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Abstract

Models emulating the spread of infectious diseases in close-contact environments present
a set of unique challenges. This field of research has exploded over the past three
years due in part to the SARS-CoV-2 pandemic. In this thesis, we present and ex-
plore five different models of infection in close-contact environments which aim to
fulfill five different needs.

The first model (Chapter 2) is used to study the ability to estimate the outbreak
size, i.e. the total number of individuals in a group who have been infected follow-
ing an exposure event, based on the number of observed symptomatic individuals by
a certain time after the event. Of the three quantities we investigated, the proportion
of individuals who have been observed to be symptomatic, the outbreak size and the
group size, the first one is shown to have the greatest influence on the entropy of the
resulting predicted distribution for the outbreak size.

The second model (Chapter 3) explores the effect of rota patterns on workplace in-
fection rates by calculating a central estimate for the length of time an individual is
at work whilst infectious. We first explore this model numerically and then approach
an analytical solution by representing rota patterns as a Fourier series. In both cases,
we find that longer shifts reduce in-work infectiousness and, for a parameter set emu-
lating SARS-CoV-2, a rota length of approximately 10–11 days is optimal.

Nosoco (introduced in Chapter 4) is a tool we have generated for approximating the
total number of in-hospital infections based on the timing of positive swabs. We ex-
plore how efficient it is as a tool compared to declaring as nosocomial infections all
individuals diagnosed after a fixed number of days since their admission, explore how
the proportions of total cases attributed to infection within and outside the hospital
changes over time and estimate each individual’s daily rate of infection.

The fourth model (Chapter 5) is used to estimate the incidence of Hepatitis C from
results of a cross-sectional survey when assuming a constant rate of infection. We use
an example study of a cross-sectional survey of Scottish prisons to show no evidence,
among people who inject drugs, of a lower incidence in prison compared to the exter-
nal incidence .

The final model (Chapter 6) incorporates a distance element into transmission trees
as we investigate an outbreak aboard a cruise-liner, using cabin location as a proxy
for infector location.
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Chapter 1

Introduction

This chapter is an introduction to “Data-driven analytics of disease spread under
close contact for optimal testing and mitigation”. We will start in Section 1.1 by
discussing literature relevant to this area of research in the form of a literature re-
view. This helped inform us of gaps in the field and possible areas of future research.
Section 1.2 explores our understanding of the thesis title and how it informed our
goals in this PhD project. Finally, in Section 1.3 we introduce the five core research
projects of this PhD.

1.1 Literature Review

1.1.1 Search protocol

The following section was originally written in 2020, based on a literature search per-
formed on 21/10/2019. We performed a PubMed search for the phrase “(((epidemic
OR infect*)) AND (model* OR simulat*)) AND (household OR close-contact OR
prison OR ship)”. This produced 14749 articles. We refined the search to include
only articles produced in the past five years pertaining to humans. We reviewed the
titles and abstracts of the resulting 5074 articles in order of “Best match” according
to the PubMed search. We ruled articles in if they were focused on an infectious dis-
ease, if they considered a mathematical model for the transmission of said disease
and if they involved a close-contact or closed environment. We stopped once we had
identified 105 articles.

In these 105 articles, the were two systematic reviews, looking at the spread of in-
fectious diseases related to incarceration[1] and the mathematical modelling of the
spread of Hepatitis C[2]. We followed the citations used in these articles. Addition-
ally, we identified five modelling programmes from the previously mentioned articles.
These were each chosen to highlight specific common aspects of available epidemio-
logical modelling tools. We searched for these tools on PubMed for their use in liter-
ature over the past 5 years.

The breadth of research in modelling infectious diseases has expanded dramatically
over the course of this 3 and a half year research project. Repeating the same search
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criteria in March 2023, we found a further 10,044 papers published since 2019, of
which approximately 50% fulfill our more selective criteria of being focused on an in-
fectious disease, considering the mathematical modeling of transmission and if they
involve a close-contact or closed environment, and 29% fulfill this criteria and are fo-
cused on SARS-CoV-2. These numbers are based on the first 200 publications ap-
pearing in this search. Put in context, this is 4.23 relevant papers per day from Jan-
uary 2020 to March 2023 and 2.45 papers per day focused on SARS-CoV-2 over the
same time frame.

To the best of our ability, we have updated this literature review to include recent
papers that are similarly relevant. This is most evident in Section 1.1.6 where we
have included an update on additional popular outbreak modelling tools.

There are many approaches to analysing the spread of infectious diseases. This the-
sis aims to show a few mathematical models tailor-made for understanding their
spread in close-contact environments, such as prisons or hospitals. In order to do so,
we need to establish what tools are already available. This chapter will highlight the
wide range of analytical approaches that have been taken in the past to help under-
stand real-life and so-called “toy” model outbreaks. We give examples of key litera-
ture on the subject, as well as, where relevant, briefly discuss the mathematics in-
volved. We also identify what we feel is missing from the tools currently available, as
this is the motivation behind the work in our thesis.

1.1.2 Historical models of disease spread

Compartmental models

Compartmental models represent an important method for understanding the spread
of infectious diseases. They do not appear in the body of this thesis as, for reasons
we will discuss later, they can be an inappropriate way to model certain close-contact
environments. However, they are so foundational to the field of infectious disease epi-
demiology that it would be wrong of us to exclude them from our literature review.

Compartmental models are used to approximate how different populations change in
size over time. Each population is represented by a parameter, whose size indicates
the size of the population. We then write a series of equations, called Ordinary Dif-
ferential Equations (ODEs), that show how the size of these populations change over
time. Rather than considering individuals, we can consider the overall flow of all in-
dividuals between compartments. This model style can be useful when the rate at
which the population sizes change is dependent on the size of the population itself.
In a predator-prey scenario, the rate at which the predator population changes is de-
pendent on both the predator population size (for breeding) and the prey size (for
availability of food)[3].
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In infectious disease modelling, we can divide the population up by their infection
status. A classic example of this is the SIR model, in which a community is divided
into groups S, I and R. The population in the S (susceptible) group is still suscepti-
ble to the disease. They flow into the infectious I group at a rate dependent both on
the total number of available susceptible individuals and the number of infectious in-
dividuals. Over time, infected individuals recover from the disease and move into the
R (recovered) group where they are immune to the disease, at a rate dependent on
the size of the infectious group. The movement between these three groups over time
can be expressed through the following ODEs:

dS
dt

= −βIS

dI
dt

= βIS − σI

dR
dt

= σI

In these equations, β represents the infection rate from an infected individual to a
susceptible individual and σ denotes the recovery rate from the disease. We can anal-
yse these ODEs to draw conclusions about disease spread. For example, the number
of people one person can infect in an entirely susceptible population (R0) is β

σ
. If this

number is less than 1 then an outbreak cannot occur, as the rate of growth of the I

group would always be negative. We could therefore show a vaccination plan (where
vaccination converts a susceptible person to a recovered person) needs to reach 1− 1

R0

of the population to prevent an outbreak.

Looking at this model, we can see that any epidemic will eventually die out. The
number of susceptible people will always reduce, meaning there will always come a
point where the infectious population recover faster than they infect new people (see
Figure 1.2 A). However, if birth and death are introduced to the population this is
not necessarily true. With each birth, new susceptible people are introduced to the
population, meaning that given the right R0 the disease will not die out and instead
enter an endemic state (see Figure 1.2 B)[4].

dS
dt

= γ(I +R)− βIS

dI
dt

= βIS − I(σ + γ)

dR
dt

= σI − γI

With this change to the model, individuals die and are born at the same rate, γ.
They are born susceptible, meaning new susceptible individuals are constantly being
introduced. The infection is no longer guaranteed to die out, as dI

dt does not necessar-
ily turn negative over time, meaning the disease can become endemic.

19



(a) (b)

Figure 1.1. Two SIR compartmental models show the flow of individuals between compartments. In
the left hand model, the Susceptible group can become infected and move to the Infectious group,

who over time end their infectious period and move to the Recovered group. This movement
corresponds to the change in group sizes seen in Figure 1.2 A. The same movement occurs in the

right hand model, except individuals die and are born at a rate γ, corresponding with Figure 1.2 B.

Figure 1.2. The changes of population proportions an SIR model over time. Both figures
demonstrate models of a disease with a transmission rate (β) of 1.42 transmission per day and a

recovery rate (σ) of 0.31 recoveries per day. This results in an R0 of 4.64. 1.2A shows a model that
does not include deaths or births. A peak can be observed at approximately time 12. After this

point, with a low susceptible population, the infectious population runs out of people to infect and
decreases in size. 1.2B shows a model that accounts for births and deaths. With the introduction of
a new susceptible population, the infectious population now tend towards an endemic equilibrium.

This simple yet effective model, first proposed by Kermack and McKendrick[5], can
be used as the basis to investigate multiple disease scenarios. A search of PubMed
for SIR model[Title/Abstract] produced a total of 355 articles prior to 2020 and a
further 534 after this time[6]. Part of the reason for this popularity is the models
adaptability. For example, having recovering individuals move from the Infected
group to the Susceptible group and removing the Recovered group creates a model
where people do not develop immunity following exposure to a disease, such as seen
in many sexually transmitted diseases[7] (see Figure 1.3). Introducing a new group E
(Exposed) between being the Susceptible and Infectious individuals creates a delay in
infectiousness as seen in Influenza or SARS-CoV-2[8] (see Figure 1.4).

The adaptability of compartmental models and the fact that they look at popula-
tions rather than individuals mean that epidemiological data for a disease can be fit-
ted to an appropriate model to parameterise factors such as the disease recovery time
and transmission rate. An example of this fitting was seen in 2014 when Lewnard
et al. published a paper using a deterministic compartmental model to simulate the
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Figure 1.3. An SIS compartmental model, showing a scenario where infected individuals do not gain
any immunity after recovering from an infection. This is in keeping with many sexually transmitted

diseases.

E

Figure 1.4. An SEIR compartmental model, where, before becoming infectious, infected individuals
spend a period of time in an exposed group, creating a delay in the model.

spread of Ebola in Montserrado, Liberia based on cumulative incidence reports[9].
By adapting the above model to include such factors as hospitalisation, caring for
household members and the infection risk of incorrectly disposed bodies, they investi-
gated the effect of additional treatment centre beds on preventing an outbreak of the
disease. They showed that extra hospital beds, which at the time had been promised
by the USA, were inadequate to control the outbreak and that the time window to
act was rapidly closing. They used a least squares fit to fit their data and assumed
an independence in variation of their data points. As a result they demonstrated an
apparent narrow error margin in their estimations.

King et al. investigated the same data using similar models[10]. They had two con-
cerns. Firstly, the cumulative data used in the Lewnard study meant that any vari-
ation was dependent rather than independent, resulting in a wider error margin
in their estimated prediction. Secondly, the use of a deterministic model raises is-
sues when compared to equivalent stochastic models. Deterministic models are ones
where the result is necessarily determined by the starting conditions. For example,
compartmental ODE models are deterministic: given the same set of starting condi-
tions, they will always follow the same path. Stochastic models allow for some ran-
dom variation between iterations of the model. We will discuss them in more depth
later. Deterministic models can overestimate values. If the rate of departure from a
compartment is modelled as an exponential function, as was the case in their ODEs,
the length of time in each compartment has an infinitely long positive tail, result-
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ing in overestimation and broader error windows. Stochastic models conversely do
not and allow for random variance in a population. King generated an equivalent
stochastic model to the one used by Lewnard and fitted it to the same data. In doing
so they showed to a greater accuracy that the spread of Ebola would be far less rapid
than predicted. In raising these concerns, King showed the important role stochas-
tic modelling will have in the prediction of the spread of infectious diseases, in that it
was necessary for modelling small populations, early outbreak dynamics and scenar-
ios where R0 is close to 1.

With regards to SARS-CoV-2, an SEIR model that allows for some presymptomatic
period tends to be more popular, as it reflects an important delay between infection
and symptom onset in the SARS-CoV-2 career. Many research groups have produced
papers fitting an SEIR model to SARS-CoV-2 outbreak data, For example, Al-Khani
et al. fitted an SEIR model to outbreak data across Saudi Arabia to estimate the ef-
fect of social distancing and predict the shape of the pandemic by Hajj season[11],
Nguyen et al. used an SEIR model with parameterisation dependent on 8 age groups
in New Zealand to predict the outcome of multiple different age dependent vaccina-
tion programmes[12] and Song et al. used a similar SEIR model to examine the effect
of age-dependent immune responses to vaccination against SARS-CoV-2 to on the
overall outbreak size[13].

One basic assumption that is shared by each deterministic ODE model of this vari-
ety is that every infectious individual has the same ability to infect every susceptible
individual. By thinking about the dynamics of most infectious diseases (the need for
proximity, for example) we can conclude that this assumption is not accurate. We
look at work that has focused on correcting this assumption in the next section.

Heterogenous mixing

One of the most important factors in human infectious disease modelling is the un-
predictable nature of social interactions making a stochastic system of disease trans-
mission. Multiple researchers have investigated at environments of heterogeneous
mixing. Heterogeneous mixing describes an environment where the probability that
individual A will interact with individual B is not necessarily the same as the prob-
ability that they will interaction with individual C. This is different from homoge-
neous mixing, where every individual is equally likely to interact with every other in-
dividual.

One way to simulate heterogeneous mixing is to further compartmentalise popula-
tions into households. Ball has published multiple papers looking at parameterising
stochastic spread of diseases given that populations live in households. In these mod-
els, each member of a population belongs to a smaller household. A disease is more
likely to transmit between members of the same household than between unrelated
members of the population. His team found that in early stages, where a household

22



has only been infected by one incident, the attack rate of completed epidemics in
households will follow a distribution dependent on the within-household spread rate.
Therefore, the final size distribution in early epidemics can be used to estimate the
within-household infection rate[14].

From household models, Ball et al. went on to include schools in their models [15].
They defined schools as larger additional groups that household members belong to,
with increased probability of intra-school transmission, but less so than household
transmission. They analysed household and household/school models, looking at
how school allocation based on household allocation would affect the spread of dis-
ease through a population. They compared two extreme scenarios, one where every
household member belonged to the same school and one where schools were assigned
independently of household. They found R0 to be inadequate in these scenarios, and
so explored multiple alternative R values. Additionally, they discovered that with a
more structured social network the principle of vaccinating 1 − 1

R0
of the population

would be inadequate to prevent a large epidemic.

Keeling et al. used household models to further investigate vaccination policies[16].
They were looking at an allocation system in which members of a household are as-
signed vaccines until there is the same number of unvaccinated individuals in each
household. Whilst this is an optimum strategy for a density-dependent spread of dis-
ease (dependent on the proportion of the population infected), they found that it was
no longer as effective when the disease spread was frequency dependent (dependent
on the total number of infected individuals).

Zhang et al. used household models to investigate the efficacy of household isola-
tion for scenarios where vaccination may not be readily available[17]. They used a
stochastic model to simulate household self-isolation once one member presented
with influenza symptoms and found that this reduced the reproductive value of each
house. Their aim was to show the importance of household isolation in the reduc-
tion of between household transmissions, or more importantly the effect of imperfect
compliance with household isolation. This prescient paper (it was written in 2015)
showed that household isolation can be very effective, and that even poor compliance
can have a considerable reduction in the number of households one infectious house-
hold infects.

An alternative representation of heterogeneous mixing to household models is an in-
teraction network. Bioglio et al. showed that parameters found based on homoge-
neous mixing models can be adjusted linearly to be used with network-based contact
models[18]. Ball et al. also looked at the application of contact networks on house-
hold models[19]. They focused on different distribution methods of limited vaccines
in order to prevent epidemics. They found that prioritising people on contact net-
works with a high degree of connectivity may be more effective than targeting cer-
tain household sizes. However, they criticized this theoretical outcome, noting that it
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may be both unethical and impractical to enact in real life.

Certain diseases are often the focus of household-transmission investigations. Otero
et al showed Tuberculosis risk in Lima, Peru to be 10 times higher when living with
a person with a positive diagnosis[20]. Zeiner et al. corroborated this increased risk
and further showed that in cases of TB, testing and treating households with a pos-
itive diagnosis is more cost effective than testing the whole community[21]. Similar
investigations have been performed looking at real world household data for Neisse-
ria meningitidis[22], HIV[23] and influenza, including a meta-analysis of 56 published
influenza by Tsang et al. that showed a 38% increase in risk of a secondary infection
for household members of a person with a positive diagnosis[24].

Of note are the works of Walker et al. and Geard et al.. Walker inferred parameters
for an SIR household model using a Markov Chain Monte Carlo analysis (MCMC)
to represent transitions between states of high and low transmission, fitted to FF100
data[25]. FF100 are data from the first 100 households affected by an influenza out-
break so predictions made accurately from these data could make a contemporaneous
estimate of the overall size of an ongoing outbreak. This process was both computa-
tionally efficient and presented good approximations for the real world parameters.

Geard created an extensive SIR household model tracking over multiple decades of
Australian census data[26]. They parameterised factors such as decreasing fertility,
increasing life expectancy and increasing rates of household disruption. Geards team
made their Python code for this model publicly available, raising the possibility of
incorporating it into more complicated household models.

Household structures were influential in the spread of SARS-CoV-2 during the pan-
demic. Madewell et al. performed a meta-analysis of studies looking at secondary in-
fections in households where SARS-CoV-2 had been introduced. The found 54 such
studies and showed an elevated rate of infection once SARS-CoV-2 was introduced
to a household. They also broke down these interaction, showing there was further
heterogeneity within households[27].

These corroborations of the household principle show the importance of its further
investigation. Ball et al. identified 7 possible areas of further mathematical investiga-
tion of household models or metapopulations:

1. Clarifying the utility and limitations of weakly coupled large sub-populations

2. Developing a theory of endemic models within the household structure

3. Generating a generalised framework for including household models in more
complex socio-economic structures

4. Developing meta-population models that reflect spatial populations

5. Developing inferential methods for emerging epidemics
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6. Developing inferential methods for emerging epidemics with computational effi-
ciency

7. Using metapopulations to model the individual as a habitat of the disease

[28]

Age based models

Household models are an effective explanation for some heterogeneity in the trans-
mission of diseases. Another key factor is age. Multiple studies monitor contact rates
between individuals. For example, using RFID chips, Ozella et al. showed that, in
households, 70% of interactions include an infant[29]. The POLYMOD study used
contact diaries as an alternative self-monitoring method of monitoring contacts[30].

There is a consistent link between young age and high contact rate, both with other
younger individuals and people of other ages. This information can be used to pre-
dict multiple different phenomena in epidemiology. Rohani et al. showed that an ob-
served change in the average age of pertussis infections following vaccination was not
due to new vaccination resistance but was expected due to the age-related hetero-
geneity in contact rates[31].

There are conflicting conclusions from studies into which age-ranges are at risk of
secondary infections in households with diarrhoeal outbreaks. Miura et al. created
multiple different permutations of households and generated a complex deterministic
model looking at toilet use, washing habits and eating habits to investigate the in-
troduction then spread of Norovirus into households in Japan[32]. They found that
mothers and infants were susceptible to the highest rates of secondary infections.
Tokunda et al., however, found from questionnaires of households with Shiga-toxin
producing Escherichia coli that it was 6-9 year old children, especially males, that are
most at risk[33]. They also found that early face-to-face hand-hygiene interventions
were most effective in reducing secondary infections, particularly if the household
still had a STEC negative child. Whilst these two studies do slightly contradict each
other, they show the importance of age when considering transmission of infectious
disease.

With outbreaks modelled over short time-frames, the change in ages of a population
does not need to be considered. Instead, as with the above models, they can be con-
sidered static. However, chronic infectious diseases like HIV and HCV need to be
considered on a longer scale and therefore an age-structured model needs to be used.

Age-structured models consider the change of distributions of ages in each compart-
ment as time passes. There are three factors to consider that change as age distri-
butions change. As mentioned earlier, the POLYMOD trial demonstrated how inter-
actions vary between age ranges. The changes in age distributions in the infectious
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and susceptible compartments will therefore have a direct influence on the transmis-
sion rates over time. The birth rate in a population is dependent on the proportion
of the population that are of a fertile age. Similarly, the death rate increases as the
age of the population increases. Including these factors by representing each popula-
tion compartment as a size and distribution can therefore be used to show the long-
term effects of a disease[34].

Depending on the disease, higher physical contacts among younger populations may
not be the age-related risk factor of transmission. Sexually transmitted diseases have
transmission rates that are dependent on age, but target a different age group. An
example of an age-structured model used to represent disease dynamics can be seen
in the work by Bershteyn et al. investigating age-dependent partnering among people
who have HIV[35]. They showed that including age into their model greatly adjusted
the efficacy of HIV interventions. Early introduction of ART (within one year) saw
a higher drop in incidence than predicted from a non-age structured model, but also
increased the interventions cost. Additionally, by considering the change of age they
showed that this intervention would increase the expected age of incidence.

Agent-based models

Once age changes are included in a disease model, the logical conclusion becomes to
include other factors that may influence infection and death rates. Before interven-
tion, the rate of transmission of HIV between men who have sex with men is higher
than any other gender couplings[36], so sexual practices would be an important fac-
tor to include when modelling the spread of HIV. Meena et al. showed that smokers
had significantly worse outcomes the non-smokers when diagnosed with tuberculo-
sis[37], so if we wanted to create a model to approximate expected outcomes from
TB infections, we should include individual’s smoking statuses. Agent-based mod-
els (ABMs) are models that create individual agents with multiple descriptive factors
and consider how they would interact given rules based on these factors[38]. This can
be applied to infectious disease models by considering populations not just in terms
of compartments but in terms of individuals in these compartments. Each individual
is assigned a number of different factors representing their demographics. The cho-
sen demographics are relevant to the modelled disease and dictate how the disease is
transmitted to and from the individual, alongside how the disease will affect the indi-
vidual as time progresses.

This step away from purely equation-based modeling comes with the opportunity for
additional complexities. It is now possible to directly track individuals’ locations.
Venkatramanan et al. used an agent-based model to track the movements of individ-
uals exposed to Ebola, which proved vital in predicting the diseases rate of spread
across sparsely populated regions[39]. Hunter et al. used a similar method to model
the spread of measels in small towns and villages in Ireland, focusing on students due
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to their unusual movement patterns and lower probability of vaccination[38]. Lum
et al. modelled incarceration as an infectious disease with an SIS process of trans-
mission. Using ABMs to single out race as a factor they explained a racial bias in
incarceration frequency in African American populations in California and make a
sociological argument against longer incarceration times[40].

The relative flexibility of agent-based models made them incredibly popular when
modelling the wide range of different interests surrounding SARS-CoV-2. A PubMed
search reveals 139 papers that use ABMs to model some aspect of the SARS-CoV-2
pandemic. These range from including genetic[41] and geospatial data[42], and inves-
tigating outcomes such as economic implications of the SARS-CoV-2 pandemic[43]
and even the effect of lockdown on lower back pain[44]. One common agent-based
model developed specifically written for SARS-CoV-2 modelling is Covasim[45]. Co-
vasim is a open-source Python based tool specifically designed to be both flexible
and easy to use. It appears in multiple studies and has an online app, although as
of writing we have been unable to access it.

There are two common issues with ABMs. The most important is speed. ABMs are
computationally complex, with decisions made for each agent in the model for each
time step. This complication increases exponentially when considering each possible
interaction between individual agents. This speed will be discussed later when com-
paring different publicly available modelling programs.

The second noted issue with ABMs is also their strength. They can account for a
large amount of variation by accumulating and utilizing multiple pieces of data from
real world populations. This requires accurate real world data in order to produce
accurate results. This means, as Hunter et al. noted, that a large amount of informa-
tion must be collected from a population before an accurate conclusion can be made
through an ABM[38].

1.1.3 Methods of Transmission

In a standard SIR model, we assume transmission occurs when a susceptible indi-
vidual contacts an infectious individual. As a result, the rate of transmission is as-
sumed to be proportional to the size of the infectious population multiplied by the
size of the susceptible population. Whilst this method of contraction is acceptable
for air-borne diseases, more complicated methods of transmission often require differ-
ent means of modelling.

Blood-borne diseases

HIV HIV is a blood-borne disease, meaning that it can only be transmitted through
the transferal of bodily fluids. For this reason, HIV models have often focused on

27



couples rather than households. Chemaitelly et al. used the Demographic and Health
survey data from sub-Sahara African countries to show that couples make up a sig-
nificant proportion of HIV incidence, with HIV most frequently introduced to a cou-
ple through sexual contact outside the couple[46].

Zhang et al. studied the seroconversion of HIV-negative partners in serodiscordant
couples in Liuzhou, China using HIV epidemiology databases from 1996-2013. They
identified a total of 125 conversion over 4963.5 person-years, giving an incidence of
2.52/100 person-years. In particular, those whose partners had a high CD4 count
(> 350) had lower risks than those with a low CD4 count (< 200) and men with fe-
male HIV positive partners, people whos partner did not receive ART and intermit-
tent condom use were linked with an increased seroconversion risk[47]. Additionally,
Oldenburg et al. published a study looking at the effect of offering ART to household
members of those newly diagnosed with HIV, and found a significant drop in house-
hold HIV as a result[23].

Partners should not be the only consideration when modelling HIV, with particular
individual factors being shown to increase HIV risk. Fagbamigbe et al. used the 2012
Nigerian population-based HIV/AIDS and reproductive health survey to demonstrate
that HIV amongst women in Nigeria was linked with transactional sex, sexual debut
before 15 years of age and in women who have been married before. They suggested
that these populations could be the target of interventions[48].

The high dependence of partners and specific contacts in HIV transferal show that
a household or household/school model would not be enough to describe the char-
acter of its spread in communities. This is why specialist HIV modelling tools like
TITAN[49] (see later) use networks to map its transmission.

Finally, HIV transmission can also be considered within models for other diseases.
For example, Martinez et al. showed a possible decrease in infectiousness among HIV
seropositive patients who have a positive diagnosis of tuberculosis. Households in
Kampala, Uganda where the index case of tuberculosis was HIV seronegative had a
higher rate of latent TB than those that were seropositive. However, this could be
due to an increased speed of progress of HIV positive cases leaving less time to in-
fect their households[50]. Velen et al. analysed a program in South Africa that of-
fered HIV counselling and testing to all household members with an index case of
tuberculosis alongside all other TB contact tracing. 8.6% of individuals who agreed
to testing were new diagnoses thanks to the study[51]. It may be sensible therefore
to include the spread of TB into a population model of HIV spread. These examples
all demonstrate why the method of transmission must be considered carefully when
modelling HIV spread.

Hepatitis C In 2016 the World Health Organisation proposed a target of eliminating
Hepatitis C as a public threat by 2030[52]. Pitcher et al. performed a systematic re-
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view in 2019 looking at modelling efforts towards understanding the spread of Hep-
atitis C. They collated papers looking at incarceration and co-infection of HIV. At
the time, the models they found did not necessarily show a positive outlook for elim-
ination in a decades time. However, one opportunity they did observe was incarcera-
tion, which takes a higher proportion of people who inject drugs (PWID) and in turn
Hepatitis C positive patients and therefore represented an opportunity for targeted
treatment[2].

Martin et al. performed an extensive review of treatment of PWID with Hepatitis
C over 2014 in 7 different sites. They found a range of treatment levels (maximum
26/1000 PWID/year) and used this to support a model evaluating upcoming treat-
ment changes. They found that the maximum treatment level (26/1000) is needed to
effect any change over the next 10 years, but the more the better[53].

He et al. also created a model looking specifically at increased screening rates of Hep-
atitis C in prisons. They found that increasing the screening rates in USA prisons,
and screening indiscriminately with regards to age increased diagnosis and treatment
in a cost-effective manner (more cost-effective than targeting those born between
1945-1965)[54]. This went against current recommended practice, as in 2012 a pol-
icy was created in the USA to offer a one-time screen for Hepatitis C only to anyone
born between 1945-1965[55]. It was believed that they made up three quarters of all
individuals with chronic Hepatitis C in America, although to the best of this authors
knowledge this statistic has only been presented once at The Liver Meeting in San
Francisco in 1999[56] and is based on a study that failed to include incarcerated or
homeless individuals in their calculations[57].

Vector borne diseases

Malaria and dengue fever are not primarily transmitted directly through human con-
tact but are instead transmitted via mosquitoes [58], although vertical transmission
can be considered in the case of dengue fever[59]. As a result, rather than modelling
transmission through direct contact, researchers have created spacio-temporal models
to investigate shared areas of mosquito populations.

Stresman et al. attempted to investigate the presence of hotspot households for
malaria transmission among 12 villages in Gambia. They used a geospatial model to
show there was no evidence of a link between high prevalence households and high
rate of transmission to nearby households. They considered factors that would in-
crease mosquito presence, such as proximity to water and rainfall[60]. Pinchoff et
al. evaluated these factors further in Nchelenge District, Zambia. They found a sig-
nificant increase in malaria risk for each 250m closer a household was to a category
1 stream (origin stream) and a seasonal effect for each 250m closer to a category 2
stream a household was (formed when two category 1 streams join)[61]. Kabaghe et
al. also showed the temporal-spatial nature of malaria hotspots, and that they were
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linked with both a high mosquito population and a high infected mosquito popula-
tion[62].

Dengue fever has also been shown to follow geographically-weighted mosquito-vector-
transmission models. Using incidence in municipalities of Brazil, Rodrigues et al.
showed the change in dengue levels in the country over the past decade. They found
a link with socio-economically deprived areas and increased dengue risk, as well as
coastal regions, urban regions, borders, subtropical climates, poor bin collection and
lack of sewer supplies[63]. A novel control method for dengue fever in Guerrero, Mex-
ico is to put larvivorous fish in the household water supply, with the hopes that they
would eat mosquito larvae and in doing so reduce the local mosquito population.
Morales-Perez et al. showed a reduction in the rate of dengue fever in these house-
holds, along with living in a rural setting[64]. They showed that this reduction in the
geographical risk was effective, rather that individual risk factors, further strength-
ening the evidence for use of spacio-temporal models when looking at these vector-
borne diseases.

Diarrhoeal diseases

Household and age-based transmission rates are to be important when modelling dis-
eases with faecal-oral transmission. For example, Tsang et al. investigated in infec-
tiousness of Norovirus in different household sizes in urban and rural environments.
They found that households of smaller sizes (both in space and number of people)
experienced a higher secondary attack rate, and urban houses had a higher secondary
attack rate than rural settings[65].

Transmission of these diseases is more complicated that purely contact between two
individuals. Emont et al. performed an interesting study looking at an epidemic of
diarrhoeal diseases found in Tuvalu in 2013 during a drought (due to a lack of lab-
oratory equipment, the exact diagnosis of the disease was not possible). They man-
aged to link the epidemic to a decline in hand-washing techniques. In turn they
linked the decline in hand-washing techniques to a lack of water. When a push for
hygiene was made, the epidemic died off, long before more water was supplied to the
people of Tuvalu. They proposed that this epidemic may be due to the islands in-
habitants being more likely to try less clean water supplied in a drought or for lower
water supplies to be more easily concentrated with contaminates[66]. Friedrick et
al. went further and quantified the risks of different hand-washing techniques in the
spread of communicable diseases by evaluating their techniques and seeing the bacte-
rial biome on their hands before and after washing[67].

Rather than modeling transmission as direct contact, Miura et al. produced a de-
terministic model for household spread of Norovirus across a year. They parame-
terised interactions between four different person types (mother, father, child and
nappy wearing infant). They only looked at diarrhoea based transfer, with factors
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such as meal times, times to open bowels and which members of a household would
help with nappy changes, and modeled a continual external risk from oysters dur-
ing the fresh oyster season in Japan (November to March). They developed different
household designs based on number of different types of humans. They found that
mothers and infants were susceptible to a high level of secondary Norovirus infec-
tions[32]. The model created shows the extra detail that can be included when con-
sidering transmission methods.

1.1.4 Closed Environments

Closed environments pose an interesting challenge for modelling the spread of in-
fectious diseases. It is easier to track the relatively rare flow of people in and out
of a closed environment, but the small numbers involved means that transmission
rates are strongly influenced by stochastic changes. A historical investigation into
measles epidemics on ships travelling to Australia in the 1800s found a far lower R0

than is typically quoted for the disease[68]. Paterson et al. studied logbooks written
by ships’ surgeons (the Garrow, the Roslin Castle, the Trevelyan, the Duntrune and
the America). They observed generations of infections in the doctors reports. Us-
ing the data they estimated the R0 from parameters that gave the maximum likeli-
hood of each outbreak. The values they found, 7-10, were lower than their expected
12-18[69], a discrepancy that they explained through stochastic factors such as non-
homogenous mixing, varying levels of immunity due to largely adult populations and
recorded isolation of infectious individuals.

The easier it is to closely follow the spread of closed-environment outbreaks, the bet-
ter we can note risk factors for transmission. Distasio et al. studied an outbreak of
tuberculosis aboard a naval ship in 1987, involving 180 crew members[70]. As this
was a naval ship, everyone’s berths and workstations were known in the investiga-
tion, meaning correlations could be drawn around where people worked and slept.
They identified an index case and Distasio et al. showed through simple regression
that people working in the index case’s department were at higher risk of contracting
the disease, while working and berthing in different compartments were protective
factors. They also noted that ventilation may have been a factor, studying how the
air flowed from the index case’s workstation into communal corridors. Additionally,
they observed that the index case’s workstation was an area of high foot-traffic as it
had useful amenities such as a photocopier. Their study showed how powerful infor-
mation can be extracted from a closed environment outbreak without the need for a
full epidemic model. However, with each individual’s location being fairly predictable
throughout the outbreak, it does seem like a spatial model could be fitted to such a
data set to help understand the effect of limited ventilation.

Understanding the physical environment an outbreak takes place in can be critical
to understanding the outbreak itself. For example, Lister ei al. investigated an out-
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break of colonisation of vanB vancomycin-resistant Enterococcus faecium in a multi-
site neonatal unit in Australia[71]. Across the sites, they found 44 colonised babies
(31%) followed by a rapid drop in point-prevalence once containment measures were
taken. Of note, they also found colonisation sites on baby scales, a baby bath and a
pharmacy cupboard, each of which was linked to the outbreak through genetics. In a
larger environment an infected area may not contribute significantly to the spread of
an infectious disease as much as the movement of people, but where the population
size is so small it is likely to have contributed in an unpredictable manner. Holmes
and Simmons analused details of an outbreak of viral gastroenteritis on a long-haul
flight between Los Angeles and Aukland[72]. They included seat number in their
data analysis, and showed the contribution good ventilation had on decreased dis-
ease spread, as well as posit the effect that toilet and exit location in relation to the
primary case had.

Closed environments also give opportunity to understand features of a disease free
from contamination from other infections. For example, the 1950s saw the advent
of blood tests for enzymes released by the liver to indicate viral hepatitis infection.
At the time, viral hepatitis (individual types of viral hepatitides were not yet recog-
nised), was a diagnosis made either through biopsy, on post-mortem analysis or
through clinical observations of jaundice, hepatomegaly and clinical symptoms of a
viral illness. However, there was no guarantee of jaundice or hepatomegaly occur-
ring, and other symptoms were easy to mistake for viral gastroenteritis. De Ritis er
al. took advantage of an outbreak of viral hepatitis in a institute in Rome to show
that amino-transferase levels can be used to diagnose viral hepatitis without jaun-
dice. It was the closed environment, resulting in a relatively high prevalence and no
cross-contamination, that enabled them to come to this conclusion[73].

With this lack of cross contamination, we can use the genetic structure of a disease
to create its phylogenetic tree and better track its transmission between people. We
can then show if an infection is endemic, or as the result of multiple introductory
events into the closed environment. Falchi et al. performed a longitudinal study se-
quencing the HA gene of influenza A on Corsica Island between 2006-2010 and found
multiple strains on the island[74]. Using the prevalence of each strain over time and
the relative genetic biodiversity of the sequences they identified fixed mutations in
each seasons dominant lineage, in keeping with a closed environment. Sequencing
Hepatitis D virus RNA from participants in a study on Miyako Island revealed the
source of the infection for Arakawa et al.[75]. The homology between the Miyako se-
quences and the three identified sequences in Japan suggesting a shared lineage. Ad-
ditionally, the Miyako sequences each had thirteen shared differences compared to
the Japanese sequences, indicative that the infection was introduced from mainland
Japan to Miyako Island and not the other way around. Finally, Sasaki et al. showed
a high level of genetic variation in a Norovirus outbreak on a ship surveying Tokyo
Bay[76]. This made it less likely that the outbreak had come from a singular human
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source and instead was from contaminated seafood[77].

Through a literature review of influenza epidemics in small societies across 120
years[78], Finnie et al. investigated factors that increased risks of larger epidemics
for small closed societies[79]. In particular, they were assessing the attack ratio, the
proportion of the overall environment that end up having been infected once the
epidemic is over. They found that there is a steep drop in the attack ratio as the
community sizes increase and that, once again, children represent an important risk
factor for disease spread (alongside military personnel). This first observation is in
keeping with findings from a prospective study performed by Viboud et al.[80]. They
observed that in France during the 1999-2000 winter season, there was a decreasing
risk of secondary influenza infections as a household size increased. These studeis
both show the importance of introducing smaller heterogeneous mixing groups in in-
fectious disease models, as with the household models discussed earlier in this chap-
ter.

1.1.5 Prisons

Prisons represent an environment between completely closed environments and (such
as ships) and completely open environments (such as cities). Careful consideration
must be made when modelling the spread of diseases in prisons.

Prisons and incarceration are important factors when considering the spread of in-
fectious diseases. A meta-analysis performed by Dolan et al. looked at published pa-
pers on the epidemiology of HIV, Hepatitis B, Hepatitis C and tuberculosis in pris-
ons globally. They identified 299 publications covering 196 countries from 2005 to
2016. They demonstrated an elevated level of each of these diseases in prisons almost
universally, when compared to the general public, with multiple individual outbreaks
demonstrated of HIV, Hepatitis B and tuberculosis. They therefore showed the im-
portance of these institutions when considering infectious disease modelling. Addi-
tionally they approximated the infection rate of HIV in prisons, and showed that re-
ducing incarceration rates could contribute considerably to reducing the spread of
this disease, a conclusion that could be applied to the other diseases as well[1].

Taylor et al. performed a national sero-behavioural study looking at each closed
prison in Scotland[81]. 5187 prisoners volunteered to be tested for Hepatitis C and
fill in a behavioural questionnaire. 32% reported a drug injecting history. 53% of
PWID were found to be Hepatitis C positive, and only 4 new infections were found
(identified as being anti-HCV negative, HCV-RNA positive a 51-75-day from expo-
sure window [82]). The resulting incidence of Hepatitis C among incarcerated PWID
was calculated at 3-4.3%. However, in order to exclude false positives resulting from
HCV exposure soon before incarceration, prisoners were excluded from the study if
they were under 75 days into their stay. This, combined with the narrow window in
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which a positive diagnosis of new HCV infection could occur, results in the possibil-
ity of the incidence in prisons being higher than calculated.

Using this lowered incidence combined with the shown increased risk of injection re-
lated deaths following release from incarceration[83], [84], Stone et al. fitted known
PWID HCV incidence data to a deterministic model that mapped both a persons
progress through prison systems as well as HCV contraction and treatment[85]. They
proposed that if a person had an increased risk of injection related deaths immedi-
ately after leaving prison, they would also have an increased risk of contracting HCV.
Their model suggested a 45% decrease of Hepatitis C incidence in Scotland should
this risk be reduced compared to a 22% reduction in risk if injecting drugs was le-
galised.

Rather than a lower incidence, Altice et al. observed a higher incidence of HIV and
tuberculosis in Eastern European and Central Asia prisons among PWID in a similar
study to Taylor et al[86]. They found that incarceration may responsible for up 75%
of all TB incidence for people who inject drugs, and 28-55% of all new cases of HIV
in the EECA over 15 years from 2016, a difference from the previous studies which
needs to be explored further.

PWID are not the only group who are more likely to be incarcerated. Adams et al.
used TITAN, the network driven HIV spread modelling tool discussed earlier[49],
to explore the effect of increased incarceration on the African American community
in Philadelphia[87]. They found that an increased rate of incarceration in the male
Africa American population had a knock on effect of an increased HIV risk for the
female African American community when they left prison, showing the importance
of the external effects of closed environments.

This “spill-over” effect was investigated further by Mabud et al. when looking at tu-
berculosis in prisons in Brazil[88]. They collected data looking at incidence of TB
given time in prison, including incidence at time of release. They then parameterised
a compartmental model looking at the effect of people moving in and out of prison.
Annual mass TB screening in prisons reduced this models in-prison TB incidence by
47.4% and out-of-prison incidence by 19.4%.

A systematic review of treatment studies for tuberculosis in correctional facilities
by Al-Darraji et al. revealed a low level of completion of treatment for TB for those
with a diagnosis of latent TB infection (LTBI)[89]. This review revealed a median
of 44% completion rate between the studies, with a prevalence in the USA between
6.8-105/100,000 people. They noted that jails and short-term incarceration facilities
may in part be responsible for these low rates of completion, as there often may not
be enough time to complete the treatment course. Treatment with Isoniazid Preven-
tative Treatment for 6 months if HIV negative and 12 months if positive has been
shown to be effective in preventing LTBI developing into active TB[90], [91], which
may not be possible to complete for shorter sentences.
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There is also a link between incarceration and worse outcomes for HIV. Cohen et al.
showed increased odds of mortality and poor HIV outcomes for women who are in-
carcerated through a longitudinal study[92] and Erickson et al. showed consistent
evidence throughout literature that women are then less likely to achieve adequate
HIV treatment following incarceration[93]. However, this is not an effect exclusive to
women, as any short-stay incarceration is strongly associated with virologic failure in
individuals undergoing ART treatment for HIV[94].

Given the shown importance of incarceration in the spread of infectious diseases,
Ndeffo-Mbah et al. performed a systematic review looking for papers published be-
tween 1970 and 2017 that model the spread of one or more diseases and include
incarceration as part of their model[95]. In total they found 34 models published
over this time period, some of which have already been mentioned in this chap-
ter. The overview of these models showed the impact of incarceration across infec-
tious diseases. For example, in communities of people who inject drugs, HIV preva-
lence greater than 5% resulted in incarcerations being linked to 12-55% of HIV inci-
dence[1], [86]. They also noted that parameter uncertainty was only accounted for in
14 of the 34 models, of which only 8 performed a sensitivity analysis and model fit-
ting and only 1 showed model validation. This gives a good indication as to what is
required for future models of infectious disease spread that include incarceration.

1.1.6 Software

Multiple tools are available for generic epidemiological analysis. These programs en-
able users to perform regression analyses and draw links from epidemiological data.
With recent advancements, more sophisticated tools have been created that compare
epidemiological data to theoretical models. In this section we are going to examine
the advantages and disadvantages of a number of available software and review their
active use in epidemiological literature.

Epi Info

Epi Info was created by the Centers for Disease Control and Prevention in 1985[96].
It is a free-to-access suite of software tools designed for rapid epidemiological data
collection, analysis and presentation, with mapping, graphs and report creation. It
has been used in studies monitoring multiple diseases, including the spread of haem-
orrhagic fever in West Africa[97], the range of symptom presentations from nursing
homes and assisted living facilities in Florida[98] and the health outcomes of tubercu-
losis in Kazakhstan[99]. In 2002, 300,000 downloads of the software occurred. It has
multiple advantages. Its free access and online and mobile accessibility options for
data collection enable a user to gain more information than may have been manage-
able from in-person surveys. As it is run by the CDC they can use it to focus infor-
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Figure 1.5. An example questionnaire provided to nursing homes and assisted living facilities in
Florida to gather data on symptomology of residents[98].

mation gathering on particular epidemics of a global concern, as seen in the haemor-
rhagic fever study. The multiple language options available and clear questionnaire
layout (see Figure 1.5) reduce the difficulties of on-site data gathering. Once the
data is collected, Epi Info can package it in a manner that is interpretable to those
unfamiliar with computing software or statistical analysis. It is designed with acces-
sibility and ease of use as a priority. This results in accurate data management vital
to understanding disease epidemiology.

This comes at a loss of certain complexities. Specific model creation and validation
must be done with separate software once the data has been collected. Epi Info is
not designed for modelling and instead is to be used for summarising epidemiological
data and showing trends. One of its major issues is that it is currently officially only
licensed for Windows. This lack of flexibility can cause difficulties with data collec-
tion from multiple sources. Camp et al. created a cross-platform package that creates
a usable version of Epi-Info on Linux, Mac and Windows, greatly increasing its ac-
cessibility[100].
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WINPEPI

PEPI (Programs for Epidemiologists) is a suite of tools for epidemiologists to use
both in the field and to train with that was originally designed for calculators in
1983[101]. The original intent was for it to “make life easier for investigators, extend
the use of appropriate analytic methods, and enable researchers to concentrate on
substantive issues rather than on procedural technicalities”. WINPEPI in turn is the
implementation of PEPI for Windows[102].

WINPEPI currently consists for 7 programs:

1. COMPARE2 A tool for comparing two independent groups or samples

2. DESCRIBE A tool for basic descriptive epidemiology

3. LOGISTIC A tool for multiple logistic regression

4. PAIRSetc A tool for appraising similarities and differences between matched
samples

5. POISSON A tool for Poisson regression

6. WHATIS A tool for evaluating expressions, calculating p-values, confidence in-
tervals and time spans

7. ETCETERA A collection of miscellaneous epidemiological tools not contained
in other WINPEPI programs[103]

Like Epi Info, WINPEPI was designed to be a teaching tool as well as a tool for epi-
demiological investigation. It is designed with ease of use in mind, although its writ-
ers do note that an early user may be overwhelmed by the options available. Due to
its many options, it has been used to evaluate a range of epidemiological situations,
such as the mortality of traumatic chest injuries[104], the changing epidemiology of
oral cancers over recent decades[105] and the prevalence of malnutrition among vet-
erans[106]. However, it is not designed for tracking the spread of infectious diseases
from person to person. Deterministic or stochastic models must be validated sepa-
rately.

TITAN Model

TITAN Model (Treatment of Infection and Transmission in Agent-based Networks),
created by the Marshall Research Group at Brown University and not to be con-
fused with the TITAN trial (TMC114/r In Treatment-experienced pAtients Naïve
to lopinavir) for HIV treatment[107], is a network modelling tool for the spread of
HIV[49]. The team define agent-based network modelling first by defining an agent
as an individual person and assigning each individual in a theoretical population
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with different attributes such as age, gender and socioeconomic status. They then
arrange these agents in a network representing interactions between individuals in a
population. Finally, they track each agent as events happen, such as contracting HIV
from another agent or deciding to get tested for HIV, with each event happening ran-
domly according to probabilities calculated from the demographics of the agent.

The 8,000 line Python 2.7 code that creates this model is adjusted specifically to
simulate HIV based interactions by including factors such as a latent period between
HIV contraction and detectability. It has been used in two studies by Adams et al.,
first to show the effect of mass incarceration of African-American men in America on
the HIV status of African-American women[87], and then to show how targeted in-
terventions for African-American men post-incarceration may decrease the transmis-
sion rate of HIV for African-American women[108]. In this way, Adams has shown
how TITAN can be adapted to incorporate incarceration and targeted interventions.
Due to the direct nature of transmission of HIV and other blood-borne infections, it
can be argued that network models like TITAN are necessary for accurate represen-
tation of its spread. Additionally, the flexibility of the model enables the examina-
tion of multiple interventions at the same time and the stochastic nature of agent-
based network modelling gives the user clear understanding of the variability in the
outcome of their model.

The Marshall Research Group discuss drawbacks of the model. The most prominent
of these is the speed of the program. As noted earlier, agent-based models are slow
compared to compartmental models, with each agent requiring a random decision to
be made at each time step rather than treating them all as a whole. The model de-
sign is sensitive to inaccuracies, so inaccurate information will result in false results.
This means the input demographics from the user must be as accurate as possible
and biases may be amplified by the models output. They also note that, due to the
stochastic design, TITAN is not well suited for detailed predictions, but rather trends
in HIV transmission and treatment rates.

An additional negative of TITAN is that it is written in Python 2.7. This language
is considerably different to the up to date Python 3.8.16 which can lead to compati-
bility issues[109]. Also, this makes TITAN difficult to understand, use and adapt for
epidemiologists unfamiliar with Python or coding.

Finally, TITAN is only designed to model the spread of HIV. With knowledge and of
the source code its application could be extended to include other infectious diseases,
but this is not currently part of its design.

EMOD

EMOD (Epidemiological MODelling) is an alternative stochastic agent-based
model[110] to TITAN. Rather than modelling transmission of infectious diseases be-
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tween agents as interactions on a network, EMOD creates the probability of an indi-
vidual becoming infected based on proportion of individuals already infected in the
population. In this way it is like traditional homogeneous mixing models of disease
spread.

The key difference between it and deterministic models is, rather than using ODEs
to determine the rate at which a population goes from one compartment to another,
EMOD uses equations to calculate the probability that an agent will become infected
or recover and then, for each agent at each time step, decides if this has occurred. As
with TITAN, each agent is assigned specific demographics, with each demographic
assigned parameters that will affect the agents journey through the model. With the
network removed, EMOD assumes homogeneous mixing between all members of the
population.

The advantage of EMOD compared to TITAN is its flexibility. Rather than focus-
ing on one disease, EMOD starts with multiple disease transmission models. There
are options for specific diseases, such as HIV, malaria and measles, for which EMOD
provides the parameterisation and the probability equations, but these can be ad-
justed by the user. There is the capability for more experienced users to write their
own infectious diseases models for EMOD to use in its calculations. These alterations
occur as part of the executable program, not by altering the code itself, making it
more accessible for users.

It has featured in multiple papers modelling interventions for different infectious dis-
eases. McCarthy et al. used it to look at the effect varying the point in Plasmod-
ium falciparum’s in-human lifecycle at which a vaccine targets has on the spread of
malaria[111], Bershteyn et al. investigated how age-dependent partnering changed
the spread of HIV[35] and McCarthy et al. showed the risks of type 2 polio vaccina-
tion in response to a theoretical outbreak[112].

As observed by Kerr[113], speed, much like with TITAN, is EMODs greatest draw
back. As more understanding is gained for the transmission of each disease, the com-
putation time and code complexity required by EMOD to reflect our understanding
increases. This makes researchers more likely to avoid ABMs and instead focus on
simpler deterministic compartmental models.

STEM

STEM (Spatiotemporal Epidemiological Modeler) is an open source tool written
in Java which is available on Microsoft, Apple and Linux operating systems[114].
Rather than the ABM of TITAN and EMOD, STEMs simulations focus on com-
partmental systems, tracking the flow of whole populations from one compartment
to the next. This loses some of the specific focus of ABMs but gains computational
efficiency.
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STEMs largest strength lies in its spatial data. With the tool comes geography,
transportation systems and population for 244 countries (this is the number of
countries quoted by STEM, although this number is disputed by the United Na-
tions[115]). This rich supply of information has enabled users to model the spread
of a disease on national and global scales, including economic impacts of outbreaks
and the roles of industry and commerce in disease spread. For example, Edlund et al.
combined the geographical data with climate data to predict the changing location of
Anopheles, and therefore the global change in incidence of malaria[116]. Its thorough
parameterisation has meant that it has also been of interest when modelling theoreti-
cal bioterrorist attacks[117].

In general, although it enables intricate modelling over large areas, it is less effective
at modelling smaller closed environments where global transport links are not as im-
portant. Additionally, whilst it is able to stochastically model process and account
for variability, its loss of demographics for agents in its model means its models will
not be as representative of individual humans in the real world.

PyGOM

A relatively new tool designed for epidemiological modelling is PyGOM[118]. De-
signed by Public Health England, PyGOM is a Python module for handling ODEs at
the code level. It enables the user to find the algebraic expression, Jacobian, gradient
and forward sensitivity of an ODE. It can also create a stochastic equivalent of a de-
terministic ODE model for further analysis and generates a graphical representation
of models of easy visualisation and error checking (see Figure 1.6).

A search for PyGOM on PubMed does not reveal any results[6], suggesting that it is
not widely used in epidemiological modelling. This is likely in part because it is rel-
atively new. The fact that it must be run as part of the end users Python code may
be reducing its accessibility. Its lack of user interface means that it is a versatile tool
for someone well versed in Python coding but may be off-putting for users without
said familiarity. Additionally, rather than presenting the user with pre-set models,
the user is presented with a set of tools with which they can create their own ODE
models. Again, this versatility may be a draw for a user with the right knowledge
base, but may preventing other people from using PyGOM.

Outbreaker2

Outbreaker2 is a package which is designed to aid in reconstructing outbreak trans-
mission trees. Through a Bayesian inference framework it can be used to model a
wide variety of different outbreak types, and incorporate details such as phylogeny
and spatial data to generate likely transmission trees[119].
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Figure 1.6. Visualisation of an SIR model through PyGOM [118]. This function is useful both for
understanding the model and error checking the encoding of an ODE.

The fact that it is so adaptable has meant that it has been used in a variety of
different projects. In more recent years, these projects have focused on outbreaks
of SARS-CoV-2, such as reconstructing outbreaks in hospital wards in a trust in
Switzerland[120], during Iceland’s third wave of the SARS-CoV-2 pandemic[121] and
from introductions of the Delta variant into Provincetown, Massachusets[122]. How-
ever, it is not limited to one disease, and has also been used by Pezzoni et al. to re-
construct transmissions of Swine Vesicular Disease (SVD) between farms in north-
ern Italy. In each case, by iterating through possible transmission trees, the users
showed consistent informative relationships in transmissions, such as the importance
of healthcare workers in hospital outbreaks and the likelihood of undiagnosed farms
in the 2006-2007 SVD outbreak.

Unfortunately, as it is a package in R, Outbreaker2 is not the most accessible tool for
infectious disease modelling for individuals who are not familiar with the language
or are uncomfortable with coding. Whilst it is exceedingly adaptable, this requires a
knowledge and confidence to implement effectively.

EpiEstim

A more popular R-package designed to investigate outbreaks is EpiEstim. Specifi-
cally, EpiEstim uses the rate of new diagnoses to estimate the current reproductive
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number, otherwise known as the Rt value[123], [124]. This is the ever-changing aver-
age number of individuals an infectious person would infect during their entire infec-
tious career. This number is incredibly useful, as a value of Rt greater than 1 implies
exponential growth, while a value less than 1 indicates a declining outbreak. How-
ever, it is not easy to infer, as it can be obfuscated by factors such as variable delays
between infection and diagnosis (and therefore appearing in data-sets). An accurate,
accessible tool that makes it easy for the user to estimate the Rt from their data-set
would clearly be popular.

EpiEstim has been used on a wide variety of epidemiological modelling projects. A
PubMed search reveals 18 separate projects that used EpiEstim since its creation in
2018[125], including projects outside SARS-CoV-2. Whilst in specific circumstances
researchers have shown more accurate ways of estimating Rt[126], it remains a pop-
ular tool, most likely due to its accessibility. It exists both as an R-package and a
stand-alone app.

Summary of available modelling software

A spectrum can be used to describe the differences between TITAN, EMOD and
STEM. The TITAN model is highly specific, in both the choice of disease and its de-
scription of individuals in the model. Not only are each of its agents assigned specific
demographics, but they are also placed on a network of interactions along which HIV
can be spread. This focus provides detailed and sensitive feedback on the effect on
specific interventions on HIV epidemiology. This level of focused modelling is compu-
tationally expensive and so the program can run comparatively slowly.

STEM, at the other end of the spectrum, removes the information on individual
agents and the networks that they interact on and instead divides the population
into homogeneous compartments. In doing so it saves on computational complexity
allowing it to model larger environments and include external data into its models,
such as geography and transport. It is effective when looking at national and global
impacts, but the loss of focused detail means it is less accurate with smaller local
population sizes.

In between these two on the spectrum is EMOD, which maintains the agent-based
modelling of TITAN whilst removing the network-based interactions and allowing
agents to transmit diseases between each other homogeneously. Its flexibility enables
it to become the more adaptable out of the three.

Finally, PyGOM represents an opportunity for the user to direct exactly at what
specificity the model they want to create should be. With this versatility comes a re-
quirement for the user the understand ODE modelling, design the model and utilise
it at code level in Python.
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1.1.7 Aims identified from reviewed literature

We have discussed the importance of accurate models of transmission when consid-
ering interventions for infectious diseases. We have considered the relative merits
and drawbacks of deterministic compartmental models when compared to stochas-
tic agent-based models. We noted that deterministic models, whilst easier to evaluate
mathematically, often cause issues when attempting to parameterise from real world
events as they do not allow for stochastic variation among a population. However, we
also found that a greater accuracy, such as is seen with stochastic agent-based mod-
els, comes at the expense of speed as the models become computationally expensive.

We have also noted an interest in closed environments. Due to the limited move-
ments in and out of these environments, epidemics are easier to track, model and
ultimately intervene in. They also do not represent these epidemics entirely in iso-
lation. Prisons, for example, have been shown to contribute to the spread of these
diseases outside the prison environment. Thus they are an important opportunity for
intervention. For these reasons, future studies could focus particularly on modelling
closed environments.

