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L I S T O F F I G U R E S

Figure 2.1 Illustration of the joint model. The frame of the parent

link P is shown as λ(i), and the frame of the child link

C is shown as i. The i-th joint connects together the

two links, enforcing a motion constraint. The operators

pre(·) and suc(·) accept a joint number and return,

respectively, its predecessor and successor frames. The

successor frame of a joint matches with the frame i

of the child link. The joint model aims to obtain the

transform λ(i)Hi(s) as a function of the joint position

s. 57

Figure 2.2 Illustration of 6D force propagation through a set of

links connected by joints. The link L receives a force

fJP from its parent P transmitted through the joint JP ,

and an external force fE . The link L transmits to each

children Ci a force fJCi
through their connecting joint

JCi . 62

Figure 3.1 The Reinforcement Learning setting. 74

Figure 3.2 Illustration of the process generating trajectory data. 79
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Figure 5.1 Architecture of Scenario and Gym-Ignition. Users of

the overall framework just need to provide the URDF or

SDF description of their robot and implement the Task

interface with the desired decision-making logic. The

framework, following a top-down approach, exposes

to the Agent algorithms the unified gym.Env interface.

The provided Runtime classes either instantiate the

simulator, or handle soft real-time logic for real-world

robots. The runtimes are generic and can operate on any

decision-making logic that exposes the Task interface.

Finally, Task implementations use the Scenario APIs

to interact with the robots part of the environment.

A typical data flow starts with the agent setting the

action with gym.Env.step. The processing of the action

is a combination of logic inside the active runtime and

the active task. In particular, the runtime receives the

action and directly forwards it to the task for being

processed. The task, by operating transparently over

the Scenario APIs, applies the action to the robot, and

then waits the runtime to perform the time stepping.

After this phase, the task computes the reward, packs

the observation, detects if the environment reached

the terminal state, and returns all this data back to the

agent passing through the gym.Env APIs. 124

Figure 6.1 The proposed control system. 129

Figure 6.2 Learning curves over 11 training runs. 140

Figure 6.3 (a) Push-recovery success rates on the horizontal plane

(forward push: 0 rad, µc = 1). (b) Results with µc =

0.2. 141

Figure 6.4 (a) The initial joint configuration s0. (b) Sequences

showing ankle, step, and momentum push-recovery

strategies. The robot is pushed by a sphere shot from

the left side of the image. Impact takes place in the

second frame. 141
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Figure 6.5 Consecutive counterbalanced forces in random direc-

tions over 50 trials for each combination of magnitude

and duration. Forces are applied to the base, chest, and

elbow links for an increasing duration. 143

Figure 7.1 Illustration of the point-surface soft-contact model

for non-planar terrains. The collidable point follow

a trajectory pcp(t), penetrating the ground in p0
cp :=(

x0, y0,H(x0, y0)
)
. While penetrating the material, the

point reaches a generic point pcp, over which a local

contact frame C = (pcp, [W ]) is positioned, with a lin-

ear velocity C[W ]vW,C = W ṗC ∈ R3. The figure reports

also the penetration depth h ∈ R, the normal deformation

δ ∈ R, and the compounded tangential deformation

m ∈ R3 of the material, used for the calculation of the

3D reaction force Cf cp with the proposed soft-contact

model. 153

Figure 7.2 Sphere trajectory of the bouncing experiment. 163

Figure 7.3 Evolution over time of the bouncing ball experiment’s

data. (7.3a) reports the mechanical energy of the system

and the norm of the linear component of the contact

forces summed and expressed in the B frame of the

spherical link. (7.3b) and (7.3b) report a closer view of

the first two impacts. (7.3d) reports the plot of the base

height, where both the bouncing and rolling phases

can be observed. 164

Figure 7.4 Evolution over time of the sliding box experiment’s

data. From top to bottom, the first plot shows the x

component of the CoM position, the second plot shows

the x component of the CoM velocity, and the third plot

shows the profile of the applied external force to the

CoM frame G. 166
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Figure 7.5 Comparison of the box’s CoM trajectory simulated with

the proposed soft-contact model and the Mujoco simu-

lator, considering a coefficient of friction (a) µ = 2, (b)

µ = 0, (c) µ = 0.5. 167

Figure 8.1 Sequence showing four time instants of the astronaut

simulation used for both the assessments of the mo-

mentum conservation and the energy conservation.

In the former experiment, the joints are actuated with

random torques, while in the latter, the joints are not

actuated and evolve in open-loop accordingly to their

initial velocity. 190

Figure 8.2 Momentum drift after 1 simulated second of the iCub

humanoid robot in a world without gravity, starting

from a configuration with zero velocity and applying

random joint forces. The plot shows the norm of the

linear and angular component of the momentum com-

puted in inertial-fixed coordinates. Gazebo Sim failed to

simulate the configuration with the 100 ms step. 191

Figure 8.3 Mechanical energy drift over 100 simulated seconds of

the iCub humanoid robot in a world without gravity,

starting from a configuration with a given generalized

velocity. 192

Figure 8.4 Benchmark of the RBDAs implemented in jaxsim against

those implemented in Pinocchio. (a) shows the results

of the 9-DoFs fixed-base Panda manipulator from Franka

Emika, (b) the results of the 12-DoFs quadruped ANY-

mal C from ANYbotics, and (c) the results of the 32-DoFs

humanoid iCub from IIT. The execution of jaxsim’s al-

gorithms run on average 10 times slower than Pinocchio

when executed on CPU, and 100 times when executed

on GPU. 194
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Figure 8.5 Comparison of parallelization performance of a simu-

lation step executed on CPU and GPUs. The simulated

models are 23 DoFs replicas of the iCub humanoid robot,

and the simulation step length is 1ms with a forward

Euler scheme. The time taken by the CPU scales mostly

linearly with the number of simulated models, while

the GPUs are able to exploit the parallel capability al-

most up to their CUDA cores (640 on the laptop, 4608 on

the workstation). For each sample, we show the equi-

valent RTF. The CPU cannot scale well over the number

of models when integrating more than 16 replicas. In-

stead, the GPUs show an interval that depends on their

parallellization capabilities in which the execution time

is not affected significantly by the number of integ-

rated models. Also on GPUs, however, the performance

start degrading when the number of integrated models

exceeds the available CUDA cores. 196

Figure 8.6 Illustration of the cartpole model in the θ = d = 0

configuration. 198

Figure 8.7 Learning curves of the cartpole swing-up task. The plot

reports the mean and standard deviation of the average

rewards r̂
(k)
t computed over k = 10 different training

executions. For each individual training, the average

reward r̂t in the considered parallel setting is computed

by averaging at each time step the 512 rewards received

from the vectorized gym.Env.step. 202
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Figure 8.8 Sim-to-sim comparison of the trajectories obtained by

exploiting the swing-up policy learned in a jaxsim

environment. The jaxsim curves correspond to an in-

distribution setting, where the policy is evaluated in the

same simulator that generated training data. Instead,

the Mujoco curves correspond to an out-of-distribution

setting, where the policy is evaluate in a simulator

different from the one that generated training data.

Note that θ, due to its range, is projected in the [−π, π]

range. 205

Figure 8.9 Trajectories of the cartpole swing-up policy acting on

the out-of-distribution environment simulated in Mu-

joco. The nominal curves are obtained by running the

policy on a cartpole model having nominal masses of

both the cart and the pole, and with no joint damping.

The mass curves show the obtained trajectories with the

model having the masses of both bodies multiplied by

2x. The mass+damping curves are generated in a setting

that extends the mass one by also considering for both

joints a damping with kv = 0.015. Note that in this case,

we removed the bounds of the pole angle, showing

more clearly the number of swings used by the policy

to reach the balancing state. 206

Figure A.1 Illustration of the setting in which the CoP is calcu-

lated. 236
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Table 2.1 List of motion subspaces for the supported 1 DoF

joints. 60

Table 5.1 Comparison of frameworks that provide robotic envir-

onments compatible with OpenAI Gym. 118

Table 6.1 Observation components. 130

Table 6.2 PPO, policy, and training parameters. 133

Table 6.3 Reward function details. Terms with a defined cutoff

are processed by the RBF kernel. 139

Table 7.1 Mujoco configuration considered in the experiments of

the sliding box on inclined surface matching as close as

possible the setting and properties of our soft-contact

model. Refer to the official documentation at https:

//mujoco.readthedocs.io for a detailed explanation

of the options. 168

Table 8.1 Comparison of modern physics engines similar to

jaxsim. [∗] jaxsim is developed with a differentiable

framework, but this functionality has to be finalised. 188

Table 8.2 Specifications of the settings in which the benchmarks

are executed. 189

Table 8.3 Specifications of the machine used to execute the val-

idation experiments. 198

Table 8.4 Properties of the environment implementing the cart-
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Table 8.5 PPO parameters for the the cartpole swing-up environ-

ment. 199

Table 8.6 Mujoco properties used for the sim-to-sim evaluation of

the trained cartpole swing-up policy. Refer to the offi-

cial documentation at https://mujoco.readthedocs.

io for a detailed explanation of the options. 203
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A C R O N Y M S

ABA Articulated Body Algorithm

AD Automatic Differentiation

AI Artificial Intelligence

API Application Programming Interface

CH Convex Hull

CoM Center of Mass

CoP Center of Pressure

CP Capture Point

CPU Central Processing Unit

CRBA Composite Rigid Body Algorithm

DCM Divergent Component of Motion

DL Deep Learning

DoF Degree of Freedom

DRL Deep Reinforcement Learning

DS Double Support

EoM Equation of Motion

F/T Force/Torque

GAE Generalized Advantage Estimator

GPU Graphics Processing Unit

GUI Graphical User Interface

HAL Hardware Abstraction Layer

IMU Inertial Measurement Unit

JIT Just-in-time

KL Kullback–Leibler
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LIP Linear Inverted Pendulum

MDP Markov Decision Process

MJCF Mujoco XML Format

ML Machine Learning

NN Neural Network

ODE Ordinary Differential Equation

PDF Probability Density Function

PG Policy Gradient

PPO Proximal Policy Optimization

RK4 Runge-Kutta 4

RNG Random Number Generator

RBDA Rigid Body Dynamics Algorithm

RBF Radial Basis Function

RTF Real-Time Factor

RL Reinforcement Learning

RNEA Recursive Newton-Euler Algorithm

SAC Soft Actor-Critic

SDF Simulation Description Format

SP Support Polygon

TPU Tensor Processing Unit

TRPO Trust Region Policy Optimization

URDF Unified Robot Description Format

USD Universal Scene Description

XLA Accelerated Linear Algebra

ZMP Zero Moment Point
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L I S T O F S Y M B O L S

Robot Kinematics and Dynamics

p Point in space

A,B,C, . . . Frame names

W World (inertial) frame

[A] Orientation frame of frame A

oA ∈ R3 Origin of frame A

A = (oA, [A]) Definition of frame A

Ap ∈ R3 Coordinate vector of point p expressed in frame A

ARB ∈ SO(3) Rotation matrix from orientation frame [B] to [A]

AHB ∈ SE(3) Homogeneous transformation from frame B to A

Ap̃ ∈ R4 Homogeneous representation of coordinate vector Ap

CvA,B ∈ R3 Linear velocity of frame B relative to frame A, expressed in C

CωA,B ∈ R3 Angular velocity of frame B relative to frame A, expressed in C

CvA,B ∈ R6 6D velocity of frame B relative to frame A, expressed in C

Cv∧
A,B ∈ se(3) Matrix representation of 6D velocity CvA,B

AXB ∈ R6×6 Velocity transformation from frame B to frame A

CvA,B× ∈ R6×6 Cross product operator on R6 for 6D velocities

C v̇A,B ∈ R3 Apparent acceleration of frame B relative to A, expressed in C

CaA,B ∈ R3 Intrinsic acceleration of frame B relative to A, expressed in C

C āA,B ∈ R3 Proper acceleration of frame B relative to A, expressed in C
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Af ∈ R3 Linear force expressed in frame A

Am ∈ R3 Angular force (torque) expressed in frame A

Af ∈ R6 6D force expressed in frame A

AX
B ∈ R6×6 Force transformation from frame B to frame A

CvA,B×̄∗ ∈ R6×6 Cross product operator on R6 for 6D forces

I ∈ R3×3 Inertia tensor

BM ∈ R6×6 6D inertia matrix, expressed in frame B

g ∈ R+ Standard gravity

Wg ∈ R3 Gravitational acceleration vector

XSP,C ∈ R6 Joint motion subspace between frame P and C, expressed in X

n ∈ N Number of degrees of freedom of a multibody system

q ∈ SE(3)× Rn Floating-base position

Xν ∈ R6+n Floating-base velocity having base velocity XvW,B

Y JB,E ∈ R6×n Relative Jacobian of frame E w.r.t. B, expressed in Y

s ∈ Rn Joint positions

ṡ ∈ Rn Joint velocities

s̈ ∈ Rn Joint accelerations

Y JW,E ∈ R6×(6+n) Free-floating Jacobian of frame E, expressed in Y

Y JW,E/X ∈ R6×(6+n) Free-floating Jacobian of frame E, expressed in Y , for

base velocity expressed in X

M(q) ∈ R(6+n)×(6+n) Mass matrix

C(q, ν) ∈ R(6+n)×(6+n) Coriolis matrix

g(q) ∈ R6+n Potential force vector (or gravity vector)

h(q, ν) ∈ R6+n Bias forces vector
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τ ∈ Rn Joint generalized forces

L Set of link indices

nL Number of links

f ext
L ∈ R6×nL Vector stacking external forces applied to all links

JL ∈ R6nL×(6+n) Matrix stacking floating-base Jacobians of all links

q ∈ H A quaternion

q̄ ∈ Spin(3) A unit quaternion

Q = (w, r) ∈ R4 Quaternion coefficients

H Function providing terrain height

S Function providing terrain normal

m 3D tangential deformation of the terrain’s material

(·)∥, (·)∥ Component parallel to the terrain

(·)⊥, (·)⊥ Component normal to the terrain

Reinforcement Learning

S The state space

A The action space

st ∈ S State of the environment at time t

at ∈ A Action applied to the environment at time t

P : S ×A → Pr[S] State-transition probability density function

R : S ×A× S → R Reward function

rt ∈ R Immediate reward at time t

a = µ(s) Action taken from deterministic policy in state s

a ∼ π(· | s) Action sampled from stochastic policy in state s

πθ Stochastic policy parameterized with θ
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τ = (s0, a0, s1, a1, . . . , sT ) Trajectory of states and actions

s0 ∼ ρ0(·) Sampling state from initial state distribution

R̂t Reward-to-go at time t

Rt Return at time t

R(τ) Discounted return of trajectory τ

J(π) Performance function of stochastic policy π

π∗ Optimal policy

⟨S,A,R,P, ρ0⟩ Tuple defining a Markov Decision Process

Qπ(s, a) Action-value function for policy π at state-action pair (s, a)

V π(s) State-value function for policy π at state s

Aπ(s, a) Advantage function for policy π at state-action pair (s, a)

E[·] Expected value of a random variable

Ê[·] Empirical average estimating the expected value of a random variable

from samples
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There is no doubt that we are living in the age of data. In the last two decades, the
scientific community has been able to produce systems with superhuman capabil-
ities through the combination of modern hardware advancements, novel learning
algorithms and architectures, and advances in software frameworks. Such progress
revolutionised domains like computer vision and language processing, showing
performance previously out of reach. One may think that results could transfer
straightforwardly to other fields like robotics until realising the existence of domain-
specific characteristics and limitations hindering the potential of these learning
methods. Generating enough data from real-world robots is often too expensive or not
even possible to the desired scale. Data sampled from robots has a sequential nature,
and not all families of learning algorithms are effective in this context. Furthermore,
most algorithms that excel in this sequential setting, such as those belonging to the
Reinforcement Learning (RL) family, learn by a trial-and-error process, which could
lead to trajectories that damage either the robots or their surroundings.

In this thesis, we attempt to answer the question, "How can modern technology
help us generate synthetic data for humanoid robot planning and control?".
Motivated by the advancements in hardware accelerators that are revolutionising sci-
entific computing, we limit our analysis to the simulation realm.
In this context, we first introduce a software architecture allowing to structure
learning environments for robotics that can be adopted to train and run RL policies
regardless of the simulated or real-world setting. With its underlying simulation
technology and exploiting a scheme based on reward shaping, we validate the ar-
chitecture by training with RL a push-recovery controller capable of synthesising
whole-body references for the humanoid robot iCub. Then, motivated by overcoming
the bottlenecks related to the poor sampling performance of traditional rigid-body
simulators, we present a new physics engine in reduced coordinates that can simulate
robots interacting with a ground surface on hardware accelerators like Graphics
Processing Units (GPUs) and Tensor Processing Units (TPUs). To this end, we present
a contact-aware continuous state-space representation describing the dynamical
evolution of floating-base robots that can be numerically integrated for simulation
purposes. We adopt the new general-purpose Gazebo Sim simulator as our first solu-
tion to sample synthetic data, and exploit jax and its hardware support to scale the
sampling performance for highly parallel problems. Furthermore, we implement and
benchmark common Rigid Body Dynamics Algorithms (RBDAs) part of the proposed
physics engine on hardware accelerators and assess their scalability properties on
different GPUs. These pieces of technology help to lower the computational barriers
that nowadays are still among the main bottlenecks for obtaining intelligent agents,
democratising the applicability of this family of learning-based methods.
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Zooming out for a broader perspective, the contributions highlighted in this thesis
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These communities provide essential tools and shared knowledge. Research is done by
tiny bits from individuals, but these bits would have no meaning if not built into a broader,
well-established context. I hope that with this work, I succeeded in contributing my grain
to this vast sandy beach of knowledge. GitHub, in particular, has become a cozy home
where to collaborate, strengthen our efforts, make connections, and foster growth. I wish
other domains could embrace such a positive spirit.

I hold a strong belief that I wouldn’t have been able to weather with the countless lows
that characterize most doctoral journeys and maintain my mental well-being without
the relief that sports and the great outdoors provided. When I felt out of place, amidst
the rigors of day-to-day life, spending time in nature became essential to ground me
down again. Out there, I feel more alive than words can convey; it’s as if I’m deeply
rooted to my origins, and these roots don’t thrive within the confines of concrete.
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life outside the office is truly where it’s at. There’s no better place in the world where all of
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Amidst the challenges, whether the demands of academia or the disruptions of a global
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good friends, and a new family within your four walls. There were times when I walked
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walked out, stronger in every way. You’ve been my lifeline, safeguarding my mental health
during these years, and I cannot express enough gratitude for your unwavering support.

And last but certainly not least, I want to conclude by extending a heartfelt thank you
to my family: my mom Silvana, my sister Erica, and my brother Giulio. Your consistent
support and unwavering acceptance of every choice I’ve made throughout my life, without
judgment, has been a source of immeasurable strength. Dad, even though you couldn’t
witness this journey firsthand, I always felt my back covered by your usual silent approval.
I love you all.
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In theory, there is no difference between practice and theory.

In practice, there is.

— Benjamin Brewster

P R O LO G U E

Technology and automation became, over time, seamlessly integrated com-

modities in the daily life of any person living in modern society. We became so

used to their presence to the extent that we often forget their impact on our

daily routine. We cruise the world either entering or driving highly automated

machines endowed with motors and sensors. We load dishwashers and wash-

ing machines with dirty dishes and clothes, finding them clean when their

cycle ends. We rely so much on the functionality of devices we constantly keep

in our pockets that we would struggle to reach any new destination in their

absence. We carry technology inside our bodies to prevent the fatal collapse of

organs necessary to sustain life.

Robots represent one of the categories of objects that better describe the

combination of technology and automation. The Oxford Dictionary provides

the following definition:

robot a machine that can perform a complicated series of tasks by itself.

We are surrounded by robots, even if we do not realise it. In fact, as soon as

their intelligence becomes embodied with their functionality, we stop to call

them robots.

Our modern language considers robots those systems able to manipu-

late or navigate their surrounding environment with a degree of autonomy.

Though, contrary to society’s expectations built from science fiction, modern

robotic systems can reliably operate only within controlled environments

and perform narrow tasks. While we have already succeeded in deploy-

ing robots in environments with these characteristics like industry, bringing

them outside production lines requires a different level of autonomy, dexter-

ity, agility, and decision-making capabilities. Actions like interacting with a

22
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constantly-changing environment, predicting people’s intents, or generalising

prior knowledge are still far out of today’s robots’ reach.

Machine intelligence is among the most fascinating problems currently

researched by our society. Deep Learning (DL), which consists of the recent

combination of Machine Learning (ML) with deep Neural Networks (NNs)

recently enabled by the computational power of modern computing, revolu-

tionised domains like computer vision and natural language processing. Under

the assumption of large enough datasets, the most advanced algorithms be-

longing to the Supervised Learning family have been demonstrated to be

capable of training systems that have often shown super-human performance.

One could think of applying similar techniques to the field of robotics to

obtain comparable success without realising the inherent challenges posed

by this domain. Robots are physical systems. Generating datasets as large

as those that characterise the most recent research in computer vision and

language processing would either take too long or not even be possible, without

even considering the wear and tear of the hardware and the operational and

maintenance cost. Furthermore, regardless of the feasibility of data collection,

robotics is an interactive domain, and data sampled from robots has a sequen-

tial conformation. The application of Supervised Learning that excels on static

and offline datasets has been either ineffective or not an option.

Supervised Learning is just one of the subdomains belonging to ML. The

1990s experienced an increased research interest in a new family of methods

specialised in sequential decision-making problems, that nowadays belong to

the RL subdomain. The technological progress triggered by the advent of DL had

a strong impact also to unlock the RL potential, which was initially constrained

by computational limits. The transfer to robotics was inevitable. However, RL

methods learn sequentially following a process similar to trial-and-error. When

applied to robotics, during their training phase, these methods could generate

control actions that may damage either the robot or its surroundings. For this

reason, the accomplishments in the past decade of RL applied to robotics have

been demonstrated mainly in simulation rather than with real-world robots.

Generating synthetic data from simulators is cheap and effective, can be scaled

to dozens or hundreds of concurrent instances, and there is no risk of damage.
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Undeniably, synthetic data can only capture physical effects that can be

described through equations executed by a computer program, and similarly

to other domains, also robotic simulations suffer from the trade-off between

accuracy and speed. Particularly, contact dynamics has always been challenging

to capture with high fidelity, and usually simulators neglect non-ideal effects

like motor dynamics, actuation delays, and backlash. However, the past decades

have shown that advances in computing hardware and software methodologies

have always had a substantial impact on reducing the effects of this trade-off

–also called reality gap– and we believe that also research in robotic simulations

will continue in this direction.

In the 2010s, the RL community has been particularly prolific, producing a

considerable number of new algorithms. Despite their improved properties

like increased sample efficiency, faster and more stable convergence, etc. they

always rely on a given amount of trial-and-error experience, with no exception.

If, on the one hand, better algorithms are lower-bounded by the least amount

of data describing the decision-making logic to learn, on the other hand, the

amount of synthetic data that simulators can generate has no theoretical upper

bound. The rapid adoption of RL in the robotics domain forced practitioners

to use the simulation technology from either robotics or gaming available

at that time, which was never optimised for maximising execution speed.

In fact, a single simulation instance executing in real-time has always been

more than enough for the original purpose. It is not uncommon to find RL

experiments that require days, weeks, or even months worth of data, giving

those with access to large computational resources a significant advantage.

The robot learning community is aware of this limitation to the extent that

today’s research on domain-specific simulators that can be massively scaled

on modern hardware accelerators, not necessarily as fully-fledged as in the

past, is surging.

This thesis approaches the problem of generating synthetic data for robot

planning and control, focusing particularly on the needs of data-hungry

methodologies like RL, and considering as targets multi-articulated robots

like humanoids. It attempts to address questions regarding what kind of

modern technology currently available, both hardware and software, suits

this context best, taking into account domain-specific characteristics of legged
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robotics. To this end, we first evaluate how general-purpose simulators widely

adopted by the robotics community can be integrated into complex learning

pipelines, guaranteeing the reproducibility of sampled trajectories. Then,

motivated by the limited sampling performance of traditional general-purpose

simulators running on Central Processing Units (CPUs), we explore available

technology for maximising sampling throughput and propose a solution

that, by exploiting modern hardware accelerators, enables to scale rigid-body

simulations horizontally over a massive amount of parallel instances. We

believe that the progress of research in this domain is one of the critical factors

that could lead to the emergence of the next generation of robots seamlessly

operating around us.

This research project is part of a split-site Ph.D. programme between the

Istituto Italiano di Tecnologia (Italian Institute of Technology) and the Univer-

sity of Manchester, from November 2018 to July 2022. In the continuation of

this section, we provide a short outline describing the structure of this thesis.

Part I: Background and Fundamentals

This part introduces the reader to the fundamental concepts behind the

contributions of this thesis, reviews the state-of-the-art of corresponding

domains, and provides a detailed overview of research output supporting the

contributions to knowledge.

• Chapter 1 introduces robotic simulators, defining their main components

and properties. It also describes the enabling technologies that made the

work of this thesis possible, such as the Gazebo Sim simulator and the

jax framework.

• Chapter 2 introduces the notation and the equations governing rigid

multibody dynamics, and how relevant dynamics and kinematics quant-

ities could be computed and propagated through the model of a robotic

mechanical structure.

• Chapter 3 introduces the main concepts and notation of RL. It formulates

the structure of the RL problem, describes the main families of algorithms

that could be used to compute a solution, and develops the theory behind
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policy optimisation, reaching the formulation of the Proximal Policy

Optimization algorithm.

• Chapter 4 reviews the state-of-the-art of the domains of Reinforcement

Learning applied to robot locomotion, simulators for robot learning,

and methodologies for push recovery. It also details open problems that

characterise these domains, and how the contributions to knowledge of

this thesis aim to solve them.

Part II: Contributions

This part presents the contributions to knowledge provided by this thesis,

whose motivations will be discussed in more detail in Section 4.4.

• Chapter 5 presents a software architecture for creating robotic envir-

onments for RL research. It shows how to obtain environments that

can be executed in both simulated and real-world settings, without the

need to rewrite the decision-making logic. Sampling data from simu-

lated environments is performed with the Gazebo Sim general-purpose

simulator.

• Chapter 6, by sampling experience with the framework presented in the

previous chapter, studies the problem of synthesising the appropriate

control signals for balancing a simulated humanoid robot iCub in the

presence of external disturbances. It frames the objective as a RL problem,

guiding the exploration process during policy training with a reward

shaping methodology. Terms computed from the dynamical descrip-

tion of the robot are included in the reward signal, introducing prior

knowledge to the problem. Results show that after training, multiple

push-recovery strategies emerge, and the policy is capable of selecting

the most appropriate one as a consequence of external pushes.

• Chapter 7 starts addressing the problem of optimising the generation

of synthetic experience for robot locomotion, whose performance was

a bottleneck in the experiment presented in the previous chapter. This

chapter provides a state-space representation that models the dynamics

of a floating-base robot that can be integrated numerically to simulate its
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evolution. It formulates a soft-contacts model to compute the interaction

forces between the robot and the terrain surface, supporting both static

(sticking) and dynamic (slipping) regimes, having a friction cone bound-

ary without approximations. The dynamics of the contact model are then

included in an extended state-space representation, obtaining a system

of differential equations that describe the contact-aware dynamics of a

floating-base robot.

• Chapter 8, by exploiting the contact-aware state-space representation

formulated in the previous chapter, presents a new physics engine in

reduced coordinates that can be executed on hardware accelerators like

GPUs and TPUs for maximising sampling throughput. To this end, with the

notation introduced in Chapter 2, this chapter also formulates canonical

Rigid Body Dynamics Algorithms that can be executed in this accelerated

context. The physics engine performance is then benchmarked, assessing

the accuracy and speed of its algorithms and the scaling properties when

executed in a highly parallel setting integrating hundreds or thousands

of robot models concurrently. Finally, we validate the performance of the

proposed physics engine by training a policy by sampling experience

from hundreds of parallel environments running on GPU and evaluate its

performance in a sim-to-sim setting representing an out-of-distribution

environment.
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research publications

The content of Chapter 5 appears in

Gym-Ignition: Reproducible Robotic Simulations for Reinforce-
ment Learning
Diego Ferigo, Silvio Traversaro, Daniele Pucci
Robotics: Science and Systems (RSS) - Workshop on Closing the Reality
Gap in Sim2real Transfer for Robotic Manipulation, 2019

Gym-Ignition: Reproducible Robotic Simulations for Reinforce-
ment Learning
Diego Ferigo, Silvio Traversaro, Giorgio Metta, Daniele Pucci
International Symposium on System Integration (SII), 2020

The content of Chapter 6 appears in

On the Emergence of Whole-body Strategies from Humanoid
Robot Push-recovery Learning
Diego Ferigo, Raffaello Camoriano, Paolo Maria Viceconte, Daniele
Calandriello, Silvio Traversaro, Lorenzo Rosasco, Daniele Pucci
Robotics and Automation Letters, 2021

Beyond the previous main contributions directly supporting the contents of

this thesis, during the research project I also contributed to other works whose

content has not been included:

Simultaneous Floating-Base Estimation of Human Kinematics
and Joint Torques
Claudia Latella, Silvio Traversaro, Diego Ferigo, Yeshasvi Tirupach-
uri, Lorenzo Rapetti, Francisco Javier Andrade Chavez, Francesco
Nori, Daniele Pucci
Sensors, 2019

A Human Wearable Framework for Physical Human-Robot In-
teraction
Claudia Latella, Yeshasvi Tirupachuri, Lorenzo Rapetti, Diego
Ferigo, Silvio Traversaro, Ines Sorrentino, Francisco Javier Andrade
Chavez, Francesco Nori, Daniele Pucci
I-RIM, 2019
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Learning to Sequence Multiple Tasks with Competing Con-
straints
Anqing Duan, Raffaello Camoriano, Diego Ferigo, Yanlong Huang,
Daniele Calandriello, Lorenzo Rosasco, Daniele Pucci
International Conference on Intelligent Robots and Systems (IROS), 2019

Whole-Body Geometric Retargeting for Humanoid Robots
Kourosh Darvish, Yeshasvi Tirupachuri, Giulio Romualdi, Lorenzo
Rapetti, Diego Ferigo, Francisco Javier Andrade Chavez, Daniele
Pucci
International Conference on Humanoid Robots (Humanoids), 2019

A generic synchronous dataflow architecture to rapidly prototype
and deploy robot controllers
Diego Ferigo, Silvio Traversaro, Francesco Romano, Daniele Pucci
International Journal of Advanced Robotic Systems, 2020

Towards Partner-Aware Humanoid Robot Control Under Physical
Interactions
Yeshasvi Tirupachuri, Gabriele Nava, Claudia Latella, Diego Ferigo,
Lorenzo Rapetti, Luca Tagliapietra, Francesco Nori, Daniele Pucci
Advances in Intelligent Systems and Computing, 2020

Learning to Avoid Obstacles With Minimal Intervention Control
Anqing Duan, Raffaello Camoriano, Diego Ferigo, Yanlong Huang,
Daniele Calandriello, Lorenzo Rosasco, Daniele Pucci
Frontiers in Robotics and AI, 2020

ADHERENT: Learning Human-like Trajectory Generators for
Whole-body Control of Humanoid Robots
Paolo Maria Viceconte, Raffaello Camoriano, Giulio Romualdi,
Diego Ferigo, Stefano Dafarra, Silvio Traversaro, Giuseppe Oriolo,
Lorenzo Rosasco, Daniele Pucci
Robotics and Automation Letters, 2022

Robot Platforms and Simulators
Diego Ferigo, Alberto Parmiggiani, Elena Rampone, Vadim Tikhan-
off, Silvio Traversaro, Daniele Pucci, Lorenzo Natale
Cognitive Robotics, Chapter 7, 2022
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software projects

The results of the research conducted for this thesis produced the following

software projects that I developed and I am maintaining:

scenario is an abstraction layer providing APIs to interact with simulated and

real robots. The goal of the project is to allow developing high-level code that can

target all the available implementations using the same function calls. Currently,

it provides a complete implementation for interfacing with robots simulated

using the Gazebo Sim general-purpose simulator. The APIs are developed

and available in C++. Python bindings are also provided. The library is open-

source, released under the LGPL v2.1 or any later version, and it is available at

https://github.com/robotology/gym-ignition/tree/master/scenario.

gym-ignition is a Python framework to create reproducible robotics envir-

onment for RL research. It exposes an abstraction layer providing APIs that

enable the development of RL environment compatible with gym.Env. The

resulting environments, if they exploit scenario, become agnostic from the

setting in which they execute (either simulated or in real-time). The project

also provides helpful utilities to compute common quantities commonly used

by robotic environments, includes support of environment randomization,

and handles the correct propagation of randomness. The library is open-

source, released under the LGPL v2.1 or any later version, and it is available at

https://github.com/robotology/gym-ignition.

gym-ignition-models is a Python project providing model descriptions tuned

to be used in the Gazebo Sim simulator supported by gym-ignition. The

library is open-source, released under the LGPL v2.1 or any later version, and it

is available at https://github.com/robotology/gym-ignition-models.

jaxsim is a scalable physics engine in reduced coordinates implemented

with jax. It is developed in Python and supports most of the jax features,

including JIT compilation and auto-vectorization. Simulations can be executed

on all the hardware supported by jax, including CPUs, GPUs, and TPUs. The

library is open-source, released under the BSD-3-Clause, and it is available at

https://github.com/ami-iit/jaxsim.

https://github.com/robotology/gym-ignition/tree/master/scenario
https://github.com/robotology/gym-ignition
https://github.com/robotology/gym-ignition-models
https://github.com/ami-iit/jaxsim
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1
S I M U L ATO R S A N D E N A B L I N G

T E C H N O LO G I E S

1.1 simulators for robotics

Real robots, in all their existing variety, consist of a complex, interconnected, and

diverse set of systems communicating with each other. In order to get a robotic

platform running, its mechanics, electronics, actuation, sensing, control system,

and data transport have to be carefully designed, prototyped, assembled,

calibrated, individually and collectively tested. Due to the tight interconnection

of all the components part of a robotic platform, robot development requires

multidisciplinary teams to work closely with each other throughout the

entire process, from design to field deployment. In the past decades, all

modern engineering fields operating in similar interconnected settings started

employing mathematical models to describe their target systems.

In the robotics domain, rigid-body simulators became a standard component

included in any practitioner’s toolbox. Simulators allow studying the properties

of robotics systems starting from their early design stage, anticipating possible

errors that could lead to delays and failures, together with their corresponding

cost. Restricting the domain to robot control, simulations became an important

technology enabler thanks to the possibility of designing and prototyping

algorithms on a model that captures the principal dynamics of the real system.

Other important benefits include the execution in a controlled and repeatable

environment, not subject to wear and tear, and not being vulnerable to costly

damage in case of design failures.

This section describes the high-level software architecture of a robot sim-

ulator. We introduce and describe the main components existing simulators

typically implement, and then identify a list of properties that could be used

as a means of comparison.
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1.1.1 Components

A robotics simulator is a collection of different independent components that,

when combined, expose to the user a virtual environment where simulated

robots can move and interact. Below we list and describe the main components

that form a simulator.

description parser A robot can be described as a set of links (or bodies)

interconnected by a set of joints, which apply motion constraints and can

provide actuation. Simulating a robot requires knowledge of its kinematics,

encoding the topology and geometry of the links and joints, and its dynamics,

encoding their physical properties. This information is usually provided in

textual form by a structured robot description. Examples of common descriptions

are the Unified Robot Description Format (URDF), Simulation Description

Format (SDF), Mujoco XML Format (MJCF), Universal Scene Description (USD).

These descriptions also typically include additional information about the

robot, for example, how its visual appearance is rendered, how it collides with

either itself or other simulated objects, the type and location of the on-board

sensors, the joint actuation type and limits, etc. Simulators typically support

one or more of these description formats, allowing them to import robots and

create scenes where they can operate. The description parser is the component

that reads the supported textual descriptions and imports the robot properties

into the simulation.

physics engine The central component of a simulator is its physics engine,

responsible for implementing the behaviours governed by the physics laws of

motion. It uses the information parsed from the robot description to predict

how the dynamics evolve over time. Depending on how the joint constraints

are simulated, we can categorise physics engines in maximal coordinates and

reduced coordinates. Using maximal coordinates, each simulated body is treated

separately in the Cartesian space, and the overall robot’s dynamics is computed

by solving an optimisation problem that applies explicit constraints to enforce

on the kinematics the effects of the joints. Instead, using reduced coordinates,

the system dynamics considers the mechanical structure as a whole and it

implicitly enforces motion constraints induced by the joints. The physics engine
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usually also includes routines of collision detection that, exploiting geometrical

properties of the link’s collisions shapes, allow to assess if bodies are in contact,

and contact models, which compute interaction forces between colliding bodies.

A general-purpose simulator either implements or interfaces with at least one

physics engine, and it is not uncommon to find simulators exposing multiple

physics engines.

public apis Simulators allow users to interface with their physics engine

through a set of public Application Programming Interfaces (APIs). They

typically expose the relevant quantities computed by the physics engine at any

simulated time instant. Depending on the architecture, they could either allow

to step forward the simulation manually and interact with it programmatically,

or trigger an asynchronous starting signal and interact through a network

transport layer. Simulators also typically expose relevant model3 kinematics

and dynamics properties computed by the physics engine.

sensors The most advanced simulators include the possibility to generate

data from virtual sensors that mimic the behaviour of those mounted on the

real robot, like Inertial Measurement Units (IMUs), cameras, Force/Torque (F/T)

sensors, etc. Often, in order to reduce differences with the actual setup, they

might allow injecting noise to sensor readings.

rendering The simulation of sensors like cameras requires the inclusion

of a rendering engine to draw the environment where the simulated robot

operates and captures its information. Many simulators implement rendering

either by integrating external rendering engines or exposing new custom

functionalities. Depending on the selected engine, rendering could be more or

less realistic, with the cost of becoming the overall bottleneck of the simulation

in case of too detailed rendering.

graphical user interface Simulators with rendering capabilities usu-

ally also implement a Graphical User Interface (GUI) to simplify the visualisation

and, possibly, also the interaction with the simulated scene.

3 Simulated robots are often referred to as models in this thesis.
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1.1.2 Properties

In this section, we provide a set of simulator properties that will be used in the

following chapters as comparison metrics. We distill the properties introduced

by Ferigo et al. [2020], maintaining only those related to generic simulators.

