiltrates between hypoxia high and low MIBC tumours using in silico 

approaches. 

5.3 Materials and methods 

5.3.1 ChIPseq data generation 

ChIPseq was performed as detailed in 2.6.  In brief, T24 bladder cancer cells were cultured 

for 24 h in both 0.1% and 1% O2.  The protein-DNA interactions were cross-linked using ChIP 

cross-link gold and 1% formaldehyde before lysing the cells and shearing the chromatin into 

200-300bp fragments using a Biorupter Pico.  Antibodies against HIF-1α, HIF-2α and HIF-1β 

and Dynabeads Protein G were used for immunoprecipitation (IP).  The fragments were de-

cross-linked and the DNA eluted using the phenol chloroform method.  qPCR was used to 

validate the ChIP experiment before the samples were sequenced and mapped by the CRUK 

MI core facilities.  DNA with no IP was processed and sequenced in parallel as the input 

control.  
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5.3.2 Microarray data generation 

As described in 2.7, microarray data were generated for a panel of MIBC cell lines (T24, J82, 

UMUC3 and HT1376) under various oxygen concentrations (21%, 1%, 0.2% and 0.1%).  Cells 

were cultured for 24 h in each condition and RNA was extracted using RNeasy Plus Mini Kit.  

Gene expression arrays were generated using Clariom S pico HT human assay by Yourgene 

Health and batch corrected using ComBat function from the R package “sva” to produce log2 

summarised gene level expression.  

5.3.3 Data analysis 

R and RStudio were used throughout, alongside the package “tidyverse”.  All ChIPseq data 

analysis was performed using the most stringent filtering parameter (peaks close to 

transcriptional start site and protein coding).  Over representation analysis was performed 

using the “clusterProfiler” to generate the top 20 significant (adjusted p value < 0.05) gene 

ontology biological processes and graphically represented using “enrichplot”.   

Gene signatures from published literature were used as described in 2.8.6.  Hypoxia 

scores were assigned using the Yang et al bladder cancer hypoxia gene signature using the 

median score across the genes in the signature and stratifying into low and high groups by 

the median score of each cohort (Yang, Taylor, et al., 2017).   

 The R package “limma” was used to obtain differentially expressed genes (DEGs; p<0.1) 

across any of the cell lines in each oxygen concentration compared to normoxia.  The 

function “goana” was used with the DEGs to investigate gene ontologies annotated using 

the search term “immun” that were significantly (p<0.05) enriched under hypoxia.  The R 

package “fgsea” was used to perform the GSEA with Hallmark pathways from “msigdb” and 

the DEGs to investigate which Hallmark pathways were significantly (p<0.05) enriched under 

hypoxia.  

 ImSig was applied using the R package “ImSig” (Nirmal et al., 2016) and TIMER 

deconvolution was performed using the website http://timer.cistrome.org/ with BLCA as 

the cancer type (Li et al., 2016).  Further details are in Section 2.8.5.  
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5.4 Results 

5.4.1 ChIPseq identified HIF binding sites with high specificity and low background  

To identify genome wide HIF binding sites I performed ChIP sequencing for HIF-1α, HIF-2α 

and HIF-1β in the T24 MIBC cell line cultured under 1% and 0.1% oxygen.  Figure 5.1 shows 

heatmaps of input, HIF-1α, HIF-2α and HIF-1β signal intensity demonstrating high signal for 

each sample at transcriptional start sites (TSS) and high specificity compared to input 

background signal intensity.  Figure 5.2 shows an enrichment of mapped reads around 

transcriptional start sites for each sample over the input, further illustrating specificity of 

the ChIP samples.  Peaks were filtered according to four different filtering parameters: all 

significant peaks; protein coding peaks; near TSS; and both protein coding and near TSS 

(hereby termed stringent).  Table 5.1 shows that different numbers of peaks were identified 

when comparing oxygen concentrations (0.1% and 1%) and samples (HIF-1α, HIF-2α and 

HIF-1β).  According to the highest stringency filtering level, there were more HIF bound 

genes at 0.1% oxygen compared to 1% oxygen, and ~3 fold more genes bound by HIF-1α 

than HIF-2α (Table 5.1).   
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Input HIF-1a HIF-2a HIF-1b 
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Figure 5.1 Heatmaps of signal intensities for T24 cells cultured under A) 1% O2 and B) 0.1% O2.  
Binding sites for each sample were identified by MACS peak caller and ordered on the y-axis according to signal intensity.  
Heatmaps show the signal (read counts per million mapped reads) expressed as colour intensity (darker colour = higher 
signal).  The x-axis shows genomic region of mapped reads at the transcriptional start sites and across flanking ± 5kb 
regions. Graphs were generated using R package “ngsplot”.  Left to right: input DNA, HIF-1α, HIF-2α and HIF-1β ChIP.  

Input HIF-1a HIF-2a HIF-1b 
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Figure 5.2 Enrichment of mapped reads around the transcriptional start site for each sample under A) 1% O2 and B) 0.1% 
O2.  

The signal reads are expressed as counts per million mapped reads (y-axis) across flanking ± 5kb regions (x-axis).  Graphs 
were generated using package “ngplpots”.  1% O2 data were generated in duplicate, 0.1% O2 data were single replicates.  
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Table 5.1 Number of peaks according to different filtering parameters for T24 cells cultured in different oxygen levels. 

Oxygen Sample AllSigPeaks Protein 
coding 

Near TSS Protein coding and near 
TSS 

0.1% HIF-1α 30486 23536 7514 6801 
HIF-1β 4857 3539 975 848 

HIF-2α 72520 48438 3435 2883 

1% HIF-1α 32123 24728 6712 6043 
HIF-1β 5963 4291 990 847 

HIF-2α 36505 24713 1974 1612 
AllSigPeaks = all significant peaks, TSS = transcriptional start site and near TSS is identified as within x distance from an 
annotated transcriptional start site of a promoter region in the genome.  

 

5.4.2 HIF1 and HIF2 are associated with distinct biological processes 

The large number of identified peaks (Table 5.1) makes analysis at the individual gene level 

difficult.  Therefore, over representation analysis was performed using the genes identified 

by the most stringent filtering level to look at gene sets found more frequently than 

expected by chance.  The top 20 gene sets enriched for HIF-1β show that it affects, as 

expected, processes associated with metabolism and oxygen level (Figure 5.3).  HIF-1α and 

HIF-2α associate with distinct biological processes, which differ depending on the severity of 

hypoxia as shown in Figure 5.4 and Figure 5.5.  Interestingly, in the top 20 enriched gene 

sets for HIF-2α is myeloid cell differentiation under 1% oxygen and TGF-β signalling under 

0.1% oxygen (Figure 5.5).  
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Figure 5.3 HIF-1β targeted pathways enriched in T24 cells cultured in A) 1% and B) 0.1% oxygen. 
Enriched Gene Ontology (GO) biological processes terms were identified with R package "clusterProfiler".  Each term was 
ordered according to statistical significance (BH) and the top-20 results were visualised as bar plots. X-axis refers to the 
number of HIF-1β bound genes from the dataset that were mapped onto that given GO term.  
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Figure 5.4 HIF-1α targeted pathways enriched in T24 cells cultured in A) 1% and B) 0.1% oxygen. 
Enriched Gene Ontology (GO) biological processes terms were identified with R package "clusterProfiler".  Each term was 
ordered according to statistical significance (BH) and the top-20 results were visualised as bar plots. X-axis refers to the 
number of genes from the dataset that were mapped onto that given GO term.  
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Figure 5.5 HIF-2α targeted pathways enriched in T24 cells cultured in under A) 1% and B) 0.1% oxygen. 
Enriched Gene Ontology (GO) biological processes terms were identified with R package "clusterProfiler".  Each term was 
ordered according to statistical significance (BH) and the top-20 results were visualised as bar plots. X-axis refers to the 
number of genes from the dataset that were mapped onto that given GO term.  
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5.4.3 HIF1 and HIF2 associate with unique immune-related processes 

To identify which HIF-bound genes are immune-related, the EBI QuickGO resource was used 

to cross-reference ChIPseq identified genes with those annotated as “immune response” 

(n=2494; Figure 5.6).  The proportion of HIF-bound genes that were immune-related was 

higher in HIF-1α than HIF-2α samples and increased as the oxygen concentration decreased 

from ~4.5-11.5% in 1% oxygen for HIF-2α and HIF-1α, respectively, to ~7.5-13.5% in 0.1% 

hypoxia (Table 5.2).  Most of the genes identified from the 1% dataset are also present in 

the 0.1% dataset as shown in Figure 5.7.  Figure 5.8 shows that a number of these immune-

related genes were unique to either HIF-1α or HIF-2α.  HIF-2α is enriched at an enhancer 

region of the PD-L1 gene (CD274) under 1% and 0.1% hypoxia, which was visualised using 

University of California Santa Cruz (UCSC) genome browser resource (Figure 5.9).  Over 

representation analysis was performed on the subunit unique genes to identify enriched 

immune-related gene sets.  The results from the top 20 gene sets for the unique immune-

related genes bound to each subunit indicate that HIF-1α associates with signalling related 

to adaptive immune responses such as interferon-associated signalling and HIF-2α with 

signalling associated with innate immune responses such as humoural and toll-like receptor 

signalling (Figure 5.10 and Figure 5.11).  Both HIFs are enriched for gene sets associated with 

T cell activation/differentiation in their top 20 enriched immune-related pathways.    

 
Figure 5.6 Venn diagrams showing the number of genes overlapping between ChIPseq genes and immune response genes 
in T24 cells grown in A) 1% oxygen and B) 0.1% oxygen.  
The most stringent filtering parameter for each sample under both oxygen concentrations was cross-referenced with genes 
annotated as “immune response” from the EBI QuickGO resource.   
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Table 5.2 Percentage of immune-related genes bound to each HIF subunit.  

Oxygen 
concentration 

HIF subunit Percent of immune genes bound 

1% HIF-1α 11.79 
HIF-1β 2.20 

HIF-2α 4.77 

0.1% HIF-1α 13.43 
HIF-1β 1.76 

HIF-2α 7.54 
Values are the percentages of genes annotated as immune-related by EBI Quick GO (n=2494) for genes identified as bound 
by each HIF subunit according to the stringent filtering level.  

 

 
Figure 5.7 Venn diagrams showing the overlap between immune response genes identified from each oxygen 
concentration for A) HIF-1α and B) HIF-2α.  
The most stringent filtering parameter for each sample under both oxygen concentrations was used. Immune response 
genes were defined using those annotated as “immune response” from the EBI QuickGO resource. 

 
 

 
Figure 5.8 Venn diagrams showing the number of immune response genes overlapping between the HIF subunits for A) 1% 
oxygen and B) 0.1% oxygen.  
The most stringent filtering parameter for each sample under both oxygen concentrations was used. Immune response 
genes were defined using those annotated as “immune response” from the EBI QuickGO resource. 
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Figure 5.9 ChIPseq tracks for the CD274 gene (encoding the PD-L1 protein) shown using the UCSC genome browser for A) 
1% and B) 0.1% samples. 
Representative tracks are displayed from top to bottom in each image for input: HIF-1α (no filtering), HIF-1α (filtering), HIF-
2α (no filtering), and HIF-2α (filtering). The track shown at the bottom annotates known enhancers and promoters from 
the GeneHancer database where: grey = enhancer and red = enhancer/promoter.  The corresponding peaks above the 
CD274 enhancer region for the HIF-2α tracks demonstrate the enrichment of HIF-2α in this genomic region in T24 cell line.  
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Figure 5.10 Over representation analysis for HIF-1α unique immune genes in A) 1% and B) 0.1% oxygen.  
Enriched Gene Ontology (GO) biological processes terms were identified with R package "clusterProfiler". The top 20 terms 
were plotted and ordered according to count. Count is the number of genes in this dataset that mapped onto the given GO 
term. X-axis is the gene ratio, which is the count divided by the total number of genes annotated to the given GO term, 
presented as a ratio.  
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Figure 5.11 Over representation analysis for HIF-2α unique immune genes in A) 1% and B) 0.1% oxygen.  
Enriched Gene Ontology (GO) biological processes terms were identified with R package "clusterProfiler". The top 20 terms 
were plotted and ordered according to count. Count is the number of genes in this dataset that mapped onto the given GO 
term. X-axis is the gene ratio, which is the count divided by the total number of genes annotated to the given GO term, 
presented as a ratio.  