From the modelling programs reviewed (there are others available, such as NetL-
ogo[127], but they have similar strengths and weaknesses) we can draw aims for de-
veloping future transmission modelling tools for closed environments:

Accessibility Not every person whom these tools will be aimed at will have a famil-
iarity with either coding or the mathematics behind epidemiological models. For this
reason, they must be designed with a user interface with options that can model an
environment without the user needing to manipulate the code or enter equations.
The language of choice for the tools will be Python due to its high familiarity among
biologists. This also opens up the possibility of producing both a tool with a user in-
terface and a Python suite for more experienced coders to manipulate.

Accuracy For multiple reasons stated above, a standard deterministic SIR model
should not be used to parameterise epidemic outbreaks. Modelling compartment
transitions through exponential decay causes over-estimations of times spent in com-
partments. Any tools will have to correct for errors like these, for example by find-
ing an alternative mathematical representation of time transitions. It is possible to
subdivide compartments and then allow individuals to transit through each of these
sub-compartments before transitioning to the next whole compartment. A series of
exponential decays stacked in this manner produces an Erlang distribution of decay,
preventing a long tail and the over-estimation of time spent in compartments. This
technique has been used in infectious disease models in the past[128] and represents
one of multiple ways a model could represent changing compartment sizes over time
without only using exponential functions.
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Speed Another alternative to Erlang distributions is including stochasticity into
modelling. Multiple modelling tools calculate the probability of a disease spread at
any one time, and then investigate the outcome depending on that probability. This
stochastic modelling, repeated over multiple iterations, creates a more realistic pic-
ture of disease spread over time, and the multiple iterations give insight into the po-
tential variation in outcomes. It is computationally expensive and as a result these
models can take a long time to produce results. Similarly, agent-based models, where
each individual in a model population is accounted for, are slow. This will delay out-
put from the tools. Whilst these are currently our most accurate methods for mod-
elling, easily accessible alternatives should be available in the tool should quicker es-
timates be needed.

The FAIR4RS guidelines advise mainly on the first of these three goals. Based on
the FAIR guidelines for data accessibility[129], these criteria are designed to help
direct users to making their research tools more available to all. They focus on four
main goals:

1. Findable - The research software needs to be stored in a public manner so that
it can be found relatively easily.

2. Accessible - The research software, and associated metadata can be retrieved us-
ing standard protocols.

3. Interoperable - Information can be transferred from the software to other soft-
wares using standardised methods such as Application Programming Interfaces
(APIs).

4. Reusable - Whilst the software can be used for its primary use, it can be readily
adapted to suit another user’s needs.

[130]

Looking at EpiEstim as an example, we can see the importance of accessibility as
a vital part of successful research software. We can use these guidelines to help in-
crease the accessibility of tools we create.

The current aim is to create a tool that models the spread of infectious diseases in
closed environments. From there, the tool needs to be applied to real world data,
and tested for Accessibility, Accuracy and Speed in order to compare it to current
modelling tools.

Ultimately these tools should be able to be extrapolated to alternative settings with
alternative diseases. The aim of our future investigation will be to achieve this and
thus create an adaptable infectious disease modelling tool for closed environments.
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1.2 Defining the subject area

“Data-driven analytics of disease spread under close contact for optimal testing and
mitigation” covers a broad range of themes in the epidemiology of infectious diseases.
We should break down this title to help explain our goals.

Available computational power has grown exponentially since the start of the 21st
century and continues to grow. Statistical analysis of data-sets that would have been
too large and too noisy to learn from has become not just a possibility but a real-
ity. This has led to multiple fields of research such as artificial intelligence, bioinfor-
matics and beyond. Data-driven analytics simply refers to an examination of a sys-
tem centred around the data available to the user. The data available affects the way
we analyse the system. It informs the conclusions we can draw. It is an important
source of the biases influencing our understanding. To understand a system, we need
to understand the data that informs us about it.

We specifically want to investigate analyses of disease spread. When referring to dis-
ease spread, it would be natural to assume that we are referring to infectious diseases
such as SARS-CoV-2. Indeed through much of the thesis we do. However, some-
times it can be useful to think of infectious diseases not as something that is passed
directly from an infectious individual to a susceptible individual but as an environ-
mental exposure that everyone experiences. In Chapter 2, for example, we examine
the analysis of individuals who have all been exposed to something which may cause
symptoms to develop over time. We speculate that whilst this “something” could be
an infectious disease, it could just as easily be a poison or something esoteric such as
an idea. However, in general it is safe to assume that for most of this thesis we will
be considering infectious diseases.

In this thesis, we will be focusing on the spread of infectious diseases in close-contact
environments. This covers a broad range of possible locations or outbreak types, but
inherently links spread to proximity. When considering spread through proximity,
we have a choice. We could consider a scenario where each individual makes connec-
tions with each other member of the group with the same rate (or the same proba-
bility) as each other. There is no difference between each person and if one person is
infectious, every susceptible individual is equally likely to be infected by them. This
is called homogeneous mixing and can be true for a small enough scenario. Alterna-
tively, we can consider a scenario where this assumption is not true. An example of
this would be a larger, more populous group. In this scenario, proximity becomes
more important, because individuals are more likely to make contacts with people
near them. This is known as heterogeneous mixing. Infectious individuals in this sce-
nario are more likely to infect one person than another, based on their location.

It is under these circumstances that we want to best understand how best to inter-
vene to prevent further spread of an infectious disease. Interventions can come in a
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variety of different forms, such as isolation, vaccination and testing. In Chapter 3 we
investigate how even a work schedule could be adjusted to limit the length of time an
individual is at work whilst infectious.

In summary, this thesis will be looking at many possible ways data around infectious
disease outbreaks in small or heterogeneous environments can be used to help inform
interventions that can prevent further spread.

The study of the spread of infectious diseases has a few unique properties that makes
it unlike any other subset of epidemiology. The most notable of these is the nature
of exponential growth. In most cases of infectious diseases, the disease spreads from
an infectious host to a susceptible individual. Then this newly infected individual be-
comes an infectious host. The more infectious hosts there are, the faster they can in-
fect susceptible individuals and therefore the faster the growth of in the infectious
group becomes (this is a gross over-simplification of the outbreak process for illustra-
tive purposes).

This growth, where rate at which the infectious population grows is linearly propor-
tional to the size of the infectious population, is know as exponential growth, which
is not usually to be seen in other fields of epidemiology. With most other diseases,
any intervention that reduces the total number of individuals affected by a propor-
tion does exactly that. However, any intervention that reduces the number of indi-
viduals affected by an infectious disease also reduces the number of individuals they
go on to infect and in turn the number of individuals those not infected individuals
would have gone on to infect and so on. Declan et al. generated a compelling anal-
ogous illustration of a row of lit matches demonstrating how preventing one match
from becoming lit prevented the remaining matches from lighting as well[131]. Simi-
larly, a negative intervention (or an intervention that results in more individuals be-
coming infected) will have a knock-on effect that those individuals will go on to in-
fect more individuals.

For clarity’s sake, we should say that whilst the illustration by Declan et al. is narra-
tively compelling, it is an imprecise representation of a true outbreak. Most notably,
it assumes that all infections occur along a 1-Dimensional line linking us all, rather
than the complicated web of connections that make up human interactions. With a
disease spreading along a network, one individual removing themselves from the net-
work will not necessarily stop an outbreak completely. However, the effect that they
are trying to show, that preventing one infection will reduce the chance of further in-
fections, still applies.

The underpinning mathematics is more complicated than just exponential growth
and interventions that fail to fully account for them can lead to disastrous results.
Consider temporary interventions of endemic diseases. An endemic disease is an in-
fectious diseases whose rate of infection has reached a equilibrium as there are not
enough susceptible individuals to maintain an exponential growth. A temporary in-
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tervention may reduce this endemic rate. So long as this intervention remains in
place, the level of endemic infection will remain reduced. Over this time, the number
of susceptible individuals will accumulate. Hollingsworth et al. showed that if this
temporary intervention is relaxed (e.g. due to lack of funding) the accumulated sus-
ceptible population can lead to an explosion in the rate of infection to an extent that
may be unmanageable[132].

There is another trap when trying to understand the spread of infectious diseases
which is more noticeable when considered on a smaller, close-contact scale. On larger
scales, we can analytically observe exponential growth and generate relatively sim-
ple models that emulate it and can accurately predict how the rate of infection will
change over time. However, over smaller scales, the growth of an infectious disease is
much more reliant on random stochastic events as an infectious individual interacts
with a susceptible individual. This means that the growth over these smaller scales
will vary from outbreak to outbreak. When an outbreak is large enough, whilst each
of these interaction are happening at random times, enough of them are occurring
that we can say that it is analogous to a constant rate, and the variability is reduced.

As a result of this variability, trying to fit a simple exponential curve to a smaller
outbreak without considering the range of possible results can lead to wide margins
of error. Indeed, smaller outbreaks can be so variable as to raise a concern that infor-
mation gained from them would not be applicable to any other outbreaks. The one
observed outbreak represents just one of a range of many possible outcomes given
any parameterisation, and teasing out the exact parameterisation can be analytically
complicated and computationally demanding.

We have not even considered the fact that pure exponential growth may not actu-
ally occur in a outbreak. The rate of growth is dependent on both the size of the in-
fectious population and the size of the susceptible population. As more individuals
as infected, the susceptible population is exhausted and the rate of growth slows. A
model that fails to account for the exhausting of the susceptible population and as-
sumes only exponential growth can grossly overestimate the ultimate infectious pop-
ulation size.

The ultimate aim of this thesis is to closer investigate specific scenarios involving
outbreaks in close-contact environments in order to aid future researchers‘ analy-
sis. By researchers, we mean both academics and health care providers who would
benefit from a better understanding of such outbreaks. We present a suite of possi-
ble tools that can be used to analyse multiple aspects of an outbreak and help advise
ways to better prevent further spread of an infectious disease.
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1.3 Research outline

In Chapter 2 we consider a theoretical circumstance where are small group of indi-
viduals are exposed to a disease. As time passes and we monitor the number that de-
velop symptoms, we use Bayesian statistics to estimate the true number that have
been infected. The simple model grows in complexity as we introduce asymptomatic
individuals, a limitless number of exposed individuals and a prolonged exposure win-
dow.

As mentioned previously, Chapter 3 investigates the role rota patterns can play in
limiting the spread of a disease in the workplace. We assume that an individual has
a varying risk of being infected at home compared to work and use this to predict
when in a rota pattern they would most likely be infectious. We then investigate how
changing a rota pattern changes the length of time they are likely to be infectious
whilst at work, as well as when best to test to reduce this value.

Chapter 4 introduces the Nosoco. This a monitoring tool we have developed for es-
timating the total number of in-hospital “nosocomial” transmissions occurring on a
particular ward. This tool extracts hospital ward admissions and pairs them with
swab results for SARS-CoV-2 to estimate the total number of transmissions over a
time period, the probability that an outbreak has occurred, and the rate at which
transmissions are occurring. We first introduces some of the key mathematics un-
derpinning Nosoco and assesses it for speed and how its results compare to standard
definitions of nosocomial transmissions. Then we give an example of an analysis that
can be performed by Nosoco, comparing the total number of nosocomial transmis-
sions to the total number of community transmissions, and seeing how this relation-
ship changes over time. Finally, we investigate the rate of nosocomial transmissions
of SARS-CoV-2. We see how this has changed over time, how it varies between age
groups and how best to represent it in an accurate and communicable manner.

Chapter 5 attempts to correct a repeated mistake that has occurred when estimating
the incidence of Hepatitis C in prisons from a cross-sectional survey. Previously, this
has been reduced to a fairly simple fraction. We demonstrate why and to what ex-
tent this calculation is incorrect, propose an alternative approach and show the real
need to better understand the length of stay of the prison population in epidemic
modelling.

Chapter 6 shows a brief investigation into spacial elements to an outbreak on a
cruise-liner, the M.S. Braemar. Outbreaks of infectious diseases on cruise-liners
are not uncommon, and understanding how spatial aspects can be involved in an
outbreak (in this chapter we look specifically at cabin location) can help advise on
screening and isolation when they inevitably occur again.

The final chapter, Chapter 7 reviews each of these tools and explores possible areas
of development.
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The SARS-CoV-2 pandemic has seen soaring demand for better understanding the
spread of infectious diseases. This understanding, whilst useful in the minds of aca-
demics, is better placed shared and understood by healthcare workers and policy
makers. The tools discussed in this thesis vary between analytical complexity and
relative simplicity. It is out hope that we present them each in a way that is accessi-
ble to all.

Access to the GitHub repository, including Python code for Chapter 2 and the soft-
ware behind Nosoco is available on request.
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Chapter 2

Estimating the total size of an outbreak

event from the speed at which individuals

develop symptoms

2.1 Introduction

Part of the analysis in this chapter has been published in a peer reviewed group pa-
per[133]. Section 2.3 appears in an abridged format in said paper as “Section 2.4: Es-
timating the size of the first generation from the observed number of symptomatic
individuals”. This was my contribution to a group paper looking at multiple alter-
native analytical methods available early in a pandemic. In this chapter we expand
far beyond the concepts raised in the original paper. Early on we will highlight when
this analysis moves away from the analysis in the paper.

Early analysis of an outbreak event, when we are between the first exposure event
and all of the first generation of individuals developing symptoms, is highly variable.
The data available is heavily censored by time. It is difficult to know if an individual
has not yet developed symptoms or become identifiable as infected because they were
not in fact infected or because not enough time has passed. This censoring becomes
more important the longer a disease’s expected incubation period is.

Analyses of small outbreaks in closed environments can bring interesting insights into
aspects of the disease process, such as incubation periods[134]–[138] and modes of
transmission[139]–[141]. However, these studies are retrospective. During the out-
break itself, we may only be able to answer simple questions, such as “How many
people do we think are currently infected?”.

This question was asked early on in the SARS-CoV-2 global pandemic, before the
virus was fully established in the UK. Sporadic stochastic introductory events oc-
curred as travellers unwittingly brought the disease from other countries. Once these
people were identified, the inevitable question becomes “How many people did they
infect?”. When the disease’s prevalence was minimal, it was theoretically practical
to trace all contacts and identify people who had been exposed (although in practice
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there were multiple issues with effective contact tracing[142], [143]). However, with a
delay between transmission and symptom onset, and at a time where testing was not
readily available, how could we tell if asymptomatic individuals were not infected or
were just yet to develop symptoms? Asymptomatic infection, where an infected indi-
vidual will never develop symptoms, is another wrinkle to this problem which we will
discuss later.

To demonstrate the logic behind answering these questions, I will present two inten-
tionally extreme scenarios. Firstly, we can imagine that it has been 99 days since an
individual was exposed to a disease like SARS-CoV-2 and they still have not devel-
oped symptoms. In a world where it was impossible to be infected and not eventu-
ally develop symptoms, we would conclude that this individual was not originally in-
fected. After a certain length of time, our intuition tells us that the incubation pe-
riod of SARS-CoV-2 cannot be that long, so we conclude it is exceedingly unlikely
that the individual was infected (although more insidious diseases, such as HIV or
Hepatitis-C, may result in incubation periods this long, or longer).

Our second scenario has 100 people receiving the same “level” of exposure. It is diffi-
cult to imagine 100 people all being exposed to one infectious individual to the same
level, unless they are an exceedingly potent viral-shedder, so I find it easier to imag-
ine that they were all in the same room with radioactive material or all ate the same
poisoned meal. The results are the effectively identical. We still have a group of ex-
posed individuals, it is unclear who has been affected and there is a delay between
being affected and developing symptoms. If, in under 5 minutes, 99 out of the 100
exposed individuals start developing symptoms and we were asked to guess if the
100th individual would develop symptoms, our intuition tells us that yes, they prob-
ably will (in the case of the poisoning scenario, perhaps a more sceptical mind may
suspect the 100th individual of being the poisoner, but that is a complication that
we are not trying to demonstrate here). The more people who develop symptoms,
the more certain we get that those that have not developed symptoms will go on to
do so. Of course it may be that there is some variability in the level of exposure, as
has been explored in models by Pratt et al[144]. The reason why this possibility is
not relevant to our model is explored in Section 2.3.6.

So what happens if we combine those two scenarios? 100 individuals were exposed,
99 of whom developed symptoms in under 5 minutes, but the 100th person has re-
mained symptom-free for 99 days. At some point over those 99 days our assumption
that the 100th person was also infected will switch and we will instead be convinced
that they avoided infection. When does this switch occur?

Before we define our scenario, it is worth being specific about how we define individ-
uals. Given an exposure, individuals can be in one of four states:

1. Not infected - Despite exposure, this individual was not infected.
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2. Pre-symptomatic - As a result of exposure, this individual has been infected.
They have not yet developed symptoms. At some time in the future they will
develop symptoms. From an observation stand-point, this individual is tem-
porarily indistinguishable from a Not infected individual.

3. Symptomatic - As a result of exposure, this individual has been infected. Their
incubation period has finished and they can now be observed to be displaying
symptoms. They are known to be infected.

4. Asymptomatic - Despite being infected, this individual will never develop symp-
toms. They will permanently be indistinguishable from Not infected individuals
without testing. To simplify our initial analysis, we will assume that this option
is not possible.

This work was started at a time in the SARS-CoV-2 pandemic when testing was not
readily available. We will refer to individuals as being “Pre-symptomatic or Symp-
tomatic, but note that this could now be extended to Pre-detectable or Detectable.
Figure 2.1 demonstrates each of these possibilities.

We start with the simplest scenario. A group of individuals of size n were exposed
exactly at time t = 0. They each have the same unknown probability ρ of being in-
fected as a result of this exposure. If they were infected, this is the only time it could
have occurred. A total of E0 individuals are infected at this time, although this num-
ber is unknown. They cannot infect each other - As such this method can also apply
to non-infectious exposures, such as radiation poisoning or, to some extend, adver-
tising. We do not know how many were infected from this exposure, nor do we know
how infectious the disease normally is. F (τ) is a cumulative density function that
describes the length of an infected individual’s incubation period. This is also equal
to the probability that an individual infected at time 0 will have developed symp-
toms by time τ . This function is the same for all infected individuals and is not de-
pendent on the probability that they were infected. In other words, an increased or
decreased exposure will not increase or decrease the time it takes for any one infected
individual to develop symptoms. Similarly, if the group were particularly intrinsically
vulnerable (e.g. frailty, immunocompromised), this would not affect the time it takes
for any one infected individual to develop symptoms. As τ increases, F (τ) will tend
towards 1. The probability that an infected person will have developed symptoms
before time τ always tends to 1 as τ increase, so long as it is impossible for individu-
als to remain asymptomatic indefinitely.

This is very similar to the work done by Egan & Hall[138] in order to approximate
the incubation period distribution of a disease from a closed outbreak incident. Their
theoretical set-up is the same, except that the function F (τ) is unknown and E0

is known. By seeing at what time infected individuals become symptomatic they
demonstrate how to fit a distribution for the incubation period.
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Patient 1

Patient 2

Patient 3

Patient 4

t

Exposure

Time

Figure 2.1. Possible observed scenario following a single exposure event. Each of the four patients
are exposed at the same time. Patients 2-4 are infected. Patient 1 will never develop symptoms

because they were not infected - Not infected. Patient 2 will eventually develop symptoms
(represented by the purple block) but not before time t - Pre-symptomatic. Patient 3 has developed

symptoms by time t - Symptomatic. Patient 4 was infected but will never go on to develop
symptoms - Asymptomatic. At time t, Patients 1, 2 and 4 are indistinguishable.

As time passes, we record the number of individuals out of the original n that have
developed symptoms. It is the total number of individuals that have developed
symptoms at some point prior to time t. Every infected individual starts as pre-
symptomatic and will eventually develop symptoms (i.e. it is currently impossible to
be an asymptomatic individual). We could record the exact time each infected in-
dividual becomes symptomatic. By time t, Jt is a set of size It, which contains all
times at which individuals were observed to become symptomatic prior to time t.
However, with this current model this is not necessary in order to make the most ac-
curate inference of ρ, as will be demonstrated later.

Using n, It and F (t), we aim to show the probability that the outbreak size is any
value between It and n as t increases, and how outbreak size, group size and pro-
portion of individuals that are symptomatic by time t affects this estimate. We show
two special cases: the probability that the outbreak size is equal to It (i.e. there are
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no remaining Pre-symptomatic or Asymptomatic individuals) and the probability
that the outbreak size equals 0 (this probability is only greater than 0 if at time t,
It = 0). We then consider the confounding scenarios where

1. individuals who are infected may never develop symptoms (Asymptomatic indi-
viduals are possible)

2. the total number of exposed individuals is unknown

3. the exposure is ongoing.

2.2 Parameter and Function description

Table 2.1 is a list of relevant parameter and function definitions for this chapter. The
reader may find it useful to refer back to this table as and when required.

2.3 Model 1: Point Exposure with 100% symptomatic rate

2.3.1 Calculating a posterior distribution for the value of the probability that an

individual was infected given a known distribution for the incubation period

In the case where we have no prior understanding of the distribution of possible val-
ues of ρ, aside from the fact that they fall somewhere between 0 and 1, we start by
choosing an uninformative Jeffreys prior distribution for the value of ρ to minimise
our prior’s effect on our posterior distribution[145]. A Jeffreys prior distribution for
a parameter in a probability distribution can be calculated as the square root of the
determinant of the distribution’s Fisher’s information matrix. In turn, where mathe-
matically possible, the determinant of the Fisher’s information matrix can be calcu-
lated as the negative expected value for the second derivative of the log of the prob-
ability density function (or mass function) with respect to the parameter given the
value of the parameter[146]. All prior distributions affect our posterior distribution
in some way. By choosing a Jeffreys prior we have chosen a prior that minimises the
effect our prior has on our posterior calculations. In a simple Bernoulli trial of prob-
ability θ, the Jeffreys prior for θ is a Beta distribution θ ∼ Beta(0.5, 0.5)[147]. If x is
the observed result of a Bernoulli trial with a probability of θ of success, where x = 1

if the trial is a success and x = 0 otherwise, then we can write the probability mass
function for x, g(x; θ):

g(x; θ) =

⎧⎨⎩θ x = 1

1− θ x = 0
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Parameter/Function Description

2F1(a, b, c, z) The Hypergeometric 2F1 function
a The probability of developing symptoms given infection

B(a, b) The Beta function
Bx(a, b) The lower incomplete Beta function

E0
The number of individuals that were infected during an

exposure at time t = 0

Et The total number of infected individuals by time t

f(τ)
The probability density function for the incubation period

distribution
F (τ) The cumulative density function for the incubation period distribution

g(x; θ)
A generic probability mass function describing the probability

of outcome x given parameter set θ

H The Shannon entropy

H(t)
The cumulative hazard function for infection given an

ongoing exposure since time t = 0

Hnorm The normalised Shannon entropy
It The total number of symptomatic individuals by time t

Jt
A set of all symptom onset timings for individuals that

developed symptoms before time t

k(t)
The probability density function describing the distribution of time

from start of exposure to developing symptoms

K(t)
The cumulative density function describing the distribution of time

from start of exposure to developing symptoms

L(θ;x) A generic likelihood function giving the proportional likelihood
of input parameter set θ given observation x

Λ
The rate parameter for the Poisson distribution that describes
the total number of infectious connections an individuals makes

µ The mean probability of infection given variation between individuals
n The total size of the exposed group

od
The overdispersion of the probability of infection, defined as

the variance divided by the mean

ω
The rate parameter when the incubation period distribution is

described as an exponential distribution

π(θ)
A prior distribution describing the believed likelihood of

parameter θ prior to any observation
ρ The probability that an exposed individual has been infected
ρt An individual’s probability of being infected before time t

σ
The standard deviation of the probability of infection given

variation between individuals

t
The amount of time that has passed since the start of the

observation period

τ
The amount of time that has passed since an individual was

infected. When an individual was infected at the start of
the observation period, τ = t

Wp The Wasserstein-p distance
Wprop The proportional Wasserstein-1 distance

xt
The observed outcome for an individual at time t, which equals

1 if they are already symptomatic and 0 otherwise

y(t)
The probability deinsity function for the time of infection given

an ongoing exposure starting at time t = 0

z The timing of the end of an exposure period

Table 2.1. A complete description of parameters and functions used in this chapter
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It is this function that is then used to calculate the Jeffreys prior. As stated earlier,
the Jeffreys prior is defined as the square root of the determinant of the Fisher’s in-
formation matrix of a probability mass function, which in turn has been show to be
the second derivative of the natural Log of the probability mass function with re-
spect to its parameterisation (we have previously defined it in terms of the likelihood
function L(θ;x). As this function is proportional to the probability mass function for
x and we normalise our prior distribution across all possible values between 0 and 1,
we cam use the two terms interchangeably in this specific circumstance).

π(θ) =

√︄
−E

(︃
d2 ln [g (x; θ)]

dθ2

)︃

=

⌜⃓⃓⃓
⃓⃓⃓⎷−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ × d2 ln[θ]

dθ2 , x = 1

+

(1− θ)× d2 ln[1−θ]
dθ2 , x = 0

= θ−
1
2 (1− θ)−

1
2

However, in our model, where we can only observe infected individuals if they have
already developed symptoms, the prior distribution needs to be adjusted. xt is the
observation of a symptomatic individual such that xt = 1 if the individual develops
symptoms some time before time t and xt = 0 otherwise. The probability that xt = 1

is equivalent to the probability that they were infected (ρ) and that they developed
symptoms prior to time t. As in this scenario they can only be infected at time 0,
the probability that they develop symptoms prior to time t given that they were in-
fected is equivalent to the probability that their incubation period is less than t. The
cumulative density function that describes the probability that an individual’s incu-
bation period is less than τ is F (τ). Therefore, the probability that an individual is
symptomatic prior to time t is ρF (t). This now gives us a new probability mass func-
tion for xt given ρ:

g (xt; ρ) =

⎧⎨⎩ρF (t), xt = 1

1− ρF (t), xt = 0

The term 1 − ρF (t) encapsulates both the probability that the individual was not
infected and that they were infected but are yet to develop symptoms. Using this
probability mass function gives us a Jeffreys prior that is dependent on t, or more
specifically F (t).
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Figure 2.2. Demonstration of Jeffreys priors for a censored Bernoulli trial. The probability of
observing a success is censored by F (t), the probability of observing a positive result. In our model
this is equivalent to the probability of an incubation period of a length less than t (e.g. The line for
F (t) = 0.1 demonstrates the Jeffreys prior for ρ when observing an exposed group at time t such

that the probability of an infected individual developing symptoms prior to time t is 0.1) Each prior
has been normalised by dividing by the constant 2 sin−1

[︂√︁
F (t)

]︂
. A logarithmic y-scale has been

used for clarity.

π(ρ|F (t)) =

√︄
−E

(︃
d2 ln [g (xt; ρ)]

dρ2

)︃

=

⌜⃓⃓⃓
⃓⃓⃓⎷−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρF (t)× d2 ln[ρF (t)]

dρ2 , xt = 1

+

(1− ρF (t))× d2 ln[1−ρF (t)]
dρ2 , xt = 0

= ρ−
1
2F (t)

1
2 (1− ρF (t))−

1
2

Figure 2.2 shows the Jeffreys prior for multiple values of F (t) alongside the baseline
Jeffreys prior for an uncensored Bernoulli trial, equivalent to F (t) = 1. The uncen-
sored prior distribution is symmetrical around line x = 0.5. For values of F (t) less
than 1 this symmetry is lost, favouring lower values of ρ. Whilst similar in structure,
these prior distributions are not strictly Beta distributions.

We can find the posterior distribution for ρ given the total number of symptomatic
individual by time t, It = it, by stating:

P (ρ|It = it, F (t)) ∝ P (It = it|ρ, F (t))× π (ρ|F (t))
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=

(︃
n

it

)︃
(ρF (t))it(1− ρF (t))n−it × ρ−

1
2F (t)

1
2 (1− ρF (t))−

1
2

Calculating a normalising constant gives this posterior distribution:

P(ρ|It = it, F (t)) =
ρit−

1
2F (t)it+

1
2 (1− ρF (t))n−i− 1

2

BF (t)(it +
1
2
, n− it +

1
2
)

(2.1)

where Bx(a, b) is the lower incomplete Beta function
∫︁ x

0
ta−1(1 − t)b−1[148]. This dif-

fers from the posterior distribution calculated in Overton et al.[133], the original pa-
per this work was published in, which uses a Uniform distribution between 0 and 1,
equivalent to the Beta distribution β(1, 1), for their prior distribution to give:

P(ρ|It = it, F (t)) =
ρit (it + 1) (1− ρF (t))n−it

2F1 (it + 1, it − n, it + 2, F (t))

where 2F1(a, b, c, z) is the Hypergeometric 2F1 function[148]. We will continue to use
the Jeffreys prior, as it is both numerically easier and has less of an influence on our
posterior calculations, so there may be some differences between here and the paper.

But what if we wanted to include the exact timings that each infected individual de-
veloped symptoms prior to time t? This may seem like it would give us a more accu-
rate posterior distribution, but in fact it does not. This is because the exact timing
of symptom onset for any one infected individual is independent of the size of their
exposure or the probability that they have been infected. If multiple people become
symptomatic early in our model, this indicates a larger value of ρ only because it is
indicative of a larger total number of samples of the incubation period, not because
of some intrinsic link between the incubation period and the probability of infection.
This means that, in terms of this model, two scenarios for the same group, one where
It individuals immediately became symptomatic after exposure and one where It in-
dividuals became symptomatic just before time t, will have the same predictions by
our model after time t (see Figure 2.3).

We can show this analytically. The possible observation xt now represents two terms,
δ, which is 1 if the individual becomes symptomatic before time t and 0 otherwise,
and j, which is the time at which the individual became symptomatic if they became
symptomatic before time t, and 0 otherwise. With this observation, the probability
density function for xt is changed:

g (xt; ρ) =

⎧⎨⎩ρf(j) δ = 1; 0 ≤ j < t

1− ρF (t) δ = 0

where f(τ) describes the probability density function of the disease’s incubation pe-
riod. For the sake of analysis we choose to use the same prior distribution. For an
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Figure 2.3. Estimation of infection probability ρ at time t is independent of the exact timing of
symptom onset, and instead relies on the total number of symptomatic individuals by time t. Two
groups of the same size (n = 6) are both exposed at time 0. Each individual is represented by a

circle, which is purple if they have developed symptoms and white otherwise. By time t = 5, three
individuals have developed symptoms in Case 2, but none have developed symptoms in Case 1. We

would estimate the probability of infection to be higher in Case 2 (E [ρ1] < E [ρ2]). However, by
time t = 10, the two cases have the same number of symptomatic individuals so we would generate

the same posterior estimate for ρ in both cases, regardless of when each individual became
symptomatic.

observed set of xt, the exact timings at which individuals developed symptoms prior
to t, we will appear to need to adjust our calculation for the posterior distribution of
ρ:

P(ρ|xt, t) ∝ P(xt|ρ, t)× π(ρ|F (t))

=

(︄
n∏︂

q=1

(ρf (jq))
δq × (1− ρF (t))1−δq

)︄
× ρ−

1
2F (t)

1
2 (1− ρF (t))−

1
2

=

(︄
n∏︂

q=1

f (jq)
δq

)︄
ρIt−

1
2F (t)

1
2 (1− ρF (t))n−It− 1

2

With this new product term
∏︁n

q=1 f(jq)
δq it may appear that we have a new, more

accurate posterior distribution. However, when a normalising constant is found such
that the integral of ρ between 0 and 1 is equal to 1, this product term integrates out
leaving us with the same posterior distribution seen in Equation 2.1. The posterior
distribution for ρ is independent of the exact timings that individuals become symp-
tomatic, and is instead dependent on the total number that are symptomatic prior to
the observed time t.
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Figure 2.4. The probability that e0 individuals were infected given It are symptomatic out of a
group of n. All three graphs show the results of calculations for a group of n = 20 individuals, of

which It = 5 are symptomatic. We can see how this calculation changes over time, with the left plot
representing a time when F (t) = 0.2, the middle plot representing when F (t) = 0.5 and the right

plot representing when F (t) = 0.8.

2.3.2 Calculating a probability distribution for the total number of individuals in-

fected given a known probability of being symptomatic before the observed

time

In the case that we know the value of our censoring probability F (t), we can be spe-
cific regarding the exact probability of each eventuality.

P (E0 = e0|It = it, F (t), n) =

∫︂ 1

0

P (E0 = e0 & It = it|ρ, F (t))

P (Itit|ρ, F (t))

× P (ρ|It = it, F (t)) dρ

=

∫︂ 1

0

(︁
n
e0

)︁
ρe0 (1− ρ)n−e0

(︁
e0
it

)︁
F (t)it (1− F (t))e0−it(︁

n
it

)︁
(ρF (t))it (1− ρF (t))n−it

× ρit−
1
2F (t)it+

1
2 (1− ρF (t))n−it− 1

2

BF (t)it +
1
2
, n− it +

1
2
)

dρ

=

(︃
n− it
n− e0

)︃
F (t)it+

1
2 (1− F (t))e0−it

BF (t)(it +
1
2
, n− it +

1
2
)

×
∫︂ 1

0

ρe0−
1
2 (1− ρ)n−e0(1− ρF (t))−

1
2 dρ

=
B
(︁
n− e0 + 1, e0 +

1
2

)︁
F (t)it+

1
2 (1− F (t))e0−it

(n− it + 1)B (n− e0 + 1, e0 − it + 1)

× 2F1

(︁
1
2
, e0 +

1
2
, n+ 3

2
, F (t)

)︁
BF (t)

(︁
it +

1
2
, n− it +

1
2

)︁ (2.2)

where E0 is the total number of individuals that were infected, n is the total number
of individuals that were exposed, It is the total number of individuals that are symp-
tomatic by time t and F (t) is the probability that an individual infected at time 0 is
symptomatic by time t.

We could show the effect of including the exact timings of symptom onset, but this
turns out to be unnecessary information of the same reasons as discussed previously.
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2.3.3 Performance analysis

We have chosen two metrics that we feel best evaluate our estimates: The
Wasserstein-1 metric[149] and the Shannon entropy[150], [151].

Wasserstein-1 metric

The Wasserstein-1 can be used to compare how well two distributions match. It is
a measure for the amount of change required to transform one distribution into an-
other. Let us consider two independent random variables, X and Y. These random
variables are sampled from two different probability distributions, who have cumu-
lative density functions of GX(x) and GY(y) respectively. Their quantile functions,
G−1

X (q) and G−1
Y (q) are the inverse of their cumulative density functions. We calcu-

late the Wasserstein-p metric as:

Wp =

(︃∫︂ 1

0

⃓⃓
G−1

X (q)−G−1
Y (q)

⃓⃓p dq
)︃ 1

p

In the case of the Wasserstein-1 metric, this integral captures the absolute area be-
tween the two quantile curves. As demonstrated in Figure 2.5, this is equal to the
absolute area between the two cumulative density function curves. This mean, in the
special case of the Wasserstein-1 metric, we can calculate this distance as:

W1 =

∫︂
R
|P(X < k)− P(Y < k)| dk

In the case of two discrete probability distributions, this can be written as:

W1 =
+∞∑︂

k=−∞

|P(X ≤ k)− P(Y ≤ k)|

The closer X resembles Y, the smaller this metric is. If the two distributions are
identical, then the metric will be at a minimum of 0. We chose to calculate the
Wasserstein-1 metric, rather than any other Wasserstein-p metric, for mathematical
simplicity. We want to see how well our estimated distribution for E0 matches values
for E0 occurring through simulation.

We simulated scenarios with groups of size n from 10 to 50 individuals. For each
value of n we generate 100,000 random values of P , each member of the group’s
probability of infection, by sampling from a Beta distribution with parameters (1

2
, 1
2
).

For each value of P we randomly select a value for E0, the total number of infected
individuals, by sampling from the binomial distribution Binomial(n, P ) For each in-
fected individual we assign a normalised incubation period by sampling a Uniform
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(a) (b) (c)

Figure 2.5. Calculating the Wasserstein-1 metric for two Gamma distributions. The left hand plot
shows the PDFs of two Gamma distributions, Gamma(α = 3, β = 4) and Gamma(α = 5, β = 2), in
blue and orange respectively. The middle plot shows the quantile functions of these distributions.

The Wasserstein-1 metric of these two distributions is equal to the absolute area between these two
functions, shown in green. The right hand plot shows the cumulative density functions of these

distributions, which is the inverse of the quantile functions. The absolute area between these curves,
in red, is equal to the green area in the middle plot and therefore also equal to the Wasserstein-1

metric.

distribution between 0 and 1. With an incubation period distribution of U(0, 1),
F (τ) = τ . This means we can present the passage of time in our results in terms
of F (t), which would therefore be agnostic to our distribution choice.

At any time during any simulation, we can observe It, the number of individuals who
are symptomatic by time t, n, the total number of individuals in the simulation, and
F (t), the probability that an infected individual would be infected prior to this time.
From this we can generate a probability mass function for the true value of E0, the
total number of infected individuals using Equation 2.2. From our simulated results
we can also calculate the “true” distribution for E0 given any observed scenario. By
finding the difference of the cumulative mass functions of both distributions, we esti-
mate a value for W1 given n, It, F (t).

W1(n, It, F (t)) =
n∑︂

e0=It

|P(Ecalc ≤ e0)− P(Esim ≤ e0)|

For any given value of n, E0 and It, the maximum potential difference between our
calculated, estimated distribution and the simulated, observed distribution would
be if one distribution predicted E0 definitely equalled It (i.e. all infected individuals
have already developed symptoms) and if the other predicted E0 definitely equalled
n (i.e. all exposed individuals were infected). In this case, the Wasserstein-1 metric
would be:

Max(W1) =
n−1∑︂
e=It

1 = n− It
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The larger the difference between n and It, the larger the Wasserstein-1 distance
can become. To compare meaningfully between two scenarios where the differ-
ence between n and It is different, we calculate Wprop, a normalised version of the
Wasserstein-1 metric:

Wprop(n, It, F (t)) =

⎧⎨⎩
W1(n,It,F (t)

n−It
It < n

0 It = n

In the case where It = n, we say the proportional Wasserstein-1 distance is equal to
0. The Wasserstein-1 metric will show us the total distance between our estimated
distribution and the simulated value. The proportional Wasserstein-1 metric will
show that metric proportional to the total possible error.

We find the overall distribution for these values for fixed values of F (t), and then ex-
amine the mean values across simulations at fixed time intervals and fixed:

1. Group sizes (n)

2. Proportions of individuals who are symptomatic ( It
n
)

3. Proportions of individuals who are infected (E0

n
)

As the randomised model is based on the same assumptions as our calculated distri-
butions, we expect the simulated results and the calculated distribution to be sim-
ilar. As a result, we should see a fairly low Wasserstein-1 and proportional Wasser-
stein metric. They should only differ due to the random outcomes of our simulation
and so the areas where the difference (and the Wasserstein metrics) is higher may in-
dicate areas of elevated variation in this model.

Shannon Entropy

The Wasserstein-1 metric shows how well our calculated distribution matches the ob-
served distributions from our simulations. It does not tell us how informative our cal-
culated distribution is. We use the Shannon entropy H(n, It, F (t)) to calculate the
information provided by our calculated distribution:

H(n, It, t) =
n∑︂

e=It

−P(E0 = e|It, t)× log2 [P(E0 = e|It, t)]

In this case, a fully informative distribution (one where, for one value of e, P(E0 =

e) = 1) will have a Shannon metric of 0. Conversely, we can show that a minimally
informative distribution, where there is a uniform probability of any possible value of
E0, will have a Shannon metric of log2 [n− It + 1].
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We state that the maximum Shannon entropy of a discrete probability distribution
is − log2[n] where n is the total number of possible values if the distribution. This
can be shown by looking at the local information provided by two probabilities in a
discrete distribution.

x is a range of possible discrete values for which the probability of selecting each
value is fixed. We focus on two values in this possible set, a and v. The probability
of selecting u or v is w, a fixed value between 0 and 1. Hu,v is the local entropy of
just the probabilities of u and v. U is the unknown probability of u, which falls be-
tween 0 and W . We can therefore calculate Hu,v:

Hu,v = −P(x = u) log2[P(x = u)]− P(x = v) log2[P(x = v)]

= −U log2[U ]− (w − U) log2[w − U ]

With a Shannon entropy, we are specifically looking at log2 terms, but as converting
between different logarithms involves dividing by a fixed value, we are going to sim-
ply write log as a shorthand from now on. We solve the derivative of this equation in
terms of U to find a value of U that gives a maximum entropy.

dHu,v

dU
= log[w − U ]− log[U ] = 0

U =
w

2

The second derivative is always negative when U = w
2
, meaning this a maximum.

We now know value of U , the probability of u, that maximises the local entropy Hu,v

is p
2
. As the probability of b is p − Y , the value of P(x = v) at this maximum is also

w
2
. In other words, the localised entropy is at its maximum when the probability of

u is equal to the probability of v. Any change will result in a decrease in entropy.
Taking this observation further we can say that the maximum total entropy for a dis-
crete distribution would be when the probability of each individual value is identical.
For a distribution with n possible values, this would be when the probability of any
one value is equal to 1

n
.

This seems in keeping with our understanding of entropy as a measure of informa-
tion provided. A maximum entropy means the distribution provides the minimum
information it can. The case of all discrete probabilities being equal seems to be an
extremely uninformative distribution, as aside from declaring all the possible values,
it gives no indication which one the resulting value will be.

With a discrete probability distribution of size n we can therefore calculate the maxi-
mum possible entropy:
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Hmax = n×− 1

n
log
[︃
1

n

]︃
= log[n]

We can state 0 ≤ H(n, It, F (t)) ≤ log2 [n− It + 1], with a lower Shannon metric
representing a more informative distribution. Once again, this means the possible
range of values for our metric changes dependent on n and It. We also calculate a
normalised Shannon metric Hnorm by dividing by this maximum value.

Hnorm(n, It, F (t)) =
n∑︂

e=It

−P(E0 = e|It, t)× log2 [P(E0 = e|It, t)]
log2 [n− It + 1]

We calculate these Shannon metrics for each occurrence in our simulation and
demonstrate the entropy range based on how frequently each observation occurs in
our simulation.

All simulations were performed in Python with a NumPy random seed of 1111.

Figure 2.6 demonstrates the results from an example simulation. By and large, as
time progresses, the estimate for the value of E0 gets narrower and closer to its true
value. However, we see multiple skips coinciding with when new individuals become
symptomatic. These jumps do not necessarily make our estimates more accurate.
Clearly there is a more complicated relationship at work than simply “more symp-
tomatic individuals result in a more accurate model”, which we hope to get a better
understanding of by averaging these metrics across multiple iterations.

2.3.4 Wasserstein-1 results

We can see from the simulated results in Figure 2.7 that our calculated estimates
do not perfectly match the simulated data, although they are closely related, a re-
lationship that improves over time. If our model perfectly predicted the simulated
distribution of the total number of individuals that were infected, the Wasserstein-1
distances would always be 0. The higher the Wasserstein-1 distances, the worse our
model predicted the simulated results.

The total Wasserstein-1 distance tends to be below 1 (100 - note the Log scale on
the y-axis) by the time of F (t) = 0.5 (i.e. the time of the median estimate for the
incubation period), as seen in Figure 2.7a. In this time, the median proportional
Wasserstein-1 distance is below 0.05, indicating a good fit (Figure 2.7b).

Of the three factors we investigated, group size appears to have the smallest ef-
fect when it comes to both Wasserstein-1 and proportional Wasserstein-1 metrics in
terms of orders of magnitude. As predicted, larger groups will result in a larger error
as there is a wider range of possible mistakes to make. A larger group will, up until
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.6. Example simulation and metric results of a simple exposure event. At time t = 0, a
group of individuals of size n = 20 are all exposed to a disease with a P chance of being infected,

where P is drawn from a Beta distribution with input values of ( 12 ,
1
2 ). From left to right, the

results of 5, 20 and 50 simulations are shown. The top graphs are spaghetti plots of the total
number of symptomatic individuals over time, the middle graphs estimate the mean Wasserstein-1

metrics and Shannon entropies from these simulations and the bottom graphs show their
proportional equivalents. In this case, n = 20, but our true simulations cover values of n between 10

and 50 and perform 100,000 simulations per value of n.

late in the incubation period distribution, result in a lower proportional Wasserstein-
1 metric, suggesting that more individuals results in more information and therefore
a proportionally more accurate estimation. However, the range of central estimates
in both the proportional and real Wasserstein-1 metric barely spread across one or-
der of magnitude and the effect of time is far more prominent.

Both proportion of the group that are symptomatic and proportion of the group that
are infected have a greater effect on the accuracy of our system. They are, of course,
inherently linked, as you cannot have symptomatic individuals without having in-
fected individuals, and this link will strengthen over time as the proportion of in-
dividuals that are symptomatic tends towards the proportion of people who are in-
fected.

In real terms, for any proportion of infected individuals, the expected Wasserstein-1
metric of our model compared to the simulated data decreases over time. A higher
proportion of infected individuals results in a higher level of error, the disparity of
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(a) (b)

(c) (d)

(e) (f)

t

(g) (h)

Figure 2.7. Plot of the changing Wasserstein distances when comparing our calculated distributions
to simulated results. Plots 2.7a and 2.7b show the 5th, 25th, 50th, 75th and 95th centiles of errors
across the simulations. Each strand on the spaghetti plots Figures 2.7c - 2.7h show the changing
average Wasserstein-1 distances (left) and proportional Wasserstein-1 distances (right) given one
fixed parameter, coloured according to said parameter. Figures 2.7c and 2.7d show the effect of

initial population size on error during the same simulations, with red strands showing large
population sizes. Figures 2.7e and 2.7f show the effect of the proportion of individuals who are

symptomatic by time on accuracy, with red strands representing a more symptomatic population.
Finally, Figures 2.7g and 2.7h show the effect total outbreak size has on the accuracy of our

predictive model, with red strands showing a larger outbreak. As the analysis is agnostic to the
type of distribution used to represent the incubation period, the passage of time is represented in

terms of F (t).

67



which increases over time. For high enough values of E0

n
this can result in some in-

crease in the porportional Wasserstein-1 metric.

The proportion of individuals that are symptomatic has a far more dramatic effect
on the estimated Wasserstein-1 metric. Firstly, it is worth noting the erratic esti-
mates for high proportions of symptomatic individuals early in our model. This is
because of a low count in the simulations, as it we are unlikely to see high propor-
tions of symptomatic individuals early in the model. The progression of the esti-
mated Wasserstein-1 metric is not monotonic, unlike when looking at other fixed pa-
rameters. In real terms, we can clearly see an increase in the Wasserstein-1 metric
over time which hits an apex and then decreases. This apex occurs later for higher
values of It

n
. By and large the increase results in a constant proportional error that

drops off when the apex is reached. As a result of this apex, initially lower pro-
portions of symptomatic individuals results in higher total error, but over time the
higher the proportion of individuals that are symptomatic, the greater the error.
This shift is in part explained when we look at the Shannon entropy.

2.3.5 Shannon results

Figure 2.8 shows the changing Shannon metric of our distribution over multiple dif-
ferent scenarios. In effect, it shows the amount of information our calculation can be
expected to provide at any one time. The higher the line, the less information the
distribution provides. In the case of the normalised Shannon metrics (right-hand side
figures), the closer the y-value is to 1, the closer our calculated distribution is to an
uninformative Uniform distribution. That being the case, how is it that as time in-
creases from F (t) = 0, our distribution becomes less informative? How can observing
for longer result in more uncertainty?

The key to answering this question lies in the three scenarios presented at the start
of this chapter. In the first, one person was observed for 100 days and we were cer-
tain they were not infected. In the second 99 out of 100 people were symptomatic
within 5 minutes, so we were certain that the 100th person would become symp-
tomatic eventually. In the third scenario, that 100th person was observed for 100
days and at some point during that observation period we went from being certain
they were infected to being certain they were not. At some point between these two
times, we hit a peak of maximum uncertainty where, based on how much time has
passed, there is a 50% chance the last remaining individual was infected and a 50%
chance that they were not. Before that point, certainty that the individual was in-
fected was steadily decreasing as each day our prediction that they would develop
symptoms did not come true. After that point, our uncertainty that they were in-
fected became out-weighed by our increasing certainty that the individual had not
been infected, up until time F (t) = 1, at which point we could be certain that an
asymptomatic individual was not infected as it would be impossible for them to have
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.8. Plot of the expected changes in Shannon entropy of our calculated distribution given
our simulated observations. Left-hand plots reveal the true Shannon metric, while right-hand plots
show a normalised Shannon metric by dividing by the maximum possible value in each scenario.

The top graphs show the spread of Shannon entropy with the 5th, 25th, 50th, 75th and 95th
centiles, and the graphs below show the expected Shannon entropy for fixed values of group size,

proportion symptomatic and proportion infected in our simulations.
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an incubation period so long. At this point, the Shannon metric equals 0. This ini-
tial certainty, followed by an increasing uncertainty to a peak and then an increasing
certainty is worth keeping in mind when consider the shape of the Shannon curves
we see in Figure 2.8.

First, at the start of our model we can see that the proportional Shannon entropy
tends to be close to 1, indicating a distribution close to uniform. At this time we
have little information regarding the outbreak so we would expect this value to be
close to 1. In general, we can see that as time increases, the range of possible values
for the Shannon entropy decreases. However, a certain proportion still remain close
to a normalised Shannon entropy of 1. For the correct parameter set is it possible to
estimate a near-uniform distribution for any time (except a time at which F (t) = 1).

Figures 2.8c and 2.8d show us that, as with the Wasserstein-1 metric, group size has
little effect on the expected Shannon entropy, and even less effect on the normalised
Shannon entropy. In general, a larger group will result in more uncertainty, but time
has a far bigger effect.

The proportion of individuals that are symptomatic has a far more dramatic effect
on the timing of the peak of uncertainty (Figures 2.8e and 2.8f). The more of the
group that are symptomatic, the later the peak, with the timing of these peaks rang-
ing from F (t) ≈ 0 to F (t) ≈ 1. In the proportional Shannon entropy, we can see
that the expected values at the peak closely approach 1, indicating a near uniform-
distribution. We believe this peak represents the time at which, for a set value of It

n
,

our model starts to shift from being certain that there are more infected individu-
als to being uncertain how many more individuals are infected, to being certain that
there are no more infected individuals left. We believe that it is this peak in uncer-
tainty that least matches our simulated data, resulting in a peak in proportional
Wasserstein-1 metric as well. The timing of this peak is highly dependent on the
proportion of individuals that are symptomatic, with a higher proportion of symp-
tomatic individuals resulting in a later shift in uncertainty. This is in keeping with
our intuition: the more symptomatic individuals there are, the later we will be cer-
tain that we have seen all the infected individuals.

This possibility is perhaps better demonstrated in Figure 2.9, which investigates
the changing timing of peak uncertainty for a fixed value of n = 50 with a vary-
ing proportion of symptomatic individuals (Figures 2.9a and 2.9b) and a fixed pro-
portion of symptomatic individuals It

n
= 0.5 with a varying group size (Figures

2.9c and 2.9d). In these Figures we can see that the proportion of symptomatic in-
dividuals is far more important than the size of the exposed group when it comes
to the timing of peak uncertainty. In terms of F (t), this timing in approaching 1:1
with the proportion in the group that are symptomatic. Its relationship with group
size is not monotonic, initially increasing and then slowly decreasing. We allowed n

to vary between 2 and 100 and the timing of peak uncertainty only ranged between
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(a) (b)
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Figure 2.9. Plot demonstrating timing of peak uncertainty with either constant group size or
constant proportion to symptomatic individuals. Figures 2.9a and 2.9b demonstrate the changing

timing of peak uncertainty when group size is constant at n = 50. Figures 2.9c and 2.9d
demonstrate the comparatively constant timing of peak uncertainty when group size is allowed to

vary, but the proportion of individuals who are symptomatic, It
n is constant at 0.5.

0.55 < F (t) < 0.66.

The effect the proportion of infected individuals has on the Shannon entropy needs
to be thought about carefully. Unlike the group size and the proportion of individ-
uals that are symptomatic, the proportion that are infected does not directly affect
the calculations of the Shannon entropy. Instead it dictates the environment which
may result in a different proportion of symptomatic individuals. In general we see
that for higher values of E0

n
, our expected proportional Shannon entropy remains

closer to 1 for longer. The larger the outbreak, the longer we are likely to be uncer-
tain about the exact size of the outbreak. With each new individual becoming symp-
tomatic, the apex of uncertainty based on the proportion of symptomatic individuals
becomes later and later in our model. With a larger outbreak, a higher proportion
of symptomatic individuals will be achieved, resulting in a later apex and therefore a
longer period of time where the normalised Shannon entropy is closer to 1.

2.3.6 Discussion

In general, we can see that there is a good fit between the simulated data and our
calculated distribution. This only improves with time as we observe the exposed
group for longer. By the time F (t) = 1, both metrics we have observed equal 0. We
would expect this to be true. At this time, all infected individuals should be symp-
tomatic and therefore we should know the exact number of infected individuals. This

71



logic will change if it is possible for infected individuals to be permanently asymp-
tomatic, or if the individuals continue to be exposed after the start of the observa-
tion period. Both scenarios will be investigated later.

Not only is the fit fairly in keeping with the simulated data, dependent on various
parameters, but also our calculations can be fairly informative. In nearly all scenar-
ios (no observed symptomatic individuals is the exception), the uncertainty of our
model will increase as time continues, until it hits a peak largely dependent on the
proportion of individuals that are symptomatic. It would be tempting to hope that
we can avoid passing through this peak uncertainty by chance as new symptomatic
individuals will change the proportion of symptomatic individuals and therefore also
the timing of the peak. However, there can only ever be an increase in symptomatic
individuals, never a decrease, which in turn delays the timing of the peak, meaning
it would still be in our future. In fact, in a very unfortunate scenario, it would not
be impossible for individuals to become symptomatic in such timing that the model
would pass through multiple peaks of uncertainty.

In general, a higher proportion of symptomatic individuals results in a more infor-
mative model early on, as symptomatic individuals, who are therefore definitely in-
fected, tell us more about how many individuals are infected than asymptomatic
individuals do, who may not be infected or may be infected but are yet to develop
symptoms. As time increases and the probability that an asymptomatic individual
is in fact infected decreases, this relationship switches and the lower the proportion
that are symptomatic, the more informative our model will be.

Comparing the Wasserstein-1 and Shannon entropy results, there appears to be a
clear link between these two outcome measures. Indeed, the same set of parame-
ters that will result in a less informative distribution also seem to result in a greater
Wasserstein-1 distance. If we consider what it means to be less informative, we can
see why this observation would make sense. A less informative distribution allows for
greater range of options when selecting from it in simulation. If our analytical model
perfectly matched the system we simulated, we would still expect some difference be-
tween the observed, simulated data and our model distribution owing to the stochas-
ticity in the simulated data. In turn, we would be more likely to see this difference
in low-information parameter sets, as there would be a great possibility of random
selection less in keeping with the calculated distribution.

Figure 2.10 demonstrates this changing relationship for a fixed group size of n = 10.
In this visualisation we can see that both Wprop and Hnorm initially increase to an
apex and then decrease together as F (t) increases. There is some variation to this
pattern at the very beginning and end of the model but this is likely due to a de-
creased number of observations and rounding errors respectively. In general we can
conclude that a considerable proportion of the decrease in perceived accuracy in our
model can be explained by a decrease in information the model provides.
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Figure 2.10. Demonstration of the relationship between proportional Wasserstein-1 distance and
normalised Shannon entropy for our model when compared to simulated data for different

parameter sets. Each line represents a different proportion of symptomatic individuals for a group
size of n = 10, and tracks how Hnorm and Wprop change for a range of values of F (τ) starting at
F (t) ≈ 0 (×) and going up to F (t) ≈ 1 (⋆). These results are based on 10,000,000 simulations, an

impractical number of simulations for the larger investigation.

It is, however, a fairly basic model. It assumes that all infected individuals will be-
come symptomatic, that we know the total number of individuals that were exposed
and that all individuals were exposed at the same time. We explore these assump-
tions in Sections 2.4, 2.5 and 2.6. Additionally we assume that every exposed indi-
vidual has the same probability of infection. Fortunately, Section 2.3.6 reveals that
breaking this assumption does not actually change the accuracy of our model.

The censoring problem we observe in our model is not a problem unique to epidemi-
ology. One important example is the count of species in ecology. When attempting
to parameterise how many of a particular species may be found in a particular re-
gion, it is not unusual to find a high occurrence of zero-counts. This happens for
multiple reasons, but can result in underestimating or overestimating the total dis-
tribution of counts if not handled carefully.