In the next chapters, we will further specialise the analysis to simulators for

robot learning .

multiple physics engines Simulators could interface with either one

or multiple physics engines, that can be selected by the user before launching

the simulation. Having multiple choices is often beneficial because there are

multiple methodologies to perform similar computations, and some of them

could be more optimized for the target simulated context. Furthermore, it is

common to have physics engines that outperform their alternatives in a narrow

range of problems.

reproducibility A simulator is reproducible if consecutive executions

of a scene starting from the same initial state and applying the same inputs

yield exactly the same trajectory and final state. The main component that

typically undermines reproducibility is a subtle consequence of the client-

server architecture widely used by many simulators. Often, the physics engine

and the user code that read data and sends commands reside on different

threads or processes. The communication between them relies on sockets

whose processes, depending on the system’s load and the operating system’s

scheduler, can be preempted. Without complex synchronisation protocols,

the user code might think to have stepped the simulator and read the most

recent measurement even if the data might have been buffered. Therefore,

even if the underlying physics engines, when called programmatically, would

provide reproducible trajectories, simulators exposing their functionality using

socket-based protocols could affect their reproducibility.

parallel simulation Most traditional robotic simulators have been

designed to be executed in a single instance. Some of them, however, allow

executing multiple parallel simulations, allowing user code to interface with
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any of them. This property is typically implemented in those simulators

that can be stepped programmatically, primarily because of limitations or

challenges of network segmentation for those that rely on network transport

as a mean for interfacing with the simulation.

accelerated simulation The ratio between real and simulated time is

known as Real-Time Factor (RTF). A RTF of 1 means that one simulated second is

executed in 1 real-world second, and a RTF of 2 means that the same simulated

second is executed in 0.5 real-world seconds. Considering the typical usage

for traditional robotic applications, many simulators aim to achieve a RTF of

1 when executed with all their features, rendering included. Usually, the RTF

value defaults to 1 even when the simulation could run faster, and it is a

configurable simulation parameter.

headless simulation A simulation is defined as headless if it can be

executed on machines without any display, like a server or a data center.

Usually, there is no significant difference between a normal and a headless

simulation. The physics can be executed in both settings regardless. However,

not all simulators can render the scene on a headless setup when rendering is

involved.
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1.2 enabling technologies

In this section, we describe the technology enablers that made developing the

experiments presented in this thesis possible.

1.2.1 Gazebo Sim

Gazebo [Koenig et al., 2004], developed by Open Robotics, is among the most

used and widely adopted simulators by the robotics community. It interfaces

with multiple physics engines like ODE4, bullet [Coumans et al., 2016], and

DART [Jeongseok Lee et al., 2018]. It supports loading descriptions of robots

defined either with the URDF or the SDF. It also supports the simulation of a

wide range of commonly used sensors like IMUs, cameras, F/T sensors, etc.

In the Artificial Mechanical Intelligence5 laboratory, we have always based

our simulation stack on Gazebo. Over the years, we developed the model

description of our robots6 and built an entire infrastructure7 for this simulator.

However, while previous attempts8 [Zamora et al., 2017; Lopez et al., 2019]

tried to integrate Gazebo into a RL training pipeline, the performance that

could be obtained together with the need to execute it in a separated process,

always prevented its wide adoption by the robot learning community.

After more than 15 years of development, Open Robotics started the de-

velopment of a new simulator, representing the next generation of Gazebo,

that from now on we will call Gazebo Classic for the sake of clarity. The new

simulator, initially known as Ignition Gazebo and later rebranded as Gazebo

Sim, is a modular suite of libraries partially extracted from the monolithic

architecture of its predecessor. Gazebo Sim, contrarily to its predecessor, offers

programmatic APIs to instantiate and step the simulator, enabling users to

obtain a finer control of the simulation cycle.

One of the simulation architectures presented in this thesis is based on

Gazebo Sim. A more detailed overview of the features that motivated the

adoption of the simulator and why they represent a valid choice for the

contributed architecture is discussed in more detail in Section 5.3.1.

4 https://www.ode.org
5 https://ami.iit.it/
6 https://github.com/robotology/icub-models
7 https://github.com/robotology/gazebo-yarp-plugins
8 http://wiki.ros.org/openai_ros

https://www.ode.org
https://ami.iit.it/
https://github.com/robotology/icub-models
https://github.com/robotology/gazebo-yarp-plugins
http://wiki.ros.org/openai_ros
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1.2.2 The iCub humanoid robot

The iCub humanoid robot [Natale et al., 2017] is an open-source robot platform

developed and produced by iCub Tech at the Italian Institute of Technology. It

was first developed as part of the RobotCup project [Metta et al., 2005], and

nowadays more than 40 replicas have been built and distributed worldwide.

iCub v2.5 is 104 cm tall and weighs approximately 33 kg. Its mechanical

structure is characterised by 53 Degrees of Freedom (DoFs), including those

belonging to the hands and the eyes. For motion control applications, and

particularly whole-body locomotion, typically only 23 DoFs of its body are

considered: 6 in each leg, 4 in each arm, and 3 in the torso.

For the work presented in this thesis, only details about its description

for simulation purposes are necessary to be specified. The kinematics, the

inertial parameters, and the visual meshes of the robot are automatically

generated9 from its CAD design. Their accuracy has always been sufficient

for developing highly-dynamic balancing controllers [Pucci et al., 2016] and

walking algorithms [Dafarra et al., 2018]. The official URDF models10 have been

slightly updated11 to be imported in Gazebo Sim.

1.2.3 JAX

jax [Frostig et al., 2018; Bradbury, James et al., 2018] is a software framework

for high-performance numerical computing and machine learning research.

Combining the features of Autograd [Maclaurin et al., 2015] and Accelerated

Linear Algebra (XLA) [Sabne, 2020], jax enables the development of fast

algorithms with native support of Automatic Differentiation (AD) [Baydin

et al., 2018] with the Python programming language. These features are

exposed when operating on jax arrays, having an interface compatible with

NumPy [Harris et al., 2020].

Libraries and functions developed with jax benefit from the following key

features of the framework:

9 https://github.com/robotology/icub-models-generator
10 https://github.com/robotology/icub-models/
11 https://github.com/ami-iit/gym-ignition-models

https://github.com/robotology/icub-models-generator
https://github.com/robotology/icub-models/
https://github.com/ami-iit/gym-ignition-models
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• Function calls developed in Python are compiled in Just-in-time (JIT)

at their first execution by XLA. jax inherits all the hardware supported

by XLA, therefore the same Python code can be compiled and executed

transparently on CPUs, GPUs, and TPUs Being a domain-specific linear

algebra compiler, XLA can generate high-performance kernels for scientific

computing. Advanced branching is also supported, including loops, ifs,

recursions, and closures.

• Any logic operating on jax arrays can be parallelized on the target

hardware accelerator thanks to the native support of auto-vectorization.

This feature enables the development of algorithms that can be seamlessly

scaled horizontally by just providing inputs with an additional dimension

representing the batch axis. To maximise performance, vectorized code

can also be combined with JIT compilation.

• Any logic operating on jax arrays can be automatically differentiated

using either forward or reverse mode [Blondel et al., 2022]. jax allows

differentiating all the code that can be JIT-compiled, including logic

that uses advanced branching. The AD implementation also allows the

computation of higher-order derivatives.

At the time of writing, the most advanced XLA backends are those targeting TPUs

and GPUs. The JIT compilation of code for CPUs, depending on the complexity

of the logic, could take a long time as it can use just one compilation thread.



All models are wrong.

But some are useful.

— George Box

2 R O B OT M O D E L L I N G

In this chapter, we introduce the mathematical formulation used throughout

the thesis to describe a floating-base multibody system. Robots can be modelled

as a set of rigid bodies connected by joints constraining their relative motion.

After an initial overview of the necessary mathematical background, we

introduce the notion of reference frames and how they relate to the kinematics

of the bodies belonging to the system. We continue by introducing the inertial

properties of a rigid body, and derive the Newton-Euler equation that represent

the dynamics of its motion. Then, we show how the relative motion between

rigid bodies can be constrained by providing the joint model considered in this

thesis. Finally, by combining the properties of bodies and joints, we describe

how a multibody system can be modelled and derive its Equations of Motion.

We focus our analysis on floating-base systems, since fixed-base systems could

be seen as a particular case in which the base is anchored to the world.

The purpose of the resulting floating-base model is twofold. Firstly, assuming

we know the kinematics and dynamics properties of a real robot, it allows us

to compute many relevant quantities required by control algorithms. Secondly,

it enables the definition of a dynamic system that can be used to create and

perform simulations of real robots operating in an environment. We also

provide the necessary notions to develop widely used RBDA that efficiently

compute relevant quantities of the system’s dynamics.

We adopt the unified view of the Equations of Motion (EoMs) proposed by

Traversaro et al. [2017], slightly adapted to employ the notation summarised

in Traversaro et al. [2019]. Minor modifications are introduced to suit the

simulation setting better.

40
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2.1 notation

• The set of real numbers is denoted byR. Letu andv be two n-dimensional

column vectors of real numbers, i.e. u,v ∈ Rn, then their inner product

is denoted as u⊤u, where (·)⊤ is the transpose operator.

• The identity matrix of size n is denoted by In ∈ Rn×n; the zero column

vector of dimensionn is denoted by0n ∈ Rn; the zero matrix of dimension

n ×m is denoted by 0n×m ∈ Rn×m; the all-ones matrix of dimension

n×m is denoted by 1n×m ∈ Rn×m.

• The set SO(3) is the set of R3×3 orthogonal matrices with determinant

equal to one, namely:

SO(3) = {R ∈ R3×3 |R⊤ R = I3, det(R) = 1}.

• The set so(3) is the set of 3× 3 skew-symmetric matrices

so(3) = {S ∈ R3×3 |S⊤ = −S}.

• The set SE(3) is defined as

SE(3) =


 R p

01×3 1

 ∈ R4×4 |R ∈ SO(3), p ∈ R3

 .

• The set se(3) is defined as

se(3) =


 Ω v

01×3 0

 ∈ R4×4 |Ω ∈ so(3), v ∈ R3

 .

• Given a vector w = (x, y, z) ∈ R3, we define w∧ ∈ so(3) (read w hat) as

the 3× 3 skew-symmetric matrix

w∧ =


x

y

z


∧

=


0 −z y

z 0 −x

−y x 0

 .
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Given the skew-symmetric matrix W = w∧, we define W∨ (read W vee)

as

W∨ =


0 −z y

z 0 −x

−y x 0


∨

=


x

y

z

 .

The vee operator is the inverse of the hat operator.

• Given two 3D vectors a,b ∈ R3, the hat operator can be used to compute

their cross product:

a× b = a∧ b = −b∧ a.

• Given a vector w ∈ R3 and a matrix R ∈ SO(3), the following property

of the hat operator holds:

(Rw)∧ = Rw∧ R⊤.

• Given a vector v = (v,ω) ∈ R6 with v,ω ∈ R3, we define

v∧ =

v

ω


∧

=

 ω∧ v

01×3 0

 ∈ se(3),

and its inverse ω∧ v

01×3 0


∨

=

v

ω

 = v ∈ R6.
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2.2 points, frames, rotations, transformations

Let’s consider a point p. Its existence is absolute, meaning it occupies a given

position in space. For practical reasons, describing its location in space with a

tuple of real numbers is convenient. Therefore, we introduce a reference frame A,

defined as the combination of a point oA, called origin, and an orthogonal 3D

orientation frame [A], defined by the unit vectors (x⃗A, y⃗A, z⃗A). More compactly,

we write A = (oA, [A]). If r⃗oA,p is the geometric 3D vector that connects the

origin of frame A with the point p, having direction from oA to p, we can

obtain the coordinate vector Ap ∈ R3 of point p expressed in the orientation

frame [A] as follows:

Ap =


r⃗oA,p · x⃗A

r⃗oA,p · y⃗A

r⃗oA,p · z⃗A

 ,

where (·) denotes the scalar product between vectors. The same notation

applies to denote the coordinates of a frame’s origin w.r.t. a different frame. If

B = (oB, [B]), the coordinates of its origin with respect to frame A are denoted

as AoB .

Definition 2.2.1 (World frame). Newton’s mechanics requires the existence of

an inertial frame. We denote this special frame as W , and call it world frame. As

a common practice, we ignore the non-inertial effects caused by the Earth’s

motion, and assume the world frame to be fixed on the surface.

Given two frames A and B, we can introduce the coordinate transformation

from frame B to A as ARB ∈ SO(3), also referred as rotation matrix. This

transformation depends only on the orientation of the frames, [A] and [B], and

not on their origins. Given a point p and assuming oA = oB , it follows that
Ap = ARB

Bp.
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Similarly, if we want to describe in compact form both the position and

the orientation of frame B w.r.t. frame A, we can use the 4 × 4 homogeneous

transformation matrix, also referred to more concisely as transform:

AHB =

ARB
AoB

01×3 1

 ∈ SE(3).

If we introduce the homogeneous representation of two coordinate vectors Ap

and Bp as Ap̃ = (Ap; 1) ∈ R4 and Bp̃ = (Bp; 1) ∈ R4, the transform can also

be used as a map between their coordinates Ap̃ = AHB
Bp̃, allowing a compact

representation of the roto-translation Ap = AoB + ARB
Bp.

It can be shown that, given a transform AHB , we can express its inverse as

follows:

BHA = AH−1
B =

BRA
BoA

01×3 1

 =

AR⊤
B −BRA

AoB

01×3 1

 . (2.1)

2.3 frame velocity

The velocity of a frame B relative to another frame A can be obtained by taking

the time derivative of the transform that defines its pose w.r.t. A:

A
ḢB =

d

dt

Ä
AHB

ä
=

A
ṘB

AȯB

01×3 0

 . (2.2)

In this section, we show how we can obtain the 6D velocity vA,B ∈ R6 of a

frame composed of vertically stacked linear and angular parts by manipulating

Equation (2.2). We will see that, through the process of trivialization, we can

obtain different types of 6D velocities called velocity representations depending

on the considered reference frame. Finally, we show how to change the reference

frame of the 6D velocity, obtaining an equation comparable to the one used to

roto-translate the coordinates of points for the velocities.
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Before proceeding, we need to show how the term A
ṘB can be formulated

in terms of an angular velocity ωA,B , that can be expressed either in A or B

coordinates.

Definition 2.3.1 (Time derivative of the rotation matrix). A commonly used

formula to express the time derivative of a rotation matrix is the following:

A
ṘB = Aω∧

A,B
ARB = ARB

Bω∧
A,B,

where ωA,B ∈ R3 is the angular velocity of frame B relative to frame A,

that could be expressed either in A coordinates (AωA,B) or in B coordinates

(BωA,B).

Proof. The time derivative of the orthogonality properties R⊤ R = I3 and

RR⊤ = I3 of rotation matrices leads to:


Ṙ⊤ R+ R⊤ Ṙ = 03×3

Ṙ R⊤ + R Ṙ⊤ = 03×3

→


S⊤
l + Sl = 03×3

Sr + S⊤
r = 03×3

,

where we have introduced the left Sl = R⊤ Ṙ ∈ so(3) and the right

Sr = Ṙ R⊤ ∈ so(3). Since both matrices are skew-symmetric, they can be para-

meterized by a vector S∨ = ωA,B ∈ R3. The matrix product is not commutative,

therefore the vectors of the left and right cases must be different:

Ṙ = RSl = RBω∧
A,B,

Ṙ = Sr R = Aω∧
A,B R,

(2.3)

where we have introduced the angular velocity ωA,B between frames A and

B, expressed either in A or B coordinates.
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2.3.1 Left-trivialized velocity

The terms forming the left-trivialized velocity BvA,B of frame B relative to

frame A can be obtained by left multiplying Equation (2.2) with BHA:

BHA
A
ḢB =

AR⊤
B −AR⊤

B
AoB

01×3 1


A

ṘB
AȯB

01×3 0


=

AR⊤
B

A
ṘB

AR⊤
B

AȯB

01×3 0


=

Bω∧
A,B

BvA,B

01×3 0

 ∈ se(3),

where we exploited the form of the inverse transform introduced in Equa-

tion (2.1). The left-trivialized 6D velocity is obtained by stacking the linear and

angular components of the left trivialization process:

BvA,B =

BvA,B

BωA,B

 =

 AR⊤
B

AȯB(
AR⊤

B

A
ṘB

)∨

 ∈ R6,

from which, by construction, it also follows:

Bv∧
A,B = BHA

A
ḢB ∈ se(3). (2.4)

From this relation, we can start considering vA,B as the 6D representation

of an element of se(3). The left-trivialized velocity is also called body-fixed

representation of vA,B .
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2.3.2 Right-trivialized velocity

The terms forming the right-trivialized velocity AvA,B of frame B relative to

frame A, can be obtained by right multiplying Equation (2.2) with BHA:

A
ḢB

BHA =

A
ṘB

AȯB

01×3 0


AR⊤

B −AR⊤
B

AoB

01×3 1


=

A
ṘB

AR⊤
B

AȯB −
A
ṘB

AR⊤
B

AoB

01×3 0


=

Aω∧
A,B

AvA,B

01×3 0

 ∈ se(3).

The right-trivialized 6D velocity is obtained by stacking the linear and angular

components of the right trivialization process:

AvA,B =

AvA,B

AωA,B

 =

AȯB −
A
ṘB

AR⊤
B

AoB(
A
ṘB

AR⊤
B

)∨

 ∈ R6,

from which, by construction, it also follows:

Av∧
A,B =

A
ḢB

BHA ∈ se(3).

The right-trivialized velocity is also called inertial-fixed representation of vA,B .

The linear component of the right-trivialized velocity can also be written in

the following alternative form:

AvA,B = AȯB + Ao∧B
AωA,B = AȯB + AoB × AωA,B, (2.5)

showing explicitly that, in this representation, the linear velocity is the sum

of the linear velocity of the frame B origin and the external product between

the angular velocity and the distance between frame origins. This result is

compatible with the setting of a rotating non-inertial reference B frame relative

to an inertial frame A.



2.3 frame velocity 48

2.3.3 Expressing 6D velocities in different frames

Let us consider a generic 6D velocity BvC,D between framesC andD, expressed

in coordinates of frame B. It can be shown that it is possible to express the

velocity in a new frame A as follows:

AvC,D = AXB
BvC,D,

where we introduced the following linear transformation between frames A

and B:

AXB =

ARB
Ao∧B

ARB

03×3
ARB

 ∈ R6×6. (2.6)

Recalling that AoB = −ARB
BoA, it can be shown that the inverse velocity

transformation is simply BXA = AX−1
B .

2.3.4 Mixed velocity representation

We have seen that the angular component of the left- and right-trivialized

velocities correspond to the classic concept of angular velocity, as introduced in

Definition 2.3.1. The different representations only relate the angular velocity

ωA,B to reference frames, which could either be A or B.

The linear velocity, instead, is less intuitive. While it corresponds to the time

derivative of oB in the left-trivialized representation, the expression in the

right-trivialization includes an additional term as reported in Equation (2.5) to

account for non-inertial effects.

There are situations in which we desire to express the 6D velocity of a frame

with just the time derivatives AȯB and AωA,B . We can obtain such special 6D

velocity by introducing a new frame B[A] = (oB, [A]), that is a frame whose

origin coincides with the origin of frame B, with the orientation frame of A. In

this frame, we can define the mixed velocity as follows:

B[A]vA,B = B[A]XB
BvA,B =

ARB 0

0 ARB


BRA

AȯB

BωA,B

 =

 AȯB

AωA,B

 . (2.7)
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2.3.5 Cross product on R6

From the definition of the left-trivialized velocity of Equation (2.4), we can

obtain the relation:

A
ḢB = AHB

Bv∧
A,B.

We want to formulate a comparable expression also for the velocity transforma-

tion AXB . Differentiating with respect to time its definition from Equation (2.6),

it can be shown that the following expression can be obtained:

AẊB = AXB
BvA,B×, (2.8)

where the last term is the matrix representation of the cross-product on R6,

defined as:

BvA,B =

BωA,B
Bv∧

A,B

03×3
BωA,B

 .

2.4 accelerations and forces

2.4.1 Accelerations

The acceleration of a frame B relative to another frame A and expressed

in a generic frame C can be obtained by taking the time-derivative of the

corresponding velocity:

C v̇A,B =
d

dt

Ä
CvA,B

ä
.

Extracting the left-trivialized velocity and using Equation (2.8), we can obtain:

C v̇A,B =
d

dt

Ä
CXB

BvA,B

ä
= CXB

Bv̇A,B + CẊB
BvA,B

= CXB

Ä
Bv̇A,B + BvC,B×BvA,B

ä , (2.9)
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where it can be noticed that in this case the expected mnemonic-friendly form
C v̇A,B = CXB

Bv̇A,B does not hold. However, if either C = A or C = B, the

cross-product term is zero, and the equality holds. Under these conditions, we

can define the following acceleration:

CaA,B = CXA
Av̇A,B = CXB

Bv̇A,B.

We refer to C v̇A,B as apparent acceleration, and to CaA,B as intrinsic acceleration.

We can see that intrinsic accelerations are always built from either inertial-fixed

or body-fixed apparent accelerations. Their usage is convenient because the

relation CaA,B = CXB
BaA,B always holds regardless to A, B, and C.

For some computation, there is another helpful formulation of the frame

acceleration, that we will call proper acceleration. It consists of the intrinsic

acceleration minus the gravitational effects, and it can be defined as follows:

C āA,B = CaA,B − CXA

ARW
Wg

03

 . (2.10)

The bar notation can be thought mnemonically as minus gravity, whose

definition is Wg = (0, 0,−g) ∈ R3 with g ∈ R+.

2.4.2 Forces

Let’s consider a 6D force f composed by stacking a linear force f ∈ R3 and a

torque m ∈ R3. Its coordinates with respect to a frame B are denoted as:

Bf =

 f

m

 ∈ R6.

Compared to 6D velocities, this notation only needs the specification of the

frame where the force is expressed. Note that this does not mean that the force

is applied to the origin of the frame where it is expressed. In fact, we can take

a force Bf applied to the origin of frame B and expressed in the same frame,

and change its coordinates to frame A with the following transformation:

Af = AX
B

Bf . (2.11)



2.4 accelerations and forces 51

The coordinate transformation of 6D forces, strictly related to the transformation

of 6D velocities between the same frames, can be defined as:

AX
B = BX⊤

A =

 ARB 03

Ao∧B
ARB

ARB

 ∈ R6×6.

From this relation, also AX
B = AX−⊤

B follows.

Remark 2.4.1. The coordinate transformation of a 6D force can be expanded

as follows:

Af =

 Af

Am

 = AX
B

Bf =

 ARB Bf

Ao∧B
(
ARB Bf

)
+ ARB Bm

 .

It can be notices that the application of Bf to a different frame A, beyond

rotating its components (Bf ,Bm) with ARB , requires the introduction of an

additional angular term proportional to Bf . This behaviour can be explained

considering a simplified case of applying a pure linear force Bf = (Bf ,03) to

the origin of frame A. Changing the application point would produce a torque

due to the moment arm between the origins of frames A and B. Since the

transformation should not alter the physical effect (for example, a resulting

acceleration of the frame), AXB introduces the additional term Ao∧B
(
ARB Bf

)
that compensates the moment arm.

The cross product on R6 for 6D forces can be obtained from the relation

between the coordinate transformation of forces and velocities:

AẊ
B = AX

B BvA,B×̄∗,

where the last term is the matrix representation of the cross-product in R6,

defined as:

BvA,B×̄∗ =

Bω∧
A,B 03×3

Bv∧
A,B

Bω∧
A,B

 .

Note that the relation (BvA,B×)−⊤ = BvA,B×̄∗ holds. The combination of the

overline with the star marks mnemonically the (·)−⊤ operator.
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2.5 rigid-body kinematics

This section provides a mathematical description of the kinematics of a rigid

body. We first provide the definition of a rigid body, and then define its position

and velocity.

Definition 2.5.1 (Rigid Body). A Rigid Body is a mathematical abstraction

describing an arbitrary distribution of mass in the 3D space fixed with respect

to a given frame B, called body frame. It is assumed not being subject to any

internal deformation when external forces are applied.

Definition 2.5.2 (Rigid Body Pose). The pose of a rigid body associated with a

frame B w.r.t. a generic frame A is defined by the transform AHB ∈ SE(3).

Definition 2.5.3 (Rigid Body Velocity). The velocity of a rigid body associated

with a frame B w.r.t. a generic frame A is denoted as vA,B ∈ R6.

Remark 2.5.1 (Velocity Representations of a Rigid Body). The velocity of a rigid

body can be expressed in different representations, depending on the used

trivialization as explained in Section 2.3. The terminology used for the velocity

representations becomes straightforward when we consider A = W . In this

case, the left-trivialized velocity would be WvW,B , where it can be noticed that

it is expressed in world (inertial) coordinates, from what the alternative inertial-

fixed name derives. The right-trivialized velocity BvW,B follows a similar

reasoning, with its alternative body-fixed name. Finally, the mixed velocity
B[W ]vW,B can be seen as related to the inertial-fixed representation for its linear

part, and to the body-fixed representation for its angular part.

Remark 2.5.2 (Terminology). In this thesis, we also use the term link to refer to

a rigid body, particularly when it is part of a multibody system. Furthermore,

we often name the body with the letter of its corresponding frame, i.e. when

we say body B we mean the body whose pose corresponds to frame B.
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2.6 rigid-body dynamics

2.6.1 Inertial parameters

In this section, we introduce all the inertial parameters necessary to describe

the dynamics of a rigid body. Given a body B, in order to simplify the notation,

we denote the coordinates of a point pi belonging to the body and expressed

in B as r = Bpi.

• The total mass of the rigid body can be calculated by introducing the

function ρ(·) : R3 7→ R+ that maps each point of the body to its density,

and integrating over the volume occupied by the body:

m =

∫∫∫
R3

ρ(r) dr ∈ R.

• The Center of Mass (CoM) of the body can be calculated as the average

point of its density:

c = BpCoM =

∫∫∫
R3 rρ(r) dr∫∫∫
R3 ρ(r) dr

=
1

m

∫∫∫
R3

rρ(r) dr ∈ R3. (2.12)

• The inertia tensor of the body, describing all moments of inertia of a body

rotating around a specific axis, can be computed as:

I = −
∫∫∫

R3

ρ(r)
(
r∧

)2
dr ∈ R3×3,

resulting from the following computation of the body angular momentum

hω ∈ R3:

hω = I ω =

∫∫∫
R3

ρ(r) (r× v) dr =

∫∫∫
R3

ρ(r) (r× ω × r) dr

=

∫∫∫
R3

ρ(r) r∧
(
ω∧r

)
dr = −

∫∫∫
R3

ρ(r) r∧
(
r∧ ω

)
dr

= −
∫∫∫

R3

ρ(r)
(
r∧

)2
dr ω.
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• The 6D inertia matrix of the body that unifies all the previous inertial

properties can be defined as follows:

M =

 mI3 −(mc)∧

(mc)∧ I

 ∈ R6×6.

Remark 2.6.1. When we need to denote inertia matrices of different bodies,

we use subscripts MB1,MB2, etc. Note that the 6D inertia matrix definition is

valid only in body frame, and we should have specified it with an additional

prescript BMB . In this thesis, we only need 6D inertia matrices expressed in

body frames, therefore we will always omit the prescript.

2.6.2 Equations of Motion

We have seen that the kinematics of a rigid body can be described with the

position and velocity of its corresponding frame: WHB and W
ḢB , respectively.

The dynamics of the rigid body can be derived from the formulation of

Lagrangian mechanics founded on the principle of least action [Bullo et al.,

2004; Selig, 2005; Marsden, Jerrold E. et al., 2013; Maruskin, 2018].

Definition 2.6.1 (Lagrangian mechanics). Lagrangian mechanics defines a

mechanical system with a pair (Q, L) of a configuration space Q and a smooth

function L(q, q̇) = K − U called Lagrangian. The Lagrangian takes as input

the system configuration and the system velocity (q, q̇) ∈ Q× V , where V is

the tangent space of Q, and computes the difference between the kinetic energy

K and potential energy U of the system.

Definition 2.6.2 (Principle of Least Action). The Principle of Least Action states

that the trajectory q(t) of the system in the interval t ∈ [0, T ] is the stationary

point that minimises the system’s action functional:

S[q] =
∫ T

0
L(q(t), q̇(t)) dt .

The variational principle, when applied to the action of a mechanical system,

yields the system’s Equations of Motion.
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Definition 2.6.3 (Euler-Lagrange equation). The trajectory q(t) is the stationary

point of the action functional S if and only if it satisfies the Euler-Lagrange

equation:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0. (2.13)

This equation holds in Euclidean space, when Q = V = Rn.

Depending on the system to be described, there may be many possible

choices of the generalised position q ∈ Q and its derivative q̇ ∈ V , that we will

refer as generalised velocity. In the case of a rigid body, we can describe the

system configuration with the kinematic quantities of its corresponding frame,

i.e. using q = WHB ∈ SE(3) and q̇ =
W
ḢB . With this choice of variables, the

Lagrangian of the system is the following:

L
(
WHB,

W
ḢB

)
= K

(
WHB,

W
ḢB

)
− U
Ä
WHB

ä
.

Remark 2.6.2 (Extension to non-Euclidean spaces). It can be noted that the

choice of (q, q̇) = (WHB,
W
ḢB) implies that the configuration space is no

longer Euclidean. In these circumstances, the Euler-Lagrange equation (2.13)

does not hold. It can be shown that, introducing Lie theory, the Lagrangian

formulation can be generalised to any smooth manifold, and the EoMs of the

system can be obtained by applying the Euler-Poincaré equation [Marsden,

Jerrold E. et al., 2013; Maruskin, 2018]. To this end, Qmust belong to a group

and V related to its Lie algebra (respectively, the SE(3) matrix Lie group and

the se(3) group in our case). In this background chapter, in order to help

focus only on the most important theoretical results required to understand

the topic discussed in this thesis, we will omit the mathematical details of

differential geometry. The interested readers are recommended to refer to

specific textbooks [Warner, 1983; Selig, 2005] for a rigorous derivation of the

theory of Lie groups and differential manifolds.

Traversaro [2017] shows that transforming the system’s velocity helps reduce

the complexity of the equations, and introduces the left-trivialized Lagrangian,

that takes as inputs (WHB,
BvW,B), where the velocity is now trivialized in

body coordinates with Equation (2.4). In the following sections, we will always
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assume quantities expressed in body-fixed representation, and refer to the

rigid body pose and body-fixed velocity with H and v, respectively. With this

notation, the left-trivialized Lagrangian is defined as:

ℓ(H, v) = L(H,Hv∧) = κ(v)− U(H), (2.14)

where we used the relation Ḣ = Hv∧ of Equation (2.4), and introduced the

trivialized kinetic energy κ(·) that can be shown to only depend on v [Traversaro,

2017, Remark 2.5]. The trivialized kinetic energy and the potential energy can

be computed as:

κ(v) =
1

2
v⊤ M v, (2.15)

U(H) =

ï
g⊤ 01×3

ò
mH

c
1

 , (2.16)

where g = Wg ∈ R3 is the gravitational acceleration vector, and c the dis-

placement between of the CoM of the body and its frame, as defined in

Equation (2.12).

We now note that the sets of the system’s positions and velocities are

connected by a relationship between WHB ∈ SE(3) and v∧
W,B ∈ se(3). This

relation enables the application of the Euler-Poincaré equation to obtain the

system’s dynamics. As shown by Traversaro [2017, Section 2.6.2], the resulting

EoMs of the rigid body are the following:


Ḣ = Hv∧

M v̇ + v×̄∗ M v = M

R⊤ g

03×1

+ Bf
ext

(2.17a)

(2.17b)

which includes the influence of additional non-gravitational external 6D

forces Bf
ext acting on the body [Bullo et al., 2004]. Equation (2.17b) is the

Newton-Euler equation of the rigid body.
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pre(i)Hsuc(i) =
pre(i) Hi

λ(i)

i = suc(i)

λ(i)Hpre(i)

λ(i)Hi

pre(i)

Figure 2.1: Illustration of the joint model. The frame of the parent link P is shown as
λ(i), and the frame of the child link C is shown as i. The i-th joint connects
together the two links, enforcing a motion constraint. The operators pre(·)
and suc(·) accept a joint number and return, respectively, its predecessor
and successor frames. The successor frame of a joint matches with the
frame i of the child link. The joint model aims to obtain the transform
λ(i)Hi(s) as a function of the joint position s.

Remark 2.6.3. Equation (2.17b), in its form with full notation, is expressed as

follows:

MB
Bv̇W,B + BvW,B×̄∗ MB

BvW,B = MB

BRW
W g

03×1

+ Bf
ext.

If we bring the gravitational effect to the left hand side:

MB

Ö
Bv̇W,B −

BRW
W g

03×1


è

+ BvW,B×̄∗ MB
BvW,B = Bf

ext,

we can simplify this equation using the proper acceleration:

MB
BāW,B + BvW,B×̄∗ MB

BvW,B = Bf
ext. (2.18)

This equation will be useful in the definition of recursive algorithms for rigid

body dynamics.
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2.7 joint model

The second fundamental element for modelling a multibody system is the

joint. All links part of the system are characterised by 6 DoF that, ignoring for

the moment possible collisions that could occur, are free to evolve in space

independently of each other. Joints can be used to connect links together and

act as constraints that limit their relative motion. Each joint is characterised by

its number of DoFs, which can range from 0 to 6 and, considering the relative

position between two links as a local topological space, describes its dimension.

Assumption 2.7.1. This thesis only considers multibody systems modelled

with 1 DoF joints. All the theories and algorithms proposed in the following

chapters can be extended with minor modifications to other less common

multi-DoF joint types [Featherstone, 2008].

The most common 1-DoF joints used in robotics are called revolute and

prismatic. They impose motion constraints on 5 dimensions of the local space,

therefore their configuration s is an element of R. We model a joint as a

time-varying transformation between the frames P and C of its parent and

child links:

PHC(s) : R→ SE(3).

As illustrated in Figure 2.1, we break down this parent-to-child transform

in two different components: a constant transform PHpre(i) that locates the

predecessor joint frame from the parent link, and the time-varying joint transform
pre(i)Hsuc(i)(s) that locates the successor frame of the joint depending on the joint

configuration s. The entire parent-to-child transform is defined by positioning

the frame of the child link C over the successor frame suc(i)HC = I3:

PHC(s) =
PHpre(i)

pre(i)Hsuc(i)(s)
suc(i)HC

= PHpre(i)
pre(i)HC(s). (2.19)

In this thesis, we will refer to PHpre(i) as tree transform of joint i, pre(i)HC(s) as

joint transform, and s as joint generalised position or just joint position.
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Definition 2.7.1 (Joint axis of revolute and prismatic joints). Revolute and

prismatic joints can be defined by introducing a joint axis a ∈ R3, whose

coordinates are expressed in the predecessor frame. The joint position s ∈ R

induces a transform corresponding to an angle-axis decomposition around a

for revolute joints, and a translation along a for prismatic joints.

The relative velocities between links P and C can be obtained by differenti-

ating over time Equation 2.19:

d PHC(s)

dt
=

d PHC(s)

ds

ds

dt
=

d PHC(s)

ds
ṡ,

where ṡ ∈ R is the joint velocity. Also in this case, it will be convenient to

express the relative velocity as a 6D velocity. If X is a placeholder that selects

any of the velocity representations introduced in Section 2.3, we express the

relative velocity between links P and C as follows:

XvP,C = XSP,C(s)ṡ, (2.20)

where we introduced the joint motion subspace vector XSP,C(s) ∈ R6. In different

velocity representations, it is defined as:

CSP,C(s) =

ñ
CHP (s)

d PHC(s)

ds

ô∨
,

PSP,C(s) =

ñ
d PHC(s)

ds
CHP (s)

ô∨
,

C[P ]SP,C(s) =

 d P oC(s)
ds(

d PRC(s)

ds
CRP (s)

)∨


∨

.

(2.21)

Assumption 2.7.2. In this thesis, we assume that motion subspaces are

independent from the joint configuration, i.e. dXSP,C

ds = 06, from which
XSP,C(s) =

XSP,C follows.

Remark 2.7.1. From the Equations (2.21), it can be shown that the motion sub-

spaces of revolute and prismatic joints, reported in Table 2.1, are independent

of the velocity representation. For this reason, in the continuation of this thesis,

we drop all its superscripts and subscripts, and denote the motion subspace as

just S.
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Table 2.1: List of motion subspaces for the supported 1 DoF joints.
Joint type Motion subspace

Revolute S =

[
03

a

]

Prismatic S =

[
a

03

]

The relative acceleration between links P and C can be obtained by differen-

tiating Equation (2.20). Considering Assumption 2.7.2 and Remark 2.7.1, it can

be shown that the following resulting relation holds:

X v̇P,C =
dS

dt
ṡ+ Ss̈ = Ss̈, (2.22)

where s̈ ∈ R is the joint acceleration.

Kinematics and dynamics propagation

Many common RBDAs need to propagate quantities in both directions of a

kinematic tree representing a multibody system: child-to-parent and parent-

to-child.

Let’s consider a pair of links (P,C), connected together with a 1-DoF joint

characterised by a position, velocity, and acceleration s, ṡ, s̈ ∈ R. If link P is

the joint’s parent, and link C its child, we can compute their relative pose CHP

with Equation (2.19). From Equation (2.6), we can also compute the related

coordinate transformation CXP for 6D velocities.

Definition 2.7.2 (Propagation of 6D Velocities). Given the 6D velocity of the

parent link P , and the joint velocity, we want to calculate the velocity of the

child link C. In C coordinates, if PvW,P is the body-fixed velocity of the parent

link, and CvP,C is the 6D velocity induced by the joint motion, we can write

the following relation:

CvW,C = CvW,P + CvP,C = CXP
PvW,P + Sṡ,

where we used Equation (2.20) and Remark 2.7.1 to express the joint component

using its velocity.
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Definition 2.7.3 (Propagation of 6D Accelerations). Given the 6D acceleration

of the parent link P , and the joint acceleration, we want to calculate the

acceleration of the child link C. In C coordinates, if P v̇W,P is the body-

fixed apparent acceleration of the parent link, and C v̇P,C is the 6D apparent

acceleration induced by the joint motion, we can write the following relation

for the intrinsic acceleration:

CaW,C = C v̇W,C = C v̇W,P + C v̇P,C = C v̇W,P + Ss̈,

where we used Equation (2.22) to express the joint component using its

acceleration. In this case, we also want to expand the right-hand side to

have PaW,P , so that the propagation of the accelerations can be performed

iteratively. Expanding C v̇W,P using Equation (2.9), and exploiting properties

of the cross-product in R6, we obtain the following expression:

CaW,C = C v̇W,P + Ss̈

= CXP

Ä
P v̇W,P + PvC,P× PvW,P

ä
+ Ss̈

= CXP
P v̇W,P + CXP

PvC,P× PvW,P + Ss̈

= CXP
PaW,P + CXP

PvW,P× PvP,C + Ss̈

= CXP
PaW,P + CXP

PvW,P×Sṡ+ Ss̈,

where we used the relation P v̇W,P = PaW,P , and Equation (2.22) to express
PvP,C = Sṡ. In this form, we can propagate the acceleration from parent to

child having only the knowledge of the parent 6D velocity and acceleration

expressed in its own frame, and the joint quantities.