 

5.4.4 Hypoxia associates with myeloid, neutrophil and CD4+ T cell signalling processes 

Microarray transcriptomics was used to investigate differentially expressed genes (DEGs) 

under hypoxia (0.1%, 0.2%, and 1% O2) compared to normoxia (21% O2) in a panel of MIBC 

cell lines (T24, J82, UMUC3 and HT1376).  Gene ontology (GO) over representation analysis 

was used to investigate DEGs (p<0.1) that were significantly (p<0.05) enriched for biological 

processes under the GO search term “immun” for any of the cell lines under each oxygen 

concentration.  Biological processes associated with myeloid and neutrophil signalling were 

enriched in cells cultured in all three low oxygen concentrations (Table 5.3-5).  Gene set 

enrichment analysis (GSEA) using the Hallmark pathways showed that under hypoxia 

Hallmark_TNFα_signalling_via_NFkB (1%, 0.2%, 0.1% O2) and 
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Hallmark_IL2_STAT5_signalling (1%, 0.2% O2) were in the top ten significantly enriched 

pathways alongside Hallmark_hypoxia and Hallmark_glycolysis (1%, 0.2%, 0.1% O2) and 

Hallmark_epithelial_to_mesemchymal_transition signalling (0.2%, 0.1% O2; Figure 5.12).  

Table 5.3 GO terms filtered by the search term “immun” significantly enriched under 1% hypoxia.  

Term ID Ont N DE P.DE 

somatic diversification of immune receptors via 
germline recombination within a single locus 

GO:0002562 BP 66 7 0.05 

neutrophil mediated immunity GO:0002446 BP 501 43 <0.001 

neutrophil activation involved in immune 
response 

GO:0002283 BP 490 42 <0.001 

myeloid leukocyte mediated immunity GO:0002444 BP 555 46 <0.001 
myeloid cell activation involved in immune 
response 

GO:0002275 BP 549 43 0.003 

leukocyte activation involved in immune 
response 

GO:0002366 BP 716 51 0.01 

cell activation involved in immune response GO:0002263 BP 720 51 0.01 
Ont is the gene ontology term, BP = biological process. N = number of genes in the GO term. DE = number of differentially 
expressed genes from dataset present in the GO term. P.DE = p value for over representation of the GO term in the set.  

 
Table 5.4 GO terms filtered by the search term “immun” significantly enriched under 0.2% hypoxia. 

Term ID Ont N DE P.DE 

somatic recombination of immunoglobulin 
genes involved in immune response 

GO:0002204 BP 51 15 0.01 

somatic diversification of immunoglobulins 
involved in immune response 

GO:0002208 BP 51 15 0.01 

somatic recombination of immunoglobulin gene 
segments 

GO:0016447 BP 56 15 0.02 

immunoglobulin production involved in 
immunoglobulin-mediated immune response 

GO:0002381 BP 61 15 0.05 

somatic diversification of immune receptors via 
germline recombination within a single locus 

GO:0002562 BP 66 16 0.05 

somatic diversification of immunoglobulins GO:0016445 BP 66 16 0.05 

neutrophil mediated immunity GO:0002446 BP 501 100 0.006 
neutrophil activation involved in immune 
response 

GO:0002283 BP 490 95 0.02 

myeloid leukocyte mediated immunity GO:0002444 BP 555 105 0.02 
Ont is the gene ontology term, BP = biological process. N = number of genes in the GO term. DE = number of differentially 
expressed genes from dataset present in the GO term. P.DE = p value for over representation of the GO term in the set.  
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Table 5.5 GO terms filtered by the search term “immun” significantly enriched under 0.1% hypoxia. 

Term ID Ont N DE P.DE 

mitigation of host immune response by virus GO:0030683 BP 2 2 0.04 

positive regulation of tolerance induction 
dependent upon immune response 

GO:0002654 BP 2 2 0.04 

positive regulation of immune response to tumor 
cell 

GO:0002839 BP 13 6 0.03 

positive regulation of myeloid leukocyte cytokine 
production 

GO:0061081 BP 19 8 0.02 

neutrophil mediated immunity GO:0002446 BP 501 127 <0.001 

neutrophil activation involved in immune 
response 

GO:0002283 BP 490 
121 

0.003 

myeloid leukocyte mediated immunity GO:0002444 BP 555 136 0.003 

myeloid cell activation involved in immune 
response 

GO:0002275 BP 549 
127 

0.02 

Ont is the gene ontology term, BP = biological process. N = number of genes in the GO term. DE = number of differentially 
expressed genes from dataset present in the GO term. P.DE = p value for over representation of the GO term in the set.  
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Figure 5.12 Gene set enrichment analysis showing the hallmark pathways significantly enriched under A) 1% B) 0.2%, C) 
0.1% hypoxia ordered according to normalised enrichment score. 
R package “fgsea” was used for the analysis and significance was defined as p value of <0.05, with adjusted p values shown 
in the figure legend using the colour key. 

 

5.4.5 Hypoxia associates with increased immune signalling in tumours 

To assess how hypoxia affects immune signalling in human tumours in situ, BCON and TCGA-

BLCA MIBC gene expression datasets were used to correlate hypoxia scores with expression 

of immune signalling pathways.  The bladder cancer 24-gene hypoxia gene signature was 

correlated with the scores of various published immune-related gene signatures.  Heatmaps 

show there is a higher expression of the immune-related gene signatures in high hypoxia 

tumours (hypoxia scores greater than the median), and low expression in low hypoxia 

samples in the BCON (Figure 5.13 A) and TCGA cohorts (Figure 5.13 B).  Boxplots shown in 

Figure 5.14 show that MIBC with high versus low hypoxia have significantly increased 

expression of the immune-related signatures, apart from mast cell signalling and NK cell 

signalling in the BCON cohort.   
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Figure 5.13 Heatmaps showing the clustering of immune-related signature scores in relation to hypoxia status high or low 
in A) BCON and B) TCGA cohort. R package “ComplexHeatmap” was used to generate the graph.  Hypoxia status was 
stratified by the median hypoxia score of the cohort.   
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Figure 5.14 Boxplots showing the score of immune-related signatures according to hypoxia score for A) BCON and B) TCGA. 
Signature scores were calculated using the mean expression of the genes in the signature. Hypoxia status was stratified by 
the median hypoxia score of the cohort.  Statistics are p values from t tests with p values represented as: ns = not 
significant, *<0.05, **<0.01, ***<0.001, ****<0.0001.  
 



 
152 

5.4.6 Hypoxia associates with an inflamed immune TME 

ImSig and TIMER immune cell deconvolution algorithms were used to assess the presence of 

immune cell infiltrates for low versus high hypoxia tumours in the BCON and TCGA-BLCA 

datasets.  As shown in Figure 5.15 and Figure 5.16, high hypoxia tumours had significantly 

more T cells and neutrophils, as shown by both algorithms.  ImSig further shows high 

hypoxia tumours have significantly more monocytes and NK cells, whilst TIMER shows 

significantly more myeloid dendritic cells.  Macrophages were significantly increased in high 

hypoxia tumours when analysed by ImSig, but not significantly different when using TIMER 

for the BCON cohort (Figure 5.15).  Macrophages were significantly increased in high 

hypoxia tumours as seen by both algorithms in the TCGA cohort (Figure 5.16).  There were 

differences in the levels of B cell infiltrates between the two algorithms, with TIMER 

showing a significant decrease in hypoxic tumours (not significant in TCGA) and ImSig 

showing a significant increase (Figure 5.15-16).   
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Figure 5.15 Boxplots showing the fraction of immune cell population according to hypoxia status for the BCON cohort. 
Immune cell populations were deconvoluted by A) TIMER and B) ImSig algorithms. Hypoxia status was stratified by the 
median hypoxia score of the cohort.  Statistics are adjusted p values (BH) from t tests with p values represented as: ns = 
not significant, *<0.05, **<0.01, ***<0.001, ****<0.0001 
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Figure 5.16 Boxplots showing the fraction of immune cell population according to hypoxia status for the TCGA cohort. 
Immune cell populations were deconvoluted by A) TIMER and B) ImSig algorithms. Hypoxia status was stratified by the 
median hypoxia score of the cohort.  Statistics are adjusted p values (BH) from t tests with p values represented as: ns = 
not significant, *<0.05, **<0.01, ***<0.001, ****<0.0001 
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5.5 Discussion 

There are several novel findings from the work described in this chapter regarding the role 

of HIF and hypoxia in immune-related processes in MIBC.  First, I show that in 1% hypoxia, 

11.8% of immune-related genes bind to HIF-1α, increasing to 13.4% in 0.1% hypoxia.  HIF-2α 

binds to 4.8% and 7.5% of all immune-related genes under 1% and 0.1% hypoxia, 

respectively.  Second, I show that HIF-1α and HIF-2α bind uniquely to some immune-related 

genes, which associate with distinct immune-related processes.  HIF-1α is enriched for 

immune gene binding associated with T cell activation pathways and related interferon 

production.  Third, I show that in the T24 MIBC cell line HIF-2α is enriched at an enhancer 

region of the PD-L1 gene.  I also consolidate recent findings to demonstrate that hypoxia 

upregulates signalling related to both anti-tumour and immune suppressive pathways, and I 

show this in MIBC specifically.  

In a similar manner to this study, Symthies et al performed a HIF ChIPseq experiment on 

kidney and liver cancer cell lines cultured in 0.5% and 3% oxygen for 6, 16 and 48 h 

(Smythies et al., 2019).  They found that the strongest binding occurred at 16 h, providing 

the basis for the chosen 24 h time point in this study.  Whilst Smythies et al found that the 

oxygen concentration did not alter HIF binding locations, my results show an increase in HIF 

binding sites as the oxygen level decreases.  This could be due to increased strength of 

binding at 0.1% vs 1% oxygen manifesting as increased signal intensity, which lowers the 

number of binding sites removed through the stringent filtering.  I also show a higher 

proportion of binding sites for HIF-1α compared to HIF-2α, which is consistent with 

literature (Mole et al., 2009; Schödel et al., 2011; Smythies et al., 2019).   

  Smythies et al found that HIF1 and HIF2 heterodimers bind to distinct regions of the 

genome without competing and this was conserved across four human cancer cell lines 

(HKC-8 and RCC4, renal; HepG2, liver; and MCF-7, breast) (Smythies et al., 2019).  My work 

showed that HIF1 and HIF2 associate first with common processes of oxygen consumption 

and sugar glycolysis and then with distinct biological processes.  Smythies et al also showed 

that wherever HIF-1β bound it was with an HIF-α isoform, in concordance with published 

literature (Hill et al., 2015; Smythies et al., 2019).  The HIF-1β sample obtained in my study is 

of worse quality than the HIFα isoforms, as seen in Figure 5.1-5.2.  The lower quality 

decreased the number of significant genes bound by HIF-1β compared to HIF-1α and HIF-2α 

that made it through the stringent filtering.  However, the results for the subunit unique 
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immune binding sites show that most of the HIF-1β binding sites overlap with either of the 

HIF-α isoforms, confirming the binding of the subunits to form heterodimers as expected 

and in line with the findings presented by Smythies et al (Smythies et al., 2019).   