One well recognised approach is a so called zero-inflation model. In this circum-
stance, the modeller recognises that there are effectively two separate and often in-
dependent decisions occurring when the species count is decided:

1. Is the species count greater than zero?

2. Given that the species count is greater than 0, what is the species count?

The first decision may be effected by factors that are completely separate to the sec-
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ond decision. To take an extreme example to demonstrate my point, I may want to
sample average crocodile congregation size. Over 50 days I take two samples, one
from two different sites, counting the number of crocodiles I see in each site. I then
perform a Poisson regression on these counts to calculate a model for the total con-
gregation size across my sites. Except, what I have not said is that one of these sites
is in the swamp-lands of Florida, and the other is in my office in Manchester. My
Manchester-based crocodile hunt is likely to artificially inflate the number of zeros I
observe (hopefully). However, even if I did separate out my data by site, I may come
to the incorrect conclusion that a crocodile congregation in my office would be small.
It may not be. I just have not seen one yet. Obviously, this is a slightly ridiculous
example that hopefully serves as a demonstration of how zero-inflation can occur.
Martin et al. have written an informative summary of a range of approaches that
can be taken when handling zero-inflated data. They each come down to treating
these two decisions separately (is my datum greater than 0 Vs given that my datum
is greater than zero what is it) and performing some form of regression on each of
them separately[152].

In a true outbreak model, we should expect to see some element of zero-inflation.
Some outbreaks will never grow past a certain point, while others will cross a thresh-
old into exponential growth. This is in part why, whilst on average SARS-CoV-2 out-
breaks on cruise ships involved only one person[153], there was a point where trans-
missions on the Diamond Princess made up over half of all SARS-CoV-2 transmis-
sions outside of China[154]. The difference between our model and a zero-inflation
model is that we expect the observed number of infected individuals to be reduced
in a uniform manner (by a factor of F (t)), rather than reduced to 0, meaning a zero-
inflation model would not be appropriate in our case.

Later in this chapter, we will look how changing the method of censoring affects our
observations. First though, we will discuss one final question to be answered with
this initial scenario: What is the probability that all infected individuals have been
observed?

Calculating the probability that the number of infected individuals is equal to the number of symp-

tomatic individuals

As a reminder, Equation 2.2 shows us that we can write the probability that E0

takes any value between It (the number of symptomatic individuals observed) and
n (the total number of exposed individuals):

P(E0 = e|It = it) =
B
(︁
n− e0 + 1, e0 +

1
2

)︁
F (t)iτ+

1
2 (1− F (t))e0−it
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(︁
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2
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1
2
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× 2F1

(︃
1

2
, e0 +

1

2
, n+

3

2
, F (t)

)︃
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When E0 = It, this equation simplifies:

P (E0 = It) =
B
(︁
n− It + 1, It +

1
2

)︁
F (t)It+

1
2 2F1

(︁
1
2
, It +

1
2
, n+ 3

2
, F (t)

)︁
BF (t)(It +

1
2
, n− It +

1
2
)

(2.3)

This is important because it effectively calculates the probability that all the infected
individuals have developed symptoms and that there are no more undetected symp-
tomatic individuals.

Figure 2.11 demonstrates how this probability changes with respect to F (t) for a
group of size n = 10 (It = 10 was not included in this analysis for obvious rea-
sons). As would be expected, this probability increases as F (t) increases. Aside from
It = n, the first value for It where we can be 95% confident that there are no further
infected individuals is It = 0. This stands up to common sense. If you were looking
at two groups who had been exposed and asked to guess which one had undiagnosed
infected individuals in it, you would go for the one where there is at least some evi-
dence of transmission (It > 0).

Interestingly, for low enough values of F (t), the probability that there are no more
infected individuals is next highest (although still low) for It = n − 1 = 9. As the
number of remaining individuals who could be infected dwindles, the probability that
they are also infected decreases, resulting in a higher probability that E0 = It.

However, in general, for a 95% confidence that E0 = It, the higher the value for It,
the higher the corresponding value of F (t) needs to be. The more symptomatic in-
dividuals observed, the longer the wait before we can be confident that there are no
remaining undiagnosed infected individuals.

Calculating the probability that no one was infected

Given a scenario where no symptomatic individuals have been observed, we can sim-
plify our calculations even further to answer the question “What’s the probability
that no individuals were infected?” or perhaps more importantly “How long do we
have to wait until we can be confident that no individuals were ever infected from
the exposure?”.

If It = 0, even our equation for the posterior distribution for ρ is simplified:

P(ρ|It = 0) ∝ ρ−
1
2 (1− ρF (t))n−

1
2

By finding a normalising constant, we can write the posterior distribution:
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Figure 2.11. Plots of the probability that all infected individuals have been observed in a simplistic
model of an exposure event given that It out of 10 individuals have developed symptoms. The

left-hand graph demonstrates how the probability changes as F (t) increases. The right-hand graph
shows the value of F (t) such that we can say with a 95% confidence that no further individuals

were infected.
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In turn we can feed this back in to our formula for the probability that E0 = e0 given
It = 0, remembering that we are only interested in the case where E0, It = 0:
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Figure 2.12 demonstrates how this probability varies with respect to n, the size of
the population exposed. Initially, the smaller the population size, the more likely it
is that no individuals were infected. However, as time (and F (t)) increases, this flips.
The larger the exposed population, the sooner we are going to reach a 95% certainty
that no one was infected.

Calculating the effect of a variable probability of infection

Each of our models is primarily tied to approximating the value of ρ, a fixed and un-
known probability that an exposed individual would be infected (in Section 2.6 the
definition of ρ changes slightly depending on the nature of the prolonged exposure,
and cast aside entirely in favour of an infector-focussed model in Section 2.5). This
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Figure 2.12. Plot of probability of no infected individuals given no observed symptomatic
individuals. The left-hand plot demonstrates how this probability changes with respect to F (t). The
right-hand plot shows the value of F (t) required to by 95% certain that no individuals were infected

during the exposure.

value is assumed to be constant for all exposed individuals and is the basis on which
we go on to estimate the total number of infected individuals. But what if it was not
constant?

For multiple reasons, it would be unreasonable to assume that each individual’s
probability of exposure would be exactly the same. It could be that some exposed in-
dividuals are more frail, more vulnerable or had a higher level of interaction with the
exposing agent, increasing their probability of infection. Conversely, some individ-
uals may have a level of immunity, either acquired or innate, that may reduce their
probability of infection. These both seem like fairly reasonable situations in the real
world, but it is unclear what effect they would have on our model.

To investigate this, we repeat the Wasserstein-1 metric investigation of our Point
Exposure 100% symptomatic rate model (Section 2.3). With each iteration of the
model we assign a random average probability of infection µ. However, each individ-
ual’s probability of infection is taken from a Beta distribution with a mean of µ and
a variation of σ2 such that there is a proportional fixed level of dispersion (defined in
this analysis as the variation divided by the mean). We want to see how an increase
in variance with respect to the mean probability of infection affects the accuracy in
our model with regards to predicting the total number of infected individuals.

With a Beta distribution with input parameters α and β, the mean and variance are
calculated as α

α+β
and αβ

(α+β)2(α+β+1)
respectively. With a small amount of rearrange-

ment, we can find the variance in terms of α and the mean µ:

σ2 =
µ2(1− µ)

α + µ
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Figure 2.13. Mean Wasserstien-1 and proportional Wasserstien-1 metric for fixed levels of
overdispersion in the probability of infection.

As α approaches 0, σ2 approaches µ(1 − µ) and as α approaches +∞, σ2 approaches
0. This gives us our range for σ2 for any value of µ. Additionally, it gives us our
range for over-dispersion, od:

0 < od < 1− µ

We sample µ from the beta distribution B(0.5, 0.5) and then calculate the corre-
sponding Beta distribution such that over-dispersion of the resulting distribution is
a fixed distance along its possible range (i.e. σ2

µ(1−µ)
is fixed). It is this Beta distribu-

tion that we then use to sample each exposed individual’s probability of infection.
Experimenting with group sizes between 10 and 50 inclusive, we estimate the mean
Wasserstein-1 and proportional Wasserstein-1 metrics for different values of this fixed
proportion, to see if increasing over-dispersion decreases our model’s accuracy.

Figure 2.13 shows the effect variance in the probability of infection has on the ac-
curacy of our model in terms of expected Wasserstein metrics. Perhaps, more ac-
curately, it shows the lack of effect. It could be expected that varying the over-
dispersion in the probability of infection would result in a wider variety of outcomes,
thereby decreasing our model’s accuracy as it fails to account for this change. How-
ever, we can see that this change does little if nothing to alter the expected Wasser-
stein metrics. So what is happening?

This lack of change revolves around a hidden variable in our model, ρtrue. Where ρ is
the probability that an exposed individual is infected, ρtrue is the probability that an
individual from the exposed group chosen at random is infected once assignment has
already occurred. Both probabilities have the same likelihood functions and could
be argued to have the same posterior function based on observation of symptomatic
individuals (there is an argument to say that Ptrue has a discrete distribution with
probabilities j

n
where j is the set of all integers between Iτ and n inclusive). So when

we are finding a posterior distribution for ρ, we are also finding a posterior distribu-
tion for ρtrue.

When we replace ρ with a Beta distribution, ρtrue remains a fixed constant. A set
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number of individuals are assigned as infected, these dictate the probability of select-
ing an infected individual from the group and likelihood function for ρtrue remains
the same. In reality, it is this posterior distribution that we then use to estimate the
posterior distribution for the total number of infected individuals. The accuracy of
this posterior distribution is completely independent to the variance on the value of
ρ, so introducing variance in the probability of infection does not affect the accuracy
of our model.

2.4 Model 2: Introducing asymptomatic infected individuals

Asymptomatic transmission has become an important part of understanding SARS-
CoV-2 outbreaks. An early narrative study by Oran et al. collating 16 case sources
estimated that 40-45% of all cases will remain asymptomatic[155]. A cohort study in
the Republic of Korea found no significant difference in the viral load of symptomatic
and asymptomatic infected individual, although the viral load in symptomatic indi-
viduals appeared to take longer to go down[156]. This has led some to believe that
asymptomatic individuals can be just as infectious as those with symptoms. This
theory has been corroborated by Almadhi et al., who, through a retrospective study
looking at contact tracing databases in Bahrain, found no significant difference be-
tween the infectiousness of symptomatic contacts and asymptomatic contacts[157],
and Emery et al., whose models of the SARS-CoV-19 outbreak on the Diamond
Princess Cruise-Liner suggests that asymptomatic transmission must have had to
play an important role in the spread of the virus[158].

In the early stages of the pandemic, asymptomatic individuals posed a particular
problem, as tests were not readily available and were reserved for people with clinical
suspicion of SARS-CoV-2. In our initial scenario, asymptomatic individuals would
go completely unobserved. We relied on knowing the total number of symptomatic
individuals by time t to infer the probability that the remainder of their cohort are
or are not infected. The possibility that an infected individual could never develop
symptoms could throw a spanner into our model. It could be assumed that, in order
to accommodate for this, the model needs rewriting from the very beginning, but ac-
tually ends up being a very simple fix.

We aim to adjust our model to analyse scenarios when an infected individual will re-
main forever asymptomatic with a known probability. We will then investigate how
how informative and accurate the resulting model becomes.
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2.4.1 Calculating a posterior distribution for the total number of infected individuals

when the rate of asymptomatic transmission is known

We start by assuming that a is the known probability that an infected individual
will eventually become symptomatic. In the case of SARS-CoV-2 this value may
not be fixed from person to person and likely depends on demographic features like
age[159]–[161]. However, for our model we will assume that it remains fixed for all
exposed individuals. For every time we have had to calculate the probability that an
individual is both infected and symptomatic, we now need to replace this with be-
ing infected, able to become symptomatic and currently symptomatic. Whilst this
sounds difficult, it is simply a matter of replacing each instance of F (t) with aF (t) in
our formulae. Our prior distribution for ρ becomes:

π(ρ|F (t), a) = ρ−
1
2 (aF (t))

1
2 (1− ρaF (t))−

1
2

In turn, our posterior distribution for ρ given It becomes:
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Finally, our probability for the value of E0 becomes:
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This bears a striking resemblance to Equation 2.2, except now all “F (t)” terms have
been replaced with “aF (t)”. Essentially, where in the previous model this term would
tend towards 1, it now tends towards a. This will have some important effects if we
want to be certain that no further individuals will be infected (for low enough val-
ues of a, we will never reach a 95% certainty that all infected individuals have been
observed).

2.4.2 Performance analysis

We repeated the simulations in Section 2.3.3. However, we now included a known
variable a, the probability that an infected individual will ever be symptomatic.
This was fixed for each simulation, and was sampled in a range between 0.001 and
0.999. We calculated the Wasserstein-1 and proportional Wasserstein-1 metrics of
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our expected distributions from our simulated results. In order to see the effect of
previously examined parameters (group size, proportion infected, proportion symp-
tomatic), we also repeat the simulations for values a = 0.1, 0.3, 0.5, 0.7, 0.9 to show
possible outcomes across a range of set values of a. We also compare these outcomes
to when the value of a is unknown. Additionally, we calculate the the Shannon met-
rics for each possible scenario.

2.4.3 Wasserstein-1 results

The Wasserstein-1 metrics from our simulations can be seen in Figure 2.14. As time
passes, our calculated distribution more closely resembles the simulated results. Both
the Wasserstien-1 metric and normalised Wasserstein-1 metric decreases (Figures
2.14a and 2.14b). The fit by time F (t) = 0.5 is fairly good, with an expected nor-
malised Wasserstein-1 distance under 0.1. However, by introducing uncertainty in the
form of possible asymptomatic individuals, we can no longer be certain of the total
number of infected individuals at time F (t) = 1. This can be seen by the fact that
the Wasserstein-1 distance no longer tends towards 0 in our simulations.

The rate of asymptomatic infection greatly influences the accuracy of our model. For
a low enough symptomatic rate (a ≈ 0) there is barely any improvement in the av-
erage Wasserstein metric from our model. This is to be expected, seeing as with a
low enough probability of symptoms onset, we are unlikely to ever see anyone who is
symptomatic, meaning we are unlikely to gain any information as time progresses. If
we consider how introducing a affected the equations behind our model, we can effec-
tively say that its accuracy is pushed back in time by a factor of a. For any time t1

when a ̸= 1 our model is equivalent to the same model (n = n, It = It) where symp-
tom onset is certain (a = 1) at time t2 where F (t2) = aF (t1). This is easier to see in
our demonstrations where the passage of time is put in terms of F (t). It is perhaps
best seen when we compare the effects of group size, proportion symptomatic and
proportion infected for fixed values of a.

Figures 2.15 and 2.16 demonstrate how the value of a interacts with group size, out-
break size and proportion symptomatic when it comes to the accuracy of our model.
These effects remain the same as when it was guaranteed that all infected individ-
uals would eventually become symptomatic. However, if we consider the effect the
value of a had on our model, we can realise that our simulated outcomes are elon-
gated by a factor of a. Each value of F (t) in the original model was multiplied by
a, resulting in this elongation. This means that for low values of a we will only see
the equivalent to very early on in simulations when all individuals can become symp-
tomatic and we will be barely able to see a difference when the value of a is close to
1. This is not as important for group size and outbreak size where their relationships
with the Wasserstein-1 and proportional Wasserstein-1 metrics are largely monotonic
(for large enough values of aF (t), the relationship between population size and pro-
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(a) (b)

(c) (d)

Figure 2.14. Plot of the changing error in estimation of total outbreak size compared to exposed
F (t) if asymptomatic individuals are included in the model. Plots 2.14a and 2.14b show the 5th,

25th, 50th, 75th and 95th centiles of errors across the simulations. Figures 2.14c and 2.14d
demonstrate the effect of a, the probability that an infected individual will eventually become

symptomatic.

portional Wasserstein-1 metric switches from negative to positive). However, with
the proportion of symptomatic individuals the change in accuracy over time is no
longer homogeneous, starting with a decrease in accuracy to a peak, followed by an
increase. The value of a changes when this peak occurs, elongating it to the point
where for low enough symptomatic rates an apex may never be reached.

In general, knowing the value of a will make us more likely to make an accurate as-
sessment of the situation. This is increasingly true for larger outbreaks and higher
proportions of symptomatic individuals. In a circumstance where underestimating a
larger outbreak would be worse than overestimating a smaller outbreak it would al-
ways be advisable to find out the rate of symptomatic infections if possible rather
than assuming a = 1.

2.4.4 Shannon results

The effect of the value of a on the Shannon entropy is similar to its effect on the
Wasserstein-1 metric. By multiplying all F (t) by a, we are elongating the passage
of time. Figures 2.18 and 2.19 clearly demonstrate this elongation in action. We can
see that, as a increases, it appears as though the graphs squeeze in on the x-axis to-
wards 0, revealing more and more. As a tends towards 1, the amount of information
our model is expected to provide at any one time looks more and more like our ini-
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Figure 2.15. Plot demonstrating the effect asymptomatic rate has on the influence other variables
have on the accuracy of our model in simulation. Each row has a fixed symptomatic probability of

a = 0.1, 0.3, 0.5, 0.7, 0.9 from top to bottom. From left to right we see the effect of group size,
proportion infected and proportion symptomatic have on the total Wasserstein-1 metric W1

tial calculations as in Figures 2.7a and 2.7b. This is, of course, to be expected.

What is more stark is the expected Shannon entropy when a ≈ 0. In Figure 2.19 we
can see that for low enough values of a, the expected proportional Shannon entropy
barely changes over time. If the value of a is low enough, the passage of time is ex-
pected to provide us with minimal to no information. As this is an expected value
based on our simulations, for a low value of a it is unlikely that any symptomatic in-
dividuals appear over time, providing us with minimal information. When a = 1, in
the early stages of a simulation, the lower the proportion of symptomatic individuals,
the higher the Shannon entropy. The same is true for low enough values of aF (τ)

when a < 1. The difference is that if a = 1, as time increases, the Shannon entropy
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Figure 2.16. Plot demonstrating the effect asymptomatic rate has on the influence other variables
have on the proportional accuracy of our model in simulation. The layout is the same as Figure

2.15, but now we demonstrate Wprop rather than W1.

will eventually decrease, something that will happen sooner rather than later for
lower proportions of symptomatic individuals. However, as time is effectively elon-
gated by a factor of a, for low enough values of a the same fall in entropy will never
occur. If there were more symptomatic individuals, for low values of a, the Shannon
entropy would be increased. However, this is unlikely to occur in simulation as, with
low values of a, by very definition infected individuals would be unlikely to ever de-
velop symptoms.

If we compare Figure 2.17 to Figure 2.8 (Page 69), we could initially conclude that
varying the probability that an infected individual will eventually develop symptoms,
a, has little effect on the overall progression of information in our model. There is
an initial increase in uncertainty to an apex, followed by a decline. If anything, there

84



(a) (b)

(c) (d)

Figure 2.17. Plot of the changing Shannon metrics of our calculated distribution when it is possible
for infected individuals to never develop symptoms. Left-hand plots reveal the true Shannon metric,

while right-hand plots show a normalised Shannon metric by dividing by the maximum possible
value in each scenario. The top plots reveal the range of Shannon entropies with the 5th, 25th,

50th, 75th and 95th centiles and the bottom plots show the expected entropy during our simulation
for fixed values of a, the probability an infected indivdual will ever develop symptoms.

may be an improvement: the initial increase in uncertainty is slower and the apeces
are lower. Somehow, decreasing the probability that we would ever observe an in-
fected individual has increased the amount of information our model provides at any
one time.

The effect of a in a non-simulated scenario is perhaps best demonstrated in Figure
2.20, where we can see the normalised Shannon metric for multiple iterations of the
model when n and It are constant (n = 50, It = 25). Each iteration is the same curve
elongated in the horizontal direction according to the value of a. The start points are
all the same. The apeces (if they are reached) are all the same height. Importantly,
though, if a ̸= 1, the iteration does not reach 0. In fact, a lot of the iterations in
Figure 2.20 do no reach their uncertainty threshold. This point is the time at which
we go from being increasingly uncertain that there are undetected infected individu-
als to being certain that there are no remaining undetected individuals in our group.
We will never be certain that we have observed all the infected individuals (unless
E0 = n).
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Figure 2.18. Plot demonstrating the effect asymptomatic rate has on the influence other variables
have on the information gained from our model in simulation. Each row has a fixed symptomatic
probability of a = 0.1, 0.3, 0.5, 0.7, 0.9 from top to bottom. From left to right we see the effect of

group size, proportion infected and proportion symptomatic have on the expected Shannon Entropy
H
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Figure 2.19. Plot demonstrating the effect asymptomatic rate has on the influence other variables
have on the proportional expected information our model provides in simulation. The layout is the

same as Figure 2.18

2.4.5 Discussion

Including the possibility that an infected individual may never develop symptoms
can be expected to reduce the accuracy of our model. However, failure to include
a in our model can result in far more catastrophic errors in our estimates. Includ-
ing a is a fairly simple step (assuming symptomatic rates remain constant across the
demographic of individuals in our model) that should be taken if the value of a is
known. Including a as an unknown variable and integrating through all possible val-
ues is a step that could be taken, but would likely result in too much uncertainty in
the model.
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Figure 2.20. Plot of information gained from a model with a consistent group size and proportion of
symptomatic individuals, but varying probability of ever developing symptoms. In this case, n = 50
and It = 25. As a decreases from a = 1, the same line is stretched in the horizontal direction, time.

However, as F (t) = 1 represents the end of observable time, for all cases other than a = 1, our
model never ends on 100% certainty as to how many infected individuals there are, as the curves

can never reach Hnorm = 0.

The question that we really want to answer may not be “How many people have been
infected?” but “Have we seen all the infected individuals?”. The uncertainty that a <

1 introduces means we may never be certain of the answer to this question. The next
couple of sections seek to explore under what circumstances we can be certain.

Calculating the probability all infected individuals have been seen

In Equation 2.4, we replaced F (t) with aF (t) from Equation 2.2 to account for the
probability that an infected individual was ever going to develop symptoms. We can
perform a similar conversion to Equation 2.3 to give us the probability that we have
observed all the infectious individuals in the group.

P (E0 = It|a) =
B
(︁
n− iτ + 1, it +

1
2

)︁
(aF (t))iτ+

1
2
2F1

(︁
1
2
, it +

1
2
, n+ 3

2
, aF (t)

)︁
BaF (t)

(︁
it +

1
2
, n− it +

1
2

)︁ (2.5)

As with our model, this calculation elongates the curve of Equation 2.3. As F (t)

tends to 1, Equation 2.3 also tends towards 1. The probability that we have observed
all the infected individuals in our model when a < 1 will tend towards the value of
Equation 2.3 when F (t) = a.
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This means that for certain values of n and It, we may never be > 95% certain that
we have observed all the infected individuals in our model. This stands up to fairly
logical reasoning, as there may well be infected individuals we will never detect be-
cause they will never become symptomatic. It also means that, for any value for n

and It, we can calculate a threshold minimum value of a. If the symptomatic rate a

is below this value we will never be 95% we have observed all the symptomatic indi-
viduals.

We know that when F (t) = 1, P(E0 = It|n, It, a = θ, F (t) = 1)) = P(E0 =

It|n, It, a = 1, F (t) = θ). If we find the value of F (t) such that P(E0 = It|n, It, a =

1, F (t)) = 0.95, we have in effect found the value for a where the probability that all
the infected individuals are symptomatic at time F (t) = 1 is equal to 0.95. For any
value of a less than this value, a 95% confidence can never be achieved, meaning this
becomes a threshold value.

As we can see from Figure 2.21, a high symptomatic rate is required to be 95% cer-
tain all infected individuals have been observed. Even in cases where there are no
symptomatic individuals, a needs to be at least greater than 0.91. This value de-
creases for larger group sizes, but this decrease appears to be limited. The thresh-
old increases with It. This means that with each newly symptomatic individual, the
threshold increases. Once a is below the threshold, the model can never change in
a way that will bring it back above the threshold - It can only increase with time,
never decrease. Once this happens, the only way we could be more than 95% certain
that all infected individuals have been observed is if all of the group developed symp-
toms.

Calculating the probability no individuals were infected given asymptomatic infection is possible

Again, this is a fairly trivial conversion, replacing F (t) with aF (t), giving us

P(E0 = 0|a) =
B
(︁
1
2
, n+ 1

)︁
BaF (t)

(︁
1
2
, n+ 1

)︁ × 2F1

(︃
1

2
,
1

2
, n+

3

2
, aF (t)

)︃

Once again though, as seen in Figure 2.22, any sort of uncertainty in if an individ-
ual will go on to develop symptoms undermines the probability that no individual
has been infected based on prolonged observation (i.e. you can observe the group for
as long as you like, there’s still no guarantee none of them have been infected). This
demonstrates the importance of being able to identify infected individuals in this sce-
nario.
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Figure 2.21. Plot of minimum symptomatic rates required to be 95% certain that all infected
individuals have been observed. Each line represents a value of It, the final number of symptomatic
individual, the x-axis demonstrates n, the group size, and the threshold values of a are shown on

the y-axis.

(a) (b)

(c) (d)

Figure 2.22. Plot of the probability of no individuals having been infected in a group given a
possibility for asymptomatic infections.
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2.5 Model 3: Estimating outbreak size when the total number of exposed

individuals is unknown

In the previous scenarios one element that has been taken for granted is that we
know the exact number of individuals that have been exposed, n. However, this may
not be realistic. If the exposure happened in a public setting, for example, we may
not be able to track down all the exposed individuals for monitoring. One way to
allow for this is to decide on an upper limit of individuals who possibly could have
been exposed and treat this as our new value of n. However, this assumption may
introduce an error in our model, either by grossly overestimating the number of in-
dividuals exposed, stopping monitoring earlier than would be appropriate (larger
groups result in sooner conclusions that no further individuals were infected - see
Figure 2.12), or by underestimating the total number of exposed individuals and
therefore the number of individuals that were infected.

Instead, we propose an alternate model relying on a Poisson distribution. Suppose
at the moment of exposure a series of infectious contacts are made. We do not know
how many were made, but their number falls on some Poisson distribution. Even if
each connection has a fixed probability of success, the number of successes would still
fall on a Poisson distribution. The number of successes is equal to the number of in-
fected individuals resulting from the exposure, so E0 ∼ Poisson(Λ) where Λ is the
unknown input parameter for our Poisson distribution. We will find an estimate for
E0 by first finding and estimate for Λ based on the number of symptomatic individu-
als by time t and the distribution of incubation periods, much in the same way that
when n was known we first found a posterior distribution for ρ, the probability of in-
fection given exposure then found an estimate for the true value of E0.

2.5.1 Finding a posterior distribution for the Poisson rate of infectious contacts

Although our model is different to our initial model, our approach remains very
much the same. For a given value of Λ, we can write a probability mass function of
seeing xt symptomatic individuals by time t:

g (xt; Λ, F (t)) =
(ΛF (t))xt exp [−ΛF (t)]

xt!

This is a Poisson distribution with rate ΛF (t). As with before, we can use this PMF
to calculate to Jeffreys prior for Λ:

π(Λ|F (t)) =

√︄
−E

[︃
d2 ln [g(xt; Λ, F (t))]

dΛ2

]︃
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=

⌜⃓⃓⎷−
∞∑︂
i=0

g(i; Λ, F (t))
d2 ln [g(i; Λ, F (t))]

dΛ2

=

√︃
F (t)

Λ

Repeating the same steps we took to find a posterior distribution for ρ, we now re-
member that the probability that Λ is any value given that It individuals are symp-
tomatic by time t is proportional to the probability that It individuals would be
symptomatic by time t multiplied by our prior distribution for Λ:

P(Λ|It, F (t)) ∝ g(It; Λ, F (t))× π(Λ|F (t))

=
ΛIt− 1

2F (t)It+
1
2 exp [−ΛF (τ)]

It!

By finding the normalising constant such that
∫︁∞
0

P(Λ|It, F (t))dΛ = 1 shows us that
the posterior distribution is a Gamma distribution:

Λ ∼ Gamma

(︃
It +

1

2
, F (t)

)︃

2.5.2 Calculating a distribution for the total number of infected individuals when an

upper limit is unknown

Again, we can repeat our methods for estimating a distribution for the value of E0

when n was known, except now our estimates fall on a Poisson distribution of an un-
known rate Λ:

P(E0 = e0|It = it) =

∫︂ ∞

0

P(E0 = e0 & It = it|Λ, F (t))

P(It = it|Λ, F (t))
× P(Λ|It = it)dΛ

=

∫︂ ∞

0

Λe0 exp[−Λ]
e0!

(︁
e0
it

)︁
F (t)it(1− F (t))e0−it

(ΛF (t))it exp[−ΛF (t)]
it!

× F (t)it+
1
2Λit− 1

2 exp [−ΛF (t)]

Γ
(︁
it +

1
2

)︁ dΛ

=
F (t)it+

1
2 (1− F (t))e0−it(︁

e0 +
1
2

)︁
B
(︁
e0 − it + 1, it +

1
2

)︁
Compared to Equation 2.2, this calculation seems relatively simple. However, with-
out an upper limit for E0, it may be unclear to what value of E0 we need to calculate
this distribution to in order to understand it fully. This will cause us problems later
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Figure 2.23. Estimating the total number of infected individuals when no upper limit is know. The
number of symptomatic individuals observed is It = 5, but we no longer know how many this is out

of. The left hand plot shows this scenario at time F (t) = 0.2, the middle plot shows it at time
F (t) = 0.5 and the right hand plot shows it at time F (t) = 0.8. This is analogous to the scenario

depicted in Figure 2.4.

when attempting to calculate the information this distribution careers and how well
it matches up with simulated data.

First, though, because of its analytical simplicity, we can find the first two moments
of this distribution, the mean µ and the variance σ2:

µ =
∞∑︂

e0=It

e0 ×
F (t)It+

1
2 (1− F (t))e0−It(︁

e0 +
1
2

)︁
B
(︁
e0 − It + 1, It +

1
2

)︁
=

1− F (t) + 2It
2F (t)

σ2 =
∞∑︂

e0=It

(µ− e0)
2 × F (t)It+

1
2 (1− F (t))e0−It(︁

e0 +
1
2

)︁
B
(︁
e0 − It + 1, It +

1
2

)︁
= (1− F (t))

2It + 1

2F (t)2

There is a linear relationship between the number of symptomatic individuals It and
the estimated total number of infected individuals, with each additional symptomatic
individual increasing this estimate by a factor of 1

F (t)
. As time increases, F (t) will

also increase and our mean estimate will tend towards It. We can get an approxi-
mate idea for the certainty of this distribution by calculating the dispersion, in this
chapter calculated as σ2

µ
:

σ2

µ
=

(1− F (t))(2It + 1)

F (t)(1− F (t) + 2It)

dσ2/µ

dF (t)
=− (2It + 1)((F (t)− 1)2 + 2It)

F (t)2(F (t)− 2It − 1)2

dσ2/µ

dIt
=− 2(1− F (t))

(F (t)− 2It − 1)2

Whilst looking at the initial dispersion formula, it can be difficult to interpret how
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Figure 2.24. The mode value can be found at the first value in a series where the subsequent
probability is less than the probability o the current value

time and the total number of symptomatic individuals affects the uncertainty in our
system. However, its derivative with respect to both It and F (t) is negative. As time
progresses and/or we seem more symptomatic individuals, the dispersion decreases.
This gives us an interesting clue as to a difference between this model and when a
total number of exposed individuals is known. In that case, we saw that the uncer-
tainty in our system may initially increase to an apex before decreasing again, the
timing of this apex dependent predominantly on the proportion of individuals who
are symptomatic. While these two measures are different, we may expect to see a
similar result when we look at the entropy of our new system in the next section.

The final piece of analysis we can perform is to search for the mode value of E0. We
may no be certain from looking if there is only one mode in out distribution. How-
ever, we can define the mode value as the first in any series of values where P(E0 =

e0|It, F (t)) > P(E0 = e0 + 1|It, F (t)). We can use this inequality to find conditions
where modes occur.

P(E0 = e0|It, F (t)) > P(E0 = e0 + 1|It, F (t))

F (t)It+
1
2 (1− F (t))e0−It(︁

e0 +
1
2

)︁
B
(︁
e0 − It + 1, It +

1
2

)︁ >
F (t)It+

1
2 (1− F (t))e0−It+1(︁

e0 +
3
2

)︁
B
(︁
e0 + It + 2, It +

1
2

)︁
Γ
(︁
e0 +

1
2

)︁
Γ (e0 − it + 1)Γ

(︁
It +

1
2

)︁ >
(1− F (t))Γ

(︁
e0 +

3
2

)︁
Γ (e0 − It + 2)Γ

(︁
It +

1
2

)︁
e0 − It + 1 >

(︃
e1 +

1

2

)︃
(1− F (t))

e0 >
2It − F (t)− 1

2F (t)

This distribution is uni-modal, with that mode occurring at the smallest value of E0

such that E0 > 2It−F (t)−1
2F (t)

. Any value higher than this value will always be less likely
than the one before, as will any value prior to it.
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2.5.3 Performance analysis

In previous scenarios we have based our assessment of the performance of our model
on variations of the Wasserstein-1 metric (W1) and the Shannon entropy (H) of the
output distributions. As a reminder, for given values of E0, It and n, we calculated
these using the following finite sums:

W1 =
n∑︂

e=It

|P(Ecalc ≤ e)− P(Esim ≤ e|It)|

H =
n∑︂

e=It

−P(Ecalc = e|It)× P(Esim = e|It)× log2 [P(E0 = e|It)]

In these circumstances we knew n to be the upper limit value of E0 (i.e. we could not
have more infected individuals than exposed individuals). However, in our current
model, we do not have an upper limit for the number of possible infected individu-
als, meaning in order find the Wasserstein-1 metric and Shannon entropy we need to
solve the following infinite sums:

W1 =
∞∑︂

e=It

|P(Ecalc ≤ e|It)− P(Esim < e|It)|

H =
∞∑︂

e=It

−P(E0 = e|It)× log2 [P(E0 = e|It)]

Fortunately the W1 sum can be found analytically. We start by calculating the cu-
mulative mass function for our model:

P(E0 ≤ e|It) =
e∑︂

k=It

F (t)It+
1
2 (1− F (τ))k−It(︁

k + 1
2

)︁
B
(︁
k − It + 1, It +

1
2

)︁
=

⎧⎨⎩1− B1−F (t)

(︁
e−It+1,It+

1
2

)︁
B
(︁
e−It+1,It+

1
2

)︁ e ≥ It

0 otherwise

Gratifyingly, this probability tends towards 1 as e tends towards ∞, in keeping with
a cumulative mass function for an infinite series. Also, as F (t) tends to 1, this value
also tends to 1, in keeping with the fact that when F (t) = 1, It = E0. Following
simulation, we would now be able to calculate part of the Wasserstein-1 metric nu-
merically upto all observed values of Esim given a value of It at time t:
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W1(It, F (t)) =

(︄
Emax∑︂
e=It

|P(Ecalc ≤ e|It, F (t))− P(Esim < e|It, F (t))|

)︄
+ φ

where Emax is the highest number of infected individuals observed in our simula-
tions for input values of F (t) and It and φ is the remaining as of yet uncalculated
part of the Wasserstein-1 distance. As P(Esim > Emax) = 1, the remainder of this
Wasserstein-1 distance simplifies:

W1 =

[︄
Emax∑︂
e=It

|1−
B1−F (t)

(︁
e− It + 1, It +

1
2

)︁
B
(︁
e− It + 1, It +

1
2

)︁ − P(Esim ≤ e)|

]︄

+
∞∑︂

e=Emax+1

B1−F (t)

(︁
e− It + 1, It +

1
2

)︁
B
(︁
e− It + 1, It +

1
2

)︁
We estimate the second part of this series by calculating it for each value of e until
its addition to the Wasserstein-1 metric is less than 0.01% of the current calculated
total.

The infinite sum for the Shannon entropy cannot be calculated analytically. Instead,
again, we use the cumulative mass function for our model. If the infinite sum for the
Shannon entropy does converge, then calculating

K∑︂
k=Iτ

P(E0 = k|It)× log2 [P(E0 = k|It)]

for increasing values of K will generate increasingly accurate estimates of H. We la-
bel the estimate for H generated from the sum between Iτ and k as Hk est. Figure
2.25 demonstrates how closely related the increase in Hk est is to P(E0 = k|It). We
therefore estimate H as Hk est for the minimum value of k such that P(E0 ≤ k|It) ≥
0.99999.

We now have methods for calculating both the Wasserstein-1 metric and the Shan-
non entropy. As there is no upper limit, a normalised version for either of these met-
rics is not necessary. We simulate 1000000 outbreak events where the upper limit of
exposed individuals is unknown. For each simulation we randomly select a rate for
the Poisson distributed infectious connections from an exponential distribution of
rate 20. Using this rate, we then assign a random number of infectious connections
made, and for each infected individual, an incubation period, again selected from a
Uniform distribution between 0 and 1 so that t = F (t) for 0 ≤ t ≤ 1. We calculate
the range of the Wasserstein-1 metric and Shannon Entropy given our simulation and
their expected values given a fixed outbreak size and the proportion of the outbreak
that are already symptomatic.
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Figure 2.25. Demonstration of the close relationship between the probability density function and
the increase in Hk est for different values of F (t) when It = 50. The complete lines show the

probability mass at that value of e0, while the dotted line shows the corresponding change in the
entropy estimate Hk=e0 est.

2.5.4 Wasserstein-1 results

As expected, some aspects of the Wasserstein-1 metrics resulting from our simulation
remain the same regardless of if n, the number of exposed individuals, is known or
not, as can be seen in Figure 2.26. For example, as time progresses, the Wasserstein-
1 distance decreases and by time F (t) = 1, W1 = 0. However, there are some notable
changes in our results, as well as how we can display them.

Our fixed parameters are no longer the same. As we no longer have a value for n, we
can no longer work out the proportion of the exposed group that was infected, nor
the proportion of the exposed group that is symptomatic by time t. Instead, we have
shown the effect of fixed outbreak size (compared to a fixed value of 363 which was
the largest outbreak seen in our simulation) and the proportion of infected individu-
als that are symptomatic by time t compared to the true outbreak size E0. In a real-
world scenario, the true value of E0 would be expected to be unknown.

The relationship with outbreak size is fairly clear: The larger the outbreak, the worse
our calculated distribution matches the simulated distribution. There are orders of
magnitude difference between the larger and smaller outbreaks, which broadens (in
terms of orders of magnitude) as time progresses. The expected Wasserstein-1 met-
rics for the largest outbreaks are still approximately 10 even late into the model.
This may seem large, but as it represents an outbreak of a size greater than 300, an
error of ±10 may be acceptable. We are not able to demonstrate a meaningful pro-
portional error as there is no upper limit to our distribution.

The relationship between expected Wasserstein-1 metric and proportion of infected
individuals that are symptomatic is less clear. There definitely seems to be some ef-
fect where a higher proportion of symptomatic individuals results in a less accurate
model. However, this is not monotonic, with some fixed proportions crossing over
over time. This in part may be due to the fact that certain values of It

E0
were rare

to see in simulation (we were less likely to see a high proportion of symptomatic in-
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Figure 2.26. Estimated Wasserstein-1 metrics for simulated outbreaks when the exposure size is
unknown. The top result shows the centile range of results, bottom left demonstrates the expected

effect of group size and bottom right demonstrates the expected effect of the proportion of the
infected group that are symptomatic. Unlike when the exposed group size was known and fixed, we

rely on Poisson distribution to dictate the outbreak size and therefore number of individuals
symptomatic at a particular time. The result is a less smooth looking graph, with erratic values at

under-represented parameter sets (for example, large outbreak sizes) and narrow centile gaps at
over-represented points (for example the 0.05 and 0.25 centile appear to touch when F (t) ≈ 0, likely

due to the Wasserstein-1 metric bein over-represented when It = 0.

dividuals early of in the simulation, for example) making early values of an estimate
given a fixed value of It

E0
less reliable. Investigating the Shannon entropy with these

fixed terms will give us more insight into the nature of this relationship.

2.5.5 Shannon entropy results

The Shannon entropy of our model has similar behaviours to when the size of the ex-
posed group is known. Over time we gain more knowledge, our model becomes more
informative and the Shannon entropy decreases. A larger outbreak size results in a
less informative model. What is interesting and new is the effect of the total number
of symptomatic individuals.

By the nature of the simulation, we are no longer able to demonstrate the number of
infected individuals in terms of It

n
and instead calculate it in terms of the size of the

outbreak. As this is a simulation, we saw few instances of high proportions of symp-
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tomatic individuals until late on in the simulations, meaning estimates for the ex-
pected Shannon entropy for high values of It

E0
early on are erratic if not non-existent.

From our simulations it did appear that we can expect less information from higher
proportion of symptomatic individuals, but this needed investigating outside the sim-
ulation.

Figure 2.28 demonstrates the calculated Shannon entropy for fixed values of symp-
tomatic individuals in the range 0 ≤ It ≤ 100. From this we can see far more clearly
that more symptomatic individuals results in a less informative model. Earlier we
noted that increasing the number of symptomatic individuals in this system will de-
crease the overall dispersion of the probability mass function. It is interesting that
this decrease in dispersion also results in an increase in entropy.

This plot also reveals a very interesting difference when compared to a system where
we know the true number of exposed individuals, n. In that scenario, our model
would initially become less informative to an apex, only for the Shannon entropy
to decrease again, reaching 0 when F (t) = 1. The proportion of symptomatic indi-
viduals caused said apex to happen later in our model. We concluded that initially
we were certain that more individuals were infected than symptomatic, but as time
increases, we became less certain until eventually we became more certain that no
more individuals are infected.

The same shift in estimation is happening in our new model. Initially, we believe
there are more infected individuals than there are symptomatic individuals. Then
as time progresses, our estimate for the value of E0 decreases until eventually we
believe that only the symptomatic individuals were infected. The difference is that
at the start, when n is known, the number of infected individuals is constrained by
the value of n. When we think there are many more infected individuals, our poste-
rior estimates are forced to be less than or equal to n, resulting in a very informative
distribution. When we do not know the value of n, our posterior distribution is no
longer constrained. It is able to spread wider, resulting in a less informative distribu-
tion, or higher Shannon entropy. Figure 2.29 demonstrates how, for the same total
number of symptomatic individuals, having a constraint on the total number of ex-
posed individuals increases the information our model provides, but that over time
this effect decreases.

2.5.6 Discussion

Without the constraint of a known value of n, we can calculate a posterior distribu-
tion for the total number of infected individuals from an exposure event by treat-
ing the total number of infectious connections made as falling on a Poisson distribu-
tion. This alters how our model behaves, but in some regards simplifies it dramati-
cally. Now the more individuals infected and/or the more individuals that are symp-
tomatic, the less informative it will be and the less in keeping it will be with simu-
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Figure 2.27. Expected Shannon entropy for distributions calculated during an outbreak simulation
where the total number of exposed individuals is unknown. The top graph shows the range of
possible values, the left graph shows the effect of outbreak size on the mean estimate for the

Shannon entropy and the right side shows the effect of the proportion of an outbreak that has
developed symptoms. We see a similar erratic nature for similar reasons as discussed in Figure 2.26.

Figure 2.28. Changing Shannon entropy for a fixed number of observed symptomatic individuals
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Figure 2.29. Comparison of posterior estimates for the total number of infected individuals when
the exposure size is known and unknown. Left-hand graphs show the posterior when the exposure
group is known to be of size n = 20 (as indicated by the dashed black line), while the right-hand
group shows the effect of an unknown exposure group size. The effect changes over time, from

F (t) = 0.2 (top) to F (t) = 0.5 (middle) to F (t) = 0.8 (bottom).
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lated results. These errors are, of course, relative, as the model still remains fairly
accurate.

Once again, our final thoughts go to answering to questions: “What is the probabil-
ity that we have seen all infected individuals?” and “What is the probability that no
individuals were infected in the first place?” We can solve both these questions with
the same manipulation of our posterior function as before.

Estimating the probability that all infected individuals are symptomatic given no upper limit to the

size of the exposure group

As with previous examples, the probability that we have seen all the symptomatic
individuals is equivalent to the probability that the number of symptomatic individ-
uals and the number of infected individuals is the same. This results in a surprising
simplification:

P(E0 = It|n is unknown, F (t)) = F (t)It+
1
2 (2.6)

Without a constraint on the total number of exposed individuals, the probability
that we have seen all the infected individuals (that they are all already symptomatic)
relies only on the total number of symptomatic individuals and the time that has
passed (in terms of F (t)). As F (t) increases, the probability that all infected individ-
uals are already symptomatic also increases. However, whenever It increases (when-
ever a new individual becomes symptomatic), the probability that we have seen all
the infected individuals decreases, as 0 ≤ F (t) ≤ 1, by a factor of F (τ). Late on in
the incubation period this is unlikely to make a grand effect, but early symptomatic
individuals reduce this probability at that time dramatically. Figure 2.30 demon-
strates this changing probability for values of It between 0 and 9.

Calculating the probability that no individuals were infected without an upper limit to the number

of individuals exposed

As has been discussed previously, the probability that no individuals were infected is
equivalent to the probability that all the infected individuals are symptomatic (E0 =

It) when there are no symptomatic individuals (It = 0). We assume this question
is not being asked when there are symptomatic individuals, as it results in a rather
trivial answer: If there are symptomatic individuals, the probability that no one was
infected is 0 (investigating the effect of false positive diagnosis is beyond the scope of
this work).

Equation 2.6 shows us that when It = 0, the probability that nobody was infected is

102



Figure 2.30. Changing probability that all symptomatic individuals have been observed. The black
dashed line demonstrates the point at which this probability equals 0.95. The special case
calculating the probability that no individuals were infected is equivalent to the line It = 0.

P(E0 = 0|It = 0, n is unknown, F (t)) = F (t)
1
2

We can see how that changes over time in Figure 2.30 by looking at the It = 0 line.
For any scenario, we can say with a 95% certainty that no one was infected at the
time F (τ) = 0.952 = 0.9025.

2.6 Model 4: Estimating outbreak size for ongoing exposure

The previous sections have created models based on a scenario of instantaneous ex-
posure at time t = 0. In each case we have assumed that all the individuals were ex-
posed at once, and that that exposure immediately stopped. Their incubation peri-
ods could only start at time t = 0. In a lot of scenarios, this, of course, is unrealistic.
It would be useful to extend this work to include some distribution for a transmission
time.

If individuals in a group were exposed between 0 and z, we may be able to write the
probability density function that describes when an individual is infected between
times 0 and z given that they are infected between times 0. We will call this func-
tion y(t), which is equal to 0 outside of 0 and z, and integrates to 1 between these
values. We start with the trivial case where the structure of y(t) is independent to
the probability of infection during this time, ρz. We want to find the probability that
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an individual would become symptomatic before some time t. This would require the
“relatively” simple task of convolving y(t) with f(t) (the distribution for the incuba-
tion period) to generate a new function k(t) that describes the distribution of time
from start of exposure to developing symptoms. The cumulative density function
K(t) would replace F (t) in our previous calculations, which would then pretty much
stay the same.

However, what if y(t), the distribution for time from start of exposure to infection,
was not independent of the probability of infection during the exposure period, ρz?

Let’s consider an ongoing exposure, starting at time t = 0, that provides a cumula-
tive force of infection on a group. This cumulative force of infection is described by
the cumulative hazard function H(t). It is related to the probability of an individual
being infected, in that the probability that an individual survives infection past time
t, 1− ρt, is exp [−H(t)]. This can be rearranged:

H(t) = − ln [1− ρt]

If exp [−H(t)] is the probability of surviving past time t without infection, we can
write the probability density function for the timing of infection, y(t):

y(t) =
d(1− exp [−H(t)])

dt

= exp [−H(t)]
dH(t)

dt

If we can parameterise H(t), the cumulative hazard function for any time t, in terms
of ρz, the probability of being infected before a specific time z, we can find y(t) in
terms of ρz. In turn, K(t), the probability that an individual is symptomatic by time
t, would be calculated as the convolution of y(t) and F (t) and as a result would also
be dependent on the probability of infection prior to time t. Dependent of the shape
of H(t), a change in the probability of infection will result in a change in the distri-
bution for symptom onset given infection. The only exception to this is if the distri-
bution for timing of infection was uniform between 0 and z. In this case, the cumula-
tive hazard function is structured in such a way that the probability of being infected
at any one time is equal throughout this time period.

The effect ρz has on the shape of K(t) puts a very important spanner in our previous
model. Before, we showed that we did not have to keep track of the timing of symp-
tom onset in order to get the maximum amount of information out of our model.
The logic behind this was that the timing of an individual’s symptom onset in itself
was independent of the probability of infection. if an individual in an exposed group
had a quick onset of symptoms, it simply indicated that they were one of many sam-
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ples from the incubation period distribution and that therefore many other people
were infected. We also showed this mathematically: the exact timing of symptom
onsets integrated out of our posterior equations. However, this is now not true. We
would need to keep track of the exact timings of symptom onset as K(t) is now de-
pendent on the value of ρz (except in the Uniform case). This would result in the in-
vestigation of very specific relationships and simulations that we would no longer be
able to generalise. It is theoretically possibly, but beyond the scope of this project.

There is an exception, though. If no individuals become symptomatic, then there
would be no timing of symptom onset to keep track of. We aim to investigate how
this model could be used to approximate the probability that no individuals were in-
fected during the exposure period.

2.6.1 Calculating a posterior function for the probability of having been infected

before a certain time

As with previous models, we start by calculating a prior distribution for the overall
probability of infection, ρz. One of the advantages of a Jeffreys prior distribution is
that it is in-variate on reparameterisation[147]. We could choose z to represent any
particular time frame in our model and our Jeffreys prior would still have the same
influence on our posterior calculations. Similarly, we could calculate the probability
of infection in terms of the cumulative hazard function or the constant rate of infec-
tion and we would have the same effect. As before, xt is the observation that some-
one is symptomatic prior to time t, meaning they were both infected and developed
symptoms under time t. It equals 1 if they are symptomatic, and 0 otherwise. We
are only using this method to analyse an environment where as of yet no one has de-
veloped symptoms, so we are not interested in observing the exact time of symptom
onset. K(t, ρz) is the cumulative density function for the time from start of exposure
to developing symptoms. If g(xt, ρz) gives the probability of observation xt given the
probability of being infected by time z is ρz, we can write g(xt, ρz):

g(xt; ρz) =

⎧⎨⎩K(t, ρz) xt = 1

1−K(t, ρz) xt = 0

We can write a generalisation of the Jeffreys prior based on this probability mass
function:

π(ρz) =

√︄
−E

d2 ln [g(xt; |ρz)]
dρ2z
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=

⌜⃓⃓⃓
⃓⃓⃓⎷−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K(t, ρz)

d2 ln[K(t,ρz)]
dρ2z

xt = 1

+

(1−K(t, ρz))
d2 ln[1−K(t,ρz)]

dρ2z
xt = 0

= K(t, ρz)
− 1

2 (1−K(t, ρz))
− 1

2
dK(t, ρz)

dρz

Given that we have not seen any symptomatic individuals by time t, the posterior
distribution for ρz becomes:

P(ρz|It = 0) =

⎧⎨⎩K(t, ρz)
− 1

2 (1−K(t, ρz))
n− 1

2
dK(t,ρz)

dρz × c 0 ≤ ρz < 1

0 otherwise
(2.7)

where c is a normalising constant. Through integration by parts we can find c:

c =

(︃∫︂ 1

0

K(t, p)−
1
2 (1−K(t, p))n−

1
2
dK(t, p)

dp
dp
)︃−1

u = K(t, p)

c =

(︄∫︂ K(t,1)

K(t,0)

u− 1
2 (1− u)n−

1
2 du

)︄−1

=

[︃
BK(t,1)

(︃
1

2
, n+

1

2

)︃
−BK(t,0)

(︃
1

2
, n+

1

2

)︃]︃−1

BK(t,0)(a, b) = 0

c = BK(t,1)

(︃
1

2
, n+

1

2

)︃−1

This exact value of c will be necessary later when calculating the probability that no
individuals have been infected. Interestingly, it is in keeping with our calculations for
c when all exposure occurs at time t = 0 in Equation 2.1, where K(t, ρz) = ρF (t).

2.6.2 Calculating the probability no individuals have been infected in an ongoing

exposure

As with previous calculations, finding the posterior distribution for the total number
of infected individuals by time t (which we will write as Et) is a case of integrating
across all possible values of ρz. This task is made a lot easier when looking only for
the probability that no individuals were infected:
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P (Et = 0|It = 0) =

∫︂ 1

0

P (Et = 0 & It = 0|ρz = p)

P (It = 0|ρz = p)

× P (ρz = p|It = 0) dp

=

∫︂ 1

0

(1− p)n

(1−K(t, p))n

×K(t, p)−
1
2 (1−K(t, p))n−

1
2
dK(t, p)

dp
× cdp

= c×
∫︂ 1

0

(1− p)nK(t, p)−
1
2 (1−K(t, p))−

1
2
dK(t, p)

dp
dp

= c×

[︄
(1− ρz)

n
(︂
−2arccos

[︂√︁
K(t, ρz)

]︂)︂
−
∫︂

−n(1− p)n−1
(︂
−2arccos

[︂√︁
K(t, p)

]︂)︂
dp

]︄ρz=1

ρz=0

P(Et = 0|It = 0) = c×
(︃
π −

∫︂ 1

0

n(1− p)n−12arccos
[︂√︁

K(t, p)
]︂

dp
)︃

(2.8)

Calculating c is fundamental to calculating the probability that no individuals were
infected during an ongoing exposure.

These terms are dependent on the function K(t, ρz), the probability that an individ-
ual is symptomatic prior to time t given a probability of ρz of being infected prior to
time z. In turn, K(t, ρz) is dependent on the cumulative hazard function H(t) and
the cumulative density function for the incubation period F (t). We are going to in-
vestigate two possibilities for the shape of the cumulative hazard function. In both
cases, we are going to use an cumulative density function for the incubation period
(F (t)) that is equivalent to an exponential distribution with the mean 1

ω
.

2.6.3 Calculating the probability that no one has been infected during a constant

force of infection

One of the simplest options for a cumulative hazard function could arguably be a
constant force of exposure. This could be used to represent a constant environmen-
tal exposure, such as radiation from a material with a long half-life, or a constantly
contaminated water supply (although in the short term the exposure would result
from stochastic events where an individuals would drink from / wash with the water
supply, over a long enough period of time these events could be represented as a con-
stant exposure). With a constant force of exposure, the cumulative Hazard function
can be written as:
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H(t) = λt

where λ is the unknown force of exposure. We can calculate λ in terms of ρz by re-
membering the relationship between ρz and H(t):

λ = − ln [1− ρz]

z

In turn, for any value of ρz, we can write the probability density function for the
time from exposure start to infection, y(t):

y(t) =
dH(t)

dt
× exp [−H(t)]

H(t) = λt

= − ln [1− ρz]

z
t

y(t) = − ln [1− ρz]

z
× exp

[︃
ln [1− ρz]

z
t

]︃
= − (1− ρz)

t
z

ln [1− ρz]

z

This is a reparameterisation of an exponential distribution with mean −z
ln[1−ρz ]

. In or-
der to find K(t, ρz) we convolve our infection time distribution with F (t), which in
this case is 1− exp[−ωt]:

K(t, ρz) =

∫︂ t

0

y(t− τ |ρz)F (τ)dτ

In special cases K(t, ρz) can be found analytically. However, its solution can be cum-
bersome, specific to F (t) and does not at this stage provide any additional analytical
insight and so will not be included here.

We can insert K(t, ρz) into Equation 2.8 to calculate the probability that no individ-
uals have been infected by time t given that no one is symptomatic by time t in an
environment of some constant exposure. With this version of K(t, ρz), K(t, 0) = 0,
meaning Equation 2.8 simplifies:

P(Et = 0|It = 0) =
Γ(n+ 1)

√
πΓ
(︁
n+ 1

2

)︁ × (︃π −
∫︂ 1

0

n(1− p)n−12arccos
(︂√︁

K(t, p)
)︂
dp

)︃
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Figure 2.31 shows how this probability changes with respect to time and size of ex-
posure group. As time progresses with no individuals becoming symptomatic, we
can become more and more convinced that no individuals have been infected. As
time progresses and the incubation period becomes more and more insignificant when
compared to the time that has passed, K(t, ρz) will increasingly resemble ρz (i.e. the
probability that an individual will be symptomatic by time t will be more dependent
on the probability that they are infected before time t than the probability that their
incubation period is completed for large enough values of t). Replacing K(t, p) with
p in Equation 2.8 and following the equation through proves this asymptotic relation-
ship:

P(Et = 0|It = 0, K(t, ρt) = ρt) =
1

B
(︁
1
2
, n+ 1

2

)︁ × (︃π −
∫︂ 1

0

n(1− p)n−1arccos [
√
p] dp

)︃
= 1

However, it may take longer than expected to reach a significant level of certainty
that no individuals have been infected. In a scenario where the incubation period
falls on an exponential distribution of mean 1

ω
, for even small group sizes we can

expected to wait approximately 10x the average incubation period before we can
be certain that no one has been infected. This value increases as our group size in-
creases. This might go against our instincts that with more individuals we would
gain information quicker and therefore be convinced earlier that no one has been in-
fected. As we gain this extra information, we are also exposing more individuals, re-
sulting in an increase in the probability that one of them may be infected without
us knowing. This has important implications when drawing conclusions from large
groups who have been exposed over a long period of time to a constant agent. While
we could conclude that the individual risk to each individual is low over such a long
period of time, we may still be missing one infection out of such a large group.

