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Abstract

Problems in many theories axiomatised by unit equalities (UEQ), such as groups,
loops, lattices, and other algebraic structures, are notoriously difficult for auto-
mated theorem provers to solve. Consequently, there has been considerable
effort over decades in developing techniques to handle these theories, notably
in the context of Knuth-Bendix completion and derivatives. The superposition
calculus is a generalisation of completion to full first-order logic; however it
does not carry over all the refinements that were developed for it, and is there-
fore not a strict generalisation. This means that (i) as of today, even state of
the art superposition provers, while more general, are outperformed in UEQ by
provers based on completion, and (ii) the sophisticated techniques developed
for completion are not available in any problem which is not in UEQ.

In particular, this includes key simplifications such as ground joinability,
which have been known for more than 30 years; however previous complete-
ness proofs rely on proof orderings and proof reductions, which are not easily
extensible to general clauses together with redundancy elimination.

In this work we introduce a novel notion of redundancy of clauses and in-
ferences, and a proof of refutational completeness of the superposition calculus
wrt. this notion of redundancy. Then, we use it to derive a plethora of simplifica-
tion rules and redundancy criteria, including an extension of ground joinability,
which elegantly generalises this simplification from equational completion (in
UEQ) to superposition (over arbitrary clauses); and an extension of the con-
nectedness critical pair criterion to superposition. We also study the theory of
associative-commutative operators in particular, including deriving a stronger
notion of normalisation modulo this theory, and showing where demodulation
modulo AC can be applied while preserving refutational completeness.

Implementing these techniques efficiently is itself a non-trivial task, there-
fore we have proposed novel algorithms for tackling two key issues: the test
for ground joinability of two terms, and the scheduling of simplifications in a
given-clause loop.

We have implemented most of the techniques described herein in a theorem
prover, iProver, including the aforementioned novel algorithms, and evaluated
over the TPTP library with encouraging results.
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Lay abstract

Logic is a tool to model thought. By carefully laying out our premises and per-
forming rigorous logical deductions on them, we can minimise the chances of
error in our reasoning. Computers can help us by automating the process of
finding or checking solutions to logical problems.

However, solving problems purely by first-principles logical deductions can
be excruciatingly slow. While there exist computer programs which can —
theoretically — find a solution to any problem which has one, given enough
time and space, we find that they perform rather poorly on certain classes
of problems, or certain theories. In this work, we showed how reasoning in
equational theories can be simplified and accelerated, all the while retaining the
nice theoretical guarantees that if a solution exists, it will eventually be found.

This has value beyond the academic. For instance, we know that computer
bugs are a source of security issues, billions of pounds of damages annually, and
even real-life hazard to people. But those computer systems themselves obey
logical rules. By specifying the properties we wish a program to have (e.g. that
it has no bugs of a certain type) in a suitable logical language, we can attempt
to prove that a given program, as written, obeys those properties. Those proofs
would be totally unfeasible to check by hand (and we would always have to trust
that the human who checked them did not make any mistake), but automated
reasoning software can tackle even very large tasks and either produce proofs
of correctness, or else point out where the mistake is.

In this work we improve the state of the art of this problem through several
novel theoretical contributions. We propose algorithms for computing those the-
oretical results. Finally, we also implement them in a theorem proving program,
and show some experimental results.
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This table summarises the notation used throughout this work. Unless otherwise
noted, the symbols on the left — possibly super- and sub-scripted and primed —
denote the objects on the right.

Symbol Meaning

s, t, u, v, l, r Terms
p, q Atoms, literals
C,D Clauses
e Expressions: term, atom, literal or clause
θ, σ, ρ Substitutions
f, g, h Function symbols, with arity > 0

a, b, c Constant symbols, with arity = 0

x, y, z, w Variables
> Total order (strict)
≻ Partial order (strict)
⪰ Preorder (non-strict)
s≈ t Positive equality literal
s ̸≈ t Negative equality literal
s ≈̇ t Either of the latter two
¬p Negation of a literal
eθ Application of substitution θ to expression e

e · θ Closure with expression e and substitution θ

e[l 7→ r] Replacement of all occurrences of l in e by r

▷ Subterm relation
⊐ Encompassment relation
|= Semantic implication
|− Syntactic implication
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Outline

In Chapter 1 we give an introduction to the research field and how it relates to
the topic of our work, discuss motivation and practical applications, and give
a brief summary of the major contributions in this dissertation. In Chapter 2
we give a self-contained exposition of the necessary background material, and
establish the notation, conventions, and definitions to be followed throughout
the work.

In Chapter 3 we introduce the definition of closure redundancy, a novel and
more powerful notion of redundancy than is employed in existing treatments of
superposition. This is based on a rigorously defined family of orderings on clos-
ures. We then present a proof of refutational completeness of the superposition
calculus with respect to closure redundancy. In Chapter 4 we apply the results
of the previous chapter to derive numerous new simplification rules, including
some stronger versions of existing rules, and some which have never before
been used in superposition. These include ground joinability and connectedness,
as well as specialised rules for associative-commutative operators.

In Chapter 5 we discuss some further issues related to implementation, in-
cluding algorithms for performing these simplifications in practice, how they
should be scheduled, how to choose a term ordering, etc. In Chapter 6 we
analyse some experimental results from implementing the techniques herein
described in a state-of-the-art theorem prover.

Finally, in Chapter 7 we summarise the main results and discuss future work.
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Chapter 1

Introduction

All men are mortal. Socrates was mortal.
Therefore, all men are Socrates.

Unknown

Formal logic is the study of abstract formal systems intended to model thought,
reasoning, arguments, deduction, and other similar notions. As a discipline of
philosophy, logic has been studied for millennia, but modern formal logic has its
roots in the mid-19th-century work of Boole, Frege, and many others. Nowadays,
systems of formal logic are not only of interest for their own sake, as objects of
study in pure mathematics, but also find applications in many different fields.
Such systems include propositional logic, predicate logic, various modal logics,
and other less mainstream systems such as intuitionist logic, many-valued or
fuzzy logic, non-monotone logic, etc.

First-order logic is a particularly interesting system, being expressive enough
to conveniently formalise theories and problems in a wide variety of domains
(being Turing-complete), but not so powerful that it loses many nice metalogical
properties, such as semi-decidability. Perhaps most notably, it is the foremost
language of mathematics (e.g. being suitable for formalising arithmetic and vari-
ous algebraic structures, and also being the language of ZFC [Jech 2006], an
axiomatic theory of sets which forms the most common foundation of mathem-
atics). In this work, we will be almost exclusively concerned with first-order
logic and its fragments.

Automated reasoning is a field of mathematics and computer science con-
cerned with algorithms for performing logical deductions and other tasks in

21



1. Introduction

a given system of formal logic. While it is an old ambition to reduce human
thought to mechanical manipulation of symbols,1 it was only after the advent
of modern digital computers that the theory of automated reasoning could be
finally put into action. Nowadays, the theory and practice of automated reas-
oning has produced: efficient decision procedures for propositional logic [Silva
and Sakallah 1999; Eén and Sörensson 2003], even when augmented with non-
quantified real and integer arithmetic [Moura and Bjørner 2008; Barbosa et al.
2022], complete semi-decision procedures for first-order logic [Robinson and
Voronkov 2001] and for higher-order logic with Henkin semantics [Bhayat and
Reger 2020; Bentkamp 2021; Vukmirović et al. 2022], proof checkers and proof
assistants for higher-order calculi [Nipkow, Paulson and Wenzel 2002], and
many other developments. It continues to be an area of active and thriving
research.

Automated reasoning can be broadly divided into two main areas:

• Automated theoremproving, where the focus is on algorithms and soft-
ware for performing tasks in a logic system (proving conjectures, finding
models, verifying properties, etc.) without any human intervention.

• Interactive theorem proving, where the focus is on algorithms and
software to verify the correctness of a formal proof written by a human
in a specific formal language.

In this work, we are concerned only with automated theorem proving, specific-
ally for first-order logic.

Applications

Automated theorem proving has numerous practical applications. First-order
automated reasoning can be (and has been) applied in numerous fields, from soft-
ware and hardware verification [Clarke, Khaira and Zhao 1996; Klein et al. 2009;
Khasidashvili, Korovin and Tsarkov 2015; Georgiou, Gleiss and Kovács 2020],
to natural language processing [Fellbaum 1998], explainable medical diagnoses
[Hommersom, Lucas and Bommel 2005], semantic queries on large knowledge

1Leibniz famously suggested, centuries before computers were a reality, that if rigorous
rules of reasoning are laid out and imprecise language is abstracted away, then verifying that
an argument is correct could be accomplished by purely mechanical manipulation of symbols,
as in an algebraic problem.
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bases [Niles and Pease 2001], and solving long-standing open problems in pure
mathematics.2

Broadly speaking, automated reasoning is useful for problems which can be
formalised in a reasonably convenient fashion in a given logical language, but
which are yet too complex or open-ended to have a specialised algorithm.

Software and hardware verification are especially important applications
which fit this description nicely. It is feasible, for example, given the source
code of a program and a formalisation of the programming language semantics,
to check whether the program as written matches a certain formal specification
(such as verifying it never reaches some failure state). This has been used to
achieve a complete formal verification of a microkernel which today is used
in millions of devices such as modems [Klein et al. 2009]. In another example,
given a description of a hardware circuit and the function that it is meant to
implement, automated reasoning can check whether there are bugs where the
circuit does not agree with the target function. This is routinely used in modern
chip design.3

Furthermore, a recurring theme in automated reasoning is the usage of al-
gorithms for weaker/simpler logics as subroutines in algorithms for stronger
logics. For example, Inst-Gen [Korovin 2013] is a procedure for first-order logic
which is based around approximating the problem by a propositional problem
(propositional satisfiability being much easier to solve than first-order satisfiab-
ility), which is then passed to a propositional solver; depending on the result,
Inst-Gen can either conclude an answer to the first-order problem or keep refin-
ing the approximation. In another example, the AVATAR architecture employs
a propositional solver to manage the splitting of first-order clauses, to great
experimental success [Voronkov 2014].

Just as first-order provers rely on SAT solving subroutines, Isabelle/HOL,
an interactive theorem prover for higher-order logic, uses first-order and pro-
positional provers to attempt to discharge a proof or proof step without user

2Two famous examples are the four-color problem, which was reduced by human mathem-
aticians to 1982 cases, which were all proven by computer SAT solving [Appel and Haken 1989],
and the Robbins algebra problem, which was solved by a first-order equational prover running
for 8 days straight [McCune 1997]. Both problems had eluded mathematicians for decades.

3In 1994, a hardware bug in the implementation of floating-point division in Intel CPUs
led to $863 million in losses for the company in the subsequent recall (2022 dollars). After this
widely-publicised incident, interest in formal verification of hardware took a marked uptick
[Clarke, Khaira and Zhao 1996].
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1. Introduction

intervention (the “Sledgehammer” proof tactic [Blanchette et al. 2016]). This
is a highly convenient way for users of interactive theorem provers to auto-
mate much of the tedious work involved in formal proofs. Sledgehammers have
as much as >40% success rate in proving theorems in the Mizar math library
[Hales 2014], saving huge amounts of manual work.

What this means is that improvements in, for example, first-order logic the-
orem proving benefit not only first-order theorem proving directly, but also in-
directly improve higher-order theorem provers that build on the former. Hence,
the results presented in this dissertation impact both the direct applications of
our work, but also those of the tools which build on it.

1.1 First-order theorem proving

We will assume that the reader has a sufficient background in automated reas-
oning. In this section we will present the main problem which motivates our
work; we do so by briefly covering the relevant history of automated reasoning
and the current state of affairs of first-order equational theorem proving (see e.g.
Bachmair and Ganzinger 1998; Bonacina 2022 for a more thorough review). We
discuss the shortcomings in that state of affairs, and how our work addresses
some of those issues.

Efforts to automate deduction in first-order logic have been ongoing since
even before digital computers existed. In the first half of the 20th century
there were numerous developments on the metamathematics of first-order logic,
spurned by Hilbert’s program for a consistent, complete, and finite axiomatic
foundation of mathematics [Zach 2019], including the 1929 discovery that Pres-
burger arithmetic (natural numbers with + and =) is decidable [Presburger
1929], meaning in principle an algorithm could determine whether any sen-
tence is true or false in that theory, and the 1931 discovery that any sufficiently
strong consistent axiomatic first-order theory (such as Peano arithmetic or ZF
set theory) is necessarily incomplete, meaning some formulas are not in the
theory and neither is their negation [Gödel 1931]. The seminal Herbrand’s the-
orem, and the notions of Herbrand universe and Herbrand interpretation, also
date from that time [Herbrand 1930].
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1.1. First-order theorem proving

Resolution

In 1965, Robinson formulated the resolution rule for first-order logic using syn-
tactical unification [Robinson 1965]. Resolution had previously been described
for propositional logic, as the following inference rule

p ∨ C ¬p ∨D

C ∨D
, (1.1)

meaning from two clauses with an opposite sign atom we can infer that conclu-
sion. The clauses in (1.1) are composed of boolean atoms, and only used in the
context of first-order logic via naı̈ve application of Herbrand’s theorem (i.e. via
the explicit instantiation of first-order clauses into propositional clauses). Robin-
son’s breakthrough approach instead formulates the resolution rule directly on
first-order clauses via the notion of most general unifier. For two (first-order)
clauses p∨C and ¬q∨D, where p and q are two unifiable atoms, the first-order
resolution rule is simply

p ∨ C ¬q ∨D

(C ∨D)θ
,

where θ is the most general
unifier of p and q.

(1.2)

In an intuitive sense, a first-order resolution inference, by using the most
general unifier to instantiate only as far as needed to resolve the clauses, can
represent a potentially infinite number of propositional resolution inferences
done on ground instances of its two premises, in a single step [Bachmair and
Ganzinger 2001].

Robinson showed that exhaustive application of this rule, together with
factoring,4 is refutationally complete, in the sense that it will derive a contra-
dictory clause (the falsum) in a finite (but arbitrarily large) number of steps if
one exists, and is consequently a semi-decision procedure for the validity/entail-
ment/unsatisfiability problem in first-order logic. This was a major step forward
in first-order automated reasoning, and resolution still forms the basis of many
first-order theorem provers on non-equality clauses [McCune 2003; Weidenbach
et al. 2009; McCune 2010; Kovács and Voronkov 2013; Duarte and Korovin 2020,
etc]. Later, it was shown that ordering constraints and redundancy criteria can
be used to further restrict the inferences needed, while maintaining refutational
completeness [Bachmair and Ganzinger 2001].

4The inference p ∨ q ∨ C |− (p ∨ C)θ where θ is the most general unifier of p and q.
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1. Introduction

However, the following theory poses a particular challenge. Consider a
binary symbol ≈, and the following axioms

∀x. x≈ x (1.3a)
∀xy. x≈ y ⇒ y ≈ x (1.3b)

∀xyz. x≈ y ∧ y ≈ z ⇒ x≈ z (1.3c)

and, for each function f and predicate p,

∀x1 . . . xn y1 . . . yn.
∧
i

(xi ≈ yi)⇒ f(x1, . . . , xn)≈ f(y1, . . . , yn) (1.3d)

∀x1 . . . xn y1 . . . yn.
∧
i

(xi ≈ yi) ∧ p(x1, . . . , xn)⇒ p(y1, . . . , yn) (1.3e)

The theory axiomatised by (1.3) is the theory of equality, without a doubt the
single most important and commonly-occurring theory in first-order logic.

Unfortunately, it is also ill-suited to resolution; its axioms are extremely
prolific: at the very least (1.3b–c) unify with any occurrence of the ≈ predicate
and (1.3d) and (1.3e) unify with any occurrence of a function and predicate
symbol respectively. It is apparent that this is a significant hurdle, since a huge
number of re-combinations of the axioms and other trivial facts will quickly
swamp the search space of a prover applying resolution on equality problems.
This lead to significant research efforts to overcome this limitation [Bachmair
and Ganzinger 1998]

Equational completion

In a different field, Knuth and Bendix proposed a groundbreaking algorithm
for solving the word problem for an abstract algebra [Knuth and Bendix 1970].
The word problem simply asks: “Given two terms and a set of equations, are
the terms equal modulo the equations?”. Knuth-Bendix completion tries to
solve this by computing from the equations an equivalent set of rewrite rules
having the property that two terms are equal iff they have the same normal
form wrt. those rewrite rules. The computation of this set may succeed or fail.
If it succeeds, the word problem is easily decided for that set of equations: we
can simply reduce two terms to their normal forms and check if they are equal.

The main ingredients of the Knuth-Bendix procedure are (i) the computation
of critical pairs, and (ii) the notion of a reduction order on terms. The reduction
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order5 is used to orient equations into rewrite rules for the system. Then, if there
are any critical pairs between rewrite rules, they need to be explicitly added as
new equations, as per a deduction rule

l→ r s[u]→ t

sθ[lθ 7→ rθ]≈ tθ
,

where θ is the most general unifier
of l and u (a subterm of s which is
not a variable), l ≻ r, and s ≻ t.

(1.4)

This procedure can be used for equational theorem proving, even when this pro-
cess would be would be infinite, by simply reducing both goal terms during the
completion procedure, wrt. the rewrite system obtained thus far, and stopping
when the normal forms of both sides are equal. In this sense, Knuth-Bendix
completion computes an approximation of a convergent rewrite system and suc-
cessively refines it. However, if at any point it encounters an equation it cannot
orient, the procedure fails.

To get around this problem, the variant of unfailing completion [Hsiang and
Rusinowitch 1987; Bachmair, Dershowitz and Plaisted 1989] instead approxim-
ates ground convergence, by using instead orientable instances of the equations
as rewrite rules,

l ≈ r s[u]≈ t

sθ[lθ 7→ rθ]≈ tθ
,

where θ is the most general unifier
of l and u (a subterm of s which is,
not a variable), lθ ⪯̸ rθ, and sθ ⪯̸ tθ,

(1.5)

which is sufficient for theorem proving. Unfailing completion is a semi-decision
procedure: if the terms are equal modulo the starting equations, unfailing com-
pletion will eventually obtain a sufficiently strong rewrite system to reduce
both terms to the same normal form, and conversely, if it terminates without
reducing the terms to the same normal form, then they are not equal modulo
the starting equations.

An important point to note is that in addition to this “core” inference rule,
there are also inferences for simplifying and deleting rewrite rules [Bachmair,
Dershowitz and Plaisted 1989; Martin and Nipkow 1990; Bonacina and Hsiang
1995; Löchner and Hillenbrand 2002]. Just as redundancy criteria are vital for the
efficiency of resolution, these simplification rules are also crucial for ensuring
equational completion’s practical effectiveness for purposes of theorem proving.

5A partial order with certain properties such as well-foundedness and monotonicity [Baader
and Nipkow 1998].
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Superposition

In short, resolution provides us with a semi-decision procedure for first-order
logic, while equational completion gives us a (rather efficient) semi-decision
procedure for proving unit equational conjectures. Is it possible to combine
these two ideas into a system which provides a semi-decision procedure for
first-order logic which is also efficient for dealing with the theory of equality?
The answer is yes, the superposition inference system [Bachmair and Ganzinger
1994] achieves exactly this, the core rule being

l ≈ r ∨ C s[u] ≈̇ t ∨D

(s[u 7→ r] ≈̇ t ∨ C ∨D)θ
,

where θ is the most general
unifier of l and u (not a
variable), lθ ⪯̸ rθ, and sθ ⪯̸ tθ,

(1.6)

plus two more local rules to ensure refutational completeness.6

We can verify that

• In the unit case, superposition on positive clauses degenerates exactly
into the critical pair rule of unfailing completion, while superposition
on negative clauses degenerates into reduction of the goal wrt. oriented
instances.

• In the non-equality case (representing non-equality atoms p as equalit-
ies p ≈ ⊤ where ⊤ is the minimal constant in the reduction ordering),
superposition degenerates into resolution.7

This can be seen as a refinement of the paramodulation rule [Robinson and
Wos 1969], published very nearly at the same time as Knuth-Bendix completion
(as far as is understood, neither of them knew about the others’ endeavours).
In effect, superposition is an inference system which generalises resolution,
paramodulation, and equational completion [Bonacina 2022].

Simplifications

However, this is not the whole story. As alluded before, the generating inferences
(needed for refutational completeness) are only part of the picture, as provers
invariably employ simplification inferences, in which some or all of the premises

6Factoring and equality resolution; in Chapter 2 we present superposition in detail.
7As only top terms unify, ⊤≈⊤ is a tautology, and ⊤ ̸≈ ⊤ is a contradiction.
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are deleted or simplified. For example, both superposition and equational com-
pletion admit

���s≈ t , t≈ u |− s≈ u, if s ≻ t ≻ u. (1.7)

where ���s≈ t denotes that that premise can be deleted after this inference is
performed (or in other words, s≈t can be simplified to s≈u if t≈u is present); in
order to retain refutational completeness, the clauses being discarded need to be
known to be unnecessary for deriving a contradiction. Unfortunately, while the
generating rules of superposition degenerate exactly into the generating rules
of equational completion, many of the more sophisticated criteria for discarding
or simplifying equations in completion do not carry over in full generality to
superposition [Bonacina 2022]. This is a major problem with important practical
consequences.

For the past 25 years, the top-scoring provers in the first-order division
of the annual CASC competition have invariably been superposition provers
[Sutcliffe 2016]. However, in purely unit-equality problems, equational com-
pletion provers still have the edge, sometimes by a substantial margin. For
example, in 2019, Waldmeister [Hillenbrand, Buch et al. 1997] outperformed E
and Vampire [Schulz 2013b; Kovács and Voronkov 2013], two state-of-the-art su-
perposition provers under active development, despite Waldmeister not having
been updated for over 10 years! This continued success is empirical evidence
that the simplification and deletion criteria of equational completion might be
key ingredients for performance in equational problems.

In practical terms this means both that

(i) Different tools are needed for different fragments of first-order logic, as
superposition does not subsume completion, either theoretically or for
practical purposes.

(ii) The sophisticated techniques developed for equational completion are not
available in any problem which is not unit equality.8

This is an unsatisfactory state of affairs on both counts.
The reason for this is that equational completion and superposition are not

treated in a single unifying theoretical framework. In particular, equational com-
8There are transformations which can encode Horn problems into unit-equational problems,

but in the general case such a transformation can be done at best via an incomplete encoding
[Claessen and Smallbone 2018].
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pletion relies on proof orderings, where an equation can be deleted if there is a
smaller proof via existing equations [Bachmair, Dershowitz and Hsiang 1986],
while superposition relies on model construction via a well-founded ordering on
clause instances, where a clause can be deleted if all of its ground instances fol-
low from smaller ground instances of existing clauses [Nieuwenhuis and Rubio
2001]. This represents a significant hurdle as criteria based on proof orderings
and proof reductions do not carry over to general clauses together with ground
instance-based redundancy elimination [Bonacina and Hsiang 1995].