The results presented in this chapter show for the first time in MIBC that HIF1 and HIF2 

bind to some unique immune-related gene binding.  My results show that ~10% of all 

immune-related genes are bound by HIF in the T24 MIBC cell line.  Although it is known that 

HIF has a role in directly regulating many different immune-related genes, a comprehensive 

list of HIF-regulated immune genes has not been generated previously, so no comment can 

be made on whether this proportion of immune-related gene binding is expected.  

Published literature tends to focus on the immune suppressive effects of HIF and its binding 

of specific genes that contribute towards immune evasion mechanisms due to their 

important effects on tumour progression and resistance to treatments (Barker et al., 2015).  

These HIF-driven immune evasion mechanisms include, but are not limited to: binding of 

CCL28 to recruit Tregs; CXCL12 to recruit TAMs and MDSCs; CD47 to prevent phagocytosis of 

immune cells; 5NTE to increase the adenosine generating protein CD73 that induces T cell 

anergy; and CD274 to increase the expression of checkpoint molecule PD-L1 that also 

induces T cell anergy (Semenza, 2021).  In accordance with results from Chapter 3 and other 

published results as discussed, I show here that HIF binds to the PD-L1 gene (CD274) in the 

T24 MIBC cell line.  Previous studies showed that HIF-1α binds to the PD-L1 promoter, and 

Noman et al further showed that HIF-2α does not (Barsoum et al., 2014; Noman et al., 

2014).  In my results, there are binding peaks for both HIFs when using the most lenient 

filtering parameter, but only HIF-2α is retained when filtering becomes more stringent.  

Under both 1% and 0.1% oxygen HIF-2α binding was enriched for an enhancer region of the 

PD-L1 gene (CD274).  Studies investigating the mechanisms governing PD-L1 expression at a 

genomic level give rise to discrepancies and have rarely included bladder cancer (Fabrizio et 

al., 2018).  As discussed in Section 3.5, there are potential differences in the interaction 

between HIF and PD-L1 across different tissue types, so the discrepancy is likely to be cell 

line/cancer type dependent.  A study by Funk et al analysing transcription factor binding 

sites across 27 different tissue types found strong tissue-specific enrichments of 

transcription factor occupancy associated with gene regulation and disease risk (Funk et al., 

2020).  A recent study by Bruns et al showed that HIF1A induced CD274 expression in TCGA 

lung, but neither breast nor melanoma cancers, which further indicates the potential for 
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tissue-specific HIF regulation of PD-L1 (Bruns and Beltman, 2022).  A study analysing the role 

of HIF-1α and -2α in inducing PD-L1 expression suggests that in kidney cancer HIF-2α is the 

main regulator of PD-L1 expression, and not HIF-1α (Ruf, Moch and Schraml, 2016).  

Additional studies are needed to explore the interaction between HIF and PD-L1 in more 

MIBC cell lines and to further elucidate the molecular mechanisms of PD-L1 expression 

overall.    

The results in this chapter showed that immune-related processes most enriched by HIF 

binding in a MIBC cell line in vitro are those associated with immune stimulatory pathways, 

not immune suppressive pathways.  Interferon is a class of cytokine that has a key role in 

the induction of anti-tumour immune responses (Jorgovanovic et al., 2020).  Enrichment of 

immune-related pathways reveal different immune-related activities between HIF1 and 

HIF2.  Unique HIF-1α immune-related processes are enriched for positive regulation of 

various interferon signalling pathways and T cell activation and differentiation.  Unique HIF-

2α immune-related processes are enriched for humoral responses, generic cytokine and 

chemokine regulation (some negative), complement activation, some innate immune 

responses such as toll-like receptor and lipopolysaccharide sensing signalling, as well as T 

cell activation and differentiation.  Non-unique over represented immune-related pathways 

for HIF-2α specifically included associations with immune suppressive roles such as myeloid 

cell differentiation and TGF- β signalling.  The enrichment of these immune pathways 

implies a broader role for HIF-2α, whilst HIF-1α was enriched for pathways involved in the 

stimulation of anti-tumour immune responses.  These results are in agreement with 

published literature showing the role of both HIFs, but mostly HIF-1α, in the activation and 

effector functions of T cells (Doedens et al., 2013; Palazon et al., 2017).   

Expanding on the HIF-specific results, immune-related signalling in a panel of MIBC cells 

under hypoxic conditions was enriched for myeloid and neutrophil signalling as seen by 

gene ontology analysis.  Whilst still being fully elucidated, TNFα is known to have a role in 

tumour promoting immune signalling via the induction of NF-kB (Aggarwal, 2003).  TNFα via 

NF-kB has been shown to inhibit anti-tumour immune responses of leukocytes and to 

contribute to tumour cell proliferation, migration and metastasis (Montfort et al., 2019).  

TNFα regulates macrophage activation and function and can induce pro-inflammatory 

cytokine signalling (Parameswaran and Patial, 2010).  IL-2 STAT5 signalling has a role in the 

differentiation of CD4+ cells, which is mostly well characterised for its role in maintaining 
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Treg differentiation (Mahmud, Manlove and Farrar, 2013; Jones, Read and Oestreich, 2020).  

As shown by GSEA analysis using Hallmark pathways, both TNFα via NF-kB and IL2 STAT5 

signalling was significantly enriched under hypoxia, along with EMT and hypoxia-related 

signalling.  These results indicate the potential difference between HIF-dependent and 

hypoxia-associated effects on immune-related signalling by tumour cells.  As considerable 

cross-talk occurs between immune cells present in the TME, it is important to expand from 

in vitro analysis to consider relationships between the immune TME and hypoxia in the 

context of patient tumours.    

Different immune gene signatures were used to associate immune signalling with 

hypoxia using transcriptomic data for MIBC from the BCON and TCGA cohorts.  A 24-gene 

bladder cancer hypoxia gene signature assigned tumours as hypoxia high or low (Yang, 

Taylor, et al., 2017).  Heatmaps showed that tumours assigned as hypoxia high associated 

with higher expression of both immune suppressive (checkpoint, TGFβ -ECM, M2 TAM, 

exhausted CD8, macrophage, and neutrophil) and anti-tumour (M1 TAM, cytotoxic, DC, NK 

cell, and T cell) gene signatures.  Boxplots confirmed the statistical significance of the 

hypoxia high versus low increases in immune-related signature expression.  Hypoxia-

associated increases in tumour inflammation is supported by a study performed by Chen et 

al (Chen et al., 2020). 

To investigate if tumour hypoxia affects the presence of immune infiltrates, I used two 

different immune cell deconvolution algorithms, ImSig and TIMER (Li et al., 2016; Nirmal et 

al., 2016).  There was a high level of concordance between the two cohorts and algorithms, 

with the exception of B cells where hypoxia associated with increases using ImSig and 

decreases using TIMER.  All of the other immune infiltrates (monocytes, macrophages, DCs, 

neutrophils, NK cells, and T cells) increased significantly in MIBC assigned as hypoxia high 

versus low.  These results are further supported by three recently published bladder cancer 

hypoxia-associated prognostic gene signatures.  All three studies showed that tumours 

assigned as hypoxic had increased infiltration of immune cells and an enrichment of 

immune-related signalling (F. Zhang et al., 2021; M. Jiang et al., 2021; Z. Liu et al., 2021).   

The lack of analysis at the protein level is a limitation of this study.  The work is also 

limited by studying just one MIBC cell line.  

In conclusion, HIF-1 and HIF-2 associate with distinct immune-related signalling in MIBC, 

but this is likely to be tissue type dependent and requires further elucidation.  As discussed 
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in Section 1.4, current literature indicates that hypoxia drives an immune suppressive role in 

the TME.  The work here expands on more recently published literature to show that 

hypoxia drives immune-related signalling and increases the presence of immune infiltrates 

in the TME of MIBC (Chen et al., 2020).  This immune signalling increase occurs for both 

suppressive and anti-tumour related immune signalling and highlights the need to consider 

the balance between the two when analysing hypoxia-driven immune signalling.  Further 

work is needed to investigate the mechanisms and differences between HIF-dependent and 

HIF-independent hypoxia-related immune signalling in MIBC and to investigate how these 

affect patient survival and response to treatments.    
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6 A prognostic hypoxia-driven immune gene signature predicts 

benefit from hypoxia-modifying therapy and reflects hypoxic and 

inflamed tumours 

6.1 Abstract 

Introduction: Hypoxia and the immune tumour microenvironment (TME) are both 

therapeutically targetable in muscle-invasive bladder cancer (MIBC) using hypoxia-modifying 

therapy and immune checkpoint inhibitors (ICIs), respectively.  As there is currently no 

single biomarker that stratifies patients for both treatments, I sought to develop an hypoxia-

driven immune gene signature that could be used as one.   

Materials and methods: ChIPseq and microarray experiments on MIBC cell lines produced a 

list of immune response-related genes that were regulated by HIF and/or differentially 

expressed under hypoxia (n=577).  The TCGA-BLCA cohort identified genes with prognostic 

significance (n=8).  After fitting a LASSO regression model a final six-gene signature was 

derived (AHNAK, EMP1, FGF10, SMAD6, SPNS1, TRIM26).  The weighted mean was used to 

assign gene signature scores, which were tested in four bladder cancer cohorts (TCGA, 

GSE32894, GSE13507 and BCON).  BCON randomised patients to radiotherapy +/- hypoxia-

modifying carbogen and nicotinamide (CON).  Hypoxia scores were calculated using a 

published hypoxia 24-gene signature and immune infiltrate fractions were determined using 

Cibersort.  Molecular subtypes were assigned using the R package “consensusMIBC”, and 

GSEA was performed using the “fgsea” package with Hallmark signalling pathways from 

MSigDB.   

Results: High vs low gene signature scores associated with significantly worse overall 

survival in TCGA-BLCA MIBC (n=401, HR 2.71, 95% CI 1.96-3.74, p<0.001), GSE32894 (n=224, 

HR 8.72, 95% CI 2.6-29.12, p<0.001) and GSE13507 (n=165, HR 1.96, 95% CI 1.2-3.18, 

p=0.005).  Scores were not prognostic in BCON (n=141, p=0.37) for the overall cohort, 

however, patients with high scores had a significantly better survival when given 

radiotherapy plus CON (RT+CON; HR 0.57, 95% CI 0.33-0.99, p=0.043).  In the CON arm, the 

gene signature maintained prognostic significance in multivariable analyses (HR 0.52, 95% CI 

0.25-1.10, p=0.085).  Tumours with high versus low gene signature scores had higher 

hypoxia scores (p≤0.01 for all four cohorts) and associated with basal/squamous and 

stroma-rich molecular subtypes.  High scores associated with enriched inflammation, 

hypoxia signalling pathways, and depleted TGF-β signalling. 