In this model, it is assumed that given enough time, everyone exposed will eventu-
ally be “infected”. This may not be accurate, as a subset of the exposed group may
be immune to the exposure. Alternatively, the exposure may wain in strength. It is
this latter option which we shall now investigate as our final model in this investiga-
tion.

2.6.4 Calculating the probability that no one was infected during an exposure to a

waning force of infection

The previous section looked at the effect of a constant force of exposure resulting in
the cumulative hazard function:
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Figure 2.31. Demonstration of the probability that no individuals have been infected given a
constant force of exposure. Time is given in terms of ω, where 1

ω is the mean incubation period.
The left-hand plot shows how this probability changes over time for different group sizes (n) and
the right-hand plot show the time at which we can be 95% certain that no one in the group has

been infected.

H(t) = λt

Now we consider a scenario where the force of infection is decreasing over time.
Specifically, in a closed environment where an outbreak has been occurring, the most
recent individual to have a positive diagnosis was diagnosed at time t = 0. There
are n remaining individuals who have not had a positive diagnosis. For sake of math-
ematical ease, we say that both the incubation period and the infectious period of
the disease fall on exponential distributions. This being the case, if the incubation
period for the disease falls on an exponential distribution of mean length 1

ω
, then we

can say that the mean of the infectious period is 1
zω

, where z is a non-negative value.
The force of infection caused by an infectious individual is constant throughout their
infectious period and constant between people. Finally we assume that an individ-
ual’s infectious period starts on or before they receive a positive diagnosis. Therefore
we can workout the expected cumulative force of exposure generated by individuals
who were infectious on or prior to time t = 0 from time 0 to time t as a product of
the integral of the probability that they will still be infectious at said time:

H(t) = λ

∫︂ t

0

exp [−zωτ ] dτ

= λ
1− exp [−zωt]

zω

In the example with a constant force of exposure,
∫︁∞
0

H(t)dt = ∞. As a result, given
an infinite exposure period, every individual would be infected. However, as our new
hazard function does have a finite integral between 0 and infinity, the probability of
eventual infection, ρ∞ is less than 1. Specifically:
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ρ∞ = 1− exp [−H(∞)]

= 1− exp
[︃
− λ

zω

]︃

Putting H(t) in terms of the probability of ever being infected, we find:

H(t) = − ln [1− ρ∞] (1− exp [−zωt])

In turn, we can calculate a new probability density function for the time of infection,
y(t, ρ∞)

y(t, ρ∞) = exp [−H(t)]
dH(t)

dt
= −(1− ρ∞)1−exp[−zωt]zω ln [1− ρ∞] exp [−zωt]

Unfortunately we cannot find an analytical solution for K(t, ρ∞), the convolution be-
tween the infection time distribution y(t) and the probability that an individual’s
incubation period is less than τ , F (τ), for which we were using an exponential dis-
tribution with a mean of 1

ω
. K(t, ρ∞) can be found numerically fairly easily, as can,

therefore, π(ρ∞|z, ω, F (t)), the prior distribution for the value of ρ∞. Finally, using
previously shown formulae we can calculate not just the probability that no exposed
individuals have been infected by time t, but the probability that no individuals will
ever be infected by individuals that were infectious prior to time t = 0 (this is why
we put our calculations in terms of ρ∞ instead of ρt). In effect, this is the probability
that the previous generation will fail to infect the next generation, or the probability
that the outbreak has come to an end. Of course there is the possibility that an indi-
vidual infected prior to time t = 0 will only become infectious after time t = 0, but
we assume that if this is the case a) this individual would be identified meaning we
would know not to declare the outbreak as over and b) that they would be identified
prior to the time it would take for us to be 95% certain the outbreak is over.

Figure 2.32 shows how this probability changes over time for different values of n and
z. For group sizes greater than n = 10, the probabilities remain fairly constant. This
pattern continues up to n = 1000. If we are observing a group exposed to a waning
force of infection where the force of infection wanes at an exponential rate, so long
as all involved remain asymptomatic, the time at which it will take for us to be con-
vinced that no one will ever be infected is nearly independent of the total number of
exposed individuals. This has important implications regarding observing the end of
an outbreak. The size of the remaining susceptible population should by and large
not influence how long it takes for us to declare an outbreak is over.
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What is far more influential is the relationship between the expected incubation pe-
riod and the expected infectious period. As the passage of time is given in terms of
the expected incubation period, it is not hard to see that a longer incubation pe-
riod will result in a longer time until we are certain the outbreak is over. What has
a more dramatic and obvious effect, though, is the length of the infectious period
compared to the incubation period

(︁
1
z

)︁
. A longer infectious period greatly delays the

time it takes for us to be certain that no individuals in the next generation will be
infected.

Although infectious periods and incubation periods may not be exactly exponentially
distributed, this approximation serves as a good rule of thumb to approximate the
end of an outbreak in a closed environment if the means of both distributions are
known. An assumption that it is vulnerable to is that all infected individuals will
eventually be symptomatic. If an individual manages to be infectious without ever
developing symptoms, then a generation of the outbreak could go undetected result-
ing in a large apparent time between the two observable generations and a possible
premature conclusion that the outbreak is over. One possible way of preventing this
is through rigorous testing of asymptomatic individuals. Any positive case discovered
would be counted as a new symptomatic individual, alongside any actually symp-
tomatic individuals, and the wait for the outbreak to be over would start again, with
a new value of n exposed individuals.

A final point to be made regarding this model is the concept of homogeneous mixing.
As soon as we introduced the concept of an infectious individual, we made the as-
sumption that they would be mixing with every other individual equally at all times.
This is implicit in our choice of cumulative hazard function. Further investigations
could be made looking at alternative hazard function, as well as different distribu-
tions for the infectious period and incubation period, but this is beyond the scope of
this study. For the time being, our model just calculates a useful ready-reckoner for
approximating if an outbreak has drawn to a conclusion.

2.7 Conclusions

This chapter has focused on calculating an approximation for the size of a first gen-
eration during an outbreak event. We started with a simple point exposure to a
group and showed how the number of individuals who had developed symptoms be-
fore a set time could be used to approximate the total number of individuals who
had been infected in the first place. We showed how group size, outbreak size and
proportion symptomatic affected the accuracy of this approximation, as well as the
information it provides.

We showed the interesting relationship between our model and the probability of
ever becoming symptomatic given an infection (a). This probability stretches out
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Figure 2.32. Demonstration of the approximate probability that we have reached the end of an
outbreak. From left to right, the top graphs show how this probability changes over time (in terms

of the expected length of the incubation period
(︁
1
ω

)︁
when the expected length of an infectious

period is twice as long
(︁
2
ω

)︁
, the same length

(︁
1
ω

)︁
and half as long

(︁
1
2ω

)︁
as the incubation period.

The bottom figure shows us that whilst for n ≈ 10, group size has an effect on the time until we are
certain an outbreak has concluded, the relationship between the length of the incubation period and
the infectious period is far more important, with a proportionally longer infectious period (z = 0.5)

resulting in a far longer waiting time.

time in our model, and ultimately decreases our certainty.

By turning our approach around and considering an infector making a series of in-
fectious contacts, we removed the necessity to know the size of the exposed group.
This gave us useful insights into the actual effect knowing the group size had on our
model, as well as showing us the astonishingly simple calculations for the probability
that all infected individuals had been observed.

Finally, we have investigated the effect of allowing infections to continue to occur af-
ter the start of our model. Due to analytical complexities we stuck to the scenario
where, whilst there has been some exposure, people are yet to develop symptoms. In
the scenario of a constant force of infection, population size continues to delay the
time at which we can be certain no one has been infected. However, in our waning
force of infection, group size quickly becomes far less important than incubation pe-
riod and infectious period length.

In each of our models, we have always chosen the most simplistic model or distribu-
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tion possible. If possible, we have eschewed choosing particular distributions at all.
By design we put the passage of time in terms of the cumulative function for the in-
cubation period, as this would mean that it would remain true for any incubation
period chosen. Further complexities could be brought to this model. For example,
we assumed each exposed individual would have the same probability of infection
given exposure, but what if this probability was different for each individual, falling
on some unknown Beta distribution? Similarly, what if the probability that an in-
fected individual would ever develop symptoms varied from person to person, or was
unknown. For that matter, what if the distribution for the incubation period itself
was unknown? These are possible avenues for exploration at a later date. It is our
hope, that should someone want to answer these questions, the work has laid down a
strong enough foundation for their project.

As a final thought, let us consider the function K(t, ρ). This function gave us the
probability that an individual would be observed by time t given a probability of ρ of
being a positive case. In our initial examples, ρ represented the probability of being
infected immediately. Then we extended the model so ρ represented the probability
of being infected prior to time t. Finally, we concluded with ρ being the probability
of ever being infected.

In each case, ρ could have taken any value between 0 and 1, while K(t, ρ) had a
maximum of F (t) for any value of t. The maximum probability of observing an in-
fected person before time t was equal to the probability that their incubation period
was shorter than t.

By looking back through our example models, we can see the profound effect the
shape of K(t, ρ) with respect to ρ can have on our model. This perhaps is best
demonstrated by looking how changing our model changed the influence group size
has on the time it took to be 95% certain that no infections have occurred.

In the first model, where individuals were infected at time 0, larger groups decreased
the time it took to be 95% certain of no infections (Figure 2.12). In this case K(t, ρ)

was equivalent to ρF (t). In the case of a constant force of infection, we can see that
larger groups increase the time this takes (Figure 2.31). Finally, with an exponen-
tially waning force of infection, we can barely observe the effect group size has on
this measure (Figure 2.32). It is our understanding that it was the changing shape
for K(t, ρ) that resulted in these dramatic differences in conclusion.

Perhaps then, a standardised expression of K(t, ρ) would be sensible. For future
analysis, we propose the following possible structure for K(t, ρ):

K(t, ρ) = ρF (t)
Bρ(α, β)

B(α, β)

By varying α and β, the way in which the probability of infection affected the prob-
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ability of being observed can be altered. The shape of K(t, ρ) can be dramatically
changed to reflect the indirect influence the probability of infection has on detec-
tion. In turn, we could observe the the effect other factors, such as group size, has
on the overall distribution. Future research into this model structure, and others like
it, could be very useful for understanding the nature of missing data.
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Summary:
This chapter shows a quick method of analysing small outbreaks in their

first generation, where it is not yet certain if all individuals have
developed symptoms. This is a good ready-reckoner that indicates the eventual

size of the first generation, as well as when we can be certain that we have
observed all the infected individuals. Extending this to include an ongoing

exposure is certainly more analytically complicated, but possible
in a scenario where no individuals have actually been shown to be infected.
This is a useful tool to give up-to-date analysis of small introductory events

into closed environments such as care-homes and prisons.

In the case of an exposure event, we can be 95% certain that everyone from a
first generation has been observed once:

B
(︁
n−It,It+

1
2

)︁
F (t)It+

1
2 2F1
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1
2
,It+

1
2
,n+ 3
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,F (t)

)︁
BF (t)

(︁
It+

1
2
,n−It+

1
2

)︁ ≥ 0.95

or, in the case where the total number of infected individuals is unknown, once:
F (t)It+

1
2 ≥ 0.95

This occurs later when there is a greater proportion of symptomatic
individuals, and it is possible for us to never be certain if the rate of asymptomatic

infection is high enough. By analysing this distribution in terms of its
Shannon entropy, we learnt that when an upper limit of exposed individuals

is known, the distribution initially counter-intuitively becomes less
informative over time to a peak when the proportion of symptomatic
individuals is approximately equal to the probability that in infected

individual is symptomatic.
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Chapter 3

The role of rotas in mitigating workplace

outbreaks

3.1 Introduction

The following chapter features research written in collaboration with Carl Whitfield.
In particular, Carl generated the numerical shorthand for describing a working week
and started the initial investigation into how test timing was important in reducing
time at work whilst infectious. This enabled us to observe how important the rota
pattern length was, as well as the timing of the test result.

The first UK lock-down for the SARS-CoV-2 pandemic started on the evening of the
23rd of March, 2020. On the 10th of May, then Prime Minister Boris Johnson an-
nounced the “road map” for easing lock-down restrictions[162]. During this time pe-
riod, key-workers were identified whose work must continue and must continue on lo-
cation. Other workers were either furloughed or started working from home, reducing
contact time with individuals outside their households. This could have had two ef-
fects:

1. Key-workers were likely to see their highest level of exposure at work. This was
both because they were interacting with more people at work than at home and
because the individuals they were interacting with, if other key-workers, were
in turn likely to have interacted with more individuals than members of their
household. This is not necessarily true for scenarios where there are two or more
key-workers in a household.

2. Disease transmission occurring at work was more likely to result in more infec-
tions than disease transmission within households (see Figure 3.1a). Transmis-
sion at work had the capability of resulting in further work place infections as
well as household infections (see Figure 3.1b). This could create a larger infec-
tion tree than a household transmission, which could only result in more in-
fections in that one household. Again, this observation would not be true for
households with more than one key-worker.
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Figure 3.1. Visual demonstration of the effect lock-downs have on the infection pattern of
key-workers. Blue circles represent uninfected individuals, orange circles represent infected

individuals and orange lines show possible lines of transmission. In Figure 3.1a . we can see the
higher number of people in the work place increases the probability of being infected there. The
non-infected key-worker is more likely to be infected at work than at home. Additionally, if their

household members are not key-workers, it would be less likely for them to get infected and
therefore less likely for the the key-worker to pick up the infection at home than at work (this
ignores the “strength” of an infectious connection, which may be stronger at home rather than

work). In Figure 3.1b, the infected key-worker infects the same number of individuals in their home
and their work place. The infection chain at home dies out once everyone is infected. However, at

work, as their are more people, the infection chain spreads wider, including to outside work to other
households.

Indeed, multiple studies demonstrated elevated risks of SARS-CoV-2 infection for
key-workers. The initial phase of the REACT-2 study, a cohort study of previ-
ous and, at the time, current police officers, showed an elevated proportion of key-
workers with associated antibodies following the first wave of the Coronavirus in
the UK when compared to non-key-workers[163]. Similarly, four longitudinal studies
through web-based surveillance showed an elevated proportion of infected individu-
als in the UK among key-workers in the first wave[164]. We should note that the el-
evated risk was not just associated with health-care environments. As stated earlier,
the REACT-2 study looked at police officers and early genomic data from the COG-
UK study showed strains of SARS-CoV-2 that spread between healthcare workers
but never reached or came from patients[165].

Given the demonstrated increased risks from workplace transmission, reducing the
rate of workplace transmission should be important in preventing a workplace out-
break. Some workplaces did institute workplace testing policies[166]. and it seems
justified that in their paper outlining prioritise regarding vaccine administration,
key-workers or individuals associated with key-workers (those that live in the same
household, for example) made up 3 out of the 6 groups Kohns Vasconcelos et al.
identified for targeted vaccination[167]. One area that has not been investigated,
however, is the time that key-workers actually spend at work.

It is reasonable to assume that there is a relationship between the length of time an
infectious person is at work and the probability that they transmit to a co-worker.
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As part of the lock-down, if a key-worker developed symptoms they were to immedi-
ately stop working and return to their household for this reason. Hu et al. showed
that that the presymptomatic, prodromal period plays an important role in the
transmission of SARS-CoV-2[168]. Relying on self-reported symptoms may not be
adequate for preventing work place transmission. Instead, we aim to investigate
the relationship between rota schedules and the length of time an infectious person
spends their prodromal period at work.

We are particularly interested in the length of time individuals spend in handover
periods at the start and end of their shifts. A possible method of curtailing the
spread of an infection through a workforce is scheduling key-workers to work in set
cohorts, such that the same group of individuals work together. The aim with this
intervention is to limit workplace transmission of an infection to only one cohort. Be-
tween shifts, a number of jobs require handovers between cohorts. These often need
to be face-to-face, as they rely heavily on communication, and may require the trans-
fer of a physical object, such as a paging device. Reducing the number of handovers
an infectious person attends would be crucial to limiting the spread of a disease be-
tween cohorted groups. We aim to explore how changing shift patterns affects the
distribution of the number of handovers attended whilst infectious (at the beginning
and end of each shift) as well as the distribution of total time spent at work whilst
infectious. The former will dictate how the disease will spread between cohorted
groups, whilst the latter will dictate how the disease spreads within cohorted groups.

The following chapter will demonstrate two methods of approximating the length of
time in infectious individual is at work given that they were infected at work, based
on their rota pattern. Sections 3.3.1 and 3.3.2 demonstrate a numerical version of
this analysis and its outcomes, and Section 3.4 will show how the same problem can
be approached analytically through Fourier transforms. Finally, Section 3.5.1 ex-
plores a mathematical explanation for effect the rota pattern structure has on our
results.

3.2 Parameter and Function description

Table 3.1 is a list of relevant parameter and function definitions for this chapter. The
reader may find it useful to refer back to this table as and when required.

3.3 A numerical description of a rota pattern

3.3.1 Methods

We identify three key points in a person’s infectious career for our model:
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Parameter/Function Description
a Proportion of working day spent working
αa Alpha parameter for the Gamma distribution describing the latent period
αb1 Alpha parameter for the Gamma distribution describing the infectious period
αb2 Alpha parameter for the Gamma distribution describing the prodromal period
b Proportion of the working day spent resting
βa Beta parameter for the Gamma distribution describing the latent period
βb1 Beta parameter for the Gamma distribution describing the infectious period
βb2 Beta parameter for the Gamma distribution describing the prodromal period
c Number of working days in a rota pattern
c′ Number of full days worked in a rota pattern where c is not an integer value

CF,j The jth constant of the Fourier series that describes function F

d Number of rest days in a rota pattern
δ(x) The Dirac delta function
F̂ (ω) The Fourier transform of the function F (x)

G (x, y, Tt, Td, c+ d)
The total number of tests that would be performed after x that would come
back before y given regular testing at time Tt, and delay of Td and a rota

length of c+ d

Γ(a, x) The upper incomplete Gamma function
Γ(x) The Gamma function

HTe

The total number of handovers an individual infected at time Te attends
whilst infectious

hx The set of all handovers after time x given in terms of time x

κ(τ)
The probability that an individual is infectious at time τ given they were

infected at time 0

κ1 (t, Te)
The probability that an individual is infectious at time t given they were

infected at time Te

κ2 (t, Ti)
The probability that an individual is infectious at time t given their

infectious period started at time Ti

L(t)
The expected total length of time an individual will spend at work whilst

infectious given they became infectious at time t

Λ(t)
The expected force of infection an infectious individual will generate at

any point of a rota pattern t

λ(τ)
The expected force of infection of an individual at time τ given they were

infected at time 0

m The set of all starts of shifts in a rota pattern cycle, including the end of the
rota cycle

n The set of all ends of shifts in a rota pattern cycle
ω The frequency of a wave
ρ The asymptomatic infection rate
ϱ The false negative rate for testing

R(t) The relative risk of infection at time t in a rota pattern
s(t) An indicator function that equals 1 only if an individual is at work at time t

T The length of a rota pattern
t̄ The amount of time worked in one rota pattern
Td The delay between test and result
Te The time at which an individual was infected
Ti The time at which an individual becomes infectious
Ts The time at which an individual stops being infectious
Tt The time in a rota pattern when a test is taken
Tw The total time at work whilst infectious
u The relative risk of infection at work
v The relative risk of infection outside of work
w The proportion of time worked in a rota pattern

W (t)
The expected force of infection an individual will generate at time t in

the rota pattern whilst at work
Y (j) A function that simplifies the notation of certain Fourier transforms

Table 3.1. A table of parameters and functions used in this chapter.
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1. Te - The time at which the individual is infected

2. Ti - The time at which an infected individual starts their infectious period

3. Ts - The time at which an infectious individual stops being infectious, either by
developing symptoms and isolating or completing their infectious period

An individual’s shift pattern starts on the first day of their shift at the time t = 0,
which is the start of their first shift. We assume we are looking at the rota cycle in
which our individual is infected. Each shift is a proportion of 1 day a with a propor-
tion between shifts b such that a + b = 1 day. The individual works c shifts in a row
before taking d days off. The total shift pattern is c+ d days long.

We assume that individuals are infected with a Uniform probability while at work,
but are never infected outside of work. The distribution for the time of infection dur-
ing a workday is therefore Uniform:

P (Te = te|Infected on day x) =

⎧⎨⎩ 1
a
, if x ≤ te ≤ x+ a

0, otherwise

The probability of being infected on a particular day of a shift pattern is 1
c

if it is a
working day and otherwise 0. Therefore, the total distribution for chance of being
infected at time te given that the individual is infected during the first rota equals:

P (Te = te) =

⎧⎨⎩ 1
ac
, if n ≤ te ≤ a+ n for any integer n in range 0 ≤ n < c

0, otherwise

We choose to use a Gamma distribution to represent the latent period for the disease
we are representing. From the literature, it is difficult to estimate the true parame-
terisation of this distribution, as we can directly observe neither when an individual
is infected nor when they become infectious. Instead, we subtract a 2 day prodromal
period with a standard deviation of 1.5[159], [169], [170] from a incubation period
with a mean length of 4.84 days and a standard deviation of 2.79. We approximate
the result as a Gamma distribution with a mean of 2.84 days and a standard devi-
ation of 2.34. This is not meant to be wholly accurate representation of the SARS-
CoV-2 latent period and is for demonstration purposes only. A full list of parameter-
isations can be seen in Table 3.2. An alternative parameterisation could be chosen to
emulate a different infection. We can use the mean and standard deviation to calcu-
late input parameters for this distribution, αa and βa, such that a PDF for the latent
period (Ti − Te) can be written as:

P(Ti − Te = t) ∝ βαa
a

Γ (αa)
tαa−1 exp [−βat]

.
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Similarly, we use a Gamma distribution to represent both the prodromal period
(length of time from start of infectious period to development of symptoms if symp-
toms ever appear) and total infectious period, with means of 2 and 6 days and stan-
dard deviations of 1.5 and

√
12 respectively.

Parameter Value (s.d.) Explanation/Sources
Prodromal period 2 (1.5) Time from becoming infectious to

days developing symptoms (unless
asymptomatic). [159], [169], [170]

Latent period (Ti − Te) 2.84 (2.34) Period from time of infection to
days becoming infectious. Estimated from

the mean and standard deviation of
the prodromal period (above) and
incubation period [133], assuming
independence of the prodromal
and latent periods.

Asymptomatic infectious 6 (
√
12) The time an asymptomatic

period days individual remains infectious,
estimated from [168].

Asymptomatic rate (ρ) 0.3 Probability of an individual being
asymptomatic.*

False-negative rate (ϱ) 0.3 Probability that a test taken during
the infectious period return negative.*

Table 3.2. Parameters used in our working model. Due to high variability in literature, parameters
marked with an * were chosen for illustrative purposes only.

If the infected individual does not develop symptoms, then they do not change their
work pattern and the distribution for Ts−Ti is taken from the total infectious period.
If they do develop symptoms then it will be taken from the prodromal period, as
once their prodromal period is completed they develop symptoms and remove them-
selves from the system, effectively ending their infectious period. If the probability
of remaining asymptomatic is equal to ρ and the total infectious period and prodro-
mal period distributions take the parameters αb1, βb1 and αb2, βb2 respectively, then
we can now write a distribution for Ts − Ti, the effective infectious period:

P (Ts − Ti = t) = ρ

(︃
βαb1
b1

Γ (αb1)
tαb1−1 exp [−βb1t]

)︃
× (1− ρ)

(︃
βαb2
b2

Γ (αb2)
tαb2−1 exp [−βb2t]

)︃

With these two distributions, we can compute the probability that an individual is
infectious at a particular time if we know when they are infected. Put another way,
conditional on the individual being infected at time Te, the probability that they are
infectious at time t ≥ Te (it is obviously 0 if t < Te) equals the probability that the
time the individual’s infectious period starts, Ti, is less than t and the end of their
infectious period, Ts is greater than t, i.e.:

P (Infectious at time t|Te, t ≥ Te) =

∫︂ t−Te

0

βαa
a

Γ (αa)
xαa−1 exp [−βax]
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×

(︄
p
Γ (αb1, βb1 (t− Te − x))

Γ (αb1)

+ (1− p)
Γ (αb2, βb2 (t− Te − x))

Γ (αb2)

)︄
dx

where Γ(a, y) is the upper incomplete Gamma function
∫︁∞
y

ta−1 exp [−t] dt =∫︁∞
by

bata−1 exp [−bt] dt

Unfortunately, a solution to the integral in this form does not exist (although we will
consider alternatives in the following chapter). With a known parameter set we can
calculate it numerically. We will use the function κ1 (t, Te) to describe this probabil-
ity and s(x) as an indicator function to show if an individual is at work at time x.

s(x) =

⎧⎨⎩1 at work at time x

0 otherwise

With these functions we can now calculate the expected time at work whilst infec-
tious, E [Tw] given that an individual is infected at time Te:

E [Tw|Te] =

∫︂ ∞

Te

κ1 (x, Te)× s(x)dx (3.1)

Similarly, if we define hx as the infinite set of all starts and ends of shifts after time x

(i.e. the timing of all handovers after time x) we can calculate the mean of HTe , the
total number of handovers an infectious individual will attend given that they were
infected at time Te:

E [HTe ] =
∑︂

κ1 (hTe , Te) (3.2)

Both Equation 3.1 and 3.2 involve either an infinite integral or infinite sum that we
cannot solve in their current form. However, as x increases in κ1 (x, Te) the result-
ing calculated probability will tend towards 0, because the further we are from the
time at which an individual is infected, the less likely they are to be infectious. This
means that whilst we cannot find exact solutions to Equations 3.1 or 3.2 we can ap-
proach their solutions numerically to any desired degree of accuracy.

In both cases, to find an overall estimate for the value of either Tw or H, we need to
integrate across all possible values for Te:

E [Tw] =

∫︂ c+d

0

P (Te = t)E [Tw|Te = t] dt
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Figure 3.2. An example demonstration of an individual’s at-work infectious profile. In this case, the
individual works a 9-5 rota pattern, with at-work times demonstrated by the blue boxes. They are
infected during their first shift (Te), start becoming infectious part way through their third shift

(Ti) and end their infectious period between their four and fifth shift (Ts). We are interested in the
total length of time they are at work whilst infectious (sum of the widths of the orange boxes) and

the number of beginning and end of shift handovers they attend (green lines).

E [H] =

∫︂ c+d

0

P (Te = t)E [Ht|Te = t] dt

remembering that c is the number of days at work, d is the number of days of rest
and c + d is the total length of a rota pattern. We are assuming that we start our
observation of the infected individual at the start of the rota pattern they were in-
fected in and in doing so ensure that we have integrated across every possible time
that they could have been infected.

Including a test pattern

In many workplace environments it would be impractical to assign an exact time in
a rota for individuals to receive a test. There are many systemic factors that may
prevent such a rigid regime, such as availability of tests, the requirement for testing
outside of work time and, in a 9-to-5 rota at least, the fact that a testing centre may
not be able to cope with a sudden influx of tests once a week. However, we will con-
tinue to search for an optimum time for testing regardless, as it will give insight into
priorities when designing a more flexible, real-world appropriate work place testing
regime.

In practical terms, let’s define Tt as the time in a rota pattern that a test is taken
and Td as the delay between test and result. This means that for any integer value of
n, a test occurs at time Tt + n(c + d), whose results come back at Tt + Td + n(c + d).
When a positive test comes back, an infected individual isolates for the entire re-
mainder of their infectious period (we are choosing to ignore individuals coming back
from work early because of a misjudged infectious period or a subsequent false neg-
ative result). We also denote by ϱ the fixed probability of a false negative given that
an individual is infectious at the time of testing, and assume the probability of a pos-
itive test when an individual is not infectious is 0 (in reality, the relationship between
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test result and time of infection is more complicated than this, but will not be ex-
plored in this model). Therefore, after each test result, an individual’s probability of
still being infectious is reduced by a factor of ϱ.

The probability of an infected individual being detected is directly dependent on
if they are infectious before or after the test is taken. This means that we can no
longer directly combine the distributions for an individual’s start of infectious phase
(Ti) and end of infectious phase (Ts) to simply calculate the probability that they are
infectious at a particular time, as the value now depends if they were detectable for
each prior test. Instead we need to think of these distributions separately.

The distribution for the start of the infectious period (and therefore the detectable
period) is a convolution of the distribution for the time the individual was infected
and their latent period. We start by assuming that we know the exact shift that the
individual was infected in, shift z, which starts at time z and ends at time z + a. As
stated earlier, the distribution for the time of infection of the individual would then
be Uniform between z and z + a:

P (Te = t|z ≤ Te ≤ z + a) ∝

⎧⎨⎩ 1
a

z ≤ t ≤ z + a

0 otherwise

In turn, the distribution for their time of infectious period onset would be a convo-
lution of this Uniform distribution and the Gamma distribution that describes their
latent period, Gamma (αa, βa), as a convolution of two probability density functions
represents the probability density function of their sum. The PDF of a Uniform dis-
tribution is constant in the range of its possible values ( 1

a
in the case of a Uniform

distribution between z and z + a). Therefore, with careful consideration, this convo-
lution is relatively straightforward. Theoretically, in order for an individual’s infec-
tious period to start at t given that they were infected on day z, they would have to
have a latent period of a length somewhere between t − z − a and t − z. However,
for certain values of t, this would result in a negative latent period. This is not pos-
sible and is indeed a constraint of the Gamma distribution, whose values in the form
we are using must be greater or equal to 0. For this reason, we must constrain our
convolution to only allow for lengths of the latent period greater than 0:

P (Ti = t|z ≤ Te ≤ z + a) =

∫︂ Max[0,t−z]

Max[0,t−z−a]

1

a
× βαa

a

Γ (αa)
xαa−1 exp [−βax] dx

=
Γ (αa, βaMax [0, t− z − a])− Γ (αa, βaMax [0, t− z])

aΓ (αa)

If t is less than z then this probability is equal to 0.

An individual has a 1
c

chance of being infected on any one day in a single rota cycle,
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Figure 3.3. Probability density functions for the onset of an individual’s infectious period who is
infected in a rota pattern starting at time t = 0. Each line represents week long rota where

individuals work a total of 24 hours over c consecutive days.

meaning the complete pdf for the distribution of Ti is the sum of the probability for
every work day in the rota multiplied by 1

c
:

P (Te = t) =
c−1∑︂
z=0

1

c
× P (Te = t|z ≤ Te ≤ z + a)

We have already discussed our distribution for Ts − Ti, the length of time an indi-
vidual is infectious for, but as a reminder, this is dictated by a combination of two
Gamma distributions, Gamma (αb1, βb1) and Gamma (αb2, βb2) which describe distri-
butions for an individual’s total infectious and prodromal periods respectively, and
ρ, the probability that the individual will remain asymptomatic and never remove
themselves from work. Without testing, given a known time of infectious period on-
set, we can write the probability that an individual is still infectious at time t:

κ2 (t, Ti) =ρ
Γ (αb1, βb1 (t− Ti))

Γ (αb1)

+ (1− ρ)
Γ (αb2, βb2 (t− Ti))

Γ (αb2)

κ2 (t, Ti) is slightly different from κ1 (t, Te) from earlier in that it calculates the
probability of still being infectious at time t given a known time of infectious pe-
riod onset, rather than a known time of infection. We can then include a function
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G (x, y, Tt, Td, c+ d) which returns the total number of tests that would occur after
time x whose results would be back before time y given that testing occurs at time
Tt on the rota and the rota is of length c + d. The probability of still being infected
by time y given the individual became infectious and detectable at time x would be
reduced by the false negative rate ϱ to the power of this value:

P (Infectious at time t|Ti, Tt, Td, c+ d, ϱ) = κ2(t, Ti)× ϱG(Ti,t,Tt,Td,c+d)

As we now have a distribution for the time of infectious period onset and a function
for the probability that an individual is still infectious at a particular time given that
we know their time of infectious period onset, we are now ready to numerically in-
tegrate the total probability that an infected individual is infectious at a particular
time:

P (Infectious at time t) =

∫︂ t

0

P (Ti = x)× κ2(t, x)q
G(x,t,Tt,Td,c+d)dx

E [Tw|Tt, Td, ϱ] =

∫︂ ∞

0

s(x)× P (Infectious at time x) dx

E [H|Tt, Td, ϱ] =
∑︂

P (Infectious at time h0)

where h0 is the set of all handovers after time t = 0 inclusive.

3.3.2 Results

The gross effects changing rota patterns can have on the length of time an individual
is infectious at work and the number of handovers they attend can be seen in Figures
3.4a and 3.4b. In general, for both metrics, increasing the length of individual shifts
(a) whilst keeping the rota pattern the same length sees a positive outcome (in both
cases, a lower metric, be it less time at work whilst infectious or fewer handovers at-
tended whilst infectious, is seen as a positive outcome). There appears to be an op-
timum rota pattern length at approximately 11 days during which both metrics are
minimised. With regards to handovers attended, this optimum is far more notice-
able with longer individual shifts. A final comment on the effect of rota patterns is
to note that with regards to the handovers metric, unlike the equivalent Tw plots, the
contours are not smooth, rising and falling as we increase the length of the rota pat-
tern c + d. It would be unclear from this analysis alone if this is a true signal from
the data set, a side-effect of numerical integration introducing errors into our calcula-
tions, or a result of us attempting to interpolate continuous data despite only being
able to test discrete models (c and d must both be integers in out model). This will
be explored further in the following chapter, when we investigate a way to generate a
model with continuous rota parameters.
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(a)

(b)

Figure 3.4. Contour plots of the expected in-work infectious time Tw (Figure 3.4a) and number of
handovers attended whilst infectious H (Figure 3.4b) given a particular rota pattern. In each case,
the x-axis gives the length of the rota pattern cycle (c+ d) and the y-axis gives the length of an

individual shift. The left-hand plots represent rotas that result in an individual working an average
of 24 hours a week and the right-hand plots come from rota patterns that result in an average of 36

hours per week. As an individual could only work an integer number of days which must be less
that or equal to the total length of the rota pattern, for certain rota lengths there were upper and
lower limits of a outside of which an appropriate rota pattern was not possible. These regions have

been greyed out in the contour plots.

Figure 3.5 demonstrates the effect of regularly timed testing on the total length of
time at work whilst infectious and total number of handovers attended whilst infec-
tious. In the case of in-work infectious time, there is a clear optimum timing of tests
such that their results come in at the start of the rota pattern. Similarly, the worst
time to arrange testing would be such that results come back at the end of the last
shift in the rota, with a less than 10% reduction in time at work in some cases. Test-
ing to reduce the number of handovers attended whilst infectious has similar optimal
and worst timings with two differences. Firstly, as this is a discrete count rather than
a smooth continuous measure of time, testing at a time such that results will come
back immediately after a handover results in a sharp spike in the number of han-
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(a) (b)

(c) (d)

Figure 3.5. The effect the timing of regular tests can have on the expected total length of time
whilst at work (Figures 3.5a and 3.5b) and the expected number of handovers attended whilst

infectious (Figures 3.5c and 3.5d). In this case we have investigated a 7 day rota where an
individual works c days in a row and then has 7− c days off. We show the times periods when at
work as solid lines and the time periods between shifts or in the rest days. The y-axis shows the

expected measure proportional to the expected measure if no interventions were performed. So the
top graphs show the expected length of time at work whilst infectious given a certain rota pattern

(determined by the value of c) if regular testing was performed, divided by the expected value of Tw

for the same rota pattern if no testing was performed. In this case, the probability of a false
negative is 0.5 and the test takes one hour to return.

dovers attended while infectious. As a result, the second difference is that each shift
results in two rises in the metric with declines between spikes rather than one con-
tinuous rise whilst at work and declines whilst not at work. Each spike represents a
handover missed by not testing in time. Again, testing at the wrong time can result
in only a 10% reduction in this metric.

Figure 3.6 demonstrates the effect of changing the delay between test and results,
Td on the length of time an individual will be infectious whilst at work. In this case,
whilst we keep the rota pattern fixed as a 9-5 working week, we vary the value to Td.
The x-axis shows the timing of test-result rather than test-taking (Tt+Td rather than
simply Tt). Unsurprisingly, a longer delay results in a worse outcome, as it would
take longer to identify a positive individual. Additionally, we can see more clearly
that it is the timing of the test result rather that the timing of the test which dic-
tates the optimum time to test, with the result coming back at the start of the week
resulting consistently in the optimum test timing.
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Figure 3.6. The effect the delay between test and result, Td, has on the total length of time spent at
work whilst infectious Tw. In this model, we look at a 9-5 rota and line up our testing patterns so

that the x-axis shows the timing of test results rather that when the tests were taken.

3.4 Representing rota pattern effects through Fourier transforms

In the previous sections, we estimated the length of time whilst infectious at work
through thenumerical convolution of multiple different functions, including a proba-
bility density function for the time of transmission, the cumulative density function
of the latent period of the disease and the survival function for the infectious period
of the disease. A numerical solution, whilst useful, leaves questions as to its accuracy.
Additionally, the more complicated the rota pattern structure, the more computa-
tionally expensive the model would become and the greater level of accuracy that
would be required. In this chapter, we aim to approach a semi-analytical solution for
this problem through the use of Fourier transforms.

Fourier transforms are one of many ways in which a function can be converted.
If we can express a function as a sum of multiple sine and cosine waves, then, for
any given frequency, the function’s Fourier transform gives the required waves am-
plitudes. A Fourier transform is often described as taking a function in the time-
domain and finding its corresponding expression in the frequency-domain. They ap-
pear in multiple aspects and mathematics, physics and engineering. One of their ad-
vantages is that they can convert a digital signal into an analogue one, as a digital
signal can be expressed as a sum of an infinite number of sine and cosine waves (see
Figure 3.7).

This is useful for us as we can express rota patterns as digital signals: either an indi-
vidual is at work or they are not. Expressing this mathematically without a Fourier
transform can be tricky and resulted in inaccuracies in edge cases (approaching the
time when an individual would switching between work and not).

Previously, the numerical convolution of multiple Uniform distributions (representing
the times when an individual could get infected at work, based on the rota pattern)
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Figure 3.7. A demonstration of a square wave f(t) and its equivalent Fourier transform f̂(ω). A
periodic function like f(t) can be expressed as the sum of an infinite number of sine and cosine

waves with discrete frequencies. In the case of a square wave with a frequency of 1
2 and an

amplitude of 1, f(t) =
∑︁∞

k=0
4

(2k+1)π sin [(2k + 1)πt].

with two Gamma distributions (representing the latent period and the time from
starting being infectious to becoming symptomatic) became cumbersome and com-
putationally expensive. We chose a relatively simple rota pattern to analyse, but a
hospital rota may be as many as 12 weeks long with different shift patterns on each
week. Including such a pattern with the current method of analysis would be im-
practical. If we consider the digital expression of rota patterns as a sum of an infi-
nite number of waves rather than a number of discrete shifts, then we may be able
to find a semi-analytical solution for our model for each discrete frequency and then
sum over all frequencies.

Our model looks at the entire infectious career of one individual. We are going to de-
fine three functions and calculate their equivalent frequency domain function. The
first is R(t), a periodic function representing the relative risk of transmission at any
one time in a rota pattern of period length T . Any T length section of R(t) repre-
sents the probability density function (pdf) for the time of transmission for an indi-
vidual given that they are infected in this period. The function λ(τ) gives the infec-
tiousness of the infected individual in our model at time τ since the time of transmis-
sion, i.e. given that they were infected at time τ = 0. In the real world, this function
would likely vary from person to person. It must be real and non-negative for τ > 0,
but otherwise be equal to 0. Finally, as with the numerical model, s(t) is an indica-
tor function showing if an individual is at work at time t, where they would be able
to infect a colleague.

In this section, we aim to be careful to distinguish the terms transmission and infec-
tion. When discussing an individual’s infectious career, their time of transmission is
when they are initially infected, whereas their infectious window is when they can in-
fect others.

We can see some similarities between s(t) and R(t), in that they both rely on the
rota pattern for their structure. However, unlike R(t) which varies dependent on the
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chosen risk of transmission inside and outside of work, s(t) always returns 1 if the in-
dividual is at work at time t and 0 otherwise. We will use this function to indicate
when our infected individual is at work whilst infectious. Making use of the similari-
ties between R(t) and s(t) will be key to the analytical solution for our model.

3.4.1 Model for time of infection with respect to rota pattern

We will need to calculate R̂(ω), the Fourier transform for R(t). However, first let us
start by defining R(t) in the time domain. Simply put, R(t) can be one of two val-
ues:

R(t) =

⎧⎨⎩ u
A

if at work
v
A

if not at work

We define u and v as the relative risks of infections inside and outside of work re-
spectively and A = ut̄ + v(T − t̄) where t̄ is the length of time worked in one rota
period. The area under R(t) for any period of length T would therefore be 1, and the
average value across a period would be 1

T
. Note that, unlike in the previous chapter,

where individuals were assumed to be at risk of infection only at work, here we allow
them to be infected also when not working (unless v = 0).

For numerical reasons, it is easier for us to design any expressions of our repeating
rota pattern such that time 0 represents the start of an individual’s first shift in the
rota. However, it is worthwhile clarifying at this point that this is not related to the
time 0 in the λ(τ) infectiousness function. Functions given in terms of t, such as R(t)

and s(t) will be bound to time relative to the rota pattern (calendar time) such that
a new rota pattern starts at time t = 0. Functions given in terms of τ will be bound
to time relative to the time at which transmission occurs for the individual in our
model (i.e. they are always infected at time τ = 0, but this could be at any value
of t).

We define two vectors, m and n, which denote the beginning and end of each shift re-
spectively. As the first shift starts at time 0, m1 = 0. These two vectors are of length
c+1 and c respectively. The reason why m is of length c+1 is because its final value
represents the start of a new rota pattern. This is a slightly more careful definition
that h, our method of describing shifts in the previous case. In that case, h repre-
sented both beginnings and ends of shifts, and it represented all possible shifts in an
infinite time range.

For example, in the case of a 7 day, 9-to-5 shift, we define m and n as:

m = [0, 1, 2, 3, 4, 7]

n =

[︃
1

3
, 1

1

3
, 2

1

3
, 3

1

3
, 4

1

3

]︃
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Figure 3.8. Demonstration of one period of R(t), the repeating probability density function for an
individual’s time on infection. In this case the ratio of risks of being infected inside or outside of

work is 0.8:0.2, with a weekly rota of 5 days of 9 to 5 shift pattern followed by 2 days of rest,
starting from the beginning of the individual’s first shift.

We have described this rota pattern such that it starts at the beginning of the first
shift in the pattern, hence m1 = 0, which in a normal 9-5 rota pattern would be
equivalent to 9 O’clock on a Monday morning. As the pattern is 7 days long, and
the final value of m represents the start of the new shift, m6 = 7. Since a 9-5 rota
pattern involves a shift length of 8 hours, which is a third of a day, each value of n,
representing the end of shifts, is 1

3
greater than a start of a shift found in m.

We now have enough parameters to fully describe R(t). T describes the total length
of the rota pattern, m and n denote if an individual would be at work relative to a
starting point t = 0 and u and v describe the relative risk of infection inside and out-
side of work. In turn, we can now explicitly calculate R̂(ω), the Fourier transform of
R(t).

As a periodic function, the Fourier transform of R(t) can be described as a series of
Dirac delta functions at the harmonic frequencies of R(t) (i.e. the frequencies 2πj

T

where j is a real integer). We can write R̂(ω) as:

R̂(ω) = 2π
∞∑︂

j=−∞

CR,jδ

(︃
ω − 2πj

T

)︃

where δ(x) is a Dirac delta function and CR,j is a constant specific to the function
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R(t) and the integer n. We calculate CR,j for all non-zero integer values of j:

CR,j =
1

T

∫︂ T

0

R(t) exp
[︃
−2πijt

T

]︃
dt

=
1

T

c∑︂
k=1

(︃
u

A

∫︂ nk

mk

exp
[︃
−2πijt

T

]︃
dt+

v

A

∫︂ mk+1

nk

exp
[︃
−2πijt

T

]︃
dt
)︃

where the integral between mk and nk represents the time period during the kthe
day of work, and the integral between nk and mk+1 represents the rest period be-
tween the kth day of work and the k+1th day of work. We are summing across every
work day, so the final rest period will be between the end of the last shift, nc, and
the beginning of the next rota cycle, mc+1 = T . If we solve these integrals we find:

CR,j =
1

T

c∑︂
k=1

(︃
uiT

2πjA

(︃
exp

[︃
−2πijnk

T

]︃
− exp

[︃
−2πijmk

T

]︃)︃
+

viT

2πjA

(︃
exp

[︃
−2πijmk+1

T

]︃
− exp

[︃
−2πijnk

T

]︃)︃)︃

The solutions to both integrals each involve some variant of the term exp
[︁
−2πijnk

T

]︁
so

we can see how these parts can be combined:

uiT

2πjA
exp

[︃
−2πijnk

T

]︃
− viT

2πjA
exp

[︃
−2πijnk

T

]︃
=

iT (u− v)

2πjA
exp

[︃
−2πijnk

T

]︃
The solution to the “work-time” integral involves an exp

[︁
−2πijmk

T

]︁
, while the solu-

tion to the “rest-period” integral involves an exp
[︂
−2πijmk+1

T

]︂
term (the bold font has

been used to highlight their differences). It may seem like these two solutions can-
not be easily combined. However, mc+1 = T , meaning exp

[︂
−2πijmc+1

T

]︂
= 1 =

exp
[︁
−2πijm1

T

]︁
. This means that the sum

∑︁c
k=1 exp

[︂
−2πijmk+1

T

]︂
is equivalent to the

sum
∑︁c

k=1 exp
[︁
−2πijmk

T

]︁
and we can combine the m values from the two integral so-

lutions much in the same way we combined the n values in the same solution. This
gives us:

CR,j =
1

T

c∑︂
k=1

iT (u− v)

2πjA
exp

[︃
−2πijnk

T

]︃
+

iT (v − u)

2πjA
exp

[︃
−2πijmk

T

]︃
=

i(u− v)

2πjA

∑︂(︃
exp

[︃
−2πijn

T

]︃
− exp

[︃
−2πijm

T

]︃)︃
For brevity, we use

∑︁
on its own to represent summing over every pair of shift starts

and ends, m and n, ignoring mc+1. CR,0 is the average value of R(t) over a period
which we already know is 1

T
. Therefore, the complete expression for R̂(ω) becomes:

134



R̂(ω) = δ(ω)
1

T
+

∞∑︂
j=−∞,j ̸=0

δ

(︃
ω − 2πj

T

)︃
× i(u− v)

jA

∑︂(︃
exp

[︃
−2πijn

T

]︃
− exp

[︃
−2πijm

T

]︃)︃
(3.3)

3.4.2 Model for infectiousness at any point during a rota pattern

λ(τ), describing the infectiousness from an individual at time τ given that they were
infected at time 0, is unique to the individual and as such it can never be known pre-
cisely. However, it must satisfy the following constraints:

1. λ(τ) ≥ 0 if t ≥ 0 - The force of infection must be non-negative.

2. λ(τ) = 0 if t < 0 - The individual cannot generate a force of infection prior to
infection.

3. 0 ≤
∫︁∞
0

λ(τ)dt < ∞ - The individual generates a finite force of infection over
their infectious career.

4. ℑ [λ(τ)] = 0 - For all values of t, the force of infection must take a real value
(including 0).

Given the first statement, the final statement must be true. However, it is worth-
while stressing that λ(τ) is real, as it will have implications when we consider its
Fourier transform.

As λ(τ) has a finite integral, its Fourier transform, λ̂(ω) must exist. As λ(τ) is real,
ℜ
[︂
λ̂(ω)

]︂
, the real part of λ̂(ω), is an even function (meaning ℜ

[︂
λ̂(ω)

]︂
= ℜ

[︂
λ̂(−ω)

]︂
,

or ℜ
[︂
λ̂(ω)

]︂
has reflective symmetry over the line ω = 0. Similarly, ℑ

[︂
λ̂(ω)

]︂
is an

odd function, in that it has rotational symmetry about the origin and ℑ
[︂
λ̂(ω)

]︂
=

−ℑ
[︂
λ̂(−ω)

]︂
. This means that in total, λ̂(ω) is the conjugate of λ̂(−ω). This is not

strictly useful information now, but will be very relevant later.

We want to convolve R(t) and λ(τ) to get Λ(t), a periodic function that describes
the expected total force of infection that an infected individual will generate at each
part of the rota pattern given that they have been infected. Depending on how long
they are infectious for and how short the rota pattern is, they may provide a force
of infection to a particular part of the rota more than once during their infectious
career. This was why it was advantageous to describe R(t) in the form of a periodic
PDF, as we can calculate the force of infection given that the individual was infected
multiple rota periods ago.
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Figure 3.9. A function with only real values and its Fourier transform. In this case we are looking
at a square pulse function between 0 and 1. We can see that the real part of its Fourier transform

(blue) is reflected on the line ω = 0 while its imaginary part (orange) has rotational symmetry
about the origin.

This convolution is not necessarily obvious, especially as λ(τ) is currently an un-
known function. Even if we did know λ(τ), its convolution with R(t) may not be an-
alytically possible. However, for functions with calculable Fourier transform, convo-
lution in the time-domain is equivalent to multiplication in the frequency domain.
That is to say, while we do not currently know the form λ̂(ω) will take, we do know
how it can be used to calculate Λ̂(ω), the Fourier transform of λ(τ):

Λ̂(ω) = λ̂(ω)×

(︄
δ(ω)

1

T
+

∞∑︂
j=−∞,j ̸=0

δ

(︃
ω − 2πj

T

)︃

× i(u− v)

jA

∑︂(︃
exp

[︃
−2πijn

T

]︃
− exp

[︃
−2πijm

T

]︃)︃)︄
(3.4)

3.4.3 Model of the expected force of infection while at work

Following the same rota pattern that defined R(t), s(t) is a repeating indicator func-
tion that equals 1 if t is a point in the rota pattern where an individual would be at
work, and 0 if not. By multiply Λ(t) by s(t) we would get a function that describes
the expected force of infection an individual would generate at time t at work (they
obviously generate a force of infection also when not at work, but quantifying that
element is not the focus of this project).

Setting A = 1, u = 1 and v = 0 in Equation (3.3) for the Fourier transform for R(t)

we could directly get the the Fourier transform for s(t):
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ŝ(ω) = δ(ω)
t̄

T
+

∞∑︂
j=−∞,j ̸=0

δ

(︃
ω − 2πj

T

)︃
× i

j

∑︂(︃
exp

[︃
−2πijn

T

]︃
− exp

[︃
−2πijm

T

]︃)︃
.

(3.5)
We want to set A = 1 because previously we used A to normalise R(t) so that it in-
tegrated to 1 over any given time period of length T , but in this case we do not want
to normalise our indicator function.

We could define W (t), the function that results from the multiplication of Λ(t) and
s(t). As the period of the two is the same, this would be a periodic function show-
ing the force of infection an infected individual would be expected to exert whilst
at work. However, the convolution theorem states not only that convolution in the
time-domain is equivalent to multiplication in the frequency-domain, but also that
the opposite is true.

Therefore, instead of being interested in W (t), we can focus on its Fourier transform
Ŵ (ω), which is a convolution of Λ̂(ω) and ŝ(ω). More specifically, we can focus on
Ŵ (0), which is total area under the curve of W (t) in one period and therefore the
total expected force of infection whilst at work.

As Λ̂(ω) is a series of Dirac delta functions, its convolution with ŝ(ω) can be written
in terms of an infinite sum:

Ŵ (0) = Λ̂(0)ŝ(0) +
1

2π

∞∑︂
j=−∞,j ̸=0

Λ̂

(︃
2πj

T

)︃
× ŝ

(︃
−2πj

T

)︃
The two Fourier transforms were each multiplied by 2π to normalise them. When we
combine the to functions, we have to include the 1

2π
term because otherwise we will

have normalised this term twice.

If we then look at the similarities between Λ̂(ω) (Equation 3.4.2) and ŝ(ω) (Equation
3.5), we notice that they both contain the term:

∑︂(︃
exp

[︃
−2πijn

T

]︃
− exp

[︃
−2πijm

T

]︃)︃

When we convolve Λ̂(ω) with ŝ(ω) to find Ŵ (0), we will be performing the multipli-
cation Λ̂(ω)× ŝ(−ω) for all possible values of ω. It would therefore be useful to define
the function Y (j):

Y (j) =

(︃∑︂
exp

[︃
−2πijn

T

]︃
− exp

[︃
−2πijm

T

]︃)︃
×
(︃∑︂

exp
[︃
2πijn
T

]︃
− exp

[︃
2πijm
T

]︃)︃
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= ℜ
[︃∑︂

exp
[︃
−2πijn

T

]︃
− exp

[︃
−2πijm

T

]︃]︃2
+ ℑ

[︃∑︂
exp

[︃
−2πijn

T

]︃
− exp

[︃
−2πijm

T

]︃]︃2
//

∑︁
exp

[︁
−2πijn

T

]︁
− exp

[︁
−2πijm

T

]︁
is the conjugate of

∑︁
exp

[︁
2πijn
T

]︁
− exp

[︁
2πijm

T

]︁
, mean-

ing multiplying these two terms together will give us a real value which is the square
of their real part plus the square of their imaginary part. By remembering that the
real part of exp [−iθ], ℜ [exp[−iθ]], is equal to= cos[θ] and that the imaginary part,
ℑ [−iθ] is equal to − sin[θ] we can convert Y (j) into a trigonometric function:

Y (j) =

(︃∑︂
cos
[︃
2πjn
T

]︃
− cos

[︃
2πjm
T

]︃)︃2

+

(︃∑︂
sin
[︃
2πjm
T

]︃
− sin

[︃
2πjn
T

]︃)︃2

Finally, we can adjust Y (j) further by using the two trigonometric identities describ-
ing the difference between two Sine functions and two Cosine functions:

sin [α]− sin [β] = 2 cos
[︃
α + β

2

]︃
sin
[︃
α− β

2

]︃
cos [α]− cos [β] = −2 sin

[︃
α + β

2

]︃
sin
[︃
α− β

2

]︃
Y (j) = 4

(︄(︃∑︂
sin
[︃
πj(n + m)

T

]︃
sin
[︃
πj(n − m)

T

]︃)︃2

+

(︃∑︂
cos
[︃
πj(n + m)

T

]︃
sin
[︃
πj(n − m)

T

]︃)︃2
)︄

When we insert Y (j) into our formula for Ŵ (0), we are replacing the∑︁(︁
exp

[︁
−2πijn

T

]︁
− exp

[︁
−2πijm

T

]︁)︁
terms from both Λ̂

(︁
2πj
T

)︁
and ŝ

(︁
−2πj

T

)︁
. This gives

us:

Ŵ (0) = Λ̂(0)ŝ(0) +
1

2π

∞∑︂
j=−∞,j ̸=0

Λ̂

(︃
2πj

T

)︃
× ŝ

(︃
−2πj

T

)︃
= Λ̂(0)ŝ(0)

+
1

2π

∞∑︂
j=−∞,j ̸=0

λ̂

(︃
2πj

T

)︃
i(u− v)

jA

∑︂(︃
exp

[︃
−2πijn

T

]︃
− exp

[︃
−2πijm

T

]︃)︃
×− i

j

∑︂(︃
exp

[︃
2πijn
T

]︃
− exp

[︃
2πijm
T

]︃)︃
= Λ̂(0)ŝ(0)
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+
1

2π

∞∑︂
j=−∞,j ̸=0

λ̂

(︃
2πj

T

)︃
i(u− v)

jA
×− i

j
× Y (j)

= Λ̂(0)ŝ(0)

+
1

2π

∞∑︂
j=−∞,j ̸=0

(u− v)

Aj2
Y (j)λ̂

(︃
2πj

T

)︃

The function Y (j) is symmetrical, in that Y (j) = Y (−j). Conversely, λ̂
(︁
2πj
T

)︁
is the

conjugate of λ̂
(︁
−2πj

T

)︁
, meaning:

λ̂

(︃
2πj

T

)︃
+ λ̂

(︃
−2πj

T

)︃
= 2ℜ

[︃
λ̂

(︃
2πj

T

)︃]︃
In turn, we can calculate the sum of the jth term and −jth term in our infinite sum:

u− v

Aj2
Y (j)λ̂

(︃
2πj

T

)︃
+

u− v

A(−j)2
Y (−j)λ̂

(︃
−2πj

T

)︃
=

u− v

Aj2
Y (j)

(︃
λ̂

(︃
2πj

T

)︃
+ λ̂

(︃
−2πj

T

)︃)︃
=

2(u− v)

Aj2
Y (j)ℜ

[︃
λ̂

(︃
2πj

T

)︃]︃
This means we can simplify the infinite sum in our term for Ŵ (0) to only require
positive values of j:

Ŵ (0) = Λ̂(0)
t̄

T 2
+

∞∑︂
j=1

u− v

πAj2
Y (j)ℜ

[︃
λ̂

(︃
2πj

T

)︃]︃

Again, by multiplying Ŵ (0) value by T we get an infected individual’s total expected
infectiousness whilst at work for their entire infectious career. The zeroth term in a
Fourier series is its expected average value across an entire rotation. Multiplying this
number by the length of the period will give the total area under the curve in one
cycle. Since W (t) gives the total infectiousness an infected person provides at time t

of the cycle, TŴ (0) will give the infectiousness they provide in total. It is this value
that we would want to minimise to reduce the rate of workplace infections.