This work represents a major step in solving this issue, as we introduce a
significantly more powerful notion of redundancy, wrt. which superposition is
still refutationally complete, which enables the usage of simplifications from
equational completion (and more). In particular, we are able to show that su-
perposition on unit clauses does degenerate exactly to equational completion —
including simplifications — and elegantly extending to the full clausal case. We
are able to derive several simplification rules and criteria for the redundancy
of inferences (corresponding roughly to simplification rules and critical pair
criteria in equational completion, respectively).

Equational theories

Some equational theories are particularly troublesome, even for equational com-
pletion. The archetypal example is associativity and commutativity. A function
which satisfies the following two axioms

f(x, y)≈ f(y, x) f(x, f(y, z))≈ f(f(x, y), z) (1.8)

is said to be associative and commutative (AC). This theory is extremely ubi-
quitous in mathematics and other domains, yet it is problematic for equational
completion and superposition, as there is no reduction order which can orient
the commutativity axioms, and even just the two axioms produce an exponential
number of consequences [Martin and Nipkow 1990].

Due to this, considerable effort has been directed towards equational reason-
ing in AC9 over the decades [Huet 1980; Stickel 1981; Bachmair and Dershowitz
1987; Anantharaman and Mzali 1989; Martin and Nipkow 1990; Baader and Nip-
kow 1998; Avenhaus, Hillenbrand and Löchner 2003], and it remains an area

9And other equational theories.
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of active research. Some proposals involve including the theory in the under-
lying logic, via specialised inference rules (in a way, similar to what is done
with equality itself in superposition). However, these approaches make use of
(semantic) AC-unification [Peterson and Stickel 1981; Anantharaman and Mzali
1989], rather than syntactic unification, which is known to be very expensive to
calculate.10 Therefore, provers based on this approach have generally not been
able to achieve practical success.

Another proposal has been to make use of joinability and ground joinability
criteria [Martin and Nipkow 1990]. In fact, the latter enable the deletion of
huge numbers of redundant consequences in permutative theories such as AC
(including e.g. almost all of the consequences of the axioms). Due to the fact
that ground joinability modulo AC can be cheaply implemented [Avenhaus,
Hillenbrand and Löchner 2003], this approach has had substantial experimental
success in those problems. However, this is one of the techniques which cannot
be proven correct using the standard theoretical framework for superposition
[Nieuwenhuis and Rubio 2001].11 As such, no superposition prover (as far as
we are aware) implements general ground joinability criteria.

In our work, we present (i) general joinability and ground joinability simpli-
fication rules, whose application does not compromise refutational complete-
ness subject to some well-defined constraints, and (ii) specialised results for
AC (including AC normalisation), which enable simpler/weaker constraints and
more efficient implementation. These subsume and elegantly extend the results
in e.g. Avenhaus, Hillenbrand and Löchner [2003] to first-order logic.

Another useful family of simplifications has to do with criteria for blocking
inferences, such as connectedness-related criteria [Bachmair and Dershowitz
1988]. In the equational completion framework, these are critical pair criteria;
in our framework, they correspond to redundant superposition inferences.

Algorithms

In order to turn this theoretical work into an efficient theorem prover, great
care must be taken in terms of the algorithms used to implement these simplific-
ation criteria. Two of the main issues we have tackled are (i) the scheduling of

10AC-unification is known to be reducible to solving linear Diophantine equations over
positive integers [Stickel 1981].

11Although one could in principle still use it, if one can make do without guarantees of
refutational completeness.
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simplifications in a given-clause saturation loop, and (ii) a novel algorithm for
efficiently checking ground joinability of literals. These aspects are of crucial
importance for the efficiency of the overall theorem proving procedure, and in
this work we have provided novel contributions for both these issues.

With such a vast array of simplification rules and inference-blocking criteria,
a highly non-trivial question is how and when to apply them. Intuitively, these
simplifications help performance by reducing the search space and preventing
unnecessary work; however, performing these simplifications and storing the
necessary data has itself a non-negligible cost [Hillenbrand, Piskac et al. 2013].
Deciding how to balance this is a long-standing open problem (examples of
mainstream approaches are e.g. McCune [1990], Denzinger, Kronenburg and
Schulz [1997] and Jakubuv and Urban [2017]). In our work, we propose a flex-
ible simplification setup which subsumes common architectures, and enables
meta-optimisation using e.g. machine learning approaches [Holden and Korovin
2021].

As for ground joinability, it is straightforward to write a fast algorithm
for checking ground joinability modulo AC, but less so for checking ground
joinability modulo an arbitrary set of equations. We propose a novel method,
incremental ground joinability, which efficiently searches for “proofs” of ground
joinability of two terms, with the objective of detecting this with as few case
splits as possible, while — crucially — being minimally impactful in the (vastly
more common) case where the terms are not ground joinable.

1.2 Summary of contributions
The main contributions of this work are as follows:

• A novel criterion for redundancy of clauses and inferences called closure
redundancy, which improves on the standard notion of redundancy used
in most first-order saturation theorem provers.

• A proof of refutational completeness of the superposition calculus wrt. to
this notion of closure redundancy.

• An enhanced variant of the widely-used demodulation simplification rule,
named encompassment demodulation, which is applicable in more cases
and also faster to check.
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• Proof that superposition + encompassment demodulation is equivalent,
on unit clauses, to unfailing completion.

• Proof that ground joinability criteria and critical pair criteria, long used
in the context of unit-equational completion, can be applied under certain
conditions in the superposition calculus, and thus in non-unit-equality
problems.

• Specialised criteria for associative-commutative (AC) symbols, including
AC normalisation and demodulation modulo AC.

• An efficient new algorithm for ground joinability checks, which is crucial
for practical applicability of these criteria.

• A powerful architecture for scheduling simplifications in a given-clause
loop in a flexible way, which enables smart application of all the afore-
mentioned criteria.

• An implementation of all of the above in a state-of-the-art theorem prover,
iProver, and an evaluation of the performance of this implementation.

1.3 Published work
Portions of this dissertation have been published in various peer-reviewed ven-
ues. Here we summarise the publications which include significant portions of
this work, in chronological order.

In Duarte and Korovin [2020], we present (among other things) a description
of the iProver superposition simplification setup, the flexible given-clause loop
that underpins the superposition calculus in iProver (Chapter 5 section 5.2).

In Duarte and Korovin [2021], we introduce the notion of closure redund-
ancy and give a definition of closure orderings parametrised by a simplification
ordering on terms; we then give a proof of refutational completeness of super-
position up to closure redundancy. Then, using this, we show several novel
criteria related to AC reasoning, such as normalisation of AC terms (in a way
not subsumed by demodulation via AC axioms) and deletion and simplifica-
tion of AC-joinable literals. We also give a novel variant of the demodulation
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simplification rule, called encompassment demodulation (Chapter 3, Chapter 4
sections 4.1 and 4.3).

In Duarte and Korovin [2022], we further refine the closure ordering (the
version presented in this work) to allow even greater improvements in the ap-
plicability of rewrite-type simplifications, namely we show that general ground
joinability as well as connectedness (a type of critical pair criterion), hitherto
restricted only to the context of equational completion (in unit-equational prob-
lems), can in fact be used in superposition under some limited constraints (which
precisely match those of equational completion when restricting to positive unit
clauses). We further improve the constraints on encompassment demodulation.
Finally, we also discuss an algorithm for checking ground joinability of literals
in practice, a crucial step for practical applicability of this criterion, and dis-
cuss experimental results after implementation in iProver (Chapter 3, Chapter 4
sections 4.1 and 4.2, Chapter 5 section 5.1).
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Chapter 2

Preliminaries

In all matters, before beginning, a diligent
preparation should be made.

Cicero, De Officiis (44 BCE)

In this chapter we introduce the fundamental concepts which are used through-
out this work. We also define notation and terminology.

2.1 Basics
We carefully distinguish between “meta”-level notions of logical connections
and relations over mathematical objects on one hand, and functions, predicates,
or logical connectives inside a given logic on the other, whenever this is not
obvious from context. For instance, mathematical equality between objects at
a meta level is denoted with =, while ≈ always denotes the equality predicate
inside a given logic. We also assume familiarity with the usual notions of set
and multiset.

A binary relation over a set S is a subset of R × R. We often write in
infix notation, e.g. a ≻ b instead of ⟨a, b⟩ ∈ ≻. A relation R is total over X if
∀x, y ∈ X. xRy∨yRx∨x = y. A relation R is well-founded (or terminating)
if there are no infinitely-descending chains x1Rx2 ∧ x2Rx3 ∧ · · · . A relation R

is transitive if ∀xyz. xRy∧yRx ⇒ xRz. A relation R is reflexive if ∀x. xRx

and irreflexive if ∀x. ¬(xRx).
The transitive closure of a relation R is the smallest transitive relation

that contains R, and is denoted by R+. A transitive reduction of a relation
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R is a minimal relation whose transitive closure is R+, and is denoted by R−.
The reflexive-transitive closure of a relation R is the smallest reflexive and
transitive relation that contains R, and is denoted by R∗.

A (strict) partial order ≻ is a binary relation which is transitive and irre-
flexive. For a given strict order ≻, the induced non-strict order ⪰ is ≻ ∪=.

A (non-strict) partial preorder (or quasiorder) ⪰ is any binary relation
which is transitive and reflexive. Whenever a non-strict preorder ⪰ is given,
the induced equivalence relation ∼ is ⪰ ∩⪯, and the induced strict order ≻ is
⪰ \ ∼.

If x ⪰̸ y and x ⪯̸ y, then the two elements are said to be incomparable in
that partial order/preorder; this is notated x ▷◁ y.

For an ordering ≻ over a set X , its multiset extension ≻≻ over multisets
of X is given by: A ≻≻ B iff A ̸= B and ∀x ∈ B. B(x) > A(x) ∃y ∈ A. y ≻
x ∧ A(y) > B(y), where A(x) is the number of occurrences of element x in
multiset A. We also use ≻≻≻ for the the multiset extension of ≻≻. It is well
known that the mutltiset extension of a well-founded/total order is also a well-
founded/total order, respectively [Dershowitz and Manna 1979].

The lexicographic extension of ≻ over X is denoted ≻lex over ordered
tuples ofX , and is given by ⟨x1, . . . , xn⟩ ≻lex ⟨y1, . . . , yn⟩ iff ∃i. x1 = y1 ∧ · · · ∧
xi−1 = yi−1 ∧ xi ≻ yi. The lexicographic extension of a well-founded/total
order is also a well-founded/total order, respectively.

2.2 First-order logic
First-order logic — also known as predicate logic — is a formal system used in
mathematics, computer science, and philosophy. First-order logic is of basic
importance in mathematics (being, for instance, the language of ZFC, the fore-
most foundation of mathematics [Suppes 1972]), as well as being a convenient
language to formalise many other mathematical theories and many problems
in other domains.

Crucially, while being expressive (it is Turing-complete, and therefore un-
decidable), it still has nice metalogical properties, including completeness (and
therefore semi-decidability of the entailment problem for countable axiom sets),
and compactness.

It is a well-known fact that any formula in first-order logic can be re-written
into an equisatisfiable formula which is a conjunction of universally quantified
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disjunctions of atoms and negated atoms, a so-called conjunctive normal
form (CNF), or clausal form [Nonnengart and Weidenbach 2001]. We will make
this definition clear in the next section. The superposition calculus that we treat
in this work, which semi-decides the satisfiability problem,1 is defined over
formulas in CNF. Because of this, and since we will not make any considerations
about the translation of an arbitrary first-order logic problem into CNF,2 we will
restrict ourselves only to a treatment of formulas in clausal form in this work.

Furthermore, we will also assume — without loss of generality — that all
atoms are equations, and that the equality predicate is interpreted, as part of
the logic (therefore, there are no other predicate symbols). This is not a problem
because the semantics of translating non-equational atoms P (t1, . . . , tn) into
p(t1, . . . , tn)≈⊤, for a distinguished constant⊤ and a fresh symbol p, preserves
(un)satisfiability [Nieuwenhuis and Rubio 2001, p. 390].

Finally, we will also assume single-sorted logic for clarity of exposition, but
all the results in this work generalise cleanly to the many-sorted case.

Syntax

A first-order (unsorted) signature consists of a set Σ of function symbols. Each
symbol has a fixed non-negative arity, written arity(f) for any symbol f ∈ Σ.
A symbol of 0-arity is also called a constant. We also assume that there exists
a countably infinite set of variables, X .

The set T (Σ,X ) of first-order terms in a given signature is defined induct-
ively as follows.

f(t1, . . . , tn) ∈ T (Σ,X ) if


f ∈ Σ

arity(f) = n

t1, . . . , tn ∈ T (Σ,X )
(2.1a)

x ∈ T (Σ,X ) if x ∈ X (2.1b)

We can see that this set is well-defined, and always non-empty (since X is
non-empty).

1Or, equivalently, the validity/entailment problem.
2The problem is extensively discussed in the literature, e.g. Nonnengart and Weidenbach

[2001] and Hoder et al. [2012].
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The set defined by T (Σ, ∅) is the set of ground terms, i.e. terms without
variables. This set is non-empty iff there exists at least one constant symbol.3

Therefore, we will always assume that the signature contains at least one con-
stant [Nieuwenhuis and Rubio 2001].

Atoms are unordered pairs of terms, written s≈ t (or equivalently t≈ s) for
two terms s and t. Literals are atoms together with a boolean polarity, written
s≈ t for a positive literal and s ̸≈ t for a negative literal. We write s ≈̇ t to mean
a literal which can be positive or negative.

A clause is a multiset of literals, written either with normal set notation
({s1 ≈̇ t1, . . . }) or as a disjunction of literals (s1 ≈̇ t1 ∨ · · · ), alluding to its se-
mantics. Collectively, terms, literals, and clauses will be called expressions.

A substitution is a mapping from variables to terms which is the identity for
all but finitely many variables. If e is an expression, we denote the application
of a substitution σ by eσ, which is obtained by replacing all variables with their
image in σ, i.e.

Cσ = {(s ≈̇ t)σ | s ≈̇ t ∈ C} , (2.2a)
(s ≈̇ t)σ = sσ ≈̇ tσ , (2.2b)

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) , (2.2c)

and xσ is simply equal to the image of x in σ.
An injective substitution onto variables is called a renaming. The identity

substitution is denoted by id . The composition of two substitutions σ and ρ is
denoted by juxtaposition and read left-to-right, that is, θ = σρ ⇒ sθ = (sσ)ρ.

We write s[t] if t is a subterm of s, meaning

s = t or s1[t] or · · · or sn[t], where s = f(s1, . . . , sn). (2.3)

If s[t] but s ̸= t, then it is a strict subterm. We denote these relations by s ⊵ t

and s ▷ t respectively. We write s[t 7→ t′] to denote the term obtained from s

by replacing all occurrences of t by t′.
We also overload the notation in the previous paragraph for literals and

clauses, for example C[u] or u ⊴ C denotes ∃s ≈̇ t ∈ C. (s[u] or t[u]).
A substitution θ is more general than σ if θρ = σ for some substitution ρ

which is not a renaming. If s and t can be unified, that is, if there exists σ such
that sσ = tσ, then there also exists themost general unifier, writtenmgu(s, t).

3But if it exists, it is infinite iff any non-constant symbol exists.
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A term s is said to be more general than t if there exists a substitution θ that
makes sθ = t but there is no substitution σ such that tσ = s. Two terms s and
t are said to be equal modulo renaming if there exist injective θ, σ such that
sθ = t and tσ = s. The relations “less general than”, “equal modulo renaming”,
and their union are represented respectively by the symbols ⊐, ≡, and ⊒.

An inference rule is written

Name
C1 · · · Cn

D1 · · · Dm

(2.4)

or C1, . . . , Cn |− D1, . . . , Dm, where C1, . . . , Cn are the premises and D1, . . . ,

Dm are the conclusions. Inferences may have side-conditions, which are de-
noted to the right of the inference.

Semantics
In this work, the semantics of clauses with equality are defined in terms of term
rewrite systems. We will first introduce some notions.

A binary relation→ over a set of terms is a rewrite relation if (i) l→ r ⇒
lσ → rσ and (ii) l→ r ⇒ s[l]→ s[l 7→ r]. A term rewrite system R, com-
posed of a set of rewrite rules li→ ri, induces the following rewrite relation,
denoted→R:

{s[lσ]→R s[rσ] | l→ r ∈ R, s ∈ T (Σ,X ), lσ ∈ T (Σ,X )} (2.5)

If→R is the relation induced by the term rewrite system R, we say that:
• A positive literal s≈ t is true in R if s ∗↔R t, while a negative literal s ̸≈ t

is true in R if s ̸ ∗↔R t.
• A clause C is true in R if at least one literal s ≈̇ t ∈ C is true.
• A set of clauses S is true in R if all clauses C ∈ S are true.
A set of clauses is said to be satisfiable iff it has a model, i.e. there exists a

term rewrite system which makes it true.
The relation of entailment is as expected: S1 |= S2, for two sets of clauses

S1, S2, iff all term rewrite systems which are a model of all the clauses in S1 are
also a model of all the clauses in S2.

Furthermore, two terms are joinable in a rewrite relation (written s ↓ t)
if s ∗→ u

∗← t. An important feature of some rewrite systems is the Church-
Rosser property, which is defined as s ∗↔ t ⇒ s ↓ r. This property is equival-
ent to that of confluence, which is defined as s ∗← u

∗→ t ⇒ s ↓ t.
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If a rewrite relation is also a strict ordering, then it is a rewrite ordering.
A reduction ordering is a rewrite ordering which is well-founded. In this
work we consider reduction orderings which are total on ground terms, such
orderings are also simplification orderings i.e., satisfy s ▷ t ⇒ s ≻ t.

Given an equation l ≈ r and a rewrite ordering ≻, we say that there is a
rewrite s → t via l ≈ r if s→R t where→R is the rewrite system induced by
R = {lσ → rσ | lσ ≻ rσ} ∪ {rσ → lσ | rσ ≻ lσ}, i.e. the set of orientable
instances of l ≈ r. In this sense, a set of equations E also induces the rewrite
system {lσ→rσ | l≈r ∈ E, lσ ≻ rσ}, which in turn induces a rewrite relation
as per (2.5).

2.3 Equational completion
Equational completion was originally introduced by Knuth and Bendix [1970],
as a procedure for computing a confluent and well-founded term rewrite system
which is equivalent to a given set of equations. Here, we are only interested
in its use for theorem proving. Specifically, we present the unfailing comple-
tion procedure as defined in Bachmair, Dershowitz and Plaisted [1989]. With
an implicit orientation step, the sole inference rule of equational completion
necessary for refutational completeness is, for a given rewrite ordering ≻,

Critical Pair
l ≈ r s[u]≈ t

sθ[lθ 7→ rθ]≈ tθ
,

where θ = mgu(l, u),
lθ ⪯̸ rθ and sθ ⪯̸ tθ,
and u not a variable,4

(2.6)

with the property that if a goal s≈ t follows from a set of equations E, exhaust-
ively applying this rule on E ∪ {eq(x, x) ≈ ⊤, eq(s, t) ≈ ⊥} will eventually
produce ⊤≈⊥ [Bachmair, Dershowitz and Plaisted 1989].

2.4 Superposition calculus
Merging the ideas of resolution, on the one hand, and of unfailing completion via
a reduction ordering on terms, on the other (as outlined in the introduction), the
superposition calculus is an inference system for first-order logic with equality,
working on clausified formulas.

4Equivalent to the Orientation and Deduction2 rules in Bachmair, Dershowitz and Plaisted
[1989].
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2.4. Superposition calculus

Definition 2.1. The superposition calculus for a simplification order≻ on terms
comprises the following inference rules.

Superposition
l ≈ r ∨ C s[u] ≈̇ t ∨D

(s[u 7→ r] ≈̇ t ∨ C ∨D)θ
,

where θ = mgu(l, u),
lθ ⪯̸ rθ, sθ ⪯̸ tθ,
and u is not a variable,

(2.7a)

Eq. Resolution
s ̸≈ t ∨ C

Cθ
, where θ = mgu(s, t), (2.7b)

Eq. Factoring
s≈ t ∨ s′ ≈ t′ ∨ C

(s≈ t ∨ t ̸≈ t′ ∨ C)θ
,

where θ = mgu(s, s′),
sθ ⪯̸ tθ and tθ ⪯̸ t′θ,

(2.7c)

and where the selection function (underlined) selects either at least one negative
or else all maximal (wrt. ≻) literals in the clause.

Properties

The key property of the superposition calculus is that it is a refutationally
complete calculus for first-order logic with equality. This means that a set of
clauses which is saturated wrt. these inference rules (i.e. there are no more valid
inferences with premises in the set and conclusions not in the set), and which
does not contain the empty clause, must be satisfiable. The inference rules are
also sound. Completeness and soundness imply that fair5 application of these
rules is a semi-decision procedure for the validity problem in first-order logic
with equality.

This notion can be extended to refutational completeness up to redund-
ancy, where, given a suitable definition of redundant clause and redundant
inference, the property becomes: that a set of clauses which is saturated up to
redundancy — meaning that there are no more non-redundant inferences which
have non-redundant premises in the set and a non-redundant conclusion not in
the set — must be satisfiable.

Making this precise, for a definition of “clause C redundant in set S” and
“inference C1, . . . , Cn |− D redundant in set S”, the definition of “S saturated
up to redundancy” is:

5Informally, that all inferences will eventually be performed; this notion can be made precise
[Bachmair and Ganzinger 2001], but here we just consider the “static” view of saturation.
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2. Preliminaries

Definition 2.2 (Saturation up to redundancy). A set of clauses S is saturated
up to redundancy if any inference C1, . . . , Cn |− D which has C1, . . . , Cn ∈ S

andD /∈ S has either (i) one ofC1, . . . , Cn, D redundant inS or (ii)C1, . . . , Cn |− D

redundant in S.

Definition 2.3 (Refutational completeness). A set of inference rules is refuta-
tionally complete iff any set of clauses which is saturated up to redundancy wrt.
those inference rules is satisfiable or contains the empty clause.

The notion of saturation, and therefore of refutational completeness, is para-
metrised by a concrete notion of “redundant clause” and “redundant inference”.
In Section 3.2, we will introduce a novel notion of redundancy, and show that
the superposition inference system as defined above is refutationally complete
up to that notion of redundancy.
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Chapter 3

Closure redundancy in
superposition

If we have no idea why a statement is true, we
can still prove it by induction.

Gian-Carlo Rota (1956)

The main result of this chapter is a novel and powerful notion of redundancy
of clauses and inferences, together with a proof that the superposition calculus
is refutationally complete wrt. this notion.