Definition 2.7.4 (Propagation of 6D forces). As illustrated in Figure 2.2, given

a link L, we want to compute the effects of the propagation of exchanged 6D

forces on its dynamics. In this case, we consider a single parent link P , and

multiple child links C1, C2, . . . . The parent link P applies a 6D force fJP to

L through the joint connecting them. Similarly, each joint connecting L to its

child links Cj receives a 6D force fJCj
from link L. Furthermore, to model the

most generic setting, we assume that an external force fE coming from the

environment is applied to link L.

In this setting, the dynamics of the link L expressed with the Newton-Euler
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fJP

L
P

C1

C2

C3

fJC1

fJC2

fJC3

fE

Figure 2.2: Illustration of 6D force propagation through a set of links connected
by joints. The link L receives a force fJP

from its parent P transmitted
through the joint JP , and an external force fE . The link L transmits to
each children Ci a force fJCi

through their connecting joint JCi
.

equation (2.17b) in its own frame, and ignoring the gravitational effects, is the

following:


Lf

ext = LfJP + LfE −
∑

Cj LfJCj

LfJP = ML
Lv̇W,L + LvW,L×̄∗ ML

LvW,L +
∑

Cj LfJCJ
− LfE

.

In contrast to the propagation of velocity and accelerations, in this case we will

use this relation to propagate forces from the children (and the environment)

to the parent. As we will see, gravitational effects can be considered by

propagating through the kinematic tree of a multibody system an equivalent

acceleration applied on the base link.

2.8 free-floating mechanical systems

In the previous sections, we introduced how individual links and joints can

be described, and presented their properties. In this section, we present the

mathematical description of a free-floating mechanical system composed of a

set of links connected by a set of joints. The free-floating terminology means

that no link of the system is rigidly attached to the world frame. Also in this

case, we present the system modelling based on the free-floating equations

that originate from the Lagrangian formalism as proposed by Traversaro [2017,

Chapter 3].
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2.8.1 Topology

Definition 2.8.1 (Multibody System). A multibody system composed of nL rigid

bodies (also called links) interconnected with nJ joints, can be represented by

a undirected graph. The links, grouped in the set L, form the graph nodes, while

the joints, grouped in the set J , form its edges.

Definition 2.8.2 (Kinematic graph). The undirected graph with nL nodes and

nJ edges representing a multibody system will also be referred to as kinematic

graph.

Definition 2.8.3 (Path). The path πB(E) = {B, . . . , E} between link B and link

E is the ordered sequence of links part of the kinematic graph that connects B

to E.

Definition 2.8.4 (Base link). We select one of the links part of L and call it base

link B. The base link is the root of the kinematic graph.

Assumption 2.8.1 (Link frames). Each link belonging to L is associated with a

frame rigidly attached to it, called link frame.

Assumption 2.8.2 (Acyclic graph). We assume the kinematic graph to be

acyclic, i.e. considering any pair of links C,D ∈ L, their connecting path πC(D)

is unique.

Definition 2.8.5 (Parent Link). For each link L ∈ L, if B is the base link,

the parent function λB : {L/B} 7→ L maps each link to its parent, with the

exclusion of the base link since it is the graph’s root. In contexts where B is

clearly specified, we omit the subscript.

Definition 2.8.6 (Link index). For eachL ∈ L, the index function idx : L 7→ 0∪N

returns its index. If B is the base link, we assign indices such that idx(B) = 0

and, for the remaining L ∈ {L/B}, we enforce idx(L) > idx(λ(L)). Therefore,

links are numbered from 0 to nL − 1.

Definition 2.8.7 (Joint index). For each L ∈ {L/B}, we assign to the joint

J ∈ J connecting the link pair (λ(L), L) the index idx(L), that is the index of

its child link. Therefore, joints are numbered starting from 1 to nJ .



2.8 free-floating mechanical systems 64

2.8.2 Generalised position and velocity

The configuration of a free-floating mechanical system can be modelled as the

set formed by the poses of all links. However, the existence of the joints that

induce motion constraints enables to determine the system configuration as a

pair composed of the pose of a base link and the generalised joints positions.

These two modelling choices are known, respectively, as maximal coordinates and

reduced coordinates. In this thesis, we focus on the case of reduced coordinates,

since it enables the application of efficient iterative algorithms [Featherstone,

2008] to operate on the system’s kinematics and dynamics. Furthermore,

interesting properties of the mathematical model that can be computed in

reduced coordinates can be exploited for designing control systems.

In reduced coordinates, we can formalise the generalised position and the

generalised velocity of the floating-base multibody system as follows:


q =

(
WHB, s

)
∈ Q = SE(3)× Rn

q̇ =
(
W
ḢB, ṡ

)
∈ V

(2.23)

where we introduced the joint positions s ∈ Rn, also called shape. Under the

assumption of having only 1-DoF joints, n is the overall number of internal

Degrees of Freedom of the system, matching the number of joints nJ . Note

that this limitation can be removed. A more general formulation can be found

in [Featherstone, 2008].

Similarly to what we observed for a single rigid body, it can be more

convenient to represent the system’s velocity as a column vector:

Xν =

XvW,B

ṡ

 ∈ R6+n, (2.24)

where XvW,B is the velocity of the base link, ṡ ∈ Rn are the joint velocities, and

the generic frame X is a placeholder to select one among the body-fixed X = B,

inertial-fixed X = W , or mixed X = B[W ] representations.
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2.8.3 Kinematics

In this section, we describe how we can relate the pose WHE and the velocity

vW,E between the world frame W and a generic link E of the multibody

mechanical structure with the generalised position q and generalised velocity

ν of the system. The link E can be thought of as the end-effector frame, even

if it applies to any generic link L ∈ L of the model and, more generally, any

frame rigidly attached to any link.

Link pose

The pose of a link E with respect to the world frame uniquely depends on the

generalised position q. We can denote the pose as a function WHE(q) : Q 7→

SE(3), defined as follows:

WHE(q) =
WHB

BHE(s) =

WRB
WoB

01×3 1

BHE(s). (2.25)

The transform BHE(s) defines the relative forward kinematics between link B

and link E, and it depends on the sequence of parent-to-child transforms
λ(i)Hi of all the adjacent links belonging to the path πB(E):

BHE(s) =
BHλ(λ···(E)) · · · λ(λ(E))Hλ(E)

λ(E)HE

=
∏

Li∈{πB(E)/B}

λ(Li)HLi(si).

Each entry λ(L)HL = λ(L)HL(s) of the product is given by the joint model of

Equation (2.19) that defines the transform between two links connected by a

joint.

Link velocity

For what concerns the velocity between the world frame W and link E, we

want to find an expression in the following generic form:

Y vW,E = Y JW,E/X(q)Xν,
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where we introduced JW,E ∈ R6×(6+n) as the floating-base Jacobian of link E. We

can notice that two different velocity representations characterise this relation,

denoted by the X and Y placeholder frames: X is related to the input system

velocity Xν, and Y is related to the output link velocity Y vW,E . We will show

the derivation of the left-trivialized Jacobian Y JW,Y/X , and then introduce the

appropriate transformations to change the representations of X and Y .

The velocity of link E w.r.t. the world frame can be computed differentiating

Equation (2.25). Instead of proceeding with this calculation, we follow the

equivalent approach of decomposing the velocity vW,E as the sum of the base

velocity and the velocity between the base B and the link E:

EvW,E = EvW,B + EvB,E .

We can express vB,E as the sum of the velocities between adjacent links in the

link path πB(E) between link B and E:

EvW,E = EvW,B +
∑

Li∈{πB(E)/B}

Evλ(Li),Li

= EvW,B +
∑

Li∈{πB(E)/B}

EXLi
Livλ(Li),Li

= EvW,B +
∑

Li∈{πB(E)/B}

EXLi
LiSλ(Li),Li

(si)ṡi,

where we used the expression of the relative velocity between two adjacent

links Lvλ(L),L introduced in Equation (2.20). Expressing the obtained relation

in matrix form, we reach the expression of the desired left-trivialized Jacobian,

where X is a placeholder that depends on the representation of the system’s

velocity:

EvW,E =

ï
EXX

ESB,E(s)

òXvW,B

ṡ

 = EJW,E/X
Xν. (2.26)
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We introduced the matrix SB,E(s) ∈ R6×n for the joint part, where its i-th

column is defined as:

ES
(:,i)
B,E(s) =


EXL

LSλ(L),L(s) if L ∈ {πB(E)/B},

06 otherwise.

Definition 2.8.8 (Link Jacobian). The generic form of the floating-base Jacobian

of link E is, therefore:

Y JW,E/X(q) =

ï
Y XX

Y SB,E(s)

ò
. (2.27)

Finally, the input and output representations can be changed from the pair

(X,Y ) to the pair (D,F ) by either left or right multiplication:

DJW,E/F (q) =
DXY

Y JW,E/X(q) diag
Ä
XXF , In

ä
. (2.28)

Remark 2.8.1 (Floating-base Jacobian and 6D forces). The duality between

6D velocities and 6D forces also propagates to the definition of the floating-

base Jacobian. If we consider a 6D force Ci
f i, that could be for example

the force applied to the frame Ci = (oCi , [W ]) associated to the contact

point i of link L which pose is defined by a transform LHCi , we can use

Equation (2.27) to compute its projection to the floating-base configuration

space as CiJ⊤
W,L/X(q) Ci

f i = (CiXL
LJW,L/X(q))⊤ Ci

f i ∈ R6+n. This verbose

notation results particularly useful in this case, because in the example of a

rolling contact, the frame Ci is time-varying, and the most appropriate contact

Jacobian is CiJW,L instead of CiJW,Ci , regardless of the system’s velocity

representation X .
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2.8.4 Dynamics

The EoMs of the free-floating mechanical system, similar to what we showed for

a single rigid body in Section 2.6.2, can be derived from Lagrangian mechanics.

Also in this case, we utilise the left-trivialized Lagrangian taking as input the

pair (WHB,
Bν), and drop the B superscript by assuming that all quantities

are derived in body-fixed representation. In the simplified setting of maximal

coordinates, the Lagrangian of the overall system can be obtained as the

combination of the left-trivialized Lagrangian of all its links:

ℓ(q, ν) = k(q, ν)− U(q),

κ(q, ν) =
1

2

∑
L∈L

Lv⊤
W,L ML

LvW,L,

U(q) = −
∑
L∈L

ï
Wg⊤ 01×3

ò
mL

WHL

Lc

1

 .

In reduced coordinates, we can obtain an alternative and more compact

expression of the energies:

κ(q, ν) =
1

2
ν⊤M(q) ν,

U(q) = −
ï
g⊤ 01×3

ò
m WHB

Bc(s)

1

 ,

where M(q) ∈ R(6+n)×(6+n) is the system’s mass matrix, defined as:

M(q) =
∑
L∈L

J⊤
L (q)MLJL(q), (2.29)

m ∈ R is the total mass of the mechanical system:

m =
∑
L∈L

mL,

and Bc(s) ∈ R3 is its CoM expressed in the coordinates of the base frame B:

Bc(s)

1

 =
1

m

∑
L∈L

mL
BHL

LcL

1

 .
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We introduced JL(q) =
LJW,L/B as the floating-base left-trivialized Jacobian of

linkL for left-trivialized generalised velocities Bν, as defined in Equation (2.26).

The Equations of Motion of the multibody system, considering that its

configuration q is an element of SE(3)× Rn, can be obtained by applying the

Hamel equations [Marsden, Jerrold E. et al., 2013; Maruskin, 2018], that can be

seen as the combination of the Euler-Poincarè equation for the base variables

in SE(3) and the classical Euler-Lagrange equation for the joint variables in Rn.

The left-trivialized Lagrangian plugged into the Hamel equations gives the

EoMs of the multibody system [Traversaro, 2017, Appendix A.4]:


q̇ =

(
W
ḢB, ṡ

)
M(q) ν̇ + C(q, ν) ν + g(q) = Bτ +

∑
L∈L J⊤

L (q) f extL

(2.30)

where we used the mass matrix M(q) defined in Equation (2.29), the actuation

selector B = (06×n; In) ∈ R(6+n)×n, and:

C(q, ν) =
∑
L∈L

J⊤
L

î
(vL×̄∗ ML + ML vL×)JL + MLJ̇L

ó
,

g(q) = −M(q)


WR⊤

B
Wg

03×1

0n×1

 .

When the decomposition of gravity and Coriolis effects is not important, we

will use the compact form of the EoM:

M(q) ν̇ + h(q, ν) = Bτ +
∑
L∈L

J⊤
L (q) f extL , (2.31)

where we introduced the vector of bias forces h(q, ν) ∈ R6+n.

Remark 2.8.2. We introduced for each link an external force f extL expressed in

link frame L. If multiple forces are applied to different locations of the link

where a local frame Ci is positioned, they can either be projected individually

to the configuration space as described in Remark 2.8.1, or summed all together

to a single 6D force f extL =
∑

i LX
Ci

Ci
f i expressed in L and projected as done

in Equation (2.30).
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Remark 2.8.3 (Structure of the mass matrix). The mass matrix of Equation (2.30),

considering the usage of the body-fixed representation for velocities and iner-

tias, should be denoted asM(q) = MB(s). In fact, this is the only representation

in which the mass matrix depends only on the shape and not on the base pose.

In this representation, the mass matrix can be factorised as follows:

MB(s) =

BM(s) F (s)

F⊤(s) H(s)

 ,

where F (s) ∈ R6×n, H(s) ∈ Rn×n is the joint mass matrix, and BM(s) ∈ R6×6 is

the locked 6D rigid body inertia of the multibody system.

2.8.5 Change of base variables

In the previous section, we derived the EoMs of a multibody system assuming

the base link B being the root of the kinematic graph, and using the body-

fixed representation for all velocities and forces. As shown by Traversaro

[2017, Section 3.6], it’s possible to apply a change of variables to the EoMs

of Equation (2.30) and express the dynamics either in a different velocity

representation or with a different base link.

Starting from a multibody system having the pair (q, ν) as generalised

position and velocity, we want to find a change of variables such that the new

pair is (q̃, ν̃), defined as follows:

q̃ = (H̃, s),

H̃ = HT (s)H ∈ SE(3),

ν̃ = T (q) ν,

T (q) =

Tbb(q) Tbs(q)

0n×6 1n

 ∈ R(6+n)×(6+n).

We introduced the linear transformation T : SE(3) × Rn 7→ R(6+n)×(6+n)

assuming that it is a smooth function and ∀q ∈ SE(3) × Rn, det[T (q)] ̸= 0.

Note that T does not alter the joint equations of the dynamics.
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It can be shown that the EoMs (2.30) are transformed as follows:


˙̃q =
Ä
Ḣ(q, ν)HT (s) + H(q)ḢT (s, ṡ), ṡ

ä
M̃(q̃) ˙̃ν + C̃(q̃, ν̃)ν̃ + g̃(q̃) = Bτ +

∑
L J̃L(q) Lf

ext
L

,

where we have introduced the transformed quantities:

M̃ = T−⊤MT−1,

C̃ = T−⊤
Å
M

d

dt

(
T−1

)
+ CT−1

ã
,

g̃ = T−⊤g,

J̃L = JLT,

(2.32)

and omitted their dependencies to improve readability.

Remark 2.8.4. For what regards the link Jacobian JL(q) =
LJW,L/B(q), beyond

depending on the transformation T (q) related to the change of variables, it also

depends on the reference frame in which the 6D forces f extL are expressed. Until

now, we always expressed the link forces in the link frame, i.e. Lf extL . However,

if link forces are expressed in a different frame, we can use Equation (2.28) to

modify the output representation of the Jacobian.

In this thesis, we only need the definition of the EoMs in different velocity

representations. It can be shown that the transform HT is used only if the base

link changes from B to any other frame belonging to the multibody system.

For this reason, starting from the obtained left-trivialized EoMs, we will present

the following change of variables assuming the base link always being B, and

therefore HT = I4. The interested reader could refer to [Traversaro, 2017] for

the transform necessary to change the base link.

Left-trivialized

The left-trivialized EoMs (2.30) of the multibody system considering B as base

link, using a complete and non-ambiguous notation, are the following:

MB(s)
Bν̇ + CB(q,

Bν)Bν + gB(q) = Bτ +
∑
L∈L

LJ⊤
W,L/B(q) Lf

ext
L
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where:

MB(s) =
∑
L∈L

LJ⊤
W,L/B LML

LJW,L/B,

CB(q,
Bν) =

∑
L∈L

LJ⊤
W,L/B

[
(LvW,L×̄∗

LML + LML
LvW,L×) LJW,L/B+

+ LML
LJ̇W,L/B

]
,

g(q) = −MB(q)


WR⊤

B
Wg

03×1

0n×1

 ,

LJW,L/B(q) =

ï
LXB

LSB,L(s)

ò
.

Right-trivialized

If we change the velocity representation of the base to inertial-fixed, we can

apply the change of variables (2.32) using the following transformation matrix:

WTB =

WXB 06×n

0n×6 In


Furthermore, if we also want to use external 6D forces expressed in the

world frame W f extL , we can obtain the right-trivialized Jacobian by applying T ,

and then update its output representation as follows:

WJW,L/W = WXL
LJW,L/B

BTW .

Mixed

Similarly, the transformation to obtain the EoMs in mixed representation is the

following:

B[W ]TB =

B[W ]XB 06×n

0n×6 In

 .



In life, unlike chess, the game continues after checkmate.

— Isaac Asimov

3
B A S I C S O F R E I N F O R C E M E N T

L E A R N I N G

In the field of Artificial Intelligence (AI), it has been hypothesised that intel-

ligence can be understood as subserving the maximisation of reward [Silver

et al., 2021]. It was suggested that intelligent abilities and behaviours could be

attained by agents that learn from trial-and-error by receiving feedback on their

performance: the reward. RL is one among the possible generic formulations

aiming to train agents that solve the problem of maximising the reward.

Reinforcement Learning operates on a unified setting decoupled as two

systems interacting sequentially over time, illustrated in Figure 3.1. The

environment is the world the agent interacts with. Unlike other ML domains, the

learned RL policy generates actions that may affect not only the current instant

(immediate reward), but also the new configuration in which the environment

transitions and its corresponding reward. The trial-and-error nature together

with delayed rewards, giving rise to the credit assignment problem, are two

among the essential features that characterise RL [Sutton et al., 2018].

This chapter, based on the theory and notation from Achiam [2018] and

Dong et al. [2020], describes in greater detail the Reinforcement Learning

setting, introduces the terminology and the mathematical framework used

throughout the thesis, and presents algorithms to solve the corresponding

reward maximisation problem. Despite being a generic setting from a high-level

perspective, all the element parts of Figure 3.1 may have different properties

altering the formulation of the specific problem at hand. This thesis focuses

on the application of RL to the robotics domain, constraining the nature of

environment modelling, the structure of the policies that can be learned, and

the family of algorithms that can be employed. In particular, this chapter is

aimed at introducing the theory of operating on environments modelled with

unknown stochastic continuous dynamics, providing continuous rewards and

receiving continuous actions generated by stochastic policies implemented as

neural networks. The setting adopting this family of policies is known as Deep

Reinforcement Learning (DRL). We will use throughout the thesis the RL and

DRL terminology interchangeably.

73
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Environment

Agent

Reward Rt

Action At

State St

Figure 3.1: The Reinforcement Learning setting.

3.1 key concepts

This section provides the basic terminology and definitions of RL used through-

out the following chapters, mainly borrowed from [Sutton et al., 2018; Achiam,

2018; Dong et al., 2020].

3.1.1 Environment

The environment is the – rather abstract – entity of the RL setting that determines

the evolution of a system as a consequence of an action, and the generation of

the reward signal.

Let’s assume we can encode the overall configuration of the environment at

time t in a state st ∈ S. If at ∈ A is the action generated by the agent at time t,

we define as state transition the map (st, at) 7→ st+1. We model the state such

that the transition to a next state at time t depends only on st and the selected

action. Therefore, the state’s definition is enough to encode all the information

about the past evolution of the environment.

State transition maps can assume different forms depending on the nature of

the environment. Formally, if the environment is deterministic, state transitions

can be expressed with a state-transition function f : S × A → S; instead,

if the environment is stochastic, state transitions can be expressed with the

state-transition probability density function P : S ×A → Pr[S]:

st+1 = f(st, at) if deterministic,

st+1 ∼ P(·|st, at) if stochastic.
(3.1)
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The environment is also responsible for generating the immediate reward

rt ∈ R. In its most generic form, the reward function can be modelled as a

functionR : S ×A× S → R:

rt = R(st, at, st+1).

Reinforcement Learning, contrary to other approaches that find optimal

policies in a comparable setting, assumes that both the state-transition function

P and the reward function R are unknown. It focuses on methods to learn

how to act optimally only by sampling sequences of states-actions-rewards

without assuming any knowledge of the process generating their data.

The objective(s) of the learning process are known as tasks. In the context

of RL, the reward function R is responsible to guide the agent towards the

fulfilment of the considered task(s).

Remark 3.1.1 (Episodic and Continuing tasks). The iterative nature of RL

requires the environment to be sampled continuously over different episodes.

An episode is defined as the environment evolution from an initial state s0 to its

termination. We can identify two episode termination strategies, corresponding

to the underlying task – the objective the reward is maximising. Episodic tasks are

characterised by a –possibly variable– finite length T , i.e. they do not continue

after reaching a terminal state sT . Continuing tasks, instead, are characterised

by an infinite horizon and they never terminate. On some occasions, it is useful

considering episodic tasks as continuing tasks by assuming that in time steps

t > T , the last state sT becomes a special absorbing state, that is a state that

can only transition to itself regardless of the action generating only rewards

of zero. On other occasions, instead, it is useful to truncate the evolution of a

continuing task at a certain time step [Pardo et al., 2022].

Remark 3.1.2 (States and observations). It’s common in the RL literature to

use the terms state and observation interchangeably, depending on the context.

However, practically speaking, the agent does not always receive the same

state s that encodes the complete environment configuration, whose space

S could also be non-Euclidean. When necessary, we introduce the function

O : S → O that computes the observation o ∈ O from the state s. Oftentimes,

we consider the observation o as the input to the agent, and it is convenient to
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consider O = Rn. To keep a clean notation and reduce confusion, in the rest

of this background chapter we just use the notation s. We only differentiate

between s and o when they are explicitly different quantities. Furthermore, we

always assume fully observable problems, meaning that the full state is always

available to the agent [Lovejoy, 1991; Jaakkola et al., 1994].

3.1.2 Agent

The agent is the – rather abstract – entity of the RL setting that learns and

interacts with the environment with the objective of maximising the received

reward signal. In our setting, depending on the RL algorithm selected for

training, agents are at least composed of a function approximator used to

generate the action, i.e. a policy, and a method for optimising this function

given the observed states and received rewards.

3.1.3 Policy

The policy encodes the strategy followed by the agent in order to select its

control actions. Policies can be either deterministic, i.e. given a state s, the agent

always takes the same action:

at(st) = µ(st) , with µ(st) : S → A,

or stochastic, i.e. modelled as a probability distribution, from which the action

is sampled:

at ∼ π(·|st) , with π(·|st) : S → Pr(A).

In most DRL applications, policies assume the form of neural networks, whose

parameters θ are updated during the training procedure by an optimisation

algorithm. We often make this parameterization explicit by using subscripts, i.e.

µθ and πθ. The most common policy chosen in our target setting is described

in the following example.
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Example 3.1.1 (Diagonal Gaussian Policy). The general form for the Probability

Density Function (PDF) of the univariate normal distribution is the following

Gaussian function:

fN (x |µ, σ) = 1

σ
√
2π

exp

Å
−1

2

(x− µ)2

σ2

ã
. (3.2)

We denote sampling a single real-valued random variable x ∈ R from this

distribution as x ∼ N (µ, σ2), where µ and σ2 are the mean and the variance

of the distribution, respectively. We can use the same distribution also in

the multivariate case, in which x, µ ∈ Rk and Σ = diag(σ1, σ2, . . . ) ∈ Rk×k,

where we assumed a diagonal covariance matrix parameterized with diagonal

values denoted as σ ∈ Rk. A stochastic policy could be implemented as

a parameterized multivariate diagonal Gaussian distribution. During the

training phase, exploration is achieved by sampling from the distribution.

During the evaluation phase, instead, the policy’s exploitation is achieved by

always selecting the mean of the distribution. We can decide to condition the

action at on the state st by modelling the distribution with a NN parameterized

by θ. We define the policy being the corresponding parameterized density,

denoted as:

πθ(at | st) = f(at |θ(st)) = fN (at |µθ(st), σθ).

A common choice is to compute only µθ = µθ(st) from the forward pass of

the NN, which takes the state st as input. The standard deviation is often

computed by standalone parameters independent of the NN and consequently

is state-independent. Furthermore, to prevent generating negative values of

σθ, it’s common practice to let these standalone parameters provide log σθ, so

that they could be optimised in R and, upon exponentiation, return a standard

deviation in R+.

In this setting, actions could be sampled as at ∼ πθ(· | st). Implementations

that exploit AD frameworks modify the sampling strategy using the reparamet-

erization trick, allowing to apply backpropagation on stochastic problems. In

practice, actions are sampled as at = µθ(st) + σθ · z, with z ∼ N (0, 1).

Remark 3.1.3 (Probability Density Function and likelihood). The Gaussian

function of Equation (3.2) could be used for two scopes depending on which
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of its parameters is considered as fixed. When considered as x 7→ f(x |µ, σ),

it defines the PDF of the distribution. Instead, when considered as (µ, σ) 7→

f(x |µ, σ), it defines the likelihood function of the distribution. The former

calculates the probability of x to fall within a particular range of values

considering constant distribution parameters. The latter, instead, also denoted

as L(µ, σ |x), describes the probability of the observed data x as a function

of varying distribution parameters. As we will analyse later, calculations are

often simpler when considering the log-likelihood ℓ = logL instead of the plain

likelihood. From a state s, assuming a diagonal multivariate Gaussian policy

with mean µ = µθ(s) and standard deviation σ = σθ, it can be shown that the

log-likelihood of an action a ∈ Rk is the following [Bishop, 2006]:

ℓ(µ, σ | a) = log πθ(a | s) = −
1

2
k log 2π −

k∑
i=1

Å
log σi +

(ai − µi)
2

2σ2
i

ã
. (3.3)

3.1.4 Trajectory

In the RL setting illustrated in Figure 3.1, the sequential interaction between

the agent and the environment generates a trajectory τ of states and actions:

τ = (s0, a0, s1, a1, . . . , sT ).

The first state s0, i.e. the starting point of the trajectory, is randomly sampled

from the initial state distribution ρ0(·) as s0 ∼ ρ0(·). Afterwards, the state evolves

accordingly to one of the state transition maps defined in Equation (3.1), until

a terminal state sT is reached12. The process generating trajectory data is

illustrated in Figure 3.2.

Remark 3.1.4 (Reward trajectory). The literature is not uniform on the time

subscript of the immediate reward r(·). In this thesis, we consider the data-

generating process illustrated in Figure 3.2. The transition t→ t+1 corresponds

12 This is always true for episodic tasks, not always for the continuing tasks that characterise
continuous control. When a continuous control trajectory terminates on a terminal state sT , there
is no difference with an episodic task. However, practically speaking, truncating a continuous
control trajectory is common after a given number of steps. It is essential to distinguish these
two cases because the propagation of the reward backward in time differs significantly.
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A
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Figure 3.2: Illustration of the process generating trajectory data.

to the data (st, at) 7→ (rt, st+1). Note that the subscript of the reward is

associated to the time t of the tuple (st, at) that generated it. While this might

seem odd at a first glance, it keeps the notation consistent when building the

dataset D of a trajectory τ . In practice, it’s common to store the experience in

the form D = {(s0, a0, r0), (s1, a1, r1), . . . , (sT−1, aT−1, rT−1), (sT , ·, 0)}.

3.1.5 Return

The rewards rt = R(st, at, st+1) returned at every step by the environment

have been defined as immediate, which means generated from and related only

to the transition t→ t+ 1. From the description of the RL setup provided in

3.1, it could be intuitive to conclude that the reward maximisation process

should allow, in some way, to consider possibly delayed rewards that could

occur over a trajectory. In other words, an action taken at time t in state st

may not immediately produce a high reward rt, but it could lead to future

states associated with high rewards. With this intuition in mind, we can define

the return at time t as the sum of all the immediate rewards received until

termination:

Rt = rt + rt+1 + rt+2 + · · ·+ rT =

T−t∑
k=0

rt+k.

This equation defines the finite-horizon undiscounted return, which suits episodic

tasks well. However, if applied to continuing tasks, the sum could not converge
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to a limit value because the final time step is T = ∞. In this setting, we can

introduce the infinite-horizon discounted return:

Rt = rt + γrt+1 + γ2rt+2 + · · · =
∞∑
k=0

γkrt+k.

The term γ ∈ [0, 1] is called discount factor, and allows to obtain a bounded

return. The discount factor is one of the most critical hyper-parameters to tune

since it controls how farsighted the agent could be once trained.

Considering a trajectory τ = (s0, a0, s1, a1, . . . , sT−1, aT−1, sT ), we denote as

R(τ) its discounted return, defined as:

R(τ) =

T−1∑
t=0

γtR(st, at, st+1) =

T−1∑
t=0

γtrt.

Remark 3.1.5 (Variance in the bias-variance trade-off). During the training

phase, many RL algorithms try to estimate the expected return of each state of

the environment. If we take multiple trajectories starting from the same state

but evolving differently, the computed return of that state for each trajectory

may differ considerably. In fact, the return sums – and optionally discounts –

the collected future rewards. A possible estimation of a state’s return could be

obtained by averaging the computed return of all trajectories. The variance of

the estimated return constitutes one element of the bias-variance trade-off, that

characterises many policy learning methods.
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3.1.6 The Reinforcement Learning Problem

Combining all these concepts allows defining the RL problem more pragmatic-

ally. In our setting, it is defined as follows:

The maximisation of the infinite-horizon discounted return R(τ) of

a trajectory τ sampled following a stochastic policy π(·|st) from an

uncertain environment modelled with an unknown state transition

probabilityP(·|st, at) and unknown reward functionR(st, at, st+1).

In this setting, we can compute the probability of a trajectory τ [Sutton et al.,

2018; Achiam, 2018] of an arbitrary length T as13:

P (τ |π) = ρ0(s0)
T−1∏
t=0

P(st+1 | st, at)π(at | st) (3.4)

We can now formulate the reward maximisation objective as an optimisation

problem by introducing the following performance function:

J(π) =

∫
τ
P (τ |π)R(τ) dτ = E

τ∼π
[R(τ)] . (3.5)

Finally, the RL problem can be mathematically defined as follows:

π∗ = argmax
π

J(π),

where π∗ is the optimal policy yielding the maximum return from each visited

state along the trajectory.

13 For continuing tasks, we can truncate the trajectory after T steps and handle the return of the
last state properly.
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3.2 reinforcement learning formalism

The previous section provided an informal introduction to the Reinforcement

Learning setting. In this section, we consolidate and formalise the notions into

a structured framework composed of two key ingredients: Markov Decision

Processes and the Bellman equation.

3.2.1 Markov Decision Processes

Markov Decision Processes [Puterman, 2005; Sutton et al., 2018] are one of

the classical formulations of sequential decision-making, which introduce

the mathematical framework of choice for the discrete-time stochastic setting

described in Section 3.1.

With the notation introduced in the previous section:

• The set of all valid states S,

• The set of all valid actions A,

• The reward functionR : S ×A× S → R,

• The state-transition probability function P : S ×A → Pr[S],

• The initial state distribution ρ0,

we define as Markov Decision Process (MDP) the tuple ⟨S,A,R,P, ρ0⟩. The

two key features of the iterative RL settings are correctly modelled by a MDP.

Firstly, MDPs satisfy the Markov Property.

Definition 3.2.1 (Markov Property). A stochastic process satisfies the Markov

property if the conditional probability distribution of future states of the

process depends only upon the present state. Given the present state, the

future does not depend on the past ones. A process with this property is said

to be Markovian or a Markov process.

It follows that the dynamics of an MDP is uniquely modelled by P [Sutton

et al., 2018]. Given a state-action pair (st, at) ∈ S × A, the probability of

transitioning to the next state st+1 is P(st+1 | st, at). Concerning the support of

delayed rewards to solve the credit assignment problem, which represents the

second key feature of iterative RL, MDPs exploit value functions.
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3.2.2 Value functions

Given a Markov Decision ProcessM, we can associate each state s – or state-

action pair (s, a) – to a scalar value representing how rewarding it is for an

agent to generate a trajectory passing through it. Considering the objective of

reward maximisation, a natural choice for this score is the expected return. We

introduce the state-value function for policy π as the following quantity:

V π(s) = E
τ∼π

[R(τ) | s0 = s] = E
τ∼π

[ ∞∑
t=0

γtrt

∣∣∣∣∣ s0 = s

]
. (3.6)

It provides the expected return of a trajectory starting from s and always acting

following policy π. This is also the reason why we need to specify the active

policy with the superscript.

Another important value function to introduce is the action-value function for

policy π:

Qπ(s, a) = E
τ∼π

[R(τ) | s0 = s, a0 = a] = E
τ∼π

[ ∞∑
t=0

γtrt

∣∣∣∣∣ s0 = s, a0 = a

]
. (3.7)

It provides the expected return of a trajectory starting from s, taking an action

a – not necessarily generated by the same policy π –, and then always acting

following policy π. In this case, we assign a scalar value to each state-action

pair (s, a) ∈ S ×A.

The definitions of these value functions now give us a helpful metric to

define the performance of a policy π. In fact, we can consider policy πA better

than policy πB if V πA(s) > V πB (s) for all states s ∈ S. An MDP M always

has at least one policy that performs better than all the others, and this is the

optimal policy π∗. The optimal state-value function and the optimal action-

value function of the policy π∗ (or policies, if the optimal policy is not unique)

are:

V ∗(s) = max
π

V π(s) = max
π

E
τ∼π

[R(τ) | s0 = s]

Q∗(s, a) = max
π

Qπ(s, a) = max
π

E
τ∼π

[R(τ) | s0 = s, a0 = a] .
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It is often not needed to compute both value functions. Two connections

between the value functions are the following [Sutton et al., 2018]:

V π(s) = E
a∼π

[Qπ(s, a)] (3.8)

Qπ(s, a) = E
st+1∼P(· | st,at)

[rt + γV π(st+1) | st = s, at = a] . (3.9)

Remark 3.2.1 (Bias in the bias-variance trade-off). Many RL algorithms oper-

ating on continuous spaces, during the training phase, try to fit a function

to estimate the optimal value function (or functions). Before reaching an

acceptable convergence, the effect of using a wrong value function estimate

that could affect training performance is called bias, and it is the other element

of the previously introduced bias-variance trade-off that characterises many

policy learning methods (Remark 3.1.5).

A commonly-used byproduct of the state-value and action-value functions

is the advantage function:

Aπ(s, a) = Qπ(s, a)− V π(s). (3.10)

It plays an important role when we need to describe the quality of an action

in a relative sense. In fact, we can think of V (st) as a function providing the

expected return of state st averaged over all the possible actions at that can be

taken in this state14, and Q(st, at) as providing the expected return of state st

considering that the action taken was at. If this action at performs better than

average, expressed mathematically as Q(st, at) > V (st) =⇒ A(st, at) > 0,

we could use this information to reinforce the choice of at the next time the

trajectory evolves through st.

14 This can be clearly seen from Equation (3.8).
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3.2.3 Bellman Equation

An optimisation problem in discrete time like the RL problem can be structured

in a recursive form, i.e. expressing the relationship between a quantity in one

step and the same quantity in the next one. If a problem can be structured in

this form, the equation expressing the update rule between the two periods is

known as Bellman equation.

The value functions for policy π introduced in Section 3.2.2 can be trans-

formed into a recursive form by noticing that we can express the return as

follows:

Rt = rt + γrt+1 + γ2rt+2 + · · · = rt + γ (rt+1 + γrt+2 + · · · )

= rt + γRt+1 = R(st, at, st+1) + γRt+1.

Replacing this relation in Equation (3.6) and Equation (3.7) leads to the Bellman

equations of the value functions for policy π:

V π(st) = E
at∼π

st+1∼P
[R(st, at, st+1) + γV π(st+1)] ,

Qπ(st, at) = E
st+1∼P

ï
R(st, at, st+1) + γ E

at+1∼π
[Qπ(st+1, at+1)]

ò
.

Once the optimal policy π∗ has been found, the Bellman equations for this

policy are the same except from the action selection that, instead of sampling

it as a ∼ π(·|s), deterministically selects the action yielding the highest value.

One of the possible solutions to problems structured in this recursive form

is proceeding by backward induction, i.e. considering what is the optimal action

to take in the last state of a sequence, and then propagating backward in

time. This process has a closed form under specific assumptions. Our setting,

characterised by continuous action and state spaces, unknown P andR, and

the usage of function approximation for the value functions and the policy,

does not have any closed-form solution. Therefore, at best, we can use iterative

approaches.
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3.3 algorithms

After the emergence of Deep Reinforcement Learning, the late 2010s have seen

an extensive research effort that led to a great variety of algorithms. In this

section, we provide a bird’s-eye view of different families of algorithms that

can iteratively solve the RL problem. We highlight their main properties that

motivate the choice of methods used for the setting studied in this thesis.

3.3.1 Model-free and Model-based

The formulation of the RL problem provided in Section 3.1.6 outlines that the

agent has no knowledge of environment details. The state-transition probability

density function P(·|st, at) and the reward functionR(st, at, st+1) are usually

unknown. The agent needs to explore the environment through trial-and-

error while trying to learn how to maximise the collected immediate rewards.

There are, however, algorithms that assume a –possibly partial– knowledge of

environment details that can be advantageous in different circumstances.

The first major categorisation separates the algorithms in model-free and

model-based methods, depending on whether the agent has access to a model

of the environment. Model-free methods aim to maximise the reward directly

from observed data. Instead, model-based methods exploit the knowledge

of the environment model to perform planning, enabling to anticipate the

direction in which the trajectory will evolve and use this information to improve

the action selection. The environment model could either be given, or learned

from the observed trajectories. In fact, the agent has access to the environment

trajectories, and under the assumption of collecting enough data, it may try to

learn both the environment dynamics and reward function.