If we wanted to look at the complete distribution for Ŵ (ω), the mathematics become
more complicated as it would not be as easy to take shortcuts such as Y (j) and sum-
ming conjugates. While not the subject of this chapter, such investigations do have
merit, as they could be adjusted to indicate a new pdf for the time of infection, re-
placing R̂(ω) for a second generation of infections. Repeating this process an infinite
number of times would result in the pdf (and ultimately the in-work force of infec-
tion) when the disease in endemic in the work place. This investigation only seeks to
estimate this value for the first generation of staff infections.
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3.4.4 Including a more rigid structure for a rota pattern

So far we have described the rota pattern in terms of two vectors, m and n, which
describe the starts and ends of c shifts starting at time 0, and T , the total length of
the rota pattern. This was to show how this work can be applied to any rota pat-
tern.

However, in the numerical model, we used a far stricter rota pattern. An individual
work shifts of length a with breaks of length b, meaning a+b = 1 day. They worked c

shifts before having d days off, resulting in a total rota pattern length of c+d. Whilst
keeping the average number of hours worked in a week fixed, we adjusted the shift
length, a, and the rota length, c + d, to see if they affected the expected length of
time while infectious at work. We found that a longer shift appeared to reduce the
expected length of time while infectious at work, and there was a consistent optimum
length of rota.

This nomenclature enabled us to treat rota structures as mathematical entities.
We could directly investigate the effect of working longer days or having a longer
rota pattern whilst maintaining the same average length of time worked. The cur-
rent documentation for our Fourier transform model is a lot more loose (meaning in
the future we can be more flexible as to the rota patterns we analyse). However, as
we want to compare the two methods (and see if they show the same conclusions),
we need to introduce the stricter original design for a rota pattern into our Fourier
model.

To incorporate this stricter definition of a rota pattern into our calculations above,
we primarily need to know how they affect the function Y (j), but there are other
values, such as t̄ and A, that we also need to calculate.

Let w = t̄/T be the proportion of time that an individual spends at work in a full
rota, as t̄ is the length of time spent at work and T is the length of the rota pattern.
Conversely, a is the proportion of time an individual spends at work on any working
day. We can start by assuming that we choose a value of a and T such that integer
values of c and d can be found. This assumption can be relaxed later. For the time
being, however, we can make a number of definitions from the values a, c, and w:

a > w

c =
Tw

a

t̄ = Tw

mk = k − 1

nk = k + a− 1

mc+1 = T
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A = uTw + vT (1− w)

From these statements we can calculate the jth constant terms of R̂(ω) and ŝ(ω).
We could skip this step and instead calculate Y (j), but there is some understand-
ing to be gained from looking at the rota pattern functions explicitly. Let us look at
CR,j. For simplicity sake, we will choose a scenario where it is impossible to be in-
fected outside of work. In this case, u = 1, v = 0, A = Tw. This gives CR,j the
following formula:

CR,j =
i

2πjTw

Tw
a

−1∑︂
k=0

(︃
exp

[︃
−2πij(k + a)

T

]︃
− exp

[︃
−2πijk

T

]︃)︃

=
i

2πjTw

(︃
exp

[︃
−2πija

T

]︃
− 1

)︃ Tw
a

−1∑︂
k=0

exp
[︃
−2πijk

T

]︃

The nature of this finite sum changes dependent on the value of j. Specifically, if j
T

is an integer, then the exponential term in the sum is equal to 1 and the sum is equal
to c = Tw

a
, the number of shift patterns worked. This is the equivalent to the the

solution to a finite geometric sum when the common ratio between terms is equal to
1. If j

T
is not an integer, then the sum becomes the sum of a geometric sequence and

takes a completely different form. The complete term of CR,j is therefore dependent
on this fraction.

CR,j =
i

2πjTw

(︃
exp

[︃
−2πija

T

]︃
− 1

)︃
×

⎧⎪⎨⎪⎩
Tw
a

j
T
∈ Z

exp
[︂
− 2πijw

a

]︂
−1

exp
[︂
− 2πij

T

]︂
−1

otherwise
(3.6)

If we look at the solution when j
T

is not an integer, we can see we would need to di-
vide by exp

[︁
−2πij

T

]︁
− 1. In the case where j

T
is an integer, this denominator would be

equal to 0, making this fraction not possible. We can use the value in Equation 3.6
to get a specific trigonometric expression for R(t):

R(t) =
1

T
+

∞∑︂
j=1

2

πj
sin
[︃
πaj

T

]︃
×

⎧⎪⎨⎪⎩
1
a

cos
[︂
πj(a−2t)

T

]︂
j
T
∈ Z

1
Tw

sin
[︂
πjw
a

]︂
sin

[︂
πj
T

]︂ cos
[︁
πj
(︁
w
a
+ a−2t−1

T

)︁]︁
otherwise

This condition to check if j
T

is an integer also applied when we are calculating Y (j).
This is perhaps easiest to see when it is in its exponential form, although it be no
means easy. We start by substituting our new values for m and n into our formula
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for Y (j)

Y (j) =

(︃∑︂
exp

[︃
2iπjn
T

]︃
− exp

[︃
2iπjm
T

]︃)︃(︃∑︂
exp

[︃
−2iπjn

T

]︃
− exp

[︃
−2iπjm

T

]︃)︃

=

⎛⎝Tw
a

−1∑︂
k=0

exp
[︃
2iπj(k + a)

T

]︃
− exp

[︃
2iπjk
T

]︃⎞⎠
×

⎛⎝Tw
a

−1∑︂
k=0

exp
[︃
−2iπj(k + a)

T

]︃
− exp

[︃
−2iπjk

T

]︃⎞⎠
In both sums, we can factor out a value of either exp

[︁
2πijk
T

]︁
or exp

[︁
−2πijk

T

]︁
:

Y (j) =

⎛⎝Tw
a

−1∑︂
k=0

exp
[︃
2iπjk
T

]︃(︃
exp

[︃
2πija
T

]︃
− 1

)︃⎞⎠
×

⎛⎝Tw
a

−1∑︂
k=0

exp
[︃
−2iπjk

T

]︃(︃
exp

[︃
−2πija

T

]︃
− 1

)︃⎞⎠
Since neither exp

[︁
2πija
T

]︁
− 1 nor exp

[︁
−2πija

T

]︁
− 1 depend on k, they can be extracted

from the sum terms and multiplied together:

Y (j) =

(︃
2− exp

[︃
2πija
T

]︃
− exp

[︃
−2πija

T

]︃)︃

×

⎛⎝TW
a

−1∑︂
k=0

exp
[︃
2πijk
T

]︃⎞⎠⎛⎝TW
a

−1∑︂
k=0

exp
[︃
−2πijk

T

]︃⎞⎠
There are then two steps to simplifying this term outside of the two sums. First, we
recognise the relationship between the Cosine function and the exponent of i:

cos [x] =
exp[ix] + exp[−ix]

2

Y (j) = 2

(︃
1− cos

[︃
2πja

T

]︃)︃⎛⎝TW
a

−1∑︂
k=0

exp
[︃
2πijk
T

]︃⎞⎠⎛⎝TW
a

−1∑︂
k=0

exp
[︃
−2πijk

T

]︃⎞⎠
Finally, we must consider the relationship between sin2[x] and cos[2x]:

2 sin2[x] = 1− cos[2x]

Y (j) = 4 sin2

[︃
πja

T

]︃⎛⎝Tw
a

−1∑︂
k=0

exp
[︃
2πijk
T

]︃⎞⎠⎛⎝Tw
a

−1∑︂
k=0

exp
[︃
−2πijk

T

]︃⎞⎠

These two sum terms are geometric sums. As with before, when j
T

is an integer, the
common ration in these sums will be 1. Whilst this is easy to compute, it does mean
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that we cannot write an expression for Y (j) without a check for if j
T

is an integer.

Y (j) = 4 sin2

[︃
πja

T

]︃
×

⎧⎪⎨⎪⎩
(︁
Tw
a

)︁2 j
T
∈ 𭟋,

sin2
[︂
πjw
a

]︂
sin2

[︂
πj
T

]︂ otherwise.
(3.7)

As with our expression for CR,j, these two expressions are technically continuous, in

that as j approaches a value such that j
T

is an integer,
sin

[︂
πjw
a

]︂
sin

[︂
πj
T

]︂ will approach Tw
a

ac-

cording to L’Hopital’s rule:

If lim
x→c

f(x)

g(x)
=

0

0

or lim
x→c

f(x)

g(x)
=

∞
∞

,

then lim
x→c

f(x)

g(x)
=

df(x)
dx

dg(x)
dx

.

f(j) = sin
[︃
πjw

a

]︃
= sin

[︃
πjc

T

]︃
g(j) = sin

[︃
πj

T

]︃
x

T
∈ Z

f(x) = 0

g(x) = 0

df(j)
dj

=
cπ

T
cos
[︃
πjc

T

]︃
dg(j)

dj
=

π

T
cos
[︃
πj

T

]︃
lim
j→x

sin
[︁
πjw
a

]︁
sin
[︁
πj
T

]︁ = c
cos
[︁
πxc
T

]︁
cos
[︁
πx
T

]︁
cos
[︃
πjc

T

]︃
= 1

cos
[︃
πj

T

]︃
= 1

lim
j→x

sin
[︁
πjw
a

]︁
sin
[︁
πj
T

]︁ = c =
Tw

a

However, as we are likely using a computer to calculate this value, it would be bet-
ter to write a condition for checking if j

T
is an integer as a precaution. We previously

stated that we would assume that we have chosen values of T , the rota length, a,
the proportion of time worked on a working day and w, the total proportion of time
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(a) (b)

Figure 3.10. The effect of non-integer value for the number of days worked (c) on the infinite series
representation of the rota pattern, R(t). The left hand plot shows a stable rota pattern when the

number of working days would be an integer, where the right hand plot shows similar values except
c is no longer an integer. In each case, T = 7, w = 0.5 and a is allowed to vary.

worked, such that the value of c, the total umber of working days, that is Tw
a

, would
be an integer. In other words, we assume an individual works an integer number of
shifts in a rota cycle. Our formula for R(t) is no longer dependent on c being an in-
teger as we have calculated the resulting sums from working c days. We therefore
now have the opportunity to explore what happens when we relax this assumption.

Figure 3.10 shows what happens to our model if this assumption is relaxed. When c

is an integer value, as in the left hand plot, the model is well-behaved. The risk of
infection inside work remains constant (aside from an occasional spike owing to a
non-infinite approximation of an infinite summation, such as at the start of the sec-
ond rest period on the green c = 6 plot) and shows the exact trend we were expect-
ing. However, when c is not an integer, our model falls apart. The risk of infection
while at work is no longer constant. Additionally, it is possible for R(t) to be nega-
tive. As R(t) is supposed to be the cyclical probability density function for the time
of infection of an individual, this is an inappropriate property. R(t) should always be
non-negative. If we do not address this it will have knock-on effects when calculating
Y (j) and Ŵ (0).

For this reason, we propose a slightly altered model for the rota pattern that allows
us to realistically inspect parameters that result in a non-integer value of c. In this
case, an individual works c′ days of length a, where c′ is an integer. They then work
a further 1 shift with a length less than a so that the total time they work is equal to
Tw. This slightly changes our definitions for our parameters in our rota pattern:

a > w

c′ = ⌊Tw
a

⌋

t̄ = Tw
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(a) (b)

Figure 3.11. A robust model for handling rota parameters which result in a non-integer number of
days. Now, an additional make-up shift is performed at the end of the rota so that each individual

works the same proportion of time, regardless of the length of each individual shift. The same
parameter set has been used as in Figure 3.10.

mk = k − 1

mc′+2 = T

nk,k ̸=c′+1 = k + a− 1

nc′+1 = Tw − ac′

A = uTw + vT (1− w)

Assuming an individual can only be infected at work, we now need to change our ex-
pression for CR,j:

CR,j =
i

2πjTw

(︄
T

(︃
exp

[︃
−2πij

(︃
w +

c′(1− a)

T

)︃]︃
− exp

[︃
−2πijc′

t

]︃)︃

+

(︃
exp

[︃
−2πija

T

]︃
− 1

)︃⎧⎪⎨⎪⎩
c′ j

T
∈ Z

exp
[︂
− 2πic′

T

]︂
−1

exp
[︂
− 2πi

T

]︂
−1

otherwise

)︄

We can once again write R(t) explicitly in the form of an infinite sum of trigonomet-
ric functions. This calculation is not included in this chapter for brevity, but its out-
come is show in Figure 3.11. As we can see, now with this “make-up” day the model
is stable and transitions between integer values of c can be investigated. We could
have chosen an infinite number of other options as to handle this problem, but inves-
tigating the issue further would be irrelevant to our analysis.

Similarly, knowing that we can calculate the limit when j
T
∈ Z using L’Hopital’s rule,

we can calculate the trigonometric expression for Y (j). We invite the reader to find
this solution in their own time, but should they not we want to reassure them that it
does not provide any further analytic insight.
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3.4.5 Calculating the probability that an individual is infectious

So far in this section, we have used λ(τ) to represent an individual’s infectiousness as
a function of time since transmission, i.e. at time t = τ given that they were infected
at time t = 0. Very early on we pointed out that the shape of this function would be
different for each individual. A better understanding of the disease we are modelling
would help parameterise how this curve could change between individuals. This is an
avenue that could be explored at a later date.

In the previous chapter, we attempted to minimise the total time an individual is in-
fectious at work, ignoring different levels of infectiousness and treating any time in
their infectious period with the same priority. We convolved the probability density
function of the latent period (the time from getting infected to becoming infectious)
with the survival function for the infectious period to find a function that gives the
probability that an individual is infectious at time τ , where τ gives time relative to
when the individual was infected:

P(Infectious at time τ)

∫︂ τ

0

P(Latent period = x)× P(Infectious period > τ − x)dx

Unfortunately, we could not find an analytical solution for this function when using
Gamma distributions to represent the latent and infectious periods through non-
Fourier methods. We will now show how we can calculate the Fourier transform for
this function. We will start by replacing λ(τ) with κ(τ), a new function that gives
the probability that an individual is infectious at time t = τ given that they were in-
fected at time t = 0. If we think about this function carefully, we can see that it will
have all the constraints λ(τ) has, as discussed in Section 3.4.2. κ̂(ω) is the Fourier
transform of this function, which we can calculate.

We start by saying that an infected individual has a fixed latent period of length
x and a fixed infectious period of length y. We are currently ignoring factors that
might shorten an individual’s effective infectious period such as developing symptoms
and deciding not to go to work. The function κ(τ) can be written as follows:

κ(τ) =

⎧⎨⎩1 x ≤ τ ≤ x+ y

0 Otherwise
(3.8)

This is an indicator function. An individual will only be infectious between times x

and x + y. During this time period, their probability of being infectious is 1 (κ(τ) =
1) and outside this time period the probability is 0 (κ(τ) = 0). This function has a
fairly simple real part to its Fourier transform:
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ℜ [κ̂(ω)] = ℜ
[︃∫︂ x+y

x

exp [−iωt] dt
]︃

=
sin [ω(x+ y)]

−
sin [ωx]ω

We can make use of the trigonometric identity describing the difference between two
Sine functions to simplify this further:

sin [α]− sin [β] = 2 cos
[︃
α + β

2

]︃
sin
[︃
α− β

2

]︃

ℜ [κ̂(ω)] =
2 cos

[︂
ω(2x+y)

2

]︂
sin
[︁
ωy
2

]︁
ω

The Sinc function, sin[x]
x

can be incorporated into this calculation so that there is no
longer an ω value in the denominator:

sin
[︂ωy
2

]︂
= sinc

[︂ωy
2

]︂
× ωy

2

ℜ [κ̂(ω)] = ysinc
[︂ωy
2

]︂
cos
[︂
ω
(︂y
2
+ x
)︂]︂

However, in reality x and y should really be X and Y , two unknown variables ran-
domly sampled from distributions for the latent and infectious period respectively.
We can calculate an analytical solution for κ̂(ω) by integrating across all possible val-
ues of X and Y :

ℜ [κ̂(ω)] =

∫︂ ∞

0

P(X = x)

∫︂ ∞

0

P(Y = y)× ysinc
[︂ωy
2

]︂
cos
[︂
ω
(︂y
2
+ x
)︂]︂

dydx (3.9)

We represent the distribution for X with a Gamma distribution with input param-
eters αa and βa. We say that an infected individual has a probability 1 − ρ that
they will ever develop symptoms and therefore isolate themselves, the distribution
for time from become infectious to developing symptoms is a Gamma distribution
with parameters αb2 and βb2, and the distribution for the infections period as a whole
follows a Gamma distribution with input parameters αb1 and βb1. We can therefore
write PDFs for X and Y :

P(X = x) ∝ βαa
a

Γ [αa]
xαa−1 exp [−βax]

P(Y = y) ∝ ρ
βαb1
b1

Γ [αb1]
yαb1−1 exp [−βb1y] + (1− ρ)

βαb2
b2

Γ [αb2]
yαb2−1 exp [−βb2y]

Gamma distributions have a very accommodating characteristic function (the Fourier
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transform of their probability density function), which means that in the case of our
latent and infectious period distributions, we can find an analytical solution for κ̂(ω).

Previously we showed the calculation required to generate an analytical solution for
the real value part of κ̂(ω), where κ̂(ω) is the Fourier transform of a function κ(τ),
which in turn gives the probability of an individual being infectious at time τ given
that they were infected at time 0. X and Y are unknown Gamma distributed vari-
ables equal to the lengths of the individual’s latent and effective infectious period re-
spectively. When ω = 0, Re [κ̂(ω)] is easily calculated:

ℜ [κ̂(0)] = E [Y ] = ρ
αb1

βb1

+ (1− ρ)
αb2

βb2

By incorporating our sinc function, we can calculate ℜ [κ̂(ω)] for all values of ω:

ℜ [κ̂(ω)] =

∫︂ ∞

0

∫︂ ∞

0

βαa
a

Γ [αa]
xαa−1 exp [−βax]

×
(︃
ρ

βαb1
b1

Γ [αb1]
yαb1−1 exp [−βb1y] + (1− ρ)

βαb2
b2

Γ [αb2]
yαb2−1 exp [−βb2y]

)︃
× ysinc

[︂ωy
2

]︂
cos
[︂
ω
(︂y
2
+ x
)︂]︂

dxdy

We start by solving the internal, dx integral:

ℜ [κ̂(ω)] =

∫︂ ∞

0

βαa
a

Γ [αa]

(︁
β2
a + ω2

)︁−αa
2 cos

[︃
ωy

2
+ arctan

[︃
ω

βa

]︃]︃
×
(︃
ρ

βαb1
b1

Γ [αb1]
yαb1−1 exp [−βb1y] + (1− ρ)

βαb2
b2

Γ [αb2]
yαb2−1 exp [−βb2y]

)︃
× ysinc

[︂ωy
2

]︂
dy

We then solve the external, dy integral:

ℜ [κ̂(ω)] =
βαa
a

ω

(︁
β2
a + ω2

)︁−αa
2

×

(︄
ρ

(︃
βαb1
b1

(︁
β2
b1 + ω2

)︁−αb1
2 sin

[︃
αa arctan

[︃
ω

βa

]︃
+ αb1 arctan

[︃
ω

βb1

]︃]︃)︃
+ (1− ρ)

(︃
βαb2
b2

(︁
β2
b2 + ω2

)︁−αb2
2 sin

[︃
αa arctan

[︃
ω

βa

]︃
+ αb2 arctan

[︃
ω

βb2

]︃]︃)︃
− sin

[︃
αa arctan

[︃
ω

βa

]︃]︃)︄

In order to simplify this further, we introduce three new terms, θa, θb1 and θb2. Each
is a corner of a right-angled triangle whose non-hypotenuse sides are ω and βa, βb1

and βb2 respectively, such that tan [θx] = ω
βx

. These triangles are demonstrated
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Figure 3.12. Graphical representation of the three triangles used to calculate values of θ. In reality,
ω can take negative values, but this is not depicted here.

in Figure 3.12. Due to the geometry of the triangles, we also find that cos [θx] =

βx (β
2
x + ω2)

− 1
2 .

tan [θa] =
ω

βa

cos [θa] = βa

(︁
β2
a + ω2

)︁− 1
2

tan [θb1] =
ω

βb1

tan [θb2] =
ω

βb2
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ℜ [κ̂(ω)] =
cosαa [θa]

ω

×

(︄
ρ cosαb1 [θb1] sin [αaθa + αb1θb1]

+ (1− ρ) cosαb2 [θb2] sin [αaθa + αb2θb2]

− sin [αaθa]

)︄

For completeness, let us investigate ℑ [κ̂(ω)]. As this is not strictly necessary for
our future calculations and requires much the same logical leaps as when calculat-
ing ℜ [κ̂(ω)], this explanation shall be less verbose. We start, as with finding the real
part, by finding the imaginary part of κ̂(ω) if x and y are fixed:

ℑ [κ̂(ω)] = ℑ
[︃∫︂ x+y

x

exp [−iωt] dt
]︃

=
cos [ωx]− cos [ω(x+ y)]

ω

cos [α]− cos [β] = −2 sin
[︃
α + β

2

]︃
sin
[︃
α− β

2

]︃
ℑ [κ̂(ω)] = −

2 sin
[︁
ω
(︁
y
2
+ x
)︁]︁

sin
[︁
−ωy

2

]︁
ω

= ysinc
[︂ωy
2

]︂
sin
[︂
ω
(︂y
2
+ x
)︂]︂

We can then incorporate this into a model where x and y are allowed to vary accord-
ing to the previously established distributions:

ℑ [κ̂(ω)] =

∫︂ ∞

0

∫︂ ∞

0

βαa
a

Γ [αa]
xαa−1 exp [−βax]

×
(︃
ρ

βαb1
b1

Γ [αb1]
yαb1−1 exp [−βb1y] + (1− ρ)

βαb2
b2

Γ [αb2]
yαb2−1 exp [−βb2y]

)︃
× ysinc

[︂ωy
2

]︂
sin
[︂
ω
(︂y
2
+ x
)︂]︂

dxdy

=

∫︂ ∞

0

βαa
a

(︁
β2
a + ω2

)︁−αa
2 sin

[︃
ωy

2
+ αa arctan

[︃
ω

βa

]︃]︃
×
(︃
ρ

βαb1
b1

Γ [αb1]
yαb1−1 exp [−βb1y] + (1− ρ)

βαb2
b2

Γ [αb2]
yαb2−1 exp [−βb2y]

)︃
× ysinc

[︂ωy
2

]︂
dy

=
βαa
a

ω

(︁
β2
a + ω2

)︁−αa
2(︄

cos
[︃
αa arctan

[︃
ω

βa

]︃]︃
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Figure 3.13. The time domain and frequency domain representation of the probability of being
infectious at time τ after being infected.

− ρβαb1
b1

(︁
β2
b1 + ω2

)︁−αb1

2 cos
[︃
αa arctan

[︃
ω

βa

]︃
+ αb1 arctan

[︃
ω

βb1

]︃]︃
− (1− ρ)βαb2

b2

(︁
β2
b2 + ω2

)︁−αb2

2 cos
[︃
αa arctan

[︃
ω

βa

]︃
+ αb2 arctan

[︃
ω

βb2

]︃]︃)︄

=
cosαa [θa]

ω(︄
cos [αaθa]

− ρ cosαb1 [θb1] cos [αaθa + αb1θb1]

− (1− ρ) cosαb2 [θb2] cos [αaθa + αb2θb2]

)︄

Figure 3.13 shows both κ(τ) and κ̂(ω) for the parameter set used in this chapter.
Note that, as with Figure 3.9, ℜ [κ̂(ω)] is even and ℑ [κ̂(ω)] is odd.

We use the parameters from Table 3.2 to represent an individual’s infectious career.
In this case, we assume that infections only occur at work (i.e. u = 1, v = 0). The
latent period has a mean of 2.84 days with a standard deviation of 2.34. There is a
probability of asymptomatic infection of 0.3. If the individual remains asymptomatic
then they are infectious for an average of 6 days with a standard deviation of

√
12.

Otherwise they detect their symptoms an self-isolate, resulting in an infectious, pro-
dromal period of 2 days with a standard deviation of 1.5. Each of these unknown
values follow a Gamma distribution. We now have enough information to calculate
a central estimate for the total length of time an individual in this scenario would be
infectious whilst at work.
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3.4.6 Incorporating regular testing into a Fourier model

At this stage we are unfortunately unable to fully integrate regular testing into our
modelling approach based on Fourier transforms. With a fixed testing schedule, the
force of infection function changes shape depending on when an individual becomes
infectious or detectable. For example, in the model where an individual’s force of
infection is equal to 1 during their infectious period (this is the model that we have
used to track how long an individual is infectious for), in the absence of testing the
expected force of infection at time t given that the individual was infected at time 0
is the probability that the individual is still infectious at time t or, in other words,
the survival function of the probability distribution that defines the length of the in-
fectious period. Therefore, without testing we do not need to consider the exact time
an individual becomes infectious and instead can integrate through all possible latent
and infectious period lengths. With testing we need to pay attention specifically to
when an individual becomes detectable, as the testing pattern will have no influence
prior to this time (excluding the possibility of false positives).

As a result, once testing is introduced, if there is a delay between being infected and
becoming detectable (as it would be reasonable to assume there is), we can no longer
integrate through all possible values of the latent and infectious period length. We
have to consider them separately. The survival function for an individual’s effective
infectious period (which can be stopped early if they are diagnosed before it is com-
plete) is now dependent on if a test occurred before or after they became detectable,
as anyone who is detected would finish their effective infectious period. However, just
because we cannot use Fourier techniques to achieve the same simplifications as in a
case where there are no tests does not mean that we cannot use some Fourier tech-
niques to improve the accuracy of our analysis, as we shall now show.

Let us say that a disease’s infectious period falls on a Gamma distribution with pa-
rameters αb and βb (previously we included the possibility that an individual could
become symptomatic and remove themselves from work, but as this does not greatly
change the nature of this analysis we leave it to the reader to observe how this op-
tion could be included in our model). The probability that an individual would still
be infectious at time τ given that they started their infectious period at time 0 is
given by the upper incomplete Gamma function Γ(αb,βbτ)

Γ(αb)
. We want to track the inte-

gral of this function as this will give us the total time an individual is infectious for.
Fortunately, this can be found analytically:

∫︂
Γ (αb, βbt)

Γ (αb)
dt =

tΓ (αb, βbt)

Γ (αb)
− αbΓ (αb + 1, βbt)

βbΓ (αb + 1)

We can now use m and n, the sets of starts and ends of shifts respectively, and T ,
the total length of the rota pattern, to write an infinite sum that calculates L(t),
how long an individual would spend at work whilst infectious given that they became
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Figure 3.14. Cumulative estimate for the length of time spent at work whilst infectious as a
function of the time since the beginning of an individual’s infectious window. Each colour denotes a

different day that the infectious period started on. In this case we use a 9-5 5 days a week work
pattern, with the individual starting their infectious period at the start of their shift (or the

equivalent time on rest days). The infectious period length follows a Gamma distribution with a
mean of 6 days and a standard deviation of

√
12. The left-hand plot demonstrates how this

estimate changes without testing while the right-hand plot includes a regular test occurring at the
start of Monday shifts with an hour delay between test and results and a false negative rate of 0.5.

infectious at time t (for convenience we will assume that t ≥ 0):

L(t) =
∞∑︂
j=0

c∑︂
k=1

H (nk + Tj − t)

[︄
(nk + Tj − t) Γ (αb, βb (nk + Tj − t))

Γ (αb)

+
αbΓ (αb + 1, βbMax [mk + Tj − t, 0])

βbΓ (αb + 1)

−
(︃

Max [mk + Tj − t, 0] Γ (αb, βbMax [mk + Tj − t, 0])

Γ (αb)

+
αbΓ (αb + 1, βb (nk + Tj − t))

βbΓ (αb + 1)

)︃]︄

where H(x) is the Heaviside step function[171] and c is the total number of shifts in
the rota pattern. Whilst this infinite sum does not have an analytical solution, we
can truncate it to achieve any required degree of accuracy by using our knowledge of
the Gamma distribution to calculate a suitable time after which the probability that
the individual is still infectious past said point is negligible.

Including testing into this model is a trivial task. The survival function for the prob-
ability that an individual is still infectious needs to be reduced by a factor of the
false negative rate of the test at each point where they could have had a positive test
(accounting for delays between taking a test and receiving a result). This is because,
for an individual to continue being infectious past this time, they must receive a false
negative result, the probability of which is equal to the false negative rate. In turn,
the integral of the survival function from that point onwards will also be reduced by
a factor equal to the the false negative rate. As we are modelling a testing pattern
that stays in line with the rota pattern, approximating our new L(t) becomes a mat-
ter of calculating when these tests occur with respect to t and reducing the subse-
quent integrals through multiplications by the false negative rate.
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Figure 3.14 demonstrates an example of how regular testing could affect the length
of time spent at work whilst infectious. In the left-hand plot we can see how an in-
fected individual’s estimated length of time spent at work whilst infectious would
change for a given start of the infectious period. In this case we have chose a 9-5
rota and started their infectious period at 9 in the morning. Monday, the start of the
shift pattern, would be the worst time to start their infectious period as this would
on average result in the most time spent at work whilst infectious (as indicated by
Monday’s line ending the highest). In the right-hand plot we see what would happen
if we tested at the start of each Monday shift, with an hour’s delay between testing
and results and a rate of false negative tests of 0.5. The end estimate for Monday
has become much better, as half of individual’s who start their infectious period on
a Monday morning are now identified. Tuesday now becomes the worst time to start
an infectious period, as it takes 6 days for any of them to be potentially identified as
infectious. This was already the mean length of infectious period anyway, so remov-
ing half at this point has little effect.

We have now demonstrated how, for testing at a fixed point in a rota, we can es-
timate the mean length of time someone will spend at work given a specific start
to their infectious period. We do not have to limit ourselves to one test in the rota
as well, with the outcome being analytically similar, nor do different tests need to
have the same false negative rate. Indeed, if we were tracking total force of infection
rather than length of time at work, we could include a link between the false nega-
tive rate of a test and the individual’s force of infection at time of testing. After all,
there is an argument to be made that both are linked through viral or bacterial load.
This is beyond the work of this thesis.

To demonstrate how effective a particular testing strategy would be we now need to
calculate the probability of an individual starting their infectious period at a par-
ticular point in the rota t, multiply this by L(t), the estimated length of time spent
at work whilst infectious given their infectious period started at time t and then in-
tegrate numerically across all possible values of t. It is with the distribution for the
start of the infectious period that we can take advantage of Fourier analysis.

Recall that R(t) was the repeating function representing an individual’s probability
of being infected at any point of a rota pattern, influenced by u and v, the relative
risk of being infected inside and outside of work. Rather than considering R̂(ω), the
Fourier transform of R(t), we will start by considering R(t) in terms of a Fourier se-
ries:

R(t) = a0 +
∞∑︂
j=1

aj cos
[︃
2πjt

T

]︃
+ bj sin

[︃
2πjt

T

]︃
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where

a0 =
1

T

∫︂ T

0

R(t)dt

aj =
2

T

∫︂ T

0

R(t) cos
[︃
2πjt

T

]︃
dt

bj =
2

T

∫︂ T

0

R(t) sin
[︃
2πjt

T

]︃
dt

Given that R(t) is a probability density function for the time of infection in each
complete rota, we know that between 0 and T it must integrate to 1, making a0 =

1
T
.

As with the constants CR,n, by remembering that the end of the last rest period in
one rota is equivalent to the beginning to the first shift in the next pattern, we can
write a simplified version of an and bn:

aj =
u− v

Aπj

∑︂(︃
sin
[︃
2πjn
T

]︃
− sin

[︃
2πjm
T

]︃)︃
bj =

v − u

Aπj

∑︂(︃
cos
[︃
2πjn
T

]︃
− cos

[︃
2πjm
T

]︃)︃

Through trigonometric identities we can therefore show:

R(t) =
1

T
+

u− v

Aπ

∞∑︂
j=1

1

j

[︄
cos
[︃
2πjt

T

]︃(︃∑︂
sin
[︃
2πjn
T

]︃
− sin

[︃
2πjm
T

]︃)︃

− sin
[︃
2πjt

T

]︃(︃∑︂
cos
[︃
2πjn
T

]︃
− cos

[︃
2πjm
T

]︃)︃]︄

Remembering that the Sine of the difference between two angles, sin [α− β] can be
written as sin [α] cos [β]− cos [α] sin [β], this becomes:

R(t) =
1

T
+

u− v

Aπ

∞∑︂
j=1

1

j

∑︂
sin
[︃
2πj

T
(n − t)

]︃
− sin

[︃
2πj

T
(m − t)

]︃

and once again we make use of the difference between two Sine functions, sin [α] −
sin [β] = 2 cos

[︁
α+β
2

]︁
sin
[︁
α−β
2

]︁
, so that we can make further simplifications:

R(t) =
1

T
+

∞∑︂
j=1

2(u− v)

Aπj

∑︂(︃
sin
[︃
πj(n − m)

T

]︃
cos
[︃
πj

T
(2t− (n + m)

]︃)︃
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This means we have a distribution for the time of infection with regards to the rota
pattern in the form of a Fourier series. We want to know the probability that an in-
dividual starts their infectious period at any point in the rota pattern. If we say that
the distribution for the disease’s latent period can be represented by a Gamma dis-
tribution with input parameters αa and βa, then the probability that they start their
infectious period at time t is equivalent to the convolution for R(t) with this Gamma
distribution.

P (ti = t) =

∫︂ ∞

0

βαa
a

Γ (αa)
xαa−1 exp [−βax]

(︄
1

T

+
∞∑︂
j=1

2(u− v)

Aπj

∑︂(︃
sin
[︃
πj(n − m)

T

]︃
cos
[︃
πj

T
(2(t− x)− (n + m)

]︃)︃)︄
dx

=
1

T
+

∞∑︂
j=1

2(u− v) (Tβa)
αa

Aπn
(︁
(Tβa)

2 + (2πj)2
)︁αa

2

×
∑︂

sin
[︃
πj(n − m)

T

]︃
cos
[︃
πj(n + m − 2t)

T
+ αa arctan

[︃
2πj

Tβa

]︃]︃
Once again, to simplify our notation, we can introduce a θ term, θa,j such that
tan [θa,j] = 2πj

Tβa
:

tan [θa,j] =
2πj

Tβa

cos [θa,j] = βa

(︁
(Tβa)

2 + (2πj)2
)︁− 1

2

P (ti = t) =
1

T
+

∞∑︂
j=1

2(u− v) cosαa [θa,j]

Aπn

×
∑︂

sin
[︃
πj(n − m)

T

]︃
cos
[︃
πj(n + m − 2t)

T
+ αaθa,j

]︃
where ti is the time of the start of their infectious period.

An individual’s expected length of time spent at work whilst infectious given a par-
ticular testing strategy is given by the multiplication of this probability by L(t), inte-
grated across all possible values of t between 0 and T :

E [in-work infectious periods] =
∫︂ T

0

P(Starting infectious period at time t)× L(t)dt

As L(t) is a periodic function, it can theoretically be represented as a Fourier series
and calculating this integration numerically could be avoided. However, with the in-
clusion of testing we have been unable to find an analytical solution to L(t) and so
cannot find its Fourier series explicitly.
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(a) (b)

Figure 3.15. Demonstration of the expected time at work whilst infectious given different fixed rota
patterns. In the observation equivalent study, we blocked out any rota pattern where an individual

would not get at least 1 day off per rotation. We have decided to remove this constraint here.

3.4.7 Results

Figure 3.15 shows the outcome of central estimates for the total at-work infectious
times for an individual who works 24 hours per week and 36 hours per week depend-
ing on the structure of their rota. We can see that it has a lot in common with our
initial observational estimates made in the previous chapter. If working 24 hours a
week, these central estimates range between 8.8 and 10.95 hours, and if working 36
hours a week these range between 14.4 and 16.4 hours. The structure of the rota pat-
tern can vary the expected at-work infectious time by as much as 2 hours.

As with the observational equivalent model, there appears to be an optimum length
of rota pattern (T ), although in our new analysis it appears to be somewhere be-
tween 8 and 10 days rather than just above 10 days as suggested by the analysis in
the previous chapter. Increasing the length of the standard shift (a) consistently de-
creases the expected in-work infectious time. Finally, and somewhat unsurprisingly,
increasing the proportion of time spent at work (w) increases the expected in work
infectious period. However, this increase is not uniform and results in some shifting
of the contour lines.

Figures 3.16 and 3.17 show some theoretical outputs for 2-test testing patterns across
a 9-5 5 day a week rota. Both look at 9-5 5 days a week rota patterns with two reg-
ular tests, and a disease with the same parameter settings as in 3.15, but whilst Fig-
ure 3.16 shows two tests with the same delay of 1 hour between test and result, 3.17
shows the effect of having one high-sensitivity test with a whole day’s delay between
test and result and one low sensitivity test with only an hour’s delay, a scenario de-
signed to be analogous to a polymerase-chain-reaction (PCR) / Lateral Flow Test
(LFT) combined testing strategy.

Consistently, the optimum strategy comes from the results of the higher sensitivity
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(a) (b)

(c) (d)

Figure 3.16. Contour plots of expected in-work infectious time for a 9-5 5 day a week work pattern
with tests that take 1 hour to return with the same disease dynamics as in the body of this chapter,
as a function of the time (in days) after the start of the first shift when such tests are taken. Figure

3.16a shows the outcome of two low-sensitivity tests (sensitivity=0.1), Figure 3.16b shows the
outcome from one low sensitivity test and one high sensitivity test (sensitivity = 0.1,0.9), Figure

3.16c shows the outcome from two high sensitivity tests (sensitivity = 0.9) and Figure 3.16d shows
the outcome from two mid-range sensitivity tests (sensitivity = 0.6). White crosses indicate the

optimum testing time for each combination of sensitivities.

test coming back in time for the start of the first shift of the week. This is still true
when the results are delayed by a day (Figure 3.17). When there is disparity between
the sensitivity of the two tests, the placement of the more sensitive test has a greater
influence on the outcome of the strategy (Figure 3.16b). The optimum placement
of the second test if heavily influenced by the sensitivity of the first test, as well as
its own sensitivity. If the highest sensitivity is low enough, then the optimum place-
ment for the second test is at the exact same time as the first one so that both re-
sults come back at the start of the week (Figure 3.16a). This assumes that the prob-
ability of a false negative in the second test is independent of a false negative from
the first test taken at the same time, which may not be the case, depending on how
each test is taken.

If the sensitivity of the first test is high enough, the second test is better off being
placed elsewhere in the week, but still so that its results come in as the individual
starts a shift. Which shift to choose depends on the sensitivity of both tests, as can
be seen in Figures 3.16c and 3.16d. We can see that the timing of higher sensitivity
tests has a greater influence on the outcome than the lower sensitivity tests and that
careful consideration of each test’s sensitivity needs to be applied when making this
decision.
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Figure 3.17. Contour plot showing the estimated in-work infectious time for a dual-test strategy
where one test is sensitive but with a day’s delay between test and result, and the other test has a

lower sensitivity but only an hour’s delay between test and result. These are analogous to PCR and
LFT tests respectively, although extreme values of sensitivity have been chosen for demonstration

purposes.

3.5 Discussion

From both analyses we can draw a few general rules regarding shift patterns:

1. A rota pattern with longer, fewer shifts results in a shorter length of time at
work whilst infectious.

2. Whilst there does appear to be an optimum length of rota pattern when it
comes to minimising the length of time at work whilst infectious, this optimum
is less clear when looking at minimising the total start and end of shifts at-
tended whilst infectious.

3. The optimum time to arrange regular testing is such that results from the test
would come back at the start of the rota pattern.

Each of theses rules can be explained with careful consideration. If a person can
work the majority of their hours in the short delay between exposure (Te) and the
beginning of the infectious period (Ti) then more of their infectious period will cross
over with their rest period, reducing their average time at work whilst infectious.
Rule 1 allows for this to occur, as the worker is able to do more hours of work in this
delay period

If shift length and the ratio of days off to days on is maintained, as the rota period
increases, the rest period increases. Initially, this increases the proportion of the in-
fectious period spent during the rest period. However, the work period also increases.
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In this model, the individual is only infected during a work shift. By increasing the
number of days worked in a row, the average length of time from becoming exposed
to starting their rest period increases, and so the probability of completing the en-
tire incubation period before the rest period begins to increase. As a result, there is
an optimum total rota length for any given ratio of days on to days off, as stated in
Rule 2.

The second part of Rule 2, looking at the effect changing the rota pattern has on
E [H], the expected number of handovers attended whilst infectious, can be explained
by considering how changing the rota pattern will effect the number of handovers oc-
curring per any time period. Increasing the length of individual shifts a whilst main-
taining the same length of rota pattern and proportion of time worked will result
in fewer handovers over a given time period and therefore a lower E [H]. However,
changing the length of the rota pattern whilst maintaining the same length of indi-
vidual shifts will result in approximately the same number of handovers per time pe-
riod. The relationship between shift length and number of handovers attended whilst
infectious is far stronger than the relationship between rota pattern length and num-
ber of handovers attended whilst infectious. Changing the length of shifts will not
affect Th in the same way that changing the number of shifts does, resulting in Rule
2. We consider Rule 2 further in Section 3.5.1.

Rule 3 states that the optimum testing time results from testing so that the results
come just at the start of an individual’s first shift. In order to make the most effec-
tive reduction, we want to capture the most time an individual will be at work whilst
infectious. It therefore seems reasonable that the time a detectable individual would
have the most remaining time at work whilst infectious would be right at the start
of the rota pattern. Indeed if the timing of infection Te and infectious period onset
Ti were Uniform with respect to the rota pattern then we would be certain that this
is true. In that scenario, the remaining length of infectious period that a detectable
individual left given that they are detected at time t would be independent of time
t. The amount of time they would have subsequently spent at work whilst infectious
would have therefore been dictated solely by the proportion of time after their test
that would have been at work. This is largest at the start of the rota pattern and
therefore testing such that their results would have come back at the start of the
pattern would result in the largest decrease in total time at work whilst infectious.

In this model, the timing of infection is not Uniform with respect to the rota pat-
tern, as individuals could only be infected whilst at work. In turn, the timing of in-
fectious period onset was not Uniform and the size of the remaining infectious period
of a detectable individual would not be independent of the timing of the test. How-
ever, for our parameter sets this variability was not enough to change the optimum
timing of test results. For a long enough pause between a run of shifts (i.e. a high
enough value of d) we can imagine a scenario where this variability would be enough.
If individuals can only be infected at work, for a high enough value of d, the proba-
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bility that anyone who was infected in one rotation of the rota pattern would still be
infectious come the start of the subsequent rota would be so small, and if they were
still infectious their remaining infectious period would be so brief that it would be
almost pointless to test so that the results come back at the start of the rota, and
another optimum would need to be found.

Outside these rules, this analysis demonstrates more simply that in our model the
rota pattern affects the length of time spent at work whilst infectious. To reduce
workplace infections, interventions to the rota pattern can be considered.

Our model makes a number of assumptions. Most notably, the probability of being
infected outside of work in our model is zero, whilst the probability of being infected
at any time at work has a Uniform distribution. Both of these statements are likely
not to be true. A more nuanced analysis may consider a lower but non-zero proba-
bility of being infected outside of work, or a varying probability of infection during
work hours, for example an increase during known periods of increased human con-
tact. An analysis of a model with a uniform probability of being infected throughout
the week would in effect be independent to Te and would instead look at the relation-
ship between Ts − Ti and Te.

This model also assumes to know the probability that an infected individual would
develop symptoms and immediately remove themselves from the work place. This
may be unrealistic. Multiple attempts have been made to calculate the exact rates
of asymptomatic infection for SARS-Cov-2, with estimates ranging from 7.5 -
30.7%[134], [172], [173]. This remains an important data gap[174].

With regards to the handover period, whilst we count the total number of handovers,
not all handovers are the same. They will vary in length and number of susceptible
individuals attending from day to day, with a possible weekend effect. Additionally,
if the individual developed symptoms during a shift and needed to go home, they
would still need to handover details to a colleague. This is assumed not to happen
in our model. It is difficult to know how someone might like to prioritise the number
of handovers attended whilst infectious compared to the total length of time spent at
work whilst infectious. Depending on the level of emphasis on cohorting and there-
fore the importance of handover time and total work time in the model, a score com-
bining the to measures could be calculated.

Finally, we assume that length of time at work is analogous to number of work place
infections. This may depend on the nature of the work involved. There may not be
a linear relationship between time and number of infectious contacts made depend-
ing on the workplace contact pattern. If we look at a hospital ward for example, a
ward round would result in an increased period of patient and clinician interaction
and therefore a greater number of infectious contacts. Additionally, although we can
see the mean length of time at work, this does not give us a complete distribution
of Tw. A long tail may result in “super-spreader” events while a homogeneous spread
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would result in consistent transmission rates. This variability is not captured by the
mean alone.

We have shown that our understanding of a disease process and parameters can be
used to better optimise shift patterns to reduce transmission of a disease between
staff whilst working the same total hours in a week. In this case, working longer
shifts for fewer shifts in a row decreases the length of time a person would be at work
and in handover infectious before developing symptoms. If the staff is not cohorted
by shifts, handover may not be a concern, unless it has been demonstrated to be a
time of increased disease transmission. However, with cohorting, handover would
be a critical time to consider reducing the risk of transmission. One method of do-
ing this could be looking at the shift patterns, as suggested by this investigation. We
have shown that the effect on changing shift patterns on infectious handover time is
not as uniform as it is on infectious work time. Therefore, caution should be prac-
ticed if trying to optimise shift patterns in this way.

Another important caution to consider is the ethical implications of changing rota
patterns. We have shown an optimum solution is to lengthen work shifts. However,
this may not be practical or appropriate given the individual key-worker. There is
a big difference between working 8 hours 5 days a week and 10 hours 4 days a week
even though on paper this results in the same hours worked. A socio-demographic
study of key-workers in France revealed that they were more likely to be women, of
a lower level of education and income and non-European immigrant workers. There
may be multiple reasons why a key-worker’s lifestyle may not be able to accommo-
date a change in their rota pattern and this should be accounted for before making a
change to minimise SARS-CoV-2 impact in the workplace.

The first part of this chapter had to rely on numerical integration to calculate a cen-
tral estimate for the total length of time at work whilst infectious and the total num-
ber of handovers attended during this time period. This can be a very slow technique
and for this reason we have only investigated very simplistic rota patterns. It can
also lead to numerical inaccuracy and if we look carefully at our figures we can begin
to see the resolution in our results. In particular, rather than an expected smooth
line in Figure 3.6, the multiple numerical intergrations have resulted in jagged lines.
In comparison, the same analysis using the Fourier transform model showed smooth
transitions as we changed the timing of the regular tests. Additionally, it was fast
enough that we were able to perform the calculation for two tests in one rota pattern
at once (Figure 3.16.

In doing so, we have shown an alternative method of calculating the expected time
at work whilst infectious given a fixed rota pattern through Fourier transform. We
also suggested a method of generating rota patterns that ensures a constant propor-
tion of time w is spent at work given any rota length T and standard shift length
a (so long as a is greater than w). It is gratifying to see that the conclusions from
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the previous numerical model and solution obtained through the use of Fourier trans-
forms are largely in agreement. But we could have implemented the rota adjustment
in our observational study, so the question becomes: “Other than confirming the con-
clusions of the observational model, what was the point of the solving the problem
with Fourier transforms?”

In short, the major advantage of an analytical, Fourier-transform-based solution is
accuracy. Unfortunately, due in part to the change in the calculation of Y (j) depend-
ing if j

T
is an integer, an exact solution to the infinite sum for Ŵ (0) cannot be cal-

culated with this structure of the rota pattern. However, we are guaranteed to get
closer to the exact result as we sum to a larger value of j. In our results we calcu-
lated Ŵ (0) to j = 100, but we could have chosen a larger number for greater accu-
racy. With each increase of j we alter our results less and less. An upper limit for j

could be chosen based on the accuracy required (i.e. stopping once increasing j ad-
justs our results by some minimum).

Conversely, we calculated our observational model by numerically integrating and
convolving across multiple Uniform distributions. We could increase our accuracy in
this case by dividing time into smaller parts when integrating, but it would be dif-
ficult to know by what degree this would increase the accuracy, or, as an inverse of
this statement, by what degree we are not representing the structure of our rota and
infectious period. For a short enough shift length and a wide enough time-step it is
not impossible that a shift could be completely missed in the numerical model. This
problem would become more prominent with the “make-up” shifts (for a total rota
length, total hours in a week worked and total hours in an unadjusted working day
worked such that an integer total number of working days could not be found).

Additionally, increasing the accuracy of the time-steps in our observational model is
more computationally taxing than increasing the maximum value of j. Increasing the
maximum value of j by one only requires adding this additional value to our cur-
rent total, but increasing the number of time-steps by one will alter the position of
all other time-steps, which in turn would all require re-calculating. In summary, with
the Fourier solution we have a model whose accuracy we can increase with a linear
increase in computational complexity, compared to the observational model, whose
accuracy is difficult to be certain of without careful examination and requires com-
plete recalculation when increased.

Another useful improvement obtained using Fourier transforms can be seen in the
force of infection expression κ(τ). We wanted a function that expresses the probabil-
ity that an individual was infectious at a particular time after they were infected. In
the observational model we stated that both the latent and infectious periods fell on
Gamma distributions with input parameters αa, βa and αb, βb respectively (ignoring
the possibility of symptom onset resulting in an individual isolating themselves). The
probability that an individual is infectious at time τ given that that are infected at
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time 0 is given by the following integration:

P (Infectious at time τ) =

∫︂ τ

0

βαa
a

Γ (αa)
xαa−1 exp [−βax]×

Γ (αb, βb(τ − x))

Γ (αb)
dx

That is, the probability that an individual is infectious at time τ is equivalent to the
probability that they become infectious at time x and then have an infectious period
that is at least length τ − x for all possible values of x between 0 and τ . Unfortu-
nately, this integral does not have an analytical solution and so we had to calculate
it numerically, introducing more computational complexity and a greater possibility
for numerical error (although, unlike with the rota pattern functions, it is reasonable
to assume a relatively smooth curve for this probability function, meaning we could
interpolate between calculated points without much concern for decreased accuracy).

We were able to calculate the exact function for the real part of the Fourier trans-
form for this function, ℜ [κ̂(ω)] (the imaginary part was not relevant to our calcula-
tions, although could similarly be calculated). We started by considering it as a sim-
ple binary function which would only equal one during an individual’s infectious pe-
riod. Whilst this function poses challenges to express analytically, its Fourier trans-
form is well described and through the linearity for Fourier transforms we could con-
vert this function to express its expected value given Gamma distributions of the la-
tent and infectious periods. This could be exactly combined with the Fourier trans-
form for the time of infection given the rota pattern through multiplication rather
than linear integration, once again reducing loss of accuracy.

But κ(τ) is just one of many functions we could have used in this model. When we
initially defined the model, we were instead looking at λ(τ), which gave an individ-
ual’s infectiousness at time t = τ given that they were infected at time t = 0. We
could choose any function to represent an individual’s changing force of infection
and, as discussed earlier, the very constraints that would define it would mean that
its Fourier transform must exist and therefore it can be incorporated into our model.

A final advantage of the Fourier model is how easy it is to adapt the rota. Any rota
can be broken down into two vectors, m and n, denoting the starts and ends of shifts
respectively and T , the length of the rota pattern. The resulting function Y (j) is
easy to adapt for any change in the rota pattern, be it an extra shift or a change in
the length of the pattern. Adding an extra shift in the observational model involved
including a new Uniform distribution to convolve, creating new room for numerical
errors and increasing the computational complexity.

There are, however, two notable advantages to the observational when compared to
the Fourier model. The observational model is easier to adapt to show the distri-
bution of in-work infectious periods, rather than a central estimate. We are already
numerically integrating across all possible outcomes to find the central estimate, so
it does not require a large adaptation of our calculations to instead calculate an ap-
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proximation of the cumulative density function and therefore a complete description
of the in-work infectious period distribution. Whilst we can calculate the central es-
timate through Fourier transform with relative ease, gaining any other information
about this distribution through similar analysis is analytically difficult.

The other major difficulty is including regular testing into the Fourier transforms ap-
proach. Through the observational model we were able to show that testing so that
results would come back at the very start of the rota pattern would minimise the
central estimate for the in-work infectious period. It would have been useful to prove
this observation through some equivalent model based on Fourier transforms. How-
ever, this does not seem to be easy to achieve.

In the observational model, including a testing regime was as simple as introducing a
fixed time point where there was a probability that anyone who was infectious would
be removed from the system. As we were integrating numerically, it did not matter
that this fundamentally changed the structure of the probability that an individual
would be infectious at a particular time, as each case could be considered on its own.

The Fourier transforms approach relies on a fixed structure for the force of infec-
tion function λ(τ), or the probability of infectiousness function κ(τ). These func-
tion are independent of the time an individual is infected, meaning so too are their
Fourier transforms. Their convolution becomes a simple matter of multiplication in
the frequency-space. It is also because of this fixed structure that we can take advan-
tage of the fact that the rota pattern influences both the time of infection and when
an infectious individual would be at work, meaning we could substitute Y (j) in our
calculations.

Introducing regular testing removes this independence. An individual’s force of in-
fection and the probability that they are infectious would fundamentally depend on
the timing of the regular swabs relative to their infection onset meaning the shape
of these functions would be inextricably altered by timing of infection onset. Convo-
lution of the infection onset distribution R(t) and the force of infection distribution
would no longer be simply equivalent to multiplication in the frequency domain.

This is a shame, because regular testing would seem to have the same cyclical prop-
erties as work rotas. Theoretically there exists a Fourier transforms approach that
could incorporate regular testing, and even optimise for multiple tests across one rota
pattern. A more complicated rota pattern may be more suited to a Fourier method
of analysis than through observational modelling. However, this is beyond the scope
of this investigation and leaves room for future research.

In summary, we have shown an alternative approach to investigating estimating an
individual’s time at work whilst infectious by taking advantage of the cyclical nature
of rota pattern. We were able to corroborate observations made in the previous chap-
ter, whilst improving the accuracy of the model used. To take this work further, one
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could look into including testing into the model.

3.5.1 Exploring an analytical reason for Rule 2

In our investigation of the effect of the rota pattern, one interesting conclusion we
came to was that, for a given disease parameter set, there appeared to be an approx-
imate optimum length of rota pattern to minimise the length of time an individual
spent at work whilst infectious. Additionally, the minimum becomes more promi-
nent for rota patterns with longer individual shifts, but remains fairly consistent. We
called this observation Rule 2. For the parameter set we investigated, which was an
approximate representation of the infectious career of an individual infected with
SARS-CoV-2, we found that this optimum fell around approximately 10-11 days.
However, our method of analysis provides us with little insight as to why this mini-
mum occurs, why it becomes more prominent for longer individual shifts and why for
our particular data set it was at around 10-11 days. In this section, we aim to drasti-
cally simplify our model in order to justify these observations.

We define a rota pattern of length T where the total proportion of time spent at
work during the entire rota pattern is w. For example, if an individual works a 24
hour week, w will equal 1

7
regardless of the value of T . The total time worked is Tw.

On a given working day, the proportion of the day an individual actually works is a.
a must be greater or equal to w in order for it to be possible to have worked a to-
tal of Tw over T days. The individual starts work at the start of the rota pattern at
time t = 0. They work all their shifts until they have worked a total of Tw and then
rest until T and their work rota starts anew.

So far, this is very similar, if not effectively identical to the model discussed in the
body of this chapter. The first change that we make to the model is to ignore shifts
entirely. Rather than considering the rota as a series of days at work, with rests be-
tween shifts, in our abridged model, at the start of the rota our individual is con-
stantly at work, accumulating work time at a rate of a proportional to the time ac-
tually worked. Once they have accumulated a total of Tw hours they leave work and
do not return until T , when the rota pattern starts again. Figure 3.18 demonstrates
how work hours are accumulated in this new simplified model, using a 9-5 rota pat-
tern as an example.