The work presented here was first peer-reviewed and published in Duarte
and Korovin 2021 and later refined in Duarte and Korovin 2022.

3.1 Closures and closure orderings
As previously discussed, the notion of refutational completeness up to redund-
ancy necessitates a specific definition of redundant clause and redundant in-
ference. In turn, our novel notion of redundancy depends on the definitions
presented in this section.

Definition 3.1. A closure is a pair of an expression and a substitution, denoted
by e · θ.

We say that a closure e · θ represents the expression eθ. In this work, we
mainly deal with ground closures, i.e. closures where eθ is ground.
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3. Closure redundancy in superposition

Closures give us a more refined notion of an instance of an expression: rather
than representing an instance of e by an expression eθ, for some substitution θ,
we instead represent it by a closure e · θ. Retaining the information about the
original expression as well as the instance will be crucial to formulate some of
the notions that follow.

Example 3.1. Consider for instance two terms f(x, y) and f(a, y), and consider
the substitution θ = {x 7→a, y 7→ b}, which is a grounding substitution for both.
The instances f(x, y) θ and f(a, y) θ, as terms, are both equal to f(a, b), but by
representing them by a closure, the instances f(x, y) · θ and f(a, y) · θ can be
distinguished.

Indeed, because f(x, y) is more general than f(a, y), it is useful to use this
information, for example, in inductive proofs, via an ordering that makes in-
stances from more general terms be smaller than the same instance from less
general ones (e.g. f(x, y) · θ smaller than f(a, y) · θ). This is the intuitive mo-
tivation for the ordering that we define in the next section.

In terms of semantics, and by abuse of notation, a literal (resp. clause) clos-
ure is said to be true in a term rewrite system R iff the literal (resp. clause) it
represents is true in R.

Finally, let us define the following.

Definition 3.2. Let e be an expression. Then
• GSubs(e) = {θ | eθ is ground}.
• GInsts(e) = {eθ | eθ is ground}.
• GClos(e) = {e · θ | eθ is ground}.

The idea of closure was first introduced by Bachmair, Ganzinger et al. [1995].

Closure orderings

As illustrated in the example above, the main intuition is that we wish to define
an ordering on closures such that terms which are more general tend to be
smaller. More precisely, we start from a “base” simplification ordering on terms,
and first compare — with this ordering — the terms represented by the closures.
If they are equal, ties are broken by taking closures from more general terms to
be smaller than closures from less general ones. This is the main idea behind
our definition of closure orderings.
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3.1. Closures and closure orderings

Definition 3.3. Let ≻t be a simplification ordering which is total on ground
terms. The usual way to extend this to an ordering on literals and clauses is as
follows. Define the multisets

Ml(s≈ t) = {s, t} , (3.1a)
Ml(s ̸≈ t) = {s, t, s, t} , (3.1b)

then
p ≻l q iff Ml(p) ≻≻t Ml(q) , (3.2)

and
C ≻c D iff C ≻≻l D . (3.3)

That is, intuitively: the ordering on literals≻l compares the maximal side of the
(dis)equality first, then places negative equalities over positive, then compares
the remaining sides; the ordering on clauses ≻c compares them as multisets.

Definition 3.4 (Closure orderings). We will now extend this to an ordering
on closures as well. First, we define the order ≻tc on ground term closures as
follows. Let

s · σ ≻tc′ t · ρ iff either sσ ≻t tρ

or else sσ = tρ and s ⊐ t ,
(3.4)

where sσ and tρ are ground, and let ≻tc be an (arbitrary) total well-founded
extension of ≻tc′ over ground closures.1

Then, we define an ordering ≻cc on ground clause closures. Let Mcc be
defined as follows, depending on whether the clause is a positive unit, a negative
unit, or non-unit clause:

Mcc(∅ · θ) = ∅ , (3.5a)
Mcc((s≈ t) · θ) = {{s · θ}, {t · θ}} , (3.5b)
Mcc((s ̸≈ t) · θ) = {{s · θ, t · θ, sθ · id , tθ · id}} , (3.5c)
Mcc((s ≈̇ t ∨ · · · ) · θ) = {Mlc(L · θ) | L ∈ {s ≈̇ t, . . . }} , (3.5d)

where (recall that ≈̇ stands for ≈ or ̸≈)

Mlc((s≈ t) · θ) = {sθ · id , tθ · id} , (3.5e)
Mlc((s ̸≈ t) · θ) = {sθ · id , tθ · id , sθ · id , tθ · id} , (3.5f )

then ≻cc is defined by

C · σ ≻cc D · ρ iff Mcc(C · σ) ≻≻≻tc Mcc(D · ρ) . (3.6)
1This “two-step” definition is necessary because (3.4), as defined, is not total; see Lemma 3.1.
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3. Closure redundancy in superposition

There are two parts to this definition. First, (3.4) implements the intuition
of breaking ties on the base ≻t order by making ≻tc place instances of more
general terms lower than instances of less general ones. Then, (3.5–3.6) extends
the order≻tc on term closures to an order≻cc on clause closures; in short: (3.5b)
handles positive unit clauses, (3.5c) handles negative unit clauses, and (3.5d–f)
handle non-unit clauses.

The main purpose of this definition is twofold:

(i) That when sθ ≻t tθ and u occurs in a clause D, then either sθ ◁ u or
s ⊏ sθ = u imply (s≈ t) · θρ ≺cc D · ρ,2 and

(ii) That when C is a positive unit clause, D is not, s is the maximal subterm
in Cθ and t is the maximal subterm in Dσ, s ⪯t t implies C · θ ≺cc D ·σ.3

Critically, these two properties will enable unconditional rewrites via oriented
unit equations on positive unit clauses to succeed whenever they would also
succeed in unfailing completion [Bachmair, Dershowitz and Plaisted 1989], and
rewrites on negative unit and non-unit clauses to always succeed. This enables
a plethora of rewrite-based simplification rules to be formulated, in such a way
that their application does not compromise refutational completeness. These
will be presented in detail, with all necessary definitions rigorously explained, in
Chapter 4. For now, let us continue by visiting some examples of these orderings
in action, and then by showing several important properties of the ≻tc and ≻cc

orderings.

Examples
Let f ≻t a ≻t b ≻t c. Then

f(a, b) ▷◁t f(x, b) (3.7a)

that is, f(a, b) and f(x, b) are incomparable wrt. (any) ≻t. However, even
though the substitution (x 7→ a) makes them both equal, the corresponding
closures can be ordered with ≻tc:

f(a, b) id =t f(x, b) (x 7→ a) (3.7b)
f(a, b) · id ≻tc f(x, b) · (x 7→ a) (3.7c)

2Lemma 3.8.
3Lemma 3.7.
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3.1. Closures and closure orderings

Note that some closures cannot be ordered by ≻tc′

f(a, y) · (y 7→ b) ▷◁tc′ f(x, b) · (x 7→ a) (3.7d)

but they are still (arbitrarily) ordered by ≻tc.
Note, of course, that ≻cc is not an extension of ≻c, therefore some ground

closures are ordered opposite to what the ground clauses they represent would
be ordered in ≻c. For example,

f(a)≈ b ≻c f(a)≈ c (3.7e)
(f(x)≈ b) · (x 7→ a) ≺cc (f(a)≈ c) · id (3.7f )

and

f(a)≈ b ≺c f(a) ̸≈ c (3.7g)
(f(a)≈ b) · id ≺cc (f(a) ̸≈ c) · id (3.7h)

and

f(a)≈ b ≻c f(a)≈ c ∨ f(b)≈ c (3.7i )
(f(a)≈ b) · id ≺cc (f(a)≈ c ∨ f(b)≈ c) · id (3.7j )

Example (3.7f) is illustrative of the difference between ≻c and ≻cc; it holds be-
cause (f(x)≈ b) · (x 7→a) and (f(a)≈ c) · id are represented, in terms of Defini-
tion 3.4, by the multisets {{f(x)·(x 7→a)}, {b·(x 7→a)}} and {{f(a)·id}, {c·id}}
respectively. But f(x)·(x 7→a) ≺tc f(a)·id (because f(x) (x 7→ a) = f(a) id =

f(a), but f(x) is more general than f(a)), and f(x) · (x 7→ a) ≺tc c · id . So the
former multiset is smaller than the latter, wrt. ≻≻≻tc, meaning the former clause
closure is smaller than the latter, wrt. ≻cc.

Properties

The following lemmas about the orderings will be needed throughout this work.

Lemma 3.1. ≻tc and ≻cc are well-founded and total on ground term closures
and ground clause closures, respectively.

Proof. ≻tc′ is a well-founded ordering, since ≻t and ⊐ are well-founded and
the lexicographic combination of two well-founded orderings is well-founded
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3. Closure redundancy in superposition

[Baader and Nipkow 1998]. However, it is only a partial order even on ground
closures, e.g. (3.7d). Nonetheless, it is well-known that any partial well-founded
order can be extended to a total well-founded order (see e.g. Bonnet and Pouzet
[1982]; this follows from Zorn’s lemma). Therefore we defined ≻tc as an arbit-
rary total well-founded extension of ≻tc′ .

Then, since ≻cc is a (twice) multiset extension of ≻tc, and since the multiset
extension of a total well-founded order is also a total well-founded order [Der-
showitz and Manna 1979], we have that ≻cc is also well-founded and total on
ground clause closures.

Lemma 3.2. Assume s, t are ground, then s · id ≻tc t · id ⇔ s ≻t t.

Proof.
(⇒) Definition 3.4.
(⇐) Definition 3.4 and the fact that s id = t id ⇒ s ⊐̸ t.

Lemma 3.3.
• sσ ≻t tρ ⇒ s · σ ≻tc t · ρ
• sσ =t tρ ⇒ s · σ ⪰tc t · ρ
• sσ ⪰t tρ ⇒ s · σ ⪰tc t · ρ

Proof. Definition 3.4.

Lemma 3.4. tρ ·σ ⪰tc t ·ρσ. Analogously for≻cc. In particular, tσ · id ⪰tc t ·σ,
and analogously for ≻cc.

Proof. From Definition 3.4 and the fact that tρ ⊒ t.

Lemma 3.5. t · σ ≻tc s · id ⇔ tσ ≻t s.4

Proof.
(⇒) For t · σ ≻tc s · id to hold, either tσ ≻t s, or else tσ = s but then t ⊐ s

cannot hold.
(⇐) Follows from the definition.

Lemma 3.6. ≻tc has the following property: l ≻t r ⇒ s[l] · θ ≻tc s[l 7→ r] · θ.
Analogously for ≻cc: l ≻t r ⇒ C[l] · θ ≻cc C[l 7→ r] · θ.

4But not, in general, s · id ≻tc t · σ ⇔ s ≻t tσ, e.g. f(a) · id ≻tc f(x) · (x 7→ a).
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Proof. For ≻tc: let l ≻t r. By the fact that ≻t is a rewrite relation, we have
l ≻t r ⇒ s[l] ≻t s[l 7→ r] ⇒ s[l]θ ≻t s[l 7→ r]θ. Then, by the definition of≻tc,
s[l] · θ ≻tc s[l 7→ r] · θ.

For ≻cc: if C[l] then l occurs in at least some term s in C , so for that term
we have s[l] ·θ ≻tc s[l 7→r] ·θ. Since C[l] and C[l 7→r] have the same number of
literals, and since if C[l] is a positive (resp. negative) unit clause then C[l 7→ r]

is also a positive (resp. negative) unit clause, then

Mcc(C[l] · θ) ≻≻≻tc Mcc(C[l 7→ r] · θ) (3.8)

by (3.5), and therefore C[l] · θ ≻cc C[l 7→ r] · θ by (3.6).

Definition 3.5. maxt(C) is the maximal element of {s | C[s]} wrt. ≻t, where
C is a ground clause.

Lemma 3.7. If maxt(Cσ) ≻t maxt(Dρ), then C · σ ≻cc D · ρ. If maxt(Cσ) =

maxt(Dρ), then if Dρ is a positive unit and Cσ is not, C · σ ≻cc D · ρ.

Proof. Let sσ = maxt(Cσ) and tρ = maxt(Dρ). Assume sσ ≻t tρ. Then, for all
u · ρ ∈M ∈Mcc(D · ρ),

u · ρ ⪯tc tρ · id
≺tc s · σ
⪯tc sσ · id ,

(3.9)

(using Lemmas 3.4 and 3.5) therefore, for any such M , we have M ≺≺tc N where
N ∈Mcc(C·σ) is a multiset which contains s·σ or sσ·id . Hence,Mcc(D·ρ) ≺≺≺tc

Mcc(C · σ), and D · ρ ≺cc C · σ.
Now assume sσ = tρ, Dρ is a positive unit (wlog. (t ≈ v) · ρ), and Cσ is

not. We have Mcc(D · ρ) = {{t · ρ}, {v · ρ}}. Since Cσ is either a non-unit or a
negative unit clause, there exists an N ∈ Mcc(Cσ) such that sσ · id ∈ N and
N has at least 2 elements (3.5c–f). Therefore

vρ ⪯t tρ =t sσ

⇒ v · ρ ⪯tc t · ρ ⪯tc s · σ ⪯tc sσ · id
⇒{t · ρ} ≺≺tc N and {v · ρ} ≺≺tc N

⇒Mcc(D · ρ) ≺≺≺tc Mcc(C · σ) ,

(3.10)

using Lemmas 3.3 and 3.4, and D · ρ ≺cc C · σ.
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3. Closure redundancy in superposition

Lemma 3.8. Let D[u] be a clause and sθ, tθ be two terms such that u ▷ sθ or
u = sθ ⊐ s. If sθ ≻t tθ, then (s≈ t) ·θρ ≺cc D ·ρ, for any ρ ∈ GSubs(s≈ t,D).

Proof. Since sθ ≻t tθ, then maxt(sθρ≈tθρ) = sθρ for any ρ ∈ GSubs(s≈t,D).
Therefore, if sθ ◁ u and D[u], then sθ ≺t u ⇒ sθρ ≺t uρ ⪯t maxt(Dρ),
implying (s≈ t) · θρ ≺cc D · ρ by Lemma 3.7.

If u = sθ ⊐ s, then still if u ≺t maxt(D) we have sθρ = uρ ≺t maxt(Dρ),
again implying (s≈ t) · θρ ≺cc D · ρ by Lemma 3.7.

Otherwise, we have maxt(D) = u = sθ ⊐ s. Consider the following cases.
If D is not a positive unit, then the second part of Lemma 3.7 also implies

(s≈t) ·θρ ≺cc D ·ρ, as maxt(sθρ≈tθρ) = sθρ = uρ = maxt(D) (and sθρ≈tθρ
is a positive unit clause).

If D is a positive unit, then it is of the form sθ = v (where, recall, sθ ≻t v).
But since sθ ⊐ s, then s·θσ ≺tc sθ ·ρ, by (3.4). Then, by the rest of the definition
of ≻cc, we have (s≈ t) · θρ ≺cc (sθ ≈ v) · ρ = D · ρ.

3.2 Closure redundancy
In order to understand the advantages of our novel notion of redundancy, let us
present the standard notion of redundancy first [Bachmair and Ganzinger 2001,
p. 39], so that we may contrast them.

Definition 3.6 (Standard redundancy criterion, clauses). A clause C is redund-
ant in a set S if all Cθ ∈ GInsts(C) follow from smaller ground instances in
GInsts(S) — i.e., for all Cθ ∈ GInsts(C) there exists a set G ⊆ GInsts(S) such
that G |= Cθ and ∀Dρ ∈ G.Dρ ≺c Cσ.

Definition 3.7 (Standard redundancy criterion, inferences). An inference

C1, . . . , Cn |− D

is redundant in a set S if, for all θ ∈ GSubs(C1, . . . , Cn, D), the clause Dθ

follows from clauses in GInsts(S) which are smaller (wrt.≻c) than the maximal
element of {C1θ, . . . , Cnθ}.

These definitions are both parametrised by an ordering on clauses, ≻c. Un-
fortunately, this standard notion of redundancy does not cover many simplific-
ations such as AC normalisation, ground joinability, a large class of demodula-
tions, and others (which we discuss in Chapter 4).
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3.2. Closure redundancy

Example 3.2. Consider unit clauses

S = {f(x)≈ g(x), g(b)≈ b} (3.11)

where f(x) ≻t g(x) ≻t b. Then take the clause C = f(b) ≈ b, which has only
one ground instance (namely: itself). This clause is not redundant in S (per
Definition 3.6), because although it follows from f(b)≈g(b) and g(b)≈b, which
are both instances of clauses in S, the former is not smaller than C . Indeed, C
does not follow from any set of smaller (wrt. ≻c) ground instances of clauses in
S.

Example 3.3. Consider the set

S = {f(x, y)≈ f(y, x)} . (3.12)

All ground instances of f(x, f(y, z)) ≈ f(f(z, y), x) follow from ground in-
stances of the sole clause in S, however — again — not all of them follow from
the set of ground instances of the clause in S which are smaller than them (for
instance, simply f(a, f(b, b)) ≈ f(f(b, b), a)), and therefore the clause is not
redundant in S.

By taking the notion of “instance” to mean closure rather than clause, and
then using≻cc rather than≻c to formulate the definition, we adapt this redund-
ancy notion to a closure-based one, which allows for such simplifications.

Definition 3.8 (Closure redundancy criterion, clauses). A clause C is closure
redundant in a setS if allC·θ ∈ GClos(C) follow from smaller ground closures
in GClos(S) — i.e., for all C · θ ∈ GClos(C) there exists a set G ⊆ GClos(S)

such that G |= C · θ and ∀D · ρ ∈ G.D · ρ ≺cc C · σ.

Although Definition 3.6 and Definition 3.8 look quite similar, let us revisit
the examples.

Example 3.4. Consider again unit clauses S = {f(x) ≈ g(x), g(b) ≈ b} where
f(x) ≻t g(x) ≻t b, and let again C = f(b) ≈ b. Now C is closure redundant:
it has one ground instance (this time represented by a closure (f(b)≈ b) · id ,
rather than a clause),5 which follows from closures (f(x)≈ g(x)) · (x 7→ b) and

5Actually, there are infinitely many ground closures: (f(b)≈ b) · θ for any substitution θ;
however, they are all representing the same clause and have the same base clause, hence we
say by abuse of language that there is only one distinct ground closure.
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3. Closure redundancy in superposition

(g(b)≈ b) · id , which are both instances of clauses in S and (crucially!) are both
smaller (wrt. ≻cc) than (f(b)≈ b) · id . This is because

g(x) · (x 7→ b) ≺tc f(x) · (x 7→ b) ≺tc f(b) · id
⇒ (f(x)≈ g(x)) · (x 7→ b) ≺cc (f(b)≈ b) · id

(3.13a)

and
b · id ≺tc g(b) · id ≺tc f(b) · id

⇒ (g(b)≈ b) · id ≺cc (f(b)≈ b) · id
(3.13b)

and the clauses represented by (f(x)≈g(x)) ·(x 7→b) and (g(b)≈b) · id (namely,
f(b) ≈ g(b) and g(b) ≈ b) imply the clause represented by (f(b) ≈ b) · id (the
sole instance of f(b)≈ b).

In other words, the new redundancy criterion allowed a demodulation (from
f(b) ≈ b to g(b) ≈ b via f(x) ≈ g(x)) even when the (clause) instance of the
equation we demodulated with is greater than the target literal, simply because
the matching substitution was not a renaming. We will show rigorously how
this is permitted in the general case in Chapter 4, and we show that this con-
siderably simplifies the applicability condition on demodulation, and perhaps
more importantly, when dealing with theories such as AC, it allows us to use AC
axioms to normalise clauses where standard demodulation is not be applicable.

Example 3.5. Now all ground instances of f(x, f(y, z)) ≈ f(f(z, y), x) follow
from smaller ground instances of f(x, y)≈ f(y, x), hence the former is closure
redundant wrt. the latter (showing this takes some calculation, with which we
will concern ourselves in Section 4.3).

Among the properties of this redundancy relation, we highlight the follow-
ing, which will be invoked during Chapter 4:

Lemma 3.9 (Independence of redundant clauses). If C is closure redundant in S

and C ′ is closure redundant in S ′, then C is closure redundant in (S∪S ′)\{C ′}
(even if C ′ ∈ S or S = S ′).

Likewise, we extend the standard notion of redundant inference.

Definition 3.9 (Closure redundancy criterion, inferences). An inference

C1, . . . , Cn |− D
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is closure redundant in a set S if, for all θ ∈ GSubs(C1, . . . , Cn, D), the
closure D ·θ follows from closures in GClos(S) which are smaller wrt.≻cc than
the maximal element of {C1 · θ, . . . , Cn · θ}.6

Let us establish the following connection between closure redundant infer-
ences and closure redundant clauses.

Definition 3.10. An inference C1, . . . , Cn |− D is reductive if for all θ ∈
GSubs(C1, . . . , Cn, D) we have D · θ ≺cc max{C1 · θ, . . . , Cn · θ}.

Lemma 3.10. If the conclusion of a reductive inference is in S or is closure
redundant in S, then the inference is closure redundant in S.

Proof. IfD is in S, then allD·θ are inGClos(S). But if the inference is reductive
then D · θ ≺cc max{C1 · θ, . . . , Cn · θ}, so it trivially follows from a closure
smaller than that maximal element: itself.

If D is redundant, then all D · θ follow from smaller closures in GClos(S).
But if the inference is reductive then again D · θ ≺cc max{C1 · θ, . . . , Cn · θ},
so it also follows from closures smaller than that maximal element.

A set of clauses S is saturated up to closure redundancy if any inference
C1, . . . , Cn |− D, whose premisesC1, . . . , Cn are inS and not closure redundant
in S, is closure redundant in S.

In the rest of this work, we work exclusively with the new notion of closure
redundancy, and therefore we will refer to it simply as “redundancy”, when
clear form the context.

3.3 Model construction
We will now prove the central result of this chapter:

Theorem 3.11. The superposition inference system (2.7) is refutationally com-
plete wrt. closure redundancy, that is, if a set of clauses is saturated up to closure
redundancy and does not contain the empty clause ⊥, then it is satisfiable.

6Or equivalently, and more conveniently, if for all θ ∈ GSubs(C1, . . . , Cn, D) the closure
D · θ follows from closures in GClos(S) which are smaller wrt. ≻cc than some element of
{C1 · θ, . . . , Cn · θ}.
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3. Closure redundancy in superposition

Proof. This is a proof by Noetherian induction on the ground closures of satur-
ated sets, using the closure ordering defined in Definition 3.4. Let N be a set of
clauses such that ⊥ ̸∈ N , and G = GClos(N). Let us assume N is saturated up
to closure redundancy. We will build a model for G, and hence for N as follows.