Conclusion: My six-gene hypoxia-driven immune gene signature predicts poor prognosis 

MIBC patients who benefit from CON with radiotherapy.  The signature reflects a hypoxic 

and inflamed TME and associates with phenotypes that are likely to respond to ICIs.  
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6.2 Introduction 

Hypoxia is a poor prognostic factor that contributes to radiotherapy and chemotherapy 

resistance in MIBC (Theodoropoulos et al., 2004).  Hypoxic MIBC tumours benefit from the 

addition of hypoxia-modifying carbogen and nicotinamide (CON) (Hoskin et al., 2010; Song 

et al., 2021).  A bladder cancer-specific hypoxia-associated 24-gene signature can be used as 

a biomarker to identify those hypoxic tumours that benefit from the addition of CON to 

radiotherapy to improve overall survival outcomes (Yang, Taylor, et al., 2017).   

The immune TME has a role in tumour response to radiotherapy and chemotherapy 

(Barker et al., 2015).  Anti-tumour immune effects are essential for the successful 

therapeutic clearing of tumours.  These anti-tumour immune effects can be inhibited by 

phenotypically exhausted CD8+ T cells via the upregulation of checkpoint molecules such as 

PD-L1 and CTLA-4 (Chen and Mellman, 2013).  A treatment option for MIBC that ameliorates 

immune-associated poor responses is immune checkpoint inhibitors (ICIs) (Cheng et al., 

2018).  Currently, six ICIs are approved for advanced bladder cancer, but only ~20% of 

patients have sustained responses to treatment (Wołącewicz et al., 2020).  Therefore, there 

is a need to find biomarkers that predict benefit of ICIs.   

There is evidence that bladder cancers with an inflamed TME benefit from ICIs and that 

inflamed TMEs are represented by a basal molecular subtype (Pfannstiel et al., 2019; 

Kamoun et al., 2020; H. Zhang et al., 2021).  Tumours with high TGF-β signalling and few 

immune infiltrates in bladder cancer are less likely to benefit from ICIs (Mariathasan et al., 

2018).  It has recently been shown that ICI responders had high immune response signalling 

and basal/squamous features whilst non-responders had increased angiogenesis and TGF-β 

signalling (Powles et al., 2021).    

A TCGA based study that correlated HIF1A gene expression with tumour immunity and 

clinical outcomes showed patients with high versus low HIF1A gene expression had worse 

survival outcomes.  The authors showed that in bladder cancer HIF1A associated with 

increased expression of both anti-tumour immune signatures such as such as CD8+ T cells, 

IFN response, and M1 macrophages as well as immune suppressive signatures such as TGF-β 

signalling and M2 macrophages, but that the correlations with immune suppressive 

signatures were stronger.  The authors showed that high HIF1A expression associated with 

response to ICI treatment in a kidney cancer cohort (Chen et al., 2020).  Three bladder 

cancer hypoxia-associated gene signatures were published in 2021 that showed high 
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signature scores represent inflamed TMEs by associating with increased immune infiltrates 

and signalling.  All of the signatures were prognostic and hypothesised that patients with 

high scores would benefit from ICIs (F. Zhang et al., 2021; M. Jiang et al., 2021; Z. Liu et al., 

2021).  

Gene signatures are useful biomarkers that can be used to personalise treatment 

strategies to improve overall survival outcomes (Yang and West, 2019).  The aim of this 

study was to develop a prognostic hypoxia-driven immune gene signature that would 

identify patients likely to fail standard-of-care treatments and predict benefit from 

additional targeted therapies, specifically hypoxia-modifying therapies, to improve survival.   

6.3 Materials and methods 

6.3.1 Cohorts used 

The cohorts were obtained as described in Section 2.8.1.  TCGA (n=405), GSE32894 (n=224), 

GSE13507 (n=187) and BCON cohorts (n=141) were used.  BCON was a prospective 

multicentre phase III clinical trial registered as CRUK/01/003 of which the protocol and 

conclusions are published in the initial report (Hoskin et al., 2010) and updated for long-

term clinical outcomes (Song et al., 2021).  Patients were randomised to receive 

radiotherapy (RT) +/- CON (RT+CON).  The updated long-term clinical outcomes were used 

in all analyses.  TCGA and BCON were filtered to include MIBC only.  

6.3.2 ChIPseq data generation 

ChIPseq was performed as detailed in Section 2.6.  In brief, T24 bladder cancer cells were 

cultured for 24 h in both 0.1% and 1% O2.  The protein-DNA interactions were cross-linked 

using ChIP cross-link gold and 1% formaldehyde before lysing the cells and shearing the 

chromatin into 200-300bp fragments using a Biorupter Pico.  Antibodies against HIF-1α, HIF-

2α and HIF-1β and Dynabeads Protein G were used for immunoprecipitation.  The fragments 

were de-cross-linked and the DNA eluted using the phenol chloroform method.  qPCR was 

used to validate the ChIP experiment before the samples were sequenced and mapped by 

the CRUK MI core facilities.   

6.3.3 Muscle-invasive bladder cancer cell line microarray data generation 

As described in Section 2.7, microarray data were generated for a panel of MIBC cell lines 

(T24, J82, UMUC3 and HT1376) under various oxygen concentrations (21%, 1%, 0.2% and 

0.1%).  Cells were cultured for 24 h in each condition and RNA was extracted using RNeasy 
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Plus Mini Kit (Qiagen).  Gene expression arrays were generated using Clariom S pico HT 

human assay by Yourgene Health and batch corrected using ComBat function from the R 

package “sva” to produce log2 summarised gene level expression.  

6.3.4 LASSO regression model 

The LASSO regression model was used as described in Section 2.8.4.  In brief, the LASSO 

model was applied using the R package “glmnet” and those genes with a coefficient 

shrunken to 0 were removed from the list before running the model again.  The final 

coefficients were used to apply the weighted mean to each sample using the predict 

function.  

6.3.5 Assigning molecular subtypes 

Consensus molecular subtypes were applied using the R package “consensusMIBC”, as 

detailed in Section 2.8.2.  First order subtyping was applied by assigning all three luminal 

subtypes (LumP, LumNS and LumU) to luminal, and basal/squamous and stroma-rich 

subtypes to basal.  NE-like were removed from the first order analyses due to small 

numbers.   

6.3.6 GSEA, Cibersort and use of published gene signatures 

Section 2.8.5 describes how immune cell fractions were imputed for each sample using the 

Cibersort algorithm.  The R package “limma” was used to obtained significant (p<0.1) 

differentially expressed genes for high vs low scores.  Hallmark pathways were downloaded 

using “msigdb” and the package “fgsea” was used to perform GSEA.  The results show which 

Hallmark pathways were significantly (p value <0.05) up/down regulated, which is further 

detailed in Section 2.8.8.  Hypoxia scores and CD8 and IFNγ signalling scores were assigned 

using the relevant gene signatures as described in Section 2.8.6.   

6.3.7 Statistics 

All of the analyses were performed using R version and RStudio and stated packages used to 

analyse data and calculate significance.  Parametric statistics (t-test, Pearson) were used 

when data were normally distributed and non-parametric statistics (Wilcoxon test, 

Spearman) were used when the data were non-normally distributed.  Kaplan-Meier curves 

were used to assess relationships with overall survival using the “survival” and “survminer” 

packages which use Cox proportional hazard models and log-rank tests to calculate p values.  
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Survival significance, multivariable analysis and statistical tests were performed using the 

“survival” package and the results were tabulated using the “gtsummary” package.  

6.4 Results 

6.4.1 Curating bladder-specific hypoxia-driven immune-related seed genes 

A list of seed genes (expressed at the RNA level) that are hypoxia-driven and immune-

related in bladder cancer cell lines was obtained using a ChIPseq and a microarray dataset as 

shown in Figure 6.1.  A manually curated list of immune-related genes was obtained using 

unique immune-related gene lists from ImmPort, Hallmark and published literature 

(n=2954; Table 6.1).  Those immune-related genes where HIF-1α, HIF-2α or HIF-1β had 

bound were identified using the ChIPseq protein coding peaks from T24 MIBC cell line 

cultured under both 0.1% and 1% O2 (n=1872) .  The immune-related genes that were 

differentially expressed in any of four MIBC cell lines (T24, HT1376, J8, UMUC3) under either 

0.1%, 0.2% or 1% O2 were identified using microarray gene expression data (n=731).  Those 

bladder cancer-specific hypoxia-driven immune-related genes expressed in both derived 

lists (n=577) were used as the seed genes for deriving a prognostic gene signature. 

 
Figure 6.1 Schematic illustrating how the gene signature was derived.  
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Table 6.1. The names and sources of lists that were used to curate a list of immune-related genes. 

Name Source Number of genes 

Antigen processing and presentation ImmPort 148 

Antimicrobials ImmPort 535 
BCR signalling pathway ImmPort 272 

Chemokines  ImmPort 102 
Chemokines receptors ImmPort 53 

Cytokines  ImmPort 456 

Cytokines receptors ImmPort 307 
Interferons ImmPort 17 

Interferons receptors ImmPort 3 
Interleukins ImmPort 47 

Interleukins receptors ImmPort 42 

Natural killer cell ImmPort 134 
TCR signalling pathway ImmPort 291 

TGF-β family members ImmPort 33 
TGF-β family members receptors ImmPort 12 

TNF family members ImmPort 12 

TNF family members receptors ImmPort 19 
Immune-related genes He et al 706 

Immune suppressive markers Lei et al 133 
Complement Hallmark 200 

IL2 STAT5 signalling Hallmark 199 
IL6 JAK STAT3 signalling Hallmark 87 

Inflammatory response Hallmark 200 

Interferon alpha response Hallmark 97 
Interferon gamma response Hallmark 200 

PI3K Akt MTOR signalling Hallmark 105 
TGF-β signalling Hallmark 54 

TNFα signalling via NFκB Hallmark 200 

P53 pathway Hallmark 200 
WNT ß-catenin signalling Hallmark 42 

 

6.4.2 Deriving a prognostic gene signature 

The curated list of seed genes were tested for prognostic significance (adjusted p value < 

0.05) using Cox proportional hazard models on the TCGA bladder cancer cohort (n=8).  A 

LASSO regression model resulted in a final six-gene signature: AHNAK, EMP1, FGF10, SPNS1, 

SMAD6 and TRIM26.  Gene scores were calculated as the weighted mean using the LASSO 

coefficients.  Evaluation of the median vs the upper quartile as the cut-off for stratification 

showed the median best separated the cohort and was used to stratify patients into low or 
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high score thereafter.  Kaplan-Meier curves show that in the TCGA bladder cancer cohort 

patients with a high vs low score had a worse prognosis (HR 2.71, 95% CI 1.96-3.74, p<0.001; 

Figure 6.2).  Multivariable Cox proportional hazard models for overall survival in the TCGA 

cohort showed the derived gene signature maintained independent prognostic significance 

(HR 2.06, 95% CI 1.40-3.03, p<0.001) alongside tumour stage four (HR 2.37, 95% CI 1.52-

3.69, p<0.001).  No significance was seen for molecular subtype (HR 1.20, 95% CI 0.76-1.88, 

p=0.43) nor the 24-gene hypoxia score (HR 1.10, 95% CI 0.71-1.70, p=0.67; Table 6.2).   