If they accumulate work-time at a rate of a, it will take them until t = Tw
a

to accu-
mulate a total work-time of Tw. This means in any given rota, they work until Tw

a
,

at which point they will be off until T . If they are infected in a given rota pattern
that started at time t = 0, then without the structure of their rota pattern, the dis-
tribution for the time at which they were infected is a simple Uniform distribution
Te ∼ U

(︁
0, Tw

a

)︁
.

We previously modelled both the latent period and infectious period according to
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Figure 3.18. A graphical representation of simplified rota pattern model. In this case, we are
looking at a 9-5 rota pattern starting at time t = 0. The top graph shows the rate at which work

hours are being accumulated in the original model (blue) and the simplified model (orange) and the
bottom graph shows the cumulative hours worked. By time t = 5, both models have worked the

same length of time.

some probability distributions. However, we are now going to simplify things further.
We shall say that both the latent period and infectious period are fixed at value of
x and y respectively. This means for a given value of Te, we can calculate the exact
length of time an individual spends at work whilst infectious. Figure 3.19 demon-
strates how this could appear if an individual was infected exactly halfway through
their working shift

(︁
Te =

Tw
2a

)︁
. In this figure, the blue window shows the time the in-

fected individual spends at work prior to their rest period. The orange window shows
the length of time they spend at work whilst infectious after they return from their
rest.

We are going to assume that x and y are large enough such that they definitely
have not completed their infectious career prior to starting their rest period(︁
Te + x+ y > Tw

a

)︁
. Conversely we assume that x is not large enough that an indi-

vidual could not have started their infectious period prior to the start of the second
rota pattern (Te + x < T ). Finally, we will also assume that x and y are not so large
as to still be infectious going into a second rest period

(︁
Te + x+ y < T + Tw

a

)︁
. This

means we only need to focus on the blue and orange windows in Figure 3.19.

The length of time accumulated at work after becoming infectious but prior to en-
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Figure 3.19. Simplified demonstration of possible in-work infectious windows. The individual is
infected at time Tw

2a , represented by the vertical dashed line. The top graph shows the time at
which the infected individual is infectious, while the bottom graph indicates when they are at work.

The blue and orange windows show when these two time periods cross over.

tering the rest period (the blue window) is equal to the total length of the shift, Tw
a

,
minus the time it takes to become infectious, Te + x, multiplied by a. Remember we
multiply by a because time in our simplified model time at work is accumulated at a
rate of a. This is contingent on the individual becoming infectious prior to the rest
period.

The length of time accumulated at work after coming back from the rest period but
before the infectious window is over (the orange window) is equal to the time that
the infectious window is complete, Te + x + y, minus the start of the second rota cy-
cle, T , again all multiplied by a. This is contingent on the individual still being in-
fectious once the second rota pattern starts.

These two calculations allow us to write a conditional formula for Tw, the total time
at work accumulated while infectious:

Tw = a×

⎛⎝⎡⎣⎧⎨⎩Tw
a

− (Te + x) , Tw
a

> Te + x

0 otherwise

⎤⎦+

⎡⎣⎧⎨⎩Te + x+ y − T, Te + x+ y > T

0 otherwise

⎤⎦⎞⎠
As the probability distribution for Te falls on a Uniform distribution with a width of
Tw
a

, we can integrate through all possible values of Te to calculate a mean value of
the time accumulated in the blue and orange windows. First though, we should clar-
ify that if x is greater than Tw

a
then no time can be accumulated in the blue window.

The latent period would be too long so that even if the individual is infected right
at the start of the rota pattern they would not be infectious before their rest period.
Similarly, if T is greater than Tw

a
+ x+ y they could never accumulate time in the or-

ange window, Even if they were infected at the very last moment of their shift, they
would already be no longer infectious by the time they return to work. The total ex-
pected time at work whilst infectious becomes the following:
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Blue area:

⎧⎨⎩ a2

Tw

∫︁ Tw
a

−x

0
Tw
a

− (z + d)dz, Tw
a

> x

0 otherwise

Orange area:

⎧⎨⎩ a2

Tw

∫︁ Tw
a

T−y−x
z + x+ y − Tdz, T < Tw

a
+ x+ y

0 otherwise

E [Tw] =

⎡⎣⎧⎨⎩
(Tw−xa)2

2Tw
, T > ax

w

0 otherwise

⎤⎦+

⎡⎣⎧⎨⎩
(T (w−a)−a(x+y))2

2Tw
, T < a(x+y)

a−w

0 otherwise

⎤⎦ (3.9)

Rule 2 stated that there appeared to be a length of rota pattern T that resulted in
a minimum length of time whilst infectious. We can find this minimum value in our
simplified model first by differentiating E [Tw] with respect to T :

dE [Tw]

dT
=

⎡⎣⎧⎨⎩w
2
− a2x2

2T 2w
, T > ax

w

0 otherwise

⎤⎦+

⎡⎣⎧⎨⎩
(T (a−w))2−(a(x+y))2

2T 2w
, T < a(x+y)

a−w

0 otherwise

⎤⎦ (3.10)

The effect the rota length has on the expected length of time at work whilst infec-
tious is dependent on two conditions: if T > ax

w
or if T < a(x+y)

a−w
. It is possible for

both or neither to be true, which means we now need to investigate four possible
states:

1. Only the left hand condition is true: T > ax
w

, T ≥ a(x+y)
a−w

2. Only the right hand condition is true: T ≤ ax
w

, T < a(x+y)
a−w

3. Neither condition is true: T ≤ ax
w

, T ≥ a(x+y)
a−w

4. Both conditions are true: T > ax
w

, T < a(x+y)
a−w

If only the left hand condition is true then

dE [Tw]

dT
=

w

2
− a2x2

2T 2w

By rearranging the condition on T , we find

w

2
>

a2x2

2T 2w

The gradient of this slope must be positive. This means that there is a smaller value
of T that will result in a smaller estimated total time at work whilst infectious.

If only the right hand condition is true then

dE [Tw]

dT
=

(T (a− w))2 − (a(x+ y))2

2T 2w
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Once again, we can rearrange the condition on T to find out if this gradient is pos-
itive or negative (to be specific, when we are rearranging, we are assuming that all
parameters are positive, in keeping with the model):

(T (a− w))2 < (a(x+ y))2

The gradient is negative, meaning that for any value of T that fulfills this criteria,
there is a greater value that results in a smaller estimated value of Tw.

If neither condition is true, then the gradient is in fact 0. It may be initially unclear
if this represent a minimum value of E [Tw] or a maximum. However, with careful
consideration we can resolve this problem. If neither condition is true then:

a(x+ y)

a− w
≤ T ≤ ax

w

If we decrease T to the point where is it less than a(x+y)
a−w

, this generates a situation
where the right hand condition is true but the left hand condition is false. The gra-
dient is negative, so any further decrease in the value of T will result in an increase
in the value of E [Tw]. Similarly, if we were to increase the value of T such that it be-
comes greater than ax

w
then the gradient becomes positive. Any further increase in

the value of T increases the estimated value of Tw. Therefore, if a(x+y)
a−w

< ax
w

, then the
values for T that results in a minimum value of E [Tw] are any values in this region.

Alternatively, we can observe what happens to the value of E [Tw] when neither
equality is true from Equation 3.9. In this case, the estimated total length of time
at work whilst infectious would be 0. Since this value must be non-negative, a value
of 0 must represent a minimum.

Perhaps the most complicated to understand possibility is if both the left and right
hand conditions are true. In this case we need to solve a polynomial equation to find
when the gradient is equal to 0:

dE [Tw]

dT
=
w

2
− a2x2

2T 2w
+

(T (a− w))2 − (a(x+ y))2

2T 2w
= 0

T 2w2 − a2x2 + T 2(a− w)2 − a2(x+ y)2 = 0

T 2 − a2(2x2 + 2xy + y2)

a2 − 2aw + 2w2
= 0(︄

T + a

√︃
2x2 + 2xy + y2

a2 − 2aw + 2w2

)︄(︄
T − a

√︃
2x2 + 2xy + y2

a2 − 2aw + 2w2

)︄
= 0

T =± a

√︃
2x2 + 2xy + y2

a2 − 2aw + 2w2

We now have two possible minima for T . However, as we are only interested in pos-
itive values of T , we should scrutinise further to see if we can narrow our options

170



down. Looking at the numerator in the fraction term, 2x2 + 2xy + y2, this is cer-
tainly positive. The denominator, a2 − 2aw + 2w2, maybe more difficult to de-
termine. However, if we realise that it is equal to a2 − 2aw + w2 + w2 and that
a2 − 2aw + w2 = (a − w)2, then we can be certain that the denominator is also
positive. In turn, we are only interested in the following value of T :

T = +a

√︃
2x2 + 2xy + y2

a2 − 2aw + 2w2

But does this minimum occur between our two thresholds? Proving

ax

w
< a

√︃
2x2 + 2xy + y2

a2 − 2aw + 2w2
<

a(x+ y)

a− w

seems like a fairly daunting task. Added to this, we have not actually shown that
this is a minimum, only that it is an extremum. Instead, we will prove that there
must be a minimum between the two thresholds, and as this is the only extremum
that fulfills this criteria, it must be a minimum.

First, let us consider the gradients at the two thresholds, T = ax
w

and T = a(x+y)
a−w

,
when ax

w
< a(x+y)

a−w
. In the first case, the gradient with respect to T is negative. The

left hand condition of Equation 3.10 is false and so its contribution is equal to 0.
The right hand condition is true and so its contribution is negative. What is use-
ful to note is that even if we consider the left hand side to be true by relaxing the
condition to T ≥ ax

w
, then inserting our value for T into the calculation for the left

hand side of this equation still results in 0. This part of the equation starts at 0 and
smoothly transitions into being positive. This is important as it means this threshold
does not represent a discrete change in the gradient but a smooth one. The gradient
will remain negative immediately after this threshold.

A similar conclusion can be drawn when inserting T = a(x+y)
a−w

into Equation 3.10.
This time, it is the right hand part of the equation that is equal to 0, regardless of if
we take the threshold as T < a(x+y)

a−w
or T ≤ a(x+y)

a−w
while the left hand side is true,

resulting in a positive overall gradient. Again, as the right hand side is equal to 0 at
this threshold, as we decrease the value of T there must be a smooth, continuous in-
crease in the value of the right hand side of the equation. The gradient immediately
before the threshold must also be positive.

So, passing through this region, the gradient with respect to T changes from negative
to positive. In order for this to occur with a continuous curve, there must be at least
one minimum in this region. Since T = a

√︂
2x2+2xy+y2

a2−2aw+2w2 is the only extremum that
can fall in this region (the other option is negative), we know that it must fall in this
region, and that it must represent a minimum.

We now have two possible solutions for a value of T that results in a minimum value
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for the length of time spent at work whilst infectious. If

ax

w
<

a(x+ y)

a− w
,

which rearranges to
a

w
< 2− x

y
,

then it is possible for both the left and right hand conditions to be true, meaning
that the minimum value comes at T = a

√︂
2x2+2xy+y2

a2−2aw+2w2 . Conversely, if a
w

≥ 2 − x
y
,

then it is possible for neither left nor right hand condition to be true. When this oc-
curs, Tw = 0 and the infectious individual spends no time at work whilst infectious.
In this case the minimum value of T is the region a(x+y)

a−w
≤ T ≤ ax

w
.

These inequalities enable us to make two interesting observations by considering
what the fractions a

w
and x

y
represent. The fraction a

w
is the proportion of time in

a working day spent working over the proportion of time in a working week spent
working. This must be greater or equal to 1, as in order to maintain a certain total
proportion of time worked, w, the proportion of time worked on a working day, a,
must be at least this value. In the case where a = w, the working individual would
have to work every day of the rota pattern. In our simplified model there would be
no minimum to be found, as the individual would always be at work.

The fraction x
y

is the length of an individual’s latent period over their infectious pe-
riod. It must be greater than 0, but can otherwise be any value, as x and y put no
constraints on each other. As neither fraction can be negative, we can find two situa-
tions where the truth of the inequality is only dependent on one of the fractions.

Firstly, as x
y
> 0 if a

w
> 2, the inequality must be false. This means if the propor-

tion of time spent working in a day is more than twice the total proportion of time
spent working, then the optimum value of T falls in a region between a(x+y)

a−w
and ax

w
,

regardless of the disease parameters.

Secondly, as a
w

≥ 1, if x
y

if greater than 1 then the inequality must also be false.
This means if the latent period is longer than the infectious period then the opti-
mum value for T again falls in a region between a(x+y)

a−w
and ax

w
. In both cases, for a

large enough value of either a
w

or x
y
, the inequality can never be true, regardless of

the value of the other fraction.

As a final step, we can see how this simplified model compares to the output from
the model in the body of the text. We investigated working a total of 24 and 36
hours a week (w = 1

7
and 1.5

7
respectively) with a daily shift length between 8 and

12 hours (1
3
≤ a ≤ 1

2
). We can take the mean values for the latent and infectious

periods:
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x =2.84

y = 6× 0.3 + 2× 0.7 =3.2

(see Table 3.2).

Figure 3.20 shows the estimated length of time at work whilst infectious for our sim-
plified model. As predicted in our analysis, this metric forms a minimum. If the
length of the rota pattern T is either too long or too short, E [Tw] increases. As a in-
creases, the minimum value of E [Tw] decreases to a lower limit of 0, at which point
the minimum becomes a region.

(a) (b)

Figure 3.20. Estimated accumulated time at work whilst infectious in the simplified model. The left
hand plot shows how this metric changes if an individual accumulates 24 hours of work a week

(w = 1
7 ), where the right hand plot shows the same metric for a 36 hours working week (w = 1.5

7 ).
In order to see the shape and minima nore clearly, we have decided to show this parameter through

line plots rather than contour plots.

Figure 3.21 tracks the changing optimum value of T for our simplified model across
this parameter set. When this optimum is a single value (i.e. when a

w
< 2 − x

y
) this

optimum remains fairly constant, approximately equal to 9 days. This is roughly in
keeping with our observation in the body of the text of a minimum at between 10
and 11 days. However, when the optimum value of T is instead a region ( a

w
> 2 −

x
y
), this region, whilst including our previously estimated optima, becomes relatively

wide when compared to the variation in the minimum for lower values of a.

Through careful analysis of this simplified model we have been able to justify Rule
2 from the body of the text. We have found an analytical reason for an optimum
length of rota pattern forming, that appears to be fairly constant as we vary the
length of individual shifts. This reason is the trade-off between lengthening the rota
pattern so that an infected individual is recovered by the time their next cycle starts
and shortening the rota pattern so they are already in a rest period by the time they
become infectious. Unintentionally, by looking at Figure 3.20 we have found further
evidence for Rule 1 as well. As we increase the rate at which an individual accumu-
lates work hours (a) we decrease E [Tw].

There are some notable differences between the results of our simplified model and
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(a) (b)

Figure 3.21. Optimum rota lengths in a simplified rota model. The blue and the orange dotted lines
show the left and right hand conditions from Equation 3.10 respectively. In turn the green

line/region shows the value of T that will minimise E [Tw]. For any value of a where ax
w < a(x+y)

a−x
(where the blue line is higher than the orange line), the optimum rota length takes a single value.

However, past the threshold where this inequality is no longer true (where the blue and orange lines
cross), the optimum value of T is the region between these 2 lines. This does not occur on the right
hand plot, because the value of w is too high. If we extended the x-axis far enough we would expect

to see these lines cross.

the numerical model in the body of the text. Of course, in our more complicated
model, as in real life, it is very unlikely to find a rota pattern that will result in
an individual spending exactly no time at work whilst infectious. By integrating
through every possible latent, prodromal and infectious period we should always find
some combination that results in an amount of infectious work-time. This may go
some way to explain why we consistently underestimated the length of the optimum
rota pattern in our simplified model. Another reason may well be our assumptions
that neither the possibility of ending one’s infectious period before the end of the
first week’s work, nor the possibility of not yet being infectious before the second
week had begun, needed to be accounted for in our model (see Page 167). Both were
kept out for analytical simplicity, but either one may affect the true location of the
optimum value of T .

Overall, this simplified model has helped us understand a little more clearly the ef-
fect changing our parameter set has on our model. If we wanted to repeat this analy-
sis for a different disease model, this simplified version may be a good place to start.
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Summary:
We have taken two approaches to write a model that approximates the

total expected length of time an infectious individual will
spend at work given that they were infected at work. Through these
models we have shown three key concepts to take away from these
analyses. The first is that a rota pattern with longer, fewer shifts

results in a shorter length of time at work whilst infectious. Secondly,
there is optimum length of rota pattern when it comes to minimising
the length of time at work whilst infectious. Finally, the optimum

time to arrange regular testing is such that results from the
test would come back at the start of the rota pattern.

Being able to express this model in terms of a Fourier transform
opened up many opportunities for future analysis. In particular,
it would be interesting to incorporate these findings into a full

transmission model. It has also revealed the importance of rota patterns
when considering work-place outbreaks, and suggests some mitigation

that can be made in the future.
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Chapter 4

Nosoco: A tool for up-to-date monitoring of

nosocomial infections across a hospital

4.1 Introduction

Even prior to the SARS-CoV-2 global pandemic, nosocomial infections, meaning the
transmission of an infectious disease in a healthcare setting[175], were a growing con-
cern, with estimated total of 3.2-6.5% of all inpatients suffering from a hospital ac-
quired infection at some point during their stay[176], [177], and this number poten-
tially being higher in developing countries[178]. As they represent a collection of dis-
parate infections, their aetiology and causative organisms vary depending on the in-
fection. Possible nosocomial infections include, but are not limited to, lower respi-
ratory tract infections resulting in pneumoniae, catheter related urinary tract infec-
tions, surgical site infections and central line infections. Through a point-prevalence
study 2015, Magell et al. indicated that lower respiratory tract infections may be the
leading nosocomial infection[176].

Once an infection is identified, defining it as nosocomial in origin is dependent
mostly on history, in particular how long before a patient has been admitted to hos-
pital (surgical site infections are an obvious exception to this). Individual guidance is
available for treatment depending on the causative organism, although, in the case of
bacterial infections, broad-spectrum antibiotics are often recommended owing to the
high rate of multi-drug resistant nosocomial infections[179], [180]. This resistance,
alongside an apparent raised mortality[181], [182], results in a considerable burden
from nosocomial infections on hospitals.

According to Public Health England (PHE) guidance, in the early pandemic, a new
diagnosis of SARS-CoV-2 infection in hospital was classified as a likely healthcare as-
sociated (nosocomial) infection should symptoms of the disease develop more than 8
days after admission and a definite healthcare associated infection if they start 14 or
more days after admission. Additionally, an outbreak is defined as two or more such
infections occurring in a single location (such as a ward)[183]. This robust method of
identification leaves no room for doubt and allows for rapid identification of health-
care associated outbreaks. This advice continues to be the prevailing school of wis-
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dom regarding SARS-CoV-2 nosocomial transmission identification, although earlier
thresholds have at times been chosen for a higher sensitivity when detecting nosoco-
mial transmissions.

Using the PHE definition of nosocomial Covid-19 infections, it has been estimated
that currently nosocomial transmission represents approximately 17.6% of all trans-
mission in England[184]. Zhou et al. conducted a meta-analysis of nosocomial out-
breaks of similar coronavirus diseases (SARS and MERS)[185]. They estimated that
in the early outbreaks of SARS-Cov-2, SARS and MERS, nosocomial transmissions
contributed to as much as 44%, 36% and 56% of total transmissions respectively.
They also noted the significant strain that hospital infections can cause through staff
absences.

Outside of the ethical implications of iatrogenic infections, one reason the correct
identification of nosocomial infections is important is their outcomes when compared
to equivalent community acquired infections. On the one hand, it may be expected
that patients who are infected in hospital will tend towards being more frail or hav-
ing more co-morbidities (after all, they must at least already have one disease that
has resulted in their hospitalisation in the first place) meaning they could be more
vulnerable to severe sequelae of the infection in question. Conversely, it may be that
a patient who is infected during their admission is more likely to be identified than
if they had been infected with the same disease in the community due to regular
screening, symptom monitoring and direct access to testing. If this were the case we
could expect outcomes to appear to be worse for those infected outside of hospital.
This external group would be more vulnerable to presentation bias, as individuals
outside of hospitals who only experience mild-to-low may never appear the a data-
set, where the equivalent individuals in hospital may be tested as a precaution to
prevent further spread of disease.

Khan et al. performed a prospective cohort study comparing the 30-day mortality
of those who were admitted due to SARS-CoV-2 infections, those who were admit-
ted for unrelated reasons and coincidentally found to be SARS-CoV-2 positive and
those who developed the infection at least seven days into their admission. This data
was collected from three hospitals across one trust in Scotland, identifying 173 pa-
tients in total. They found no difference in the mortality of these three groups[186].
Conversely, the COPE-Nosocomial Study, an observational study performed in UK
hospitals and one Italian hospital, identifying 1564 patients in total, found that noso-
comial transmissions resulted in overall lower mortality rates when compared to ex-
ternal transmission, but no change in mortality across the initial seven days of infec-
tion[187]. Although the Khan et al. study did separate coincidental admissions with
SARS-CoV-2 from admissions from SARS-CoV-2, neither study appeared to examine
the biases inherent in monitoring infection rates in hospitals.

Whilst the exact nature of outcomes from nosocomial transmission of SARS-CoV-
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Figure 4.1. Cumulative density function (F (τ)) for a SARS-Cov-2 incubation period represented by
a Gamma distribution with a mean of 4.84 days and a standard deviation of 2.79 days. The grey
dotted lines shows the cut-off point for nosocomial transmission as suggested by PHE of 8 and 14
days. Any person developing symptoms on their 8th day of admission has a 0.872 chance of have a
incubation period shorter than their admission time, which, given an equal probability of infection
inside and outside of hospital, is equivalent to saying they have a 0.872 probability of having been

infected in hospital.

2 remains unclear, it is undeniable that it makes up an important proportion of all
transmission. Identifying outbreak areas remains vital for understanding transmis-
sion methods and preventing further transmission. It may not be sensible, therefore,
to rely on the PHE suggested 8-day or 14-day cut-off window alone.

The incubation period between infection and symptom onset can obfuscate the ex-
act timing of infection. Overton et al. suggest that the way in which it varies can be
mapped well to a Gamma distribution with a mean of 4.84 days and a standard devi-
ation of 2.79 days[133]. With this distribution, there is approximately a 50% chance
that someone developing symptoms was infected under 5 days ago. In the case of an
individual developing symptoms five days into their hospital admission, this equates
to a 50% chance of having been infected during their admission (assuming equal
probabilities of infection inside and outside the hospital environment). Indeed, an in-
dividual developing symptoms on day 8, in keeping with a PHE diagnosis of likely
nosocomial infection, would have a probability of 0.872 of having had an incubation
period short enough that they were infected during their admission (see Figure 4.1).

Given this distribution, it is possible that an individual infected early in their admis-
sion may have a incubation period short enough to be assumed to have been infected
outside the hospital. Similarly, with a long enough incubation period, an individ-
ual infected just before their admission date may be miss-classified as a nosocomial
transmission.

Rather than classify an individual as one of the two binary options of having either
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a nosocomial or external transmission, we have developed a tool called Nosoco that
is designed to approximate the probability that an individual was infected before or
after their admission based on the timing of their symptom onset. This information
on its own would not be informative on an individual basis. Nosoco combines each
observed individual’s probability of having been infected whilst in hospital across a
population to indicate areas where and when it is highly probable that outbreaks
have occurred. Although the basis of the mathematics that informs Nosoco is con-
ceptually simple, to the best of our knowledge, no other equivalent tool exists for es-
timating the impact of nosocomial transmissions.

In Section 4.3 of this chapter, we aim to demonstrate the mathematics behind
Nosoco using anonymised data from a multi-site NHS trust. We will show how know-
ing the timing of symptoms onset and pairing this with the timing of ward admis-
sions can be used to estimate:

1. the total number of nosocomial transmissions occurring on any ward or any hos-
pital

2. the probability that an outbreak may have occurred on a particular ward or
hospital, according to PHE guidelines

3. the total rate of infection on a ward or in a hospital

In Section 4.4 we assess Nosoco in terms of its speed and how its results compare to
more traditional methods of estimating the total number of nosocomial transmissions
through random sampling across the pandemic. In Section 4.5, we will look at how
data developed from Nosoco can be used to better understand nosocomial transmis-
sions in general. In particular, we will focus on the information we can gain from es-
timating the total number of infections occurring in a hospital and comparing this to
the total number that have occurred outside of hospital resulting in an admission. In
Section 4.6 we will look at how the rate of infection has varied throughout the pan-
demic, how it varies between age groups, and how our method of calculating the rate
of infection affects our conclusions.

4.2 Parameter and Function description

Table 4.1 is a list of relevant parameter and function definitions for this chapter. The
reader may find it useful to refer back to this table as and when required.
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Parameter/Function Description

aj
The maximum between time x and the time the jth

individual was admitted

bj
The minimum between time y and the time the jth

individual was discharged

δj
An indicator function showing if the jth individual

had a first positive swab after aj

F (t)
The cumulative density function for the incubation

period of a disease

g(t)
The probability density function for the length of

an individual’s ward admission

G(t)
The cumulative density function for the length of

an individual’s ward admission

L(θ|x) The likelihood function for parameter θ
given some observation x

Λ The rate of nosocomial infections
m The number of simulation iterations

ν
The rate of the Exponential distribution from

which Λ is drawn

P
The vector of all probabilities that individuals
were infected in the observed ward during the

observation period
π(theta) The prior distribution for some parameter θ

q A matrix used to calculate Qm

Qm
The probability that at least m individuals
were infected during the observation period

r
The total number of people infected during the

observation period

r̄
Alpha parameter for the Gamma distribution that
represents the central estimate for the posterior

distribution for Λ
r The vector of different values of r on simulation
τ Time from when an individual was infected

τττ
The set of all observations X where

δj = 1

tj
The timing of the jth individual’s first positive

swab if δj = 1, otherwise a null value

W
The total length of all admissions prior to

first positive swab during the observation window

W̄
Beta parameter for the Gamma distribution that
represents the central estimate for the posterior

distribution for Λ

W The vector of different values for W on simulation

X
The set of all observations, made of vectors

a, b, δδδ and t.
x The beginning of the observation window
y The end of the observation window

Table 4.1. A complete description of parameters and functions used in this chapter
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4.3 An explanation of the methods used by Nosoco

4.3.1 Structure

Nosoco is coded in Python as part of a Jupyter notebook. It is programmed to ac-
cess data from an NHS trust database in the form of two SQL codes. These SQL
codes can be changed depending on the trust database arrangement. We chose
Python as the coding language owing to how easily the SQL commands in the Pan-
das package interacted with the particular databases we were extracting data from.
We did briefly experiment with converting to C++ but found its SQL interactions
less manageable.

We give Nosoco two input dates: a start date and an end date. It is between these
two dates that we want to estimate the total number of nosocomial transmissions (as
well as other transmission adjacent metrics). The two SQL requests extract hospital
data between these two dates as well as over certain wider time frames.

The first SQL query, entitled All movements.sql identifies all ward admissions be-
tween the two input dates. It also looks at admissions for a time period prior to the
requested window (as a default 2 months) to ensure nosocomial transmissions that
are diagnosed in the requested window but actually occur prior to the requested win-
dow are observed as well. This is not strictly necessary for most standard analyses,
but is useful when comparing Nosoco to other methods of identifying nosocomial
transmissions. It records the ward name and site, the date at which the patient ar-
rives and leaves, and the patient’s name, date of birth, NHS Number and Hospital
Number.

The second SQL query, entitled Just all swabs.sql collects all SARS-Cov-2 swabs
performed between the same initial input dates. It also checks for swabs prior to the
observation window, for either 90 days prior to the window or from 01/03/2020 to
the start of the observation window, whichever is shortest. This is done to ensure
that pre-existing SARS-CoV-2 infections are not identified as new infections during
the observation window. It also requests all swabs at most 28 days after the obser-
vation period. This is done so that individuals who are infected during the observa-
tion window but only diagnosed afterwards are also observed. It records the same de-
mographics of the patient as above, as well as the location of the swab, the timing
of the swab (including the time at which the result is made accessible) and the re-
sult. It is advised that the input end date is more than 14 days prior to the current
date for retrospective investigations as this will exclude individuals who have been
infected but are yet to receive a positive test result.

The patients are identified first by their first names, last names and dates of birth.
This is an optional function. They are then anonymised, each being assigned a ran-
dom integer value. If the user wishes to know each patient’s true identity (for the
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Figure 4.2. The time frames over which Nosoco performs SQL queries. All movements.sql checks
two months prior to the requested observation window to see which patients were already admitted

at the start of the observation window. Just all swabs.sql checks 90 days prior to the
observation window up until 01/03/2020 to see if any positive cases in the observation window

represent pre-existing diagnoses, and 28 days after the observation window to look for patients that
were admitted during the observation window but diagnosed with SARS-CoV-2 after the input end

date as they may represent nosocomial transmissions during the observation window. After its
analysis, Nosoco only returns information regarding nosocomial transmissions it has estimated to

have occurred during the requested observation window.

sake of contact tracing, for example) a dictionary that translates these integers back
to their patient-identifiable details can be returned. Nosoco collates and orders all
admissions and swabs of any patient identified through the SQL queries, removing
any overlaps in admissions between wards. This generates two NumPy arrays, one
containing the admission data and one containing the swab data. Details about each
ward and a collated list of individuals who both appear in the admissions array and
have a positive swab result in the swab array are also returned. Patients who have
not received a positive diagnosis of SARS-CoV-2 are still recorded, as they represent
an important denominator. For certain analyses, it may not be useful to just esti-
mate the total number of nosocomial infections as a larger population size will inher-
ently be more likely to see more nosocomial transmissions. For example, if we were
comparing total nosocomial transmissions between age groups, we may see a higher
total number of nosocomial transmissions among older populations. It would be un-
clear from this information alone if this would be due to a true increased risk or be-
cause older populations represent a larger proportion to the admitted population.

For each individual who was both admitted and had a positive swab, Nosoco can cal-
culate the probability that they were infected over a particular time period by con-
flating the timing of their first positive swab with the timing of their symptom onset
(see Section 4.4.3). By comparing a time period with how it overlaps with a patient’s
admission timing, it can also calculate the probability that an individual was infected
over a particular time period in a particular location. The observed time period in
which data was extracted (01/03/2020 to a chosen date) is divided into even chunks
(default length of seven days). For each of these time periods for each ward Nosoco
calculates three metrics:
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1. Estimated total number of nosocomial infections

2. Probability that the total number of infections is greater or equal to 2 (this
number can be changed depending on need)

3. Ongoing rate of infection (estimated through simulation assuming a constant
rate of infection on any one ward over each chunk)

For each of these metrics, Nosoco generates heat-maps showing how these estimates
change for each ward over time. A ward may be excluded from any heat-map if the
probability of any nosocomial infection having occurred there is sufficiently low as to
be irrelevant. Finally, it also optionally generates text files for the highest risk wards
and time periods, including patients who were likely infected during these time peri-
ods, to aid manual investigation.

4.3.2 Calculating the metrics used by Nosoco

For any particular ward over a time period between times x and y we can find the
set X of observations such that the Xj represents the observation, between times x

and y, relative to the jth individual who was admitted on said ward. This includes
individuals who were admitted prior to time x as well as those who were discharged
prior to time y, but excludes individuals who had a positive swab prior to time x as
we assume that an individual cannot be reinfected (specifically, we assume that they
cannot be reinfected in under 90 days, so X excludes individuals who had a positive
swab less than 90 days prior to x). The observation Xj consists of four factors:

1. aj - The maximum between x and the time individual j was admitted to the
ward

2. δj - An indicator function that is 1 if individual j has their first positive swab
after aj and 0 otherwise

3. tj - The time of the jth individual’s first positive swab if δj = 1, otherwise a null
value

4. bj - The minimum between y, the time the jth individual is discharged from the
ward and, if δj = 1, tj

We assume that an individual is only infected once, and that their first swab is taken
at the time they develop symptoms, ignoring false negative swabs, delay between
symptom onset and access to diagnostic tests and asymptomatic screening swabs.
We also assume that infection detection is perfect and that the time between our ob-
servation period and the current time is sufficient enough that any individual that
was infected during this time period would be detected by the time of our analy-
sis (this is why we advise against using Nosoco to analyse a time later than 14 days
prior to the current date).
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Figure 4.3. Three example observations made by Nosoco between times x and y. Each patient’s
admission is marked by a black box and their first positive swab is marked by a cross (for each of

these three patients, δj = 1). Their observed period Nosoco considers is marked by a light blue box.
Patient 1 was admitted before x and discharged after y, so a1 = x and b1 = y. Patient 2 was
admitted after x and discharged after y, so whilst b2 = y, a2 is equal to their admission time.
Patient 3 was admitted before x and discharged after y, but they had their first positive swab

between x and y. This means that a3 = x and b3 = t3, as he could have only been infected before
testing positive.

This being the case, we can calculate the probability that an individual who is diag-
nosed at time t was infected between times a and b as the probability that the same
individual would have an incubation period of a length between t − b and t − a. We
consider the Gamma distributed incubation period from Overton et al. to calculate
this probability[133]. Based on observation Xj, the probability that the jth individ-
ual was infected between times x and y can be written as:

P(j infected between x and y) = P(j infected between aj and bj)

= δj (F (tj − aj)− F (tj − bj))

where F (τ) is the cumulative density function of the incubation period distribution.
A different incubation period distribution could be chosen for different results. By
calculating this probability for all observations in X we generate a new vector P of
length

∑︁
j δj = n such that Pj is the probability that the jth individual who had a

positive swab after time x was infected on the observed ward during the observation
period.

The first metric, the estimated total number of nosocomial infections occurring in
this time and place, µ, is easily calculated as the sum of vector P. This is equivalent
to saying that the central estimate of the total number of infections is equal to the
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sum of the probability that each individual was infected during this time period. We
can also calculate σ2, the variance of the total number of infected individuals. In this
case, variance means if we were to run simulations of these events based on P, the
observed variance of the total number of infected individuals should tend towards σ2,
as the observed mean tends towards µ.

µ =
n∑︂

j=1

Pj

σ2 =
n∑︂

j=1

Pj(1− Pj)

The calculation of the second metric, Qm, the probability that at least m individuals
were infected in the observed time and location (m = 2 is used over time periods of a
week to indicate an outbreak on a ward), is slightly more involved. If our target min-
imum m is equal to 1, then this is relatively easy. We recognise that the probability
that at least one individual was infected is equivalent to one minus the probability
that no individuals were infected, making the resulting calculation

Q1 = 1−
n∏︂

j=1

(1− Pj)

However, no such shortcut exists for any value of m greater than 1. Instead we cal-
culate Qm for m > 1 through an iterative process starting with an array q of shape
(n + 1,m + 1). Row q1 is an empty vector except for q1,1 which equals 1. Each row
corresponds to an inclusion in our calculations of another probability from the vec-
tor P: i.e. row 2 contains the probabilities that individual 1 was or was not infected
in the time period of interest, row 3 contains the probabilities that neither, either or
both individuals 1 and 2 were infected, etc. Each column in q corresponds to a dif-
ferent total number of nosocomial infections, with the first column corresponding to
no infections, the mth column corresponding to m − 1 infections, and the (m + 1)th
column corresponding to ≥ m infections. We fill q iteratively, row by row. With each
row, we consider a new probability from the vector P. The value of qj+1,k+1 is equal
to the probability of there having been k nosocomial infections given only the obser-
vations up to and including Pj. This means, usually, it is equal to the probability of
there having been k − 1 positive cases prior to the jth observation and the jth obser-
vation being positive or there being k positive cases prior to the jth observation and
the jth observation being negative:

qj+1,k+1 = Pj × qj,k + (1− Pj)× qj,k+1
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The exceptions to this calculations are the first and last columns. It is not possible
for there to be less than 0 nosocomial infections, meaning qj+1,0 is equal to the prob-
ability that there were zero positive cases prior to the jth observation, and that the
jth observation is also negative:

qj+1,0 = (1− Pj)× qj,0

The final column represents the probability that at least m nosocomial infections,
which is equal to the probability m − 1 cases had been observed up until observa-
tion j and that the jth observation is positive, or that at least m positive cases had
occurred prior to the jth observation, in which case we can disregard Pj:

qj+1,m+1 = Pj × qj,m + (1− Pj)× qj,m+1 + Pj × qj,m+1

= Pj × qj,m + qj,m+1

The final solution to this iterative process is qn+1,m+1, which represents the probabil-
ity of there having been at least m nosocomial cases given all P observations. Table
4.2 shows this iterative process and Figure 4.4 graphically demonstrates how these
probabilities can change with each iteration for 10 observation, calculating the proba-
bility of at least 5 nosocomial infections having occurred.

q∗,1 q∗,2 ... q∗,m q∗,m+1

q1,∗ 1 0 0 0

q2,∗ 1− P1 P1 0 0

q3,∗ (1− P1)(1− P2)
P1(1− P2)
+(1− P1)P2

0 0

... ...

qn,∗ qn−1,1(1− Pn−1)
qn−1,2(1− Pn−1)
+qn−1,1Pn−1

qn−1,m(1− Pn−1)
+qn− 1,m− 1Pn−1

qn−1,mPn−1

+qn−1,m+1

qn+1,∗ qn,1(1− Pn)
qn,2(1− Pn)
+qn,1Pn

qn,m(1− Pn)
+qn,m−1Pn

qn,mPn

+qn,m+1
= Qm

Table 4.2. The iterative process required to calculate the probability that the total number of
infected individuals is greater than or equal to m. This value, denoted by Qm, is equal to the final

value in the array, qn+1,m+1. Each row demonstrates the next step in the process.

The final metric, and definitely the most involved calculation, is estimating the rate
of infection on any one ward. This is a form of survival analysis. We want to esti-
mate at what rate individuals would be infected given that they are on a ward indefi-
nitely.

We assume that for a small enough time period, each ward has a constant force of in-
fection Λ during that time period. Patients on the ward who are yet to be infected
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Figure 4.4. An example of the iterative process required to calculate Qm. In this case, we observed
10 probabilities and wanted to know the probability of at least 5 successes. This value is

demonstrated by the brightness of the bottom left square (q11,6). In this case, Q5 = 0.593. Each
row shows how including a new probability changes our calculation.

are all equally exposed to this force of infection. Therefore, their time from admis-
sion to infection would follow the same exponential distribution with rate Λ. We
initially want to take a Bayesian approach to calculate the most accurate posterior
distribution which describes possible values of Λ based on our observations of indi-
viduals on the ward. Later, to produce a meaningful heat map, we will have to re-
duce this posterior distribution down to a single value. In order to calculate a poste-
rior distribution for Λ, we first need to describe a prior distribution, π(Λ), and then
describe a probability density function for our observations for any given value of
Λ, P(X|Λ). The posterior distribution for Λ is proportional to the multiplication of
these two terms:

P(Λ|X) ∝ π(Λ)× P(X|Λ)

Assume in what follows that we observed the exact time of infection of all individu-
als, and consider a generic observed individual, with time of infection tinf . Then, for
any admission between our observed times x and y prior to infection, we can calcu-
late τ, δ, where τ is the length of time the observed individual spent admitted on the
ward between times a and b prior to infection and δ is an indicator value such that
δ = 1 if the individual was infected during this time period, and δ = 0 if the time
period ended prior to infection (either the individual’s admission ended or the obser-
vation period ended prior to discharge).

(τ, δ) =

⎧⎨⎩(tinf − a, 1) if infected during observation period

(b− a, 0) otherwise
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Note that b, as defined at the start of this subsection, is the minimum between the
end of the time interval of interest (y), the time of discharge, and the time when the
individual has their first positive swab.

Because we have assumed we know tinf , we can simplify our considerations by disre-
garding the time of first positive swab and redefining b to be the minimum between
y and the time of discharge. The reason is that tinf is always earlier than the time
of the first positive swab, so either the individual is infected during the time interval
under consideration and we need not be concerned with what happens after tinf , or
because tinf falls after b and so does the time of the first positive swab. Furthermore,
if tinf occurs before a, the individual would not be susceptible during the interval of
interest, so they would not be counted in these calculations.

The advantage, compared to before is that the interval (a, b) is now independent on
the infection or swab status of the individual, and we can imagine each individual
being assigned a duration b − a from a distribution that depends only on admission
and discharge times, and the interval (x, y) under consideration. Let us call this the
censoring distribution (after the fact that the time tinf would be censored if it oc-
curred after b), and let g(t) be its PDF and G(t) its survival function (i.e. 1−G(t) is
its CDF). We do not know the structure of this distribution, and although we could
make some approximations based on admission times and hospital demographics,
this is not necessary. In fact, given an individual observation τ, δ and the censoring
distribution function g(x) and G(x), we can write the likelihood function for Λ:

L(Λ|τ, δ) ∝

⎧⎨⎩Λ exp [−Λτ ]G(τ) δ = 1, not censored

exp [−Λτ ] g(τ) δ = 0, censored

∝ Λδ exp [−Λτ ]×
(︁
G(τ)δg(τ)1−δ

)︁
If we consider this function across all possible values of Λ, we can see that the con-
tribution of g(τ) and G(τ) remains constant regardless of the value of Λ in this like-
lihood function. We can conclude that the likelihood that Λ takes a specific value is
independent of the shape or structure of our censoring distribution and as a result we
can remove g(τ) and G(τ) from any further calculations.

Ignoring the censoring distribution, we could calculate a Jeffreys prior for the value
of Λ, accounting for our censoring window between a and b:

π (Λ) =

√︄
−E

[︃
d2 ln [P (δ, τ |Λ)]

dΛ2

]︃
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=

⌜⃓⃓⃓
⃓⃓⃓⎷−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫︁ b

a
Λ exp [−Λx] d2 ln[Λ exp[−Λx]]

dΛ2 dx, δ = 1

+

exp [−Λ(b− a)] d2 ln[exp[−Λ(b−a)]]
dΛ2 , δ = 0

=

⌜⃓⃓⃓
⃓⃓⃓⎷−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫︁ b

a
−Λ−1 exp [−Λx] dx

+

0

=

√︁
exp [−aΛ]− exp [−bΛ]

Λ

where a and b are the beginning and end of an individual’s observable window. This
would be a perfect prior distribution if the values of a and b were fixed for all obser-
vations. However, as they are determined by when individuals are admitted and dis-
charged, they can vary between individuals. We choose instead to ignore the censor-
ing window. If we take a = 0 and b = +∞, this gives us the prior distribution:

π(Λ) = Λ−1

This would seem like an adequate prior distribution. However, it too has problems,
which are more obvious once we use it to calculate our posterior distribution.

For a set of observations, τττ , δδδ of n patients, we can write the probability of these ob-
servations for any given value of Λ:

P(τττ , δδδ|Λ) =
n∏︂

j=1

Λδj exp [−Λτj]

= Λr exp [−ΛW ]

where r =
∑︁

δδδ is the total number of infections observed during this time period and
W =

∑︁
τττ is the total time between admissions and positive tests across all observa-

tions. This notation has been well described[188]–[190].

We can now write a posterior function for Λ:

P (Λ = λ|r,W ) ∝ π(Λ)× P(r,W |Λ = λ)

= λr−1 exp [−λW ]

By finding a normalising constant (dividing by the integral of λ for all possible val-
ues of Λ), we find that the resulting posterior distribution is usually proper, and is
in fact a Gamma distribution with input parameters Γ(r,W ). This is possibly pre-
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dictable as the Gamma distribution is the conjugate of many rate-based distribu-
tions.

However, we need to consider what happens if r = 0 or r = 1. In the case of r = 0,
we write:

P(Λ = λ|r,W ) ∝ λ−1 exp [−λW ]

It is not possible to find normalising constant in this case, as the integral across all
possible values of Λ does not converge, meaning this is an improper posterior distri-
bution.

The posterior distribution does converge when r = 1:

P(Λ = λ|r,W ) = exp [−λW ]×
[︃∫︂ ∞

0

exp [−kW ] dk
]︃−1

= W exp [−λW ]

which is equivalent to Λ following an exponential distribution of rate W . However, if
we consider this distribution for a moment, we can see another problem. The mode
value for an exponential distribution is 0. Despite having evidence that the rate must
be greater than 0, as at least on infection has occurred, our posterior distribution
still puts 0 as the mode rate of infection (the central estimate for the rate of infec-
tion would be 1

W
, which does at least stand up to some reasoning).

To resolve these issues, rather than a strictly Jeffreys prior of Λ−1, we have opted to
use the prior distribution Λ− 1

2 . The resulting posterior distribution,

P(Λ = λ|r,W ) =
W r+ 1

2

Γ
(︁
r + 1

2

)︁λr− 1
2 exp [−λw]

is the Gamma distribution Λ ∼ Γ
(︁
r + 1

2
,W
)︁
. This is a proper distribution when

r = 0, with some density for values of Λ greater than 0, allowing for some force of
infection even if we have not observed an infection, and its mode value at r = 1 is
1

2W
.

We have shown how, by observing when individuals were (or in fact were not) in-
fected, we can generate a posterior distribution for the rate of infection. Of course,
we do not know the actual time of infection for any one individual, we only know
their time of diagnosis. Using the distribution for the incubation period, we assign
each infected individual a randomly sampled incubation period (intended as the time
from infection to diagnosis) and therefore a time of infection. We can calculate a
random value of r and W for any time period and location based on these infection
times (we need to include individuals who do not ever receive a positive diagnosis in
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these calculations, whose contributions will be the same for any random iteration).
We can therefore generate sets r and W of size m by performing m iterations of this
randomisation.

We want to find r̃ and W̃ , input values for a distribution that represents a central
estimate for the distributions generated by r and W. We find our central estimates
for r̃ and W̃ by finding a Gamma distribution whose mean and variance have a min-
imum difference between each of the simulated posterior distributions. If the mean
and variance of this new distribution is given by µ̃ and σ2̃, then:

Errµ̃ =
∑︂(︄

µ̃−
r + 1

2
W

)︄2

= mµ̃2 − 2µ̃

(︃∑︂ r + 1
2

W

)︃
+
∑︂(︃r + 1

2

W

)︃2

dErrµ̃
dµ̃

= 2mµ̃− 2
∑︂ r + 1

2

W
= 0

µ̃ =

∑︁ r+ 1
2

W
m

Err
σ2̃ =

∑︂(︃
σ2̃ −

r + 1
2

W2

)︃2

= mσ2̃
2
− 2σ2̃

(︃∑︂ r + 1
2

W2

)︃
+
∑︂(︃r + 1

2

W2

)︃2

dErr
σ2̃

dσ2̃
= 2mσ2̃ − 2

∑︂ r + 1
2

W
= 0

σ2̃ =

∑︁ r+ 1
2

W2

m

In the event that Wj = 0, which happens when either there are no patients on the
ward or when all patients on the ward have been infected recently enough so as to
no longer be susceptible, we assume that the rate of infection is 0, as there are 0 in-
dividuals on the ward to be infected. In the case that only a subset of the iterations
result in W = 0, the means and variances of these iterations would also equal 0 when
calculating a central estimate for these values across iterations.

From these central values, we can write a whole Gamma distribution, or we can re-
turn the mean of this distribution, µ̃, depending on the analysis we want to perform.
For simple heatmap outputs, Nosoco just returns µ̃.
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4.4 Evaluating Nosoco

4.4.1 Methods

We used anonymised patient data from a multi-site NHS trust to test Nosoco. We
had two metrics that we wanted to investigate:

1. Speed

2. How its results compare to PHE definitions of “likely” and “definite” nosocomial
infection.

Speed

We tested Nosoco’s speed by running it multiple times with different observation
window lengths (time between the input start date and the input end date, see Fig-
ure 4.2) Specifically, we looked at windows of length a week, two weeks, 28 days,
90 days and 365 days. For each window length, we randomly select 100 dates for
the input start date such that the entire observation window would fall between
05/04/2021 and 01/9/2022. This start date approximately represents the date where
admissions start to stablise post-pandemic. In Section 4.4.3 we show the same results
if we started our analysis on 01/03/2020. The end date is the last date from which
Nosoco was able to extract data from the hospital trust, owing to the trust switching
to a new database system.

As an example, if 25/12/2021 was randomly selected for a 28 day analysis, then a
Nosoco would receive the input dates 25/12/2021 and 22/01/2022. We record how
long Nosoco takes from start to finish for each of these extractions, as well as the to-
tal number of patients that are recorded in this extraction.

We had to make one change to the code of Nosoco to test its speed. We did not plot
any heatmap results. With each iteration, the code would skip the plotting line, but
was otherwise identical. This was done in part as a data protection measure, but also
because we did not want to cause a slow-down in our code due to limited file space
as this would not have been relevant to our investigation. We do include an example
heatmap in our results to give readers an idea as to the output from Nosoco. How-
ever, to maintain anonymity, the patients admissions and swab results were swapped
so that each admission history was assigned a random swabbing history.

We ran our random sampling on a Friday during working hours to emulate data ex-
traction during a working week.
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Comparison to PHE definition of nosocomial transmission

We investigated the number of first positive swabs occurring on each day between
01/03/2020 and 01/09/2022. For each swab, we calculated the probability that they
represented a nosocomial transmission, according to Nosoco, and recorded if they
occurred more than 2, 8 or 14 days into the individual’s admission. In this case we
defined an admission as any string of recorded ward admissions such that the gap
between the recorded ward admissions was no greater than 24 hours. From these
calculations we were able to estimate the total number of nosocomial transmissions
according to Nosoco and the total number according to these threshold values. We
used the numpy.polyfit package with a degree of 1 to find a straight line relation-
ship between these two measures.

We wanted to approximate what proportion of the Nosoco estimate would be ignored
by a given threshold. Ignoring the negligible y-intercepts, the gradient of our lines
gave the linear relationship between the Nosoco estimate and the total number of
transmissions estimated by each threshold admission length:

yn = kx

where x is the Nosoco estimate, k is the gradient and yn is the total number of first
positive swabs that occurred after a threshold time into an individual’s admission of
n days, from hereon known as the thresholdn total. A gradient of k = 1 would indi-
cate that, on average, Nosoco and the thresholdn total estimate a similar number of
nosocomial transmissions. The proportion missed by the threshold total is given be:

x− yn
x

=
x− kx

x

= 1− k

It is possible for this value to be negative when the thresholdn total is consistently
greater than the Nosoco estimate.

Finally, we wanted to see how this relationship changes for different distributions
of the incubation period. We repeated the calculations performed by Nosoco, but
changed the Gamma distributed incubation period each time so that, while the α

shape parameter remained the same, the β location parameter was changed to result
in a mean incubation period varying from 1 to 14 days. We calculated the gradient
when comparing the threshold counts to the Nosoco estimates for each distribution.
We also calculated a bootstrapped value for this gradient by sampling randomly from
the pairs of x and y values generated from each incubation period calculation until
we had the same number of pairs as in the original calculation and repeating the gra-
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dient calculations. By repeating this process 1000 times we were able to approximate
95% confidence intervals for the true value of the gradient for any given mean incu-
bation period length.

In both analyses, the swabbing data we analysed was comprised only of PCR results
and not lateral flow tests, with the PCR technique not recorded. We were unable to
ascertain if the swabs were taken from symptomatic individual, as part of regular
screening or as a result of an outbreak on the patient’s ward. No clinical information
was available for patients, nor background information that may indicate that they
were more or less likely to have been infected prior to attending hospital. A swab
was counted as a “first positive swab” and therefore a new infection only if they had
not had another positive swab in the past 90 days.

4.4.2 Results

Speed

Figure 4.5 is an example heatmap output from Nosoco between 01/03/2020 and
09/01/2021, estimating the total number SARS-CoV-2 nosocomial infections occur-
ring on the investigated wards over this time period. As stated earlier, to maintain
anonymity patient and swab data were shuffled. Despite this fact, a first and second
outbreak wave is still observable as there are such a comparatively high total number
of positive swabs during these time periods.

Figure 4.6 is a scatter plot of the run-time of Nosoco for each of our test runs, plot-
ted against the number of patients in the database for each run. Table 4.3 collates
these results, grouping them together by the length of each investigation time period.
As seen in Table 4.3 and Figure 4.6 there appears to be a positive relationship be-
tween the length of time being investigated, the number of patients in the observed
database and the run-time of Nosoco. In general, a larger time period is associated
with more patients, and more patients and a larger investigation period often results
in a longer run-time. A slightly more subtle point, that can be observed in the scat-
ter plot in particular, is that for the same analysis window, a greater number of pa-
tients does not appear to be directly associated with an increase in the run-time.

Time period Average number of patients (s.d.) Average time taken (s.d.)
7 days 8447.64 (548.24) 10.22 seconds (1.60)
14 days 13782.41 (743.74) 11.58 seconds (1.31)
28 days 23357.63 (970.27) 14.10 seconds (1.38)
90 days 59495.17 (920.15) 25.19 seconds (1.56)
365 days 184158.70 (325.62) 78.53 seconds (1.65)

Table 4.3. Average run-times for Nosoco when investigating different time periods of different
lengths.
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Figure 4.5. An example heatmap output for the estimated total number of nosocomial SARS-CoV-2
infections occurring on any one ward over a week period. This particular example looks at one

anonymised site. The x-axis shows the passage of time and the y-axis shows each anonymised ward.
In this investigation, positive swabs were randomly assigned to individuals to retain anonymity,
meaning we are not actually observing real-world data. That being said, we can still observe the

influence a high number of positive swabs can have on this estimate, as waves 1 and 2 of the
SARS-CoV-2 pandemic can still be observed.

Figure 4.6. Scatter plots showing the relationship between the number of patients in a data-set and
the run-time of Nosoco. Each point represents an individual run to Nosoco from a randomly

sampled start point, with their colour representing the length of the time period being investigated.
As the time period length could change the results by an order of magnitude, a log-log scale has

been used.

Comparison with threshold method of nosocomial allocation

Figure 4.7 shows the relationship between the central estimate for the total num-
ber of nosocomial SARS-CoV-2 transmissions occurring over a time period as esti-195



mated by Nosoco and the number of nosocomial transmissions identified according to
a cut-off threshold time from admission to diagnosis. Each point is calculated from
all the first positive swabs occurring on a particular day, with the x-axis giving the
Nosoco estimate and the y-axis giving the count of swabs that occurred past a cer-
tain threshold point in an individual′s admission (≥ 2 days in blue, ≥ 8 days in or-
ange and ≥ 14 days in orange). There is a positive relationship between the Nosoco
estimate and each of the threshold counts. The total count when using a threshold of
at least two days into an admission most closely matched the estimates from Nosoco,
indicated by a slope for the fit closest to 1. Table 4.4 gives the mean daily counts for
each metric, as well as the parameters for the lines of best fit.

In Figure 4.8 we can see by what proportion each threshold count is reduced when
compared to Nosoco, and how this proportion would change if the true incubation
period distribution was shorter or longer than the one used by Nosoco. In general,
each threshold tends to result in a lower estimate of the total number of nosocomial
transmissions when compared to Nosoco. If the mean incubation period were shorter
(Nosoco uses a mean incubation period of 4.84 days), then this difference would be
increased.

Daily count Relationship with Nosoco
Mean St.d. Gradient Y-intercept

Nosoco 2.45 3.36 - -
2 day threshold 2.53 3.30 0.94 0.23
8 day threshold 1.29 2.11 0.58 -0.12
14 day threshold 0.80 1.51 0.38 -0.12

Table 4.4. Daily nosocomial counts comparing Nosoco results to counts made based on admission
length thresholds. The gradient and y-intercepts give the parameters for a line of best fit, obtained
using the numpy.polyfit package. A gradient close to 1 indicates that on average the two measures

observe the same number of nosocomial transmissions.

4.4.3 Discussion

From Figure 4.8, we can conclude that using a threshold of 8 days would estimate
the total nosocomial transmissions as approximately half the estimate made by
Nosoco, and using a threshold of 14 days would mean a reduction by nearly two
thirds. If we went down to a threshold of 2 days, we would still see a lower estimate
by approximately a tenth. Even if we accept that the distribution we use does not
reflect the true distribution of time from infection to diagnosis in hospital, and that
instead the average effective incubation period was 14 days long, we would still be
missing a considerable proportion of transmissions by using either an 8 or 14 day
threshold. If it is in fact shorter than the 4.84 days used by Nosoco, the threshold
values would be considerably worse.

It would be tempting to simply change the threshold time to one that results in
similar total estimates to Nosoco. However, doing so misses the main vulnerabil-
ity of threshold methods: It makes a binary statement with complete certainty (ei-

196



Figure 4.7. Scatter plot comparing the estimated total number of nosocomial transmissions from
Nosoco to the total count based on an admission-to-diagnosis threshold time. The threshold values
are discrete counts and as a result fall on integer lines. Each colour represents a different threshold.

A line of best fit is shown for each threshold.