As noted in page 41, a model is represented by a convergent term rewrite
system (we will show convergence in Lemma 3.12), such that a closure C · θ
is true in a given model R if at least one of its positive literals (s ≈ t) · θ has
sθ ↓R tθ, or if at least one of its negative literals (s ̸≈ t) · θ has sθ ̸↓R tθ.

For each ground closure C · θ ∈ G, the partial model RC·θ and the set ϵC·θ

are mutually recursively defined. RC·θ is the following rewrite system, defined
by induction wrt. ≻cc:

RC·θ =
⋃

D·σ≺cc C·θ

ϵD·σ , (3.14)

while ϵD·σ denotes a set, with 0 or 1 elements, which may or may not contain a
new rewrite rule (for the partial models which include it). We define it in terms
of the following conditions. If:

a. C · θ is false in RC·θ,
b. lθ ≈ rθ strictly maximal in Cθ,7

c. lθ ≻t rθ,
d. C · θ \ {(l ≈ r) · θ} is false in RC·θ ∪ {lθ→ rθ}, and
e. lθ is irreducible via RC·θ,

(3.15)

then ϵC·θ = {lθ→ rθ} and C · θ is called productive, otherwise ϵC·θ = ∅.
The total model R∞ is thus

⋃
D·σ∈G ϵD·σ. Let also RC·θ be RC·θ ∪ ϵC·θ. Our

goal is to show that R∞ is a model for G. We will prove this by contradiction:
if this is not the case, then there is a minimal (wrt. ≻cc) closure C · θ such that
R∞ ̸|= C · θ. We will show by case analysis how the existence of this closure
leads to a contradiction, if the set is saturated up to redundancy, and hence that
all sets saturated by (2.7) up to redundancy have at least a model R∞.

First, some lemmas.

Lemma 3.12. R∞ and all RC·θ are convergent, i.e. terminating and confluent.

Proof. They are terminating since the rewrite relation is contained in≻t, which
is well-founded. For confluence it is sufficient to show that left hand sides of
rules in R∞ are irreducible in R∞. Assume that l→ r and l′→ r′ are two rules

7Wrt. (3.2).
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3.3. Model construction

produced by closures C · θ and D · σ respectively. By (3.15b) and (3.15c) we
have l = max(Cθ) and l′ = max(Dσ). Wlog. assume l is reducible by l′→ r′.
Then l ⊵ l′, and since ≻t is a simplification order, then l ⪰t l

′.
If l ≻t l′, then we have max(Cθ) ≻t max(Dσ) ⇒ C · θ ≻cc D · σ (by

Lemma 3.7). But then C · θ could not be productive due to (3.15e).
If l = l′ then both rules can reduce each other, and again due to (3.15e)

whichever closure is larger would not be productive. In either case we obtain a
contradiction.

Lemma 3.13. If RC·θ |= C · θ, then RD·σ |= C · θ for any D · σ ≻cc C · θ, and
R∞ |= C · θ.

Proof. If a positive literal s ≈ t of Cθ is true in RC·θ, then s ↓RC·θ t. Since
no rules are ever removed during the model construction, then s ↓RD·σ t and
s ↓R∞ t.

If a negative literal (s ̸≈ t) · θ of C · θ is true in RC·θ, then sθ ̸↓RC·θ tθ.
Wlog. assume that sθ ≻t tθ. Consider a productive closure D · σ ≻cc C · θ that
produced a rule lσ → rσ. Let us show that lσ → rσ cannot reduce sθ ̸≈ tθ.
Assume otherwise. By (3.15b) and (3.15c), lσ = max(Dσ), so if lσ→rσ reduces
either tθ or a strict subterm of sθ, then lσ ≺t sθ, then max(Dσ) ≺t max(Cθ),
then D · σ ≺cc C · θ (Lemma 3.7), which is a contradiction. If, on the other
hand, lσ = sθ, then since C · θ cannot be a positive unit, D · σ and C · θ are
compared as follows.

– Mcc(C · θ) contains {s · θ, t · θ, sθ · id , tθ · id} (if unit) or {sθ · id , tθ · id ,
sθ · id , tθ · id} (if non-unit).

– Mcc(D · σ) contains {lσ · id} and {rσ · id} (if unit) or {lσ · id , rσ · id}
(if non-unit).

But we have

{sθ · id , tθ · id , sθ · id , tθ · id}
⪰⪰tc {s · θ , t · θ , sθ · id , tθ · id}
≻≻tc {lσ · id , rσ · id}
≻≻tc {l · σ} and ≻≻tc {r · σ}

(3.16)

because of Lemma 3.4, and since sθ = lσ ≻t tσ implies sθ · id = lσ · id and
s · θ ≻tc rσ · id . This contradicts D · σ ≻cc C · θ.
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3. Closure redundancy in superposition

Lemma 3.14. If C · θ = (C ′ ∨ l ≈ r) · θ is productive, then RD·σ ̸|= C ′ · θ for
any D · σ ≻cc C · θ, and R∞ ̸|= C ′ · θ.

Proof. All literals in C ′ · θ are false in RC·θ by (3.15d). For all negative literals
(s ̸≈ t) · θ in C ′ · θ, if they are false then sθ ↓RC·θ tθ. Since no rules are ever
removed during the model construction then sθ ↓RD·σ tθ and sθ ↓R∞ tθ.

For all positive literals (s ≈ t) · θ in C ′ · θ, if they are false in RC·θ then
sθ ̸↓RC·θ tθ. By (3.15b) and (3.15c) we have lθ ⪰t sθ and lθ ⪰t tθ. Any
closure D · σ that produces a rule l′σ→ r′σ which reduces sθ or tθ must have
either have l′σ ≺t lθ, in which case max(Dσ) ≺t max(Cθ) ⇒ D · σ ≺cc C · θ
(Lemma 3.7), or l′σ = lθ, in which case whichever clause is bigger would not
be productive due to (3.15e).

We are now ready to prove the main proposition by Noetherian induction
on closures, using the closure ordering ≻cc (see Lemma 3.1); namely that for all
C · θ ∈ G we have R∞ |= C · θ.

In fact, we will show a stronger result: that for all C · θ ∈ G we have
RC·θ |= C · θ (the former result follows from the latter by Lemma 3.13).

If this is not the case, then there exists a minimal counterexample C · θ ∈ G

which is false in RC·θ, i.e. RC·θ ̸|= C · θ. Therefore, by induction hypothesis
all closures D · σ ∈ G such that D · σ ≺cc C · θ have RD·σ |= D · σ, so by
Lemma 3.13 we have RC·θ |= D · σ (and RC·θ |= D · σ).

Our case analysis is structured as follows: after each case is discharged,
subsequent cases will assume that the negation of the previous cases holds.

Case 1. C is redundant.

Proof. By definition, C · θ follows from smaller closures in G. But if C · θ is the
minimal closure which is false in RC·θ, then all smaller D · σ are true in RD·σ,
which (as noted above) means that all smaller D · σ are true in RC·θ, which
means C · θ is true in RC·θ, which is a contradiction.

Case 2. There is a reductive inference C, . . . |− D which is redundant, such
that {C, . . . } ⊆ N , C · θ is maximal in {C · θ, . . . }, and D · θ |= C · θ.

Proof. Then D · θ is implied by closures in G smaller than C · θ. But since those
closures are true in RC·θ, then D · θ is true, and since D · θ implies C · θ, then
C · θ is true in RC·θ, which is a contradiction.
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3.3. Model construction

Case 3. C contains a variable x such that xθ is reducible.

Proof. Then RC·θ contains a rule xθ→ t. Let θ′ be identical to θ except that it
maps x to t. Then C · θ′ ≺cc C · θ, and therefore C · θ′ is true in RC·θ. But C · θ′

is true in RC·θ iff C · θ in RC·θ, since xθ ↓RC·θ t, therefore C · θ is also true in
RC·θ, which is a contradiction.

Case 4. Neither of the previous cases apply, and C contains a negative literal
which is selected in the clause, i.e., C · θ = (C ′ ∨ s ̸≈ t) · θ with s ̸≈ t selected
in C .

Proof. Then either sθ ̸↓RC·θ tθ and C · θ is true and we are done, or else sθ ↓RC·θ

tθ. By (3.15a) and (3.15d), C · θ is only productive if (s ̸≈ t) · θ is false in RC·θ

and RC·θ, so sθ ↓RC·θ tθ iff sθ ↓RC·θ tθ. Wlog., let us assume sθ ⪰t tθ.

Subcase 4.1. sθ = tθ.

Proof. Then s and t are unifiable, meaning that there is an equality resolution
inference

C ′ ∨ s ̸≈ t

C ′σ
, with σ = mgu(s, t), (3.17)

with premise in N .
Take the instance C ′σ ·ρ of the conclusion such that σρ = θ; it always exists

since σ = mgu(s, t). Also, since the mgu is idempotent [Baader and Nipkow
1998] then σθ = σ(σρ) = σρ = θ, so C ′σ · ρ = C ′σ · θ.

We will show that C · θ = (C ′ ∨ s ̸≈ t) · σρ ≻cc C
′σ · ρ = C ′σ · θ.

– If C ′ is empty, then this is trivial.
– If C ′ has more than 1 element, then this is also trivial (Mcc(C · θ) ⊃

Mcc(C
′σ · θ)).

– If C ′ has exactly 1 element, then let C ′ = {s′ ≈̇ t′}. We have (s′ ≈̇ t′ ∨
s ̸≈ t) · σρ ≻cc (s

′ ≈̇ t′)σ · ρ if

Mcc((s
′ ≈̇ t′ ∨ s ̸≈ t) · σρ)

= Mcc((s
′ ≈̇ t′ ∨ s ̸≈ t)σρ · id)

≻≻≻tc Mcc((s
′ ≈̇ t′)σ · ρ)

(3.18)

(see definition of ≻cc) which is true since, by Lemma 3.4, s′σρ · id ⪰tc s
′σ · ρ

and t′σρ · id ⪰tc t
′σ · ρ.
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3. Closure redundancy in superposition

Now notice also that if C ′σ · ρ is true then (C ′ ∨ · · · ) · σρ must also be true.
Recall that Case 2 does not apply. But we have shown that this inference is
reductive, with C ∈ N , C · θ trivially maximal in {C · θ}, and that the instance
C ′σ · θ of the conclusion implies C · θ. So for Case 2 not to apply the inference
must be non-redundant. Also since Case 1 doesn’t apply then the premise is not
redundant. This means that the set is not saturated, which is a contradiction.

Subcase 4.2. sθ ≻ tθ.

Proof. Then (recall that sθ ↓RC·θ tθ) sθ must be reducible by some rule in RC·θ.
Let us say that this rule is lθ→ rθ, produced by a closure D · θ smaller than
C · θ.8 Therefore closure D · θ must be of the form (D′ ∨ l≈ r) · θ, with lθ≈ rθ

strictly maximal in Dθ, and D′ · θ false in RD·θ. Also note that D cannot be
redundant, or else D · θ would follow from smaller closures, but those closures
(which are smaller than D · θ and therefore smaller than C · θ) would be true,
so D · θ would be also true in RD·θ, so by (3.15a) it would not be productive.
Then lθ = uθ for some subterm u of s, meaning l is unifiable with u, meaning
there exists a superposition inference

D′ ∨ l ≈ r C ′ ∨ s[u] ̸≈ t

(D′ ∨ C ′ ∨ s[u 7→ r] ̸≈ t)σ
, with σ = mgu(l, u), (3.19)

Similar to what we did before, consider the instance (D′∨C ′∨s[u 7→r] ̸≈t)σ·ρ
with σρ = θ.9 We wish to show that this instance of the conclusion is smaller
than C · θ (an instance of the second premise), that is that

(C ′ ∨ s ̸≈ t) · σρ ≻cc (D′ ∨ C ′ ∨ s[u 7→ r] ̸≈ t)σ · ρ . (3.20)

Several cases arise:

– C ′ ̸= ∅. Then both premise and conclusion are non-unit, so comparing
them means comparing

Mcc((C
′θ∨ sθ ̸≈ tθ) · id) and Mcc((D

′θ∨C ′θ∨ sθ[uθ 7→ rθ] ̸≈ tθ) · id) , (3.21)
8We can use the same substitution θ on both C and D by simply assuming wlog. that they

have no variables in common.
9And again note that the mgu σ is idempotent so (D′ ∨ C ′ ∨ s[u 7→ r] ̸≈ t)σ · ρ = (D′ ∨

C ′ ∨ s[u 7→ r] ̸≈ t)σ · θ.

60



3.3. Model construction

or after removing common elements, comparing

{{sθ · id , tθ · id , sθ · id , tθ · id}} and Mcc((D
′θ∨sθ[uθ 7→ rθ] ̸≈ tθ) · id) . (3.22)

We have:

(i) uθ = lθ ≻t rθ ⇒ sθ · id ≻tc sθ[uθ 7→ rθ] · id ,
(ii) sθ ≻t tθ ⇒ sθ · id ≻tc tθ · id , and

(iii) sθ ⪰t lθ ≻t rθ and lθ ≈ rθ strictly maximal in lθ ≈ rθ ∨D′θ;

these imply

{sθ · id , tθ · id , sθ · id , tθ · id}
⪰⪰tc {s · θ , t · θ , sθ · id , tθ · id}
≻≻tc Mlc(Lθ · id), for all L ∈ D′

(3.23)

(by Lemmas 3.4 and 3.6). Therefore, Mcc((C
′θ ∨ sθ ̸≈ tθ) · id) ≻≻≻tc Mcc((D

′θ ∨
C ′θ ∨ sθ[uθ 7→ rθ] ̸≈ tθ) · id).

– C ′ = ∅ and D′ ̸= ∅. Then we compare Mcc((s ̸≈ t) · θ) and Mcc((D
′ ∨

s[u 7→ r] ̸≈ t)θ · id), i.e.

{{s · θ, t · θ, sθ · id , tθ · id}} and Mcc((D
′ ∨ s[u 7→ r] ̸≈ t)θ · id) (3.24)

But due to the facts enumerated in the previous point we have already shown
that the former is greater wrt. ≻≻≻tc than the latter.

– C ′ = ∅ andD′ = ∅. Then simply sθ[uθ] ≻t sθ[uθ 7→rθ]means s[u]·σρ ≻tc

s[u 7→ r]σ · ρ, which since sθ ≻t tθ, means (s[u] ̸≈ t) ·σρ ≻cc (s[u 7→ r] ̸≈ t)σ · ρ.

In all these cases this instance of the conclusion is always smaller than
the instance C · θ of the second premise. Note also that C · θ is maximal in
{C · θ,D · θ}. Also, since D′ ·θ is false in RC·θ (by Lemma 3.14) and (s[u 7→r] ̸≈
t) ·θ is false in RC·θ (since (s ̸≈ t) ·θ is in the false closure C · θ, uθ ↓RC·θ rθ, and
the rewrite system is confluent), then in order for that instance of the conclusion
to be true in RC·θ it must be the case that C ′σ · ρ is true in RC·θ. But if the latter
is true then C · θ = (C ′ ∨ · · · ) · σρ is true, in RC·θ. In other words that instance
of the conclusion implies C · θ. Therefore again, since Case 1 and Case 2 do not
apply, we conclude that the inference is non-redundant with non-redundant
premises, so the set is not saturated, which is a contradiction.
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3. Closure redundancy in superposition

This proves all subcases.

Case 5. Neither of the previous cases apply, so all selected literals in C are
positive, i.e., C · θ = (C ′ ∨ s≈ t) · θ with s≈ t selected in C .

Proof. Then, since if the selection function doesn’t select a negative literal then
it must select all maximal ones, wlog. one (and only one) of the selected literals
s ≈ t maximal in C must have sθ ≈ tθ maximal in Cθ. Then if either C ′ · θ is
true in RC·θ, or ϵC·θ = {sθ→ tθ}, or sθ = tθ, then C · θ is true in RC·θ and we
are done. Otherwise, ϵC·θ = ∅, C ′ · θ is false in RC·θ, and wlog. sθ ≻t tθ.

Subcase 5.1. sθ ≈ tθ maximal but not strictly maximal in Cθ.

Proof. If this is the case, then there is at least one other maximal positive literal
in the clause. Let C · θ = (C ′′ ∨ s≈ t∨ s′ ≈ t′) · θ, where sθ = s′θ and tθ = t′θ.
Therefore s and s′ are unifiable and there is an equality factoring inference:

C ′′ ∨ s≈ t ∨ s′ ≈ t′

(C ′′ ∨ s≈ t ∨ t ̸≈ t′)σ
, with σ = mgu(s, s′). (3.25)

Take the instance of the conclusion (C ′′ ∨ s≈ t ∨ t ̸≈ t′)σ · ρ with σρ = θ. This
is smaller than C · θ, since:

– max(Cθ) = max((C ′′ ∨ s≈ t ∨ t ̸≈ t′)θ),
– Neither is a unit clause,
– {s′θ, t′θ} ≻≻t {tθ, t′θ, tθ, t′θ}, and
– Lemmas 3.2 and 3.7 apply.

Since tθ = t′θ and C ′′σ · ρ is false in RC·θ, this instance of the conclusion is
true in RC·θ iff (sσ ≈ tσ) · ρ is true in RC·θ. But if the latter is true in RC·θ then
(s≈t∨· · · )·σρ also is. Therefore that instance of the conclusion impliesC · θ. As
such, and since again Cases 1 and 2 do not apply, we have a contradiction.

Subcase 5.2. sθ ≈ tθ strictly maximal in Cθ, and sθ reducible (in RC·θ).

Proof. This is similar to Subcase 4.2. If sθ is reducible, say by a rule lθ→ rθ,
then (since ϵC·θ = ∅) this is produced by some closure D · θ smaller than C · θ,
with D · θ = (D′ ∨ l≈ r) · θ, with the lθ≈ rθ maximal in Dθ, D not redundant,
and with D′ · θ false in RD·θ.

Then there is a superposition inference

D′ ∨ l≈ r , C ∨ s[u]≈ t |− (D′ ∨C ′ ∨ s[u 7→ r]≈ t)σ, σ = mgu(l, u). (3.26)
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Again taking the instance (D′ ∨ C ′ ∨ s[u 7→ r] ≈ t)σ · ρ with σρ = θ, we see
that it is smaller than C · θ (see discussion in Subcase 4.2). Furthermore since
D′ · θ and C ′ · θ are false in RC·θ, then that instance of the conclusion is true in
RC·θ iff (s[u 7→ r]≈ t)σ · ρ is. But since also uθ ↓RC·θ rθ, then (s[u 7→ r]≈ t)σ · ρ
implies (s[u]≈ t)σ · ρ. Therefore that instance of the conclusion implies C · θ.
Again this means we have a contradiction.

Subcase 5.3. sθ ≈ tθ strictly maximal in Cθ, and sθ irreducible (in RC·θ).

Proof. Since C · θ is not productive, and at the same time all criteria in (3.15)
except (3.15d) are satisfied, it must be that (3.15d) is not, that is C ′ · θ must be
true in RC·θ = RC·θ ∪ {sθ→ tθ}. Then this must mean we can write C ′ · θ =

(C ′′ ∨ s′ ≈ t′) · θ, where the latter literal is the one that becomes true with the
addition of {sθ→ tθ}, whereas without that rule it was false.

But this means that s′θ ↓RC·θ t′θ such that any rewrite proof needs at least
one step where sθ → tθ is used, since sθ is irreducible by RC·θ. Wlog. say
s′θ ≻t t

′θ. Since:

(i) {sθ, tθ} ≻≻t {s′θ, t′θ},
(ii) sθ ≻t tθ, and

(iii) s′θ ≻t t
′θ,

then sθ ⪰t s
′θ ≻t t

′θ, which implies t′θ ⋭ sθ, which implies sθ→ tθ cannot
be used to reduce t′θ, and similarly, nor to reduce s′θ if sθ ≻t s′θ. Thus the
only way it can reduce s′θ or t′θ is if sθ = s′θ. This means there is an equality
factoring inference:

C ′′ ∨ s′ ≈ t′ ∨ s≈ t

(C ′′ ∨ s′ ≈ t′ ∨ t ̸≈ t′)σ
, with σ = mgu(s, s′). (3.27)

Taking θ = σρ, we see that the instance of the conclusion (C ′′∨t ̸≈t′∨s≈t)σ·ρ is
smaller than the instance of the premise (C ′′∨s′≈t′∨s≈t)·σρ (see Subcase 5.1).

But we have said that s′θ ↓RC·θ t′θ, where the first rewrite step had to take
place by rewriting s′θ = sθ → tθ, and the rest of the rewrite proof then had to
use only rules from RC·θ. In other words, this means tθ ↓RC·θ t

′θ. As such, the
literal (t ̸≈ t′) · θ is false in RC·θ, and so the conclusion is true in RC·θ iff rest of
the closure is true in RC·θ. But if the rest of the closure (C ′′∨ s′≈ t′)σ · ρ is true
then so is C · θ, so that instance of the conclusion implies C · θ. Once again,
this leads to a contradiction since none of Cases 1 and 2 apply and therefore the
set must not be saturated.
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3. Closure redundancy in superposition

This proves all the subcases and the theorem.

Remark 3.1. As part of this proof, we have also shown that all inferences in
the superposition system are reductive, so per Lemma 3.10 one way to make
inferences redundant is simply to add the conclusion.
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Chapter 4

Simplifications

Everything must be made as simple as
possible. But no simpler.

Albert Einstein (1933)

In this chapter, we will apply the results that we have just obtained to formulate
several simplification rules and criteria for redundancy of inferences in the
superposition calculus.

This chapter is divided into three main sections:

• First, we improve on the usual notion of demodulation via a novel rule of
encompassment demodulation.

• Then, we present simplification rules based on joinability, ground joinab-
ility, and connectedness.

• Finally, we discuss specialised criteria for dealing with associative-commu-
tative (AC) theories.

Of the work presented in this chapter, the parts on encompassment demodu-
lation, AC normalisation, and AC joinability were peer-reviewed and published
in Duarte and Korovin 2021, and the parts on general ground joinability, con-
nectedness, and ground connectedness were peer-reviewed and published in
Duarte and Korovin 2022.
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4. Simplifications

Armed with Definition 3.8, the criterion for closure redundancy of clauses, we
can formulate simplification rules, which we take to be inferences of the form

C1 · · · ��D

D′ (4.1)

where D is closure redundant in {C1, . . . , D
′}; we also require rules to be sound.

We then say that {C1, . . . } are used to simplify D, the deleted premise, into D′,
the conclusion. In practice, this means that when the premises C1, . . . , D have
been derived, we can replace D with D′ with no loss of completeness.

These rules include such things as removing tautologies, deleting trivial
literals, deleting clauses subsumed by other clauses, etc.