 
Figure 6.2. A six-gene hypoxia-driven immune gene signature is prognostic in the TCGA-BLCA cohort. 
Kaplan-Meier plot showing 10-year overall survival for the TCGA-BLCA cohort with patients stratified by 6-gene scores.  
Scores were applied using the weighted mean and stratified using the median as the cut-off.  p values are log-rank tests as 
calculated by the R packages “survival” and “survminer”.   
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Table 6.2. Multivariable analyses for overall survival in the TCGA-BLCA cohort 

Characteristic HR1 95% CI1 p-value 

Gender 
   

  Male — — 
 

  Female 1.24 0.87, 1.78 0.23 

Stage 
   

  2 — — 
 

  3 1.37 0.86, 2.18 0.19 

  4 2.37 1.52, 3.69 <0.001 

Radiotherapy 
   

  Yes — — 
 

  No 0.67 0.31, 1.45 0.31 

Hypoxia score 
   

  Low — — 
 

  High 1.10 0.71, 1.70 0.67 

Molecular 
subtype 

   

  Luminal — — 
 

  Basal 1.20 0.76, 1.88 0.43 
Gene signature 

   

  Low score — — 
 

  High score 2.06 1.40, 3.03 <0.001 
1 HR = Hazard Ratio, CI = Confidence Interval. p values represent log-rank tests as calculated by the ‘survival’ package in R. 

6.4.3 Validation of the gene signature 

The gene signature was validated in three external cohorts (GSE32894, GSE13507, and 

BCON).  In all cohorts, apart from BCON, the six genes separated the samples into two 

distinct clusters (Figure 6.3).  One out of six genes was missing in GSE32894 data (FGF10).  

All six genes were present in GSE13507.  Two of the six genes were missing in BCON data 

(EMP1 and SMAD6).  Figure 6.4 shows high vs low scores associated with a significantly 

worse survival in GSE32894 (n=224, HR 8.72, 95% CI 2.6-29.12, p<0.001) and GSE13507 

(n=165, HR 1.96, 95% CI 1.2-3.18, p=0.005), but not in the overall BCON cohort (n=141, 

p=0.37).  In multivariable analysis for the GSE32894 and GSE13507 cohorts the derived score 

did not retain independent significance (Table 6.3-6.4).  In the GSE32894 cohort (n=224), 

tumours were disproportionately of a low stage (non-muscle invasive) as 173 were <T2 

(Ta=110, T1=63), 49 were ≥ T2 (T2=3, T3=7, T4=1) and 1 was of an unknown stage.  In the 

GSE13507 cohort (n=165) tumours were also more represented by non-muscle-invasive 

tumours as 104 were < T2 (Ta=24, T1=80) and 61 were ≥ T2 (T2=31, T3=19, and T4=11).   
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Figure 6.3 Multidimensional scaling (MDS) plots illustrating how the expression of the six signature genes separate the 
samples when labelled low and high scores in A) TCGA, B) GSE32894, C) GSE13507 and D) BCON cohorts. 
MDS was calculated using “limma” package in R.  
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Figure 6.4. Kaplan-Meier plots showing 10-year overall survival according to gene signature scores for A) TCGA-BLCA 
cohort, B) GSE32894 cohort and C) GSE13507 cohort. 
Score is applied using the weighted mean and stratified using the median as the cut-off.  p values are log-rank tests as 
calculated by the R packages “survival” and “survminer”.   



 
170 

 
Table 6.3 Multivariable analyses for overall survival in the GSE32894 cohort 

Characteristic HR1 95% CI1 p-value 

Age 1.00 0.94, 1.06 0.90 
Gender    

  Male — — 
 

  Female 0.53 0.18, 1.58 0.26 
Stage 

   

  <T1 — — 
 

  ≥T2 34.9 7.16, 170 <0.001 

Gene signature 
   

  Low score — — 
 

  High score 1.50 0.40, 5.67 0.55 
1 HR = Hazard Ratio, CI = Confidence Interval. p values represent log-rank tests as calculated by the ‘survival’ package in R. 

 
Table 6.4 Multivariable analyses for overall survival in the GSE13507 cohort 

Characteristic HR1 95% CI1 p-value 

Age 1.08 1.05, 1.11 <0.001 
Gender 

   

  Male — — 
 

  Female 1.13 0.61, 2.07 0.70 
Stage 

   

  <T1 — — 
 

  ≥T2 2.33 1.22, 4.45 0.010 

Grade    

  Low — —  

  High 1.25 0.69, 2.24 0.46 

Chemotherapy 
   

  No — — 
 

  Yes 1.48 0.70, 3.10 0.30 
Gene signature 

   

  Low score — — 
 

  High score 0.94 0.54, 1.63 0.82 
1 HR = Hazard Ratio, CI = Confidence Interval. p values represent log-rank tests as calculated by the ‘survival’ package in R. 

 

6.4.4 The gene signature is bladder cancer specific 

The signature was tested for prognostic significance in six other cancers available from 

TCGA: breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical 

adenocarcinoma (CESC), esophageal carcinoma (ESCA), lung squamous cell carcinoma 

(LUSC), pancreatic adenocarcinoma (PAAD), and prostate adenocarcinoma (PRAD).  The 

signature had no prognostic relevance (BRCA, p=0.38; CESC = 0.85; ESCA, p=0.97; LUSC, 

p=0.66; PAAD, p=0.53, PRAD = 0.55; Figure 6.5).  
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Figure 6.5 Kaplan-Meier plots showing overall survival according to gene signature score for the TCGA cohorts: A) breast 
invasive carcinoma, B) cervical squamous cell carcinoma and endocervical adenocarcinoma, C) lung squamous cell 
carcinoma, D) esophageal carcinoma, E) pancreatic adenocarcinoma, and F) prostate adenocarcinoma. 
Scores were applied using the weighted mean and stratified using the median as the cut-off.  p values are log-rank tests as 
calculated by the R packages “survival” and “survminer”.   
 

 

 

 



 
172 

6.4.5 High gene signature scores predict response to hypoxia-modifying therapy and reflect 
hypoxic tumours 

High gene signature scores associated with an improved overall survival for the RT+CON arm 

of the BCON trial (HR 0.55, 95% CI 0.31-0.97, p=0.035), but no difference was observed 

between low and high scores in the RT arm (p=0.32; Figure 6.6 A, B).  In the RT arm high 

score patients had a significantly worse local progression free survival (HR 1.73, 95% CI 1.04-

2.89, p=0.033), but no difference was observed in the RT+CON arm (p=0.69; Figure 6.6 C, D).  

No prognostic difference was observed regarding treatment when patients had a low gene 

signature score for either overall (p=0.37; Figure 6.7 A) or local progression free survival 

(p=0.60; Figure 6.7 C).  However, patients with a high gene signature score had a 

significantly better overall survival when given RT+CON vs RT alone (HR 0.57, 95% CI 0.33-

0.99, p=0.043; Figure 6.7 B), and a non-significantly better local progression free survival (HR 

= 0.63, 95% CI 0.38-1.1, p=0.075; Figure 6.7 D).   

Gene signature scores positively correlated with the 24-gene hypoxia score and high 

scores had a significantly higher 24-gene hypoxia scores in all four cohorts (TCGA, p<0.001; 

GSE32894, p<0.001; GSE13507, p<0.001; BCON, p=0.004; Figure 6.8).  In the separate 

treatment arms of BCON the derived hypoxia-driven immune gene signature outperformed 

the existing 24-gene hypoxia score shown by univariable Cox proportional hazard models to 

analyse overall survival for high versus low scores (Table 6.5).  Table 6.6 summarises the 

findings from a multivariable analysis of overall survival in the CON arm of the BCON cohort 

showing the trend for the immune signature to retain prognostic significance (HR 0.52, 95% 

CI 0.25-1.10, p=0.085) alongside age (HR 1.05, 95% CI 1.01-1.09, p=0.013).  No significance 

was seen for necrosis (p=0.54), molecular subtype (p=0.86), or tumour stage four (p=0.92). 
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Figure 6.6 Kaplan-Meier plots for treatment arms of BCON according to gene signature scores.  
Overall 10-year survival for A) RT only treatment arm and B) RT+CON treatment arm. Local progression free survival for C) 
RT only treatment arm and D) RT+CON treatment arm. Score is applied using the weighted mean and stratified using the 
median as the cut-off.  p values are log-rank tests as calculated by the R packages “survival” and “survminer”.   
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Figure 6.7. Kaplan-Meier plots for gene signature score high and low according to treatment arm of BCON.  
Overall 10-year survival for A) low gene signature score patients and B) high gene signature score patients. Local 
progression free survival for C) low gene signature score patients and D) high gene signature score patients. Score is 
applied using the weighted mean and stratified using the median as the cut-off.  p values are log-rank tests as calculated by 
the R packages “survival” and “survminer”.   
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Figure 6.8. Graphs showing the correlation between 24-gene hypoxia signature scores and the immune signature scores in 
the A) TCGA, B) GSE23894, C) GSE13507, and D) BCON cohorts. 
Hypoxia scores were calculated as defined by Yang et al. and plotted against gene signature scores.  R2 values were 
calculated using Spearman’s correlation coefficient and the p values represent a linear model analysis.  Boxplot statistical 
tests are Wilcox tests with p values represented as follows: ns = not significant, *<0.05, **<0.01, ***<0.001, ****<0.0001. 
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Table 6.5 Univariable analysis for overall survival in the treatment arms of the BCON cohort 

Treatment arm Characteristic HR1 95% CI1 p-value 

RT only 
 

Continuous hypoxia signature score 5.22 1.10, 24.75 0.037 

High hypoxia signature score 1.59 0.95, 2.66 0.077 
Continuous immune signature score 1.75 1.03, 2.99 0.039 

High immune signature score 1.30 0.78, 2.18 0.32 

RT+CON 
 

Continuous hypoxia signature score 1.20 0.21, 6.96 0.84 
High hypoxia signature score 0.99 0.57, 1.73 0.98 

Continuous immune signature score 0.58 0.30, 1.11 0.099 

High immune signature score 0.55 0.31, 0.97 0.035 
1 HR = Hazard Ratio, CI = Confidence Interval. p values represent log-rank tests as calculated by the ‘survival’ package in R. 

 
Table 6.6. Multivariable analysis of overall survival in the CON arm of the BCON cohort 

Characteristic HR1 95% CI1 p-value 

Age 1.05 1.01, 1.09 0.013 

Gender 
   

  Male — — 
 

  Female 0.89 0.41, 1.95 0.77 
Tumour stage 

   

  2 — — 
 

  3 1.14 0.53, 2.46 0.74 
  4 1.12 0.13, 9.63 0.92 

Grade 
   

  2 — — 
 

  3 0.68 0.31, 1.52 0.35 

Hypertension 
   

  Absent — — 
 

  Present 0.86 0.40, 1.86 0.71 

Necrosis 
   

  Absent — — 
 

  Present 0.82 0.44, 1.54 0.54 

Molecular 
subtype 

   

  Luminal — — 
 

  Basal 0.95 0.50, 1.79 0.86 

Gene signature 
   

  Low score — — 
 

  High score 0.52 0.25, 1.10 0.085 
1 HR = Hazard Ratio, CI = Confidence Interval. p values represent log-rank tests as calculated by the ‘survival’ package in R. 
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6.4.6 The gene signature associates with molecular subtypes and stems from 
stromal/immune cells 

The consensus molecular classifier was used to assign molecular subtypes and 

basal/squamous and stroma-rich subtypes associated with higher gene signature scores, 

whilst lower gene signature scores associated with the three luminal subtypes (LumP, 