Figure 4.8. The estimated proportion of nosocomial transmissions that are not observed when using
a threshold count method. This value is estimated as 1 minus the gradient of a line of best fit

between the count estimated by Nosoco and the threshold count. As a result, it is possible for this
value to be negative, indicating that the threshold method would estimate more nosocomial

transmissions that Nosoco. Each colour represents a different threshold with the shaded areas
showing the bootstrapped 95% confidence intervals. The x-axis shows how this estimate changes
when the mean length of the incubation period distribution Nosoco uses is changed. The black

dotted line indicated the distribution currently used by Nosoco.
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ther the swab result in question does represent a nosocomial transmission or it does
not) where there is in fact no certainty at all. By using a distribution to calculate
the probability of a transmission having occurred at a particular time or a partic-
ular place, Nosoco allows us to incorporate that uncertainty into our assessment of
any situation, with the added benefit that we are able to approximate not just that a
transmission has occurred, but also where and when.

This is perhaps best demonstrated by the fact that the 2 day threshold total still
only accounts for approximately 94% of the nosocomial transmissions estimated by
Nosoco (see Table 4.4). This in itself is unexpected and remarkable. The distribu-
tion used by Nosoco would result in a slim chance of an individual being diagnosed
within 2 days of infection (specifically a probability of 0.129). We might reasonably
expect that having such a low threshold would mean that the number of nosocomial
transmissions missed by having a short incubation period would be easily averaged
out, if not surpassed, by the number of non-nosocomial transmissions that are mis-
attributed as nosocomial transmissions owing to their long incubation periods. How-
ever, this assumes that individual’s time of diagnosis is completely independent of
the length of time they have been in hospital. If we are basing their time of diagno-
sis on time of first positive swab, then this is not true. A lot of hospitals, including
the NHS trust involved in this analysis, use a screening program that makes it more
likely for positive cases to be observed early in their admission (for the exact purpose
of preventing nosocomial transmissions). A small proportion of these will represent
nosocomial transmissions. They will be picked up by Nosoco but ignored by most
threshold-based systems. If they represent a large enough proportion of all nosoco-
mial transmissions, then a threshold system will always underestimate the number of
nosocomial transmissions when compared to Nosoco.

For the hospital trust data we were investigating, Nosoco appears to be fast enough
to investigate the prior month in under twenty seconds. From Figure 4.6 we can see
that there initially appears to be a positive relationship between the run-time and
the number of patients in the data-set. This would be unsurprising, as more patients
will result in more calculations, as well as a longer SQL query. However, the inves-
tigation window shows us that this is a far more important indicator of run-time.
For the same window lengths, varying the total number of patient admissions does
not appear to affect the total run time (there is little increase in run time in data
points of the same colour on the scatter plot in Figure 4.6). However, a larger win-
dow will usually result in a longer run time. This is likely because a larger window
requires more partitions. For example, if each partition is a day long, then a 90 day
window will have 90 partitions, compared to a 28 day window only having 28 parti-
tions. Since Nosoco calculates the probability that each infected individual was in-
fected in each of these partitions, a greater number of partitions may well result in a
greater run-time, even if the number of patients remains the same.

There is room for improvement when it comes to the speed of Nosoco. For a large
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enough hospital trust investigated over a long enough time period, the run-time may
become unmanageable. Past a certain point, local memory storage may mean that
Nosoco stops being a viable option to investigate all nosocomial transmissions. This
never occurred in our direct use of Nosoco, but has occurred when performing more
complicated modelling of data generated by Nosoco. We suspect that, whilst easy
to use, Python is not the optimum coding language for this task. As stated in the
method, we did briefly investigate using C++. However, as Python was heuristically
adequate, translating the tool into C++ will be a task for a future improvement of
Nosoco.

“Heuristically” is an important word to consider. The PHE method of making a bi-
nary decision as to if an individual represented a nosocomial transmission based on
their time of diagnosis was, at the time, heuristically adequate. It would not be pos-
sible or practical to perform the mathematics proposed by Nosoco by hand for every
single patient, and so a simple way of indicating an increase in the number of noso-
comial transmissions was required. However, as show in this analysis, there are more
accurate methods of estimating the total number of nosocomial transmissions. In-
deed, we can be certain that there are more accurate methods than Nosoco, even if
they are not currently available. However, it is our hope the Nosoco provides med-
ical practitioners with a more accurate, while equally easy, method of assessing the
possible total number of nosocomial transmissions that have occurred.

Analysis of speed starting at 1/3/2020

We chose to analyse Nosoco across dates between 05/04/2021 and 09/01/2022. We
chose this end date as it marked the introduction of a new data management system
in the NHS Trust we were using for the analysis. This meant that a different SQL re-
quest would be required after this date and matching data before and after this date
could introduce errors. For this reason, we decided to only perform our analyses on
hospital data prior to this time.

The SARS-CoV-2 global pandemic reached the United Kingdom at approximately
01/03/2020. We did not start our analysis until 05/04/2021, meaning there are ap-
proximately 400 days we have decided to exclude from our data-set. The reason we
did this is because for about a year after the start of the pandemic, hospitals went
through changes drastic enough as to effect the run-times of Nosoco.

Figure 4.9 shows the resulting plot of hospital population against run-time if we per-
formed our analysis between 01/03/2020 and 01/09/2022. We can see some stark dif-
ferences in the shape of this data if we compare it to the equivalent plot in the body
of our text, Figure 4.6.

Firstly, for a given observation window, the range of total hospital admissions is a
lot broader when we include the earlier parts of the pandemic. In Figure 4.6, the
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(a) (b)

Figure 4.9. A repeat of the run-time investigation of Nosoco from 01/03/2020 to 01/09/2022.
Compare this plot to the equivalent plot in the body of the text, Figure 4.6. We can see the

influence the changes in hospital during the early pandemic would have had on our conclusions
regarding the run-time of Nosoco. Figure 4.9b circles the points on the scatter plots that represent

data points from the same time period as Figure 4.6

range of total admissions was relatively narrow for each observation window length
(each window length is represented with a different colour). There was little to no
crossover between the observation window groups. In Figure 4.9, the ranges of to-
tal admissions for each observation window are broad enough that there are some
crossovers. The week with the most total admissions (blue) saw more admissions
than the fortnight with the least total admissions (orange) and, in turn, the fortnight
with the most total admissions saw more admissions than the 28 days with the least
total admissions from our data set (green).

This wider spread leads to a more dramatic observation: There appears to be a pos-
itive relationship between the number of admitted individuals and the length of time
Nosoco takes to run. The points in each group appear to be forming a line. We pre-
viously noted that in each observation window group we could not see such a rela-
tionship. The points in each group in Figure 4.6 do not form a line and instead fall
seemingly randomly in one region. How has changing our analysis date introduced a
positive relationship between these two variables?

To understand this problem, we should first see if we can observe the run times from
our initial analysis in this new plot. Indeed, by looking at the area of highest admis-
sion for each observation window, we can see regions where there appears to be no
relationship between total admissions and run time. These regions are circled in Fig-
ure 4.9b. Our plots do not contradict each other. The positive relationship is only
observable in the early period of the pandemic.

So why is there a positive relationship between Nosoco run time and total number
of patients before 05/04/2020 that is no longer present after this time period. We
suspect that this is relationship is an artifact of how the total number of admissions
changed in the first year of the pandemic.

Figure 4.10 charts the total number of patients between 01/03/2020 and 01/09/2022.
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Figure 4.10. A count of the total daily number of patients admitted into the examined trust. The
top plot shows how this changes over time and the bottom plot is a histogram of the totals. After

approximately 05/04/2021, this count stabilises.

As we can see, at the start of the pandemic, there is a sharp drop in the total num-
ber of patients. This number steadily increases over the next 400 days and then sta-
bilises to pre-pandemic levels. This may seem to be a surprising trend if we forget
that this is a tally of the total number of different patients admitted each day, not
the total number of patients admitted at any one time. This is not an indication
that the trust was below capacity. Indeed, it may well be an indication that the trust
was above capacity and not able to admit as many new patients.

It is the steady growth period that interests us. In the first year of the pandemic,
a low total number of patients indicates that the sample was from earlier on in the
year. As such, when there was a positive relationship between the total number of
patients and the run time of Nosoco, there was also a positive relationship between
the date of the Nosoco run and its run time. There are plenty of factors that may
link the Nosoco run time to the date, for example the relative availability of SARS-
CoV-2 testing throughout that first year. Additionally, when we choose a time period
of analysis where there is no relationship between date and total number of patients
(i.e. after 05/04/2021) we remove the association between total number of patients
and total run time.

It is difficult to know what exactly causes this initial relationship, that then disap-
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pears after 05/04/2021. It may well be a combination of multiple factors that are
difficult to account for. This is why, in order to avoid drawing incorrect conclusions
regarding the relationship between the total number of patients and the Nosoco run
time, we decided to perform our analysis between 05/04/2021 and 01/09/2022

4.5 The association between in-hospital and community rates of SARS-

CoV-2 infections

The way in which an “outbreak” is defined is dependent on the user of Nosoco. For
example, one may define an outbreak as more than one infection occurring in one lo-
cation of the course of a week. Indeed, this is the definition initially proposed for a
nosocomial outbreak of SARS-CoV-2 by PHE[183]. However, this tells us little about
the risk to individuals on the ward where the outbreak is occurring, nor does it tell
us anything about the size of the outbreak. Two nosocomial infections occurring in
the same week on a ward of one hundred people is a very different picture to twenty
out of twenty individuals being infected within a day of each other. Both will count
as an outbreak (although we would hope that the latter would appear as a more
likely outbreak according to our metric). For this reason, we will not be calculating
the probability of an outbreak when analysing nosocomial infections in this chapter
or the one following.

In Section 4.6 we will be looking specifically at the third metric of Nosoco, the rate
of infection. This gives us the distribution for the time from an individual being ad-
mitted to becoming infected and it informs us of an individual’s risk of infection
whilst in hospital. We will use the rate of infection as a metric to see how this risk
has changed over time and to see if age is an influencing factor. Instead, in this sec-
tion we will be looking at the first of these metrics: the total number of nosocomial
infections. At a cursory glance, it would seem that these two metrics are so intrin-
sically linked that there would be no need to examine them separately. There are,
however, some important differences.

As mentioned above, the rate of infection shows the risk of infection to an individual.
If we attempted to approximate this same risk using the total number of nosocomial
infections alone, we would be at risk of introducing biases into our analyses. For ex-
ample, if we wanted to investigate the risk of infection by age group and we observed
that most nosocomial transmissions occur among the older hospital population, we
may conclude that they are at greater risk of infection. However, this conclusion is
going to be inherently influenced by the fact that the hospital population tends to
be older owing to increased health needs and delayed discharges. Similarly, we may
see a spike in risk of nosocomial infection among women of a child-bearing age, but
this would likely only represent the fact that a proportion of all hospital admissions
are for child-birth, and are intrinsically linked (with exceptions) to being a woman
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of child-bearing age. The aim of approximating the rate of nosocomial infection is to
delineate these biases from true elevated risks of infection.

Total number of nosocomial infections does not, therefore, tell us of the risk to the
individual. It does, however, inform us of the total burden nosocomial infections put
on a ward or hospital. A subset of the hospital community may be at elevated risk
of nosocomial infection (e.g. immunocompromised individuals). However, if they do
not make up a large proportion of the hospital community, their elevated risk may
not generate a large amount of burden on the hospital as a whole. In this way, total
numbers of infections tells us more about the burden than the rate of infection can
(although not everything: in the case of immunocompromised individuals, they may
be at elevated risk of severe sequelae of infection, meaning total number of infections
alone does not give us a complete picture of the resulting burden).

In this section, we are going to use Nosoco to investigate how the total number of
nosocomial infections changed during the first two waves of the SARS-CoV-2 pan-
demic in a multi-site trust. In particular, we want to focus on how the internal noso-
comial total compares to the total concurrent external transmissions.

Hospitals and hospital wards represent varied levels of closed environments. Theoret-
ically, patients are not able to leave the ward and return freely. Any infection that
they contract during their admission should be the result of a transmission occur-
ring on the ward. Similarly, during the early stages of the pandemic, many hospitals
banned patient visitors. These measures were all in place to try and limit the num-
ber of introductory events occurring in hospital, with PPE and patient isolation be-
ing used to limit spread of SARS-CoV-2 once it is introduced.

As no IPC (Infection Prevention and Control) plan can be perfect, we would expect
to see some relationship between the external total number of infections and the to-
tal number of nosocomial infections. With more individuals infected outside of hos-
pitals, there is a greater chance that one of these individuals is an asymptomatic
health care worker, or is going to be admitted coincidentally as a patient, resulting
in the start of a chain of nosocomial infections. The less variable these chains are, or
the more regularly these introductory events occur, the closer these two values will
be associated. Using data from a multi-site trust, we are going to show how this re-
lationship changed during the first two waves. We are going to approximate both the
external and internal total number of SARS-CoV-2 transmissions and use linear re-
gression to show how this time period can be divided up according to this changing
relationship.

4.5.1 Methods

As a reminder, we use Nosoco to generate an estimate for the total number of noso-
comial infections based on each infected individual’s probability of having been in-
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fected whilst in hospital. We observe the time at which they have their first positive
swab taken and compare this to their admission periods prior to this time. In order
for the initial transmission to have occurred whilst they are in hospital, they would
need a time interval from transmission to first positive swab that is shorter than the
time between admission and first positive swab. We say that the time from infection
to first positive swab follows a known Gamma distribution. We use this distribution
to calculate the probability that the individual has a time from infection to diagno-
sis in keeping with their infection occurring during the course of their hospital ad-
mission. By summing across all individuals’ probability of having been infected in
hospital on a particular day, we calculate a central estimate for the total number of
nosocomial infections that occurred on that day.

We used Nosoco to extract and analyse swab and admissions data from 01/03/2020
to 31/12/2020 from a multi-site trust. Swabs taken after this time period were in-
cluded in the analysis as they might refer to cases that were infected during the pe-
riod of interest. Five sites were chosen from the trust, including two general hospi-
tals, one general hospital with a zero-coronavirus policy (any possible infections were
transferred to other sites), one women’s health unit and a children’s hospital. We
calculated the total number of nosocomial infections for each day. We also approxi-
mated the daily external incidence from the same swab data by calculating the prob-
ability that each individual was infected on a particular day whilst not in hospital.
In doing so, we likely underestimated the true total number of individuals infected
outside of hospital, as it does not account for individuals who did not present to hos-
pital for testing because they were not unwell enough to need to go to hospital, or
they presented elsewhere (e.g. a different trust). We assumed that for a small enough
time period, this bias will remain relatively constant. If this bias changes, it should
change the gradient of the relationship between nosocomial and external rates of in-
fection.

We aimed to fit the external incidence to the nosocomial incidence through linear
regression, using the numpy.polyfit package. In order to accommodate for chang-
ing hospital policies, governmental policies, public health attitudes and environ-
mental resistance, we divided our data-set into “before 01/04/2020", “01/04/2020 -
01/09/2020", “01/09/2020 - 01/11/2020" and “after 01/11/2020".

Care is needed when considering this linear regression, as explained in this and the
next paragraph: although it is tempting to state that any correlation observed would
prove a connection between external and internal incidence, in reality we are not
looking at these values at all, but at their central estimates. An individual data
point, defined as each infected individual’s first positive swab, would be represented
in this data-set across multiple days according to the incubation period distribution.
It is possible that this could be vulnerable to misinterpretation, especially as one in-
dividual ends up contributing to the central estimates of both the external and noso-
comial incidence.
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Consider a scenario where we only have two individuals in our data set and they
both have their first positive swab at the same time. The only different between the
two is that whilst the first was admitted in hospital for many days before their first
positive swab, the second had been admitted just before their first positive swab.
The central estimate for the total number of individuals infected each day inside
or outside of hospital is the sum of the probabilities of either individual being in-
fected inside or outside hospital, respectively. These two sums would be identical for
each day, as the probability that the first individual was infected on a particular day
whilst in hospital would be identical to the probability that the second individual
was infected outside of hospital on the same day owing to their identical first posi-
tive swab timing. The result would be a perfect correlation (i.e. dots, one for each
day, all sitting along the main diagonal in a plot similar to Figure 4.11b), from which
we would conclude that we have strong evidence that external and nosocomial total
infections are closely correlated, despite only actually having two data points in our
data set.

To compensate for this, we repeat our regression across 1000 iterations with each in-
dividual in each iteration assigned a specific random infection time according to their
date of first positive swab and the distribution of the time from infection to diagno-
sis.

4.5.2 Results

Our investigations covered 106310 patients admitted during our observation window.
4197 individual had their first positive swabs during this time period, of which 1456
were admitted at one of our five sites on the trust under consideration at the time
the swab was taken. 711 would be declared as “probable” nosocomial infections ac-
cording to PHE guidance. We approximate the true number of nosocomial infections
over this time period to be 959.89 (95% C.I. 937.32 - 981.49). Figure 4.11a shows
how this incidence has evolved over time.

There appears to be a strong relationship between internal and external incidence
at the start of the pandemic. However, we see no evidence of any connection after
01/11/2020. Table 4.5 details the results of these linear regressions in full. This ob-
servation is corroborated by Figure 4.12 and Table 4.6, which show the results of lin-
ear regressions across iterations of randomly assigned infection times.

Time period Constant Coefficient Standard error T-score P-value
Before 01/04/2020 -0.165 0.205 0.008 25.803 0.000

01/04/2020 - 01/09/2020 -0.077 0.347 0.010 36.021 0.000
01/09/2020 - 01/11/2020 -0.611 0.230 0.021 10.820 0.000

After 01/11/2020 5.620 0.018 0.037 0.480 0.633

Table 4.5. Linear regression results for the relationship between the total external and nosocomial
transmissions
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Figure 4.11. Plots of the evolving nosocomial and external SARS-CoV-2 transmission totals as
calculated from the timing of individual’s first positive swabs. Figure 4.11a shows the ongoing

changes in the number of transmissions, with the full line denoting total transmissions, the dotted
line denoting external transmissions and the dashed line denoting nosocomial transmissions. Figure

4.11b shows the evolving relationship between external and nosocomial transmissions, with each
point in the scatter plot representing the results from a particular day. These have been grouped

into “Before 04/2020", “04/2020 - 09/2020", “09/2020 - 11/2020" and “After 11/2020", with a line of
best fit to show the relationship in each sub-group.

Time period Constant (95% C.I.) Coefficient (95% C.I.) P-value (95% C.I.)
Before 01/04/2020 0.058 (-0.52 - 0.637) 0.186 (0.128 - 0.245) 0.000 (0.000 - 0.000)

01/04/2020 - 01/09/2020 0.084 (-0.105 - 0.273) 0.322 (0.257 - 0.386) 0.000 (0.000 - 0.000)
01/09/2020 - 01/11/2020 -0.122 (-0.643 - 0.399) 0.201 (0.123 - 0.279) 0.000 (0.000 - 0.001)

After 01/11/2020 4.990 (2.670 - 7.310) 0.054 (-0.029 - 0.137) 0.420 (0.124 - 0.754)

Table 4.6. Linear regression results for the relationship between the total external and nosocomial
transmissions when infection times have been sampled across 1000 random iterations.

Figure 4.12. Multiple linear regressions mapping external and nosocomial transmission totals given
randomly assigned transmission times. The same date groupings have been used as in Figure 4.11b,

and the same observations remain true.

4.5.3 Discussion

Being able to discriminate between internal and external transmissions is a crucial
part in understanding the spread of nosocomial infections in hospitals and ultimately
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limiting further outbreaks. Nosoco as a tool is designed to analyse and illustrate on-
going outbreaks. It would be tempting to just choose one metric to observe, such
as total number of infections or rate of infection or even simply the total number of
wards experiencing an outbreak. However, by defining each metric we gain the op-
portunity to draw interesting conclusions from each of them.

In this section we specifically wanted to illustrate the change in burden nosocomial
infections put on the trust we were investigating over the first two waves of the pan-
demic. We used total number of nosocomial transmissions to demonstrate this bur-
den.

Figure 4.11a illustrates how this burden appears to change over time. The highest
peak of total nosocomial transmissions occurred during the first peak at the begin-
ning of April 2020, in keeping with similar external transmission counts. The sec-
ond external wave can be approximately divided into two sections, with a first initial
peak in October 2020 followed by a trough leading into a peak in 2021. However, the
total nosocomial transmissions does not follow this pattern, and instead steadily rises
throughout this wave.

Figures 4.11b and 4.12 indicate a shift in relationship between external and inter-
nal rates of infection. Initially there appears to be a strong positive correlation be-
tween the two rates. Without careful examination, it is not clear in which direction
this causation is occurring, and although it is reasonable to assume significant intro-
duction of infection in hospitals from the community, evidence of community seeding
from hospitals also exist (e.g. [191]).

This relationship continues all the way to November 2020, although the exact gradi-
ent appears to be dependent on if we are seeing an increase or decrease in external
nosocomial transmissions, with a decrease in external transmission seeing a steeper
gradient between the two (01/04/2020 - 01/09/2020). This may be indicative of a
delay between the total number of external transmissions and the total number of
nosocomial transmissions. If the number of nosocomial transmissions is dependent
not on the current number of external transmissions but on the number from a few
days prior, then a decreasing total number of external infections will result in an ap-
parent increase in the gradient between the current number of external transmissions
and the current number of nosocomial transmissions. This in turn implies a direction
to this correlation, in that an increase in external transmissions results in an increase
in nosocomial transmissions, and not the other way round.

However, our calculations from the start of November onward indicate no further
relationship between external incidence and nosocomial transmission. There is no
longer significant evidence of either external incidence placing a force of infection
on admitted individuals or individuals infected in hospital seeding infections into the
community.
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There are many possible reasons for this change to occur that represent a true dis-
connection between external and nosocomial transmissions, including improved PPE
use, better access to community testing or increased public awareness. Each of these
could help reduce the extent to which external infections could effect nosocomial to-
tals.

A compelling theory could be that our results show an improvement in SARS-CoV-2
diagnosis methods at the start of admissions. Infected individuals are correctly iden-
tified through swabbing earlier in their admission and as a result are not incorrectly
identified as resulting from nosocomial transmission. Nosoco cannot identify indi-
viduals that have been diagnosed with a SARS-CoV-2 infection clinically. If there
is delay between admission and a positive swab for these individuals, their apparent
chance of representing a nosocomial infection will increase. Reducing this delay will
have reduced the apparent correlation between external and internal rates of infec-
tion.

However, we would expect this reduction to be proportional and for there to still be
an observable relationship. Instead we see a complete breakdown of any relation-
ship. Looking at Figure 4.11a, we can see that this occurs during the trough mid-
way through the second peak. This trough is likely a result of the second lockdown
in the UK, and is reflected in national data[192] as well as the total incidence in the
same plot. As it happens, the burden presented by nosocomial transmissions steadily
increases. Without further analysis of nosocomial transmissions it is difficult to un-
derstand why.

Nosoco is by no means a perfect method of analysis. The above comments allude to
one of its greatest weaknesses with the current design: Nosoco does not take the clin-
ical picture into account. For multiple reasons it is possible for someone to be symp-
tomatic long before they ever have a positive SARS-CoV-2 swab. Similarly, an indi-
vidual may never develop symptoms but have a positive test as a result of regular
screening or screening following exposure. Both options bring the use of the incu-
bation distribution estimated by Overton et al.[133] as a proxy for the infection-to-
diagnosis time interval into question. With a better understanding of the clinical pic-
ture, this may be prevented. One simple suggestion could be to record if a swab is
taken for screening purposes or because the individual is symptomatic, and if they
are symptomatic when these symptoms began. The distribution used could be al-
tered based on this input. If this data is available, Nosoco is not currently arranged
to access it.

Ultimately Nosoco only indicates trends and possible evidence of nosocomial trans-
mission. It shows the most likely arrangement of nosocomial and external transmis-
sions given diagnosis timings. These can be used for further statistical analysis of the
hospital population as a whole, but for an individual knowing the probability that
they were infected inside or outside the hospital does not equate to knowing if they
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do or do not represent a nosocomial transmission. There is a distinct reason why it
is designed to output NHS Numbers for individuals who have been calculated to be
high risk: for an individual, their probability needs clinical correlation.

Looking at the total number of transmissions in this way can be useful to get an idea
for the magnitude of nosocomial transmissions, but it can leave a number of ques-
tions unanswered. In the next chapter, we will investigate what information the rate
of nosocomial infection can provide us, compared to the total number of nosocomial
infections. We will see if there is a true difference between the waves of SARS-CoV-2
outbreaks in terms of risk of nosocomial transmissions, and if age is a risk factor.

4.6 Estimating the changing rate of nosocomial transmission as a means

of comparing outbreak waves

Understanding the rate of transmission can indicate areas in need of improvement
in transmission prevention as well as help equate risks of elective hospital admis-
sions and delayed discharges. In the previous section we were simply aiming to es-
timate the total number of nosocomial transmissions, as this can give insight as to
the burden a hospital may fall under from nosocomial transmissions. We observed
an interesting change in the relationship between nosocomial transmissions and ex-
ternal transmissions during the first two waves of the SARS-CoV-2 pandemic. In the
first wave they were closely related, but in the second wave this relationship waned.
Without more information, we were unable to delineate why this was happening.

Knowing the total number of nosocomial infections is useful for understanding the
real-world burdens they can introduce. However, it does not necessarily inform us
of the actual infectious processes occurring and it makes it very difficult to criti-
cally compare two scenarios without them being very similar. This method of cal-
culation is predisposed to highlight areas of high transit. After all, with a constant
rate of infection, wards or hospitals with more patients will generate more nosoco-
mial infections. Additionally, depletion of susceptible individuals will appear as an
improvement in management, rather than the reality: a natural part of any outbreak
event. Instead we propose that time from admission to nosocomial transmission is
distributed on an exponential distribution with rate Λ. A higher value of Λ will in-
dicate a higher individual risk of nosocomial transmission, regardless of the size of
the ward or hospital. We demonstrate a method of estimating Λ based on the total
number of nosocomial transmissions and total pre-transmission time for all patients
(including those that never get infected).

We propose two alternative approaches, one where the value of Λ is fixed (this is the
method used by Nosoco to assess the rate of nosocomial infections on wards over a
short period of time) and one where it varies between individuals along an Exponen-
tial distribution.
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We use each of these methods to approximate metrics for the rate of nosocomial
transmission in an NHS trust between March 2020 and September 2022, as well as
estimate the total number of infections for comparison. In particular, we want to
contrast the rates of nosocomial transmission during five outbreak waves observed
during this time period as well as the risk to individual age groups. We want to com-
pare our conclusions to those we would have made if we looked at total number of
nosocomial infections alone.

4.6.1 Model

We start with the assumption that we know the exact time every individual in our
data-set is (or indeed is not) infected. We have already shown in Section 4.3.2 how
we would calculate a posterior distribution for value of Λ, the rate of infection. As
this will be useful to compare to our method for estimating the distribution a vary-
ing rate of infection follows, we will briefly reiterate our process here.

The observation of a single individual can be broken down into two values, τ and δ.
The indicator function δ tells us if the individual was infected during our observa-
tion, in which case δ = 1 and otherwise δ = 0. The continuous non-negative value τ

tells us the length of time we observed the individual for before they were either in-
fected or the observation period came to an end, which ever came first. When we as-
sume each individual experiences the same constant rate of infection Λ, we are equiv-
alently assuming that the distribution for their time from admission to infection is
exponentially distributed with the rate Λ. As a result, we can write the likelihood
function for Λ given any observation τ and δ:

L(Λ|τ, δ) = Λδ exp [−λτ ]

When we did observe an infection, δ = 1 and this function is equal to the probabil-
ity density function of the exponential distribution Λ exp [−Λτ ]. If our observation is
censored before our individual is infected (for example, if they are discharged with-
out being infected) then δ = 0 and this function is equal to the survival function of
the exponential distribution, exp [−Λτ ].

If now we consider a set of n paired observations, τττ and δδδ, the likelihood function for
Λ given that each of these observations experienced the same constant rate of infec-
tion is the product of the likelihood function given each individual observation:

L(Λ|τττ , δδδ) =
n∏︂

i=1

Λδi exp [−Λτi]
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= Λ
∑︁n

i=1 δi exp

[︄
−Λ

n∑︂
i=1

τi

]︄
= Λr exp [−ΛW ]

where r =
∑︁n

i=1 δi is the total number of observed infections and W =
∑︁n

i=1 τi is the
total length of time observed across all observations. The posterior distribution for Λ

is proportional to some prior distribution for Λ multiplied by the likelihood function
for Λ given our observations. We choose π(Λ) = Λ− 1

2 as our prior distributions for
reasons discussed in Section 4.3.2, giving the posterior distribution:

P(Λ = λ|τττ , δδδ) = λr− 1
2 exp [−λW ]× c

where c is a normalising constant. By integrating through all possible values of Λ we
find that c = W r

Γ(r)
and that the posterior distribution for Λ is the Gamma distribution

Λ ∼ Gamma
(︁
r + 1

2
,W
)︁
.

However, this posterior distribution assumes that all individuals in our observation
set experience the same rate of infection. This may well not be a reasonable assump-
tion. If there is an outbreak on a particular ward then observations coming from that
ward would be expected to experience a higher rate than observations from other
wards. Observations during a national wave of infections are likely to see a higher
rate of infections than those in lull periods. More vulnerable individuals, such as im-
munocompromised individuals, could be more likely to be infected sooner and in ef-
fect see an elevated rate of infection. Whilst assuming a fixed, constant rate of infec-
tion may be adequate whilst assessing a ward’s instantaneous infection rate, it is less
useful and accurate when comparing broader data-sets.

For these reasons, we propose an alternative, one where the rate of infection itself
falls on an unknown Exponential distribution. Rather than attempt to find a full
posterior distribution for the parameters in these distributions, we find the maximum
likelihood estimate (MLEs) for the rate parameter of the exponential distribution
each individual’s rate of nosocomial transmission is sampled from.

Part of our motivation for re-establishing our method for calculating a posterior dis-
tribution for Λ is that it will provide a framework for us to calculate an MLE. We
start by calculating the likelihood function for η, the rate of the exponential function
from which Λ is drawn, based on a single observation τ and δ. In this case we inte-
grate through every possible value of Λ:

L(η|τ, δ) =
∫︂ ∞

0

Λδ exp [−Λτ ]× η exp [−Λη] dΛ

=
η

(τ + η)δ+1
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As with before, we now consider a set of n paired observation, τττ and δδδ. The likeli-
hood function for η given all of these observations is equal to the product of the like-
lihood function for η given each of these observations:

L(η|τττ , δδδ) =
n∏︂

i=1

L (η|τi, δi)

=
n∏︂

i=1

η

(τi + η)δi+1

=
ηn∏︁n

i=1(τi + η)δi+1

Unfortunately, this product term does not reduce as elegantly as it did when we were
calculating a posterior distribution for Λ. We are not trying to find a full posterior
distribution this time. Instead, we are trying to find the value for η that maximises
this likelihood function. We can observe that a value that maximises a likelihood
function will also maximise the logarithm of the likelihood function (the so-called
log-likelihood function). The log-likelihood function for η can be written as follows:

ln [L(η|τττ , δδδ)] = n ln [η]−
n∑︂

i=1

(1 + δi) ln [τi + η]

We will find this function’s maximum at a point where its gradient with respect to η

is equal to 0:

d ln [L(η)]
dη

=
n

η
−

n∑︂
i=1

1 + δi
η + τi

= 0

n∑︂
i=1

1

η
− 1 + δi

η + τi
= 0

n∑︂
i=1

τi − δiη

τi + η
= 0

n∑︂
i=1

τi
τi + η

= η
r∑︂

j=1

1

τ̃ j + η

where τ̃τ̃τ̃ is the set of all observations where δ = 1 (i.e. where a transmission was ob-
served). As η increases, this gradient decreases, and for large enough values of η, the
gradient will be negative so long as r > 0, meaning we are guaranteed to find a value
of η which is a solution to this equation. This solution will provide the MLE for η,
the rate of the exponential distribution on which Λ is in turn distributed.
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4.6.2 Methods

Our data-set consists of all hospital admissions and positive SARS-CoV-2 swabs for
patients in a trust from 01/03/2020 - 01/09/2022. From this time period, we focus
on 5 sections, 11/3/2020-5/4/2020, 2/9/2020-2/1/2021, 11/12/2021-31/12/2021,
24/2/2022-31/3/2022 and 19/6/2022-9/7/2022, representing the start-to-peaks of five
waves of nosocomial infections. Wave 1 represents the start of the SARS-CoV-2 pan-
demic, and Wave 3 approximately represents the start of the Omicron variant wave.
These do not directly correlate to external waves during the pandemic, as shown in
part in Section 4.5, but are instead named by observing the waves in out data. Ini-
tially we consider all patients susceptible. They are diagnosed (their incubation pe-
riod ends) at the time of their first positive swab. An individual is not susceptible
again until they have not had a positive swab for 90 days. After this point, they can
be reinfected.

For each iteration, each occurrence of an infection is assigned a latent period based
on random sampling from the Gamma distribution used in Nosoco. This means we
have effectively assigned to each individual with a positive swab a time for their in-
fection. For each iteration we can therefore define a set of observations τττ and δδδ from
which we estimate the parameters r and W when assuming a fixed rate of infection,
and additionally η when assuming an Exponentially distributed rate of infection. We
also approximate a range for the possible total number of infections based on the
value of r for each of our 1000 iterations.

We obtain central estimates for the mean and standard deviation of the rate of in-
fection according to each of these distribution functions (in the case of the fixed rate
of infection, we calculate the central estimate for the mean and standard deviation
for the posterior distribution for Λ). From these averages we estimate a “central esti-
mate distribution” for the rate of infection for each distribution type by generating a
matching distribution with the corresponding mean and standard deviation.

We use this process to generate estimates for the rate of infection for each day across
our analysis window. We repeat this analysis, but divide individuals up into the age
groups <6 months, 6 months - 5 years, 5 year - 18 years, 18 years - 30 years, 30 years
- 45 years, 45 years - 60 years, 60 years - 80 years and > 80 years. We define each
individual’s age by the date of birth listed on their admission.

Finally, we repeat this process, except rather than dividing our observation period
into one-day time steps, we perform the analysis across the observation period, divid-
ing the population only by their integer age in years from 0 to 80.
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4.6.3 Results

Figure 4.13 shows the fluctuating estimates for the rate or total number of nosoco-
mial infections over the first four waves of the pandemic. Wave 1, at the start of the
pandemic, is the tallest, and sees the sharpest increase in infections. Wave 2 is differ-
ent in nature to the other waves, taking a lot longer to reach the same height as the
others. However, as it occurs over a much longer period of time, it represents a far
higher total number of infections than the other waves. Waves 3, 4 and 5 could be
argued to be part of the same wave. They never reach the same severity as the other
waves, but their initial trajectories match closely to Wave 1.

Figure 4.14 shows the spaghetti plots for the same analysis performed on the first
50 random iterations for the assignment of infection times, with the first iteration in
bold. This is how the analyses appear if we do not average across iterations.

Figure 4.15 shows an estimate for the daily number of transmissions when patients
are separated up into age groups. In general, the 60-80 and >80 groups consistently
have a higher total number of infections, followed by the 45-60 group. There is a
small exception in Wave 3, where we see a small peak of 5-18 year olds being in-
fected. Once we divide into these age groups, the central estimates for the daily
number of nosocomial transmissions do not rise above 1 for any other than the two
oldest age groups.

Figures 4.16 and 4.17 estimate the posterior distribution for a fixed rate of infection
and the range of rates of infection experienced for the model with a varying rate of
infection respectively. While the older age groups tend to have higher estimates for
the rates of infection, there are few days if any when this difference is statistically
significant and there are some days, specifically in Waves 3 and 4, when the high-
est rates of infection are experienced by younger age groups. Figures 4.18-4.20 show
equivalent spaghetti plots.

Finally, we look at transmissions in yearly age groups for each age from 0 to 80. Fig-
ure 4.21 totals the number of transmissions for each of these ages across out analy-
sis period, we 95% confidence intervals generated by multiple iterations of Nosoco.
As we can see, most of the transmissions occur in the older ward populations. How-
ever, there is a slight up-tick in total nosocomial transmission among the youngest
patients < 2 years.

This up-tick in total transmissions in the very young is not propagated through when
estimating a shared or exponentially distributed rate of infection for each age (Figure
4.22). Instead, we generally see a higher rate for infection for all individuals above
about 40 years old, although in the case of a varying rate of infection, this represents
a window orders of magnitude wide that covers the central estimates for most ages.
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4.6.4 Discussion

The rate and the total number of transmissions together can tell us a lot about how
different waves and age groups compare with regards to the risk of nosocomial trans-
mission. For example, looking at transmissions alone, it would appear that Wave 3
was initially nearly as severe as Wave 1 when it came to nosocomial transmissions
(Figures 4.13 and 4.14). Indeed, in some ways it was, in that they posed a similar
amount of burden on the trust as a whole (in the last chapter we discussed how the
total number of transmissions is indicative of the total burden on a hospital setting).
However, when comparing rates of infection, we see Wave 3 start to tail off far sooner
than Wave 1. Similarly, we saw an up-tick in the total number of transmissions in
the very youngest hospital populations that is not reflected in an overall raised rate
of infection. When this occurs, it indicates that whilst we might in total be seeing
more nosocomial transmissions from that age group or at that time, there is in truth
limited evidence of a raised risk of infection to corresponding susceptible individuals.

In this section we have presented two options for estimating a rate of nosocomial in-
fection: either by estimating a posterior distribution for the rate of infection that all
individuals experience within the inspected subset or estimate an exponential rate
from which each individual samples their own rate of infection. Looking at our re-
sults we see that they tend to approximate the same rate of infection, but estimat-
ing η results in a broader confidence interval. The natural question to ask: which one
should we use?

Considering real-world models of nosocomial transmissions, it seems reasonable to as-
sume that we should not choose a model that assumes the same rate of transmission
for each individual we are monitoring. We have shown that this rate varies depen-
dent on age and the fact that the rate of nosocomial transmission may vary between
wards is the very reason Nosoco was created. Similarly, we have seen that the rate
varies over time with the different waves of nosocomial infections. If we are attempt-
ing to understand the rate of infection over a group varied enough in time, location,
age or other unknown parameters, we can expect each individual’s rate of nosocomial
infection to be different, and so a model that reflects the variation would be more ap-
propriate.

However, there are drawbacks to estimating η, the most notable of which is time. In
Section 4.4 we focused on the run-time of Nosoco as one of its strengths. Calculating
the posterior distribution for a shared constant rate of infection is simply a matter of
calculating r and W , the total number of observed infections and the total observa-
tion time across all patients respectively. We then form a Gamma distribution from
these parameters as our posterior distribution and are able to perform any compar-
ison or analysis we would like. With censored data there is no such closed form for
calculating the value of η. Instead we must estimate its true value by maximising its
likelihood function. This is a much slower process, and increases in length with each
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additional observation.

Additionally, we have no evidence to suggest that an Exponential distribution is the
best description for the distribution from which each individual’s rate of infection is
sampled. Indeed by looking at Figure 4.22 we can start to see a problem with us-
ing an Exponential distribution in this way: its variance is inextricably linked to its
mean. This means that the range of possible values is also linked to its central esti-
mate. Looking at the ranges of possible rates of infection for individuals above the
age of 40, they are all approximately the same, because so too are their central es-
timates. We did consider choosing a Gamma distribution for our rate of infection.
However, in these calculations, the shape parameter α in the resulting Gamma distri-
bution would often be so close to 0 that whilst a distribution with the correct mean
rate was achieved, even the 95th percentile would be small enough as to be indistin-
guishable from 0.

Our final problem with using the Exponential distribution to investigate the range of
rates of infection is one of communication. Nosoco is designed to be a tool for indi-
viduals who may not be well versed in statistics to use. We found we had difficulty
communicating the central estimate for the total number of nosocomial transmissions
and even more difficulty explaining the rate of infection. It is our worry that in in-
troducing a distribution for the rate of infection, Nosoco would become too slow and
too inaccessible as to be useful to the people it was designed for. For a short enough
period of time (i.e. a day to a week), over an enclosed enough region (i.e. a ward) we
feel it is appropriate to continue to assume that the rate of infection is constant.

Estimating the rate of nosocomial infection rather than the total number of nosoco-
mial infections allows us a number of advantages when analysing hospital outbreaks.
Most notably, the size of the hospital population (and susceptible population in par-
ticular) is constantly changing. A larger susceptible population will result in a larger
total outbreak under the same exposure with the same preventative measures in use.
It is important to know these total numbers for planning scenarios. Unfortunately,
identical outbreak scenarios do not occur in real life, so in order to retrospectively
compare interventions and scenarios we must use a method of standardisation. Esti-
mating the exponential rate of nosocomial transmission per person can help with this
estimation, as demonstrated with our example analysis.

Multiple assumptions had to be made due to lack of available data. We do not know
the vaccination status of the individuals in our data set, nor can we guarantee that
they have not been infected with SARS-CoV-2 without our knowledge. We instead
must assume that they are all completely susceptible unless we have seen their posi-
tive swab. Similarly, we know that there are some issues in our data set with pairing
swab results to hospital admissions. Unfortunately, not all hospitals use NHS Num-
bers to record both, so when not present, we used first name, last name and date of
birth. This method of identification is liable to administrative error resulting in in-
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correct pairings of patients. Finally, and this will always be a problem, false negative
tests and asymptomatic individuals will mean this data is always a slight underesti-
mate of the true rates of nosocomial transmission. It is difficult to accurately miti-
gate for this effect, which likely will have changed over time with regular testing and
improvement in symptom identification.

With nosocomial transmission making up an important proportion of all transmis-
sions of SARS-CoV-2 (as well as other infectious diseases such as the influenzae) we
need a way of meaningfully comparing real-world outbreaks in order to understand
the efficacy of intervention. We have shown how our methods can be used to analyse
ongoing nosocomial outbreaks. It is our hope that this method can be used to inform
analysis of interventions in the future.

4.7 Conclusions

In light of the recent global pandemic and the growing evidence that nosocomial
transmissions hold an important role in the spread of many communicable diseases,
there is a clear need in healthcare for a tool like Nosoco that attempts to identify ar-
eas and times of high nosocomial transmission in the hospitals. Anecdotally, in the
trust we worked with, the closest equivalent system was to manually enter each iden-
tified swab into a Windows Excel spread sheet and by eye attempt to identify areas
of high transmission. This method is clearly not practical for large data-sets and is
at risk of human error. We hope that Nosoco provides an easy-to-use equivalent sys-
tem that eases this burden for large trusts.

Nosoco is a relatively simple tool to use. It runs off a Jupyter Notebook, which can
be understood with a little instruction. The advantage of the Jupyter Notebook is
that we can write this instruction in an accessible way, so that being able to under-
stand the Python language is not a prerequisite for getting a meaningful output.

We feel that Nosoco is an adequately fast software, taking just over a minute to anal-
yse a whole year′s worth of hospital data. For regular monitoring, where we would
expect a user to look at most a month′s worth of data, Nosoco can run in under 15
seconds. We feel the Nosoco, or an analytical tool like it, is necessary.

An alternative approach when identifying nosocomial transmissions of SARS-CoV-
2 in particular would be through genetic sequencing. The thought process would
be that in an outbreak scenario, nosocomial transmissions would likely come from
a similar or same lineage and therefore would be genetically similar enough to link
together. One problem with this is that genetic sequencing and matching can take a
long time, where Nosoco is able to run in a matter of seconds. The COG-UK-HOCI
(COVID-19 Genomics UK Hospital Onset COVID-19 Infection) trial aimed to op-
timise genetic sampling of SARS-CoV-2. They hoped to see if there was a viable
pipeline for using genetic data to rapidly assist in nosocomial transmission identifica-
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tion in the UK[193]. They were not able to show a significant change in nosocomial
incidence through sequencing alone, but did find that sequencing would affect Infec-
tion Prevention and Control interventions if delivered in under 5 days. Closer inves-
tigation of the trial data suggests that a delay between positive PCR result and ge-
netic samples reaching appropriate laboratories may in part be a cause of this lack of
efficacy. Therefore relying on genetic sampling alone would not be appropriate inter-
vention for hospital trusts with no close access to genomics laboratories[194]. Nosoco
easily achieves the threshold window of 5 days and represents a cheap, readily avail-
able alternative.

A difficulty we found when designing Nosoco was pairing the hospital admission
data with the swab data. In the investigated trust, these data existed on separate
databases with varying quality in the accuracy of patient-identifying details. Also,
in the same trust, but in different hospitals, different protocols were followed when
it came to attaching patient-identifying details to swab results. For example, while
one hospital would use a universal NHS Number, another may use a locally recog-
nised District number, making patients transferred between hospitals vulnerable to
mislabelling. This all leads to missing or mis-assigned data in Nosoco, which required
careful planning and optimisation to minimise. We did not approach handling miss-
ing data from a statistical method (for example noting patients who had not had
a single swab during their admission and assuming that their swab results must be
mislabelled), but such an approach could be considered in the future.

Recently, the same trust has introduced a universal identifier system for all hospi-
tals in the trust, meaning that admissions and swabs should be logged on the same
database to the same individual. This should help improve the accuracy of Nosoco.
However, data mis-assignment could still occur for patients who may be assigned
the wrong or temporary NHS Numbers due to a mishearing of their name or date
of birth when being entered into the hospital database. This singles out people for
whom English is not a first language or who may have difficulty when speaking or
writing clearly.

One of two major weakness of Nosoco is the choice of distribution that it uses. We
chose to assume that the time from transmission to first positive swab is analogous
to the incubation period of SARS-CoV-2 and in doing so justified the use of repre-
senting it with a Gamma distribution with a mean of 4.84 days and a standard de-
viation of 2.79 based on prior studies by Overton et al[133]. We know that this is
not true. For example, in studying the early pandemic, Kraemar et al. showed that
the average time from infection to diagnosis can decreased from 6.5 days (s.d. 4.2)
to 4.8 days (s.d. 3.03) through more active surveillance[195]. Although this example
is more looking at scenarios outside the hospital setting, it still shows how a change
in monitoring policy can influence the time from infection to diagnosis. There are
reasons why this time may be longer than the incubation period (e.g. delay between
symptom onset and swabbing, delay in laboratory tests, availability in testing equip-
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ment) as well as reasons why it may be shorter (e.g. regular asymptomatic screen-
ing, screening in an outbreak scenario). Additionally, this difference may change over
time with differing screening protocols and increased availability of tests. Nosoco cal-
culates each probability based on this distribution, so if it is incorrect (and likely a
more representative distribution does exist) then so too must be the calculations per-
formed by Nosoco. However, finding the correct distribution is not easy, as in order
to do so we would need a data-set where we knew for certain which individuals rep-
resent nosocomial transmissions and which represent community transmissions. In
the future we hope to be able to access genetic data to perform this exact validation,
but this data has not been available as part of our current study.

The second major weakness with Nosoco is true to any method of nosocomial trans-
mission identification: it relies on a diagnosis being made in the first place. As dis-
cussed previously, SARS-CoV-2 can result in asymptomatic infections as well as false
negative test results. In both cases, these infections would not appear in our data-
set. Additionally, in the case of hospitals, there is a whole cohort that do not appear
in Nosoco’s data-set: hospital staff. Despite good PPE practice, there is no reason
to assume that staff cannot become part of a nosocomial transmission tree. In fact,
through modelling work performed by Evans et al. it has been shown that, in the
UK at least, hospital staff act as vectors for between-patient transmission, and that
this actually represents the most important method of nosocomial transmission for
SARS-CoV-2[196]. It is not impossible to see how such data can be included in the
Nosoco data-set by cross-referencing staff swab results with their shift assignments
in the same way we cross-reference patient swab results and their ward admissions.
However, this data was not available to us in this study. Also, there would be some
difficulty when accounting for staff who can be assigned to multiple wards on one
shift, such as porters or on-call doctors.

In both the choice of distribution and the missing data, genetic sampling has an ad-
vantage over Nosoco. We do not need to know a distribution for time from trans-
mission to first positive swab to see how closely linked two genetic sequences match.
Ellingford et al. developed a model for observing a chain of nosocomial transmis-
sion genetically by simply matching individuals in the same location who had a se-
rial interval of 3-7 days[191]. By observing genetic similarities we can also account
for missing steps in a chain of transmission such as staff or undiagnosed individuals.
A secondary transmission (i.e. the effective transmission between one infected indi-
vidual and another via a third vector individual) should still result in a close enough
genetic similarity to be linked even if we do not have genetic data from the vector.
However, if there is enough time between the two individual’s first positive swabs,
or if they were never spatially linked (i.e. they were never on the same ward at the
same time) then they would never be linked by Nosoco as part of the same outbreak.

In an ideal environment, Nosoco could be used in conjunction with genetic testing.
Its speed and coverage makes it useful as an early warning for outbreaks, with the
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slower, more expensive and more accurate genetic testing providing later confirma-
tion of its results. Additionally, genetic testing could be used to continually validate
and update probability distributions used by Nosoco. As it stands, Nosoco represents
a cheap and fast method of outbreak detection that requires validation before becom-
ing part of regular IPC practice.

Summary:
Nosoco is a Python based tool for estimating the total number of nosocomial

that have occurred, based on hospital transmissions and the
timing of infected individual’s first positive swab (in the case of

SARS-CoV-2 infection). Nosoco is a fast and effective alternative to
simply counting how many individuals are diagnosed after a certain threshold
point in their admission, which is otherwise the standard method used. The

relationship between total nosocomial transmissions and total
external transmissions appears to have changed over the first year of

the pandemic, which was likely a result of either improved preventative
measures or earlier diagnosis through improved access to testing. The
older hospital population appear to be more vulnerable to nosocomial

infection, although further work is required to investigate how this changes between individuals and over time. Through
this chapter, we have shown that Nosoco is a tool that is useful to both

health care professionals and epidemiologists alike. It offers
real-world up-to-date insight into current outbreaks in hospitals,
as well as opportunities for more complex retrospective analysis

of past outbreaks.
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(a)

(b)

(c)

Figure 4.13. Plots of the varying total and rate of nosocomial infections during multiple waves of
the SARS-CoV-2 pandemic. Figure 4.13a shows the total daily count, Figure 4.13b shows the
median and 95% credible intervals for the rate of infection, assuming each admitted individual

experiences the same shared rate of infection, and Figure 4.13c shows the estimated 95% range of
rates experienced assuming the rate of nosocomial infection varies from person to person according

to an Exponential distribution with rate η.
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(a)

(b)

(c)

Figure 4.14. Spaghetti plots of analyses of the first fifty iterations of Nosoco, showing the total
number of nosocomial infections and varying rate of nosocomial infections during multiple waves of

the SARS-CoV-2 pandemic. Figure 4.14a shows the total daily count, Figure 4.14b shows the
expected estimated rate of infection, r+ 1

2

W , assuming each admitted individual experiences the same
rate, and Figure 4.14c shows the mean rate of nosocomial transmissions experienced by individuals,

1
η , assuming they each sample their individual rate of infection from an Exponential distribution

with a rate η. The results from the first iteration are shown in bold.
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Figure 4.15. Total daily nosocomial transmissions, separated by wave and age group. 95%
confidence intervals have been given by observing the variation between random iterations.
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Figure 4.16. Posterior estimates for the shared rate of nosocomial infections experienced by
individuals in the same age group. The lines show the median estimate for this shared rate, and

windows show the 95% credible intervals.
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Figure 4.17. Exponentially varying rates of infection, separated by wave and age group. As stated
previously, the 95% windows estimate the range of exponential rates of nosocomial infections

individuals experience within each age group.
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Figure 4.18. Spaghetti plots of the total number of nosocomial transmissions estimated by the first
50 iterations of Nosoco, divided by outbreak wave and age group. The results of the first iteration

are shown in bold.
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Figure 4.19. Spaghetti plots of the central estimates for the rate of infection shared within age
groups. This shows results from the first 50 iterations of Nosoco, separated by wave. The results of

the first iteration are shown in bold.
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Figure 4.20. Spaghetti plots of the expected rate of infection experienced given it is sampled from a
single exponential distribution within age groups. This shows results from the first 50 iterations of

Nosoco, separated by wave. The results of the first iteration are shown in bold.
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Figure 4.21. Estimated total number of nosocomial transmissions across our entire observation
period, separated by age. 95% confidence intervals have been calculated through 1000 iterations of

Nosoco.

Figure 4.22. Comparison of the posterior distribution for a fixed shared rate of infection to the
range of possible rates for an exponentially distributed distribution when separated in yearly age
groups. The left-hand plot the estimated 95% range and the median for the rates of nosocomial

infection an individual could have experienced during this time period given their age. The
right-hand plot gives a posterior distribution for the one rate of nosocomial infection everyone of

that age experienced during our observation window. Notice the logarithmic y-scale.
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Chapter 5

Assessing incidence calculation in a closed

environment for diseases with long

incubation periods: A case study of

Hepatitis C in prisons

5.1 Introduction

In terms of outbreak modelling, the prison environment falls somewhere between
completely closed environments (such as ships in which no new individuals can enter
once away from port) and completely open environments (such as cities and hospitals
where new individuals are free to come and go as they please). Careful consideration
must be made when modelling and understanding the spread of diseases in prisons.

A meta-analysis performed by Dolan et al. looked at published papers on the epi-
demiology of HIV, Hepatitis B, Hepatitis C and tuberculosis in prisons globally.
They identified 299 publications covering 196 countries from 2005 to 2016. They
demonstrated an elevated prevalence of each of these diseases within prisons almost
universally when compared to the general public, with multiple individual outbreaks
demonstrated of HIV, Hepatitis B and tuberculosis. They therefore showed the im-
portance of these institutions when considering infectious disease modelling. Addi-
tionally they attempted to use this parameterisation to approximate the infection
rate of HIV in prisons, and showed that reducing incarceration rates could contribute
considerably to reducing the spread of this disease, a conclusion that could be ap-
plied to the other diseases as well[1].

Special effort has been made to look at the spread of infectious diseases in prisons
among those who report injecting drugs. For example, Altice et al. observed a higher
incidence of HIV and tuberculosis in Eastern European and Central Asia prisons
among PWID[86]. They found that incarceration may responsible for up 75% of all
TB incidence for people who inject drugs, and 28-55% of all new cases of HIV in the
EECA over 15 years from 2016, a difference from the previous studies which needs to
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be explored further.

PWID are not the only high-risk group who are more likely to be incarcerated, and
the over-representation of certain demographic groups inside of prison has been
shown to have knock-on public health impacts outside of prisons. Adams et al. used
TITAN, a network driven HIV spread modelling tool[49] to explore the effect of in-
creased incarceration on the African American community in Philadelphia[87]. They
found that an increased rate of incarceration in the male Africa American popula-
tion had a knock-on effect of an increased HIV risk for the female African American
community when they left prison, showing the importance of the external effects of
closed environments.

This spill-over effect was investigated further by Mabud when looking at tuberculo-
sis in prisons in Brazil[88]. They collected data looking at incidence of TB given time
in prison, including incidence at time of release. They then used this data to param-
eterise a compartmental model looking at the effect of people moving in and out of
hospital. Annual mass TB screening in prisons reduced this models in-prison TB in-
cidence by 47.4% and out-of-prison incidence by 19.4%.

Additionally, the health outcomes for people with infectious diseases who are in-
carcerated have also been investigated. For example, Cohen et al. showed increased
odds of mortality and poor HIV outcomes for women who are incarcerated[92].

Given the shown importance of incarceration in the spread of infectious diseases,
Ndeffo-Mbah et al. performed a systematic review looking for papers published be-
tween 1970 and 2017 in English that model the spread of one or more diseases and
include incarceration as part of their model[95]. In total they found 34 models pub-
lished over this time period, some of which have already been mentioned in this pa-
per, looking at HIV, TB, HCV and sexually transmitted diseases. The overview of
these models showed the impact of incarceration. In communities of people who in-
ject drugs, HIV prevalence greater than 5% resulted in incarcerations being linked to
12-55% of HIV incidence[1], [86]. They also noted that parameter uncertainty was
only accounted for in 14 of the 34 models, of which only 8 performed a sensitivity
analysis and model fitting and only 1 showed model validation. This gives a good
indication as to what is required for future modelling of infectious disease models in-
cluding incarceration incarceration.

Pitcher et al. performed a systematic review in 2019 looking at modelling efforts to-
wards specifically the spread of Hepatitis C[2]. They collated papers looking at incar-
ceration and co-infection with HIV. Models currently do not necessarily show a posi-
tive outlook for elimination in a decades time. However, incarceration takes a higher
proportion of PWID and in turn Hepatitis C positive patients and therefore repre-
sents an opportunity for targeted treatment.

Martin et al. performed an extensive review of treatment of PWID with Hepatitis C
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over 2014 in 7 different sites[53]. They found a range of treatment levels (maximum
26/1000 PWID/year) and used this to support a model evaluating upcoming treat-
ment changes. They found that the maximum treatment level (26/1000) is needed to
effect any change over the next 10 years, but the more the better.