Having access to the model could seem a desired improvement in most

scenarios. In settings where model learning is successful, or the model is

given, model-based methods show excellent sample efficiency, one of the major

downsides of model-free methods. Still, the reality is that in the case the model

is learned from data, it remains highly challenging to obtain a description

of a complex environment accurate enough to be exploited by the agent. In

addition, the prediction inaccuracy introduces a strong bias in the learning

process that can be exploited by the agent, resulting in sub-optimal behaviour

in the actual environment.
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3.3.2 Value-based and Policy-based

The second major categorisation separates the algorithms in value-based and

policy-based methods. Value-based methods aim to learn the value functions

introduced in Section 3.2.2, usually Qπ(s, a), from which a policy can be

implicitly generated. Instead, policy-based methods do not rely on any value

function. They introduce a function approximator whose parameters θ can be

iteratively optimised to maximise a performance function J(θ).

Value-based methods learn a parameterized action-value function Qθ(s, a)

usually applying updates based on the Bellman equations introduced in

Section 3.2.3. From the action-value function, actions can be deterministically

computed as a∗(s) ∈ argmaxaQθ(s, a). This equation, however, shows both

the limitations of this family of methods. First, due to the action selection

based on the argmax, the computation could be expensive in high-dimensional

discrete action spaces. Also, they are incompatible with continuous action

spaces since the maximisation expects a finite set of actions. Second, they can

only learn deterministic policies, introducing the need to be combined with

proper exploration strategies that could be less effective than those implicitly

implemented with stochastic policies. On the other hand, value-based methods

can reuse most of the collected data with high sampling efficiency, and the

maximisation strategy allows to improve faster and with a lower variance to

the optimal policy.

Policy-based methods, instead of resorting to a value function, perform an

optimisation that directly targets the final aim of reward maximisation. They

represent a policy with a parameterized function, typically a state-conditioned

probability distribution, directly optimised from collected trajectories. Depend-

ing on the choice of the policy, these methods are suitable for continuous and

high-dimensional action spaces. In practice, they present better convergence

properties by applying small incremental changes at every iteration. Although

usually slower, less efficient, and more prone to getting stuck and converging

to a local optimum, learning performance could be more stable.

The separation between value-based and policy-based methods has become

less and less defined in the past few years. Many new algorithms conceptually

close to the policy-based methods, do learn and take advantage of value
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functions. This family of methods is known as actor-critic methods. They

combine the broader policy support and better convergence properties of

policy-based methods by using a parameterized policy, called actor, with a

lower variance obtained from learning and exploiting a value function, called

critic. The learning process interleaves optimisations of the actor and the critic

so that both converge towards the optimal policy and optimal value function,

respectively.

3.3.3 On-policy and off-policy

The third major categorisation separates the algorithms between on-policy and

off-policy methods. The difference between these two methods is whether their

policy is used both as behaviour policy, used for exploring the environment,

and as target policy, used as the actual output of the optimisation problem.

Off-policy methods are capable of learning an optimal policy from experi-

ence sampled by any exploration strategy, under the assumption of visiting

enough times all environment states. This feature makes off-policy methods

particularly sample efficient since the sampled experience during training

always remains valid and, therefore, can be used multiple times. Most of the

algorithms belonging to this family are also value-based, thus they inherit

better convergence properties albeit being more unstable.

On-policy methods usually learn a stochastic policy and use it both as

behaviour and target. These methods are mainly either policy-based or actor-

critic. Under the assumption that the policy’s stochasticity is sufficient for

environment exploration, on-policy methods share the properties of policy-

based methods. Contrarily to off-policy methods, during training, they expect

data to be generated from the same policy, preventing the usage of old

data acquired in previous optimisation epochs and therefore showing a

lower sampling efficiency. However, the most popular algorithms in this

family implement techniques based on importance sampling, enabling multiple

optimisation steps per on-policy batch, mitigating the need for newly-sampled

trajectories.
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3.4 policy optimization

Most of the Reinforcement Learning algorithms used in robotics belong to

the family of policy gradients methods, i.e. model-free policy-based on-policy

methods. In this section, we first derive how we can compute the gradient of

the policy performance function J(πθ), already introduced in Equation (3.5),

w.r.t. its parameterization θ directly from the trajectories τ . Then, we introduce

Proximal Policy Optimization (PPO), a widely used algorithm that exploits a

local approximation of this gradient to let πθ converge towards π∗.

3.4.1 Policy Gradient

Let’s consider a policy πθ parameterized by θ ∈ Rp. From Equation (3.5), its

performance function can be defined as:

J(πθ) = E
τ∼πθ

[R(τ)] =

∫
τ
P (τ |θ)R(τ) dτ . (3.11)

We want to derive the equation of the gradient of this performance function

w.r.t. θ (or, at least, its stochastic estimate) so that we can maximise the return

by optimising θ through gradient ascent with the following update rule:

θk+1 = θk + α∇θJ(πθ)
∣∣∣
θk

, (3.12)

where ∇θJ(πθ) =
î
∂J
∂θ1

, ∂J
∂θ2

, ∂J
∂θ3

, · · ·
ó⊤
∈ Rp is the policy gradient term. It can

be expanded as:

∇θJ(πθ) = ∇θ

∫
τ
R(τ)P (τ |θ) dτ =

∫
τ
R(τ)∇θP (τ |θ) dτ

=

∫
τ
R(τ)P (τ |θ)∇θ logP (τ |θ) dτ

= E
τ∼πθ

[R(τ)∇θ logP (τ |θ)] .

Note that we used the Leibniz integral rule for differentiation under the integral

sign to move the gradient, and the log-derivative trick on∇θP (τ |θ) to express it

as an expectation.
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Theorem 3.4.1 (Log-derivative trick). Given a function f(x), we can express

its gradient in the following form:

∇xf(x) = f(x)∇x log f(x). (3.13)

Although it seems to involve more terms, this form can be a convenient

expression since it can be easier to differentiate the logarithm of a function

rather than the function itself. This could occur when f is a product of many

terms, which is transformed into a sum by taking the logarithm.

Proof. Given a function f(x), from the chain rule it follows:

∇x log f(x) =
1

f(x)
∇xf(x).

Rearranging the terms of this expression leads to Equation (3.13).

The application of the log-derivative trick has another important con-

sequence. The probability of a trajectory τ was already defined in Equation (3.4)

as:

P (τ |θ) = ρ0(s0)
T−1∏
t=0

P(st+1 | st, at)πθ(at | st).

If we take its logarithm, we obtain:

logP (τ |θ) = log ρ0(s0) +

T−1∑
t=0

[logP(st+1 | st, at) + log πθ(at | st)] .

We note that it depends on θ only through πθ(at | st), therefore we can ignore

the other terms and simplify the policy gradient to its final form:

∇θJ(πθ) = E
τ∼πθ

[R(τ)∇θ logP (τ |θ)]

= E
τ∼πθ

[
R(τ)

T−1∑
t=0

∇θ log πθ(at | st)

]
. (3.14)
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Being an expectation, we can obtain a gradient estimate by collecting at time

k a dataset of on-policy trajectories Dk and computing the empirical average,

denoted by Ê, over the finite batch of samples:

ĝk = Êt [R(τ)∇θ log πθ(at | st)] =
1

|Dk|
∑
τ∈Dk

R(τ)

T−1∑
t=0

∇θ log πθ(at | st)
∣∣∣
θk

.

(3.15)

Remark 3.4.1 (Gradient variance reduction exploiting causality). The return

R(τ) of Equation (3.14) can be thought of as the weight of the log-likelihoods

computed along the trajectory. It can be noted that log-likelihoods at t > 0 are

weighted by the return computed from t = 0, which can be seen as reinforcing

an action using a quantity that includes information from the past. Instead, we

should consider only the consequences of an action. We can update the policy

gradient with this intuition obtaining the reward-to-go policy gradient:

∇θJ(πθ) = E
τ∼πθ

[
T−1∑
t=0

∇θ log πθ(at | st)
T−1∑
t′=t

R(st′ , at′ , st′+1)

]
. (3.16)

Now, log-likelihoods are weighted with the causal return, often called reward-

to-go:

R̂t =
T−1∑
t′=t

R(st′ , at′ , st′+1).

3.4.2 Generalized Advantage Estimation

Policy gradient methods are not uniquely defined by the final forms of

Equation (3.14) and Equation (3.16). They are just two specific cases of a more

general formulation expressed in the following form:

∇θJ(πθ) = E
τ∼πθ

[ ∞∑
t=0

∇θ log πθ(at | st)Ψt

]
. (3.17)
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Among all possible choices of Ψt, the one yielding the lowest variance [Schul-

man et al., 2018] is the advantage function, already introduced in Equation (3.10):

Ψt = Aπ(st, at) = Qπ(st, at)− V π(st).

Using the advantage as log-likelihood’s weight can be intuitively understood

from its properties to describe the relative quality of actions. In fact, ifAπ(s, a) >

0, the policy gradient ĝ pushes the parameters θ towards an increased action

likelihood πθ, with the consequence of reinforcing the probability to choose

again at over other actions. The main reason for the favourable properties

regarding the variance reduction introduced by using the advantage function

originates from integrating a reinforcement effect based on a quantity that

expresses relative feedback instead of an absolute value that could be noisy.

In practice, the advantage function is unknown, and we have to find a way

to obtain a valid advantage estimator Â(s, a). There are many methods to obtain

Ât, that can be determined by how the return is estimated: high-variance

Monte-Carlo on one end, high-bias one-step TD on the other:

Â
(1)
t = −V (st) + rt + γV (st+1) one-step TD,

Â
(∞)
t = −V (st) +

∞∑
t=0

γtrt Monte-Carlo.

Note that Â(1)
t is also called TD error, denoted by δVt . As done by TD methods,

the process of approximating future rewards with an estimated return is

also known as boostrapping and, similarly as we discussed in Remark 3.2.1, it

introduces bias.

One may notice that we can blend the two methods by truncating the

Monte-Carlo estimate after k steps, and approximate the future rewards from

the return corresponding to the k-th state. This approach, known as k-step TD,

allows balancing the bias-variance trade-off by interpolating between the two

extremes:

Â
(k)
t = −V (st) + rt + γrt+1 + · · ·+ γk−1rt+k−1 + γkV (st+k).
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Think of k as an additional hyperparameter to tune. Intuitively, the variance is

reduced by considering a smaller number of noisy sampled rewards, and the

bias is mitigated by the high discount applied to the bootstrapped value.

While k-step TD already helps trade off bias and variance, it selects just

one horizon. More sophisticated methods compute Â
(k)
t on multiple hori-

zons and then combine the estimates, for example, by averaging them. The

Generalized Advantage Estimator (GAE) [Schulman et al., 2018] is defined as

an exponentially-weighted average of k-step TD estimates:

Â
GAE(γ,λ)
t = (1− λ)

Ä
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + · · ·

ä
=

∞∑
l=0

(γλ)lδVt+l.

We can recognise GAE(γ, 0) = Â
(1)
t and GAE(γ, 1) = Â

(∞)
t . The hyperpara-

meter 0 < λ < 1 balances between these two extremes.

3.4.3 Proximal Policy Optimization

In the previous sections, we obtained the generic Equation (3.17) of the policy

gradient, whose advantage-based form can be empirically estimated over a

finite batch of samples as follows:

ĝ = Êt

î
∇θ log πθ(at | st)Ât

ó
.

In practice, implementations of Policy Gradient (PG) use Automatic Differenti-

ation frameworks to calculate a loss function and, from it, extract the gradient.

The loss function typically used is the following:

LPG(θ) = Êt

î
log πθ(at | st)Ât

ó
. (3.18)

Given a dataset of trajectories D, one might think to perform multiple steps of

gradient ascent. Often, this process generates steps too large in the policy’s

parameters space, leading to updates that destroy the previously learned

behaviour.
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Authors of [Schulman et al., 2017a] have proposed a modification of Equa-

tion (3.18) that guarantees the monotonic improvement of a stochastic policy.

The Trust Region Policy Optimization (TRPO) algorithm exploits importance

sampling for correcting the probabilities of trajectories produced by different

policies, and limits how much these policies can change between two iterations

using a hard constraint on their Kullback–Leibler (KL) divergence:

maximize
θ

Êt

ï
πθ(at | st)
πθold(at | st)

Ât

ò
subject to Êt [DKL [πθ(·|st)||πθold(·|st)]] ≤ δ.

This algorithm, in practice, relies on the computation of a linear approximation

of the objective, and a quadratic approximation of the constraint.

PPO [Schulman et al., 2017b] builds upon similar intuitions, replacing the

complicated computation of the approximated constrained problem with

techniques that, although less rigorous, are much simpler and effective in

practice. Authors provide two different variants of the algorithm: clipped

surrogate objective and adaptive KL penalty coefficient. The two approaches can be

either considered as standalone methods or combined.

The clipped variant of the algorithm removes the hard constraint of TRPO.

Denoting the likelihood ratio as rt(θ) = πθ(at | st)
πθold

(at | st) , this variant modifies the

loss function as follows:

LCLIP (θ) = Êt

î
min
¶
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

©ó
.

While optimising over a dataset D, after the optimisation of the first batch,

θ ̸= θold. Clipping the likelihood ratio in the interval 1 ± ϵ has the effect

of dampening potentially large steps towards the reinforcement direction

(rt(θ)≫ 1 if Ât > 0, and rt(θ)≪ 1 if Ât < 0).

The penalty variant of the algorithm, instead, transforms the hard constraint

of TRPO into a soft constraint:

LKLPEN (θ) = Êt

î
rt(θ)Ât − βDKL [πθold

(·|st) ||πθ(·|st)]
ó
.

While selecting a constant β is a possibility, the authors of PPO proposed an

adaptive parameter update. After each policy update, the KL divergence of the



3.4 policy optimization 95

target policy πθ from the behaviour policy πθold can be computed (or, if the

parameterized policy has no closed-form expression, estimated) as:

d = DKL [πθold(·|st) ||πθ(·|st)] .

Then, the new β parameter used in the following policy is adjusted as follows:

β ← β/2, if d < dtarg/1.5

β ← β × 2, if d > dtarg × 1.5.

The constant dtarg is the desired value of the KL divergence.



Intelligence is what you use when you don’t know what to do.

— Jean Piaget

4
S TAT E - O F -T H E - A R T A N D T H E S I S

C O N T E N T

This chapter concludes the introductory part of this thesis. With the basic

knowledge about robot simulators, robot modelling, and RL provided by the

previous chapters, we attempt to draw the state-of-the-art of domains covered

by this thesis. Then, from the picture of the current research status, we identify

what we believe are problems still open, and outline how this thesis aims to

solve them by providing the contributions to knowledge of this work. We start

by reviewing the research on RL for robot locomotion, which should provide a

bird-eye view of how this methodology evolved and has been applied over

the past three decades to the specific domain of interest of this thesis. Then,

we review the technological evolution of robot simulators, focusing on robot

learning applications. Finally, to provide the necessary context to motivate

one of our contributions, we review the domain of push-recovery strategies

applied to bipedal robots.

4.1 review of reinforcement learning for robot

locomotion

The origin of Reinforcement Learning is often attributed to the development

of Q-Learning [Watkins, 1989] in the early 1990s, unifying the three existing

threads of learning by trial-and-error, optimal control, and temporal differ-

ences. In the same period, major developments such as TD(λ) [Sutton, 1988],

REINFORCE [Williams, 1992], SARSA [Rummery et al., 1994], etc. triggered

an increasing interest around methodologies based on reinforcement, gaining

popularity with the first system able to challenge human ability exploiting

NNs: TD-Gammon [Tesauro, 1994]. The first successful attempts to apply Re-

96



4.1 review of reinforcement learning for robot locomotion 97

inforcement Learning to robotics, combined with usage of NNs as function

approximators, appeared in the same decade [Lin, 1993; Gullapalli et al., 1994;

Benbrahim et al., 1997].

In the following period, in the late 1990s and the entire 2000s, the body of

research mainly focused on trajectory optimisation, particularly targeting learn-

ing from demonstration [Schaal, 1996; Atkeson et al., 1997; Schaal, 1999]. In

order to limit the challenges posed by the computational constraints in conjunc-

tion with the available hardware, researchers widely exploited parameterized

movement primitives [Schaal, 2006] and policy gradients methods [Peters

et al., 2003; Peters et al., 2006; Kober et al., 2008], also attempting to bridge the

latter with stochastic optimal control [E. A. Theodorou et al., 2010]. Restricting

the domain to robot locomotion, this decade was mainly characterised by the

usage of quadrupeds [Kohl et al., 2004; Honglak Lee et al., 2006; Kolter et al.,

2007; E. Theodorou et al., 2010]. Kober et al. [2013] provide a well-structured

and extensive survey on the state and challenges of research in RL applied to

robotics characterising this period.

In the early 2010s, after the advent and initial success of DL [Hinton et al.,

2006], hardware advancements enabled significant progress in speech recogni-

tion and computer vision research. The transfer of similar methodologies to

RL, whose performance was previously limited by computational constraints,

at that point, was natural, and the interest in their combination, DRL, exploded.

Mnih et al. [2015] showed that DRL was suitable for becoming a generic and

effective method to learn end-to-end policies also in high-dimensional prob-

lems. Similar ideas have been transferred to the control of simulated robots

by Lillicrap et al. [2016], showing that this category of algorithms can train

end-to-end policies with performance comparable to those obtained by meth-

ods that can access the complete system’s dynamics. In the same years, the RL

community has been very prolific and produced a large number of algorithms,

for example, TRPO [Schulman et al., 2017a], PPO [Schulman et al., 2017b], and

Soft Actor-Critic (SAC) [Haarnoja et al., 2018], to mention a few among those

that have experienced a wide adoption.

The emergence of DRL, together with new algorithms, provided a strong

thrust also in their transfer to the robotics domain. Limiting the scope to

quadrupedal locomotion, many parallel research directions emerged over time.
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Researchers succeeded to transfer policies from simulation to real-world

robots [Tan et al., 2018; Jemin Hwangbo et al., 2019] introducing models

of the actuation dynamics in the training process. Other studies, exploiting

imitation learning from motion data, proposed techniques to learn policies for

simulated robots [Peng et al., 2020] that were later adapted to their real-world

counterparts [Smith et al., 2021]. Other methods integrated high-level planners

and low-level controllers within the learning pipeline [Tsounis et al., 2020],

used the learning component as corrective action [Gangapurwala et al., 2021],

performed control in Cartesian space [Bellegarda et al., 2021], or exploited

hardware accelerators to speed-up learning [Rudin et al., 2021].

For what concerns research on bipedal locomotion, instead, the literature is

more sparse. The work of Heess et al. [2017] posed one of the first milestones

in end-to-end learning of locomotion behaviours from simple reward signals,

exploiting a distributed version of PPO and a curriculum learning strategy that

makes the learned task progressively more challenging. A second relevant

work comes from the computer graphics community, which nowadays shares

multiple research directions with robot learning. Peng et al. [2018a] proposed

a method that, utilising motion capture data of highly-dynamic movements,

produces a policy that can execute and adapt the collected trajectories on a

simulated character. Regarding the transfer of policies to real bipeds, instead,

Xie et al. [2019] proposed to learn locomotion policies leveraging data from

generated from pre-existing controllers. Castillo et al. [2021] developed a

cascade control architecture to train a trajectory planning policy that is deployed

on a real robot, and Li et al. [2021] were able to track high-level velocity

commands on their bipedal robot with a policy learned in simulation with

an extensive use of domain randomization. Finally, Rodriguez et al. [2021]

proposed a methodology based on curriculum learning to train a single policy

capable of controlling a humanoid robot for omnidirectional walking, and

Bloesch et al. [2022] introduced an end-to-end method to learn walking gaits

without relying on simulated data.
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4.2 review of simulators for robot learning

All works discussed in the previous section proposed algorithms, architectures,

and learning pipelines that, during the training phase of a policy, require a

constant flow of new data sampled from the controlled robot. In most cases,

obtaining the necessary amount of data from physical robots would either take

too long or be dangerous due to the high probability of damaging the system

and its surroundings as a consequence of the inherent trial-and-error nature of

RL. Many of the contributions in the robot learning domain exploit rigid-body

simulators and robot models to generate enough state transitions for the

learning process to converge to a satisfying solution. Due to the unavoidable

introduction of approximations, the evolution of rigid-body simulations will

differ from the evolution of the real system. This mismatch, for example, could

originate from the estimation error of the inertial parameters of the simulated

robot, from the wrong assumption of a perfectly rigid body, from the simplistic

modelling of the actuation dynamics, from the approximations of the contact

dynamics and contact parameters, from the mismatch between simulated and

real sensors noise, etc. Agents trained in environments characterised by such

approximations, which could be referred all together as reality gap, could learn

to exploit modelling approximations to reach unrealistic performance that

could never be transferred elsewhere. The most popular method to mitigate

the occurrence of this behaviour is domain randomization [Peng et al., 2018b;

Muratore et al., 2022], widely studied in sim-to-real research [Zhao et al.,

2020], which aims to regularise the simulation with different methods to

prevent overfitting during training. In the rest of this section, we bypass similar

methodologies that could be applied to any simulation, and focus instead

on providing a review of common simulators that could be used for robot

learning and, particularly, locomotion applications.

The process of describing the evolution of a dynamical system is deeply

rooted in control and systems theory. As regards physical robots, despite

the theory behind the evolution of their rigid-body description has been

known for centuries, the advent of general-purpose simulators did not occur

until the early 2000s. The most established simulator that nowadays is still

widely used is Gazebo [Koenig et al., 2004]. It interfaces with multiple physics
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engines, using ODE15 as a default, and supports importing models and world

descriptions from the SDF and the URDF files. A second very popular simulator,

mainly for robot learning, is Mujoco [E. Todorov et al., 2012]. It is specifically

designed for model-based optimisation with a particular focus on contact

dynamics. Another common simulator supporting multiple physics engines

and common descriptions is CoppeliaSim [Rohmer et al., 2013], formerly

known as V-Rep. It features Bullet [Coumans et al., 2016] as the default physics

engine. More recently, Nvidia released its general-purpose toolkit Nvidia

Isaac16 that integrates with their PhysX17 physics engine.

Beyond general-purpose simulators, many standalone physics engines can

be used to simulate multibody systems. PyBullet [Coumans et al., 2016], despite

its origins in videogame development, is another common option in robot

learning research. DART [Jeongseok Lee et al., 2018], also available in Gazebo,

interfaces with several collision detectors and constraint solvers, and was

recently used as the basis of Nimble Physics [Werling et al., 2021] which adds

differentiable physics support.

Differentiable physics originates from differentiable programming [Innes

et al., 2019] and scientific machine learning [Rackauckas et al., 2021], in which

physics laws are implemented with AD [Baydin et al., 2018] frameworks that

allow to propagate the gradients through their calculation. In the past few

years, it has become a popular research direction that has yielded outstanding

results in many fields. In the domain of robotics, differentiability is still

under scrutiny [Suh et al., 2022] and research is active [Gillen et al., 2022].

On the one hand, common RBDAs have been studied to compute analytical

gradients [Carpentier et al., 2018; Belbute-Peres et al., 2018; Singh et al., 2022].

On the other hand, the entire computational flow was implemented with AD

frameworks [Freeman et al., 2021; Howell et al., 2022].

On a similar note, simulations implemented entirely with AD frameworks

could be executed directly on hardware accelerators like GPUs or TPUs, as

an alternative to CPUs either on a single machine or a cluster. Even though

CPU simulations could be optimised to run fast [J. Hwangbo et al., 2018]

under given circumstances, hardware accelerators can provide a degree of

15 https://www.ode.org/
16 https://developer.nvidia.com/isaac-sdk
17 https://developer.nvidia.com/physx-sdk

https://www.ode.org/
https://developer.nvidia.com/isaac-sdk
https://developer.nvidia.com/physx-sdk
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scalability that outperforms any CPU-based solution. Thanks to their hardware,

Nvidia pioneered this domain with PhysX. More recent development showed

remarkable learning speed with their Isaac Gym framework [J. Liang et al., 2018;

Makoviychuk et al., 2021; Rudin et al., 2021]. In this realm, the past few years

have seen several other attempts to develop comparable solutions [Heiden

et al., 2021; Qiao et al., 2021; Freeman et al., 2021].

Regardless of the selected simulator, in RL research it is common to abstract

environments and agents, allowing to develop them independently from each

other. The most common environment abstraction is provided by OpenAI

Gym [Brockman et al., 2016] in Python. Environments employing the gym.Env

interface can be implemented with any of the simulators discussed in this

section, and they can be employed by any RL agent included in the available

frameworks supporting this interface.

Considering the increasing interest in simulations and its corresponding

speed of advancements, the review provided in this section is far from complete.

We conclude by pointing the interested reader to the surveys on the topic, from

the early ones [Ivaldi et al., 2014; Erez et al., 2015] to the most recent [Collins

et al., 2021; T. Kim et al., 2021; Körber et al., 2021], acknowledging that either

they became outdated quickly, or use metrics that are valid only for a few

selected use cases.

4.3 review of push-recovery strategies

Locomotion is among the most fundamental capabilities that legged robots

need to master in order to become useful in the real world. In the past ten years,

quadrupedal locomotion research achieved remarkable results, and nowadays,

quadrupeds are able to autonomously navigate hazardous environments with

great agility [Joonho Lee et al., 2020; Miki et al., 2022]. Despite decades of

research, the situation of bipedal locomotion is quite different, especially

when we compare the agility of most of the existing humanoid robots with

human capabilities. Many fundamental methods, techniques, and control

architectures widely adopted by bipedal locomotion research have been first

studied in the simplified case of push recovery. In fact, the ability to react
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appropriately to external perturbations is paramount for achieving robust

locomotion capabilities, and often advances in push recovery research are

preparatory for advances in locomotion research [Jeong et al., 2019].

Humans use various strategies to maintain balance, including ankle, hip, and

stepping strategies [Nashner et al., 1985; Maki et al., 1997; Stephens, 2007]. The

adoption of these strategies follows an activation proportional to the magnitude

of external disturbances. The effectiveness of human capabilities mainly stems

from how different strategies are combined into a continuous motion [Mc-

Greavy et al., 2020]. The applicability of these principles for the generation of

control actions applied to robots has traditionally relied on simplified models

approximating their dynamics, such as the Linear Inverted Pendulum (LIP)

model [Kajita et al., 2001] and the Capture Point (CP) [Pratt et al., 2006]. Together

with the formulation of the Zero Moment Point (ZMP) [Vukobratovic et al., 1969;

Vukobratović et al., 2004] widely adopted as a stability criterion, simplified

models became very popular and still used nowadays. Modern applications

alternatively rely on the Divergent Component of Motion (DCM), that can be

seen as an extension of the CP theory [Shafiee et al., 2019].

The structure of control algorithms utilizing any of these models, however,

typically considers only the CoM of the robot. The generation of the actual joint

strategy is usually achieved through either hierarchical [Feng et al., 2014] or

predictive [Wieber, 2006; Aftab et al., 2012] architectures. Implementing an

effective and robust blending of all the discrete strategies (ankle, hip, stepping,

etc.) has been considered challenging and prone to failures, even with careful

tuning [McGreavy et al., 2020]. Nonetheless, their usage still represents an

active research area that can achieve promising results [Jeong et al., 2019].

In the past few years, the robotics community attempted to develop methods

based on robot learning and, in particular, RL to generate a unified control

action that automatically blends the discrete strategies [Yang et al., 2018]. Early

results have been demonstrated capable of controlling the lower limbs of a

simulated humanoid robot [H. Kim et al., 2019] and, more recently, a real

exoskeleton [Duburcq et al., 2022].
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4.4 thesis content

The previous sections outlined the history, the overall status, and the most

recent breakthroughs in the domains of reinforcement learning for robot

locomotion, rigid-body simulations for robot learning, and push-recovery

strategies for humanoid robots. In view of the subject of this thesis regarding

how modern technology can help us generate synthetic data for humanoid

robot planning and control, and considering the three reviewed research

domains, we conclude this chapter by identifying problems still open and

detailing how the contributions to knowledge provided in the next Part ii aim

to solve them.

4.4.1 Chapter 5: Reinforcement Learning Environments for Robotics

open problem The number of frameworks for RL research is constantly

increasing. While the gym.Env interface became the de-facto abstraction layer

to isolate agents and environments, an appropriate structure for environments

has never been properly outlined. In robot learning applications, the imple-

mentation of the decision-making logic related to the task to learn is often

intertwined with the setting in which it is executed, that could be either in

simulation or in the real world. Therefore, usually environments cannot be

transferred between different settings without significant refactoring. Fur-

thermore, in simulated environments, the choice of the simulator and how it

communicates with the environment could undermine the reproducibility of

the simulation, resulting in different outcomes at each execution.

context of contribution We present a framework for developing

robotic environments for Reinforcement Learning research. The framework

is composed of two main components. At the lower level, the Scenario C++

abstraction layer provides different interfaces of entities part of a scene like

World and Model, with additional Link and Joint interfaces to simplify the

interaction. Scenario is not strictly related to robot learning, but it provides

a unified interface that could be implemented to communicate either with
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simulated robots running in any simulator, or with real robots, passing through,

e.g., a robotic middleware. We currently provide a complete implementation for

simulated robots interfacing with the new Gazebo Sim18 simulator, supporting

the DART and Bullet physics engines. At the high level, the Gym-Ignition

Python package19 provides abstraction layers of the different components

that typically form a robotic environment: the Task and the Runtime. On the

one hand, the Task provides the necessary components to develop agnostic

decision-making logic with the generic Scenario APIs, and on the other hand,

the Runtime provides the actual interfacing either with a simulator or a real

robot. This whole architecture the user to only develop the Tasks only once, and

use them for training, executing, or refining a policy in any of the supported

Runtimes. The selected Gazebo Sim simulator has multiple advantages over

alternative options for generating synthetic data. Its plugin-based architecture

allows third-party developers to integrate custom physics engines and custom

rendering engines, enabling them to develop agnostic environments that

select the desired engines during runtime. For robot learning, if needed, it

enables seamlessly switching engines, opening the possibility to add them as

a whole in the domain randomization set. Furthermore, considering the wide

adoption of Gazebo within the robotics community, it enables roboticists to

create environments using familiar tools, guaranteeing that their execution

remains reproducible thanks to a single-process architecture not possible with

the previous generations of the simulator.

contribution outputs A short form of the contribution to knowledge

described in this chapter was first presented in 2019 at the following workshop:

Gym- Ignition: Reproducible Robotic Simulations for Reinforce-

ment Learning

Diego Ferigo, Silvio Traversaro, Daniele Pucci

Robotics: Science and Systems (RSS) - Workshop on Closing the Reality

Gap in Sim2real Transfer for Robotic Manipulation, 2019

18 https://gazebosim.org/
19 In its earlier releases, the new Gazebo Sim simulator was called Ignition Gazebo, from what

derives the name of our Python package.

https://gazebosim.org/
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CRediT DF: Conceptualization, Methodology, Software, Valid-

ation, Investigation, Writing - Original Draft, Writing - Review &

Editing, Visualization; ST: Supervision; DP: Resources, Supervi-

sion, Funding acquisition.

Its extended version has been later presented at the following IEEE conference:

Gym- Ignition: Reproducible Robotic Simulations for Reinforce-

ment Learning

Diego Ferigo, Silvio Traversaro, Giorgio Metta, Daniele Pucci

International Symposium on System Integration (SII), 2020

CRediT DF: Conceptualization, Methodology, Software, Valid-

ation, Investigation, Writing - Original Draft, Writing - Review &

Editing, Visualization; ST: Supervision; GM: Funding acquisition;

DP: Resources, Supervision, Funding acquisition.

The two components of the presented framework, Scenario and Gym-Ignition,

have been open-sourced and are publicly available at the following link:

https://github.com/robotology/gym-ignition.

4.4.2 Chapter 6: Learning from scratch exploiting robot models

For validating the framework proposed in the previous contribution, we

identify a challenging problem affecting humanoid robots and try to find a

solution by framing it as a RL problem.

open problem Generating the appropriate control action for highly-

dynamic movements has always been challenging in robotics, especially when

the controlled system is redundant and under-actuated like a humanoid robot.

Traditional methods based on control theory and optimal control either rely

on accurate descriptions of the dynamics, or exploit approximations in the

form of either simplified or reduced models. Methods based on control theory

strongly rely on the accuracy of the dynamic model, to the point of failure in

the presence of a mismatch sufficiently large that controller’s robustness is

unable to compensate for it adequately. Instead, those based on optimal control

https://github.com/robotology/gym-ignition
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often constrain the space of individual control actions and, when dealing with

multiple options, their automatic selection might require careful and often

manual tuning. Furthermore, with the increase in the controlled DoFs and

the number of optimisation constraints, this family of methods is still facing

computational challenges in real-time settings. An alternative direction for this

category of problems is RL, providing a unified learning framework that, given

a meaningful reward signal, does not require the knowledge of the controlled

system’s dynamics. However, regardless of its accuracy, the dynamic model

can provide interesting priors that could benefit learning. Without leaving the

model-free RL setting, these priors could be exploited in the reward design

process, also known as reward shaping.

context of contribution We consider the problem of synthesising a

control action capable of employing different balancing strategies for push

recovery on a simulated humanoid robot. The control architecture consists

of a high-level policy trained with model-free DRL generating joint velocity

references, actuated by low-level pid controllers. The controller operates on a

model of the iCub humanoid robot, controlling 23 DoFs of its legs, torso, and

arms. By applying external forces to the pelvis of the robot during training,

we reward the agent utilising specific terms depending on the obtained

configuration: steady-state when balancing is successful, and transient during

the recovery phase. In addition, similarly to common practice in optimal control,

we also include regularisation reward terms to smoothen the control action.

Instead of learning a model at the agent level as is done in model-based RL, we

shape the reward function with multiple components computed from the robot

description, that slightly differs from the simulated model after the application

of domain randomization over some of its parameters. We show that the

emerged balancing behaviour blends together different balancing strategies

showing the usage of ankles, hips, stepping, and momentum, obtaining as a

result a single whole-body push-recovery strategy. This work aims to validate

the architecture proposed in the previous chapter, since the training pipeline

implements the decision-making task with the Gazebo backend of Scenario

and Gym-Ignition, exposing the environment to a framework providing a PPO

agent.
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contribution outputs The contribution described in this chapter was

published in the following journal and presented in 2021 at the IEEE Interna-

tional Conference on Humanoid Robots:

On the Emergence of Whole-body Strategies from Humanoid

Robot Push-recovery Learning

Diego Ferigo, Raffaello Camoriano, Paolo Maria Viceconte, Daniele

Calandriello, Silvio Traversaro, Lorenzo Rosasco, Daniele Pucci

Robotics and Automation Letters, 2021

CRediT DF: Conceptualization, Methodology, Software, Val-

idation, Formal analysis, Investigation, Data Curation, Writing

- Original Draft, Writing - Review & Editing, Visualization; RC:

Conceptualization, Methodology, Formal analysis, Investigation,

Writing - Original Draft, Writing - Review & Editing, Visualiza-

tion, Project administration; PMV: Methodology, Software, Formal

analysis, Investigation, Writing - Original Draft, Writing - Review

& Editing, Visualization; DC: Supervision, Writing - Review &

Editing; ST: Supervision; LR: Resources, Funding acquisition; DP:

Resources, Supervision, Funding acquisition.

This work was nominated by the conference committee among the finalists for

the Best Paper Award in the Interactive Session.

4.4.3 Chapter 7: Contact-aware Multibody Dynamics

Software architectures typically used to train RL policies for application in

robotics, in most cases rely on general-purpose rigid-body simulators from

which experience is sampled. As experienced in the experiment of the pre-

vious contribution, often the bottleneck that limits the performance of such

architectures does not reside in the optimisation problem that utilises the data,

but rather in the process of data generation.
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open problem Most of the physics engines included in general-purpose

simulators, besides computing the evolution of a multibody system considering

its law of motion, also need to implement routines for detecting and solving

collisions. In the overall computation, these routines often become the real

bottleneck, limiting the speed of the entire simulation. Applications having

high sampling throughput as their main target might strongly benefit from less

general but more optimised execution. Robot locomotion applications may not

need many of the features provided by general-purpose simulators, opening

the possibility of sacrificing some of them in exchange for higher sampling

efficiency.

context of contribution We describe the multibody dynamics in

reduced coordinates as a dynamical system in state-space capable of modelling

free-floating robots. With locomotion applications in mind, we propose a

dynamical system augmenting the multibody EoMs with contacts in presence

of uneven smooth terrain, formulating a soft-contacts model capable to handle

both sticking and slipping states without approximating the corresponding

friction cone. To this end, we extend existing soft-contact models developed for

sphere-plane surface to a more generic point-surface setting. When combined

with the multibody EoMs, we obtain a continuous, albeit stiff, state-space

representation of the dynamical system whose trajectories can be computed

by any numerical integration scheme.

contribution outputs The activities leading to the publication of the

contribution to knowledge are currently ongoing.

CRediT Diego Ferigo: Conceptualization, Methodology, Valida-

tion, Formal analysis, Investigation; Silvio Traversaro: Supervision;

Daniele Pucci: Resources, Supervision, Funding acquisition.
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4.4.4 Chapter 8: Scaling Rigid Body Simulations

Towards the aim of maximising the performance of sampling synthetic data

for robot locomotion started in the previous contribution, we combine the

contact-aware state-space representation of free-floating robots dynamics with

state-of-the-art RBDAs to create a novel physics engine that can exploit modern

hardware accelerators.

open problem Training policies in a simulated setting is still the pre-

dominant choice in RL research. Although sim-to-real methodologies are

progressing rapidly, and the community is actively researching on either

learning directly from real-world robots or from offline transitions, simulations

remain a central component in this domain. In the setting of robot locomotion,

the training process involves sampling simulated trajectories of a multibody

system endowed with a considerable number of DoFs interacting, at least,

with the terrain surface. Most of the general-purpose simulators currently

available perform computations entirely on CPUs. Despite the most advanced

frameworks providing RL agents support the parallel execution of multiple

environments either on a single machine or on a cluster, sampling trajectories

represents the main bottleneck of the entire learning pipeline. It is not uncom-

mon for a single training experiment to last multiple days. Especially when

visual perception is not necessary, and function approximators are not excess-

ively large models, most of the training time is spent sampling new simulated

data rather than optimising the policy. In the era of big data, simulators for

robotics are not yet fast enough [Choi et al., 2021].

context of contribution Inspired by the results shown by Freeman

et al. [2021], we propose jaxsim, a new physics engine in reduced coordinates

capable of simulating multibody systems on CPUs, GPUs, and TPUs. The key

to the transparent execution on different devices is the exploitation of the

contact-aware multibody dynamics introduced in Chapter 7. It enables the

development of efficient routines, not relying on any dynamic allocation that

can be deployed on hardware accelerators. The possibility to execute the

simulation entirely on hardware accelerators represents an essential feature for
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applications requiring the generation of a massive amount of data like those

belonging to the robot learning domain. We also describe state-of-the-art RBDAs

proposed by Featherstone [2008] with the notation introduced in Chapter 2

that can be executed on this hardware, and provide an updated version of

the Recursive Newton-Euler Algorithm (RNEA) compatible with floating-base

robots, that exactly corresponds to the inverse of forward dynamics algorithms

like Articulated Body Algorithm (ABA).

contribution outputs The activities leading to the publication of the

contribution to knowledge are currently ongoing.