LumNS and LumU; Figure 6.9 A, C, E).  Further stratification into first order luminal and basal 

molecular subtypes demonstrated basal subtypes have a significantly higher gene signature 

score than luminal (p<0.001 for TCGA, GSE32894, and GSE13507; Figure 6.9 B, D, F).  High 

gene signatures scores also associated with higher ESTIMATE immune and stromal scores 

and lower tumour purity in all three cohorts (Figure 6.10-6.12).  
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Figure 6.9. Boxplots showing the associations between molecular subtype and the gene signature scores.   
Molecular subtypes were assigned using “consensusMIBC” package in R and plotted against the gene signature score for A) 
TCGA, C) GSE32894, and E) GSE13507 cohorts.  Subtypes were then grouped into luminal (LumP, LumU, LumNS), basal 
(basal/squamous and stroma-rich), and NE-Like subtypes were excluded, and correlated with the gene signature score for 
B) TCGA, D) GSE23894, and F) GSE13507 cohorts.  Statistical tests are wilcox tests with p values represented as follows: ns 
= not significant, *<0.05, **<0.01, ***<0.001, ****<0.0001.  
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Figure 6.10 Signature scores associate with higher ESTIMATE stromal (A) and immune (B) and lower tumour purity (C) 
scores in the TCGA cohort. 
ESTIMATE scores were plotted using the R package “estimate”.  R2 values were calculated using Spearman’s correlation 
coefficient and the p values represent a linear model analysis.  Boxplot statistical tests are wilcox tests with p values 
represented as follows: ns = not significant, *<0.05, **<0.01, ***<0.001, ****<0.0001. 
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Figure 6.11 Signature scores associate with higher ESTIMATE stromal (A) and immune (B) and lower tumour purity (C) 
scores in the GSE32894 cohort. 
ESTIMATE scores were plotted using the R package “estimate”.   R2 values were calculated using Spearman’s correlation 
coefficient and the p values represent a linear model analysis.  Boxplot statistical tests are wilcox tests with p values 
represented as follows: ns = not significant, *<0.05, **<0.01, ***<0.001, ****<0.0001. 
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Figure 6.12. Signature scores associate with higher ESTIMATE stromal (A) and immune (B) and lower tumour purity (C) 
scores in the GSE13507 cohort. 
ESTIMATE scores were plotted using the R package “estimate”.   R2 values were calculated using Spearman’s correlation 
coefficient and the p values represent a linear model analysis.  Boxplot statistical tests are wilcox tests with p values 
represented as follows: ns = not significant, *<0.05, **<0.01, ***<0.001, ****<0.0001. 
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6.4.7 High gene signature scores represent an inflamed tumour microenvironment 

Gene set enrichment analysis (GSEA) was performed on the cohorts to evaluate which 

Hallmark pathways had significantly (adjusted p value <0.05) up/down regulated expression 

in tumours with high versus low gene signature scores (Table 6.7-6.9).  Hallmark_hypoxia 

signalling was significantly upregulated in all three cohorts (p≤ 0.001 for all).  Pathways 

associated with hypoxia: Hallmark_unfolded protein_response and Hallmark_glycolysis, 

were upregulated in both GSE32894 (p=0.03 and p=0.007, respectively) and GSE13507 

(p=0.01 and p<0.001).  Hallmark_epithelial_to_mesemchymal_transition was the most 

highly expressed signalling pathway in all three cohorts (p<0.001 for all).  Pathways 

associated with inflammation: Hallmark_inflammatory_response, 

Hallmark_interferon_gamma_response, Hallmark_TNFa_signalling_via_NFkB, 

Hallmark_IL2_STAT5_signalling, IL6_JAK_STAT3_signalling, and Hallmark_complement were 

significantly upregulated in all three cohorts (p<0.001 for all).  GSE32894 and GSE13507 

both had significantly decreased Hallmark_TGF_beta_signalling (p<0.001 and p=0.02).  This 

inflamed TME seen in tumours with high vs low gene scores also associated with increased 

M0 and M1 macrophages, CD4 cells and decreased Tregs as measured using the Cibersort 

algorithm (Figure 6.13).  High versus low gene signature scores had significantly increased 

CD8 T cell signalling and IFNγ signalling in all three cohorts (p<0.01 for all; Figure 6.14).   
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Table 6.7. Gene set enrichment analysis showing the hallmark pathways ranked by normalised enrichment score when 
gene signature score was high versus low in the TCGA cohort.   

Pathway p val p adj NES Size 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 1.00E-10 5.56E-10 4.76 174 

HALLMARK_INFLAMMATORY_RESPONSE 1.00E-10 5.56E-10 3.41 155 

HALLMARK_APICAL_JUNCTION 1.00E-10 5.56E-10 3.19 137 

HALLMARK_COAGULATION 1.00E-10 5.56E-10 3.17 102 

HALLMARK_MYOGENESIS 1.00E-10 5.56E-10 3.10 153 

HALLMARK_TNFA_SIGNALING_VIA_NFKB 1.00E-10 5.56E-10 3.09 157 

HALLMARK_ALLOGRAFT_REJECTION 1.00E-10 5.56E-10 2.96 142 

HALLMARK_COMPLEMENT 1.00E-10 5.56E-10 2.91 151 

HALLMARK_IL6_JAK_STAT3_SIGNALING 3.36E-10 1.53E-09 2.81 70 

HALLMARK_KRAS_SIGNALING_UP 1.00E-10 5.56E-10 2.80 142 

HALLMARK_UV_RESPONSE_DN 1.68E-09 7.01E-09 2.67 104 

HALLMARK_IL2_STAT5_SIGNALING 1.33E-10 6.65E-10 2.64 136 

HALLMARK_ANGIOGENESIS 9.39E-06 2.93E-05 2.47 30 

HALLMARK_INTERFERON_GAMMA_RESPONSE 1.08E-07 4.16E-07 2.33 133 

HALLMARK_APOPTOSIS 1.18E-06 4.23E-06 2.25 113 

HALLMARK_HYPOXIA 7.48E-06 2.49E-05 2.17 138 

HALLMARK_APICAL_SURFACE 9.48E-04 0.002634 2.04 33 

HALLMARK_MTORC1_SIGNALING 7.01E-05 2.06E-04 2.01 127 

HALLMARK_ANDROGEN_RESPONSE 0.003511 0.00924 1.79 69 

HALLMARK_HEDGEHOG_SIGNALING 0.034203 0.070423 1.66 23 

HALLMARK_ESTROGEN_RESPONSE_EARLY 0.008581 0.021453 1.54 132 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 0.035211 0.070423 1.50 70 

HALLMARK_HEME_METABOLISM 0.024321 0.052871 1.50 121 

HALLMARK_ESTROGEN_RESPONSE_LATE 0.016413 0.039079 1.49 128 

HALLMARK_GLYCOLYSIS 0.043364 0.080304 1.43 134 

HALLMARK_MITOTIC_SPINDLE 0.046419 0.082891 1.41 120 

HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.018333 0.041667 -1.51 93 

HALLMARK_PEROXISOME 0.037767 0.07263 -1.56 55 
p val = enrichment p value, p adj = BH adjusted p value, NES = normalised enrichment score, size = number of the pathway 
genes present in the dataset. 
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Table 6.8. Gene set enrichment analysis showing the hallmark pathways ranked by normalised enrichment score when 
gene signature scores were high versus low in the GSE32894 cohort.   

Pathway p val p adj NES Size 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 1.00E-10 8.33E-10 3.21 158 

HALLMARK_E2F_TARGETS 1.00E-10 8.33E-10 2.97 145 

HALLMARK_G2M_CHECKPOINT 1.00E-10 8.33E-10 2.89 135 

HALLMARK_INFLAMMATORY_RESPONSE 1.00E-10 8.33E-10 2.77 143 

HALLMARK_COMPLEMENT 1.00E-10 8.33E-10 2.59 125 

HALLMARK_ALLOGRAFT_REJECTION 1.00E-10 8.33E-10 2.59 138 

HALLMARK_KRAS_SIGNALING_UP 2.57E-09 1.84E-08 2.29 136 

HALLMARK_INTERFERON_GAMMA_RESPONSE 1.58E-08 8.77E-08 2.25 123 

HALLMARK_MTORC1_SIGNALING 4.40E-09 2.75E-08 2.23 130 

HALLMARK_IL2_STAT5_SIGNALING 2.51E-08 1.26E-07 2.20 136 

HALLMARK_IL6_JAK_STAT3_SIGNALING 6.46E-06 2.69E-05 2.15 61 

HALLMARK_ANGIOGENESIS 6.19E-05 2.06E-04 2.13 28 

HALLMARK_TNFA_SIGNALING_VIA_NFKB 2.03E-06 9.21E-06 2.03 131 

HALLMARK_COAGULATION 1.93E-05 6.90E-05 2.00 84 

HALLMARK_INTERFERON_ALPHA_RESPONSE 2.96E-04 7.79E-04 1.94 58 

HALLMARK_SPERMATOGENESIS 2.08E-04 5.78E-04 1.93 61 

HALLMARK_APOPTOSIS 7.91E-05 2.47E-04 1.85 111 

HALLMARK_MITOTIC_SPINDLE 1.23E-04 3.61E-04 1.79 128 

HALLMARK_CHOLESTEROL_HOMEOSTASIS 0.001809 0.004307 1.77 42 

HALLMARK_HYPOXIA 4.93E-04 0.001232 1.76 109 

HALLMARK_GLYCOLYSIS 0.003026 0.006578 1.63 125 

HALLMARK_MYOGENESIS 0.003674 0.007653 1.58 132 

HALLMARK_APICAL_JUNCTION 0.005023 0.010046 1.56 134 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 0.0144 0.027693 1.56 67 

HALLMARK_ESTROGEN_RESPONSE_LATE 0.048465 0.086545 1.34 137 

HALLMARK_P53_PATHWAY 0.031054 0.057508 -1.33 137 

HALLMARK_ESTROGEN_RESPONSE_EARLY 0.002109 0.004794 -1.58 129 

HALLMARK_TGF_BETA_SIGNALING 1.67E-05 6.43E-05 -2.24 38 
p val = enrichment p value, p adj = BH adjusted p value, NES = normalised enrichment score, size = number of the pathway 
genes present in the dataset. 
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Table 6.9. Gene set enrichment analysis showing the hallmark pathways ranked by normalised enrichment score when 
gene signature scores were high versus low in the GSE13507 cohort. 