To aid the statement of the constraints for rewrite-based simplification rules,
we introduce the following definition, to be re-used throughout this chapter.

Definition 4.1. A rewrite via l ≈ r in clause C[lθ] is admissible if one of the
following conditions holds:

(i) C is not a positive unit, or
(ii) (let C = s[lθ]≈ t for some θ)

(ii.a) lθ ̸= s, or
(ii.b) lθ ⊐ l, or
(ii.c) s ≺t t,1 or
(ii.d) rθ ≺t t.

In other words, given an equation l ≈ r, where there exists a substitution
θ such that lθ is a subterm in C , then the rewrite is said to be admissible if C
is not a positive unit, or if lθ occurs at a strict subterm position, or if lθ is less
general than l (i.e. θ is not a renaming), or if lθ occurs outside a maximal side,
or if rθ is smaller than the other side.

This definition will be invoked for most of the simplification rules we will
present in this chapter, as it neatly encapsulates the conditions which are suffi-
cient for completeness of many rewrite-based simplification rules, as we shall
begin to see in the next section.

1We note that (ii.c) is superfluous if lθ ≻ rθ (implies (ii.d)), but we include it since in practice
it is easier to check, as it is local to the clause being rewritten and therefore needs to be checked
at most once for each unit equational clause we attempt to rewrite, while (ii.d) needs to be
checked with each rewrite attempt.
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4.1 Demodulation
The standard demodulation rule used in virtually all state-of-the art superposition-
based provers is as follows [Kovács and Voronkov 2013].

Demodulation
l ≈ r ���C[lθ]

C[lθ 7→ rθ]
,

where lθ ≻t rθ,
and lθ ≈ rθ ≺c C .

(4.2)

However, as discussed in Examples 3.2 and 3.4, this is not applicable when the
rewrite happens at a top position of a literal and the equation happens not to
be smaller than the clause being rewritten, wrt. ≺c. Furthermore, there is an
issue of performance, as the check lθ ≈ rθ ≺c C may be expensive in practice
(depending on the term ordering used, but usually at least linear in the size of
C).

We present the following simplification rule, which has an entirely weaker
constraint, and can therefore be applied in more instances.

Encompassment
Demodulation

l ≈ r �
��C[lθ]

C[lθ 7→ rθ]
,

where lθ ≻t rθ, and
rewrite via l ≈ r in C is admissible.

(4.3)

In other words, demodulation is now allowed whenever l (the lhs of the equa-
tion) is more general than lθ (the subterm being rewritten), and is also al-
lowed unconditionally on clauses which are not positive unit equalities (even if
lθ ≈ rθ ⊀c C).

Example 4.1. Consider the equation f(x) ≈ s, where f(x) ≻t s. Then we can
apply encompassment demodulation to simplify clauses

• f(a)≈ t into s≈ t,
• f(x) ̸≈ t into s ̸≈ t,
• f(x)≈ t ∨ C into s≈ t ∨ C ,
• f(x)≈ t into s≈ t (when s ≺t t),

while the usual demodulation rule would require s ≺t t for any of these to go
through.

The condition in (4.3) is therefore much weaker than the one given in (4.2),
and, when we restrict ourselves to unit equalities, equivalent to the one in
equational completion. More precisely:
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Remark 4.1. Encompassment demodulation (4.3) subsumes the Simplification2,
Composition2, and Collapse2 rules in the Bachmair, Dershowitz and Plaisted
[1989] unfailing completion calculus, being equivalent to these on positive unit
equational clauses.

We shall now prove that application of this rule does not compromise the
completeness of superposition.

Theorem 4.1. Encompassment demodulation is a simplification rule of the
superposition calculus wrt. closure redundancy.

Proof. This is a valid redundancy if all ground closures of C[lθ] follow from
some smaller ground closures of C[lθ 7→ rθ] and l≈ r. Let C · ρ be an arbitrary
ground closure of C . That C · ρ follows from C[lθ 7→ rθ] · ρ and (l ≈ r) · θρ, is
trivial. The fact that if lθ ≻t rθ then, for all groundings ρ, C[lθ 7→rθ]·ρ ≺cc C ·ρ,
also follows from Lemma 3.6. It remains to be shown that, for all ρ, (l≈r)·θρ ≺cc

C · ρ.
IfC is not a positive unit, then since l≈r is a positive unit with lθ ⪯t max(C)

(because lθ ⊴ some subterm of C), we have (l≈ r) · θρ ≺cc C · ρ by Lemma 3.7.
Otherwise, C has the form s[lθ] ≈ t. If lθ ̸= s, that means lθ ◁ s ⇒

lθ ≺t s ⇒ l · θρ ≺tc s · ρ ⇒ (l ≈ r) · θρ ≺cc (s≈ t) · ρ = C · ρ.
If lθ = s, but s is the minimal side of s ≈ t (i.e. s ≺t t), then still we have

rθρ ≺t lθρ = sρ ≺t tρ ⇒ (l ≈ r) · θρ ≺cc (s≈ t) · ρ = C · ρ.
If lθ = s ⊀t t, then still if lθ ⊐ l then for all ρ, lθ · ρ ≻tc l · θρ (Lemma 3.4).

Therefore (l ≈ r) · θρ ≺cc (lθ ≈ t) · ρ = C · ρ for all ρ.
Finally, if lθ = l = s ⊀t t, we need to compare t and rθ. If t ≻t rθ, then, for

all ρ, t · ρ ≻tc r · θρ ⇒ (l ≈ r) · θρ ≺cc (l ≈ t) · ρ = C · ρ.

There are two main benefits from replacing standard demodulation with
encompassment demodulation:

• The most obvious is that encompassment demodulation can be used to
simplify more clauses than demodulation. This can enable (i) quick proofs
to be found in situations where saturation with generating rules would
take longer, and (ii) for more clauses to be pruned from the search space,
accelerating performance.

• Furthermore, the test itself is cheaper. In the standard version of demodu-
lation, a series of ≻t ordering checks (in the worst case as many as the
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number of literals in C) is necessary whenever a rewrite at a top position
is attempted; in encompassment demodulation if the clause is non-unit or
a negative unit clause, then the rewrite is immediately successful. Only if
the clause is a unit equality do we need first to check if the instantiator θ
is a renaming, which is quick in any reasonable data representation of a
substitution, and only if θ is a renaming do we need to do one ordering
check, wrt. the other side of the literal.

We also note that this is a “drop-in” replacement for standard demodula-
tion, as its implementation is straightforward and requires no extra indexing,
search, or traversal algorithms. Indeed, it has already been adopted by leading
superposition provers [Suda 2022].

In the sequel, except when we explicitly disambiguate between “standard”
demodulation and “encompassment” demodulation, we will refer to the latter
by simply “demodulation”.

4.2 Joinability
We can combine encompassment demodulation with simple criteria for the
removal of s≈ s and s ̸≈ s literals, since a clause s≈ s∨C is always redundant
wrt. any set of clauses S, and a clause s ̸≈s∨C is always redundant wrt. S∪{C}.
By doing this, we obtain a class of joinability-based simplification criteria.

Indeed, this is already what application of standard/encompassment de-
modulation looks like in practice: the two sides of a literal are exhaustively
demodulated, and if they are equal, the clause (if the literal is positive) or the
literal (if the literal is negative) is thrown away. The interest of presenting this
as a separate concept has more to do with how we can extend it further, as we
shall see in a few pages.

We will first present the following definition.

Definition 4.2 (Strong joinability). Two terms are strongly joinable (s t),
in a clause C wrt. a set of equations S, if either

(a) s = t, or
(b) s→ s[l1σ1 7→ r1σ1]

∗→ t via equations li ≈ ri ∈ S, where the rewrite via2

l1 ≈ r1 is admissible in C , or
(c) s→ s[l1σ1 7→ r1σ1] ↓ t[l2σ2 7→ r2σ2]← t via equations li≈ ri ∈ S, where

the rewrites via l1 ≈ r1 and l2 ≈ r2 are admissible in C .
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This is a subset of the ‘plain’ joinability relation (as defined in page 41), for-
mulated directly in terms of a set of equations rather than on a set of rewrite
rules, and referring to Definition 4.1 to encapsulate the conditions which will en-
sure completeness. Specifically, the condition of admissibility is only explicitly
asserted for the first rewrite step that is undertaken on each of the terms. This
is because — for all purposes for which this definition is invoked throughout
this work — the admissibility of the first rewrite step on a term will imply the
admissibility of the remaining ones.

We then have:

Joinability
(((((
s≈ t ∨ C S

,
where s t

in s≈ t ∨ C wrt. S,
(4.4a)

Joinability �����
s ̸≈ t ∨ C S

C
,

where s t

in s ̸≈ t ∨ C wrt. S.
(4.4b)

Theorem 4.2. Joinability is a simplification rule of the superposition calculus
wrt. closure redundancy.

Proof. If s t in s ≈̇ t ∨ C wrt. S, then one of these following points of Defini-
tion 4.2 holds:

(a), and the clause is s ≈̇ s ∨ C .

(b), and there is a chain of (encompassment) demodulation inferences of the
form

s ≈̇ t ∨ C , l1σ1 ≈ r1σ1 |− s1 ≈̇ t ∨ C

. . .

si−1 ≈̇ t ∨ C , liσi ≈ riσi |− si ≈̇ t ∨ C

. . .

sn−1 ≈̇ t ∨ C , lnσn ≈ rnσn |− sn ≈̇ t ∨ C ,

(4.5)

for some n ≥ 1, and where sn = t. The side-condition in (4.3), for the com-
pleteness of encompassment demodulation, is verified for each of these
steps, since by Definition 4.2(b) we have that the rewrite via l1σ1 ≈ r1σ1

is admissible (in s ≈̇ t ∨ C), and because liσi ⊴ si−1 ≺ s (implying that
liσi ≺ s) we have that the rewrites via the remaining liσi ≈ riσi are
admissible in s ≈̇ t ∨ C as well, as they satisfy Definition 4.1(ii.a).

2Recall what we mean by “rewrite via”, on page 42.
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(c), and similarly to the previous point we have a chain of encompassment
demodulation inferences of the form

s ≈̇ t ∨ C , l1σ1 ≈ r1σ1 |− s1 ≈̇ t ∨ C

. . .

sn−1 ≈̇ t ∨ C , lnσn ≈ rnσn |− sn ≈̇ t ∨ C

sn ≈̇ t ∨ C , ln+1σn+1 ≈ rn+1σn+1 |− sn ≈̇ t1 ∨ C

. . .

sn ≈̇ tm−1 ∨ C , ln+mσn+m ≈ rn+mσn+m |− sn ≈̇ tm ∨ C ,

(4.6)

for some n,m ≥ 1, and where sn = tm. The side-condition in (4.3) is
again verified for each of these steps, since (identically to the previous
point): by Definition 4.2(c) we have that the rewrites via l1σ1 ≈ r1σ1 and
lm+1σm+1≈ rm+1σm+1 are admissible, and the remaining ones are as well
because ∀i ∈ 2, . . . , n. liσi ⊴ si−1 ≺ s and ∀j ∈ 2, . . . ,m. ln+jσn+j ⊴
tj−1 ≺ t, which implies that Definition 4.1(ii.a) is satisfied.

In all cases, we have that s ≈̇ t ∨ C is redundant wrt. S ∪ {u ≈̇ u ∨ C}, for
some u ⪯t s and ⪯t t. Then, by observing that

– {u≈ u ∨ C} is redundant wrt. ∅, and
– {u ̸≈ u ∨ C} is redundant wrt. {C},

simply by Lemma 3.9 we have that s≈ t∨C is redundant wrt. S and s ̸≈ t∨C
is redundant wrt. S ∪ {C}.

Ground joinability

However, this joinability rule is not sufficient in many situations. In particular,
because each rewrite has to be oriented (that is, each step in a “proof” of joinab-
ility has to be done via an oriented instance of an equation in S), this precludes
its usage in situations where the clause might in fact be redundant, but where
there is no rewrite chain oriented with ≻ to prove it.

Example 4.2. A stereotypical example is associative-commutative operators. Let

S = {f(x, y)≈ f(y, x), f(x, f(y, z))≈ f(f(x, y), z)} . (4.7)
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Take the clauses

f(x, f(y, z))≈ f(x, f(z, y)) , (4.8a)
f(f(x, y), z)≈ f(x, f(z, y)) . (4.8b)

Inspection using Definition 3.8 shows that they are both redundant wrt. S,
yet joinability cannot be applied here, and neither can any encompassment
demodulation step3 (nor the subsumption rule4).

The crucial observation is that, even though the clauses themselves cannot
be rewritten by orientable instances of equations in S, all of their ground clauses
can. That is to say, for example, for any ground closure

(f(x, f(y, z))≈ f(x, f(z, y))) · θ (4.9)

of (4.8a), we either have

• f(yθ, zθ) ≻t f(zθ, yθ), and the left-hand side f(x, f(y, z)) · θ can be re-
written to f(x, f(z, y)) · θ via a (smaller) instance of f(x, y)≈ f(y, x), or

• f(zθ, yθ) ≻t f(yθ, zθ), and the right-hand side f(x, f(z, y)) · θ can be
rewritten to f(x, f(y, z))·θ via a (smaller) instance of f(x, y)≈ f(y, x), or

• f(yθ, zθ) = f(zθ, yθ),

which means that for all ground instances of that clause, a tautology follows
from smaller ground instances of clauses in S, and therefore the clause is re-
dundant wrt. S, a fact that we have been able to show merely by showing that
all ground instances of that clause are rewritable to a tautology via ground in-
stances of equations in S. We just had to ensure that the ground instances of
the equations used in the rewrites were all smaller than the ground instance of
the clause being rewritten.

This is an example that motivates the formulation of a ground joinability
rule, analogous to the joinability rule in (4.4).

In the context of equational completion, it can be shown that ground join-
able equations are not needed for computing critical pairs (but they may still
be retained for rewriting), in that discarding those does not compromise the

3Note that f(x, y)≈ f(y, x) cannot be oriented by any simplification ordering.
4A rule that states that Cθ ∨D is redundant wrt. {C}.
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refutational completeness of the procedure [Martin and Nipkow 1990]. Empir-
ically, this appears to be an important factor for equational completion provers
routinely outperforming superposition provers, often by a wide margin, in unit-
equational problems [Sutcliffe 2016], and it is unsatisfactory that this technique
is unavailable in superposition. In this context, the equivalent notion would be
ground joinable equations being redundant in the set of clauses wrt. which they
are ground joinable.

In the sequel, we will show how a similar rule to (4.4) still holds if we replace
the requirement of joinability by a requirement of ground joinability. Let us
write the following definition.

Definition 4.3 (Strong ground joinability). Two terms are strongly ground
joinable (s t), in a clause C wrt. a set of equations S, if for all θ ∈ GSubs(s, t)

we have sθ tθ in C wrt. S.

Note that strong joinability implies strong ground joinability, but not the
converse.

We then have:

Ground joinability
(((((
s≈ t ∨ C S

,
where s t

in s≈ t ∨ C wrt. S,
(4.10a)

Ground joinability �����
s ̸≈ t ∨ C S

C
,

where s t

in s ̸≈ t ∨ C wrt. S.
(4.10b)

In other words, rather than demanding a joinability “proof” for the (possibly
non-ground) literal, we relax that to a requirement of only a separate joinability
“proof” for each of the ground instances of the literal, using smaller (wrt. ≻cc)
instances of equations in S.

Theorem 4.3. Ground joinability is a simplification rule of the superposition
calculus wrt. closure redundancy.

Proof. We will prove this for (4.10a), the positive case, first. If s t, then for any
instance (s≈t∨C)·θ we either have sθ = tθ, and therefore ∅ |= (s≈t)·θ, or we
have wlog. sθ ≻t tθ, with sθ ↓ tθ. Then sθ and tθ can be rewritten to the same
normal form u by liσi→ riσi where li≈ ri ∈ S. Since u ≺t sθ and u ⪯t tθ, then
(s≈ t∨C) · θ follows from smaller (u≈u∨C) · θ5 (a tautology, i.e. follows from

5Wlog. uθ = u, renaming variables in u if necessary.
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∅) and from the instances of clauses in S used to rewrite sθ → u← tθ. It only
remains to show that these latter instances are also smaller than (s≈ t ∨C) · θ.
Since we have assumed sθ ≻t tθ, then at least one rewrite step must be done on
sθ. Let l1σ1→r1σ1 be the instance of the rule used for that step, with (l1≈r1)·σ1

the closure that generates it. By Definitions 4.1, 4.2 and 4.3, one of the following
holds:

• C ̸= ∅, therefore (l1 ≈ r1) · σ1 ≺cc (s≈ t ∨ C) · θ (Lemma 3.7), or
• l1σ1 ◁ sθ, therefore l1σ1 ≺t sθ ⇒ l1 · σ1 ≺tc s · θ ⇒ (l1 ≈ r1) · σ1 ≺cc

(s≈ t ∨ C) · θ, or
• l1σ1 = sθ and s ⊐ l1, therefore l1 · σ1 ≺tc s · θ ⇒ (l1 ≈ r1) · σ1 ≺cc

(s≈ t ∨ C) · θ, or
• l1σ1 = sθ and s ≡ l1 and r1σ1 ≺t tθ, therefore r1 · σ1 ≺tc t · θ ⇒
(l1 ≈ r1) · σ1 ≺cc (s≈ t ∨ C) · θ.

As for the remaining steps, they are done on the smaller side tθ or on the other
side after this first rewrite, which is smaller than sθ. Therefore all subsequent
steps done by any ljσj → rjσj will have

rj · σj ≺tc lj · σj ≺tc s · θ ⇒ (lj ≈ rj) · σj ≺cc (s≈ t ∨ C) · θ . (4.11)

In other words, we have shown that closure (s≈ t∨C) · θ follows from smaller
(li ≈ ri) · σi ∈ GClos(S) and smaller (u≈ u ∨ C) · θ. The latter, of course, is a
tautology and redundant in any context. As such, since this holds for all ground
closures (s≈ t ∨ C) · θ, then s≈ t ∨ C is (closure) redundant wrt. S.

For (4.10b), the negative case, the proof is similar: if s t, then for any
instance (s ̸≈ t ∨ C) · θ we either have sθ = tθ, or wlog. sθ ≻t tθ with sθ ↓ tθ.
If the latter is true, then sθ and tθ can be rewritten to the same normal form
u by liσi → riσi where li ≈ ri ∈ S. Again, since u ≺t sθ and u ⪯t tθ, then
(s ̸≈ t ∨ C) · θ follows from smaller (u ̸≈ u ∨ C) · θ and from the instances of
clauses in S used to rewrite sθ → u← tθ. By the same case analysis as above,
these instances (li ≈ ri) · σi ∈ GClos(S) are smaller than (s ̸≈ t ∨ C) · θ.

As such, we will conclude that (s ̸≈t∨C)·θ follows from smaller (li≈ri)·σi ∈
GClos(S) and smaller (u ̸≈ u ∨ C) · θ. But now the latter simply follows from
the smaller closure C · θ, and therefore (by monotonicity of the redundancy
relation, Lemma 3.9) s ̸≈ t ∨ C is (closure) redundant wrt. S ∪ {C}.

Note that using closure redundancy is essential for the proof, as ground
joinability would not be correct using the standard redundancy criterion, as
evidenced e.g. by Example 3.3.
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In equational completion, the ground joinability inference rule following
Avenhaus, Hillenbrand and Löchner [2003] is exactly (using our notation)

���s≈ t S
, where s t in s≈ t wrt. S (4.12)

which is simply a special case of (4.10a).6

Finally, this also raises the question of how to actually test ground joinability
in practice. Indeed, every non-ground formula has an infinite number of ground
instances, whenever the signature contains at least one non-constant function
symbol.7 This means that a practical test with any hope of even terminating
in the general case, let alone being efficient for use in a simplification rule for
theorem proving, will have to employ an efficient algorithm, which potentially
only approximates the relation.8 We will explore this in detail in Section 5.1.

Connectedness
The simplification rules for joinability and ground joinability require that each
step in proving / is done via an oriented instance of an equation in the
set. However, this may be unecessarily restrictive. In this section, we show
that we can formulate a criterion for the redundancy of inferences, rather than
clauses, which uses a notion of connectedness which is weaker than the notion
of joinability.

Informally, in a joinability proof we have e.g.

s→ u1 → · · · → uk ← · · · ← un ← t (4.13)

where→ ⊆ ≻t, therefore all the ui are smaller wrt. ≻t than s or t. Together
with the extra conditions in Definition 4.2, this is what ensures that the criterion
for redundant clause (Definition 3.8) is satisfied: all instances of the original
clause follow from smaller instances of the equations used in the rewrite plus
the resulting clause.

As a generalisation, we may have a connectedness proof e.g.

s↔ u1 ↔ · · · ↔ ui ↔ · · · ↔ un ↔ t (4.14)
6And at the same time a sufficient criterion for both (4.10a) and (4.10b), as both easily follow

from (4.12).
7That is, the signature is not in the EPR/Bernays-Schönfinkel class.
8Of course, is undecidable in the general case.
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where each step may decrease or increase the term (wrt. ≻t, or even go to an
incomparable term), but all the ui stay smaller than terms in a certain set.

In particular, in the context of equational completion one may write critical
pair criteria [Bachmair and Dershowitz 1988; Bonacina and Hsiang 1995], i.e.
sets of critical pairs s← u→ t such that not adding equation s≈ t to the sat-
uration set yields the same rewrite system in the limit (in other words, critical
pairs in critical pair criteria may be ignored by a completion procedure without
compromising refutational completeness). The analogue of this notion, in the
context of the superposition calculus, would be that of a redundant superposi-
tion (2.7a) inference.

One of the more useful families of critical pair criteria in equational com-
pletion is precisely connectedness-related criteria: in equational completion, a
critical pair s ← u → t where (4.14) holds with all ui ≺t u can be ignored in
saturation [Bachmair and Dershowitz 1988; Smallbone 2021].

Here, we introduce a connectedness-based criterion for superposition which
(i) is the first time such a criterion was formulated for a full clausal first-order
logic calculus, and also (ii) slightly generalises the criterion in Bachmair and
Dershowitz [1988] even in the unit-equality case.

Let us make our previous intuition rigorous, by giving the following defini-
tion.

Definition 4.4 (Connectedness). Terms s and t are connected under clauses N
and unifier ρ wrt. a set of equations S if there exist terms v1, . . . , vn, equations
l1 ≈ r1, . . . , ln−1 ≈ rn−1, and substitutions σ1, . . . , σn−1 such that:

(i) v1 = s and vn = t, and
(ii) for all i ∈ 1, . . . , n−1, either vi+1 = vi[liσi 7→riσi] or vi = vi+1[liσi 7→riσi],

with li ≈ ri ∈ S, and
(iii) for all i ∈ 1, . . . , n − 1 and for all ui ∈ {li, ri}, there exists C ∈ N and

w ∈
⋃

p≈̇q∈C{p, q}9 such that either (a) uiσi ≺t wρ, or (b) uiσi = wρ and
either ui ⊏ w or C is not a positive unit.