CRediT Diego Ferigo: Conceptualization, Methodology, Software,

Validation, Formal analysis, Investigation, Data Curation, Visualiz-

ation; Silvio Traversaro: Supervision; Daniele Pucci: Resources,

Supervision, Funding acquisition.

The software components described in this chapter have been open-sourced and

are publicly available at the following link:

https://github.com/ami-iit/jaxsim.

https://github.com/ami-iit/jaxsim
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5
R E I N F O R C E M E N T L E A R N I N G

E N V I R O N M E N T S F O R R O B OT I C S

Training a RL agent necessarily passes through a process that intertwines

sampling data according to the underlying MDP and optimising either one

or multiple function approximators. In this thesis, we focus on the sampling

side of these training architectures, belonging to the environment block of the

RL problem illustrated in Figure 3.1. We consider environments for robotic

applications with their domain-specific needs and limitations.

In this chapter, we study frameworks to create simulated robotic environ-

ments from which synthetic data is sampled and used to train RL policies. With

the aim of transferring the obtained policies to real robots, we further specialise

our analysis in software architectures that allow us to bridge simulation and

real world. We first identify high-level properties we consider important in

this setting. Then, based on these properties, we proceed by selecting, describ-

ing, and categorising the major frameworks providing robotic environments

accessible by the research community. Finally, we propose a new framework

for developing robotic environments, starting with a description of the design

goals, and continuing with the implemented software architecture. This new

framework will be validated in the next chapter, where it is used to learn a

push-recovery policy for balancing a simulated humanoid robot.
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5.1 frameworks providing robotic environments

5.1.1 Properties

In this section, we define the properties characterising frameworks that provide

robotic RL environments. We start from the properties already identified for

robot simulators in Section 1.1.2, framing their application for robot learning. We

also introduce new properties more specific to the context of RL, that includes

and expands the traditional applications of robot control. The properties of this

section will be used in the following to draw a comparison of existing frameworks

providing robotic environments.

reproducibility A simulation is reproducible if different executions of the

same scene under the same control actions yield the same simulated tra-

jectories. Environments that interface with simulators implementing a

client-server architecture based on network transport could not become

reproducible due to the operating system’s possibility to preempt the net-

work sockets’ processes, particularly when the load of the system increases.

Furthermore, complex architectures exposing environments might require

generating random data from different components. Reproducibility, in this

case, can be enforced only with careful handling and propagation of the

seed to all the Random Number Generators (RNGs) used by the framework.

modularity Reinforcement Learning is one of the most generic learning frame-

works. Its structure is composed of a learning agent interacting with an

environment, as illustrated in Figure 3.1. While most of the related soft-

ware architectures already map their component based on this high-level

structure, specific implementations for robotics might benefit from a more

fine-grained abstraction, particularly regarding the environment. For in-

stance, we might want to achieve the same learning goal on robots with

different mechanical structures. In order to promote code reuse and min-

imise system integration effort, a modular design that abstracts the robot

and the logic of the learned task is a valuable addition.

real-time compatibility The main reason to rely on simulations for training

an agent is the low cost of synthetic samples. However, the final goal should

be deploying the policy on the real robotic platform. Frameworks should

allow to either execute the resulting policy or continue its training on the
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real robot with minimal changes. An open problem, though, is how to reset

a real-world episode. For instance, in the case of floating-base robots, this

operation may require moving the robot back to the initial position in the

operating area.

parallel simulation Modern computers are nowadays endowed with mul-

tiple computational cores. The independence between simulated instances

makes executing parallel environments trivial, maximising the efficient use

of local computational resources. On a higher level, the same applies when

scaling to multiple machines. Typically, job distribution is performed by

frameworks that provide the algorithms. Environment providers should

only ensure instances’ independence for multithread and multiprocess

execution.

accelerated simulation Based on their complexity, simulations can run

either faster or slower than real-time. The ratio between real and simulated

time is known as RTF. A RTF greater than 1 indicates that the simulation is

running in an accelerated state, i.e. faster than real-time. In order to speed

up experience collection, environments should be able to run in accelerated

mode.

multiple physics engines The physics engine is the simulator component

that integrates physical equations, evaluates collisions, and solves contact

constraints. Classic techniques in domain randomization [Peng et al., 2018b;

Ramos et al., 2019] operate on parameters of the physics engine. Supporting

multiple back-ends and being able to switch between them on the fly would

permit the randomization of the entire physics engine, bringing domain

randomization to a higher level while preventing the learning agent from

overfitting possible subtleties of an individual implementation.

photorealistic rendering Visuomotor control is one of the leading research

directions in the field of reinforcement learning applied to robotics. The

need for photorealistic rendering is a crucial component in this use case.

Modern GPUs are becoming more capable of efficiently computing extremely

complex light interactions in the simulated environment, and technologies

such as ray tracing are becoming suitable for real-time usage.
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5.1.2 Existing frameworks

openai robotic environments 20 are part of the official OpenAI environ-

ments, which became the standard solution commonly used to benchmark

algorithms. They are simulated with the Mujoco simulator [E. Todorov

et al., 2012], which became one of the most common solutions for con-

tinuous control tasks. The simulator used to be proprietary, a constraint

greatly limiting its use. At the time of writing, however, open-sourcing

activities are ongoing.

pybullet environments [Coumans et al., 2016] are part of the Bullet3

project and use Bullet as a physics engine. Given the project’s active

development and open-source nature, a big community revolves around

this physics engine. Simulations are reliable and fast, but the default

rendering capabilities are not photorealistic. The provided robotic envir-

onments are complete, even if their documentation and modularity can

be improved.

unity ml agent [Juliani et al., 2018] is another promising toolkit for creating

environments based on the Unity platform. It supports Nvidia PhysX

out-of-the-box, and plugins exist for Bullet and Mujoco. Being based on

a gaming engine, rendering is very photorealistic. Despite agent code

and physics engine residing on different processes, the selected gRPC

communication protocol in its synchronous variant ensures determ-

inism. However, custom actions and observations require the ad-hoc

development of the data serialisation between client and server.

raisim [J. Hwangbo et al., 2018] is a recent simulator specific for robotics. Its

main advantage is an efficient contact solver that greatly speeds up the

simulation. Due to its very recent release, there are not many examples

available. Like other frameworks, its closed-source nature might limit

applications. It includes the Python framework RaisimGymTorch21 that

allows creating RL environment.

20 https://openai.com/blog/ingredients-for-robotics-research
21 https://raisim.com/sections/RaisimGymTorch.html

https://openai.com/blog/ingredients-for-robotics-research
https://raisim.com/sections/RaisimGymTorch.html
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pyrobolearn [Delhaisse et al., 2019] is another framework containing both

robotic environments and RL algorithms. It focuses on modularity and

flexibility to promote code reuse. It currently supports only PyBullet,

though it already has a physics engine abstraction layer in Python that

will simplify adding other back-ends. A current limitation is missing

support to transfer code from simulation to real robots.

j iminy 22 is a simulator for poly-articulated systems based on the Pinocchio

library. It supports advanced simulation features like motor inertia,

sensor noise, and delays. The simulator includes Gym-Jiminy, a Python

package offering convenience tools for learning, and a GUI based on the

Meshcat library that does not provide photorealistic rendering.

pyrep [James et al., 2019] is a toolkit for robot learning research based on

Coppelia Sim, formerly known as V-Rep. The toolkit is able to efficiently

run parallel simulations thanks to custom modifications that replaced

inter-thread communications between instances. Different renderers are

available, whose frame rate depends on the desired photorealism.

robo-gym [Lucchi et al., 2020] is an open-source toolkit for distributed rein-

forcement learning on real and simulated robots. It provides a collection

of RL environments involving robotic tasks applicable to both simula-

tion and real-world. Additionally, it provides the tools to facilitate the

creation of new environments featuring different robots and sensors.

The architecture is based on the ROS middleware, therefore all simu-

lators implementing the ROS interfaces can be integrated seamlessly.

As a drawback, the usage of network transport does not guarantee

reproducibility.

nvidia isaac gym [Makoviychuk et al., 2021] is the RL component of Isaac,

the new Nvidia toolbox for AI applications in robotics. Simulations

can be executed in their PhysX engine and they provide state-of-the-art

photorealistic rendering. Nvidia Isaac23 is one of the most promising

projects that will provide a unified framework for robotics and AI, but

22 https://github.com/duburcqa/jiminy
23 https://developer.nvidia.com/isaac-sdk

https://github.com/duburcqa/jiminy
https://developer.nvidia.com/isaac-sdk
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unfortunately its closed source nature might limit the possibility of

extending and customising it.

brax [Freeman et al., 2021] is a differentiable physics engine that simulates

rigid bodies in maximal coordinates. It is written in jax and is designed

for use on acceleration hardware, enabling massively parallel simulations

on multiple devices. The physics engine, beyond the drawbacks in joint

constraints enforcement due to the maximal coordinates, neglects some

dynamical effects and therefore the simulation is approximate. Rendering

capabilities are limited and the execution of environments provided in

the framework is constrained to a simulated setting.
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Table 5.1: Comparison of frameworks that provide robotic environments compatible with OpenAI Gym.

Software Reproducible Multiple
Physics Engines

Photorealistic
Rendering Accelerated Parallel Real-Time

Compatible Modular Open Source

OpenAI Robotic Envs ✓ ✓ ✓ ✓

Bullet3 Environments ✓ ✓ ✓ ✓ ∼ ✓

Unity ML-Agents ✓ ✓ ✓ ✓ ✓ ✓

RaiSim ✓ ✓ ✓ ✓

Jiminy ✓ ✓ ✓ ✓

PyRep ✓ ✓ ✓ ✓ ✓ ✓

robo-gym ✓ ✓ ✓ ✓

Nvidia Isaac Gym ✓ ✓ ✓ ✓ ✓ ✓

Brax ✓ ✓ ✓ ✓

Gym-Ignition ✓ ✓ ∼ ✓ ✓ ✓ ✓ ✓
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5.2 design goals

In this section, we outline the design goals we want to achieve with the proposed

framework, acknowledging this phase as one of the most fundamental in

software design.

selectable runtime The major goal of the framework is the possibility to

develop agnostic decision-making logic that can run in different settings.

The software architecture component that defines the setting and, there-

fore, how the decision-making logic communicates with the controlled

robots is called Runtime. The runtime could either implement the step-

ping logic of any simulator or a routine that enforces the environment to

be executed with soft real-time guarantees.

unified scene interfaces In the low level, the framework should provide

an abstraction layer of robotics scenes so that the decision-making logic

can operate seamlessly on unified APIs agnostic from the runtime setting.

A commonly used pattern is to provide specialised interfaces such as

World, Model, Link, Joint, etc. such that models can be gathered from

the world, and links and joints from the model, providing specialised

functionalities.

implementation-agnostic decision-making tasks Another primary goal

of the framework is preventing code duplication of decision-making

logic. We refer to this logic as Task, which includes the operations to

perform when the environment is initialised and stepped, and when

actions are taken. The task should be implemented with the unified

scene interface to become agnostic of the runtime. Therefore, it should

be able to run on any implementation, whether it is a simulated or real

robot. This architecture enables settings where policies are first trained

in simulation and then executed on physical robots, without excluding

the use case where the real-world setting is also initially used to sample

real data to perform a refinement step of the policy.

robotics tooling The development of robotic environments often requires

the computation of kinematics and dynamics model-based quantities,
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such as Jacobians, inverse kinematics, total momentum, etc. The frame-

work should integrate resources for their computation accessible from

the decision-making logic.

gym compatibility The resulting environment should expose the gym.Env

interface to be seamlessly compatible with the majority of the frameworks

providing RL agents.

Having specified the design goals and the related considerations, we struc-

tured the framework in two different components: Scenario and Gym-Ignition.

Considering that most of the robotics libraries and simulators are available

in C++, we designed the low-level unified scene interfaces in this language.

Scenario (scene interfaces for robot input/output) defines the World, Model,

Link, and Joint abstractions, and allows to implement them either in C++ or,

through a set of bindings, in Python. Instead, the most popular language for

the RL logic is Python. Gym-Ignition is a pure Python package that provides

the Runtime and Task interfaces, together with high-level helpers to compute

model-based quantities based on the iDynTree [Nori et al., 2015] library.

5.3 scenario: scene interfaces for robot input/out-

put

Scenario24 is a C++ library acting as a Hardware Abstraction Layer (HAL)

over either simulated or real robots. The abstraction of the scene is structured

in different interfaces:

World The world interface is the entry point of the entire scene. It is returned

directly from the active Runtime and allows to query, insert, get, and

remove objects part of the scene, including robots.

Model A model is an entity part of the scene. It could be, for example, a

static object or a robot interacting with the scene. The Model interface

operates on the entire multibody system. It allows to inspect link and

joint properties, get and set base link data, and perform vectorised calls

24 https://github.com/robotology/gym-ignition/tree/master/scenario

https://github.com/robotology/gym-ignition/tree/master/scenario
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of operations specific to individual joints and links. In order to simplify

fine-grained operations, it returns Link and Joint objects.

Link This interface returns all the inertial and kinematic properties of the

rigid body forming the link. It also returns the pose and, in different

representations, the velocity and the accelerations of the link frame.

Furthermore, it allows querying the location of active contact points with

their corresponding 6D contact force.

Joint This interface returns all the parameters of the joint, including the

number of DoFs, the type, the friction parameters, the position, velocity,

force limits, etc. It is also the entry point to get joint variables like position,

velocity, and acceleration, and set the corresponding targets used for

motion control. The joint interface also controls the actuation type,

exposing either a position or velocity PID controller with its parameters.

Beyond these scene interfaces, Scenario also includes the Controller inter-

faces, allowing development of runtime-agnostic whole-body controllers that

can be enabled at the Model level. They can be used as a replacement for the

default low-level PID controllers associated with each of the model’s joints.

The abstraction layer provided by Scenario enables to develop either C++ or

Python code agnostic of the actual setting where the scene and its robots operate.

For both robot control and RL research, we implemented the Scenario interfaces

to communicate with the Gazebo Sim simulator, obtaining the Scenario Gazebo

library. Future development will also bring a real-time implementation for

direct applicability to physical robots mediated by a robotic middleware. As we

will discuss, Gazebo Sim already provides an abstraction layer over different

physics engines. We can take advantage of this existing abstraction because

our Scenario Gazebo backend benefits without any additional implementation

effort of any new physics engine that will be included in Gazebo Sim in

the future. Finally, the aim of the Scenario layer is to provide an additional

abstraction to enable the same high-level code to run also on real robots and

other simulators. In the robot learning setting, this can be particularly beneficial

for sim-to-real and sim-to-sim applications.
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5.3.1 Scenario Gazebo

Scenario Gazebo is a simulation-based backend of the Scenario interfaces. It

communicates with the new Gazebo Sim simulator, also known in its earlier

releases as Ignition Gazebo.

Gazebo Sim is the new generation of the widely used Gazebo Classic

simulator, developed by Open Robotics25. It was used in the new DARPA SubT

Challenge26 for both local and cloud simulations. The monolithic architecture

of Gazebo Classic has been split into a suite of multiple libraries, with Gazebo

Sim being only one among them, and refactored with a more pervasive plugin-

based architecture. For our target applications, we selected Gazebo Sim as our

main simulation backend due to the following two key features:

physics engine plugins In Gazebo Sim, physics engines are plugin lib-

raries loaded during runtime. Compared to the previous monolithic

architecture, the usage of plugins enables the independent development

of the physics library. It allows third-party developers to implement or

integrate new engines relatively easily, interfacing them with the rest of

the robotics suite without additional effort.

reproducibility Gazebo Sim offers high-level C++ APIs to initialise and

control the simulation, contrary to its previous generation and many

other robotics simulators. This feature allows running the simulation in

the same process of the caller, without relying on any network transport

to exchange data. Being able to read, write, and step the simulator

programmatically ensures the complete reproducibility of the execution,

regardless of the system’s load and other variable factors.

These two features are particularly beneficial in the robot learning setting.

The plugin-based architecture of physics engines allows running simulated

environments transparently in any of the supported physics backends. It

enables to add in the domain randomization set not only physics parameters,

but also the entire physics engine, preventing policy overfitting to subtle

implementation details. Furthermore, ensuring reproducibility already at the

25 https://www.openrobotics.org/
26 https://www.subtchallenge.com/

https://www.openrobotics.org/
https://www.subtchallenge.com/
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simulation level is a necessary condition to inherit this feature by simulated RL

environments. Other key features of Gazebo Sim are the following:

• Simulator developed for robotics;

• Architecture enabling the simulator-as-a-library usage;

• Plugin-based abstraction also of rendering engines;

• Support of many among the most used sensors like RGB, depth, and

segmentation cameras, IMUs, force-torque sensors, lidars, etc.;

• Modular software architecture of the entire suite;

• Support of the standardised and actively developed SDF description for

defining models and scenes;

• Well maintained, packaged, and widely tested;

• Integration with Fuel27, a new large database of simulated objects, robots,

and worlds ready to be downloaded and used;

• Long-term support provided.

Beyond implementing the Scenario interfaces, Scenario Gazebo also provides

a GazeboSimulator resource to initialize the simulator, prepare the simulated

scene, and retrieve the World. Furthermore, the controllers implemented with

the Scenario interfaces can be executed in the inner simulation loop, enabling

a more efficient stepping strategy where a single step from the high-level

application triggers a sequence of temporally fine-grained steps composed by

a closed-loop controller over the physics system. One can compare Scenario

Gazebo to other popular alternatives that provide programmatic APIs like

pybullet [Coumans et al., 2016] and mujoco-py28.
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Agent

gym.Env

GazeboRuntime RealTimeRuntime

gym_ignition.base.Task

Task #1 Task #2 Task #3 ...

ScenarIO APIs

ScenarIO
Gazebo

ScenarIO
YARP

gym_ignition.base.Runtime
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Figure 5.1: Architecture of Scenario and Gym-Ignition. Users of the overall frame-
work just need to provide the URDF or SDF description of their robot and
implement the Task interface with the desired decision-making logic.
The framework, following a top-down approach, exposes to the Agent
algorithms the unified gym.Env interface. The provided Runtime classes
either instantiate the simulator, or handle soft real-time logic for real-world
robots. The runtimes are generic and can operate on any decision-making
logic that exposes the Task interface. Finally, Task implementations use
the Scenario APIs to interact with the robots part of the environment.
A typical data flow starts with the agent setting the action with
gym.Env.step. The processing of the action is a combination of logic
inside the active runtime and the active task. In particular, the runtime
receives the action and directly forwards it to the task for being processed.
The task, by operating transparently over the Scenario APIs, applies the ac-
tion to the robot, and then waits the runtime to perform the time stepping.
After this phase, the task computes the reward, packs the observation,
detects if the environment reached the terminal state, and returns all this
data back to the agent passing through the gym.Env APIs.
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5.4 gym-ignition

Gym-Ignition29 is a Python package providing resources to develop robotic

environments quickly. It provides boilerplate code that helps minimising

the duplication that often occurs in this domain, allowing environment de-

velopers to focus on the decision-making logic rather than glue code. The main

components of its architecture are the following, also illustrated in Figure 5.1:

Runtime This interface inherits directly from gym.Env, therefore concrete

Runtime implementations are the actual environments passed to the

agents. In the proposed architecture, our framework provides imple-

mented runtimes for all the supported backends, and allows third-party

developers to add their own. The logic included in the runtimes is part

of the boilerplate code (e.g. the stepping logic in simulated environ-

ments) always present in all environments sharing the same backend. All

runtimes operate on a generic Task abstraction that, when implemented

by the environment developer, defines the desired decision-making logic.

Task This interface defines the decision-making logic of the environment. It

determines how to process the action received from the agent, how to

create the observation sample, and how to calculate the scalar reward. It

also evaluates if the environment reached its terminal state and, when it

occurs, it includes the logic to obtain the initial state of the new episode.

The task has access to the complete state of the scene by operating

directly on the World, therefore, in partially observable problems, it is

also responsible for exposing only the desired information to the agent.

The architecture also supports the multi-agent setting, since individual

tasks do not trigger the time evolution of the scene, but can read its state

and set actions processed by a unique runtime.

randomizers During the training process, when the environment is under-

going a reset, the resetting logic could be different whether the runtime

is simulated or operating on a real-world scene. Examples of different

27 https://app.ignitionrobotics.org/fuel
28 https://github.com/openai/mujoco-py. At the time of writing, the Mujoco simulator is in the

process of being open-sourced. Future releases of the simulator will include official Python
bindings.

29 https://github.com/robotology/gym-ignition

https://app.ignitionrobotics.org/fuel
https://github.com/openai/mujoco-py
https://github.com/robotology/gym-ignition
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behaviours could originate from the domain randomization process,

the selection of the initial distribution, mismatch between training and

evaluation, etc. In most cases, this logic is not strictly related to the task

nor the runtime. For this reason, our framework also introduces the

possibility to optionally define environment wrappers called Randomizers

to specify this custom logic.

multibody algorithms In most cases, the development of an environment

requires the computation of accessory kinematics and dynamics quant-

ities not directly exposed through Scenario. In order to facilitate the

development, we interface with the iDynTree [Nori et al., 2015] lib-

rary that provides a large amount of multibody dynamics algorithms

supporting floating-based robots.

In complex software architectures, and particularly regarding simulated

environments, ensuring the reproducibility of results is always a delicate

matter. In a RL pipeline, the main sources of randomness are either the

operations that we allow isolating into the Randomizer, or additive noise

applied by the Task to the received action and produced observation. The

generation of random quantities can be controlled by passing through a

RNG, producing a deterministic pseudo-random sequence of values from a

given seed number. Our framework also helps enforce reproducible results in

presence of randomness by storing a single generator in the Runtime, shared

with all Tasks and Randomizers. Under the assumption that the environment

logic’s execution order does not change, multiple experiments sharing the

same seed number produce the same sampled trajectories.
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5.5 conclusions

This chapter presented a novel framework to create reproducible robotic

environments for Reinforcement Learning applications. At the low-level, we

introduced Scenario, a C++ abstraction layer of a scene where robots can operate

and interact. Applications of robot control and RL operating on the Scenario

APIs can seamlessly switch between the existing runtime implementations

with little effort. We currently provide a simulated backend called Scenario

Gazebo, that interfaces with the Gazebo Sim simulator. At the high level, we

introduced Gym-Ignition, a Python framework compatible with gym.Env to

develop robotic environments. It provides another set of abstractions that,

complementing those included in Scenario, enable the development of RL

environments agnostic of the setting where they are executed. Gym-Ignition

helps isolate the generic decision-making logic from the runtime that controls

the setting where it runs.

The complete framework aims to narrow the gap between RL and robotic

research, allowing roboticists to structure their environments with familiar

tools while guaranteeing the reproducibility of simulated results. In the next

chapter, we validate the framework proposing a scheme to train a push-recovery

policy for balancing the humanoid robot iCub in a simulated setting.



The main lesson of thirty-five years of AI research

is that the hard problems are easy and the easy problems are hard.

— Steven Pinker

6
L E A R N I N G F R O M S C R ATC H

E X P LO I T I N G R O B OT M O D E L S

In the previous chapter, we proposed a unified framework to develop robotic

environments for RL research. The range of possible decision-making tasks

that can be applied to robots is broad, from manipulation to locomotion.

This chapter considers the task of balancing the humanoid robot iCub in the

presence of external disturbances in a simulated setting. Framing the control

objective as a RL problem, we aim to train with the PPO algorithm a policy

encoded as a NN capable of synthesising the appropriate instantaneous control

signals of 23 DoFs of the iCub humanoid robot. The resulting control action,

simultaneously operating on both the upper- and lower-body joints, encodes

multiple whole-body push-recovery strategies involving the usage of ankles,

hips, momentum, and stepping strategies. The policy automatically selects

and blends all these different strategies upon need.

The presented architecture adopts a reward shaping methodology that exploits

as prior information quantities computed from the robot description, such as

whole-body momentum and data related to the robot’s CoM. This approach

allows utilising the widely used family of model-free RL algorithms while

exploiting priors without changing the overall learning framework. The priors

act only as exploration hints, therefore, the model description does not need to

be excessively accurate. We also apply domain randomization over the model

description used in simulation, resulting in differences between the simulated

robot’s dynamics and the model’s dynamic from which the reward-shaping

priors are computed.

128
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Figure 6.1: The proposed control system.

6.1 training environment

The decision-making logic is structured as a continuous control task with

early termination conditions. Its dynamics runs in the Gazebo Sim simulator

embedded into the Gym-Ignition framework presented in Section 5.4, exposing

a RL environment compatible with gym.Env [Brockman et al., 2016]. The enabled

physics engine is DART [Jeongseok Lee et al., 2018]. We selected iDynTree [Nori

et al., 2015] for calculating rigid-body dynamics quantities that model the

floating-base multibody system as described in Section 2.8.4, whose dynamics

is described by the following equation:

M(q) ν̇ + h(q, ν) = Bτ +
∑
L∈L

J⊤
W,L(q) f

ext
L . (6.1)

The iDynTree library allows to load a model description encoded in URDF

and provides all the terms forming this Lagrangian representation of the

floating-base EoMs together with additional quantities that will be included in

the reward computation described in Section 6.3.

Figure 6.1 reports a high-level overview of the proposed control system. The

environment receives actions from the agent, here represented as its underlying

NN, and produces observations and rewards at 25 Hz. The physics and the

low-level pid controllers run at 1000 Hz. During training, some properties of

the environment are randomised (see Sec. 6.1.3).
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Table 6.1: Observation components.
Name Value Set Range
Joint positions os = s Rn [slb, sub]

Joint velocities oṡ = ṡ Rn [−π, π]
Base height oh = pz

B R [0, 0.78]

Base orientation oR = (ρ, ϕ)B R2 [−2π, 2π]
Contact configuration oc = (cL, cR) {0, 1}2 -
CoP forces of = (fCoP

L , fCoP
R ) R2 [0,mg]

Feet positions oF = (BpL,
BpR) R6 [0, 0.78]

CoM velocity ov = GvCoM R3 [0, 3]

6.1.1 Action

The separation between agent and environment is defined by the action

selection. In our nested structure, the policy generates an action a ∈ R23

composed of the reference velocities for a large subset of the robot joints

(controlled joints), which are then integrated and fed to the corresponding pid

position controllers. The controlled joints belong to the legs, torso, and arms.

Hands, wrists, and neck, which arguably play a minor role in balancing, are

locked in their natural positions. The policy computes target joint velocities

bounded in [−180, 180] deg/s at 25 Hz. Commanding joint velocities rather

than joint positions prevents target joint positions from being too distant from

each other in consecutive steps. Especially at training onset, this would lead to

jumpy references that the pid controllers cannot track, affecting the discovery

of the relation between the states xt and xt+1. The integration process, instead,

enables to use a policy that generates discontinuous actions while maintaining

continuous pid inputs with no need for additional filters.
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6.1.2 State

Since no perception is involved, the state of the MDP contains information
about the robot’s kinematics and dynamics. It is defined as the tuple x :=

⟨q,ν, fL, fR⟩ ∈ X , where (fL, fR) are the 6D forces exchanged between the feet
and the terrain. The observation, computed from the state x and the robot
modelM, is defined as the tuple

o = o(x,M) := ⟨os,oṡ,oh,oR,oc,of ,oF ,ov⟩ ∈ O

whereO := R62. The observation consists of the following terms, each of them
re-scaled30 into a given interval for better properties when used as NN inputs:

• os are the controlled joints angles in radians, normalised with the hard
limits defined in the model description;

• oṡ are the velocities of the controlled joints, normalised in [−π, π] rad/s;

• oh is the height of the base frame, normalised in [0, 0.78] m;

• oR is a tuple containing the roll and pitch angles of the base frame w.r.t.
the world frame, normalised in [−2π, 2π] rad;

• oc is a tuple defining whether the feet are in contact with the ground;

• of is a tuple containing the vertical forces applied to the local CoP of the
feet (see Appendix A for its definition), normalised in [0, 330] N, i.e. the
nominal weight force of the robot;

• oF is a tuple containing the positions of the feet w.r.t. the base frame,
normalised in [0, 0.78] m;

• ov is the linear velocity of the CoM expressed in the CoM frame G =

(pCoM , [B]), normalised in [0, 3] m/s.

The exact definition of all the observation terms is reported in Table 6.1.
Although the agent is trained in simulation, we design it for real-time

execution on actual robots. We carefully select state components that can be
either measured or estimated on-board [Nori et al., 2015]. To promote policy
transfer, we avoid measurements from noisy sensors and values that cannot be
estimated with sufficient accuracy. In fact, any significant mismatch between
simulated and real data would hinder transfer, increasing the reliance on policy
robustness. We select minimal state components encoding the environment
dynamics without affecting learning performance.

30 We also call the re-scaling operation of a bounded variable as normalization.
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6.1.3 Other specifications

initial state distribution The initial state distribution ρ(x0) : X → O

defines the value of the observation in which the agent begins each episode.

Sampling the initial state from a distribution with small variance, particularly

regarding joint positions and velocities, positively affects exploration without

degrading the learning performance. At the beginning of each episode, for

each joint j ∈ J we sample its position sj,0 from N (µ = s0, σ = 10deg),

where s0 represents the fixed initial reference, and its velocity ṡj,0 from

N (µ = 0, σ = 90deg/s). As a result, the robot may or may not start with the

feet in contact with the ground, encouraging the agent to learn how to land

and deal with impacts.

exploration To promote exploration beyond the initial state distribution

and favour the emergence of push-recovery strategies, we apply external

perturbations in the form of a 3D force to the robot’s base frame located over

its pelvis. The applied force vector has a fixed magnitude of 200 N and is

applied for 200 ms. Considering the weight of the iCub, approximately 33 kg,

the normalised impulse sums up to 1.21 Ns/Kg. We sample the direction of

the applied force from a uniform spherical distribution. The frequency of the

application is defined as average applications per second, again sampling from

a uniform distribution. We apply a force on average every 5 simulated seconds.

early termination The balancing and push-recovery objectives for a

continuous-control task are characterised by an infinite-horizon discounted

MDP. During training, however, episodes should stop as soon as the state reaches

a subspace from which either it is impossible to recover or uninteresting to

explore, following an early-termination criterion. The state space interesting

for our work is where the robot is – almost – standing on its feet, therefore we

terminate the episodes as soon as it falls to the ground. We detect the falling

condition when any link but the feet touches the ground plane.

domain randomisation During the training process, the environment

performs a domain randomisation step at the beginning of each new episode.
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Table 6.2: PPO, policy, and training parameters.
Parameter Value

Discount rate γ 0.95
Clip parameter ϵ 0.3
Learning rate α 0.0001

GAE parameter λ 1.0
Batch size 10000

Minibatch size 512
Number of SGD epochs 32

Number or parallel workers 32
Value function clip parameter 1000

The masses of the robot’s links are sampled from a normal distribution

N (µ = m0, σ = 0.2m0), where m0 is the nominal mass of the link defined

in the model description. To avoid making assumptions about the feet’s and

ground’s material properties, we randomise the Coulomb friction µc of the feet

by sampling it from U(0.5, 3). Finally, since the simulation does not include

the real dynamics of the actuators, to increase robustness, we apply a delay to

the position references fed to the pid controllers, sampled from U(0, 20) ms,

and kept constant during the entire episode (until termination).

6.2 agent

The agent receives the observation o from the environment and returns the

action a defining the reference velocities of the controlled joints. The agent

parameters are reported in Table 6.2 and further explained below.

learning algorithm We select PPO as the candidate learning algorithm,

in the variant that includes both the clipped surrogate and KL penalty objectives

introduced in Section 3.4.3. We selected this algorithm since it provides a simple

but effective implementation of policy optimization, widely used in comparable

studies31. A practical benefit of PPO is its small number of parameters (only

31 This chapter is mainly focused on the reward shaping process, not on the specific algorithm
used to train the agent.
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the clip parameter ϵ if the KL penalty coefficient is adjusted dynamically) that

does not excessively overload the parameter tuning process.

policy and value function The policy, given an observation ot, samples

the action at to take from the stochastic distribution π(· |ot). The value function

V̂ (ot), instead, estimates the average return when starting from the observation

ot and then following the policy for the next steps. We represent both the

policy and the value function with two different neural networks composed of

two fully connected layers, with 512 and 128 units each, followed by a linear

output layer. The hidden units use a ReLU activation function. The networks

do not share any layer.

distributed setup The chosen PPO algorithm scales gracefully to a setup

where the batch samples are collected from multiple workers in parallel. A

single trainer and 32 workers with an independent copy of the environment

form our training setup. After collecting a batch of 10000 on-policy transitions,

we train the neural networks with stochastic gradient descent. The optimiser

uses mini-batches containing 512 samples and performs 32 epochs per batch.

The learning rate is λ = 0.0001. Each trial is stopped once it reaches 20 M

agent steps, roughly equivalent to 7 days of experience on a real robot. Worker

nodes run only on CPU resources, while the trainer has access to the GPU for

accelerating the optimisation process. We use the RLlib [E. Liang et al., 2018]

framework, OpenAI Gym, and distributed training.
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6.3 reward shaping

6.3.1 RBF Kernel

Radial Basis Function (RBF) kernels are widely employed functions in machine

learning, defined as

K(x,x∗) = exp
(
−γ̃||x− x∗||2

)
∈ [0, 1],

where γ̃ is the kernel bandwidth hyperparameter. The RBF kernel measures

similarities between input vectors. This can be useful for defining scaled reward

components. In particular, if x is the current measurement and x∗ is the target,

the kernel provides a normalised estimate of their similarity. The variable γ̃

can be used to tune the bandwidth of the kernel, i.e. its sensitivity. In particular,

we use γ̃ to select the threshold from which the kernel tails begin to grow.

Introducing the pair (xc, ϵ), with xc, ϵ ∈ R+ and |ϵ| ≪ 1, we can parameterise

γ̃ = − ln(ϵ)/x2c . This formulation results in the following properties:

1. K(x∗,x∗) = 1, i.e. when the measurement reaches the target, the kernel

outputs 1;

2. Given a measurement xm such that ||xm − x∗|| = xc, the kernel outputs

K(xm,x∗) = ϵ.

In practice, ϵ can be kept constant for each reward component. The sensitivity

of individual components is tuned by adjusting xc. We refer to xc as cutoff value

of the kernel, since each norm of the distance in the input space bigger than xc

yields output values smaller than ϵ. This formulation eases the composition of

the total reward rt when its components are calculated from measurements of

different dimensionalities and scales. In fact, once the sensitivities have been

properly tuned for each component, they can simply be weighted differently

as:

rt =
∑
i

wiK (xi(t),x
∗
i (t)) ∈ R, (6.2)

where xi(t) is the i-th measurement sampled at time t, and wi ∈ R the weight

corresponding to the i-th reward component.
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6.3.2 Reward

This section describes all reward terms forming the instantaneous reward

generated by the environment. Given their number, we divided the terms

in three categories: regularisers are terms often used in optimal control for

minimising the control action and the joint torques; steady-state terms help

obtain the balancing behaviour in the absence of external perturbations, and

are active only in Double Support (DS); transient terms favour the emergence

of push-recovery whole-body strategies.. The logic of the task computes all

reward terms at each environment step. Then, all terms are processed with a

RBF kernel, weighted, and summed together using Equation (6.2), obtaining

the final instantaneous reward rt returned to the agent for its maximisation

during the training phase.

The situation in which all individual reward terms ri share the same range

thanks to the filtering effect of the applied kernel simplifies the process of

parameters tuning. Each reward term introduces two parameters: its weight

ωi and the kernel cutoff xc, where we assumed to keep the ϵ kernel parameter

fixed. Instead of applying grid-like search methods, that would require an

excessively large number of permutations, we proceeded with an heuristic

tuning by observing after each training the learning curve of each reward

term independently. Firstly, we tuned the cutoff parameter (i.e. the sensitivity

associated to the reward term) so that the agent could receive a perceivable

increased reward to promote the desired exploration direction. This process

could be thought as tuning the variance of a Gaussian curve having mean

over the target value. Secondly, the reward terms with their tuned kernels

are composed together by a weighted sum. We started the tuning process

from a weight of 1.0 for all reward terms, and increased individual weights

heuristically in case we wanted to adjust their relative importance. Table 6.3

reports all the parameters of the reward function.
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Regularisers

joint torques (rτ ) We compute the norm of all the joint torque references

synthesised by the pid controllers from the velocity references provided

by the policy, and penalise this value. The environment runs at 25 Hz

and the low-level controllers at 1000 Hz. Therefore, for each of the 23

joints, 40 torques are actuated between two consecutive environment

steps. We collect all these torques in a single vector τ step ∈ R23·40 and

penalise its norm.

joint velocities (rṡ) Our control scheme ensures that joint position refer-

ences are continuous. However, PPO explores the action space of joint

velocities following the active distributions. To promote smoother tra-

jectories, we penalise the norm of the latest action. It can be seen as the

minimisation of the control effort.

Steady-state

postural (rs) Whole-body humanoid control schemes apply different weights

to various control objectives. The postural is notably one of the most

used [Nava et al., 2016], although it is usually assigned a low priority.

A postural reward term helps to reach a target posture during balan-

cing instead of relying on local minima found in the learning process.