Pathway p val p adj NES Size 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 1.00E-10 5.56E-10 3.34 145 

HALLMARK_E2F_TARGETS 1.00E-10 5.56E-10 2.91 134 

HALLMARK_G2M_CHECKPOINT 1.00E-10 5.56E-10 2.73 118 

HALLMARK_MTORC1_SIGNALING 1.00E-10 5.56E-10 2.71 100 

HALLMARK_COMPLEMENT 1.00E-10 5.56E-10 2.68 108 

HALLMARK_INFLAMMATORY_RESPONSE 1.00E-10 5.56E-10 2.66 109 

HALLMARK_TNFA_SIGNALING_VIA_NFKB 1.00E-10 5.56E-10 2.61 123 

HALLMARK_MYOGENESIS 1.00E-10 5.56E-10 2.60 116 

HALLMARK_HYPOXIA 1.00E-10 5.56E-10 2.49 106 

HALLMARK_KRAS_SIGNALING_UP 3.06E-08 1.53E-07 2.24 109 

HALLMARK_IL2_STAT5_SIGNALING 1.08E-07 4.91E-07 2.22 100 

HALLMARK_MYC_TARGETS_V1 5.10E-07 2.13E-06 2.18 98 

HALLMARK_COAGULATION 1.58E-06 6.08E-06 2.16 74 

HALLMARK_APOPTOSIS 2.99E-06 9.97E-06 2.13 77 

HALLMARK_ALLOGRAFT_REJECTION 3.64E-06 1.14E-05 2.12 77 

HALLMARK_INTERFERON_GAMMA_RESPONSE 2.42E-06 8.64E-06 2.11 89 

HALLMARK_IL6_JAK_STAT3_SIGNALING 5.42E-05 1.51E-04 2.07 43 

HALLMARK_MITOTIC_SPINDLE 8.65E-06 2.54E-05 2.02 110 

HALLMARK_ANGIOGENESIS 2.77E-04 6.29E-04 2.01 22 

HALLMARK_ANDROGEN_RESPONSE 1.64E-04 4.30E-04 2.00 52 

HALLMARK_SPERMATOGENESIS 7.27E-04 0.001515 1.87 49 

HALLMARK_UV_RESPONSE_DN 4.28E-04 9.31E-04 1.83 76 

HALLMARK_APICAL_JUNCTION 2.17E-04 5.43E-04 1.82 107 

HALLMARK_GLYCOLYSIS 2.75E-04 6.29E-04 1.80 108 

HALLMARK_CHOLESTEROL_HOMEOSTASIS 0.00383 0.007366 1.72 36 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 0.005312 0.009837 1.70 57 

HALLMARK_ESTROGEN_RESPONSE_LATE 0.001706 0.003411 1.66 99 

HALLMARK_INTERFERON_ALPHA_RESPONSE 0.028884 0.046588 1.56 41 

HALLMARK_FATTY_ACID_METABOLISM 0.017525 0.030215 1.55 75 

HALLMARK_PROTEIN_SECRETION 0.032288 0.050449 1.51 39 

HALLMARK_UV_RESPONSE_UP 0.019293 0.032155 1.48 71 

HALLMARK_TGF_BETA_SIGNALING 0.011529 0.020587 -1.64 29 
p val = enrichment p value, p adj = BH adjusted p value, NES = normalised enrichment score, size = number of the pathway 
genes present in the dataset. 
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Figure 6.13 Boxplots showing the fraction of each immune cell population according to gene signature score. 
Immune cell populations were deconvoluted by the Cibersort algorithm.  Statistics are p values from t tests with p values 
represented as: ns = not significant, *<0.05, **<0.01, ***<0.001, ****<0.0001.  
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Figure 6.14. Boxplots showing the association between CD8 signalling and IFNγ signalling and the gene signature score. 
CD8 signalling was calculated using a gene signature defined by Ayers et al. and plotted against the gene signature score 
for A) TCGA, C) GSE32894, and E) GSE13507 cohorts.  IFNγ signalling was calculated using a gene signature defined by Ayers 
et al. and plotted against the gene signature score for B) TCGA, D) GSE23894, and F) GSE13507 cohorts.  Statistical tests are 
wilcox tests with p values represented as: ns = not significant, *<0.05, **<0.01, ***<0.001, ****<0.0001.  
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6.5 Discussion 

A six-gene hypoxia-driven immune gene signature that is bladder cancer-specific was 

successfully developed that provides clinically relevant prognostic and predictive 

information.  The derived gene signature was prognostic in three independent bladder 

cancer cohorts.  A number of genes included in the signature (AHNAK, EMP1, SMAD6, and 

TRIM26) have been independently identified as prognostic in urothelial cancer using TCGA 

data (Uhlen et al., 2017).  SMAD6 and TRIM26 were shown to be prognostic in urothelial 

cancer alone, whilst AHNAK was also prognostic in pancreatic cancer and EMP1 also 

prognostic in pancreatic and ovarian cancer (Uhlen et al., 2017).  The known function of 

each of the genes are described in Table 6.10.  The bladder-specific prognostic relevance of 

these genes, combined with the demonstration of a lack of prognostic significance for the 

gene signature in six other TCGA cancer types, highlights its bladder cancer specificity.   

Table 6.10 The functions of the genes present in the derived signature.  

Gene Expression Function (Uniprot) Immune function (literature) 

AHNAK ↑ Neuronal cell differentiation Stimulates TGF-β signalling1; Required 
for T cell activation2 

EMP1 ↑ Unknown Limited data, associates with increased 
immune infiltrates especially DCs and T 
cells3 

FGF10 ↑ Cell proliferation and 
differentiation; wound healing 

Released from macrophages and CAFs, 
upregulates TGF-β signalling4 

SMAD6 ↓ Negatively regulates TGF-β 
signalling 

Inhibits the TGF-β superfamily 
signalling5 

SPNS1 ↑ Sphingolipid transporter Limited data, associates with 
monocytes6 

TRIM26 ↓ Regulates interferon beta 
production 

Induces innate immune responses7,8 

Expression shows whether the gene expression is up or downregulated in the gene signature (i.e negative or positive 
coefficients, where ↑ = positive and ↓ = negative.  Function is taken from UniProt website resource.  Immune/stroma 
functin is taken from a literature search.  1 = Lee et al., 2014; 2 = Matza et al., 2008; 3 = Lin et al., 2020; 4 = Clayton and 
Grose, 2018; 5 = Imamura et al., 1997; 6 = Uhlen et al., 2017; 7 = Ran et al., 2016; 8 = Zhao et al., 2021.  

 
AHNAK has further been shown to be prognostic in bladder cancer according to 

proteomic analysis from urine cytology (Okusa et al., 2008).  AHNAK is in other bladder 

cancer gene signatures: one that is prognostic and another that identified poor prognosis 

tumours with a higher infiltration of CD4+ and CD8+ cells, as well as macrophages, 

neutrophils and dendritic cells (Qiu et al., 2020; Wu et al., 2020).  High expression of EMP1 

has been independently demonstrated to associate with a poor prognosis in bladder cancer 
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and to positively correlate with increased immune infiltrates and markers (Cheng et al., 

2020; Lin et al., 2020).  Both AHNAK and EMP1 are included in another six-gene signature 

that was prognostic in bladder cancer patients and associated with an increased expression 

of a number of immune-related pathways (Zou et al., 2021).  TRIM26 was shown to drive 

the proliferation, migration and invasion in MIBC cell lines (Xie et al., 2021).  

In 2021, three other hypoxia-associated gene signatures in bladder cancer were 

published, which show associations with the immune contexture of the TME.  The four-gene 

signature developed by Jiang et al was prognostic in three external bladder cancer cohorts, 

although no confidence intervals were stated.  They showed their signature scores positively 

correlated with ESTIMATE immune and stromal scores and expression of checkpoint 

molecules such as CTLA-4 and LAG-3 at both a gene and protein level.  At the gene level, 

their signature also positively correlated with PD-L1 and PD-1 expression, but they did not 

explore relationships with other measurements of tumour hypoxia nor show any benefit 

from hypoxia-targeting treatment.  Based on the findings that high signature score tumours 

have a more inflamed TME they hypothesised that their signature would predict benefit 

from ICIs, although this was not tested in a clinical cohort (M. Jiang et al., 2021).  Another 

gene signature developed by Zhang et al consisted of eight genes, of which one overlapped 

with Jiang’s signature (HS3ST1), and was prognostic in the same cohorts.  Using Cibersort 

they found higher infiltration of M0 and M1 macrophages and activated memory CD4+ T 

cells for high vs low gene signature scores.  Whilst no comparison was made with measures 

of hypoxia or benefit of treatment shown using a clinical cohort, the authors used the 

resource Genomics of Drug Sensitivity in Cancer database to show that higher scores could 

potentially identify tumours that are likely develop chemoresistance (F. Zhang et al., 2021).  

The third bladder cancer hypoxia gene signature was developed by Liu et al.  They showed 

that their 16-gene signature was prognostic in two external bladder cancer cohorts and 

positively correlated with expression of signatures that predicted ICI efficacy.  They showed 

that high gene signature scores associated with basal molecular subtypes as demonstrated 

by a number of different approaches, including the consensus classification (Z. Liu et al., 

2021).  They did not correlate their gene signature with other measurements of hypoxia nor 

show benefit from treatment.   

High scores for my 6-gene signature associated with the consensus basal/squamous 

(ba/sq) and stroma-rich molecular subtypes.  Kamoun et al show that compared to the 
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other subtypes, a worse prognosis is seen for ba/sq and NE-like molecular subtypes, 

consistent with my results (Kamoun et al., 2020).  Furthermore, the authors show that in 

comparison with other subtypes, ba/sq and stroma-rich had higher levels of immune 

infiltrates and IFNγ signalling, and hypoxia; findings interpreted as indicating a good 

response to ICIs and poor response to radiotherapy alone, respectively.  They further 

showed that ba/sq subtypes have increased antigen presentation machinery, immune 

checkpoints and CD8 signalling, which are associated with benefit from ICIs.  However, when 

analysing a clinical cohort they found that LumNS, LumU and NE-like subtypes benefitted 

most from an anti-PDL1 ICI (atezolizumab), despite these subtypes having decreased 

expression of the previously mentioned aspects that predict response to ICIs (Kamoun et al., 

2020).  Therefore, there is a need to use a clinical cohort to investigate whether high gene 

signature score patients benefit from ICIs, as the existing data gives rise to discrepancies.  

Nevertheless, support of the suggestion that high signature score patients are likely to 

benefit from ICIs comes from further studies using ICI treated clinical cohorts.  Ayers et al. 

identified two gene signatures reflecting CD8+ T cell and IFNγ signalling where high 

expression predicted response to the anti-PD1 ICI pembrolizumab (Ayers et al., 2017).  My 

results show that the gene signature positively correlated with increased CD8+ T cell and 

IFNγ signalling.  Another study showed that a derived immune-related gene signature 

stratified bladder cancer tumours based on abundance of immune infiltrates and that 

tumours with increased immune infiltrates had a good response to atezolizumab (P. Li et al., 

2021).  Here, a high gene signature score associated with increased M0 and M1 

macrophages, and CD4+ T cells, as well as ESTIMATE immune score.  Mariathasan et al. 

demonstrated that in bladder cancer patients a lack of response to ICIs associated with 

increased TGF-β signalling expression and in the analyses presented in this chapter, patients 

with high versus low gene signature scores had significantly decreased TGF-β signalling as 

shown by GSEA (Mariathasan et al., 2018).  Using the same cohort, Powles et al expanded 

on this to show that response to ICIs was associated with high expression of immune 

response signatures and basal/squamous molecular subtypes, whilst relapse after treatment 

was associated with increased angiogenesis and TGF-β signalling (Powles et al., 2021).  My 

gene signature also correlated with high ESTIMATE immune scores and expression of 

multiple signalling pathways associated with inflammation, as well as ba/sq subtypes.  These 

analyses support the suggestion that a high expression of my derived gene signature reflects 
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tumours that are likely to respond to ICIs, although testing on a clinical cohort is needed to 

validate this.  

In the report outlining the long-term outcomes from the BCON trial, Song et al. show that 

tumours classified as basal compared to luminal (via BASE47 mRNA classifier) had better 

survival when given CON compared to radiotherapy alone (HR = 0.58, 95% CI 0.32-1.06, 

p=0.08), and were more hypoxic.  The authors saw no difference in survival for basal vs 

luminal tumours and concluded that a composite biomarker taking into account subtype 

and hypoxia could improve prognostic and predictive potential (Song et al., 2021).  The 

prognostic gene signature derived here positively correlates with hypoxia, was enriched in 

basal tumours and predicted benefit from CON addition to radiotherapy.  Therefore, the 

signature could have potential as a composite biomarker.  In support of this suggestion, the 

multivariable analysis of BCON showed only the hypoxia-driven immune gene signature 

retained prognostic significance when including the 24-hypoxia gene signature and 

molecular subtype classification.  