Example 4.3. Consider the following set of clauses (a real example from a prob-

9That is, in the set of top-level terms of literals of C .
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lem in Boolean algebras).

S =



. . .

x · ((x+ y) · z)≈ x · z
x+ (y · (x · z))≈ x

x+ (x · y)≈ x

. . .

(4.15)

Assuming · ≻t +, the following superposition inference (with the intermediate
instances after unification written out for clarity)

x1 · ((x1 + y1) · z1)≈ x1 · z1
x · ((x+ y) · z)≈ x · z

x2 + (y2 · (x2 · z2))≈ x2

(x+ y) + (x · ((x+ y) · z))≈ (x+ y)

(x+ y) + (x · z)≈ (x+ y)

x+ (y + (x · z))≈ x+ y
(4.16)

has x+ (y + (x · z)) and x+ y connected under the premises wrt. S, because

x+ (y + (x · z)) (4.17a)
↔ y + (x+ (x · z)) by x+ (y + (x · z))≈ y + (x+ (x · z)) (4.17b)
↔ y + x by x+ (x · z)≈ x (4.17c)
↔ x+ y by x+ y ≈ y + x (4.17d)

with the intermediate steps obeying the conditions in Definition 4.4(ii–iii), under
clauses N = {x1 · ((x1+ y1) · z1)≈x1 · z1, x2+(y2 · (x2 · z2))≈x2} and unifier
ρ = x1 7→ x, y1 7→ y, z1 7→ z, x2 7→ x+ y, y2 7→ x, z2 7→ z.

As criteria for redundancy of a clause, finding either joinability or ground
joinability of a literal in the clause means that the clause can be deleted or the
literal removed from the clause (in case of a positive or negative literal, resp.)
in any context, that is, we can for example add them to a set of deleted clauses,
and for any new clause, if it appears in that set, then immediately remove it
since we already saw that it is redundant.

The criterion of connectedness which we will present, however, is a criterion
for redundancy of inferences. This means that a conclusion simplified by this
criterion can be deleted (or rather, not added), but in that context only; if it ever
comes up again as a conclusion of a different inference, then it is not necessarily
also redundant. This is important when it comes to efficient implementation,
and may pose issues depending on the architecture of the saturation loop and
underlying data structures (see Section 5.2).

The statement of the connectedness criterion in superposition is as follows.
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Theorem 4.4. Superposition inferences of the form

l ≈ r ∨ C s[u]≈ t ∨D

(s[u 7→ r]≈ t ∨ C ∨D)ρ
,

where ρ = mgu(l, u),
lρ ⪯̸t rρ, sρ ⪯̸t tρ,
and u not a variable,

(4.18)

where s[u 7→ r]ρ and tρ are connected under {l≈ r ∨C, s≈ t∨D} and unifier
ρ wrt. some set of clauses S, are redundant inferences wrt. S.

Proof. Let us denote s′ = s[u 7→ r]. Let also U = {l ≈ r ∨ C, s ≈ t ∨D} and
M =

⋃
C∈U

⋃
p≈̇q∈C{p, q}. We will show that if s′ρ and tρ are connected under

U and ρ, wrt. in S, then every instance of that inference obeys the condition
for closure redundancy of an inference (Definition 3.9), wrt. S.

Consider any (s′≈ t∨C ∨D)ρ · θ where θ ∈ GSubs(Uρ). Either s′ρθ = tρθ,
and we are done (it follows from ∅), or s′ρθ ≻t tρθ, or s′ρθ ≺t tρθ.

Consider the case s′ρθ ≻t tρθ. For all i ∈ 1, . . . , n− 1, there exists a C ′ ∈ U

and a w ∈ C ′ such that either
– liσiθ ≺t wρθ (iii.a), or
– liσiθ = wρθ and li ⊏ v (iii.b), or
– liσiθ = wρθ and C ′ is not a positive unit (iii.b).

Likewise for ri.
Therefore, for all i ∈ 1, . . . , n− 1, there exists a C ′ ∈ U such that

(li ≈ ri) · σiθ ≺cc C
′ · ρθ . (4.19)

Since (t≈ t∨ · · · )ρ · θ is also smaller than (s′≈ t∨ · · · )ρ · θ and a tautology, the
instance (s′ ≈ t∨ · · · )ρ · θ of the conclusion follows from closures in GClos(S)

such that each is smaller than one of (l ≈ r ∨ C) · ρθ, (s≈ t ∨D) · ρθ.
In the case that s′ρθ ≺t tρθ, the same idea applies, only now it is instead

(s′ ≈ s′ ∨ · · · )ρ · θ which is smaller than (s′ ≈ t ∨ · · · )ρ · θ and is a tautology.
Therefore, we have shown that for all θ ∈ GSubs((l≈r∨C)ρ, (s≈t∨D)ρ),

the instance (s′ ≈ t ∨ C ∨ D)ρ · θ of the conclusion follows from closures in
GClos(S) which are all smaller than one of (l≈ r ∨ C) · ρθ or (s≈ t ∨D) · ρθ.
Since any valid superposition inference with ground clauses has to have l = u,
then any θ′ ∈ GSubs(l ≈ r ∨ C, s ≈ t ∨D, (s′ ≈ t ∨ C ∨D)ρ) such that the
inference

(l ≈ r ∨ C)θ′ , (s≈ t ∨D)θ′ |− (s′ ≈ t ∨ C ∨D)ρθ′ (4.20)
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is valid must have θ′ = ρθ′′, since ρ is the most general unifier. Therefore, we
have shown that for all θ′ ∈ GSubs(l≈ r∨C, s≈ t∨D, (s′≈ t∨C ∨D)ρ) for
which (4.20) is a valid superposition inference, the instance (s′≈ t∨C ∨D)ρ ·θ′

of the conclusion follows from closures in GClos(S) which are all smaller than
one of (l ≈ r ∨ C) · θ′, (s≈ t ∨D) · θ′, so the inference is redundant.

Theorem 4.5. Superposition inferences of the form

l ≈ r ∨ C s[u] ̸≈ t ∨D

(s[u 7→ r] ̸≈ t ∨ C ∨D)ρ
,

where ρ = mgu(l, u),
lρ ⪯̸t rρ, sρ ⪯̸t tρ,
and u not a variable,

(4.21)

where s[u 7→ r]ρ and tρ are connected under {l≈ r ∨C, s ̸≈ t∨D} and unifier
ρ wrt. some set of clauses S, are redundant inferences wrt. S ∪ {(C ∨D)ρ}.

Proof. Analogously to the previous proof, we find that for all instances of the
inference, the closure (s′ ̸≈t∨· · · )ρ·θ follows from smaller closure (t ̸≈t∨· · · )ρ·θ
or (s′ ̸≈ s′ ∨ · · · )ρ · θ and closures (li ≈ ri) · σiθ smaller than max{(l ≈ r ∨
C) · θ, (s ̸≈ t ∨ D) · θ, (s′ ̸≈ t ∨ C ∨ D)ρ · θ}. But (t ̸≈ t ∨ C ∨ D)ρ · θ and
(s′ ̸≈ s′ ∨ C ∨ D)ρ · θ both follow from smaller (C ∨ D)ρ · θ, therefore the
inference is redundant wrt. S ∪ {(C ∨D)ρ}.

Ground connectedness

Just as joinability can be generalised to ground joinability, so can connectedness
be generalised to ground connectedness.

Definition 4.5 (Ground connectedness). Terms s, t are ground connected
under U and ρ wrt. S if, for all θ ∈ GSubs(s, t), sθ and tθ are connected under
D and ρ wrt. S.

Theorem 4.6. Superposition inferences of the form

l ≈ r ∨ C s[u]≈ t ∨D

(s[u 7→ r]≈ t ∨ C ∨D)ρ
,

where ρ = mgu(l, u),
lρ ⪯̸t rρ, sρ ⪯̸t tρ,
and u not a variable,

(4.22)

where s[u 7→ r]ρ and tρ are ground connected under {l≈ r∨C, s≈ t∨D} and
unifier ρ wrt. some set of clauses S, are redundant inferences wrt. S.
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Theorem 4.7. Superposition inferences of the form

l ≈ r ∨ C s[u] ̸≈ t ∨D

(s[u 7→ r] ̸≈ t ∨ C ∨D)ρ
,

where ρ = mgu(l, u),
lρ ⪯̸t rρ, sρ ⪯̸t tρ,
and u not a variable,

(4.23)

where s[u 7→ r]ρ and tρ are ground connected under {l≈ r∨C, s ̸≈ t∨D} and
unifier ρ wrt. some set of clauses S, are redundant inferences wrt. S ∪ {(C ∨
D)ρ}.

Proof. The proofs of Theorems 4.6 and 4.7 is analogous to those of Theorems 4.4
and 4.5. The weakening of connectedness to ground connectedness only means
that the proof of connectedness (e.g. the vi, li ≈ ri, σi) may be different for
different ground instances . For all the steps in the proof to hold we only need
that for all the instances θ ∈ GSubs(l≈r∨C, s≈̇t∨D, (s[u 7→r]≈̇t∨C∨D)ρ)

of the inference, θ = σθ′ with σ ∈ GSubs(s[u 7→ r]ρ, tρ), which is true.

4.3 Associativity and commutativity
Associative-commutative symbols (AC) are a ubiquitous feature of problems
in a wide variety of domains. It is the theory axiomatised by the following
equations:

f(x, y)≈ f(y, x) , (4.24a)
f(x, f(y, z))≈ f(f(x, y), z) . (4.24b)

AC shows up contained in the axioms of several important algebraic struc-
tures in mathematics, in common-sense reasoning, and in software verification,
to give some examples [Sutcliffe 2017]; this makes it a particularly interesting
theory to study (as noted in the introduction, AC has long been an object of
active research in automated reasoning).

Unfortunately, it poses particular problems to superposition-based reason-
ing.

Theorem 4.8. The superposition-saturated set of (4.24) is infinite, and the num-
ber of consequences with n occurrences of f is n!

( (2n−2)!
(n−1)!n!

)2 ∼ O(en).10

10The Catalan number Cn = (2n)!
(n+1)!n! is the number of different ways that balanced paren-

theses can be placed to group pairs of terms in an expression with n+ 1 terms [Sloane 2022a],
and n! ∼

√
2πn(n/e)n is an assymptotic expression for n! (Stirling’s formula).
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4.3. Associativity and commutativity

Indeed, this combinatorial explosion is enough to make even apparently
simple problems impossibly difficult to solve, as without special treatment this
deluge of new clauses will very quickly overwhelm the search space, drown out
other useful inferences, and generally grind the prover to a halt.

Example 4.4. State-of-the-art superposition provers which do not incorporate
any AC-specialised reasoning have a hard time proving even the following very
simple conjecture.

x+ y ≈ y + x x+ (y + z)≈ (x+ y) + z

x+ (−x)≈ 0 x+ 0≈ x

⇒ a1 + (a2 + (· · ·+ (an + (−a1))))≈ a2 + (· · ·+ an)

(4.25)

For example in Vampire 4.6, a top-performing superposition prover,11 we meas-
ured the time taken to prove this problem. It appears to be exponential in n,
with e.g. the n = 3 problem taking 1.8 s after 18 212 generated clauses but n = 4

taking 43 s and 246 049 generated clauses. This is illustrative of the problem
facing superposition provers when dealing with AC axioms and other permutat-
ive theories. Note also the extreme dependency on the specific term ordering:
if a1 were the maximal element in {ai}, any size instance of this problem could
be trivially solved with encompassment demodulation.

However, ground joinability is enough to conclude for instance that all but
one of the consequences of (4.24) are redundant. Since AC is such an important
and frequently-occurring theory, it is relevant to investigate simplification rules
for AC in particular, in addition to the results presented in the preceding sections
of this chapter, which are fully general and applicable for any equational theory.
It is also relevant to specialise algorithms for general simplification rules — such
as ground joinability — to the AC case.

Let us first investigate the application of ground joinability to the AC axioms
and their consequences.

11Using the default ≻t, which is a Knuth-Bendix order with a1 ≺t a2 ≺t · · · .
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AC joinability

Let ACf be

f(x, y)≈ f(y, x) , (4.26a)
f(x, f(y, z))≈ f(f(x, y), z) , (4.26b)
f(x, f(y, z))≈ f(y, f(x, z)) . (4.26c)

The first two (4.26a–b) are the AC axioms for f . The third equation (4.26c)
follows from those two and will be used to avoid any inferences between these
axioms, and more generally to justify the AC joinability simplifications defined
next.

We define the two following rules:

AC joinability
(((((
s≈ t ∨ C ACf

,
where s =ACf

t, and
(s≈ t ∨ C) /∈ ACf ,

(4.27a)

AC joinability �����
s ̸≈ t ∨ C ACf

C
, where s =ACf

t. (4.27b)

Contrast (4.27) and (4.10). =ACf
is of course much easier to check than ;

because there are no completeness side-conditions to check or keep track of, it
can be implemented by simply collecting and sorting f -subterms (according to
any arbitrary total order, unrelated to ≻t) and comparing for equality.12

Theorem 4.9. AC joinability is a simplification rule of the superposition calcu-
lus wrt. closure redundancy.

Proof. Having proven Theorem 4.3, it suffices to show that ‘s =ACf
t’ implies

‘s t in s ≈̇ t∨C wrt. ACf ’, except in the case that s ≈̇ t∨C is itself one of the
three members of ACf . However, ACf is ground confluent [Martin and Nipkow
1990], therefore s =ACf

t implies sθ ↓ACf
tθ for all θ ∈ GSubs(s, t). All that is

left is ensuring the completeness conditions in Definitions 4.2 and 4.3.
Let (s ≈̇ t∨C) · θ be an arbitrary ground instance of s ≈̇ t∨C . If sθ ↓ACf

tθ

then there is a u such that: sθ = u or there is a chain sθ → · · · → u, and tθ = u

or there is a chain tθ → · · · → u, such that each rewrite step is made via an
equation in ACf .

12The algorithm for is much more involved, as discussed in Section 5.1.
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Wlog., consider the first rewrite on sθ,13 and let l≈r be the equation in ACf

used (i.e. such that sθ[lσθ]). Let also subtermsf be a function that collects all
“consecutive” f -subterms into a multiset, that is

subtermsf (u) =

{
subtermsf (s) ∪ subtermsf (t) if u = f(s, t)

u otherwise
(4.28a)

so for example subtermsf (f(a, f(f(b, c), d))) = {a, b, c, d}.

The following cases arise:

• If | subtermsf (s)| ≥ 4, then lσθ ◁ sθ or σ cannot be a renaming. This is
evident because all terms l occurring inACf have 2 ≤ | subtermsf (l)| ≤ 3,
where subtermsf (l) contains only variables, so it is impossible to have an
injection σ from variables in l onto variables in s while still having s = lσ.
Either way, the rewrite is admissible (Definition 4.1), and the constraints
for strong joinability are satisfied (Definition 4.2).

• If | subtermsf (s)| ≤ 3, then if at least one l ∈ subtermsf (s) is not a vari-
able, then σ also cannot be a renaming, and the rewrite is also admissible.

• If | subtermsf (s)| ≤ 3 and all l ∈ subtermsf (s) are variables, ad-hoc
proofs are needed. Fortunately, there are not many cases (modulo renam-
ing), so exhaustively checking all possibilities can be easily done:

For conciseness, let us denote f(a, b) by ab in the sequel. We will assume
that the term ordering has following properties: if s ≻t t then st ≻t ts and
s(tu) ≻t t(su), and also that (xy)z ≻t x(yz). These conditions hold for most
commonly used families of orderings, such as KBO or LPO [Baader and Nipkow
1998].14

x≈ x Tautology (4.29a)
xy ≈ xy Tautology (4.29b)
xy ≈ yx Instance of (4.26a) (4.29c)

13Literals are equal modulo flipping the equality sides, so the whole proof carries unchanged
to the t side.

14But not for all orderings; for example a KBO or LPO variant where the “lexicographical”
step is backwards, starting from the right-most argument. However, it is mechanically trivial
to modify the proof where the converse of any of those relations holds, so we will proceed by
assuming those conditions.
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x(yz)≈ x(yz) Tautology (4.29d)
x(yz)≈ y(zx) If xθ ≺ zθ, rewrite zx→ xz to get an instance

of (4.26c). If zθ ≺ xθ and zθ ≺ yθ, rewrite
y(zx) → z(xy) to get an instance of (4.29i ). If
yθ ≺ zθ ≺ xθ, rewrite x(yz)→ z(yx) — using
smaller (4.29i ) — to get an instance of (4.26c).

(4.29e)

x(yz)≈ z(xy) If yθ ≺ xθ, rewrite xy → yx to get an instance
of (4.29i ). If zθ ≺ yθ, rewrite yz → zy to get
an instance of (4.29i ). If xθ ≺ yθ ≺ zθ, rewrite
z(xy)→ y(xz) — using smaller (4.29i ) — to get
an instance of (4.26c).

(4.29f )

x(yz)≈ y(xz) Instance of (4.26c) (4.29g)
x(yz)≈ x(zy) If yθ ≺ zθ, rewrite zy → yz. If zθ ≺ yθ, rewrite

yz → zy. In both cases, we reach a tautology.
(4.29h)

x(yz)≈ z(yx) If zθ ≺ yθ and xθ ≺ yθ, rewrite yz → zy and
yx → xy to get an instance of (4.26c). If
yθ ≺ zθ and yθ ≺ xθ, rewrite z(yx) → y(zx)

to get an instance of (4.29i ). If xθ ≺ yθ ≺ zθ,
rewrite on the right: yx → xy, then z(xy) →
x(zy), then zy → yz to obtain a tautology. If
zθ ≺ yθ ≺ xθ, rewrite on the left: yz → zy,
then x(zy)→ z(xy), then xy → yx to obtain a
tautology.

(4.29i )

(xy)z ≈ x(yz) Instance of (4.26b) (4.29j )
(xy)z ≈ y(zx) If xθ ≺ yθ, rewrite (xy)z → x(yz) to get an

instance of (4.29e). If yθ ≺ xθ, rewrite xy → yx

to get (yx)z≈ y(zx), rewrite (yx)z → y(xz) to
get an instance of (4.29h).

(4.29k)

(xy)z ≈ z(xy) Instance of (4.26a) (4.29l )
(xy)z ≈ y(xz) If xθ ≺ yθ, rewrite y(xz) → x(yz). If yθ ≺ xθ,

rewrite xy → yx. In both cases, we reach an
instance of (4.26b).

(4.29m)
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(xy)z ≈ x(zy) If yθ ≺ zθ, rewrite zy → yz to get an instance
of (4.26b). If zθ ≺ yθ, rewrite (xy)z → z(xy)

(via a proper instance of xy ≈ yx, that is) to get
an instance of (4.26c).

(4.29n)

(xy)z ≈ z(yx) If xθ ≺ yθ, rewrite yx → xy. If yθ ≺ xθ, re-
write xy → yx. In both cases, we reach an in-
stance of (4.26a).

(4.29o)

This proves all the cases.
Recapitulating, we have shown that if (s ≈̇ t ∨ C) /∈ ACf , then s =ACf

t ⇒
s t in s≈̇t∨C wrt. ACf . Therefore by the proof of Theorem 4.3, AC joinability
is also a valid simplification rule.

This immediately implies the following simple but very powerful corollary.

Corollary 4.10. All the conclusions of superposition inferences among clauses
in ACf are redundant wrt. ACf .

Proof. Applying the superposition rule on (4.26) yields the following set of con-
sequences (excluding tautologies):

f(x, f(y, z))≈ f(z, f(x, y)) by 4.26b,a, (4.30a)
f(x, f(y, z))≈ f(y, f(z, x)) by 4.26c,a, (4.30b)
f(x, f(y, z))≈ f(f(y, x), z) by 4.26b,a, (4.30c)
f(x, f(y, z))≈ f(f(x, z), y) by 4.26c,a, (4.30d)

f(x, f(y, f(z, w)))≈ f(f(y, z), f(x,w)) by 4.26c,b, (4.30e)
f(x, f(y, f(z, w)))≈ f(y, f(z, f(x,w))) by 4.26c, (4.30f )
f(x, f(f(y, z), w))≈ f(y, f(z, f(x,w))) by 4.26c,b, (4.30g)
f(x, f(f(y, z), w))≈ f(f(y, f(x, z)), w) by 4.26b,c, (4.30h)
f(f(x, y), f(z, w))≈ f(f(x, f(y, z)), w) by 4.26b,b; (4.30i )

each of these is always redundant wrt. (4.26) by application of rule (4.27a).

AC normalisation

We will now show some examples to motivate another simplification rule.
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Example 4.5. Assume a ≺t b ≺t c. The encompassment demodulation rule already
enables us to rewrite any occurrence of, for instance, b(ca), or (ac)b, or any other
such permutation, to a(bc), This is independent of where these occur, be it at a
subterm or top position, on a maximal or minimal side of a positive or negative
literal, and in a unit or non-unit clause.

However, take the term b(xa). It cannot be simplified by demodulation (via
any of the ACf ). Yet it is easy to see that in any instance of a clause where it
appears, it can be rewritten to a smaller a(xb) via smaller instances of clauses
in ACf .

Such cases motivate the following simplification rule.15

AC norm. �������
C[t1(· · · tn)] ACf

C[t′1(· · · t′n)]
,

where t1, . . . , tn ≻lex t
′
1, . . . , t

′
n

and {t1, . . . , tn} = {t′1, . . . , t′n}16 (4.31)

Some examples (assume (. . .)−1 ≻t b ≻t a):

b(xa)→ a(xb) (4.32a)
b(xa)→ a(bx) (4.32b)
x(ba)→ x(ab) (4.32c)

x−1(ax)→ a(xx−1) (4.32d)
(bx)−1(ba)−1 → (ab)−1(bx)−1 (4.32e)

In practice, this criterion can be easily implemented using topological sorting.
Note, however, that the result may not be unique, e.g. (4.32a/b).

Theorem 4.11. AC normalisation is a simplification rule of the superposition
calculus wrt. closure redundancy.

Proof. Consider each instance C · θ. The conclusion C[t1(· · · tn) 7→ t′1(· · · t′n)]
of (4.31) is smaller than the premise C , since t1(· · · tn) ≻t t

′
1(· · · t′n), therefore

all instances C[t1(· · · tn) 7→ t′1(· · · t′n)] · θ of the conclusion are smaller than
C · θ (Lemma 3.6). It is also trivial to see that the conclusion follows from the
premises: {t1, . . . , tn} = {t′1, . . . , t′n} means t1(· · · tn) and t′1(· · · t′n) are equal
modulo ACf .