This component penalises the mismatch between the sampled joint

configuration and the reference configuration shown in Figure 6.4a.

com projection (rG) Statically balanced robots, in order to maintain stability,

keep the CoM within the Support Polygon (SP), defined as the Convex

Hull (CH) of their contact points with the ground. With the same aim, we

introduce a Boolean component rewarding the agent if its CoM ground

projection is within the SP induced by the feet. For additional safety, we

shrink the SP by a 2.5 cm margin all along its perimeter.

horizontal com velocity (rxyv ) We define a target horizontal velocity for

the CoM as a vector pointing from the CoM projection to the center of

the SP p̄xy
hull. In order to promote faster motions if the CoM is relatively

close to the ground, the magnitude of the target is amplified by a factor

w0 =
√
g/pz

G derived from the LIP model [Kajita et al., 2001], where g is

the standard gravity. This component encourages the motion of the CoM

projection towards the center of the SP.
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Transient

feet in contact (rc) The feet are encouraged to stay on the ground. In order

to promote steps and increase movement freedom, we add a Boolean

term marking whether any foot is in contact with the ground.

links in contact (rl) If any link excluding feet is in contact with the ground,

the episode terminates with a negative reward of −10 for the terminal

state.

whole-body momentum (rh) Our policy also controls joints belonging to

the torso and the arms. Therefore, the momentum generated by the

upper body can be exploited for balancing and push recovery. This term

minimises the sum of the norms of the linear and angular components

of the robot’s total centroidal momentum Gh [Traversaro et al., 2017].

feet contact forces (rf ) This reward term pushes the transient towards

a steady-state pose in which the vertical forces at feet’s CoPs (fCoP
L , fCoP

R )

(see Appendix A) assume the value of half of the robot’s weight, distrib-

uting it equally on the two feet.

feet cop (rp) Beyond the force at the feet CoPs, we also promote their positions

to be located at the center of the corresponding sole p̄xy
foot,hull.

vertical com velocity (rzv) This reward component discourages vertical

motion of the CoM of the base link, promoting the usage of the horizontal

component instead.

feet orientation (ro) In early experiments, the policy was converging

towards feet tipping behaviours, i.e. the feet were not in full contact

with the ground. Since the terrain is flat by assumption, we discourage

tipping by promoting a foot’s orientation such that its sole is parallel

to the ground. If WRfoot = [r(x), r(y), r(z)] is the rotation between the

foot frame and the world, this term promotes the alignment of its third

column with the world frame.



6.3
reward

shaping
139

Table 6.3: Reward function details. Terms with a defined cutoff are processed by the RBF kernel.
Name Symbol(s) Weight Value x Target x∗ Cutoff xc SS DS
Joint torques rτ 5 ∥τ step∥ 0n 10.0 Nm ✓ ✓

Joint velocities rṡ 2 a 0n 1.0 rad/s ✓ ✓

Postural rs 10 s s0 7.5 deg ✓

CoM z velocity rzv 2 vxy
G 0 1.0 m/s ✓ ✓

CoM xy velocity rxyv 2 vz
G ω0(p

xy
G − p̄xy

hull) 0.5 m/s ✓

Feet contact forces {rLf , rRf } 4 {fCoP
L , fCoP

R } mg/2 mg/2 N ✓ ✓

Centroidal momentum rh 1 ∥Ghl∥2 + ∥Ghω∥2 0 50.0 kg m2/s ✓ ✓

Feet CoPs {rLp , rRp } 20 {pL,CoP ,pR,CoP } {p̄xy
L,hull, p̄

xy
R,hull} 0.3 m ✓ ✓

Feet orientation {rLo , rRo } 3 {r(z)L · ez, r
(z)
R · ez} 1 0.01 - ✓ ✓

CoM projection rG 10 pxy
G in the CH of support polygon - - ✓

Feet in contact rc 2 cL ∧ cR 1 - - ✓ ✓

Links in contact rl -10 cl 0 - - ✓ ✓
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Figure 6.2: Learning curves over 11 training runs.

6.4 results

6.4.1 Training performance

Fig. 6.2 reports the learning curves of the average reward and episode duration

over 11 independent agent training runs. Average reward across trials exhibits

consistent growth and low variance (Fig. 6.2, left). We have also observed

increasing values for all individual reward elements during training. Episode

duration improves as well across trials and displays low variance (see Fig. 6.2,

right), approaching maximum episode length more frequently as training

progresses.

6.4.2 Emerging behaviours

Controlling the upper body enables rich recovery behaviours that involve

the control of the total momentum of the kinematic structure. We succeed in

triggering such behaviours by applying external forces during policy training.

To make force profiles more realistic, we throw high-speed objects towards

the balanced robot instead of applying constant forces for a fixed interval

as done during training. Figure 6.4b shows two characteristic sequences. A

larger variety of push-recovery strategies are displayed in the following video:

https://ami-iit.github.io/emergence-push-recovery-icub.

https://ami-iit.github.io/emergence-push-recovery-icub
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(a) (b)

Figure 6.3: (a) Push-recovery success rates on the horizontal plane (forward push:
0 rad, µc = 1). (b) Results with µc = 0.2.

(a) (b)

Figure 6.4: (a) The initial joint configuration s0. (b) Sequences showing ankle, step,
and momentum push-recovery strategies. The robot is pushed by a sphere
shot from the left side of the image. Impact takes place in the second
frame.

6.4.3 Deterministic planar forces

We evaluate the push-recovery performance by assessing the resilience from

the application of external forces to the horizontal transverse plane of the

robot. Forces are applied for 0.2 s after 3 s from the simulation start, when

the robot is stably standing still and front-facing. Success is defined if the

robot is still standing after 7 s, defining as a standing state the configuration in

which only the feet can be in contact with the ground. Fig. 6.3a reports success

rates for forces pointing in 12 directions. Magnitudes increase from 50 N to

700 N at 25 N intervals. Five repetitions are performed for each magnitude and

direction, randomising the initial joints configuration by adding zero-mean

Gaussian noise (σ = 2 deg). Magnitudes within the training range (0-200 N)

are counteracted successfully. Remarkably, the policy is also robust to out-of-

sample forces in all directions in (200-300 N), up to 400 N in some directions.

Moreover, it successfully recovers from pushes in the training range (0-200 N)

even with an out-of-sample test friction coefficient µc = 0.2 (Fig. 6.3b).
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6.4.4 Random spherical forces on the base links

We evaluate policy robustness in challenging scenarios involving sequences of

random forces with different combinations of magnitude and duration. Forces

are applied to the base in a random direction more frequently than during

training, on average every 3 s. For each combination, 50 reproducible episodes

with different seed initialisation and no domain randomisation are executed.

Episodes terminate if the robot falls or after 60 s, averaging 20 applications in

a complete episode. Our evaluation metric is the number of consecutive forces

endured by the robot. Fig. 6.5 reports aggregate results for each combination

of magnitude and duration. No matter their magnitude, forces lasting 0.1 s are

appropriately balanced. As expected, performances decrease with growing

magnitude and duration. Nevertheless, the agent can withstand repeated

applications of out-of-sample forces. For instance, on average, it withstands 9

consecutive 300 N 0.2 s applications.

6.4.5 Random spherical forces on the chest and elbow links

We also evaluate the robustness of the learned policy to previously unseen

forces applied to other links. Fig. 6.5 shows the results obtained on the chest

and elbow links. As expected, forces applied on links that are far from the CoM

turn out to be more challenging. Nevertheless, the policy is able to withstand a

good number of them and generalise with good performances. For instance, it

is on average able to recover from 10 consecutive 200 N 0.2 s forces on the elbow

link, as opposed to an average of 17 for the base link. The average number of

consecutive counterbalanced forces with the same magnitude and duration

decreases to 5 for the chest link. Notice that the randomness of the interval

between two subsequent forces applications sometimes leads to challenging

scenarios in which multiple forces are applied in a short time window.
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Figure 6.5: Consecutive counterbalanced forces in random directions over 50 trials
for each combination of magnitude and duration. Forces are applied to
the base, chest, and elbow links for an increasing duration.
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6.5 conclusions

In this chapter, we presented a control system composed of a high-level

policy trained with RL generating joint references actuated by low-level pid

controllers. The system operates on the humanoid robot iCub with the aim of

providing push-recovery capabilities in the presence of external disturbances.

We trained the RL policy with the model-free PPO algorithm. In order to

balance the exploration-exploitation trade-off and guide the training towards

the desired behaviour, we relied on a careful reward shaping process that

integrates into the reward signal returned by the environment multiple terms

computed from the robot description acting as a prior. We have shown that

the resulting policy, operating on most of the joints of the iCub robot, is able to

withstand repeated applications of strong external disturbances. Depending

on the magnitude of the disturbance, and the state of the system, the policy

adopts different push-recovery strategies that include the usage of ankles, hips,

stepping, and momentum.

The learning pipeline described in this chapter presents different limitations

and shortcomings. First, the training process to obtain a single policy requires

an experience equivalent to approximately 7 simulated days, which is not

surprising considering the low sample-efficiency typical of model-free RL

algorithms based on policy gradient. Two possible ways to mitigate this

problem are either switching to algorithms with better sample-efficiency, or

optimising the speed of the experience generation. The execution of the 7

simulated days on a powerful workstation running 32 parallel simulations

lasted more than 2 real-world days, resulting in a long and extenuating

parameters tuning process. A second limitation comes from the chosen low-

level control architecture, composed of independent pid controllers. Despite

the benefits of their simplicity, they introduce in the system a stiffness that can

prevent the emergence of natural and more human-like motions. Finally, the

applicability to real robots has yet to be assessed, since the simulation does not

take into account second-order dynamic effects characterising real systems. We

tried to increase the robustness of the resulting policy by introducing multiple

domain randomisation effects, but their effectiveness in the real world has not

been assessed.
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C O N TA C T- A W A R E M U LT I B O DY

DY N A M I C S

In the first part of this thesis contributions, we proposed a general framework

for creating robotic environments and, with it, introduced a scheme for

training a policy for generating push-recovery control signals balancing the

iCub humanoid robot in the presence of external disturbances. The simulations

were performed using the general-purpose Gazebo Sim, which provides a rich

ecosystem supporting many types of robots, sensors, physics engines, and

rendering capabilities. However, the benefits of exploiting general-purpose

solutions often introduce a trade-off with the achievable performance. As we

have experienced with the push-recovery policy presented in Chapter 6, a

single iteration of policy training could last multiple days, resulting in a long

tuning process that could limit the search space. The bottleneck of the training

pipeline are the computations performed by the rigid-body simulator, limiting

the rate at which new trajectories can be sampled.

In the continuation of this thesis, we attempt to reply to the question: "How

can we optimise sampling performance of synthetic data?". In this chapter, we

derive the state-space representation of a floating-base multibody system

interacting with a known ground surface. Assuming the knowledge of the

terrain height at any point in space and the smoothness of the terrain surface,

this formulation of the dynamics enables calculating the robot’s trajectory

using a plain numerical integration scheme, regardless of the contact state. To

this end, we introduce a continuous soft-contacts model for resolving points-

surface collisions supporting both static (sticking) and dynamic (slipping)

contacts. Each contact point’s dynamics state is structured such that it can

be included in the state-space representation and integrated with the robot’s

dynamics. The resulting representation will be used, in the next chapter,

as a base for a novel physics engine targeted to exploit modern hardware

accelerators for maximising trajectory sampling.

145
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7.1 notation

7.1.1 Frame kinematics with quaternions

In Chapter 2, we introduced the homogeneous transformation AHB ∈ SE(3)

to describe the pose of a frame (corresponding also to a rigid body). An

alternative representation of the SE(3) group is the tuple (ApB,
Aq̄B), where

ApB ∈ R3 is the position vector and Aq̄B a unit quaternion. A generic quaternion

can be defined as follows:

q ∈ H :=
¶
qw + îqx + ĵqy + k̂qz : qw, qx, qy, qz ∈ R

©
,

where Re(q) = qw is the real part of the quaternion and Im(q) = îqx+ ĵqy + k̂qz

is the imaginary part. Elements of SO(3) describing frame rotations can be

described by unit quaternions:

q̄ ∈ Spin(3) := {q ∈ H : |q| = 1} .

A quaternion could be also described with a real vector of its coefficients:

Q = (w, r) ∈ R4,

where w = qw ∈ R and r = (qx, qy, qz) ∈ R3. In this chapter, we mainly use

this last representation since it has a direct relation with the practical usage in

algorithms design. The pose of a generic frame can therefore be described by a

vector (ApB,
AQB) ∈ R7. For what regards the frame velocity, we can keep using

any of the 6D vectors introduced in Section 2.3, i.e. vA,B = (vA,B,ωA,B) ∈ R6.

7.1.2 Frame pose derivative and 6D velocity with quaternions

When the orientation of a frame is expressed with a quaternion, it’s worth in-

troducing the relation between the derivative of the pose (AṗB,
A
Q̇B) ∈ R7 and

the 6D velocity vA,B ∈ R6. In fact, particularly in this case with the quaternion,
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it’s clear that the two cannot be related by a simple numerical differentiation

since they also have different dimensions. The following relations hold:


AṗB = A[B]vA,B

A
Q̇B = 1

2S(
BωA,B)

AQB

, (7.1)

where we notice that the derivative of the position is the linear part of the

mixed velocity defined in Equation (2.7) (denoted as AȯB), and defined the

derivative of the quaternion [Sola, 2017] by introducing the following matrix:

S(ω) =

 0 −ω⊤

ω −ω∧

 .

The relations of Equation (7.1) can be used for integrating numerically the

frame pose, using one of the schemes that will be introduced in Section 7.4.

The quaternion Q, in this setting, has to be treated with care, because only unit

quaternions can describe rotations.

Numerical integration schemes do not enforce this property is maintained

along the trajectory, and numeric approximations could lead to unwanted

instabilities. This problem can be either solved or mitigated by different types

of solutions. The most straightforward solution is normalising the quaternion

after each integration step. Alternatively, a correction term orthogonal to the

quaternion dynamics of the following form can be introduced:

Q̇ =
1

2
S
Ä
BRW

WωW,B

ä
Q+

1

2
KQ Q

Ä
∥Q∥−1 − 1

ä
,

that corresponds to a Baumgarte stabilization on SO(3) [Gros et al., 2015],

where KQ ∈ R is the correction coefficient. This stabilization term progressively

projects the quaternion towards a unity quaternion, restoring the norm in case

of drifting. In the continuation of this thesis, we do not explicitly include any

correction, considering its choice an implementation detail.

Remark 7.1.1 (Geometric integration of quaternions). Quaternions, like other

representations of elements of SO(3), have strong geometrical properties based

on the underlying symmetries. These properties can be exploited to obtain more

rigorous integration schemes performed directly on the manifold [Andrle et al.,
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2013]. The quaternion relation of Equation (7.1) can be seen as a differential

equation in AQB . By exploiting properties of the matrix exponential together

with quaternion properties, it can be shown [Andrle et al., 2013; Sola, 2017; Solà

et al., 2020] that the following relation implements a zero-th order integration:

Qtk+1
= Qtk ⊗

(
∥ω∥ cos(ω∆t/2), sin(ω∆t/2)

)
where ⊗ denotes the quaternion multiplication, and ω is assumed constant

within the integration interval [tk, tk+1].

While both integration approaches are valid options –albeit showing different

numerical stability [Andrle et al., 2013]–, we develop the theory of this chapter

using the numerical derivative. This choice allows treating the entire state of a

multibody system, including the base quantities, as a vector in Rn, simplifying

the equations of this chapter. If needed, practical implementations of the

presented results could adopt the geometrical integration if better numerical

stability is required, paying the price to treat the base orientation separately.

7.1.3 Multibody dynamics

The EoMs of a floating-base multibody system have been previously introduced

in Section 2.8.4 in the following form:

M(q) ν̇ + C(q, ν) ν + g(q) = Bτ +
∑
L

J⊤
L (q) f extL ,

where q is the generalised position and ν is the generalised velocity already

introduced in Equation (2.24). If a quaternion WQB is used to model the

orientation of the base frame B, as described in Section 7.1.1, we can expand

the generalised position and velocity as follows:

q =
Ä
WpB,

WQB, s
ä
∈ Rn+7 (7.2)

ν = Wν =
Ä
WvW,B,

WωW,B, ṡ
ä
∈ Rn+6, (7.3)

where we chose the inertial-fixed representation of the base velocity, introduced

in Section 2.3.2, just for practical reasons.
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When the explicit decomposition of the Coriolis and gravitational terms is

not required, we combine their effects into the following vector of bias forces:

h(q, ν) = C(q, ν) ν + g(q) ∈ R6+n.

We can compact the Lagrangian formulation of the system’s dynamics even

more by updating the terms related to the external 6D forces. We assume, for

each link L ∈ L, that an external 6D force f extL always exists but is zero if the

link has no interaction with the environment. If we stack the Jacobians and the

6D forces of all links in the following new matrices:

JL(q) =



J0

J1
...

JnL−1


∈ R6nL×6+n, f extL =



f0

f1
...

fnL−1


∈ R6nL ,

we can replace the sum with a more compact matrix product:

M(q) ν̇ + h(q, ν) = Bτ + J⊤
L (q) f extL . (7.4)

7.2 state-space multibody dynamics

The EoMs of a multibody system of Equation (7.4) are expressed as non-

linear Ordinary Differential Equation (ODE). Modern control theory studies

the properties of these systems studied by operating on their state-space

representation [Friedland, 2005], which assumes the following general form:


x(t) = f (t,x(t),u(t))

y(t) = g (t,x(t),u(t))

, (7.5)

where the first is the state equation and the second is the output equation. The

variable x is called state vector and the variable u is called input vector. State-

space models are particularly interesting for computing, starting from a given

initial state x0, the future trajectory of an arbitrarily complex system, under
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the assumption of the complete knowledge of its dynamics f(·) and inputs

u(t), if any. In the most general case, even when closed-form solutions of

Equation (7.5) cannot be found, future trajectories can be computed through

numerical integration [Cellier et al., 2006], as it will be described in Section 7.4.

In the case of a rigid multibody system, the EoMs (7.4) can be expressed

in state-space representation by introducing the following state and input

vectors:

x(t) =

q
ν

 ∈ R2n+13, u(t) =

 τ

f extL

 ∈ Rn+6nL . (7.6)

With these definitions, we can define the state equation of our system as:

ẋ(t) =

q̇
ν̇

 = f (x(t),u(t)) ,

where we still need to find the equations of q̇ and ν̇.

The variable ν̇ ∈ R6+n is the generalised acceleration of the system. Assuming

the mass matrixM(q) non-singular, the dynamics of ν can be extracted directly

from the EoMs (7.4). As we will introduce in Chapter 8, the computation

of ν̇ is also known as forward dynamics of the multibody system, and the

methodology that requires the inversion of the mass matrix is just one among

the available methods, not necessarily the most computationally efficient.

In order to maintain a degree of generality, in this chapter we mark this

computation with the FD(·) function.

For what regards q̇, we can simply extend the base quantities of Equation (7.1)

with the joint velocities ṡ. The advantage of using the numerical integration

form of the quaternion should now be clear, since it enables its direct inclusion

in the state vector.
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The final form of the state-space representation can be found by combining

all the previous elements:

ẋ(t) =

q̇
ν̇

 =



à
W ṗB

1
2 S

(
BRW

WωW,B

)
WQB

ṡ

í
FD(M,q, ν, τ , f extL )


= f (x(t),u(t)) . (7.7)

Also in this case, it’s worth noting that q̇ ̸= ν, due to the nature of the angular

variables of the base link.

Computing the evolution of this system requires the knowledge of its inputs,

represented by the joint torques τ and the external forces f extL . The external

forces could either be known 6D forces supplied by the user, or unknown 6D

forces resulting from the interaction with the environment:

f extL = fuserL + f contactL (7.8)

In the next section, we describe a methodology to compute the unknown forces

exchanged with the environment by assuming that the floating-base model

only interacts with the terrain f contactL := f terrainL , assumption compatible

with our locomotion setting. In a more general setting, f contactL should also

include the forces exchanged between bodies, for example to simulate either

self-collisions or interaction with other bodies part of the scene, particularly

useful for robot manipulation.
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7.3 contact model

Detecting and handling contacts between bodies is one of the most challenging

processes of a rigid-body simulation. For simplicity, we assume that only

contacts between points belonging to the model and a terrain surface can

occur. Considering our locomotion scenario, this assumption allows us to

describe robots with collision shapes composed of a set of collidable points.

This approach enables a unified logic for shapes ranging from simple boxes to

complex meshes. Note, however, that point-surface collisions do not provide

expected results when a primitive shape like a box, modelled for example with

its eight corner points, falls over the tip of a triangle-shaped terrain surface. In

this case, the collision detection should consider the box as a surface instead

of a set of points. If this use case is relevant, a possible workaround would be

adding new collidable points on the box’s surface, at a higher computational

cost. Despite this limitation, the point-surface model could suffice in many

target scenarios.

Gilardi et al. [2002] distinguished two different approaches for impact and

contact analysis: discrete methods (also known as impulse-momentum) and

continuous methods. They have shown that continuous methods are better

suited for scenarios involving multiple contacts and bodies, allow for a better

description of real systems, and simplify the inclusion of frictional effects.

The main drawback is the introduction of at least two parameters that need

to be appropriately identified to match the real contact dynamics. In robot

learning, often this limitation is not particularly relevant since we can apply

domain randomization over a realistic range of values. Also, in our setting, a

continuous contact model has the advantage of providing smooth gradients

when used in an AD context.

In the following sections, we first provide a description of the point-surface

setting, introducing all the necessary elements for the contact model. Then,

we provide a more detailed analysis of continuous methods for collisions

handling, specifying how they can model both the normal and the tangential

forces. Finally, we describe how their effects can be included in our dynamical

system defined in Equation (7.7). The algorithm implementing the proposed

soft-contact model is reported in the next chapter in Section 8.1.8.
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Figure 7.1: Illustration of the point-surface soft-contact model for non-planar terrains.
The collidable point follow a trajectory pcp(t), penetrating the ground
in p0

cp :=
(
x0, y0,H(x0, y0)

)
. While penetrating the material, the point

reaches a generic point pcp, over which a local contact frameC = (pcp, [W ])
is positioned, with a linear velocity C[W ]vW,C = W ṗC ∈ R3. The figure
reports also the penetration depth h ∈ R, the normal deformation δ ∈ R,
and the compounded tangential deformation m ∈ R3 of the material,
used for the calculation of the 3D reaction force Cf cp with the proposed
soft-contact model.

7.3.1 Point-surface collisions

For each time-varying collidable point belonging to the simulated model, we

introduce a new local frame C = (oC , [W ]), having its origin located over

the point’s time-varying position Wpcp(t) and orientation of W , illustrated

in Figure 7.1. Beyond the position of the collidable point, the contact model

accounts also its linear velocity vW,C ∈ R3. In the following formulation, we

use the mixed representation of the point velocity, i.e. vW,C = W ṗC .

In this setup, collision detection is as easy as assessing if the z coordinate of

the collidable point is lower than the terrain height. We can assume having a

heightmap functionH : (x, y) 7→ z providing the terrain height at any location.

We also assume to know the direction of the terrain normal n̂ in world

coordinates at any location of the terrain’s surface32. If WpT = (xcp, ycp, zT )

32 For smooth terrains, it can be shown that the normal can be estimated from H.
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is the point on the terrain surface vertical to the collidable point, where

zT = H(xcp, ycp), we can compute the penetration vector as follows:

Wh = (WpT − Wpcp) =


0

0

(zT − zC)

 ,

where hz = zT − zC is the penetration depth, positive only for collidable points

below the ground surface.

In the following sections, we need to project the penetration vector h and

the linear velocity W ṗC of the collidable point into the parallel and normal

directions w.r.t. the ground surface. We denote the magnitude of the normal

deformation as δ ∈ R+, and the normal and tangential components of the

velocity as v⊥
C , v

∥
C ∈ R3:



δ = Wh · n̂,

v⊥
C =

(
W ṗC · n̂

)
n̂,

v
∥
C = W ṗC − v⊥

C .

We do not yet provide a geometrical equation to compute the compounded

tangential deformationm ∈ R3 of the terrain material, as it would require tracking

over time the position of the initial penetration point Wp0
cp. Introducing in

the system, for this purpose, an additional state component not part of its

state-space representation would be difficult to handle. We will show in the

next sections how to compute m such that both sticking and slipping contacts

are supported. We also note that, assuming the knowledge of m, the data

required by the proposed contact model can be entirely computed from the

floating-base configuration (generalized position q and velocity ν). Therefore,

the contact force Cf ∈ R3 becomes an instantaneous function of the kinematics.

Assuming that the effects of the normal and tangential deformations of the

material can be decomposed, in the next sections we first compute the normal

force Cf⊥ = f⊥n̂ ∈ R3, and then the tangential force Cf∥ ∈ R3, both applied

to the origin of frame C.
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7.3.2 Normal forces

Continuous contact models assume the existence of a relationship between

the contact force and the deformation of the material [Romualdi et al., 2021].

Thanks to better properties in representing the physical nature of the energy

transfer process, the most popular models adopted in the robotics community

are those belonging to the non-linear family [Azad et al., 2016].

Considering the setting illustrated in Figure 7.1, we can compute the mag-

nitude of the normal deformation and its rate as follows:
δ = Wh · n̂,

δ̇ = W ḣ · n̂ = −W ṗC · n̂ = − v⊥
C

.

A possible non-linear form of the relationship between the normal force f⊥

and the deformation properties can be described by the following equation:

f⊥ = Cf⊥ · n̂ =


kδa + λδbδ̇c, if δ ≥ 0,

0, if δ < 0,

where k, λ ∈ R are respectively the stiffness and damping coefficients of the

material, and a, b, c ∈ R the parameters of the contact model. Note that this

contact model does not present any discontinuity, in fact for what regards the

term proportional to deformation rate we also have δb that zeros this term

when δ = 0.

This model has appeared with different coefficients proposed by various

studies. In our implementation, we use the parameters a = 3
2 , b = 1

2 , and c = 1,

as proposed by Azad et al. [2010]. Despite being formulated for sphere-plane

collisions, we apply the same model to our point-surface setting, assuming



7.3 contact model 156

that the two collision types produce a comparable material deformation33. We

can implement this model using the following logic:

f⊥ =


max

¶
0,
√
δ(kδ + λδ̇)

©
if δ ≥ 0,

0 if δ < 0.
(7.9)

As remarked by the same authors, this model has the advantage of not

exposing any additional state variable. However, the implementation ignores

the relaxation dynamics of the material in the normal direction after the

contact is broken. This could cause incorrect dynamics if a new contact is made

immediately following the deactivation of the previous one and before the

spring-damper model could reach the steady state, but in practice the effect

only occurs in the few instants before the contact becomes steady, not affecting

the simulated dynamics significantly.

7.3.3 Tangential forces

The continuous contact dynamics introduced in the previous section allows

for including frictional effects described with any friction model. We consider

only effects due to dry friction. We approximate these effects with Coulomb’s

law of friction that, albeit being relatively simple, is widely adopted thanks to

its versatility. The physical interaction between two materials is assumed to be

independent of the contact area, accounting consistently for our point-surface

modelling. The Coulomb friction for an object at rest is governed by the

following model:

∥∥
Cf∥

∥∥ ≤ µcf⊥,

where f∥ ∈ R3 is the tangential force that the material deformation exerts on

the point in the direction opposite to the compounded tangential deformation

m, and µc ∈ R+ is the static friction coefficient. This model depends on the

unilateral force f⊥ ≥ 0, and can be visualised as a cone considering a space

33 These parameters, being quite difficult to identify, often belong to the domain randomization
set in RL settings.
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having the three force components as axes. For this reason, it is often referred

to as friction cone.

The friction cone defines two distinct contacts regimes: sticking if the tan-

gential force magnitude is within the friction cone bounds, and slipping if

outside:

Cf∥ =


f stick if ∥f stick∥ ≤ µcf⊥,

f slip otherwise.

In practice, the two regimes are characterised respectively by the static friction

coefficient µc ∈ R+ and the sliding friction coefficient µk ∈ R+, also called

either kinetic or dynamic friction. As soon as the regime transitions from

sticking to slipping, the considered coefficient of friction should be changed

from the static to the dynamic. In the proposed model, in order to reduce the

number of parameters to tune, we consider a unique coefficient µ = µc = µk.

The implementation can be changed trivially to use a different parameter in

the slipping regime.

The same study we considered for the model of normal forces [Azad et al.,

2010] proposes a spring-damper-clutch system for the tangential forces, where

the additional clutch component controls the sticking-slipping condition.

Extending their 2D formulation to our 3D point-surface setting, we can

introduce the following relation between the tangential forces and the tangential

material deformation:

Cf∥ = αm+ βṁ = αm+ β(v
∥
C −

C[W ]vW,clutch), (7.10)

where α, β ∈ R+ are model parameters, m ∈ R3 is the compounded 3D tangen-

tial deformation of the material as illustrated in Figure 7.1, and C[W ]vW,clutch is

the unknown clutch velocity.

When sticking, the clutch velocity is zero and, assuming the knowledge of m,

the tangential force can be computed with Equation (7.10). Instead, when the

magnitude of the sticking force exceeds the friction cone bounds, the clutch is

unlocked and the collidable point starts sliding. In slipping state, the tangential
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force maintains the sticking direction, but enforces its magnitude to lay on the

friction cone boundary:

Cf∥ =


f stick = αm+ β v

∥
C if sticking,

f slip = µf⊥
fstick

∥fstick∥
if slipping.

(7.11)

We use α = −kt
√
δ and β = −λt

√
δ as presented by Azad et al. [2010],

where also in this case we assume that collidable points produce a material

deformation comparable to the sphere-plane setting.

The last missing point to discuss is how to calculate the compounded tan-

gential deformation m of the material. Combining Equations (7.10) and (7.11),

we can obtain the dynamics of the tangential deformation:

ṁ =



v
∥
C if sticking,

β−1(f slip − αm) if slipping,

−αβ−1m if contact is broken,

(7.12)

that can be numerically integrated to obtain m. It is worth noting that this

formulation does not need to either know or keep track of the clutch velocity.

In fact, as soon as a sticking contact transitions to slipping, we calculate ṁ

such that we obtain exactly the desired f slip (that is the projection of f stick on

the friction cone surface) given the current (m, δ).
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7.3.4 Augmented system dynamics

The effects of the contact model introduced in the previous sections can be

included in the system’s dynamics (7.7) by extending its state as follows:

x(t) =


q

ν

vec(M)

 ∈ R2n+3nc+13.

We introduced the matrix M ∈ R3×nc stacking the tangential deformations

of all the nc collidable points. The model’s dynamics can be obtained from

Equations (7.12) and plugged in the following contact-aware dynamic system:

ẋ(t) =


q̇

ν̇

vec(Ṁ)

 =



à
W ṗB

1
2 S

(
BRW

WωW,B

)
WQB

ṡ

í
FD(M,q, ν, τ , f extL )

vec(Ṁ)


= f (x(t),u(t)) .

(7.13)

This final non-linear system, albeit being quite stiff when new contacts are

made or broken, does not present any discontinuity.

The decomposition of the external forces of Equation (7.8) with the assump-

tion of knowing the terrain profile (e.g. estimated by introducing perception

algorithms) allows to simplify the input vector of Equation (7.6) as follows:

u(t) = (τ , fuserL ) ,

since the forces exchanged with the terrain can be computed from the kinemat-

ics and the terrain properties:

f contactL := f terrainL = f terrainL (q, ν,H,S),

whereH : (x, y) 7→ z returns the terrain height and S : (x, y) 7→ n̂ returns the

terrain normal.
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7.4 integrators

The evolution of dynamical systems described in state space forms like Equa-

tion (7.7) and Equation (7.13) can be obtained by numerical integration. Consid-

ering their simplicity and effectiveness, in this section we present two popular

iterative and explicit integration methods to obtain the evolution in time of an

initial value problem of the following form:

dx(t)

dt
= ẋ(t) = f (x(t), t) , x(t0) = x0,

where x(t) ∈ Rn and t ∈ R. We want to obtain numerically the unknown x(t)

from its known rate of change ẋ(t) and initial conditions x(t0).

In this thesis, we will use single-step integration methods only, that compute

the next value only from the previous one. These methods can be described by

a function v : Rn × R 7→ Rn:

x(t+ dt) = v (x(t), t) .

The most common single-step method is forward Euler:

x(t+ dt) = x(t) + dt f (x(t), t) .

It is the most basic explicit integration method that can be seen, by rearranging

the equation, as an approximation of the forward finite difference formula:

x(t+ dt)− x(t)

dt
≈ ẋ(t).

For sufficiently large integration steps dt, and particularly for stiff systems, the

numerical error due to the approximation of the forward Euler integration

method could yield a diverging solution x(t), even if the system has globally

and asymptotically stable equilibrium points. In these circumstances, the

instability can be prevented by lowering the integration error through the

reduction of the step size, at the expense of a greater computational cost. The

forward Euler method, combined with a proper integration step size, remains

a valid and widely employed method.
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More complex integration schemes evaluate f (x(t), t) multiple times within

the integration interval [t, t+dt]. For example, the popular Runge-Kutta explicit

methods implement the following integration scheme:

x(t+ dt) = x(t) + dt
s∑

i=1

biki,

where ki = f (xi(t), ti) is an intermediate evaluation of the system’s dynamics

and xi(t) the reached intermediate states. Intuitively, these methods reduce

the integration error by using an averaged value of the state derivative over the

interval. The most widely adopted instance of this family is the Runge-Kutta

4 (RK4) corresponding to a 4th-order, which computes the slopes

k1 = f (x(t), t)

k2 = f

Å
x(t) +

dt

2
k1, t+

dt

2

ã
k3 = f

Å
x(t) +

dt

2
k2, t+

dt

2

ã
k4 = f (x(t) + dtk3, t+ dt)

weighted with b1 = b4 = 1
6 and b2 = b3 = 2

6 . It can be seen that (k1,k4) are

the slopes evaluated at the extremes of the integration interval, and (k2,k3)

at the midpoint. In the average, a higher weight is given to the slopes at the

midpoint.
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7.5 validation

In this section, we validate the properties of the system through simple

simulations of a rigid body interacting with the terrain. A single rigid body

is equivalent to the multibody system defined Equation (7.13) having only

variables related to the base and contacts. In all experiments, the soft-contact

model is configured with k = kt = 106, λ = λt = 2000, and µ = 0.5, and the

simulation is configured with a standard gravity of g = 9.8m/s2.

We start the validation of the contact model on flat terrain by performing

two experiments. In the first one, we calculate the mechanical energy of a

bouncing ball, validating that it changes only upon impact due to the damping

of the contact model. Given the continuous nature of the contact model, all

the quantities should vary continuously. In the second experiment, we apply

a step-wise force with increasing magnitude to the CoM of a box resting on a

flat surface. The box should start accelerating only when the applied force is

able to overcome the opposing effects due to friction. We conclude this section

by validating the contact model on non-flat terrain. We simulate a falling box

over an inclined plane characterised by different coefficients of friction, and

compare its trajectory with the Mujoco simulator [E. Todorov et al., 2012]. The

specifications of the machine used to execute the validation experiments are

reported in Table 8.3.

7.5.1 Bouncing Ball

We consider a model composed of a single spherical-shaped link. The sphere

has a mass of 0.1Kg and a radius of 10 cm. We approximate its collision shape

with 500 points, all considered as collidable points for the collision detection

and soft-contact model.

The sphere is positioned 1m above a flat surface, and left falling starting

from an initial linear velocity of BvW,B = (2, 0,−1)m/s. We simulate this

setting for 1.5 s using the RK4 integration scheme with a step size of 100µs.

The sphere’s trajectory is illustrated in Figure 7.2.
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Figure 7.2: Sphere trajectory of the bouncing experiment.

At each time instant, we compute the system’s mechanical energy by sum-

ming the potential and the kinetic energies obtained from Equation (2.15).

We also get the linear contact forces C1
f1, C2

f2, . . . computed with the soft-

contact model of each collidable point, and combine them together in the

frame B of the spherical link as Bf tot =
∑

i BX
Ci

[
Ci
f⊤
i 0⊤3

]⊤ ∈ R6.

Figure 7.3 reports the height of the sphere corresponding to the z component

of WpB , the plot of the mechanical energy, and the plot norm of the contact

force’s linear component. It can be noticed that during the flight phase, the

mechanical energy remains constant. It gets dissipated abruptly through the

contact damping upon bouncing collisions, and linearly through the terrain

friction when bouncing finishes and the sphere starts rolling (corresponding to

the flat region in Figure 7.3d). From the detailed view of the first two impacts

reported in Figure 7.3b and Figure 7.3c, it can be noticed that the abrupt energy

drop actually varies continuously. From the same images, it can be seen that

the soft-contact model produces contact forces that do not present marked

discontinuities. However, if the step size of the simulation becomes larger,

we observed that the initial penetration depth could generate a big initial

reaction force that depends on the stiffness of the terrain. Possible solutions to

mitigate this effect consists of either tuning the terrain parameters or adopting

integration schemes with zero-crossing logic that allow obtaining small initial

penetration depths by shortening the integration step of the instant when the

contact is made.
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Figure 7.3: Evolution over time of the bouncing ball experiment’s data. (7.3a) reports
the mechanical energy of the system and the norm of the linear component
of the contact forces summed and expressed in theB frame of the spherical
link. (7.3b) and (7.3b) report a closer view of the first two impacts. (7.3d)
reports the plot of the base height, where both the bouncing and rolling
phases can be observed.
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7.5.2 Sliding Box on Flat Terrain

We consider a model composed of a single box-shaped link. The box has a mass

of 1Kg and (x, y, z) dimensions equal to (1.5, 1, 0.5)m. Its collision shape is

approximated considering the 8 points corresponding to its corners.

The box is positioned on a flat ground surface at rest. We simulate this

setting for 4 s using the RK4 integration scheme with a step size of 1ms. In

this window, considering the frame of CoM G = (WpCoM , [B]), we apply to

the CoM of the box an external linear force GfCoM = (fCoM , 0, 0) ∈ R3 with a

profile reported in Figure 7.4.

In this setting, the threshold of the friction cone separating the sticking and

the slipping regimes is µf⊥ = 4.9N , averaged over the four contacts points of

the bottom box surface. Figure 7.4 reports the plots of the x components of the

CoM’s position and linear velocity. It can be seen that, as expected, when the

applied force is smaller than the threshold, the box stays still. As soon as the

external force exceeds the threshold, the box starts accelerating. As soon as the

external force goes to zero, the frictional effects of the contact model produce

a reaction force that decelerates the box with a fast transient until it reaches

the sticking regime again. Small velocity oscillations can be noticed when the

external force is applied at t = 0.5 s and t = 1 s, and when it is removed at

t = 3.5 s. They can be explained by the modelled dynamics of the material

that can generate small tangential deformations without leaving the sticking

regime.

7.5.3 Sliding Box on Inclined Plane

We consider a model composed of a single box-shaped link. The box has a

mass of 1Kg and (x, y, z) dimensions equal to (0.15, 0.1, 0.05)m. Its collision

shape is approximated considering the 8 points corresponding to its corners.