 Radiotherapy can confer either pro or anti-tumour immune effects depending on the 

immune contexture of the tumour prior to treatment (Barker et al., 2015).  A study in MIBC 

showed that a higher expression of genes reflecting CD8+ T cell infiltration and IFNγ 

signalling was associated with a better disease specific survival when patients had TMT, but 

not for those who had radical cystectomy +/- neoadjuvant chemotherapy (Efstathiou et al., 

2019).  A study by Chen et al. demonstrated that HIF1A gene expression positively 

correlated with tumour aggressiveness.  In many cancer types, including bladder, HIF1A 

expression was shown to positively correlate with EMT, ESTIMATE stromal scores and 

immune-promoting and immune-inhibiting gene signatures.  They further showed that a 

kidney cancer cohort receiving an ICI had significantly better response to treatment when 

HIF1A expression was high (Chen et al., 2020). 

 In mice models, hypoxia reversal by hyperbaric oxygen breathing has been shown to 

stimulate anti-tumour immune effects including increasing intratumoural infiltration of 

CD8+ T cells, reducing inhibition of CD8+ T cells and decreasing immune-suppressive 

molecules such as TGF-β.  These effects led to immune-mediated tumour regression, which 

resulted in improved overall survival (Hatfield et al., 2015).  In a prostate cancer mouse 

model, a hypoxia pro-drug successfully reduced hypoxia and combined with ICIs to 

drastically improve survival.  It was shown that the combination therapy increased levels of 
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cytotoxic CD8+ T cells and reduced myeloid-derived suppressor cells in the TME to allow for 

better immune-mediated tumour elimination (Jayaprakash et al., 2018).  Taken together, I 

hypothesise that the signature reflects tumours with an hypoxia-driven inflamed TME that 

confers pro-tumour immune responses after treatment.  The hypoxia-modification through 

CON enables the shift of the inflamed TME to anti-tumour immune effects, which improve 

immune-mediated responses to radiotherapy and are likely to combine beneficially with ICIs 

for increased expansion of immune-mediation tumour clearance (Figure 6.15).   

 
Figure 6.15. Schematic showing the hypothesis of CON and ICI benfit for tumours identified by high hypoxia-driven immune 
gene signature score. Created with BioRender.  
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Although other bladder cancer hypoxia-related gene signatures exist that reflect the 

immune TME, as discussed, the one presented here is the first to my knowledge that is an 

hypoxia-driven immune gene signature.  It also uniquely demonstrates benefit from 

hypoxia-modifying therapy and shows a strong positive correlation with hypoxia, as well as 

reflecting increased inflammation in the TME.  Furthermore, the signature is bladder cancer-

specific.  The study is limited by a lack of availability of all the signature genes in the BCON 

cohort, which limits further analysis of the gene signature in this cohort.  Further work 

needs to be done to elucidate the CON-mediated immune changes in the TME post-

radiotherapy.  

In summary, I derived a bladder cancer-specific hypoxia-driven immune gene signature 

that identifies poor prognosis MIBC patients given current standard-of-care treatments 

alone.  The gene signature reflects hypoxic and inflamed tumours and predicts benefit from 

CON.  The gene signature has the potential to also predict tumours likely to benefit from 

ICIs, but this requires further testing on a bladder cancer cohort treated with ICIs.  
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7 Discussion 

The overall aim of my project was to investigate the effects of hypoxia on the immune 

tumour microenvironment in MIBC and develop biomarkers for potential use in 

individualising the use of concurrent treatments with radiotherapy.  Four objectives were 

addressed (see Section 1.5.3) and the key findings from the thesis were: 

• Hypoxia led to a cell density dependent decrease in expression of PD-L1 in bladder 

cancer cells in vitro, but in MIBC in situ, PD-L1 expression positively correlated with 

hypoxia. 

•  Low CD8+ T cell counts confer a poor prognosis in MIBC and predict benefit from 

addition of hypoxia-modifying therapy, CON, to radiotherapy.  

• In MIBC, hypoxia associates with increased suppressive and anti-tumour immune 

signalling, and presence of immune infiltrates. 

• A prognostic bladder cancer-specific hypoxia-driven immune gene signature predicts 

benefit from CON and represents hypoxic and inflamed tumours.  

The findings in this thesis regarding the relationship between hypoxia and PD-L1 

expression are important because PD-L1 contributes towards an immune suppressive TME 

by dampening the CD8+ T cell-mediated anti-tumour immune response, which aids 

treatment resistance and tumour recurrence and progression (Dovedi et al., 2014; Han, Liu 

and Li, 2020).  Using MIBC cell lines, I show that there is no hypoxia-mediated increase in 

PD-L1 seen in vitro.  My results show that when investigating PD-L1 expression in vitro, cell 

density is of importance as PD-L1 expression decreases with increasing cell density and thus 

should be taken into consideration for future experiments.  Using a ChIPseq experiment in 

the T24 MIBC cell line, I show that HIF-2α binds to an enhancer region of the PD-L1 gene 

(CD274) under 1% and 0.1% hypoxia.  The mechanisms governing PD-L1 expression at a 

genomic level are not well defined and published literature gives rise to discrepancies 

between cell lines and tissue-types (Fabrizio et al., 2018).  More specifically, the HIF-

mediated regulation of PD-L1 is poorly defined in the literature and is potentially tissue-type 

specific.  As there are no existing publications analysing the role of hypoxia and HIF on PD-L1 

expression in bladder cancer, my data adds to this gap in the literature by providing novel 

insights into the effect of hypoxia and HIF on PD-L1 expression in MIBC, specifically.  More 
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in-depth research into the roles of HIF-1α and HIF-2α in regulating PD-L1 expression under 

hypoxia in bladder cancer are lacking in this thesis and these results highlight the need for 

further studies on this topic.  In future work, the in vitro experiments should be expanded to 

increase the number of MIBC cell lines and include the expression of HIF-1α and HIF-2α 

alongside PD-L1 expression.  Knockdown experiments of HIF-2α would provide interesting 

insights into the role of HIF-2α in PD-L1 expression, as well as ChIP experiments on more 

MIBC cell lines.   

Upon expanding my PD-L1-related research from in vitro analysis to investigating the 

relationship between PD-L1 and hypoxia in situ using patient tumours, I found a positive 

correlation between the two.  I found that in MIBC tumours hypoxia also associated with 

other immune signalling pathways that contribute towards an immune suppressive tumour 

microenvironment.  These results are corroborated by my results using microarray gene 

expression illustrating that under hypoxia MIBC cell lines are enriched for signalling 

pathways associated with myeloid and neutrophil activation and differentiation as well as 

signalling related to Treg maintenance.  A suppressive TME is important because it furthers 

tumour growth and progression and plays an important role in treatment resistance 

(Hanahan and Weinberg, 2011).  The relationship between hypoxia and a suppressive TME 

has not been thoroughly researched in bladder cancer and I show here that hypoxia 

contributes towards a suppressive TME in MIBC, specifically.  However, in contrast I also 

show that hypoxia associated with anti-tumour immune signalling processes.  Sufficient 

recruitment and activation of CD8+ T cells is essential to elicit an effective radiotherapy-

induced immune-mediated tumour killing, which is vital for tumour clearance and response 

to treatment (Barker et al., 2015).  Immune signalling in the TME is of clinical importance 

regarding response to treatments.  Literature has shown that in bladder cancer an inflamed 

TME with high levels of immune-related signalling predicts response to ICIs (Mariathasan et 

al., 2018; Powles et al., 2021).  I show that in MIBC tumours there was a positive correlation 

between hypoxia and various immune-related signalling processes that predict benefit of 

ICIs.  Using HIF ChIP-seq experiments, I also show that HIF binding is enriched for signalling 

related to CD8+ T cell activation and differentiation, interferon production, humoural 

immune responses and signalling related to innate immune responses and generic cytokine 

production.  Therefore, not only are the results in this thesis regarding the relationship 

between HIF-binding, hypoxic conditions, and immune-related signalling in MIBC novel, but 
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they are of clinical relevance as they indicate that hypoxia could predict response to ICIs in 

MIBC patients.  Analysis of the relationship between the two should be further expanded to 

see how they relate to patient survival and response to treatments, which is lacking in this 

thesis. 

There is an unmet clinical need to develop biomarkers to personalise treatment 

strategies for MIBC patients to improve overall survival.  I developed two biomarkers that 

could be studied further for their potential to stratify patients for additional treatments 

alongside radiotherapy.  Both low CD8+ T cell counts and a high hypoxia-driven immune 

gene signature score predicted poor prognosis patients who had hypoxic tumours and 

showed benefit from hypoxia-modifying therapy, carbogen and nicotinamide (CON).  Of the 

two, the gene signature provides the more robust option due to the reliability of using a 

gene signature clinically, as seen by the current use of breast cancer gene signatures such as 

Oncotype DX in breast cancer, compared to discrepancies seen when trying to adopt an IHC 

based biomarker across different centres (McVeigh and Kerin, 2017; Walker et al., 2019).  

The derived hypoxia-driven immune gene signature also reflected inflamed tumours, which 

are therefore likely to benefit from ICIs.  Validation of this hypothesis is needed using an ICI 

treated MIBC cohort and is lacking in this thesis currently.  Collaborations are ongoing to 

investigate whether high gene signature score predicts patients who respond to ICIs.   

Multiplex IHC is a resource-heavy technique as it requires a lengthy optimisation process 

at a high cost, which I found had to be performed on the same tissue that was going to be 

used for the experiment.  Taken together, this means that optimisation used a lot of clinical 

trial tissue, and overall the experiment was lengthy and costly.  I do not think this was 

proportional to the breadth of information gleaned from the experiment.  Recently, 

multiplex IHC has been superseded by spatial biology techniques such as digital spatial 

profiling (DSP) (Merritt et al., 2020).  DSP would be interesting to investigate for this project 

as it has been designed for immune-oncology biomarker discovery, which is pertinent to the 

topics explored in this thesis (Beechem, 2020).  To continue this project, more research is 

needed to see the effect of CON on the immune TME in MIBC tumours.  A phase II clinical 

trial using the derived gene signature as a biomarker to stratify patients for radiotherapy +/- 

CON could be used to this effect.  Diagnostic biopsies and post-treatment samples could be 

analysed using digital spatial profiling techniques to provide a wealth of information 

pertaining to both protein and gene level information investigating how radiotherapy and 
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CON given synergistically alter the immune TME in MIBC.  Mouse models are then needed 

to investigate the effects of combining radiotherapy and CON with ICIs for hypoxic and 

inflamed tumours.  Literature has shown promising responses for combination of ICIs and 

hypoxia-modification, but little has been researched into combining them with radiotherapy 

(Hatfield et al., 2015; Jayaprakash et al., 2018; Colombani et al., 2021; X. Liu et al., 2021).  

Investigations would first need to be made into the effect of scheduling, dose, toxicities of 

combinations and the most effective ICI.  If the combination treatment is successful in 

promoting immune-mediated tumour clearing then it would form the basis for a clinical trial 

where poor prognosis patients with a high gene signature score would be given 

radiotherapy plus CON with an adjuvant ICI to improve immune-mediated tumour 

clearance, immunological memory and overall response to treatment.  This approach would 

provide the potential to ameliorate the current poor survival rates for MIBC patients.   

Overall, the findings presented in my thesis provide novel insights into the relationship 

between hypoxia and the immune tumour microenvironment in muscle-invasive bladder 

cancer.  The results provide the basis for further investigations to elucidate the role of HIF-

2α on PD-L1 expression in MIBC and take forward the derived gene signature as a potential 

biomarker to improve MIBC patient survival.   
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