A more extensive and in-depth model was created later by the same group, in partic-
ular noting the increase in QALYs following multiple prison-based interventions[197].
This complicated model had over 1000 compartments based on age, injection his-
tory etc., giving it the risk of over fitting. Additionally, the parameters used were of-
ten estimates owing to multiple gaps in data. They found that increasing screening
for Hepatitis C in prisons dramatically increased the efficacy of in-prison treatment
plans. Although prisons represent a good opportunity to identify Hepatitis C posi-
tive individuals, a short incarceration time means they may be lost to follow-up and
therefore not complete their treatment regimen. Martin et al. showed the effect of
earlier in-prison diagnosis on preventing this from happening and therefore increasing
overall treatment efficacy.

Another model looking specifically at increased screening rates of Hepatitis C in pris-
ons was created by He et al[54]. Once again they found that increasing the screening
rates in USA prisons, and screening indiscriminately with regards to age increased
diagnosis and treatment in a cost-effective manner (more cost-effective than target-
ing those born between 1945-1965). They were limited in the parameters they knew
compared to those they had to infer.

Alongside the study performed by Taylor et al. which is the focus of this paper[81],
others have attempted to estimate the incidence of Hepatitis C in prisons around the
world, including Australia[198] and Ireland[199]. The results from these studies ap-
pear to conflict greatly, with Crowley et al. finding limited evidence of any Hepatitis
C transmissions and Cunningham et al. finding an incidence in keeping with demo-
graphic trends outside of prisons. The discrepancy could be caused by differences
between countries. However, we should look more closely into how incidence is cal-
culated. We will use the study by Taylor et al. to show how studies are at risk of un-
derestimating incidence based on non-longitudinal studies if models of transmission
are not considered.

In December 2012, Addiction published the study performed by Taylor et al. report-
ing the Low incidence of Hepatitis C virus among prisoners in Scotland[81]. In this
study, 5187 prison occupants across 14 closed Scottish prisons were surveyed on var-
ious aspects of their prison life, including age, gender, drug use, sexual activity etc.
They then were consented for blood tests for HCV RNA via PCR and HCV anti-
bodies using a modified protocol for the Ortho HCV 3.0 SAVe enzyme-linked im-
munosorbent assay (ELISA) (product number940982; Ortho Diagnostics, Amersham,
UK)[200]. Upon infection with HCV, it takes approximately 2 weeks for the viral
RNA to be detectable via PCR. From this point it is unclear how long it takes for
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the body to establish antibodies, but it has been theorised that the time is some-
where between 51 and 75 days, so the study investigated both extremes.

With this gap in time between having detectable levels of HCV RNA and HCV an-
tibodies, an HCV RNA positive individual without antibodies indicated a relatively
recent infection. This information was used by Taylor et al. to estimate the incidence
of Hepatitis C through the following formula:

I =

(︁
365
T

)︁
n

(N − n) +
(︁
365
T

)︁
n

(5.1)

where I is the incidence among susceptible individuals, T is the estimated duration
of the RNA-positive antibody-negative window, n is the total number of individu-
als found to be RNA-positive and antibody-negative when tested and N is the to-
tal number of susceptible individuals. As at the time of testing they were only ob-
serving transmissions among people who were infected in a time period of length
T , they scaled up this number, n to the length of a year by multiplying it by 365

T
.

This scaling up, whilst simple, does not take account of the exponential nature of
rate-dependent occurrence such as endemic infection. We shall discuss an alternative
method of estimating incidence in the rest of this chapter in the rest of this chapter.

Of the 5187 individuals tested, 2446 provided adequate blood samples that did not
contain HCV antibodies, 3 of which were RNA positive, equating to an incidence
between 0.006 and 0.009 infections per susceptible individual per year according to
their calculations. 479 antibody-negative prisoners were PWID, of which two were
RNA-positive, equating to an apparent incidence between 0.020 and 0.030. 91 an-
tibody negative prisoners reported injecting drugs while in prison, of which 1 was
RNA positive (0.051 ≤ I ≤ 0.075). The estimated incidence of HCV among Scot-
tish people who inject drugs outside of prison is 0.120 per person per year, forcing
the authors to conclude a reduced incidence inside prison. Given a high prevalence,
this conclusion has had a number of implications around behaviour outside of prisons
and where best to deploy interventions in order to reduce the spread of HCV.

Using this lowered incidence combined with the shown increased risk of injection re-
lated deaths following release from incarceration[83], [84], Stone et al. attempted to
fit known PWID HCV incidence data to a deterministic model that mapped both
a person’s progress through prison systems as well as HCV contraction and treat-
ment[85]. They supposed that if a person had an increased risk of injection related
deaths immediately after leaving prison, they would also have an increased risk of
contracting HCV. Their model suggested a 45% decrease of Hepatitis C incidence
and chronic infection in Scotland should this risk be reduced compared to a 22% re-
duction in risk if injecting drugs was legalised. However, this relies on the assump-
tion that there is an elevated risk of Hepatitis C infection immediately after incarcer-
ation.
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Parameter/Function Description

a
The number of antibody negative, RNA positive individuals

in the data set (identical to n)

b
The number of antibody negative, RNA negative individuals

in the data set

δ
A comparison of the two methods of calculating incidence,

defined as ITaylor
Iλ

I The annual incidence of Hepatitis C

Iλ
The annual incidence of Hepatitis C as calculated through

the method proposed in this chapter

ITaylor
The annual incidence of Hepatitis C as calculated through

the method used by Taylor et al.
λ The rate of Hepatitis C infection

n
The number of antibody negative, RNA positive individuals

in the data set (identical to a)
N The number of antibody negative individuals in the data set
P The probability of still being incarcerated at the time of testing

P1
The probability of still being incarcerated at the time of testing

given the results would be antibody negative, RNA positive

P2
The probability of still being incarcerated at the time of testing

given the results would be antibody negative, RNA negative
π(θ) The prior distribution for some parameter θ

ρ
The probability that an individual is infected over a time

period of length T

T
The length of time an infected individual is antibody negative,

RNA positive

Table 5.1. A complete description of parameters and functions used in this chapter

By considering transmission as an exponential process, we demonstrate how the
method of scaling used by Taylor et al. potentially introduced errors into their cal-
culation. We provide an alternative simple method of analysis that can be used with
any non-longitudinal study to estimate incidence. In turn, we demonstrate that the
Taylor et al. study shows no evidence of a reduced incidence of Hepatitis C in pris-
ons.

5.2 Parameter and Function description

Table 5.1 is a list of relevant parameter and function definitions for this chapter. The
reader may find it useful to refer back to this table as and when required.

5.3 Model

We start by considering what it would take to be identified as a positive case (RNA-
positive, antibody-negative) in a cross-sectional Hepatitis C survey like the the Tay-
lor et al. study. A susceptible individual is incarcerated. At some point during their
stay they are infected with the Hepatitis C virus (either through shared needles, sex-
ual intercourse or other means). Fourteen days pass and they are now RNA-positive,
antibody-negative. This will be the case for somewhere between 51 and 75 days from
the point of developing antibodies. It is somewhere in this window that they are
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tested as part of the study and then identified as a recent positive case.

Thought of in another way, an RNA-positive antibody-negative individual was in-
fected some-when in a window between 14 days ago and either 65 or 89 days ago.
The Taylor et al. study excluded anyone who had been incarcerated for less than 75
days in order to avoid mistaking an external infection for one that occurred inside
the prison. Although there is still a slight overlap in the exclusion criteria, we are
going to choose to ignore is and assume that everyone who is a positive case was in-
fected whilst incarcerated.

This means that by observing a positive case, we are observing a 51 to 75 day win-
dow over which time they are infected. Conversely, any RNA-negative antibody-
negative individual that we have observed have gone through this exact same time
window and did not get infected. We can use the number of positive and negative
cases we observe to estimate any individual’s probability of being infected over this
time period.

But if ρ is the probability of being infected over either 51 or 75 days, how can this
be extrapolated to estimate the annual incidence of Hepatitis C in prisons? This de-
pends on your definition of incidence. Taylor et al. argue that it can be calculated
by scaling up the number of positive cases. If ρ = n

N
calculates the probability of

being infected over T days, where n is the number of positive cases and N is the to-
tal number of antibody-negative individuals (the total number of prisoners that were
susceptible at the start of the effective window of time that we are observing), then
by scaling n up by a factor of 365

T
we get the annual incidence I =

(︁
365
T

)︁
n

(N−n)+
(︁
365
T

)︁
n

(see
Equation 5.1).

If we assume that the incidence of Hepatitis C infections is relatively stable when av-
eraged across multiple sites, a susceptible individual’s time from start of incarcera-
tion to infection would fall on an exponential distribution. We use λ to represent the
rate of this exponential distribution, where 1

λ
is the expected time from admission to

infection in years. In fact, as exponential distributions are memory-less, the average
time from any observed negative state to infection is 1

λ
. We can therefore calculate ρ

in terms of λ and T :

ρ = 1− exp
[︃
−λ

T

365.25

]︃
We use 365.25 to average across leap years as well, although it is unlikely to have a
dramatic effect on our calculations. If we can estimate ρ, we can also estimate λ.

The rate of infection is one possible measure of the incidence of Hepatitis C in pris-
ons. However it is not entirely analogous to the proportion of susceptible individuals
who will be infected after one year of exposure. For example, if λ = 1, resulting in
an expected time from incarceration to infection of one year, the proportion of indi-
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viduals who would be infected after 1 year would be I = 1 − exp [−1] = 0.632. The
rate of infection in terms of a rate of an exponential process has the advantage that
it remains constant over any time period. However, it can be difficult to understand
conceptually, and so converting it to be in terms of the proportion we would be ex-
pected to be infected over a year can be useful. In this case, I = 1 − exp [−λ]. If we
can calculate ρ we can calculate λ and if we can calculate λ we can calculate I.

But how will we calculate ρ? Rather than taking Taylor et al.’s frequentest approach
of assuming that we can observe the exact value of ρ, we approach from a Bayesian
angle. This has the advantage that we can demonstrate a range of possible values for
ρ and account for any lack of statistical power. Our prior distribution for ρ is a Jef-
freys’ prior π(ρ) = ρ−

1
2 (1 − ρ)−

1
2 which minimises the influence of our prior expecta-

tions of ρ and remains invariant in our choice on parameterisation[145], [147] (as dis-
cussed in the Chapter 2). This means that the effect of our prior remains minimised
when considering estimates for λ and I.

If we observed a RNA-positive antibody-negative individuals and b RNA-negative
antibody-positive individuals out of a particular subset, then given our prior distri-
bution, the posterior distribution for ρ falls on a Beta distribution with input values
a + 1

2
, b + 1

2
. From this distribution we work out the 2.5, 50th and 97.5 centiles for ρ,

where the 50th centile is the median values and the 2.5 and 97.5 centiles act as 96%
confidence intervals. From these we calculate median and 95% credible intervals for λ

and I.

Additionally, we can observe how our estimate for the rate of infection may differ
from the evaluation performed by Taylor et al.. We can insert λ into Equation 5.1
to show their estimated incidence in terms of the rate of infection:

ITaylor =
1− exp [−λT ]

1− exp [−λT ]
(︁
1− T

365.25

)︁
In this case, λ is given as a rate of infection per day to maintain similarity to the
original equation, although this is low enough that in our results we give it terms of
years. This calculation of the incidence of Hepatitis C is independent of N , the sam-
ple size. In other words, allowing for the reduction of stochastic random events that
comes with increasing the sample size, this calculation is not directly influenced by
a smaller or larger value of N . We can see how our two methods of calculating inci-
dence compare by defining a parameter function δ as the estimated incidence divided
by the modelled incidence (Iλ):

δ =
ITaylor

Iλ
=

1− exp [−λT ](︁
1− exp [−λT ]

(︁
1− T

365.25

)︁)︁
(1− exp [−λ365.25])

In this case, if δ < 1, the incidence estimated in the original paper will be less than
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the our estimate of the incidence and if δ > 1, their estimated incidence will be
greater than ours.

5.4 Results

Tables 5.2 and 5.3 show our estimates for the exponential rate of Hepatitis C infec-
tions and its annual incidence in prisons based on the study by Taylor et al.. Their
study only found 3 RNA-positive antibody-negative individuals that fit their inclu-
sion criteria. Of those three, only 2 reported ever injecting drugs, 1 reported inject-
ing drugs in prison and none of them reported injecting drugs during their current
incarceration. With a frequentest approach we would estimate the incidence to be 0
among people who inject drugs in prison. However, if we take a Bayesian approach
to find a credible interval for the incidence, the study simply does not have a large
enough sample size to conclude that the incidence of Hepatitis C among people who
inject drugs in prisons is lower than those who inject drugs outside of prison (0.120).
There is sufficient evidence to say that the in-prison incidence is reduced among peo-
ple who report ever injecting drugs, but this is not true among people who report in-
jecting drugs during this or any incarceration.

Indeed, if we were to assume that all the positive cases were due to injecting drugs,
as was suggested in the original paper, and that the window of detection was 51 days
rather than 75, there would be enough evidence to conclude with a greater than 95%
certainty that the rate of infection is elevated while in prison. However, assuming
that the positive cases falsely reported their drug-taking status needs to be coupled
with the assumption that some negative cases also falsely reported their drug-taking
status. With only three positive cases, we do not have enough data to make an ac-
curate estimate of the probability that you would report drug taking given that you
are drug taking. We therefore cannot accurately adjust the value of b to match the
changes our assumptions would make to the value of a.

Figure 5.1 shows the range for the estimated annual incidence of Hepatitis C among
the different demographics investigated in prison. There is not enough evidence to
show that individuals who report ever having injected in prison or individuals who
report having injected drugs during their current incarceration have a decreased (or
increased) incidence of Hepatitis C when compared to PWID outside of prison, as
this external incidence is within the credible interval range for these demographics.

Figure 5.2 shows how the difference between our two methods of calculating inci-
dence changes dependent on both the rate of infection, λ, and the length of the win-
dow of observation, T . This difference is given in terms of ITaylor

Iλ
, meaning that a

value below 1 indicates the estimate method in the original paper is less than our
method. We can see that the Taylor et al. method will tend to result in a lower es-
timate for the incidence of Hepatitis C infection. At an annual rate of approximately
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Figure 5.1. 95% Credible intervals for the annual incidence of Hepatitis in prisons according to the
study performed by Taylor et al.. The spots show the median value for our posterior distributions.
The black dotted line shows the estimated Hepatitis C incidence among people who inject drugs

outside of prison at the time of the study. T is the number of days an infected individual is
expected to be RNA-positive antibody-negative, and therefore the window of time over which an

infected individual can be identified as “recent”.

λ = 2, this difference is at its minimum (resulting at the greatest underestimation).
Larger observation windows will tend to improve the accuracy of this estimation
method.

5.5 Discussion

By and large, although we have taken a different approach, our central estimates for
the incidence of Hepatitis C in prisons are in keeping with the estimates generated
by Taylor et al.. The similarity is a product of how relatively low the true rate of in-
fection is. Figure 5.2 shows how this difference changes with respect to λ, the rate of
infection. If the rate of infection is 0, δ = 1 (i.e. the estimated and true incidences
are the same). This is expected, as if the rate is 0, the frequentest estimate for the
incidence should also be 0 as no infections will be observed. For any rate of infection
λ greater than 0, the estimated incidence will be less than the true rate of infection,
with a maximal difference at a value of λ just below 2 years−1. Regardless of the rate
of infection, we would expect their estimate for the incidence to be within a fifth of
our estimate. Dependent on the true value of λ, we would expect the δ value to be
anywhere between 0.810 and 0.998. In general, this method of incidence estimation,
whilst not mathematically optimal, does calculate the incidence to within an accept-
able standard.
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Figure 5.2. Difference in annual incidence estimation, as defined as the incidence calculated using
the method in the original paper divided by the incidence calculated using a rate-based method,

and its change with different observation windows (T ) and rates of infection (λ).

It is the introduction of a Bayesian approach when interpreting the study results
that has really improved our estimation of the annual incidence of Hepatitis C in
prisons. In particular, it allows us to account for the low power result from the
under-representation of certain demographics in the study (in particular the fact that
only 45 individuals identified themselves as having injected drugs during their cur-
rent incarceration). Without accounting for a low denominator, it is tempting to con-
clude that the rate of infection is zero. However, this would be wrong and implies
that there is no risk of injecting drugs in prison. Instead, we conclude that there
is no evidence of a decreased risk of Hepatitis C infection if one is injecting drugs
in prison. There is enough evidence to conclude that there is a reduced risk among
those who have ever injected drugs when compared to those who inject drugs outside
of prison. We would expect some individuals who have ever injected drugs before to
not be currently injecting drugs and therefore not currently be at risk of Hepatitis C
inoculation through this method. This effect may be increased in prison due to lack
of access to drugs. Of those who have ever injected drugs, only approximately a fifth
( 90
477

) had ever injected drugs in prison. Self-reporting may be a confounding issue
here, as an incarcerated individual may be more likely to report that they have ever
injected drugs than that they have ever injected drugs in prison from fear to reper-
cussions. If we ignore this factor, reduced injecting rates while in hospital would ex-
plain the reduction of risk among this group.

There may be a reason why even our calculation of the incidence is an underestima-
tion. Figure 5.3 is a flow diagram demonstrating who appeared in the study data. As
stated previously, testing for RNA-positive antibody-negative status is equivalent to
testing if the individual was infected between 14 and T − 14 days ago. Of all of those
who were incarcerated at the start of this time period, only those who were still in-
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carcerated at the time of testing would be included in the study. We say that the
probability of still being incarcerated is P , or P1 for individuals who were infected
during this time window and P2 for those who were not.

On the surface, it is reasonable to assume that P1 = P2 = P i.e. that there is no rela-
tionship between an individual’s probability of being infected and probability of their
incarceration period ending. There should be no direct influence between the two.
However, if we consider injecting drugs as both a risk factor for Hepatitis C infection
and an indication as to the type of crime that may have led to their incarceration,
then this changes. It is not unreasonable to observe that PWID are more likely to
have shorter sentences for “petty” crimes (to the author’s best knowledge such stud-
ies have not been performed but are definitely needed). A shorter incarceration time
will reduce P1 when compared to P2 resulting in an under-representation of infected
individuals in the data-set. This is not the case when only observing individuals who
actively inject drugs, but unfortunately the size of this observed group was too small
to draw any meaningful conclusions from it.

As an additional wrinkle, it is unlikely that either group’s incarceration time dis-
tributions will be Exponential, so any attempts to accurately account for this dis-
crepancy would have to compare these distributions to the time delay between in-
fection window and testing carefully. Indeed, the data from Taylor et al. show at
very least an over-dispersed sentence length among the sampled population. The
median sentence length was 0.79 years. However, 24% had a sentence length greater
than 4 years while the remaining 76% had a sentence length less than one year. Of
course there is not a 1:1 correlation between sentence length and incarceration time
and by sampling current incarcerations we generate a bias towards longer incarcera-
tions but this is still fairly indicative of a non-Exponential distribution. This infor-
mation would be important when trying to estimate P1 and P2. In an Exponential
distribution, the time until an individual leaves a system is independent of the time
they have already been observed in system (i.e. if T is Exponentially distributed,
P(T > t+n|T > n) is a constant regardless of the value of n). In a non-Exponentially
distributed system, such as length of prison incarceration, the rate of discharge is not
independent of the length of time that has passed. Therefore in approximating P1

and P2 we would need to pay special attention to how much time has passed in our
experiment.

The earliest occurrence we can find of the method used by Taylor et al. to estimate
the incidence of Hepatitis C is a sero-surveillance study performed by Hope et al.
in Bristol in 2006 (although the paper itself was published in 2010)[82]. In this pa-
per they stated that the wide range of possible parameterisations for the observation
window length (between 51-75 days) far out-stretched the uncertainty introduced
by the confidence intervals in their data, so they did not need to report their confi-
dence intervals. The study in question only included 299 participants, which is far
out-stretched by the 2446 blood samples taken in the Taylor et al. study, so it would
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Figure 5.3. Flow diagram demonstrating who is included in the Taylor et al. study. Individuals are
exposed over a time period of T . Anyone infected during this window who is tested at the testing

time will be RNA-positive antibody negative. Given that they remain incarcerated during this
exposure period, their probability of infection is 1− exp [−λT ]. There is then a delay between the
end of that window and the test time. Their over all probability of still being incarcerated at the

testing time is P1 for individuals infected in the window and P2 for those that were susceptible but
not infected in this window. We have assumed that P1 = P2 (i.e. that an individual’s probability of

still being incarcerated is independent of if they have been infected or not.

seem reasonable to conclude that Taylor et al. and other studies like it need not in-
clude their confidence intervals either. However, once we start breaking down de-
mographics in this data set, such as only 45 individuals reporting actively injecting
drugs during their current admission, we have shown this assertion no longer stands.

In total, after the Hope et al. study, this equation for estimating the incidence of
Hepatitis C from the prevalence of RNA-positive antibody-negative individuals in
a cross-sectional study has appeared in five other papers. McCauly et al. used it to
estimate the incidence of Hepatitis C among individuals who inject Novel Psychoac-
tive Substances (NPSs)[201]. Palmateer et al. showed a decrease in Hepatitis C in-
cidence between 2008 to 2009 in Scotland, which they attributed in part to increase
in Opioid Substitution Therapy (OST) and providing injecting equipment[202]. Both
Taylor et al[81]. and Søholm et al[203]. used this equation to estimate Hepatitis C
incidence in prisons, although in the case of Søholm et al., their study was looking
at prisons in Denmark, and they actually found an elevated incidence among people
who inject drugs whilst in prison. Finally, Antouri et al. used the equation to esti-
mate the incidence of Hepatitis C from the HepCdetect, a cross-sectional study of
individuals in Barcelona who inject drugs, but they adjusted the equation to account
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for false-negative results in their testing protocol[204]. Of these papers, the two look-
ing at individuals in prisons are at particular risk of underestimating as discussed
earlier.

For examples of cross-sectional Hepatitis C studies that consider Hepatitis C infec-
tion as occurring at an exponential rate, we can look at Leon et al.[205] and Sut-
ton et al.[206]. Leon et al. used a compartmental model to model the flow of indi-
viduals from Susceptible to Infected, RNA-positive, antibody-negative to Infected
antibody-positive in order to parameterise a rate of infection and therefore the in-
cidence of infection among people in major cities of France who inject drugs. Their
model breaks down the change of incidence in terms of the year (evaluating data
from 2004-2011), as well as the age of the individual. Whilst this model is appropri-
ate for a large data-set (the analysis covered multiple cross-sectional studies), with-
out careful consideration of the stochasticity of small sample sizes, it may not be ap-
propriate for the smaller data-sets seen in the Taylor et al. study. Sutton et al. es-
timate the total Force of Infection (FOI) an individual might experience by looking
at multiple cross-sectional studies of Hepatitis-C prevalence among individuals from
Glasgow who inject drugs. This is slightly different from other cross-sectional stud-
ies as rather than focus on indentifying recent infections, they parameterise this FOI
by estimating the probability of infection given an individual’s total exposure. The
annual force of infection is equivalent to our estimation for λ, meaning theoretically
Sutton et al. could have continued to estimate the incidence of Hepatitis C, a metric
which is easier to conceptualise outside of the model. However, their model estimates
the force of infection each year for each length of injecting career (i.e. that the force
of infection experienced in 2010 by someone who has been injecting for 5 years will
have been different to that experienced by someone who had only been injecting for
two years), making the overall incidence difficult to extract.

The study performed by Taylor et al., along with others like it, are crucial when at-
tempting to model, understand and ultimately prevent the spread of Hepatitis C in-
side and outside of the prison system. Prisons may well represent key opportunities
in our continued goal of complete Hepatitis C eradication. While their estimation
of incidence bares a striking similarity to our own based on their data, their meth-
ods could be adjusted to better represent the exponential process of infection. With
a different disease with a higher rate of infection, the same calculation could be as
much as 20% away from the true value. Additionally, by taking a Bayesian approach,
we are able to demonstrate true credible intervals in our work and therefore prevent
incorrect conclusions from low-powered observations. It is our hope that in correcting
this calculation, we can encourage further research in this clearly important field of
research, not just with regards to Hepatitis C, but other infectious diseases, as well
as the accurate modeling of flow through incarceration centres.
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Summary:
A study in 2012 used the rate at which individuals in Scottish prisons

tested positive for Hepatitis C RNA but negative for Hepatitis C
antibodies to calculate the incidence on HCV infections in prison.

They concluded that their study showed a decreased incidence in prison.
We demonstrate how to envelope exponential infection rates into

incidence calculations for such scenarios with a Bayesian approach to
provide an estimate for incidence with confidence intervals for this
study and similar. We find no evidence of a decreased incidence

of Hepatitis C among people who inject drugs in prison, which contradicts
the study’s conclusions. We also show that in the future it will be

vital to understand incarceration times in order to improve the accuracy
of this estimate. The work in this chapter reveals a key insight that
contradicts previous conclusions regarding the incidence of Hepatitis

C in prisons, as well as providing a reason behind why these conclusions
were formed in the first place. It also provides a simple equation that

can be used to estimate Hepatitis C incidence in the future.
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Chapter 6

Assessing the effect of cabin location on the

spread of two infectious diseases on board a

cruise-liner using novel methods

6.1 Introduction

When we have previously discussed close contact environments, and in particular
closed environments, we highlighted how one particular aspect with ethical implica-
tions was the lack of choice. In both the case of hospitals and prisons, patients or
inmates respectively have limited choice about where they are, either because they
need to be in hospital to receive medical treatment or because they are forced to be
in prison by law. This can be extended in some regards to care institutions where
residents may need the elevated level of support provided.

An interesting exception to this lack of choice is cruise ships. In all but the most rare
of circumstances, holiday makers on cruise ships have chosen to be there. They still,
however, represent a closed, close-contact environment with the potential for out-
breaks to occur. Additionally, because of the increased age range cruise trips appear
to attract, which is increasing according to the Cruise Lines International Associa-
tion 2021 report[207], there is a potential preponderance for its occupants to be more
vulnerable to infectious diseases.

This closed environment has led to a lot of interest in modelling and understanding
outbreaks aboard cruise ships. In particular, there have been multiple studies look-
ing at the 2020 SARS-CoV-2 outbreak aboard the Diamond Princess cruise liner.
Between January and February of that year, an outbreak occurred on the ship af-
ter an infected individual boarded in Hong Kong. Authorities in Japan enforced a
quarantine on the ship that lasted the majority of February 2020 before the ship was
allowed to dock in Yokohama Port.

Some attempts have been made to fully parameterise aspects of the outbreak, which
at the time accounted for more than half the recorded SARS-CoV-2 cases outside of
China[154]. For example, Nishiura estimated the ongoing cumulative incidence by
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comparing the symptom onset line list to a distribution for the incubation period of
SARS-CoV-2[173]. In a Chapter 4 we explored a similar method for estimating the
total number of in-hospital infections. Azimi et al. took advantage of the relatively
small population size of the Diamond Princess to create multiple theoretical alterna-
tive outbreaks and in doing so showed the importance of aerosol based transmission
of SARS-CoV-2 over fomite transmission[208], a growing concern when it came to
outbreaks in closed environments[209].

SEIR models (Susceptible → Exposed → Infectious → Immune) models have been
fitted to data from the Diamond Princess outbreak multiple times. With a relatively
small population, it is important to include models that take into account the effect
of a decreasing susceptible population. For example, Lai et al. used a Monte Carlo
Markov Chain (MCMC) approach to parameterise their SEIR model of the Diamond
Princess outbreak and found a remarkably high estimate for the initial reproduction
number of 5.7[210]. In this case, the reproduction number represents the total num-
ber of infections an infectious individual would make throughout their entire infec-
tious career with an entirely susceptible population, and is calculated by multiply-
ing the rate of transmission by the expected length of their infectious period. Both
Huang et al.[211] and Emery et al.[158] used an SEIR model when estimating the
importance of asymptomatic transmission during the outbreak, and found that it ac-
counted for a considerable proportion of all transmissions. Finally, Batista et al. used
an SEIR model to show that while the quarantine was effective in reducing the num-
ber of infections, an increased immunity, such as through vaccination, would have
been more effective at reducing the outbreak spread[212].

SEIR models are effective, in that they emulate the progress of an infectious disease.
However, if not used with care, they fail to take into account the important effect of
spatial factors. In a cruise in particular, we can get a good understanding of where
people are likely to go and who they are likely to meet based on their cabin loca-
tion. For example, Xu et al. used cabin allocation to specifically look for clustering
of transmissions on the Diamond Princess after quarantine was in effect. They found
that the majority of transmissions seemed to occur between individuals sharing the
same cabin and that there was no clustering of outbreaks around certain cabins, sug-
gesting that there was no evidence of spread through the ventilation system[213]. As
an alternative approach, Liu et al. generated a full contact model of the Diamond
Princess including spatial elements to show the importance of the quarantine[214].

A couple of studies analysed the genetic data coming from PCR results from the
Diamond Princess outbreak. Sekizuka et al. investigated the genetic similarity of
the swabs to prove that the outbreak could be traced to one exposure event[215].
Hoshino et al. took advantage of this relatively narrow genetic variance to estimate
the mutation rate of SARS-CoV-2[216]. These are further examples of how relatively
small outbreaks can be used to give insight on a disease as a whole.

247



The variety of approaches when analysing outbreaks on ships similar to the Diamond
Princess has led to a number of reviews of such studies. Rosca et al. performed a sys-
tematic review of studies involving outbreaks of SARS-CoV-2 on cruise ships. In gen-
eral they found the level of evidence to be poor and that there was a need for stan-
dardisation of such studies[217]. A broader review looking at interventions performed
during SARS-CoV-2 outbreaks on cruise ships, transport ships and naval vessels was
performed by Kordsmeyer et al.. They concluded that in general there was a need for
ships to have made plans for outbreaks in advance of them occurring, such as having
testing strategies and isolation plans in place before a voyage[218].

It is worth noting that outbreaks like the one seen onboard the Diamond Princess
appear to be relatively rare. A review of all reported ship-based SARS-CoV-2 out-
breaks between January and October of 2020 revealed 104 occurrences of a ship hav-
ing at least one positive case during their voyage. This review, performed by Wille-
brand et al., showed a median attack rate for these outbreaks of just three individu-
als, with the Diamond Princess standing as a remarkable outlier, alongside another
outbreak on the similarly named Ruby Princess[153].

One outbreak that does not appear frequently in literature for cruise-ship SARS-
CoV-2 outbreaks is that of the focus of this chapter. In March 2020, a British holi-
day cruise-liner saw outbreaks of both SARS-CoV-2 and Norovirus at the same time.
As SARS-CoV-2 is highly infectious, the ship was not allowed to dock at its near-
est port, resulting in a completely closed outbreak of both disease. Of the 1085 to-
tal passengers on board, 19 individuals contracted Norovirus and 15 individuals con-
tracted SARS-CoV-2. The cruise was allowed to dock on 20/3/2020, a week after the
last case of either disease.

We have been provided with a line-list of diagnosis times and cabin numbers for
the two concurrent outbreaks, along with a map of the ship. Due to the small size
of the outbreak, it would be inappropriate to fit a deterministic SEIR model to the
data-set. Additionally, as this outbreak occurred at a time before mass-screening was
available, it is difficult to know to what extend asymptomatic transmissions were in-
volved in this outbreak. Instead, we want to generate a simple model that investi-
gates the spatial element of this outbreak.

By comparing the layout of the actual outbreak to the layout of random outbreaks,
we aim to show an inverse link between distance between cabins and the probability
of spread between cabins. We aim to show that the distance between infected cabins
is shorter than would be expected if chosen at random and in doing so prove a link
between cabin location and disease spread. Doing so will be useful as it will enable
us to advise on spatial elements in future outbreaks on cruise-liners, as well as out-
breaks in different but similar environments.
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6.2 Methods

We start by investigating the layout of the cruise-liner. A copy of the cruise-liner’s
General Arrangement after dry dock in 2019 was used, provided through personal
communication. Each of the 676 cabins was assigned a 3D Cartesian coordinate,
with the z coordinate being the floor they were on. The x and y coordinates were
based on the exact location of their cabin door hinge. We used the hinge because
they are nearly universally present and demonstrate where individuals would enter a
corridor and therefore interact with their neighbours. A few notable exceptions were
found. Cabins on the 7th floor appear to have sliding doors. The door jambs were
used as a proxy for a door hinge. There is a door between the Captain’s and the Ho-
tel Manager’s cabins. This was ignored from the modelling as neither of them were
affected by the outbreak. A number of cabin doors were missing on the plans. Their
locations were approximated based on neighbouring cabins.

The cabins and dates of all passengers and crew members affected were provided
through personal communication. We treat each cabin as an infectious unit. We
classify them as symptomatic when the first individual in the cabin develops symp-
toms. A generation time of 5.2 days with a standard deviation of 1.72 days, using a
Gamma distribution, was used for the Coronavirus outbreak[219], and a mean of 3.60
days and standard deviation of 1.70 for the Norovirus outbreak [220]. Using these
distributions, two cabins were connected if their occupants contracted the same dis-
ease and if the generation times between the first people to contract the disease in
each cabin would be between 0.025 and 0.975 for the cumulative density function of
that disease’s generation time.

Time

Time

Figure 6.1. Four cabins are arranged by the time at which the first person in each cabin developed
symptoms. The blue block indicates the window of time Cabin A’s infector would have had to have
developed symptoms, based on the time Cabin A developed symptoms. The purple blocks indicate

the times Cabin A would have had to developed symptoms in in order for either Cabin B or D to be
its infector. Cabin B developed symptoms too early, so it did not infect Cabin A, and we count it

towards the list of failed transmissions. Cabin D developed symptoms too late. This does not count
as a failed transmission as Cabin A must already have been infected before it was exposed to Cabin

D. Cabin C is the only cabin that could have infected Cabin A.

If there were n cabins involved in the outbreak, then X is an n × n sized array of the
horizontal distances between each cabin. Xi,j is a null value if their infection timings
fail to align, such that the ith cabin could not have been infected by the jth cabin
(this means that Xi,i is also a null value as the ith cabin could not infect itself). For
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each infected cabin, we want to choose the closest possible infecting cabin with re-
gards to horizontal distance. With regards to vertical distance, we have four decreas-
ingly strict rules regarding if a cabin can infect another cabin dependent on the re-
spective floors they are on. These are that one cabin can infect another cabin:

1. only if they are on the same floor.

2. only if they are on the same or adjacent floors.

3. only if they are both above or both below the fifth floor.

4. regardless of their floor number.

We separate cabins by the fifth floor in the third rule set because is this a commu-
nal area, as so we suspected that individuals from cabins above the fifth floor were
unlikely to go below the fifth floor and vice versa.

For each rule-set, if the cabin j could not infect cabin i according to the rule, we give
Xi,j a null value. Each non-null value on the ith row therefore represents a possible
infector of the ith cabin. We select the smallest of these value for each row to gener-
ate a transmission tree that minimises the horizontal distance between cabins (ignor-
ing cases where the entire row is null values), assuming only one initial introductory
event. We sum across the lengths of the edges of this transmission tree (defined as
the horizontal distance between infector-infectee paired cabins), and take the natural
logarithm of this value to calculate that transmission tree’s score. We assume that
infected cabins that had no infecting cabins according to our rule-set were infected
by random homogeneous mixing in communal areas and are therefore not accounted
for in our score.

Figure 6.2. In this example, we want to choose the closest possible infecting cabin to Cabin A.
Cabin B is on the same floor, and closer than Cabin C, but the timings for their symptom onsets do
not line up (marked by the cross through their connecting arrow. Horizontally, Cabin D is closer to
Cabin A than Cabin C is. However, it is on a different floor. For rule-sets that allow for infections
between adjacent floors (Rule-sets 2-4), Cabin D will be chosen as Cabin A’s infector. However, for

Rule-set 1, where between-floor transmission is not allowed, Cabin C will be chosen.

These scores were then compared to 100000 alternative outbreaks. In these alter-
native simulated outbreaks, the same timings for the onset of symptoms in a cabin
were used, but these were each allocated to a random cabin on the same floor as the
initial symptomatic cabin: i.e. in each iteration, if occupants of a cabin on, say, the
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fourth floor developed symptoms at a particular time in the observed outbreak, we
selected a random cabin on the same floor to develop symptoms at this time in the
simulated outbreak. We repeated this analysis with staff and guest cabins separated,
so that a true infection in a staff cabin would only be assigned to a random staff
cabin on the same floor, and likewise for guest cabins. Staff and guest cabins were,
by design, mostly separate, and so we wanted to avoid mis-attributing an outbreak
among staff to the closeness of their cabins, rather than their shared work environ-
ments. We performed this simulation for each outbreak separately. In the observed
outbreak, the was no recorded cabin that had been infected with both diseases. How-
ever, since each outbreak was relatively small compared to the total number of cab-
ins, we felt it reasonable to assume this was coincidence rather than one disease be-
ing a protective factor for the other.

We compared the distribution of simulated scores to the observed score. If the dis-
tance between cabins in either outbreak was consistently shorter than expected, we
would expect the score from the true outbreaks to be significantly smaller than from
the randomly assigned outbreaks.

6.3 Results

The two outbreaks show a different relationship when it comes to the distance be-
tween affected cabins. Starting with Norovirus (shown in orange both in Figures 6.3
and 6.4), we essentially saw a total total distance between “infecting” cabins simi-
lar to the most likely value of what would be seen if the cabins had been selected
from each floor at random. This was true both when our random selections mixed
together guest and staff cabins (Figure 6.3) and when they kept them separate (Fig-
ure 6.4). In fact, for some rule-sets, the total distance between cabins is slightly big-
ger in the observed outbreak than expected (but not by any statistically significant
margin).

Cabin distance appears to have had a greater effect on the spread of SARS-CoV-
2. In particular, when we allow for transmission to occur between any cabin on the
same side of the fifth floor, the distance between infecting cabins is smaller than ex-
pected under random chance. When we account for keeping staff and guest separate,
this difference is close to being significant (p=0.052), and is significant when we do
not limit which floor a cabin can infect (p=0.035). Tables 6.1 and 6.2 give these re-
sults in full.

6.4 Discussion

This investigation attempted to link the transmission of two infectious diseases in a
closed environment to proximity, using cabin location as a proxy for location of infec-
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Expected score Observed score p-value

SARS-CoV-2

Same floor 5.48 5.24 0.203
Within one floor 5.72 5.69 0.453

Same side of fifth floor 5.94 5.65 0.105
Across all floors 5.78 5.43 0.09

Norovirus

Same floor 6.14 6.10 0.437
Within one floor 6.30 6.36 0.595

Same side of fifth floor 6.27 6.36 0.635
Across all floors 6.17 6.25 0.625

Table 6.1. The logarithm of the minimum total distance between transmitting cabins for each
outbreak, with staff and guests treated indistinguishably in simulations. The expected score is the

mean result across our simulations.

Figure 6.3. Histogram of random total distances between infected cabins. The blue plots show the
SARS-CoV-2 results and the orange plots show the Norovirus results. The dotted lines show our
observed results. In each of the SARS-CoV-2 cases the observed results are below the expected
score if the cabins were randomly assigned, implying that there may be a relationship between

distance and disease spread.

tors and infectees. Figures 6.3 and 6.4 show a possible inverse relationship between
distance between cabins and the probability of transmission of SARS-CoV-2, but
that of Norovirus.

This relationship was only truly observed when separating out staff and guests and
allowing transmission between all floors. If we take this result at face value, it does
not really point towards individuals infecting each other from the comfort of their
own cabins. If it did, then we would expect to see a similar effect among individuals
on the same or adjacent floors. Instead, one possible explanation for this observation
is that we are seeing the effect of shared communal areas that are more likely to be
used base on cabin location, such as stair wells or communal toilets. A deeper look
into each cabin’s route to the fifth deck may have indicated areas where people are
likely to have crossed paths.

If there is a spatial element to the risk of spread, then it is very important that this
is accounted for when attempting to parameterise a model of an outbreak like the
one seen on the cruise-liner examined in this chapter. Given that there are far more
cabins that are far away from each other than close together, if we enumerated each
failed transmission (by which we mean each time an infectious cabin failed to infect
another cabin) we would find that there are a lot more failed transmissions over a
longer distance than over a shorter distance. We may initially see no difference be-
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Expected score Observed score p-value

SARS-CoV-2

Same floor 5.84 5.24 0.205
Within one floor 5.87 5.69 0.286

Same side of fifth floor 5.98 5.65 0.052
Across all floors 5.81 5.43 0.035

Norovirus

Same floor 6.13 6.10 0.442
Within one floor 6.30 6.36 0.598

Same side of fifth floor 6.27 6.35 0.645
Across all floors 6.17 6.25 0.633

Table 6.2. The logarithm of the minimum total distance between transmitting cabins for each
outbreak, with staff and guests kept separate in our simulations. The expected score is the mean

result across our simulations.

Figure 6.4. Histogram of random total distances between infected cabins when guests and staff have
been treated separately. The blue plots show the SARS-CoV-2 results and the orange plots show

the Norovirus results. The dotted lines show our observed results. In each of the SARS-CoV-2 cases
the observed results are below the expected score if the cabins were randomly assigned, implying

that there may be a relationship between distance and disease spread.

tween a model where we assume distance is irrelevant and one where distance be-
tween infector-infectee cabins is accounted for. However, as the number of suscep-
tible cabins decreases, this similarity may change. For example, in a scenario where
there are plenty of susceptible cabins left, but none are near infectious cabins, a
model that accounts for distance may predict that the outbreak is coming to an end,
while one that does not may allow it to continue. Conversely, if only a few suscepti-
ble cabins remain, but they are all close to infecting cabins, the model that accounts
for distance may predict that the outbreak will continue, while the model that does
not may say that there that the susceptible population it too small for the outbreak
to continue. This could lead us to under- or overestimate the size of an outbreak.
Multiple similar attempts have been made to infer spatial relationships of outbreaks
in closed environments. Kirking et al. examined a Norovirus outbreak on a flight
from Boston, Massachusetts, to Los Angeles, California. They used seat allocation as
a proxy for location and through logistic regression found aisle seats and seat in close
proximity to a particular group were positively linked to contracting Norovirus[221].
Han et al. directly modelled passenger movement and resulting droplet dispersion to
simulate the spread of an in-flight SARS outbreak[222]. In order to understand in
flight movement, Hertzberg et al. monitored passengers on 10 commercial flights and
generated outbreak models based on their movements[223]. Over these shorter peri-
ods of time it may be easier to either directly model individual’s movements or ap-

253



proximate them to a location such as their seat when modelling the spread of a dis-
ease in a close-contact environment. More unpredictable movement may be expected
over the 23 days our outbreaks took place. We have shown it is still possible to ex-
tract positional aspects of these outbreaks through approximating individual’s loca-
tions to their cabins.

There are elements to this investigation that require further analysis. Data was only
available on the number of individuals in infected cabins. Therefore it was not possi-
ble to accurately investigate if this had an effect on a cabin’s probability of being in-
fected as it was not possible to compare infected cabin occupancy with non-infected
cabin occupancy. Similarly, a cabin with multiple infected individuals is likely to be
more infectious for longer which, again, was not accounted for in the model. Demo-
graphics of the individuals may be important for determining their risk of infection,
in particular age. Distinguishing between passengers and crew members may elicit
different interaction patterns and therefore different dependencies on cabin location
(for example, it may be reasonable to assume that passengers on the top deck are
more likely to interact with and therefore infect or be infected by crew staying on the
bottom deck than passengers on the bottom deck). Accounting for this may increase
the fidelity of the data.

One avenue of particular interest would be estimating the transmission rate between
cabins, and seeing if this changes as the distance between cabins is increased, espe-
cially when they are on different floors. Seymour et al. approach a similar problem
when trying to estimate the transmission rate of Foot and Mouth disease between
farms in the UK[224] and avian flu in farms in the Netherlands[225]. In both cases,
the farms act as infectious units and they attempted to find a non-parametric func-
tion that describes the transmission rate between two farms dependent on their dis-
tance. It is easy to see how this is analogous to considering cabins as infectious units
and attempting to find a function that describes the between-cabin transmission rate
dependent on their distance. Unfortunately, the data-points in the farm-based out-
breaks are orders of magnitude larger than that of the outbreaks examined in this
chapter. It is unlikely that we would have enough data to draw any meaningful con-
clusions.

A key assumption of this model is that there was only one introduction event for
each disease. However, this may not be the case. If the Norovirus infection was re-
lated to food poisoning or the Coronavirus was introduced by passengers on shore,
then the seeming first generation and resulting outbreak would be larger than ex-
pected when there was only one introduction. In the case of the Norovirus outbreak,
the first four individuals to present with symptoms developed symptoms within 15
hours of each other, making it unlikely that they infected each other given the re-
quired generation time. This could explain why we do not see a spatial effect with
this outbreak.
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We also ignore the possibility of asymptomatic transmission. Ignoring the possibility
of asymptomatic individuals or individuals who chose not to present with symptoms
can increase the possibility of underestimating an outbreak size. We do not know the
number of asymptomatic individuals during the actual outbreak. It can be argued
that asymptomatic individuals can be accounted for in our model as a vector for dis-
ease transfer between cabins. This would require a different transmission probability,
as it would represent the probability of two consecutive transmissions, as well as an
increased generation time.

Additionally, there is an assumption that the rate of transmission between cabins
did not change throughout the outbreak. We have not accounted for interventions
such as quarantining and reduced mixing which may have changed in strictness as
the outbreaks became more evident. There is circumstantial evidence for this being
the case. There are seven days infection free days before the cruise-liner is evacuated,
which was unlikely to occur with the rates of transmission seen at the beginning of
the outbreak. This may indicate a reduced rate of transmission due to outbreak con-
trol, although disentangling it from the reduction in the susceptible population is not
trivial.

Finally, this analysis has not investigated the effect of two concurrent outbreaks of
different diseases. It may be that those already unwell with one disease have a re-
duced probability of contracting the other disease due to decreased mixing or an in-
nate protective element of the disease, or an increased vulnerability due to increased
frailty whilst unwell. Of note, no cabin reported having both diseases.

We have shown some weak effects of cabin location on the spread of SARS-CoV-2
in this cruise-liner outbreak. If the outbreak had been larger, it is possible that we
would have been able to develop a full transmission model that could be generalised
to other cruise-liners. As this study is retrospective, it cannot directly advise on or
help mitigate the outbreak it is analysing. Further extensions of this investigation
could look at how this model would interpret live data of an ongoing outbreak. With
this information, it could be used to advise on swabbing and isolation protocols, in-
dicating which cabins are more at risk before they have begun to develop symptoms,
thus limiting the outbreak spread.
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Summary:
In this chapter we investigate a dual outbreak of norovirus and
SARS-CoV-2 on a cruise-liner. We propose a simple method of
investigating spacial effects on the outbreak by treating each

cabin as an individual infectious unit and comparing the
horizontal distances between infected cabins. This would be an
easy and effective way to show the importance (or lack of effect)

of location on an outbreak, as well as inform where targeted
screening could be focused. In this study, neither outbreak was
large enough to show a significant effect of cabin location on

who was infected.
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Chapter 7

Summary

Through the course of this thesis, we have presented five different tools designed to
help understand and mitigate against outbreaks in close-contact environments. With
each tool we showed how it works, how it can be used and areas of possible research
around these tools. These chapters also included full discussions regarding future
work in each of these areas. As this thesis comes to an end, it is worth revisiting
each of these tools in turn to summarise what we have learnt from them, as well as
what there is still left to be learnt.

7.1 Estimating the size of a first generation of an outbreak

In Chapter 2 we investigated multiple variations of a scenario where a group of in-
dividuals were exposed to some infectious diseases. We wanted to know if we could
infer the total number of individuals who had been infected based on how many were
symptomatic before a certain time and how different aspects of the outbreak might
affect our analysis. Indeed we could, as individuals becoming symptomatic earlier
could be used to infer that there had been more samples of the underlying distribu-
tion that describes the disease’s incubation period. We found that a greater propor-
tion of symptomatic individuals led to a later certainty that we had seen all symp-
tomatic individuals and that possibility of asymptomatic individuals stretch out our
calculations in the time dimension. This knowledge could be incredibly useful in sin-
gle exposure events or in early pandemics for advising when we can be certain that a
group of individuals are not infectious.

As we allowed for prolonged exposure, we started having difficulties generalising our
analysis to all diseases. The analysis involved convolving the incubation distribution
with another distribution that was dependent on the model of prolonged exposure
we were using. We broke down the model into a scenario where positive case occur
with a probability ρ and the probability of observing a positive case is described by
the function K(ρ). In our simplistic case of point exposure, K(ρ) has a linear rela-
tionship with ρ. We could not find a non-linear function for K(ρ) that generates an
analytical solution for estimating the total number of positive cases.

Future work realising such a function would help generalise this method of estima-
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tion, and lead to estimates for the ongoing rate of infection, approximating the true
total current prevalence and calculating the probability that an outbreak is over.

7.2 Adjusting rota patterns to reduce in-work infectious times

Chapter 3 showed a wholly unique line of enquiry investigating the role of work
schedules in limiting the length time individuals are infectious whilst at work. To the
best of our knowledge, this has not been looked at before and so there are plenty of
variations and alternatives that are worth investigating further.

Our initial numerical analysis in revealed that, at least on paper, changing rota pat-
terns can reduce the expected length of time an individual spends at work whilst in-
fectious and the changing the timing of tests could be used to improve their efficacy.
We then went further to represent rota patterns as Fourier series, enabling us to per-
form our analysis at higher speeds to a greater guaranteed precision.

There were three problems that remain open at the end of this thesis. The first is
writing a complete distribution for the length of time whilst infectious. Currently,
the system we proposed simply finds the central estimate for this value, but it should
vary from person to person. Knowing how it varies will give us a better understand-
ing how certain interventions would be. This can be done numerically, but would be
at risk of introducing rounding errors, and would become progressively computation-
ally cumbersome as the complexity of a rota pattern increased. Instead it would be
useful to be able to calculate this distribution from our Fourier analysis.

The second problem also involves incorporating something numerically possible into
the Fourier analysis: Testing patterns. In the body of this thesis we were unable to
represent regular testing as part of a Fourier transformation, despite the fact that
it is something that occurs regularly in sequence with the rota pattern with a pre-
dictable outcome. Instead we had to generate a work around which, whilst better
than the plane numerical solution, still required some numerical integration. This
was an incredibly frustrating problem, as it seems like a solution should be possible,
although as of writing it is beyond this author’s abilities.

The third problem (and a common problem with a lot of epidemiological models)
is that this work is entirely theoretical. Whilst on paper we have shown the impor-
tance of rota pattern structure and test timing, it would be difficult to show in real
life. We may only see differences on larger scales, and so studying the phenomenon in
the real world may be impractical.
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7.3 Using a probablistic method to estimate the total number of in-

hospital infections

Nosoco, the focus of Chapter 4, is a tool intended to be used to estimate the total
number of nosocomial transmissions that occurred during some observation window.
As discussed in the body of this thesis, we saw a gap in analysis tools available in the
UK, as the current standard was to declare an individual as representing a nosoco-
mial transmission if they fulfilled some criteria regarding the timing of their diagno-
sis. Using the probabilistic approach of Nosoco allowed for some uncertainty and for
evidence of nosocomial transmissions to accumulate between cases that would have
been declared negative otherwise. It is a fast, cheap method of monitoring nosoco-
mial transmissions without having to generate a full transmission model for inside
and outside of hospitals.

There are improvements that can be made to Nosoco. The first, possibly most im-
portant improvement would be to validate the distribution Nosoco uses to describe
the time from infection to diagnosis. Currently other researchers in our group are
looking at genetic data of SARS-CoV-2 to assess if an individual’s infection comes
from within the hospital or occurred outside. We intend to compare this data to
ward admission data to approximate the correct distribution for Nosoco to use.
Ellingford et al. have already shown that RNA samples can be used to track SARS-
CoV-2 outbreaks across wards and between hospital staff, so it seems reasonable that
we should be able to approximate a time of infection.

Ideally, though, we would want to describe three separate distributions, dependent
on why an individual was swabbed:

1. Swabbing because the patient had developed symptoms of SARS-CoV-2

2. Swabbing as a precaution because another individual on their ward had recently
been diagnosed with SARS-CoV-2

3. Swabbing as part of a regularly scheduled swabbing program

Each of these reasons would likely detect a positive individual at a different stage
of their infectious career and so come with a different probability that they were in-
fected during their admission (i.e. that they represent a nosocomial transmission). If
these details were available to use (which they are currently not - they can only be
inferred) we get a more accurate picture of the distributions Nosoco needs.

Data handling is another large issue for Nosoco. We found that it was difficult to
consistently pair swab and admission data between separate hospitals. Each hospi-
tal had their local protocol, which often did not match up. Fortunately, the trust has
moved to a universal data system, which will hopefully improve the fidelity of Nosoco
in the future. It would be useful to repeat our investigations using this new system.
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Unfortunately, it does not apply to historic data, so would be unclear if difference
came as the result of better data management or changes in outbreaks over time.

One area that we wanted to use Nosoco to investigate was between-ward transmis-
sions. We never wanted to generate full transmission trees - this is not the purpose of
Nosoco. However, we did want to see if there were any consistent temporal similari-
ties between wards. We might expect wards to see some similarities. We showed an
initial close relationship between external and internal rates of infections, so wards
with elevated rates of infection would inevitably be in sync. However, what we were
really interested in were wards where there was a consistent short delay between the
two. This could have been indicative of infectious individuals on one ward resulting
in infected individuals in the other. This would have been an incredibly useful piece
of information to have to advise about transfers between wards. Unfortunately, we
did not have the time to perform this analysis, which will have to be left to a later
date.

7.4 Estimating the incidence of Hepatitis C in prisons

Chapter 5 raises some concerns regarding a common equation used to estimate the
incidence of Hepatitis C from cross-sectional surveys:

I =

(︁
365
T

)︁
n

(N − n) +
(︁
365
T

)︁
where I is the incidence, N is the total number of individuals in the survey who to
not have Hepatitis C antibodies and n is the subset of those individuals who do have
Hepatitis C RNA when tested, which occurs in a narrow window of time of length
T days, close to the initial time of infection. We can see the logic with this analy-
sis. A cross-sectional survey is only really assessing a T length window, so we inflate
the positive cases in that window to match how many we may expect in a year and
calculate the incidence from that. However, as discussed in the chapter, this is not
reflective of the infectious process. We instead show a simple calculation for approxi-
mating a Bayesian posterior for the rate of infection and from this calculate a central
estimate and a credible interval for the incidence of Hepatitis C.

We particularly wanted to look at Hepatitis C in prisons. This calculation had twice
been used to show that the incidence of Hepatitis C in prisons is less than one would
expect among people who inject drugs. Once we used our formula, we showed no evi-
dence of such discrepancy.

This was actually one of the original focuses of this thesis. We wanted to further
investigate the incidence of Hepatitis C in prisons and see how early identification
and treatment in prisons could help reduce the incidence inside and outside of pris-
ons. One confounding factor is the unusual distribution for the length of stay in pris-
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ons. Some sentences can be exceedingly short, whilst others are orders of magnitude
longer, and a sentence length may not be a direct indication as to how long an indi-
vidual actually ends up staying in prison. For some people, their stay in prison may
be far shorter than it takes to complete complete a course of treatment for Hepati-
tis C. Assuming that an effective treatment only occurs if they finish their course of
treatment before leaving prison, understanding the distribution of prison stays (and
particular if they are related to risky behaviours such as injecting drugs) would be
vital to understanding how best to test and allocate treatment for the disease.

Unfortunately, of course, these plans were created in late 2019, before the SARS-
CoV-2 pandemic. Whilst work continues on understanding and modelling Hepatitis
C spread in prisons, there still has not been a full investigation into parameterising
prison lengths of stay and inserting this into outbreak models.

7.5 Associating cabin distance with outbreak spread on a cruise-liner

Chapter 6 essentially showed a very loose way of detecting spatial clusters between
fixed infected units. We approximated possible transmission trees for a dual outbreak
on a cruise-liner and saw how that network compared to other networks generated
randomly by random cabin allocation. We did find a slight spatial element, although
it was more indicative of shared communal spaces rather than direct transmission be-
tween adjacent cabins.

We were reticent to perform any more in-depth analysis on the data-set simply due
to its size. With outbreaks in the order of 20, compared to a possible 600, spaced out
largely all over the ship, there simply was not enough data to generate a full trans-
mission model without large enough margins of error such that our conclusions would
be essentially meaningless. Outside of work written in this thesis, we did consider
mapping physical routes around the cruise-liner to delineate between physical dis-
tance and route distance, but felt this may be better left for later research. Instead
we have shown a fairly simplistic method of checking for clustering of outbreaks
around cabins,

The tools we have presented in this thesis have varying and far-reaching applications.
They are relatively easy to use and we hope we have presented them in a way which
someone unfamiliar with the intricacies of infectious disease modelling can still use.
There remains room for growth in this field and we can see multiple avenues down
which these tools can be used to increase our understanding of and hopefully miti-
gate against further outbreaks.
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