The box starts floating in the air having its CoM positioned in WpG =

(0, 0, 1.0)m. Then, we let the box fall due to gravity over a plane inclined by

20° so that the box slides down in the direction of the x axis. In this setting,

we perform three experiment each characterised by a different coefficient of

friction µ. We simulate this setting for 2.5 s using the RK4 integration scheme
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Figure 7.4: Evolution over time of the sliding box experiment’s data. From top to
bottom, the first plot shows the x component of the CoM position, the
second plot shows the x component of the CoM velocity, and the third plot
shows the profile of the applied external force to the CoM frame G.
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Figure 7.5: Comparison of the box’s CoM trajectory simulated with the proposed
soft-contact model and the Mujoco simulator, considering a coefficient of
friction (a) µ = 2, (b) µ = 0, (c) µ = 0.5.
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Table 7.1: Mujoco configuration considered in the experiments of the sliding box on
inclined surface matching as close as possible the setting and properties
of our soft-contact model. Refer to the official documentation at https:
//mujoco.readthedocs.io for a detailed explanation of the options.

Property Value

timestep 0.001

integrator RK4

solver Newton

iterations 50

cone elliptic

friction (µ, 0, 0)

solref (−1e6, −2000)
condim 3

with a step size of 1ms. For validation purpose, we simulate the same setting

with the Mujoco simulator configured with comparable physics parameters,

reported in Table 7.1. In particular, Mujoco provides a similar spring-damper

soft-contact model that we can consider as ground truth.

In the first experiment, we consider an extremely large µ = 2.0 so that we can

assess how the selected stiffness k and damping λ affect the landing over the

inclined plane without accounting for major sliding effects. From Figure 7.5a,

it can be noticed that the falling trajectories due to gravity overlap perfectly

until the impact. After the impact, the y position of both boxes always remains

constant, showing that in both cases the generated tangential forces do not

have any y component. In our soft-contact model this means that no material

deformation occurs in this direction, as expected. The x and z components,

although not matching perfectly due to the different formulation of the soft

contacts –mainly due to Equation (7.9)– are sufficiently close and show the

same qualitative behaviour.

In the second experiment, we consider a friction-less simulation with

µ = 0. In this setting, our soft-contact model only produces normal forces

proportional to the penetration depth. The friction cone cannot be evaluated

and no tangential forces are produced, therefore the only possible regime is

sliding. Figure 7.5b reports the trajectories of the two falling boxes, showing in

this case almost a perfect match between our soft-contacts model and Mujoco.

In the third experiment, we consider a realistic coefficient of friction µ = 0.5.

The combination of this coefficient of friction with the inclination of the terrain

https://mujoco.readthedocs.io
https://mujoco.readthedocs.io
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has been selected for reaching a steady sticking regime after an initial sliding

regime right after the impact. Figure 7.5c shows the trajectories of the two

boxes. Also in this case, after the impact, both simulations correctly do not

produce tangential forces in the y direction. The x and z components, similarly

to the µ = 2.0 case, do not match perfectly but also in this case show the same

qualitative behaviour where the box transitions from the sliding to a steady

sticking regime approximately at t = 1.2 s.

All three experiments show that the proposed contact model behaves simil-

arly to the ground truth represented by the soft-contact model implemented in

the Mujoco simulator. The qualitative behaviour always look alike, although

the trajectories do not necessarily match quantitatively. The main reason for

the numerical mismatch is twofold. First, the formulation used to compute

the normal force differs from Equation (7.9). This difference propagates also to

the tangential component since the sticking-slipping boundary is a function

of the normal force. Furthermore, the methodology to compute the contact

force is completely different. In fact, we use a continuous contact model that

introduces an additional state to the ODE describing the dynamics of the

multi-body system. Mujoco, instead, at each time step solves a constrained

quadratic optimisation problem. Further details on the internal details of

Mujoco contacts can be found in [Emanuel Todorov, 2014; Vousten, 2022; Yoon

et al., 2023].
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7.6 conclusions

In this chapter, we described how to model a floating-base multibody system

interacting with a non-flat surface. This formulation lays the fundamentals

of a physics engine, capable of simulating the evolution of such systems in

time. We introduced a point-surface soft-contact model to compute the forces

exchanged between points belonging to the links of the multibody system

and a non-flat terrain, assuming to know its height profile at any point in

space. This assumption simplifies the collision detection process, requiring just

trivial geometrical assessments. The main benefit of our collisions and contacts

modelling is the possibility of obtaining an extended state-space representation

that includes both the dynamics of the multibody system and the dynamics

of the contacts. The contact-aware evolution of the system can be derived by

any numerical integration scheme. We validated the dynamical system in two

simplified settings. In the first one, we considered single bodies interacting

with a flat terrain, showing the continuity of the soft-contacts model and the

switching between the sticking and slipping regimes. In the second one, we

considered non-flat terrain, showing the trajectory of a box falling over an

inclined plane characterised by different coefficients of friction. While sphere

and box collisions might seem trivial examples, they often represent the typical

collision shapes adopted to simulate robot’s feet.

The final contact-aware dynamical system combined with the point-surface

collision detection logic presents different limitations, especially when com-

pared to implementations provided by general-purpose simulators. Our solu-

tion does not support detecting collisions between different bodies and does

not consider joint limits and other types of constraints. To address the former,

more advanced geometrical processing is necessary for detecting all ranges of

collisions between points, primitive shapes, edges, surfaces, etc. For the latter,

instead, it is possible to introduce an additional phase in the simulation step

that computes the generalized forces to apply to the system for enforcing those

constraints.



8 S C A L I N G R I G I D - B O DY S I M U L AT I O N S

In this final chapter, we provide our most recent results for addressing the problem

of generating synthetic data for robot planning and control. As an initial attempt,

in Chapter 5 we proposed the Scenario APIs and the Gym-Ignition framework that

exploited the general purpose simulator Gazebo Sim to sample trajectories for

training policies with RL. In Chapter 6, we have validated the framework proposing

a scheme that, with experience sampled from Gazebo Sim, was able to train a RL

policy capable of balancing a humanoid robot by adopting different push-recovery

strategies for compensating external disturbances. We have observed that such a

pipeline was characterised by long training times, and identified the simulator as

the main bottleneck.

In this chapter, we propose our final simulation architecture for maximising

the sampling performance of synthetic data for robot locomotion applications.

Starting from the contact-aware state-space representation proposed in Chapter 7,

we introduce state-of-the-art RBDAs for obtaining the terms forming the multibody

EoMs and computing the forward dynamics function FD(M,q, ν, τ , fL) used in the

ẋ(t) definition of Equation 7.12 and Equation 7.13. Excluding inverse dynamics,

that we formulate as the true inverse of the forward dynamics also for floating-base

systems, the implementations of the other RBDAs contain only minor differences

compared to the reference formulation presented by Featherstone [2008]. Beyond

being denoted with the notation introduced in Chapter 2 that makes explicit

the reference frame of quantities like 6D velocities and 6D forces, we provide

a unified implementation for both fixed-base and floating-base robots, and our

inverse dynamics extends its acceleration to force mapping also to the base link.

In the second part of this chapter, we propose jaxsim, a new physics engine in

reduced coordinates that, thanks to the implementation of these algorithms in

jax, enables running rigid-body simulations on modern hardware accelerators

like GPUs and TPUs. In fact, the problem of the previous architectures was not

really the general-purpose simulator, but the limited parallel capabilities of CPUs

in which it was executed. The RBDAs presented at the beginning of this chapter

enable the combination of model-based algorithms with applications requiring

high sampling rates like RL. They have been implemented such that they can be

executed transparently on any supported hardware.

171
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8.1 floating-base rigid-body dynamics algorithms

In previous sections, we described how the dynamics of a floating-base

system interacting with a non-flat terrain surface can be described, and

how its evolution over time can be obtained through numerical integration.

When we introduced the state-space representations, in Equation (7.7) and

Equation (7.13), we used the forward dynamics function FD(·) to describe the

dynamics of the floating-base system velocity ν. We also mentioned that it can

be calculated by inverting the following EoM, already defined in Equation (7.4):

M(q) ν̇ + h(q, ν) = Bτ + J⊤
L (q) f extL , (8.1)

by assuming the knowledge, at any integration step, of the floating-base

version of the mass matrix M(q), the bias-vector h(q, ν), and the Jacobians

matrix JL(q). Calculating the forward dynamics from the EoMs involves the

inversion of the mass matrix that, depending on the number of the number

of DoFs, could be computationally expensive when performed in a simulation

loop. Furthermore, depending on the selected integrator, it might be needed

to evaluate the system’s dynamics multiple times for each simulation step,

computing and inverting M(q) at every evaluation.

Starting from the 80’s, efficient iterative algorithms have been proposed

to compute the quantities forming Equation (8.1) [Featherstone, 2008]. In

this section, we provide an adaptation of such algorithms using the notation

introduced in Chapter 2. We will particularly focus on two operations called

forward dynamics and inverse dynamics, where the latter is the inverse of the

former.

Definition 8.1.1 (Forward Dynamics). Forward dynamics allows to compute

the acceleration ν̇ of the multibody systemM given the position q, the velocity

ν, the generalised input joint forces τ , and the external link forces f extL . It can

be described with the following function:

ν̇ = FD(M,q,ν, τ , f extL ).
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Definition 8.1.2 (Inverse Dynamics). Inverse dynamics allows to compute the

joint torques τ to apply on the multibody systemM to produce a desired

acceleration ν̇ starting from the system’s position q and velocity ν together

with the link external forces f extL . It also calculates the 6D force W fB that,

when applied to the base link, explains the component of the base acceleration
WaW,B part of ν̇ that is not due gravitational effects nor external forces. It can

be described with the following function:

(W fB, τ ) = ID(M,q, ν, ν̇, f extL ).

Beyond contact-related functionality, forward dynamics is the only necessary

function for implementing a rigid-body simulator in reduced coordinates.

However, we will see that inverse dynamics is necessary to compute all the

terms forming the multibody EoMs (8.1). In fact, the most straightforward

implementation of forward dynamics involves isolating ν̇ from Equation (7.4).

This computation, however, can be optimised by exploiting the sparsity of the

kinematic tree that describes the multibody system. We will also present an

algorithm that can efficiently compute forward dynamics by exploiting an

iterative approach.
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8.1.1 Implementation differences

The algorithms introduced in the next sections are an adaptation of those presented

by Featherstone [2008]. Compared to the reference algorithms, our implementation

contains the following modifications:

1. We present unified algorithms that work on both fixed-base and floating-base

models. We allow specifying a custom pose of fixed-base models, and assume

their base velocity and acceleration to be zero.

2. We use the notation of 6D quantities introduced in Chapter 2 that makes explicit

the reference frame of 6D quantities like velocities, accelerations, and forces.

3. All the input and output quantities are expressed in inertial representation, with

the exclusion of the mass matrix M(q) and the Jacobian JL(q) that are computed

for efficiency reasons in body-fixed representation. Section 2.8.5 provides the

transformations to apply for changing the velocity representation of the computed

quantities.

4. We assume the modelM only containing joints with 1 DoF. As a consequence, all

joint quantities s, ṡ, s̈, τ ∈ Rn, where n = NB − 1.

5. If the model description contains fixed joints, we assume they can be removed

from the kinematic tree through a lumping process. If links P and C are connected

with a fixed joint, the lumping process replaces the link pair (P,C) with an

equivalent link P̃ associated to the frame of P , having an equivalent 6D inertia

P̃
MP̃ = PMP + PX

C
CMC

CXP .

6. The floating-base RNEA implemented in Featherstone [2008, Section 9.5] is not a

proper ID function as it was defined in Definition 8.1.2, since it treats the base

acceleration as an output instead of being an input. In other words, the reference

FD and ID are not inverse functions. In fact, the reference implementation is

presented as a hybrid-dynamics problem, where the base acceleration is computed

through a forward pass. Our RNEA implementation instead accepts as additional

input the acceleration of the base WaW,B , that forms the first six elements of

the generalized acceleration W ν̇. We assume this acceleration being provided

externally, either measured or estimated if applied on real robots. Our algorithm

returns the 6D force W fB that, when exerted on the base link together with the

optional external forces, produces the provided base acceleration. The effects of

gravity are handled internally.
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8.1.2 Model specification

The information about the kinematics, the inertial properties of all links, and the

joint types, are included in the model specificationM34:

1. The numbering of the links follows the scheme introduced in Section 2.8.1,

starting from the index 0 assigned to the base link. The base link B is selected

when parsing the model description, and it is the root of the kinematic

tree. NB is the total number of bodies belonging toM. When applied to

fixed-base models, the algorithms ignore their base link dynamics.

2. The parent-to-child transforms λ(i)Hi for all links L ∈ {L/B}. We denote

the link frames with the link index, i.e. 0H1 denotes the transform between

link 0 and link 1.

3. The parent array λ(i) that, given a link with index i, returns the index of its

parent link.

4. The array κ(i) that, given a link L with index i, returns the joints connecting

all links of the path πB(L).

5. The 6D inertia of all links ML, expressed in link frame.

6. For each joint i, connecting the link pair (λ(i), i),M includes the velocity

transformation pre(i)Xλ(i) that locates the predecessor frame pre(i) of joint i

from the frame λ(i) of its parent link (refer to Figure 2.1 for a visual feedback).

7. The type of all joints, retrieved through the jtype(·) function from the joint

index.

8. A function jcalc(·) accepting a joint type and a joint position s ∈ R that

returns the motion subspace S and the joint velocity transform suc(·)Xpre(·)

corresponding to the given joint position (refer to Figure 2.1 for a visual

feedback).

It is worth noting that all these quantities are constant, thereforeM is immutable.

In the algorithm listings, we use a superscript (·)M to mark these constant model

quantities.

34 All information included in the model M could be directly computed from model descriptions
like SDF, URDF, MJCF, etc.
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8.1.3 Remarks

In the algorithm listings of the next sections, we use the following notation and

assumptions:

1. The relation between the transformation of 6D forces and 6D velocities is

AX
B = BX⊤

A. When needed, we often exploit the relation λ(i)X
i = iX⊤

λ(i).

2. If g ∈ R+ is the gravitational acceleration, we denote the corresponding 6D

acceleration as Wag = (0; 0;−g;03) ∈ R6.

3. Kinematic and dynamic quantities are propagated between links connected

with joints with the relations introduced in Section 2.7. Regarding joint

accelerations, we assume the presence of joints with only 1 DoF and a

constant motion subspace, resulting to Equation (2.22) and the considerations

reported in Definition 2.7.3.

4. We use 1-based indexing for vectors and matrices. This means that, if

A ∈ Rn×m, the top-left element isA(1,1) and the bottom-rightA(n,m). Selectors

of multiple elements use the : delimiter, for example A(1:3,1:3) is the top-left

3 × 3 block, and A(1:3,1) its first column. Note that, while this notation

simplifies pseudocode, it requires a careful implementation with 0-based

array libraries.

8.1.4 CRBA: Composite Rigid Body Algorithm

The Composite Rigid Body Algorithm (CRBA) is an efficient algorithm that

computes the body-fixed mass matrix MB(s) defined in Equation (2.29) having

the following structure, already discussed in Remark 2.8.3:

MB(s) =

BM(s) F (s)

F⊤(s) H(s)

 ∈ R(6+n)×(6+n).

A reference of the CRBA for fixed-base and floating-base systems can be

found in [Featherstone, 2008, Section 6.2 and Section 9.4]. Algorithm 1 reports

a unified version of the CRBA for both floating-base and fixed-base systems. It

calculates the body-fixed mass matrix MB(s), that in this representation only
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depends on the shape s. The knowledge of the mass matrix is the first element

that allows the calculation of the forward dynamics from the system’s EoMs.

The algorithm takes the following inputs:

• M: the model containing the multibody system constant data;

• s ∈ Rn: the joint positions of all joints belonging to the multibody system;

and provides the following output:

• M ∈ R(6+n)×(6+n): the floating-base mass matrix in body-fixed velocity

representation.

The resulting mass matrix can be converted to other velocity representations

with the change of coordinates introduced in Section 2.8.5.

Algorithm 1 Composite Rigid Body Algorithm
1: inputs (M, s)
2: Mc

0 = MM
0

3: 0X0 = I6
4: for i = 1 to NM

B do ▷ Propagate kinematics
5: [iXpre,Si] = jcalc(jtype(i), si)
6: iXλ(i) =

iXpre
preXM

λ(i)

7: iX0 = iXλ(i)
λ(i)X0

8: Mc
i = MM

i ▷ Initialize composite inertia
9: M = 0(6+n)×(6+n)

10: for i = NM
B to 1 do

11: Mc
λ(i) = Mc

λ(i) +
iX⊤

λ(i) M
c
i
iXλ(i)

12: ▷ Compute Mjj ◁
13: Fi = Mc

iSi

14: M(i+6,i+6) = S⊤
i Fi

15: j = i
16: while λ(j) ̸= 0 do
17: Fi =

jX⊤
λ(j)Fi

18: j = λ(j)
19: M(i+6,j+6) = F⊤

i Sj

20: M(j+6,i+6) = M(i+6,j+6)

21: ▷ Compute Mjb and Mbj ◁
22: Fi =

jX⊤
0 Fi

23: M(i+6,1:6) = F⊤
i

24: M(1:6,i+6) = Fi

25: M(1:6,1:6) = Mc
0 ▷ Compute Mbb

26: output M
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8.1.5 RNEA: Recursive Newton-Euler Algorithm

The RNEA is an efficient algorithm that computes the inverse dynamics of a

multibody system:

τ = ID(M,q,ν, ν̇, f extL ).

A reference of the RNEA for fixed-base and floating base systems can be found in

[Featherstone, 2008, Section 5.3 and Section 9.5]. Algorithm 2 reports a unified

version of the RNEA for both floating-base and fixed-base systems. It calculates

the joint torques to be applied to the multibody system to produce the provided

acceleration starting from a given position and velocity. In particular, it takes

the following inputs:

• M: the model containing the multibody system constant data;

• s, ṡ, s̈ ∈ Rn: the positions, velocities, and accelerations of all joints

belonging to the multibody system;

• WXB ∈ R6×6: the velocity transform from the base link B to the world

link W ;

• WvW,B ∈ R6: the inertial-fixed velocity of the base link B;

• WaW,B ∈ R6: the 6D inertial-fixed intrinsic acceleration of the base link

B that, considering the reference frame, corresponds to the apparent

acceleration WaW,B = W v̇W,B ;

• W f extL ∈ RNM
B ×6: the matrix stacking, for all NM

B links belonging to the

model, their corresponding external force W f exti ∈ R6 is expressed in

world coordinates;

• Wag ∈ R6: the gravitational 6D acceleration;

and provides the following outputs:

• τ ∈ Rn: the generalized forces of all joints belonging to the multibody

system;
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• f0 ∈ R6: if the model is floating base, the 6D force W fB that, applied to

the base link, produces the real acceleration WaW,B provided as input,

or zero if fixed-base.

RNEA can also be used to efficiently compute other components of the EoM

necessary to compute the forward dynamics. In fact, the following relations

hold: 

g(q) = ID(M,q,06+n,06+n,06nL)

h(q, ν) = ID(M,q, ν,06+n,06nL)

C(q, ν) ν = h(q, ν)− g(q)

.

This implementation provides such quantities in inertial-fixed representation,

and can be converted to the other ones using the change of coordinates

provided in Section 2.8.5.

Algorithm 2 Recursive Newton-Euler Algorithm

1: inputs
Ä
M, s, ṡ, s̈,WXB ,

WvW,B ,
WaW,B ,W fextL ,Wag

ä
2: 0XW = BXW ▷ Initialise base transform
3: 0X0 = I6
4: f0 = 06

5: if floating then ▷ Initialise base quantities
6: 0X

W = 0X−⊤
W

7: v0 = 0vW,0 = 0XW
WvW,0

8: ā0 = 0āW,0 = 0XW (WaW,B −Wag)
9: f0 = BfB = MM

0 ā0 + v0×̄∗ MM
0 v0 − 0X

W
W fext0

10: for i = 1 to NM
B do ▷ Forward pass

11: ▷ Compute parent-to-child transform ◁
12: [iXpre,Si] = jcalc(jtype(i), si)
13: iXλ(i) =

iXpre
preXM

λ(i)

14: ▷ Propagate link velocity and acceleration ◁
15: vi =

ivλ(i),i =
iXλ(i) vλ(i) + Siṡi

16: āi =
iāλ(i),i =

iXλ(i) āλ(i) + Sis̈i + vi×Siṡi
17: ▷ Start propagating link force ◁

18: iX0 = iXλ(i)
λ(i)X0

19: iX
W = (iX0

0XW )−⊤

20: f i = if i = MM
i āi + vi×̄∗ MM

i vi − iX
W

W fexti

21: for i = NM
B to 1 do ▷ Backward pass

22: τi = S⊤
i f i

23: if λ(i) ̸= 0 or floating then ▷ Finalize link force propagation
24: fλ(i) = fλ(i) +

iX⊤
λ(i) f i

25: outputs (τ , f0)
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8.1.6 Free-floating Jacobian

The free-floating Jacobian of a link E ∈ L, already defined in Definition 2.8.8

has the following block structure:

Y JW,E/X(q) =

ï
Y XX

Y SB,E(s)

ò
.

The relevant equations to compute the Jacobian matrix for fixed-base and

floating-base systems can be found in [Featherstone, 2008, Section 4.1 and

Section 9.5]. Algorithm 3 reports a unified version for the computation of

the left-trivialized floating-base Jacobian for left-trivialized system velocities
EJW,E/B . The following relation provides the intended usage that highlights

the correct representations:

EvW,E = EJW,E/B(q)
Bν.

Note that using these representations for input and output velocities, the

free-floating Jacobian does not depend on base variables. The algorithm takes

the following inputs:

• M: the model containing the multibody system constant data;

• s ∈ Rn: the joint positions of all joints belonging to the multibody system;

• idx(Li) ∈ 0 ∪ N: the index of the link of the returned Jacobian;

and returns the following output:

• J ∈ R6×n: the free-floating Jacobian of the link Li.

Algorithm 3 Floating-base doubly-left Jacobian
1: inputs (M, s, Li)
2: 0X0 = I6
3: for i = 1 to NM

B do ▷ Propagate kinematics
4: [iXpre,Si] = jcalc(jtype(i), si)
5: iXλ(i) =

iXpre
preXM

λ(i)

6: iX0 = iXλ(i)
λ(i)X0

7: J = 06×(6+NM
B )

8: J(1:6,1:6) =
LiX0 ▷ Compute Jb

9: for i = 1 to NM
B do ▷ Compute Js

10: if i ∈ κM(Li) then
11: J(1:6,6+i) =

LiX0
0XiSi

12: output J
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8.1.7 ABA: Articulated-Body Algorithm

Given a modelM, the forward dynamics computation is defined with the

following signature:

ν̇ = FD(M,q,ν, τ , f extL ).

As we already mentioned earlier in this chapter, forward dynamics can be

computed by inverting the EoM:

ν̇ =

aW,B

s̈

 = M−1(q)
î
Bτ − h(q, ν) + J⊤

L(q) f
ext
L
ó
.

The previous algorithms provide all the necessary components for this compu-

tation.

The computation and inversion of M , depending on the number of the

system’s DoFs, could be expensive. The ABA is an efficient iterative algorithm to

compute the forward dynamics. A reference for fixed-base and floating-base

systems can be found in [Featherstone, 2008, Section 7.3 and Section 9.4].

Algorithm 4 reports a unified version of ABA for both floating-base and fixed-

based systems. It takes the following inputs:

• M: the model containing the multibody system constant data;

• s, ṡ ∈ Rn: the positions and velocities of all joints belonging to the

multibody system;

• τ ∈ Rn: the generalised forces of all joints belonging to the multibody

system;

• WXB ∈ R6×6: the velocity transform from the base link B to the world

link W ;

• WvW,B ∈ R6: the inertial-fixed velocity of the base link B;

• W f extL ∈ RNM
B ×6: the matrix stacking, for all NM

B links belonging to the

model, their corresponding external force W f exti ∈ R6 is expressed in

world coordinates;
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• Wag ∈ R6: the gravitational 6D acceleration;

and provides the following outputs:

• s̈ ∈ Rn: the accelerations of all joints belonging to the multibody system;

• WaW,B ∈ R6: if the model is floating base, the 6D inertial-fixed intrinsic

acceleration of the base link B that, considering the reference frame,

corresponds to the apparent acceleration WaW,B = W v̇W,B .

For simulation purposes, forward dynamics is the only necessary function to

implement, and ABA provides an efficient option. Considering the state-space

system introduced in Equation (7.7), we can now define the state variables x

and it derivative ẋ as:

x(t) =

q
ν

 =



à
WpB

WQB

s

í
à

WvW,B

WωW,B

ṡ

í

,

ẋ(t) =

q̇
ν̇

 =



à
B[W ]vW,B

1
2 S

(
BRW

WωW,B

)
WQB

ṡ

í
Ö

WaW,B

s̈

è

.
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Algorithm 4 Articulated Body Algorithm

1: inputs
Ä
M, s, ṡ, τ ,WXB ,

WvW,B ,W fextL ,Wag
ä

2: 0XW = BXW ▷ Initialise base transform
3: 0X0 = I6

4: if floating then ▷ Initialise base quantities
5: 0X

W = 0X−⊤
W

6: v0 = 0vW,0 = 0XW
WvW,0

7: MA
0 = MM

0

8: pA
0 = v0×̄∗ MA

0 v0 − 0X
W

W fext0

9: for i = 1 to NM
B do ▷ Pass 1

10: ▷ Compute parent-to-child transform ◁

11: [iXpre,Si] = jcalc(jtype(i), si)
12: iXλ(i) =

iXpre
preXM

λ(i)

13: ▷ Propagate link velocity ◁

14: vJ = Siṡi

15: vi =
ivλ(i),i =

iXλ(i) vλ(i) + vJ

16: ci = vi× vJ

17: MA
i = MM

i ▷ Initialise articulated-body inertia
18: ▷ Initialise articulated-body bias forces ◁

19: iX0 = iXλ(i)
λ(i)X0

20: iX
W = (iX0

0XW )−⊤

21: pA
i = vi×̄∗ Mi vi − iX

W
W fexti

22: for i = NM
B to 1 do ▷ Pass 2

23: ▷ Compute intermediate results ◁

24: Ui = MA
i Si

25: Di = S⊤
i Ui

26: ui = τi − S⊤
i p

A
i

27: ▷ Compute the articulated-body inertia and bias forces of this link... ◁

28: Ma
i = MA

i −UiU
⊤
i D

−1

29: pa
i = pA

i + Ma
i ci +UiD

−1
i ui

30: if λ(i) ̸= 0 or floating then ▷ ... and propagate them to the parent
31: MA

λ(i) = MA
λ(i) +

iX⊤
λ(i) M

a
i
iXλ(i)

32: pA
λ(i) = pA

λ(i) +
iX⊤

λ(i)p
a
i

33: if fixed then ▷ Set world gravity
34: ā0 = − 0XW

Wag

35: else ▷ Consider base acceleration without gravity
36: ā0 = −(MA

0 )
−1pA

0

37: for i = 1 to NM
B do ▷ Pass 3

38: ▷ Propagate link accelerations and compute joint accelerations ◁

39: aai = iXλ(i) āλ(i) + ci

40: s̈i = D−1(ui −U⊤ aai )

41: ai = aai + Sis̈i

42: WaW,B = 0

43: if floating then ▷ Add gravitational effects
44: WaW,B = WX0 ā0 +

Wag

45: outputs
(
s̈,WaW,B

)
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8.1.8 Soft-contacts Algorithm

Most of the algorithms listed in this chapter accept a matrix W f extL ∈ RNM
B ×6

containing the 6D forces applied to each link of the model. These external

forces are the sum of two components: the forces that could be applied to the

links by the user, and the forces corresponding to active contacts with the

terrain surface.

Algorithm 5 provides the implementation of the soft-contacts model in-

troduced in Section 7.3 to compute the contact force corresponding to each

collidable point ofM. Assuming the knowledge of the location of each col-

lidable point w.r.t. the frame of their associated link, we can compute their

position Wpcp and mixed linear velocity C[W ]vW,C with forward kinematics

from the pair (q, ν). The algorithm takes the following inputs:

• Wpcp ∈ R3: the position of the contact point in world coordinates;

• W ṗC ∈ R3: the linear velocity of the contact point, that matches the linear

component of the mixed velocity C[W ]vW,C ∈ R6 of frame C;

• Wm ∈ R3: the compounded tangential deformation of the terrain associ-

ated to the contact point;

• K,D ∈ R+: the parameters of the spring-damper model used for both

the normal and tangential force calculation;

• µ ∈ R+: the coefficient of friction of the contact point;

• H : R2 → R: a function returning the terrain height zT at given (x, y)

coordinates;

• S : R2 → R3: a function returning the normal of the surface n̂ at given

(x, y) coordinates35;

and provides the following outputs:

• W f cp ∈ R6: the 6D force computed by the soft-contacts model;

• W ṁ ∈ R3: the derivative of the tangential deformation of the terrain

material associated to the contact point.

35 Under the assumption of smooth terrain, an approximation of S could be calculated from H, i.e.
S(x, y) = f (H(x, y))
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In order to optimise performance, the algorithm can be vectorised to process

all the collidable points belonging to the model.

Algorithm 5 Soft contact

1: inputs
Ä
Wpcp,

W ṗC ,
Wm,K,D, µ,H,S

ä
2: xcp, ycp, zcp = Wpcp

3: zT = H(xcp, ycp)
4: W ṁ = −(K/D)Wm ▷ Material relaxation dynamics
5: W f cp = 06

6: ▷ Compute normal force ◁
7: n̂ = S(xcp, ycp)

8: h = [0, 0, zT − zcp]
⊤

9: δ = max(0, h · n̂)
10: δ̇ = −W ṗC · n̂
11: f⊥ = max

Ä
0,
√
δ
Ä
Kδ +Dδ̇

ää
n̂

12: ▷ Compute tangential force ◁
13: f∥ = 03

14: if µ ̸= 0 and zcp < zT then
15: v⊥ =

Ä
W ṗC · n̂

ä
n̂

16: v∥ = W ṗC − v⊥

17: f∥ = −
√
δ(K Wm+D v∥) ▷ Compute sticking force

18: W ṁ = v∥
19: fcone = µ∥f⊥∥
20: if

∥∥f∥
∥∥ > fcone then ▷ Compute slipping force

21: f∥ =
(
fcone/

∥∥f∥
∥∥) f∥

22: W ṁ = −(f∥ +K
√
δWm)/(D

√
δ)

23: ▷ Compute 6D contact force in the world frame ◁
24: W f cp = WXC [(f⊥ + f∥)

⊤,0⊤
3 ]

⊤

25: outputs
(
W f cp,

W ṁ
)
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8.2 jaxsim

The previous sections described how we can model and simulate a floating-

base robot locomoting in an environment, and efficiently compute relevant

quantities useful, for example, for model-based control. For robot-learning

applications, and particularly the domain of RL, the execution of the dynamics

on CPU often represents the major bottleneck of the training pipeline. We can

identify two principal sources affecting performance in such setup:

1. CPUs can only run concurrently –albeit with great speed– a small number

of threads, that usually match the double of their physical cores;

2. When a training pipeline exploits GPUs for optimising its function ap-

proximators (in the form of NNs, for example), the data sampled from

the simulation has to be moved from the CPU to the GPU, incurring into

overheads related to the data transport.

In this section, we describe how to overcome these two limitations by intro-

ducing jaxsim, a highly scalable rigid-body simulator of floating-base systems

for robot locomotion research. We start presenting the main features cur-

rently implemented. Then, we assess its execution performance, its simulation

accuracy, and its parallelization capabilities when executed on CPU and GPUs.

8.2.1 Features

jaxsim is the first simulator in reduced coordinates implemented entirely in

Python that can be executed seamlessly on either CPU or modern hardware

accelerators like GPUs and TPUs. In Table 8.1, we compared some of the jaxsim

properties with other recent simulators briefly introduced in Section 4.2. Here

below a complete list of features of jaxsim:

• Physics engine implemented in reduced coordinates;

• Forward Euler, Semi-implicit Euler, and RK4 integrators;

• Collision detection between points associated with the model’s collision

shapes and a customisable smooth terrain surface;
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• Continuous soft-contacts model to compute interaction forces without

introducing friction cone approximations;

• Support of the complete set of link’s inertial parameters;

• Support of revolute, prismatic, and fixed joints;

• Support of SDF and URDF model descriptions36;

• Implemented in plain Python using the jax framework for fast develop-

ment and readability;

• Possibility to maximise runtime performance by JIT-compiling Python

code and executing physics transparently on CPUs, GPUs, and TPUs;

• Seamless integration with jax’s auto-vectorization capability for parallel-

izing simulation steps on hardware accelerators;

• High-level API for computing model-based kinematics and dynamics

quantities based on the algorithms presented in Section 8.1 and notation

introduced in Chapter 2.

Remark 8.2.1 (AD support). Being implemented with jax, gradients of the

simulation step w.r.t. any model or simulation parameters could theoretically

be computed. However, at the current stage of development, the AD support

of the algorithms and the simulator has yet to be properly assessed, and left

for future work.

36 https://github.com/ami-iit/rod

https://github.com/ami-iit/rod
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Table 8.1: Comparison of modern physics engines similar to jaxsim. [∗] jaxsim is developed with a differentiable framework, but this functionality has to be
finalised.

Software Language Coordinates CPU GPU TPU Differentiable Ground
Collisions

Body
Collisions

High-
level APIs

Open
Source

Tiny Differentiable Simulator
[Heiden et al., 2021] C++ Reduced ✓ ✓ ✓ ✓ ✓ ✓

Nimble Physics
Werling et al. [2021] C++ Reduced ✓ ✓ ✓ ✓ ✓ ✓

Nvidia ISAAC
Makoviychuk et al. [2021] C++ Reduced ✓ ✓ ✓ ✓ ✓

Dojo
Howell et al. [2022] Julia Maximal ✓ ✓ ✓ ✓

Brax
Freeman et al. [2021] Python Maximal ✓ ✓ ✓ ✓ ✓ ✓ ✓

jaxsim Python Reduced ✓ ✓ ✓ [∗] ✓ ✓ ✓
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Table 8.2: Specifications of the settings in which the benchmarks are executed.

Specification Laptop Workstation

Intel CPU i7 7700HQ Xeon Silver 4214
Nvidia GPU GeForce GTX 1050 Mobile Quadro RTX 6000
CUDA cores 640 4608

Operating system Ubuntu 20.04 Ubuntu 20.04
Nvidia driver 510.73.05 510.73.05

CUDA 11.2.2 11.2.2
cuDNN 8.2.1.32 8.2.1.32

jax 0.3.14 0.3.14
Gazebo Sim Fortress -

DART 6.10 -

8.2.2 Benchmarks

In this section, we evaluate the characteristics of jaxsim by performing some

benchmarks to assess its accuracy, performance, and scalability properties.

Table 8.2 reports the specifications of the machines in which the benchmarks

have been executed. The laptop is used for all the benchmarks, while the

workstation only for the scalability assessment.

Accuracy

In this section, we evaluate the simulation accuracy of jaxsim through the

astronaut simulation [Erez et al., 2015; Howell et al., 2022], in which a robot

model is simulated in a world without gravity. The experiment is composed

of two phases, both of which can be illustrated by Figure 8.1. In the first

phase, the model is actuated for 1 second with random torques starting

from a configuration with zero velocity and, therefore, zero momentum. The

simulation is performed with all lossy components (like joint friction) disabled,

therefore, due to momentum conservation, the momentum should remain zero

over the entire horizon. In the second phase, the model evolves for 100 seconds

without actuation from the configuration reached in the previous phase. Also

in this case, since there is no loss, the total mechanical energy of the system

(i.e. the sum of the kinetic and potential energies defined in Equation (2.15))

should remain constant over the entire horizon due to energy conservation.
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Figure 8.1: Sequence showing four time instants of the astronaut simulation used
for both the assessments of the momentum conservation and the energy
conservation. In the former experiment, the joints are actuated with
random torques, while in the latter, the joints are not actuated and evolve
in open-loop accordingly to their initial velocity.

We perform this experiment using the model of the iCub robot with a

configuration characterised by 23 of its DoFs. The experiment is executed

at different integration step sizes and with both the forward Euler and RK4

integrators. We compare the results against Gazebo Sim running with its default

DART physics engine. The two simulators use the same model description of

iCub. The random actuation applied in the first phase is generated by sampling

a torque for each joint from a uniform distribution τ ∼ U(−0.500, 0.500) Nm.

The torques trajectory is generated offline at the lowest simulated frequency

and up-sampled with zero-hold for higher frequencies. In order to get a fair

comparison between jaxsim and Gazebo, we enable the optional 64-bit support

of jax. The results of the momentum conservation and energy conservation

experiments are shown, respectively, in Figure 8.2 and Figure 8.3.

In the results of the first phase, it can be seen that in almost all configurations

the 6D momentum drifts from its initial value. Particularly, all configurations

show a more substantial drift in conjunction with larger integration steps. The

configuration of jaxsim with the RK4 integrator can outperform the other ones,

showing acceptable drifts with steps below 20 ms. Considering as acceptable a

drift of 0.1% after 1 s of simulation, also the forward Euler integration scheme

stepping at 0.001 s falls within this limit.

In the results of the second phase, a similar drift could be noticed in all

the tested configurations. Also in this case, jaxsim with the RK4 integrator

yields the lowest drift comparable to machine precision. The results of Gazebo
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Figure 8.2: Momentum drift after 1 simulated second of the iCub humanoid robot in
a world without gravity, starting from a configuration with zero velocity
and applying random joint forces. The plot shows the norm of the linear
and angular component of the momentum computed in inertial-fixed
coordinates. Gazebo Sim failed to simulate the configuration with the
100 ms step.

Sim and jaxsim with forward Euler integrating with a step size of 0.001 s are

comparable, while Gazebo Sim performs better in the configuration with the

larger 0.010 s step. The drift of jaxsim with the larger integration step 0.010 s

and the RK4 integrator are comparable to the other configurations integrating

with 0.001 s steps, highlighting the benefits of higher-order integration schemes

already discussed in Section 7.4.