15Note we trivially assume allACf terms are right associative, since (xy)z→x(yz) is always
oriented; we are still assuming the conditions for ≻t in page 83).

15As multisets.
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Now, letm be a bijection over integers in [1, n] such that ti = t′m(i). Then con-
sider the following clause: D = x1(· · ·xi(· · ·xn))≈ xm(1)(· · ·xm(i)(· · ·xm(n))).
We have

ACf |− D (4.33a)
C,D |− C[t1(· · · tn) 7→ t′1(· · · t′n)] (4.33b)

Let σ = {x1 7→ t1, . . . , xn 7→ tn}. It is easy to see that for all instances C · θ we
have D · σθ ≺cc C · θ, since x1(· · ·xn) ⊏ t1(· · · tn) ⊴ C (the only way it would
not be so is if all ti were distinct variables, but then t1, . . . , tn ≻lex t′1, . . . , t

′
n

would not hold), and x1(· · ·xn)θ ≻ xm(1)(· · ·xm(n))θ. Therefore we conclude
that all C · θ follow from the smaller C[t1(· · · tn) 7→ t′1(· · · t′n)] · θ and D · σθ,
and therefore C is redundant in {C[t1(· · · tn) 7→ t′1(· · · t′n)], D}.

Finally, since D is redundant in ACf (Theorem 4.9), then by monotonicity
(Lemma 3.9), C is redundant in {C[t1(· · · tn) 7→ t′1(· · · t′n)]} ∪ ACf .

The main advantages of applying this simplification rule are as follows.

• Strictly more redundant clauses found. For example, in the set {a(bx),
a(xb), x(ab), b(xa), b(ax), x(ba)}, the last three are redundant, instead of only
the last one.

• Faster implementation. Even for simplifications that were already allowed
by demodulation, we avoid the work of searching in indices and instantiating
the axioms to perform the rewrites. In fact, we can avoid storing ACf in the
demodulation indices entirely, as AC normalisation is strictly more general than
demodulation via ACf . Since (4.26a) matches with all f -terms, and (4.26c) with
all f -terms with 3 or more elements, this makes all queries on those indices
faster.

AC demodulation

Consider again situations like Example 4.4. We can see clearly that whenever
we have, for instance, s1sn ≈ t and s1(s2(· · · sn)), the latter can be rewritten
to s2(· · · (sn−1t)), In fact, more generally, if we have t1tn ≈ t with t1θ = s1
and tnθ = sn, we can rewrite s1(s2(· · · sn)) to s2(· · · (sn−1 tθ)). However, this
process:
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(i) may involve several superposition and demodulation steps (where each in-
termediate superposition step generates a clause that needs to be tracked
and stored), and

(ii) is highly sensitive to the term ordering, for example: if s1 ≺t sn ≺t · · ·,17

an AC normalisation inference suffices to put it into a form where en-
compassment demodulation via t1(tnx)≈ xt can be used to perform the
rewrite, but if s1 ≺t · · · ≺t sn, as in Example 4.4, this is only possible
after generating t1(x2(· · · (xn−1tn)))≈ x2(· · · xn−1).

More formally, we know that
ACf

l1(· · · lk)≈ r

C[t1(· · · tn)]
implies C ′ = C[t1(· · · tn) 7→ t′1(· · · (t′m rθ))] , (4.34)

if {l1θ, . . . , lkθ} ⊆ {t1, . . . , tn} and {t′1, . . . , t′m} = {t1, . . . , tn}\{l1θ, . . . , lkθ},
i.e. a sort of “rewrite modulo AC”. We show how in some positions this rewrite
does not compromise completeness; we call this “AC demodulation” and show
that it is a simplification rule of the superposition calculus. Furthermore, it
has very desirable properties from an implementation point of view, as we can
effectively re-use the same indexing structures of clause subsumption.

Let

AC demodulation �������
C[t1(· · · tn)] l1(· · · lk)≈ r ACf

C[t′1(· · · (t′m rθ))]
(4.35)

where
• {l1θ, . . . , lkθ} ⊆ {t1, . . . , tn},
• {t′1, . . . , t′m} = {t1, . . . , tn} \ {l1θ, . . . , lkθ},
• t1(· · · tn) ◁ C ≻c C[t′1(· · · (t′m rθ))],

Theorem 4.12. AC demodulation is a simplification rule of the superposition
calculus wrt. closure redundancy.

Proof. Let us assume, again, that the clauses are normalised wrt. (xy)z → x(yz).
Let C ′ = C[t1(· · · tn) 7→ t′1(· · · (t′m rθ))] (the conclusion). Consider an arbitrary
ground closure C ′ · σ.

17Where ‘· · ·’ stands for the remaining si.
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Let us also make the correspondence between the li and the ti explicit: λ is
an injective mapping from {li} such that λ(li) θ = ti.

If t1(· · · tn) occurs at a subterm position of C , then consider the equation
D = x1(· · · xn) ≈ xm(1)(· · ·xm(n)) and the substitution ρ such that xiρ = ti.18

We choose a permutation wherexm(n−k+i)ρ = λ(li)— informally, which shuffles
the terms into the correct order so that l1(· · · lk) matches syntactically on the
rightmost positions.

It is easy to see that C together with Dρ and l1(· · · lk)θ ≈ rθ imply C ′,
therefore C ·σ together with D ·ρσ and (l1(· · · lk)≈r)·θσ imply C ′ ·σ. We know
that C ′ · σ is smaller than C · σ by construction; D · ρσ and (l1(· · · lk)≈ r) · θσ
are also smaller than C · σ, since their maximal terms are subterms of Cσ

(by Lemma 3.7). Therefore, as the above holds for any σ, C is redundant wrt.
{C ′, l1(· · · lk)≈ r, D}, and since D is redundant wrt. ACf (Theorem 4.9), C is
redundant wrt. {C ′, l1(· · · lk)≈ r} ∪ ACf (Lemma 3.9).

The application of this simplification rule in saturation is however restricted
by the condition that the occurrence must happen at a subterm position. In
particular, we cannot prevent, for an equation such as e.g. xx−1 ≈ u, an infinite
number of recombinations through superposition inferences with ACf ,which
produce x(x−1y)≈ uy, x(yx−1)≈ uy, x(y(x−1z))≈ u(yz), etc.,19 even though
in practice many of these consequences can be proven redundant via a com-
bination of AC normalisation, AC joinability, and connectedness. Nonetheless,
AC demodulation at top positions can of course still be employed whenever
refutational completeness is not a constraint, including during preprocessing
phases.

Implementation

One important advantage of AC demodulation is that the task of finding can-
didates for it, either in the forward or backward direction,20 consists of finding
multisets of terms (from AC-subterms) such that

{l1θ, . . . , lkθ} ⊆ {t1, . . . , tn} , (4.36)
18See proof of Theorem 4.11.
19Although there are particular term orderings where this is the case, see e.g. Martin and

Nipkow [1990].
20I.e. using an existing set of equations to simplify one clause, and using an equation to

simplify an existing set of clauses, respectively.
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and is therefore almost exactly equivalent to the task of finding subsumed/sub-
suming clauses.21 There is extensive literature on this subject [Graf 1995; Riazanov
2003; Schulz 2013a], as subsumption is a very important simplification rule
where efficient indexing has a major impact on performance, which means that
implementing AC demodulation is simply a matter of recycling the algorithms
and data structures used for subsumption (indexing terms in an AC subterm,
rather than literals in a clause), and adding checks for the completeness condi-
tions in (4.35).

21Subsumption has the added complication of needing to consider the flipping of equalities.
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Chapter 5

Algorithms for theorem proving

Beware of bugs in the above code; I have only
proved it correct, not tried it.

Donald Knuth (1977)

In this chapter we explore several topics connected to algorithms related to the
preceding topics, including a flexible setup for a given-clause saturation loop,
and a novel algorithm for checking strong ground joinability of two terms.

Of the material presented in this chapter, the section on ground joinability
has been peer-reviewed and published in Duarte and Korovin 2022, while the
section on the given clause loop and simplification setup has been peer-reviewed
and published in Duarte and Korovin 2020.

5.1 Ground joinability
The general criterion for simplification of clauses with ground joinable literals
(4.10) is extremely powerful, but it raises the question of how to test, in practice,
whether s t in a clause s ≈̇ t∨C . Several such algorithms have been proposed
[Martin and Nipkow 1990; Avenhaus, Hillenbrand and Löchner 2003; Smallbone
2021].

All of these are based on the following observation: for a given simplification
ordering on terms≻t, if we consider all total preorders⪰v over Vars(s, t),1 and
for all of them show strong joinability with a modified ordering — which we

1Where Vars(s, t) = {x | s[x] or t[x]}.
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denote ≻t[v] — which extends ≻t and ⪰v, then we have shown strong ground
joinability in the order ≻t [Martin and Nipkow 1990].

Let us define this “extension” of a term ordering with a variable preorder as
follows.

Definition 5.1. A simplification order on terms ≻t extended with a preorder
on variables ⪰v, denoted ⪰t[v], is a simplification preorder (i.e. its strict part
satisfies all the relevant properties of a simplification order) such that ⪰t[v] ⊇
≻t ∪ ⪰v.

Example 5.1. If x ≻v y, then e.g.:
• g(x) ≻t[v] g(y),
• g(x) ≻t[v] y,
• f(x, y) ≻t[v] f(y, x)

2,

Of course, if ⪰v is total over Vars(s, t), then ≻t[v] is total over all terms
(ground or not).

The simplest algorithm based on this approach would be to enumerate all
possible total preorders ⪰v over Vars(s, t), and exhaustively reduce both sides
via equations in S orientable by ≻t[v], checking if the terms can be reduced to
the same normal form for all total preorders. If yes, then s and t are ground
joinable. This is very inefficient since there are O(n!en) such total preorders
[Barthelemy 1980], where n is the cardinality of Vars(s, t).

Let us use ≻ for the strong joinability relation defined in Definition 4.2 with
an explicitly given term ordering≻t = ≻. Another approach is to consider only
a smaller number of partial preorders, based on the obvious observation that

s ≻t[v]
t ⇒ ∀⪰′

v ⊇ ⪰v. s ≻t[v′]
t , (5.1)

that is: strong joinability under≻t extended with some partial variable preorder
implies strong joinability under ≻t extended with any variable preorder which
contains it. This means that joinability under a smaller number of partial pre-
orders can imply joinability under all the total preorders, necessary to prove
ground joinability.

However, this raises the question of how to choose which partial preorders
to check. Intuitively, for performance, we would like the following:

2If s ≻t t ⇒ f(s, t) ≻t f(t, s), of course.

92



5.1. Ground joinability

• Whenever the two terms are not ground joinable, that some total preorder
where they are not joinable is found as early as possible; and that

• Whenever the two terms are ground joinable, that all total preorders
needed to conclude so are covered in as few partial preorders as possible.

Example 5.2. Let S = {f(x, f(y, z))≈ f(y, f(x, z))}. Then

f(x, f(y, f(z, f(w, u))))≈ f(x, f(y, f(w, f(z, u)))) (5.2)

can be shown to be (strongly) ground joinable wrt.S by checking just three cases:
⪰v ∈ {z≻w , z∼w , z≺w}, even though there are 6942 possible preorders
[Sloane 2022b].

Approaches to this problem vary. Waldmeister (a well-established and suc-
cessful unfailing completion prover) first selects two variables among Vars(s, t)

and tries to show joinability under all preorders over those. If this fails it tries
another two variables, and if there are no more pairs of variables it moves on to
selecting three variables from among Vars(s, t), etc., until success (by showing
joinability under all preorders over a subset of Vars(s, t)), failure (by trying
a total preorder and failing to join) or reaching a predefined limit of attempts
[Avenhaus, Hillenbrand and Löchner 2003].

Twee (a newer prover with outstanding experimental success) has a some-
what opposite direction: first it tries an arbitrary total preorder on variables,
then tries to weaken it until s and t are no longer joinable, then repeats this
process until all total preorders have been thus covered, or until the arbitrary
total preorder chosen does not join the two terms [Smallbone 2021].

We propose a novel algorithm — incremental ground joinability — whose
main improvement is guiding the process of picking which preorders to check
by finding, during the process of searching for rewrites on subterms of the terms
we are attempting to join, minimal extensions of the term order with a variable
preorder which allow the rewrite to be done in the ≻ direction.

Incremental ground joinability
Our algorithm is summarised as follows (we shall present a more formal de-
scription in a few pages).

• We start with an empty queue of variable preorders, V , initially containing
only the empty preorder.
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• Then, while V is not empty, we pop a preorder ⪰v from the queue, and
attempt to perform a rewrite on the terms we wish to join via an equation
which is newly orientable using some extension ⪰′

v of ⪰v. That is, during
the process of finding generalisations of a subterm of s or t among left-
hand sides of candidate unoriented unit equations l ≈ r, when we check
that the instance lθ ≈ rθ used to rewrite is oriented, we try to force this
to be true under some minimal extension ≻t[v′] of ≻t[v], if possible.3

◦ If no such rewrite exists, or if we simply cannot extend ≻t[v] further
because ⪰v is already total, then the two terms are not strongly
joinable under≻t[v] or any extension, and so are not strongly ground
joinable and we are done with a negative result.

◦ If it exists, we continue the process.

• Now, we exhaustively rewrite the terms using ≻t[v′], and check if we
obtain the same normal form.

◦ If we do not obtain it yet, we repeat the process of searching for
rewrites via equations orientable by further extensions of ≻t[v′].

◦ But if we do, then we have proven joinability in the extended pre-
order≻t[v′]; now we must add back to the queue a set of preorders O
such that: all the total variable preorders which are ⊇ ⪰v (initially
popped from the queue) but not ⊇ ⪰′

v (minimal extension under
which we have proven joinability) are ⊇ of some ⪰′′

v ∈ O (pushed
back into the queue to be checked).
Obtaining thisO and ensuring it is as minimal as possible and doesn’t
overlap with the preorders which have already been checked is an
important part of our algorithm; it is implemented by order diff(⪰v,⪰′

v)

as defined below.

• Whenever there are no more preorders in the queue to check, then we
have checked that the terms are strongly joinable under all possible total
preorders, and we are done with a positive result.

Together with this, some book-keeping for keeping track of completeness
conditions is necessary. We know that for completeness to be guaranteed, the

3We show how to compute this for Knuth-Bendix orders at the end of this section.
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conditions in Definition 4.1 must hold. They automatically do if C is not a
positive unit or if a rewrite happens on a strict subterm. We also know that
after a term has been rewritten at least once, rewrites on that side are always
complete (since it was rewritten to a smaller term). Therefore we store in the
queue, together with the preorder, a flag in P({L, R}) indicating on which sides
does a top rewrite need to be checked for completeness. Consider a literal s ≈̇ t

in some clause. Initially the flag is {L} if s ≻t t, {R} if s ≺t t, {L, R} if s and
t are incomparable, and {} if the clause is not a positive unit. When a rewrite
at the top is attempted (say, l ≈ r used to rewrite s = lθ with t being the other
side), if the flag for that side is set, then we check if lθ ⊐ l or rθ ≺ t. If this fails,
the rewrite is rejected. Finally, whenever a side is rewritten (at any position),
the flag for that side is cleared.

Order diff

Intuitively, order diff(⪰1,⪰2) computes the following set: given a preorder ⪰1

(the preorder which we popped from the queue, and under which therefore
we needed to verify ground joinability), and a preorder ⪰2 (the preorder under
which we did manage to verify ground joinability), a set such that all preorders
which contain ⪰1 but do not contain ⪰2, contain one (and only one!) preorder
in that set. This is what enables us to figure out which variable preorders we
need to add to the queue, in each incremental ground joinability iteration.

The definition of order diff is as follows. Let a transitive reduction of a
preorder be represented by a set of edges of the form x≻y / x∼y. Then4

order diff(⪰1,⪰2) = {⪰+| ⪰ ∈ order diff ′(⪰1,⪰2
−)} , (5.3a)

order diff ′(⪰1,⪰−
2 ) =

⪰−
2 = {x≻y} ⊎ ⪰−

2
′ ⇒


x ≻1 y ⇒ order diff ′(⪰1,⪰−

2
′
)

x ⊁1 y ⇒
{⪰1 ∪ {y≻x} , ⪰1 ∪ {x∼y}}
∪ order diff ′(⪰1 ∪ {x≻y},⪰−

2
′
)

⪰−
2 = {x∼y} ⊎ ⪰−

2
′ ⇒


x ∼1 y ⇒ order diff ′(⪰1,⪰−

2
′
)

x ≁1 y ⇒
{⪰1 ∪ {x≻y} , ⪰1 ∪ {y≻x}}
∪ order diff ′(⪰1 ∪ {x∼y},⪰−

2
′
)

⪰−
2 = ∅ ⇒ ∅ .

(5.3b)

4Recall ⪰− and ⪰+ denote a transitive reduction and the transitive closure, respectively.
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where ⪰1 ⊆ ⪰2. Informally: we take a transitive reduction of ⪰2, and for all
edges ℓ (of the form x≻y or x∼y) in the set that represents that reduction, if
ℓ /∈ ⪰1, return the preorders ⪰1 augmented with the reverse of ℓ,5 and recurse
with ⪰1 = ⪰1 ∪ ℓ. Note that order diff(⪰1,⪰2) is not unique, and depends on
the exact transitive reduction used, and on the order of visiting its edges.

Example 5.3.

⪰1 = x ≻ y

⪰2 = x ≻ y ≻ z ≻ w
⇒ order diff(⪰1,⪰2) =


x ≻ y ∼ z

x ≻ y ≺ z

x ≻ y ≻ z ∼ w

x ≻ y ≻ z ≺ w

(5.4)

Example 5.4.

⪰1 = y ≺ x ≻ z

⪰2 = x ≻ y ≻ z
⇒ order diff(⪰1,⪰2) =

{
x ≻ y ∼ z

x ≻ z ≻ y
(5.5)

As mentioned before, it is important that there is as little overlap as possible
(while of course ensuring every relevant preorder is covered); this definition
has properties which ensure that is the case. It it also easy to compute, given
only algorithms for computing transitive reductions and closures, and a suitable
data structure to represent a (partial) preorder.

Theorem 5.1. For all total ⪰T
v ⊇ ⪰1, there exists one and only one ⪰i ∈

{⪰2} ∪ order diff(⪰1,⪰2) such that ⪰T
v ⊇ ⪰i. For all ⪰T

v ⊉ ⪰1, there is no
⪰i ∈ {⪰2} ∪ order diff(⪰1,⪰2) such that ⪰T

v ⊇ ⪰i.

Proof. It is easy to see that all ⪰ ∈ {⪰2} ∪ order diff(⪰1,⪰2) have ⪰1 ⊆ ⪰,
therefore if ⪰T ⊉ ⪰1 then there exists no ⪰ in that set such that ⪰T ⊇ ⪰.
Consider a total ⪰T ⊇ ⪰1. We will show recursively on the definition of
order diff ′ that there either exists one and only one ⪰− ∈ order diff ′(⪰1,⪰−

2 )

such that ⪰T ⊇ ⪰−, or else there exists none and then ⪰T ⊇ ⪰2.
Consider a call to order diff ′(⪰a,⪰b). Let us denote order diff ′′(⪰a,⪰b) =

{⪰2}∪order diff ′(⪰a,⪰b). We will show that⪰T ⊇ ⪰− ∈ order diff ′′(⪰a,⪰b)

by either showing an explicit ⪰− ∈ order diff ′(⪰a,⪰b) or recursing with a ⪰′
b

5I.e., ⪰1 ∪ {y≻x} , ⪰1 ∪ {x∼y} if ℓ is of the form x≻y, and ⪰1 ∪ {x≻y} , ⪰1 ∪ {y≻x} if
ℓ is of the form x∼y.
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which is a strict subset of ⪰b. Since the initial ⪰b = ⪰2 is finite this terminates.
Note also the following invariants are maintained throughout: ⪰T ⊇ ⪰a, and
(⪰a ∪ ⪰b)

+ = ⪰2 (they are trivially true in the initial call order diff ′(⪰1,⪰−
2 )).

Consider all possible cases following the definition of order diff ′ (see (5.3b)).

1. ⪰b= {x≻y} ⊎ ⪰′
b.

1.1. If x ≻a y, then x ≻T
v y (by hypothesis ⪰a ⊆ ⪰T ), by definition of

order diff ′, in this case order diff ′(⪰a,⪰b) = order diff ′(⪰a,⪰′
b), then ⪰T ⊇

⪰− ∈ order diff ′′(⪰a,⪰b) iff ⪰T ⊇ ⪰− ∈ order diff ′′(⪰a,⪰′
b). The invariants

⪰T ⊇ ⪰a, and (⪰a ∪ ⪰′
b)

+ = ⪰2 are maintained.
1.2. Otherwise, x ⊁a y, so ⪰T may have x ≻T y, x ∼T y, or x ≺T y.

1.2.1. If x ≺T y, then ≻T ⊇ ⪰a ∪ {x≺y}, so there is (by definition of
order diff ′) a ⪰− = ⪰a ∪ {x≺y} ∈ order diff ′(⪰a,⪰b) such that ⪰T ⊇ ⪰−.
Any other ⪰−′∈ order diff ′(⪰a,⪰b) \ {⪰−} have (again by definition) x ≻′ y

or x ∼′ y, so ⪰T ⊉ ⪰′−, so that ⪰− is unique. So we are done.
1.2.2. Similarly, if x ∼T y, then ≻T ⊇ ⪰a ∪ {x∼y}, so there is (by

definition of order diff ′) a ⪰− = ⪰a ∪ {x∼y} ∈ order diff ′(⪰a,⪰b) such that
⪰T ⊇ ⪰−. Any other ⪰−′∈ order diff ′(⪰a,⪰b) \ {⪰−} have (again by defini-
tion) x ≻′ y or x ≺′ y, so ⪰T ⊉ ⪰′−, so that ⪰− is unique. So we are done.

1.2.3. If x ≻T y, by hypothesis ⪰a ⊆ ⪰T , and therefore ⪰T ⊇ ⪰a ∪
{x≻y}. By definition of order diff ′, in this case order diff ′(⪰a,⪰b) = order diff ′(⪰a∪
{x≻y},⪰′

b), therefore we have ⪰T ⊇ ⪰− ∈ order diff ′′(⪰a,⪰b) iff ⪰T ⊇
⪰− ∈ order diff ′′(⪰a ∪ {x≻y},⪰′

b), and the invariants are maintained: ⪰T ⊇
⪰a ∪ {x≻y}, and (⪰a ∪ {x≻y} ∪ ⪰′

b)
+ = ⪰2.