An excessive increase of the integration step is generally not advisable also

for reasons not strictly related to the integration accuracy. In fact, the contact

detection routine has no control over the stepping strategy, and excessively

large steps could result in substantial instantaneous penetration depths that,

depending on the selected terrain stiffness, could produce unrealistically big

contact forces.
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Figure 8.3: Mechanical energy drift over 100 simulated seconds of the iCub humanoid
robot in a world without gravity, starting from a configuration with a
given generalized velocity.
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Performance

In this section, we evaluate the runtime performance of the Rigid Body

Dynamics Algorithms implemented in jaxsim against a state-of-the-art C++

implementation included in Pinocchio [Carpentier et al., 2015; Carpentier et al.,

2019].

We compute the total time necessary to compute the output of the CRBA,

RNEA, and ABA algorithms. To assess how much the execution time is affected by

the topology of the simulated robot, we consider three different robot models

with an increased number of DoFs. In particular, we benchmark the 9 DoFs fixed-

base Panda manipulator from Franka Emika, the 12 DoFs quadruped ANYmal

C from ANYbotics, and the humanoid iCub from IIT. Before running any test

with jaxsim, we call each algorithm one time so that it can get JIT compiled

since in this experiment we are interested in their runtime performance rather

than compilation time. For each bar in the plot, we first compute the mean time

taken by a single run of 1000 executions of the algorithms, and then report the

average over 10 of these runs. Figure 8.4 shows the resulting mean, where the

variance of the 10 runs has been omitted since it’s negligible for all algorithms.

The results are comparable for all three tested robot models. The execution

time of the jaxsim algorithms compared to the implementation of Pinocchio

are about 10 times higher when executed on CPU, and 100 times higher when

executed on GPU. These numbers are expected since Pinocchio algorithms are

implemented entirely in C++ and have been optimised for almost a decade.

Regardless, for all three robot models, the jaxsim algorithms executed on

CPU do not exceed 250 µs, making them compatible with a real-time loop

running at a target rate of 1 kHz, in which a model-based controller might have

to compute the mass matrix M(q) through CRBA and the bias forces h(q, ν)

through RNEA. Instead, the GPU execution of a single instance of the algorithms

exceeds 1 ms in most cases, making them incompatible with real-time usage.
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Figure 8.4: Benchmark of the RBDAs implemented in jaxsim against those implemen-
ted in Pinocchio. (a) shows the results of the 9-DoFs fixed-base Panda
manipulator from Franka Emika, (b) the results of the 12-DoFs quadruped
ANYmal C from ANYbotics, and (c) the results of the 32-DoFs humanoid
iCub from IIT. The execution of jaxsim’s algorithms run on average 10
times slower than Pinocchio when executed on CPU, and 100 times when
executed on GPU.
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Scalability

In the previous test, we assessed the performance of a single execution of

the benchmarked algorithms implemented in jaxsim. The major strengths of

jaxsim appear when the characteristics of hardware accelerators are exploited,

performing multiple executions in parallel. In this test, we evaluate the scalab-

ility of jaxsim by increasing the number of parallel instances exploiting the

auto-vectorization capabilities of jax. Instead of testing parallel calls of the

RBDAs, we consider a more practical scenario of a 1 ms simulation step with

the forward Euler integration scheme. We benchmark the performance on the

23 DoFs model of the iCub humanoid with 8 collidable points corresponding to

the vertices of the two boxes that model its feet collision shapes. We compute

the equivalent RTF of the parallel integration, which consists of the ratio between

the total simulated time and the time it took to compute it. For example, if

the parallel integration of 10 models takes 1 ms, the equivalent RTF is 10. A

higher RTF corresponds to a better sampling efficiency. This test is performed

on the same laptop as the previous tests, and also on a workstation with a more

powerful GPU, whose specifications are reported in Table 8.2. For each point in

the plot, we first compute the mean time of a single run over 100 integration

steps, and then report the average over 10 of these runs. The results of the CPU

and GPU executions are shown in Figure 8.5, where the variance of the 10 runs

has been omitted since it is negligible for all executions.

On the laptop setup, the integration step on CPU starts with a RTF greater

than 1 already with a single instance. A single CPU core is able to reach a RTF of

about 5 with 16 parallel models, showing some benefits of parallel integration

also on this type of hardware. With more than 16 models, increasing the

number of models does not give any benefit to the equivalent RTF as the

execution time grows linearly with the number of models. The integration

step of GPU starts with a lower RTF of 0.11. This effect is expected since a single

GPU core is typically less powerful than a CPU core. However, the parallel

integration on GPU is able to scale without showing any overhead until 128

models. The equivalent RTF on GPU peaks at a value of about 19 between 512

and 1024 parallel models. On this hardware, the 512-1024 range is justified by

the number of CUDA cores equal to 640.
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Figure 8.5: Comparison of parallelization performance of a simulation step executed
on CPU and GPUs. The simulated models are 23 DoFs replicas of the iCub
humanoid robot, and the simulation step length is 1 ms with a forward
Euler scheme. The time taken by the CPU scales mostly linearly with
the number of simulated models, while the GPUs are able to exploit the
parallel capability almost up to their CUDA cores (640 on the laptop, 4608
on the workstation). For each sample, we show the equivalent RTF. The
CPU cannot scale well over the number of models when integrating more
than 16 replicas. Instead, the GPUs show an interval that depends on their
parallellization capabilities in which the execution time is not affected
significantly by the number of integrated models. Also on GPUs, however,
the performance start degrading when the number of integrated models
exceeds the available CUDA cores.
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A similar trend is observed regarding the workstation GPU. Although being more

modern and powerful, the execution is slightly slower on this high-end GPU

compared to the laptop, starting from a RTF of 0.08. In this case, the GPU has

4608 CUDA cores. It can be noticed that the region in which the performance on

GPU scales horizontally without additional overhead is much larger, and start

flattening in the range 4096-8192, which also in this case is close to the number of

CUDA cores of the setup. The peak RTF of this high-end GPU is about 200.

8.3 validation

In this section, we perform a validation of jaxsim for generating synthetic data for

robot learning. We develop an environment exposing the gym.Env interface with

jaxsim, and show the sampling performance that can be reached by stepping

a large number of parallel environments on a laptop GPU. We then plug the

vectorized environment in a RL pipeline for training a policy with the PPO

algorithm. Finally, for presenting evidence that the data generated through the

methods proposed in this thesis can be used in an out-of-distribution setting, we

execute and evaluate the policy on a comparable dynamics simulated this time

with Mujoco.

The out-of-distribution validation is also known in the literature as sim-to-

sim [Salvato et al., 2021; Muratore et al., 2022; Bellegarda et al., 2021; Du et al.,

2021]. Given that one of the assumptions for an effective transfer is the availability

of a robust policy trained in the original setting, we consider as target task to learn

the swing-up of an underactuated cartpole. This task is similar to the canonical

benchmark of cartpole balancing [Brockman et al., 2016], in which the pole starts

from an almost balanced configuration and the actions space is discrete (selecting

either a positive of negative constant force to apply to the cart). This cartpole

balancing, however, is excessively simple, and it is not really representative of the

typical problems in robotics, usually characterised by continuous action spaces.

The swing-up task makes the policy learning much more difficult by starting

the episodes with an arbitrary pole position (also pointing down). This diversity

makes a big difference since it requires the policy to be considerably long-sighted,

to the extent to learn to perform some initial swing to build up momentum before

attempting to perform a proper balancing.

All experiments presented in this section have been executed on a laptop

whose specifications are reported in Table 8.3.
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Table 8.3: Specifications of the machine used to execute the validation experiments.
Specification Value

Intel CPU i7-10750H
Nvidia GPU GeForce GTX 1650 Ti Mobile
CUDA cores 1024

Operating system Ubuntu 22.04
Nvidia driver 530.41.03

CUDA 11.2.2
cuDNN 8.8.0.121

jax 0.3.15
Mujoco 2.3.5

Figure 8.6: Illustration of the cartpole model in the θ = d = 0 configuration.
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Table 8.4: Properties of the environment implementing the cartpole swing-up task.
Property Value
Integrator Semi-implicit Euler

Integrator step 0.0005 s
Environment step 0.050 s
Control frequency 20Hz
Action dimension 1

Observation dimension 4
Action space [−50, 50] N

Maximum episode steps 200

Parallel environments 512

Equivalent RTF 24.38

Table 8.5: PPO parameters for the the cartpole swing-up environment.
Parameter Value

Discount rate γ 0.95

Clip parameter ϵ 0.1

Target KL divergence 0.025

Learning rate α 0.0003

GAE parameter λ 0.9

Batch size 2560

Minibatch size 256

Number of SGD epochs 10

8.3.1 Sampling Experience for Robot Learning

The cartpole is a fixed-base model composed by a pole (shaped as a long

and thin cylinder) connected through an un-actuated revolute joint to a cart

(shaped as a box). The cart can move along a track, whose displacement is

simulated as a prismatic joint. The linear force corresponding to this prismatic

joint is the control input of the system. Figure 8.6 reports a visualisation of the

cartpole model.

observation The observation of the system is composed of the position and

velocity of both joints. If θ ∈ [−π, π] rad is the angle of the un-actuated

revolute joint (where θ = 0 is a balanced pole), d ∈ [−2.5, 2.5]m the

displacement of the prismatic joint, and ω = θ̇ the pole velocity, we can

define the observation as o = (d, ḋ, θ, ω) ∈ R4.
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action The action of the system is the linear force a = f ∈ [−50, 50]N

corresponding to the joint moving the cart. It’s worth noting that the

action is continuous and its magnitude is not large enough to accelerate

the cart and bring the pole in vertical position without swinging first.

environment details The environment simulates the physics with jaxsim.

We use a semi-implicit Euler integrator with a step of 500µs. After the

agent sets an action through the exposed gym.Env interface, we step the

environment for 0.050 s, therefore performing 100 physics steps each

time. The resulting control frequency, that is the update rate at which

the policy applies its actions, results equal to 20Hz. The environment

is implemented as a continuous control task with termination only

occurring if the observation is outside its space. In absence of termination,

episodes are truncated after 200 steps. All environment properties are

reported in Table 8.4.

reward The reward function used to learn the swing-up task is the following:

rt(st, at, st+1) =

ralive + rbalance − 0.001 caction − 0.1 cvel − 0.5 cdisplacement,

where ralive is set to 1.0 when the environment is not terminal and 0

otherwise, rbalance = cos θ rewards the pole to be in a balanced state

(characterised by θ = 0), caction = ∥τ∥ penalises large actuated forces,

cvel = ∥ṡ∥ penalises large joint velocities, and cdisplacement = |d| penalises

the cart to be far from the middle point of the track.

agent networks We want to train a policy with RL capable of bringing the

pole to a balancing position from any state belonging to the observation

space, and maintain the balance as long as possible. The agent is com-

posed of two neural networks corresponding to the actor –the policy–

and the critic –the return–, having two hidden layers with 512 neurons

each with ReLU activation function. The input layer of both networks has

a size of 4 (the observation dimension). The critic network has an output

layer with just one dimension corresponding to the return, correctly

bootstrapped from the value function is case of episode truncation. The
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actor network encodes a univariate Gaussian distribution (the environ-

ment action is a scalar), therefore it has one output corresponding to

the distribution mean and has a free parameter part of the optimisation

parameters corresponding to the logarithm of the distribution’s variance.

The variance is initialised with the value of log σ = log(0.05). The neural

networks are optimised with Adam [Kingma et al., 2017] using a learning

rate α = 0.0003.

algorithm For the same reasons explained in Chapter 6, we train the policy

with the PPO algorithm introduced in Section 3.4.3, configured with

the clip parameter ϵ = 0.1. We estimate the return from the advantage

computed with GAE, introduced in Section 3.4.2 as Rt = ÂGAE
t + Vt,

configured with λ = 0.9 and a discount rate γ = 0.95. We use the PPO

implementation of stable-baselines3 [Raffin et al., 2021] that, instead

of using a KL penalty, stops the training epochs when the approximated

KL divergence exceeds a given value. All the PPO parameters are reported

in Table 8.5.

sampling We optimise the policy by acquiring five samples from 512 paral-

lelised environments running on GPU, resulting to an equivalent RTF of

about 25 on the machine used to run the experiments. The number of

environments has been selected by choosing the best equivalent RTF of

the JIT-compiled vectorized gym.Env.step through a grid-search in the

Nenvs = 2p, p ∈ {1, 2, 3, . . . , 12} range. The collected batch of trajectories,

containing a total of 2560 samples and equivalent to about 2 minutes of

experience, is then split in 10 minibatches of 256 samples. We perform

10 optimisation epochs on the same batch of trajectories, that can be

interrupted earlier in case the approximated KL divergence w.r.t. the

distribution corresponding to the previous policy exceeds 0.025. Before

optimising the NNs of the agent, the collected observations and rewards

are normalized by computing a running mean and standard variance.

Finally, in order to obtain a more robust policy, we inject some Gaussian

noise with zero mean and σ = 0.05 to the actions before being applied to

the environment.
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Figure 8.7: Learning curves of the cartpole swing-up task. The plot reports the mean
and standard deviation of the average rewards r̂(k)t computed over k = 10
different training executions. For each individual training, the average
reward r̂t in the considered parallel setting is computed by averaging at
each time step the 512 rewards received from the vectorized gym.Env.step.

Figure 8.7 shows the learning curve of 10 trainings initialised with different

seeds. The policy is able to learn effective swing-up and balancing behaviours

in 500000 steps, corresponding to about 7 hours of equivalent experience. On

the machine used to run this experiment, each training runs for approximately

15 minutes. The reward grows mostly monotonically with a limited variance,

showing that the chosen parameters ensure stable policy updates, preventing

optimisation steps too large that would destroy the previously obtained

performance.
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Table 8.6: Mujoco properties used for the sim-to-sim evaluation of the trained cartpole
swing-up policy. Refer to the official documentation at https://mujoco.
readthedocs.io for a detailed explanation of the options.

Property Value

timestep 0.001

integrator RK4

solver Newton

iterations 100

contype 0

8.3.2 Sim-to-sim Policy Transfer

In this section, we attempt to evaluate the trained policy in an out-of-distribution

setting. This setting could represent any environment that differs from the one

where the policy has been trained. It serves as evidence that it’s possible to

deploy a policy obtained from training over synthetic data generated efficiently

by a parallel simulator into an equivalent environment running on a different

runtime. In particular, this experiment can be seen as a sim-to-sim policy

transfer.

Similarly to Section 7.5.3, we use the Mujoco simulator as out-of-distribution

setting. We translated the URDF of the cartpole model loaded in jaxsim in the

training environment to an equivalent MJCF that can be imported in Mujoco.

Then, we included in the same file the configuration of the physics engine,

whose parameters are reported in Table 8.6. The chosen parameters expose a

simulation characterised by the same control rate (20Hz), but in this case the

physics is simulated in a different simulator using an integrator of a different

family and different constraint solver.

The Mujoco environment is only used for producing the state-action tra-

jectory τ from a given initial observation o0, where the action is obtained

by performing inference of the trained policy. In order to perform a proper

exploitation of the policy, we sample deterministically by taking the inferred

mean of the Gaussian distribution described by the policy, i.e. at = µθ(ot).

The first evaluation we perform in this setting is a comparison between the

swing-up trajectory obtained by running the policy in the training environment

simulated with jaxsim and the out-of-distribution environment simulated

with Mujoco. In order to obtain a meaningful comparison, we consider as initial

https://mujoco.readthedocs.io
https://mujoco.readthedocs.io
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observation the cart resting in the center of its track and the pole pointing

down, both with zero velocity, i.e. o0 = (0, 0, π, 0). The two trajectories are

shown in Figure 8.8, where it can be noticed that the policy performance are

comparable in both simulators. The policy is able to succeed in the swing-up

task and the resulting trajectories in both simulators are almost identical.

As second evaluation, starting from the same initial observation o0 con-

sidered in the first evaluation, we assess the policy swing-up performance

on different variations of the cartpole environment simulated with the out-

of-distribution Mujoco. In particular, we modify some physical parameters

and evaluate whether the learned policy is robust enough to succeed in the

task. In the first variation, we double the mass of both the cart and the pole,

taking care to compute the new 3 × 3 inertia matrices corresponding to the

primitive shape of the bodies. In the second variation, in addition to the

increased masses, we include joint damping, i.e. a frictional force proportional

to the joint velocity that opposes the motion direction. For a revolute joint,

its contribution is τdamping = −kv θ̇. Figure 8.9 reports the curves simulated

in the out-of-distribution Mujoco simulator using out-of-distribution model

parameters. Despite the out-of-distribution environment, it can be seen that

the policy learned in a highly parallel setting simulated with jaxsim on GPU

succeeds in swing-up task. As it can be expected, the performance are affected

by the change of parameters. For example, the policy is able to reach the bal-

ancing state by using only one swing in the setting with nominal parameters.

Instead, in the two variations, the policy needs two swings.

It’s worth noting that the policy has been trained only using the nominal

parameters. Often, in order to obtain more robust policies, the inertial para-

meters of the simulated model become part of domain randomization. In our

case, we did not randomize any parameter.
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Figure 8.8: Sim-to-sim comparison of the trajectories obtained by exploiting the
swing-up policy learned in a jaxsim environment. The jaxsim curves
correspond to an in-distribution setting, where the policy is evaluated
in the same simulator that generated training data. Instead, the Mujoco
curves correspond to an out-of-distribution setting, where the policy is
evaluate in a simulator different from the one that generated training data.
Note that θ, due to its range, is projected in the [−π, π] range.
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Figure 8.9: Trajectories of the cartpole swing-up policy acting on the out-of-
distribution environment simulated in Mujoco. The nominal curves are
obtained by running the policy on a cartpole model having nominal
masses of both the cart and the pole, and with no joint damping. The mass
curves show the obtained trajectories with the model having the masses
of both bodies multiplied by 2x. The mass+damping curves are generated
in a setting that extends the mass one by also considering for both joints a
damping with kv = 0.015. Note that in this case, we removed the bounds
of the pole angle, showing more clearly the number of swings used by the
policy to reach the balancing state.
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8.4 conclusions

In this chapter, we proposed jaxsim, a new physics engine capable of executing

multibody simulations on modern hardware accelerators. jaxsim simulates the

dynamics of free-floating mechanical systems through a reduced coordinates

approach, therefore guaranteeing that joint constraints are never violated.

Regarding the interaction with the environment, it is currently capable of

detecting collisions between a smooth ground surface not necessarily planar

and points belonging to the collision shapes of the links. Being implemented

in reduced coordinates, it allows to efficiently compute all terms of the EoM

that are fundamental for model-based control at any simulated step. We have

validated its integration accuracy, obtaining either comparable or better results

than Gazebo Sim, depending on the adopted integration scheme. We also

benchmarked the RBDAs performance, finding that JIT-compiled Python code

on CPU runs 10 times slower compared to a state-of-the-art C++ implementation,

remaining in any case compatible with real-time usage. Nonetheless, the best

characteristics of jaxsim emerge when modern hardware accelerators are

exploited in highly parallel computations. We have shown that it can reach a

RTF of 20 on a laptop and 200 on a workstation. Applications requiring sampling

experience with high throughput such as those characterising RL research,

would benefit the most from these performances. Furthermore, generating

physics data directly in the same device where function approximators are

optimised would remove any overhead related to the data transfer from the

CPU. We intend to investigate these directions in future activities. Finally,

we trained a policy to solve a continuous control problem simulated with

jaxsim, providing details on the parallelization level that can be reached for

sampling synthetic data in a characteristic robot learning application. Then, to

provide evidence that it’s possible to deploy policies obtained from training by

sampling from highly parallel simulators, we performed a sim-to-sim transfer

and evaluated the policy performance on a out-of-distribution simulator and

physical parameters. The obtained RL setting is much simpler compared to

one adopted in Chapter 6. The possibility to parallelize sampling on hardware

accelerators removes the need to rely on distributed settings running on a

cluster of machines, that is difficult to create, maintain, and handle. A single-
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process application can deploy both sampling and NNs on the same GPU, with

no overhead related to network transport. Beyond being easier to deploy in a

HPC setting, this approach may lead to a faster development and prototyping.

jaxsim still presents multiple limitations in this first version. Firstly, the

shown performance were obtained in a setting where no exteroception was

necessary. Integrating basic rendering functionality would surely negatively

affect them. Furthermore, collisions between links are not yet supported,

limiting the adoption for robot manipulation. Finally, it does not yet allow

enforcing additional dynamic constraints like joint limits, and closed kinematic

chains. To conclude, although the automatic differentiation capability provided

by the jax framework has not yet been thoroughly tested with the jaxsim

algorithms, its combination with the smooth dynamics given by the contact-

aware state-space representation opens up exciting research directions that

will be explored in the future.



Not all those who wander are lost.

— J. R. R. Tolkien.

E P I LO G U E

summary

Part i introduced the reader to the fundamental concepts and notation used

throughout this thesis. In particular, Chapter 1 introduced robotic simulators,

describing their main components and properties, and provided a brief

description of the technologies that enabled the activities related to this

thesis. Chapter 2, after an initial overview of frame kinematics and rigid

body dynamics, derived the EoMs of a rigid multibody system describing the

dynamics of floating-base robots. Then, Chapter 3 provided a bird-eye view

of RL. With the goal of formulating the theory behind PPO, which is the RL

algorithm used in Part ii, this second background chapter first defined all

the elements necessary to formalise the RL problem, then it described the

taxonomy of the available algorithms available to compute a solution, and

finally provided the theory of policy optimisation.

The thesis continued with Part ii, describing the contributions to knowledge

of this thesis. The first two chapters analysed the challenges of creating

robotic environments for RL research for the aim of sampling experience.

Motivated by the fragmented state of the existing frameworks providing

environments for robotics and the desire to develop environments that could

run on either simulated or real-time runtimes without the need for major

refactoring, Chapter 5 presented Scenario and Gym-Ignition. Scenario (scene

interfaces for robot input/output) provides unified interfaces for entities part

of a scene like World and Model. Gym-Ignition, instead, provides abstraction

layers of different components that structure a robotic environment, like

the Task and the Runtime. The combination of the two projects enables

a modular development of environments for robotics, where the decision-

making logic could be implemented only once and executed transparently

209
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on all the supported runtimes, either simulated or in real-time. Furthermore,

the modular structure of Gym-Ignition isolates the boilerplate code of all

environments sharing a specific runtime, reducing code duplication and

speeding up the development by only focusing on the definition of decision-

making logic. We validated the overall learning pipeline in Chapter 6, where we

introduced the definition of the decision-making logic for training a RL policy

capable of synthesising whole-body push recovery strategies for the humanoid

robot iCub. The emergence of the policy’s final behaviours was guided by a

reward shaping approach that, while remaining within the model-free category

from the RL perspective, enabled the inclusion of prior information computed

from the model description of the robot.

To conclude, the last chapters of Part ii analysed the problem of the high

computational cost associated with the sampling of synthetic data from rigid

multibody simulations. Motivated by the long time required for training the

policy presented in Chapter 6, and the increased interest by the robot learning

community to offload and parallelize computation on hardware accelerators,

we proposed a simulation architecture to maximise the sampling performance

of simulated data for robot locomotion applications. Towards this aim, in

Chapter 7, we introduced a continuous state-space representation modelling

the contact-aware dynamics of floating-base robots. Assuming the knowledge

of the terrain surface’s smooth profile, and utilising a soft-contacts model

to compute the interaction forces for point-surface collisions, we obtained

a continuous ODE system that can be integrated numerically to simulate

its dynamical evolution over time. Finally, exploiting this representation, in

Chapter 8 we presented jaxsim, a new physics engine capable to execute

simulations of floating-base robots entirely on hardware accelerators like GPUs

and TPUs. We adapted widely used Rigid Body Dynamics Algorithms to run

in this context, formulating them with the notation introduced in Chapter 2.

Their definition was unified to be applicable also on fixed-based robots. We

have benchmarked, among other properties, the scalability of jaxsim when

executed on GPUs, showing its potential when experience sampling can be

performed with large parallelism.
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discussions, limitations, and future work

To conclude the thesis, we provide final discussion pointing of each contribution

to knowledge, outlining pitfalls and future work directions.

Chapter 5: Reinforcement Learning Environments for Robotics

The proposed framework, composed of Scenario and Gym-Ignition, was

initially aimed to be applicable to both simulated and real-world robots. We

started the development of the simulation backend in late 2018, when we

decided to leverage the Gazebo Sim general-purpose simulator that, at that

time, did not even reach its first major release. Considering the status of RL

research for robotics in the same period, which was mainly performed either

in PyBullet or the closed-source Mujoco, we saw the potential to obtain a

complete, open-source, and actively maintained simulator to base our research.

The possibility to extend the simulator through custom plugins, the support of

integrating third-party physics engines, the new architecture allowing to use it

as a library through programmatic calls, and the knowledge and infrastructure

already developed for its predecessor Gazebo Classic, were all appealing to

the direction we envisioned for our research. The Gazebo Scenario backend

enabled us to experiment with our first RL problem described in Chapter 6,

whose concluding details will be discussed in the next section. The framework

remains a valid alternative to the other options freely available online, especially

nowadays since Gazebo Sim reached almost feature parity with its predecessor.

Upstream activities are currently ongoing to bridge Gazebo Sim with Nvidia

Omniverse and the Isaac simulator, expecting significant advances particularly

regarding rendering capabilities. Considering the limitations of newer domain-

specific solutions like those presented in Chapter 8, general-purpose simulators

will remain the standard when perception is required for the aim of sampling

synthetic data for RL-based robotics research. Nonetheless, our Gazebo Scenario

backend still has limitations. Our APIs do not yet support the sensor interfaces

of Gazebo Sim, therefore their data can only be gathered from the network, a

solution that does not ensure the reproducibility of sampled data. Considering
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the generic Scenario project, instead, after we refocused the research project to

rely mainly on simulations, the activities of a real-time backend to communicate

with YARP-based robots like the iCub remained on hold since. The possibility

of running the same environment implementation on both simulated and

real-world robots is an interesting solution for sim-to-real research, and it

will be considered for future activities. From the Gym-Ignition point of view,

instead, limitations are less impactful. The framework is generic enough for

developing most categories of robotic environments. What is still missing

is a collection of canonical examples and benchmarks similar to the robotic

environments provided by OpenAI. Access to a new collection would help

the community to have a more diverse range of environments that, thanks to

Gazebo Sim, could run on any physics engine supported by the simulator.

Chapter 6: Learning from scratch exploiting robot models

In this chapter, we proposed a scheme to train a policy with RL for balancing a

simulated humanoid robot in the presence of external disturbances, sampling

synthetic data from the framework proposed in the previous chapter. We

adopted a process based on reward shaping to guide the state space exploration

throughout the training phase. Starting from a simple reward structure, we tried

to address undesired behaviour by iteratively adding new terms, until its final

form. We decided to control most of the DoFs of the iCub robot, acknowledging

that the kinematics is highly redundant, and the policy optimisation could have

stalled to local optima. Parameter tuning is paramount for these applications,

and details are too often left out from research discussions. For tuning our

reward function (for each term, its weights and kernel parameters), we adopted

a heuristic method in which we analysed the learning curves of individual

terms of the reward, tuning the sensitivity of the corresponding kernel if the

algorithm was not improving its performance, and then balancing the weight

to obtain the desired trade-off among all the reward terms. Nonetheless, each

experiment was days long on powerful workstations, and parameter tuning

resulted in a long and, at some point, quite extenuating process. Much work

also went into the training infrastructure, leveraging a cluster of machines



epilogue 213

and implementing the proper experiment deployment, with logging and

synchronisation support.

Beyond the training process, our results also show limitations, particularly

when possible future sim-to-real applications are considered. Our control ar-

chitecture relies on a policy providing velocity references, which are integrated

and given as inputs to independent pid joint controllers, generating the final

joint torques actuated by the simulator. Beyond being difficult to tune with

performance comparable to those of the real-world counterpart, the low-level

pid controllers present a trade-off between accuracy and compliance. In our

experiment, the position pid controllers resulted in a stiff robot, that together

with rigid contacts, limited the emergence of a natural, smooth, and more

human-like behaviour. We think two different directions can be considered for

improvements. As a first direction, pid controllers could be replaced by a single

whole-body controller that typically exploits the information of the model

dynamics. It would consider the entire robot as a whole and possibly reduce

the differences from real robots. However, they are more complex to design,

more computationally expensive, and making them work reliably on all the

robot configurations allowed by the state space of the MDP is difficult. A second

direction could consider different policy outputs (joint torques, velocities,

positions, etc.), which means a different nature of the high-level trajectory.

Previous studies [Peng et al., 2017; Reda et al., 2020] on the subject were not

conclusive, and the choice of the action space remains highly related to the type

of the decision making logic. In both cases, a change in policy output and its

corresponding action space could have major effects on exploration. Common

RL algorithms for continuous actions usually learn a distribution from which

actions are sampled during the training process for exploration purposes. The

typical choice is a multivariate Gaussian distribution, but it does not play well

with bounded spaces. Other studies have found other distributions like the

Beta [Chou et al., 2017] that might behave better in this context.

Studies investigating robot control with RL could be considered part of the

bigger umbrella of trajectory optimisation, in which applications like push-

recovery and locomotion are instances. As reviewed in Section 4.1, applications

targeting quadrupeds already managed to successfully target real robots. The

situation for real bipeds, instead, from when our research project started
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in 2018, didn’t progress noticeably. The gap between the latest simulated

results [Peng et al., 2022] and the few ones targeting real-world robots [Castillo

et al., 2021; Li et al., 2021; Rodriguez et al., 2021; Bloesch et al., 2022] is still

wide. Common characteristics of these studies are either the usage of large

simulations with techniques of domain randomization and imitation learning,

or the usage of curriculum learning and the introduction of non-ideal effects

in simulation like actuation delays.

In view of this discussion, for locomotion purposes, we think that imitation

learning could provide a suitable trade-off between exploration guidance,

avoidance of local minima, and learning stability. Future activities will focus

on integrating novel motion generation techniques [Viceconte et al., 2022]

within RL environments. Practitioners working in RL applied to robotics must

be aware that this field suffers from most of the challenges that have been

identified by the community [Dulac-Arnold et al., 2021], and can learn from

their successes and failures [Ibarz et al., 2021].

Chapter 7: Contact-aware Multibody Dynamics

This chapter proposed a state-space representation modelling the dynamics

of a floating-base robot in contact with a ground surface, which can be

integrated numerically over time to compute the trajectory of the system.

Being formulated in reduced coordinates, the system dynamics is forced to

evolve enforcing the joint constraints. While being quite generic and providing

a compact formulation applicable to any articulated structure, it presents

different limitations. The collision detection corresponding to the contact

model considers only points rigidly attached to the links and a smooth

ground surface. Despite being able to approximate generic collision shapes

like arbitrarily complex meshes, the cost of collision detection grows linearly

with the number of considered points. For what regards primitive shapes,

better methodologies based on geometrical properties exists, and would be

much more efficient (think, as an example, the simple case of a sphere, that

now has to be approximated with dozens or hundreds of points). With these

methodologies in place, the implemented logic could also be extended to detect

collisions between bodies, enabling the applicability to neighbour domains like
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robot manipulation. Another direction of possible improvements regards the

integration schemes. As shown in the benchmarks of Chapter 8, the forward

Euler scheme is the fastest (and simpler) integrator, but its accuracy is not as

good as what is achieved by the RK4 scheme. Other common methods often

used in similar physics engines, like semi-implicit and implicit schemes, could

provide performance similar to RK4 at a cost comparable to forward Euler.

Finally, the state-space representation, in its default form, does not allow to

enforce bounds to state space variables, useful for example to enforce joint

position limits. Common workarounds involve the introduction of penalty-

based continuous forces [Xu et al., 2022], or introducing exogenous variables

mapping the unbounded joint positions to a bounded range. Future work will

address all these limitations, extending the supported use-cases for the physics

engine proposed in Chapter 8.

Chapter 8: Scaling Rigid Body Simulations

In this last chapter, we presented and benchmarked jaxsim, a new physics

engine in reduced coordinates capable of executing rigid-body simulations on

modern hardware accelerators, including CPUs, GPUs, and TPUs. It is based on

jax, a new framework developed by Google that, thanks to its properties, is

experiencing a quick and wide adoption in diverse domains. Its key features

are the possibility to compile kernels developed in Python with a JIT approach,

auto-vectorization support, NumPy compatibility, and high-order AD support.

All these features are inherited by jaxsim, whose algorithms can be executed

with all the benefits of the underlying technology. jaxsim, however, also

inherits the limitations of jax. The need to compile code at its first execution

could take several minutes, depending on the complexity of the logic and

the active hardware acceleration. The GPU and TPU backends of jax are much

more optimised compared to the CPU backend, that nonetheless, despite

longer compiling time, is able to run code faster than plain Python. We have

not yet optimised our algorithms aggressively to improve compilation time,

especially because we expect to see soon caching support of compiled code.

Regarding scalability, our benchmarks considered two GPUs with 640 and 4608

CUDA cores. The potential of executing code on these types of hardware,
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when the problem permits parallelization, becomes year after year more

appealing considering the technological progress. For example, the newest

Nvidia GPU architecture comes with more than 10 thousand CUDA cores.

Furthermore, jax also supports multi-GPU configurations, but setting them up

is more complicated and requires small changes to the implemented logic. To

conclude the discussion on the features related to jax, our algorithms are not

yet compatible with its AD capability. The activities to assess the support and

implement AD support are ongoing, and we expect they will enable us to start

investigating all the new emerging methodologies involving differentiable

simulations.

Other activities planned for the near future involve enhancing the RL stack

built over jaxsim. The combination of an environment interfacing with jaxsim

and RL algorithms implemented in jax results in a single application whose

data never leaves the hardware accelerator. Therefore, beyond the sampling

performance of parallel simulations, the complete pipeline would also prevent

the data transfer overhead that is always present when some computation has

to happen on CPUs. In Section 8.3, we provided a continuous control validation

by sampling from a cartpole environment simulated entirely on GPU. However,

we used an existing PPO implementation not developed in jax, therefore it

was not possible to compile in JIT the entire collection of the batch but only

an individual parallelized sample. Future work will continue this activity,

extending the investigation to contact-rich locomotion problems. Finally, we

would like to embed these environments in Gym-Ignition, creating a new

jaxsim Scenario component, so that all the benefits of future real-time backends

could be applicable on jaxsim experiments. Towards this goal, Gym-Ignition

should switch to the upcoming functional version of gym.Env that has been

recently proposed upstream.



epilogue 217

Machines are so stupid;

if you instruct them to perform a task perfectly, they will do it.

conclusions

In modern times, having access to a large amount of data and massive compu-

tational power has become paramount for succeeding in any context related to

machine learning and, more generally, artificial intelligence. In this thesis, we

considered the challenging domain of robotics, focusing on locomotion ap-

plications for humanoid robot planning and control. Throughout the chapters,

we explored how modern technology could help us generate synthetic data

considering the domain-specific characteristics and limitations of the targeted

application. We believe that, particularly in this domain, the infrastructure

plays such an essential role to the extent that those possessing a large enough

technological advantage would stand out with ease. We hope to have helped

readers reaching this final paragraph understand the challenges and research

directions that are still necessary to obtain the next generation of robots cap-

able of seamlessly operating around us. Simulation technology is evolving

rapidly. We believe that future progress that will inevitably characterise the

next decades is going to set aside the real breakthroughs long awaited by

all robotic practitioners. We can not wait to keep contributing with all the

enthusiasm that characterised the activities carried out for this thesis.
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A C E N T E R O F P R E S S U R E

In this section, we provide the intuition and equations for computing the CoP

of a rigid body. A practical example is the computation of the CoP of a robot

foot modelled as a body having the shape of a box, as illustrated in Figure A.1.

Let us assume the following properties:

• We assume a flat terrain with a normal n̂ = (0, 0, 1) ∈ R3. Therefore, the

normal remains constant over the entire surface supporting the body.

• We consider the existence of k external 6D forces f1, f2, . . . , fk ∈ R6

applied to different points of the body.

• We introduce an unknown frame C = (WpCoP , [W ]) corresponding to

the CoP with WpCoP belonging to the supporting surface. The flat terrain

assumption implies that the z axis of the C frame is normal to the terrain.

Definition A.0.1 (Center of Pressure). The CoP is the point WpCoP ∈ R3

belonging to the rigid body’s supporting surface to which a pure linear force

WfCoP ∈ R3 can be applied to produce the equivalent effects along the normal

direction of all the external 6D forces.

x

y

z

W

W feq =
(
Wfeq, Wmeq

)
F1
f1

F2
f2

F3
f3

WpCoP

CfCoP = (CfCoP , CmCoP ) = (CfCoP , 03)

n̂

f⊥
CoP

f∥
CoP

Figure A.1: Illustration of the setting in which the CoP is calculated.
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As first step, we need to combine all the external forces, computing a single

equivalent 6D force W f eq ∈ R6. If the external forces are expressed in W , the

equivalent force is just the sum of external forces W f eq =
∑

i W f i. Instead,

if they are are expressed in a local frame Fi = (Wpi, [W ]), assuming the

knowledge of the application point, we can use the transform introduced in

Equation (2.11):

W f eq =

Wf eq

Wmeq

 = s
∑
i

WXFi
Fi
f i.

We can project the equivalent 6D force into the normal and tangential compon-

ents with respect ground:

W f eq =

Wf⊥
eq + Wf

∥
eq

Wmeq

 =

Wf⊥
eq

Wmeq

+

Wf
∥
eq

03

 = W f⊥eq + W f∥eq,

where we grouped the equivalent angular component Wmeq with the perpen-

dicular term. The linear component of the equivalent perpendicular force can

be computed as:

Wf⊥
eq = (Wf eq · n̂) n̂ =


0

0

f⊥z
eq

 .

The point associated to the CoP can now be obtained by solving for WpCoP the

following equation that expresses the equivalent 6D force into the CoP and

enforces it to be a pure linear force by setting the resulting angular component

to zero:

CfCoP =

CfCoP

03

 = CX
W

W f⊥eq =

Ö
I3 03

−Wp∧
CoP I3

è W f⊥eq

Wmeq


=

 W f⊥eq

W f⊥eq × WpCoP + Wmeq

 .
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where we used the relation CoW = −WpCoP . We can rearrange the second

equation as follows:

Wmeq =


mx

eq

my
eq

mz
eq

 = Wf⊥
eq × WpCoP =

à
0 −f⊥z

eq 0

f⊥z
eq 0 0

0 0 0

í
pxCoP

pyCoP

pzCoP


and finally resolve for WpCoP :

WpCoP =


my

eq/f⊥z
eq

−mx
eq/f

⊥z
eq

0

 .

This result can be extended to different terrain normals through geometrical

transformations. The most impacting difference would regard the frame

corresponding to the CoP, defined as C = (WpCoM , [W ]). If the terrain has

a different normal, the orientation of the frame should still be considered a

known value but, this time, obtained by the properties of the surface.
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