2. ⪰b= {x∼y} ⊎ ⪰′
b. This case is similar to the previous.

2.1. If x ∼a y, then x ∼T y (by hypothesis ⪰a ⊆ ⪰T ), by definition of
order diff ′, in this case order diff ′(⪰a,⪰b) = order diff ′(⪰a,⪰′

b), then ⪰T ⊇
⪰− ∈ order diff ′′(⪰a,⪰b) iff ⪰T ⊇ ⪰− ∈ order diff ′′(⪰a,⪰′

b). The invariants
⪰T ⊇ ⪰a, and (⪰a ∪ ⪰b)

+ = ⪰2 are maintained.
2.2. Otherwise, x ≁a y, so ⪰T may have x ≻T y, x ∼T y, or x ≺T y.

2.2.1. If x ≻T y, then ≻T ⊇ ⪰a ∪ {x≻y}, so there is (by definition of
order diff ′) a ⪰− = ⪰a ∪ {x≻y} ∈ order diff ′(⪰a,⪰b) such that ⪰T ⊇ ⪰−.
Any other ⪰−′∈ order diff ′(⪰a,⪰b) \ {⪰−} have (again by definition) x ∼′ y

or x ≺′ y, so ⪰T ⊉ ⪰′−, so that ⪰− is unique.
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2.2.2. Similarly, if x ≺T y, then ≻T ⊇ ⪰a ∪ {x≺y}, so there is (by
definition of order diff ′) a ⪰− = ⪰a ∪ {x≺y} ∈ order diff ′(⪰a,⪰b) such that
⪰T ⊇ ⪰−. Any other ⪰−′∈ order diff ′(⪰a,⪰b) \ {⪰−} have (again by defini-
tion) x ≻′ y or x ∼′ y, so ⪰T ⊉ ⪰′−, so that ⪰− is unique.

2.2.3. If x ∼T y, by hypothesis ⪰a ⊆ ⪰T , and therefore ⪰T ⊇ ⪰a ∪
{x∼y}. By definition of order diff ′, in this case order diff ′(⪰a,⪰b) = order diff ′(⪰a∪
{x∼y},⪰′

b), therefore we have ⪰T ⊇ ⪰− ∈ order diff ′′(⪰a,⪰b) iff ⪰T ⊇
⪰− ∈ order diff ′′(⪰a ∪ {x∼y},⪰′

b), and the invariants are maintained: ⪰T ⊇
⪰a ∪ {x∼y}, and (⪰a ∪ {x∼y} ∪ ⪰′

b)
+ = ⪰2.

3. ⪰b= ∅. Then order diff ′(⪰a,⪰b) = ∅, so there is no⪰ ∈ order diff ′(⪰a,⪰b)

such that ⪰T ⊇ ⪰. But since we have (⪰a ∪ ∅)+= ≻2 and ⪰T ⊇ ⪰a, then
⪰T ⊇ ⪰2.

Note that this theorem gives strong guarantees which are very important
for efficiency of the algorithm: that all total preorders ⪰T

v ⊇ ⪰1 are covered by
one of the preorders in the set {⪰2}∪order diff(⪰1,⪰2) (ensuring correctness)
but also by only one of them (ensuring no overlap and duplicated work), and
that all preorders ⪰T

v ⊉ ⪰1 are covered by none of them (ensuring no useless
work).

An algorithm based on searching for rewrites in minimal extensions of a variable
preorder (starting with minimal extensions of the bare term ordering, ≻t[∅]),
has several advantages. The main benefit of this approach is that, instead of
imposing an a priori ordering on variables and then checking joinability under
that ordering, we instead build a minimal ordering while searching for candidate
unit equations to rewrite subterms of s, t. For instance, if two terms are not
ground joinable, or not even rewritable in any≻t[v] where it was not rewritable
in ≻t, then an approach such as the one used in Avenhaus, Hillenbrand and
Löchner [2003] cannot detect this until it has extended the preorder arbitrarily
to a total ordering, while our incremental algorithm immediately realises this.
We should note that empirically this is what happens in most cases: most of
the literals we check during a run are not ground joinable, so for practical
performance it is essential to optimise this case.

We now give a proof that incremental ground joinability implements Defin-
ition 4.3.
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Algorithm 1: Incremental ground joinability test
Input: literal s ≈̇ t ∈ C ; set of unoriented equations S
Output: whether s t in C wrt. S
begin

c← ∅ if C not pos. unit, {L} if s ≻ t, {R} if s ≺ t, {L, R} otherwise
V ← {⟨∅, s, t, c⟩}
while V is not empty do
⟨⪰v, s, t, c⟩ ← pop from V

s, t, c← normalise s, t wrt. ≻t[v], with completeness flag c

if s ∼t[v] t then
continue

else
s′, t′, c′ ← s, t, c

while exists rewrite in s′, t′ via S wrt. extension of ⪰s[v]

with completeness flag c do
s′, t′, c′ ← normalise s′, t′ wrt. ≻t[v′], with compl. flag c

if s′ ∼t[v′] t
′ then

push {⟨⪰′′
v, s, t, c⟩ | ⪰′′

v ∈ order diff(⪰v,⪰′
v)} to V

break
end
⪰v ← ⪰′

v

else
return Fail

end
end

else
return Success

end
end
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Algorithm 1 (cont.): Incremental ground joinability test
function normalise s, t via S wrt. ⪰ with completeness flag c

if exists l ≈ r ∈ S and σ such that
• lσ ⊴ s or lσ ⊴ t, and
• lσ ≻ rσ, and
• rewrite s, t via l ≈ r wrt. ⪰ with complet. flag c is admissible
then

s← s[lσ 7→ rσ]

t ← t [lσ 7→ rσ]

if s was changed then c← c \ {L}
if t was changed then c← c \ {R}
return normalise s, t via S wrt. ⪰ with completeness flag c

else
return ⟨s, t, c⟩

end
end
function rewrite s, t via l ≈ r wrt. ⪰ with completeness flag c is
admissible

return
• u is a strict subterm of s or t, or
• u = s with L /∈ c, or
• u = t with R /∈ c, or
• l ⊏ u, or
• u = s with rσ ≺ t, or
• u = t with rσ ≺ s.

end
function exists rewrite in s, t via S wrt. extension of ⪰t[v] with
completeness flag c

return exists l ≈ r ∈ S, σ, and ⪰′
v ⊃ ⪰v such that

• lσ ⊴ s or lσ ⊴ t, and
• lσ ≻t[v′] rσ, and
• rewrite s, t via l≈ r wrt. ⪰t[v′] with complet. flag c is admissible

end

100



5.1. Ground joinability

Theorem 5.2. Algorithm 1 returns “Success” only if s t in C wrt. S.6

Proof. We will show that Algorithm 1 returns “Success” if and only if s ≻
t[vT ]

t

for all total ⪰T
v over Vars(s, t), which implies s ≻t

t.
When ⟨⪰v, s, t, c⟩ is popped from V , we exhaustively reduce s, t via equa-

tions in S oriented wrt. ≻t[v], obtaining sr, tr. If sr ∼t[v] t
r, then s ≻t[v]

t, and
so s ≻

t[vT ]
t for all total ⪰T

v ⊇ ⪰v . If sr ≁t[v] t
r, we will attempt to rewrite one

of sr, tr using some extended ≻t[v′] where ⪰′
v ⊃ ⪰v. If this is impossible, then

s ̸ ≻t[v′]
t for any ⪰′

v ⊇ ⪰v , and therefore there exists at least one total ⪰T
v such

that s ̸ ⪰T
v
t, and we return “Fail”.

If this is possible, then we repeat the process: we exhaustively reduce wrt.
≻t[v′], obtaining s′, t′. If s′ ≁t[v′] t

′, then we start again the process from the step
where we attempt to rewrite via an extension of⪰′

v: we either find a rewrite with
some ≻t[v′′] with ⪰′′

v ⊃ ⪰′
v, and exhaustively normalise wrt. ≻t[v′′] obtaining

s′′, t′′, etc., or we fail to do so and return “Fail”.
If in any such step (after exhaustively normalising wrt.≻t[v′]) we find s′ ∼t[v′]

t′, then s ≻t[v′]
t, and so s ≻

t[vT ]
t for all total ⪰T

v ⊇ ⪰′
v. Now at this point

we must add back to the queue a set of preorders ⪰′′
v i such that: for all total

⪰T
v ⊇ ⪰v, either ⪰T

v ⊇ ⪰′
v (proven to be ) or ⪰T

v ⊇ some ⪰′′
v i (added to V to

be checked). For efficiency, we would also like for there to be no overlap: no
total ⪰T

v ⊇ ⪰v is an extension of more than one of {⪰′
v,⪰′′

v 1, . . .}.
This is true because of Theorem 5.1. So we add {⟨⪰′′

v i, s
r, tr, cr⟩ | ⪰′′

v i ∈
order diff(⪰v,⪰′

v)} to V , where cr = c\(if sr ̸= s then {L} else {})\(if tr ̸= t

then {R} else {}). Note also that s ≻t[v]
sr and t ≻t[v]

tr, therefore also s ≻t[vi′′]

sr and t ≻t[vi′′]
tr if ⪰′′

v i ⊃ ⪰v.
During this whole process, any rewrites must pass a completeness test men-

tioned previously, such that the conditions in the definition of hold. Let s0, t0
be the original terms and s, t be the ones being rewritten and c the completeness
flag. If the rewrite is at a strict subterm position, it succeeds by Definitions 4.2
and 4.3. If the rewrite is at the top, then we check c. If L is unset (L /∈ c), then
either s ⪯ s0 ≺ t0 or s ≺ s0 or the clause is not a positive unit, so we allow a
rewrite at the top of s, again by Definitions 4.2 and 4.3. If L is set (L ∈ c), then
an explicit check must be done: we allow a rewrite at the top of s (= s0) iff it is

6Note that the other direction may not always hold, there are strongly ground joinable
terms which are not detected by this method of analysing all preorders between variables, e.g.
f(x, g(y)) f(g(y), x) wrt. S = {f(x, y)≈ f(y, x)}.
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done by lσ→ rσ with lσ ⊐ l or rσ ≺ t0. Respectively for R, with the roles of s
and t swapped.

In short, we have shown that if ⟨⪰v, s
′, t′, c′⟩ is popped from V , then V

is only ever empty, and so the algorithm only terminates with “Success”, if
s′ ≻

t[vT ]
t′ for all total ⪰T

v ⊇ ⪰v . Since V is initialised with ⟨∅, s, t, c⟩, then the
algorithm only returns “Success” if s ≻

t[vT ]
t for all total ⪰T

v .

Orienting via extension of variable ordering

In order to apply the ground joinability algorithm we also need a way to check,
for a given ≻t and ⪰v and some s, t, whether there exists a ⪰′

v ⊃ ⪰v such that
s ≻t[v′] t. Here we show how to do this when ≻t is a Knuth-Bendix ordering
(KBO) [Knuth and Bendix 1970].

Recall the definition of KBO. Let ≻s be a partial order on symbols, w be
an N-valued weight function on symbols and variables, with the property that
w(x) = m for all variables x, w(c) ≥ m for all constants c, and there may only
exist one unary symbol f with w(f) = 0 and in this case f ≻s g for all other
symbols g. For terms, their weight is w(f(s1, . . . )) = w(f) + w(s1) + · · · . Let
also |s|x be the number of occurrences of x in s. Then

f(s1, . . . ) ≻KBO g(t1, . . . ) iff



either w(f(s1, . . . )) > w(g(t1, . . . )),
or w(f(s1, . . . )) = w(g(t1, . . . ))

and f ≻s g,
or w(f(s1, . . . )) = w(g(t1, . . . ))

and f = g,
and s1, . . . ≻KBOlex t1, . . . ;

and ∀x ∈ X . |f(. . . )|x ≥ |g(. . . )|x.

(5.6a)

f(s1, . . . ) ≻KBO x iff |f(s1, . . . )|x ≥ 1 . (5.6b)
x ≻KBO y iff ⊥ . (5.6c)

The conditions on variable occurrences ensure that s ≻KBO t ⇒ ∀θ. sθ ≻KBO tθ.
When we extend the order ≻KBO with a variable preorder ⪰v, the starting

point is that x ≻v y ⇒ x ≻KBO[v] y and x ∼v y ⇒ x ∼KBO[v] y. Then, to
ensure that all the properties of a simplification order (including the one men-
tioned above) hold, we arrive at the following definition (similar to [Avenhaus,
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Hillenbrand and Löchner 2003]).

f(s1, . . . ) ≻KBO[v] g(t1, . . . ) iff



either w(f(. . . )) > w(g(. . . )),
or w(f(s1, . . . )) = w(g(t1, . . . ))

and f ≻s g,
or w(f(s1, . . . )) = w(g(t1, . . . ))

and f = g,
and s1, . . . ≻KBO[v]lex t1, . . . ;

and ∀x ∈ X .
∑

y⪰vx
|f(. . . )|y

≥
∑

y⪰vx
|g(. . . )|y.

(5.7a)

f(s1, . . . ) ≻KBO[v] x iff ∃y ⪰v x. |f(s1, . . . )|y ≥ 1 . (5.7b)
x ≻KBO[v] y iff x ≻v y . (5.7c)

To check whether there exists a ⪰′
v ⊃ ⪰v such that s ≻KBO[v′] t, we need to

check whether there are some x≻y or x=y relations that we can add to⪰v such
that all the conditions above hold (and such that it still remains a valid preorder).
Let us denote “there exists a ⪰′

v ⊃ ⪰v such that s ≻KBO[v′] t” by s ≻KBO[v,v′] t.
Then the definition is

f(s1, . . . ) ≻KBO[v,v′] g(t1, . . . ) iff



either w(f(. . . )) > w(g(. . . )),
or w(f(s1, . . . )) = w(g(t1, . . . ))

and f ≻s g,
or w(f(s1, . . . )) = w(g(t1, . . . ))

and f = g,
and s1, . . . ≻KBOlex t1, . . . ;

and ∃x1, y1, . . .

⪰′
v = (⪰v ∪ {⟨x1, y1⟩, . . .})+ is a preorder

such that ∀x ∈ X .
∑

y⪰′
vx
|f(. . . )|y

≥
∑

y⪰′
vx
|g(. . . )|y.

(5.8a)

f(s1, . . . ) ≻KBO[v,v′] x iff


∃y ⊀v x. |f(s1, . . . )|y ≥ 1 ,

with ⪰′
v = ⪰v ∪ {x≻y}

or ⪰′
v = ⪰v ∪ {x=y} .

(5.8b)

x ≻KBO[v,v′] y iff
{
x ⊀v y

with ⪰′
v = ⪰v ∪ {x≻y} .

(5.8c)

This check can be used in Algorithm 1 for finding extensions of variable
orderings that orient equations for rewriting.
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5.2 Saturation strategy

We have explored a large amount of simplification rules in Chapter 4. Together
with many more described in the ample literature published on the superposi-
tion calculus over the decades, we have an abundance of simplification rules and
redundancy criteria at our disposal for usage in superposition theorem proving.
While only the three generating rules in (2.7) are necessary for refutational com-
pleteness, simplification rules are crucial for practical performance; intuitively,
simplification rules are beneficial to taming the growth of the search space as
more clauses get generated.

It could seem that exhaustive application of every simplifcation rule at hand
would be the right option, but naturally the computation of those simplifications
itself takes a non-negligible amount of time,7 so while these will often reduce
the number of clauses to be considered, being too eager in applying them will
also grind the prover to a halt. It is an open problem what the optimal strategy to
balance these conflicting requirements is, and although there is a huge amount
of flexibility in how to perform simplifications,8 most provers are rather re-
strictive on this matter. In Duarte and Korovin [2020] we developed a flexible
simplification setup that subsumes and generalises most common given-clause
loop architectures.

Recall the algorithm for saturation using a standard given-clause loop [Wos,
Robinson and Carson 1965; McCune 1990]. This algorithm is near-universally
employed in theorem proving using saturation, from resolution to superposition
to equational completion [Denzinger, Kronenburg and Schulz 1997; Hillenbrand,
Buch et al. 1997; Schulz 2002; McCune 2003; Weidenbach et al. 2009; Korovin
2013; Waldmann et al. 2020; Smallbone 2021].

The clause set is split into an active set, where all generating inferences
among clauses have been performed, and a passive set, of clauses waiting to
participate in inferences. Clauses are initially added to the passive set, then
in each iteration one given clause is picked from the passive set (according to
some clause selection criterion), all inferences between the given clause and the
active set are performed, and the given clause is added to the active set. Newly
derived clauses are pushed into the passive set, and the process is repeated. The
loop finishes when all clauses have been moved to the active set with no passive

7Empirically, a majority of time in fact.
8See e.g. Waldmann et al. [2020] for an abstract treatment of saturation theorem proving.
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clauses remaining, meaning the active set is saturated (and therefore the initial
set is satisfiable), or when a contradiction is derived, meaning the initial set is
unsatisfiable.

Flexible simplification setup

Since the choice of how the simplification rules and the redundancy criteria
are performed can dramatically impact the performance of the solver, care is
needed in making these choices, and tuning this part of the solver can pay
off significantly. There is a significant amount of choice in how to perform
simplifications. We can choose

– which simplifications to perform,
– at what times,
– and with respect to which clauses;

additionally, some of these simplifications require auxiliary data structures (here
referred to generally as “indices”) to be performed efficiently, and some indices
support several simplification rules.9 Therefore we also need to choose which
clauses to add to which indices at which stages.

For example, Otter-style loops [McCune 1990] perform simplifications on
clauses before adding them to the passive set. The problem with this is that the
passive set grows very fast, and is often orders of magnitude larger than the
active set, therefore (i) performance will degrade significantly as this set grows,
as modification and retrieval operations on indices become slower the more
items are stored, and (ii) the system will spend much of its time performing
simplifications on clauses that may not even end up being activated.

On the other hand, DISCOUNT-style loops [Denzinger, Kronenburg and
Schulz 1997]10 perform simplifications only with clauses that have been added
to the active set, the reasoning being that removing or simplifying clauses cur-
rently participating in generating inferences is much more critical than doing
so on clauses awaiting in a passive set. This has the benefit of reducing the time
spent in simplifications, at the cost of potentially missing many valuable sim-

9For instance, if subsumption is implemented using a feature-vector or fingerprint index
(or some such data structure) of literals in clauses, then subsumption-resolution (sometimes
called reduction or simplify-reflect in the literature) can also be implemented for free on the
same index [Graf 1995; Schulz 2013a].

10As used in several high-profile provers since, e.g. E [Schulz 2013b] or Twee [Smallbone
2021].
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plifications wrt. passive clauses, some of which could shorten the proof search
process considerably. It is not clear where the “sweet spot” is, in terms of these
setups, or even if there is one (for all problems).

However, it is possible, for example, to choose to apply only “cheap” sim-
plifications to the full active + passive set (e.g. subset subsumption11 or light
normalisation12), and use more expensive ones only on the much smaller active
set (e.g. full subsumption or ground joinability), where simplifications are also
much more valuable as they prevent generating inferences from taking place.
This offers a better compromise than either of the standard approaches listed
above, and is the main idea of our novel algorithm, presented in Algorithm 2.

Immediate simplification set

We introduce into this process the element of immediate simplification. The
intuition is as follows.

• Clauses that are derived in each loop are “related” to each other. Often,
for example, some of the conclusions are subsumed by others. It may
be beneficial to keep the set of immediate conclusions inter-simplified or
inter-reduced with respect to a certain set of inference rules.

• Also, throughout the execution of the program, the set of generated
clauses in each loop remains small compared to the set of passive or
active clauses. Therefore, we can get away with applying more expensive
rules that we do not necessarily want to apply on the set of all clauses (e.g.
only “cheap” simplifications between newly derived clauses and passive
clauses, but more expensive “full” simplifications among newly derived
clauses themselves).

• Finally, during this process, it is possible that the given clause itself be-
comes redundant (e.g. subsumed by one of its children). If this happens,
we can add only the clauses responsible for making it redundant to the

11A variant of subsumption where substitutions are not considered; it becomes equivalent
to string prefix searching, quickly computable in e.g. in O(length of clause) with a trie, in the
forward and backward directions.

12A variant of demodulation where only a limited fixed number of instances is considered for
matching, efficiently implementable in the forward direction with a hash-table, with application
becoming O(1) regardless of the number of equations in the set [Duarte and Korovin 2020].
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passive set, then remove the given clause from the active set, and throw
away the rest of the iteration’s newly generated clauses, abort the rest of
the iteration, and proceed to the next given clause. In some problems, a
significant number of iterations may be aborted, which means that fewer
new clauses are added to the passive queue, and that we avoid the work
of computing those inferences. This can be seen as a variant of orphan
elimination [Schulz 2002]. Even when the given clause is not eliminated
it is often beneficial to extensively inter-simplify immediate descendants
of the given clause.

Algorithm

We present the iProver given-clause saturation loop for superposition, a novel
algorithm which incorporates the ideas of a flexible simplification setup and of
immediate simplification, described above. It is presented in Algorithm 2, in
terms of the following.

A simplification set consists of a collection of indices, each of which sup-
ports one or more simplification rules, either in the forward direction, meaning
a clause is simplified/deleted wrt. an existing set of clauses, and/or in the back-
ward direction, meaning clauses in an existing set are simplified/deleted wrt.
another clause.

In our given clause loop we have three such sets:

• Spassive, the passive set,
• Sactive, the active set, and
• Simmed, the newly derived clauses (this set is cleared at the end of every

given-clause iteration, and the non-redundant clauses added to the passive
queue).

Each set supports the following operations:

• “Add clause C to set S in indices R”, which adds a clause to some given
indices in a specific set,

• “Forward simplify clause C wrt. set S via simplification rules/criteria R”,
which applies the rules in specification R, using clauses indexed in the
corresponding indices in S, to attempt to simplify clause C , and
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Algorithm 2: iProver given clause saturation loop.
Input: I : set of input clauses
Spassive ← ∅
for C in I do

C ← simplify C wrt. Spassive via Rfw
input

if C is deleted then continue
Spassive ← simplify Spassive wrt. C via Rbw

input

Spassive ← {C} ∪ Spassive on indices Rindex
input

end
Sactive ← ∅
loop ▷ until Spassive empty or contradiction found

Spassive
′ = {G} ⊎ Spassive ▷ G chosen by clause selection heuristic

Spassive ← Spassive
′

G← simplify G wrt. Sactive ∪ Spassive via Rfw
active

if G is deleted then continue
Sactive ← simplify Sactive wrt. G via Rbw

active

Simmed ← {G}
for C in generating inferences between G and Sactive do

C ← simplify C wrt. Simmed via Rfw
immed

C ← simplify C wrt. Sactive ∪ Spassive via Rfw
passive

if C is deleted then continue
Simmed ← simplify Simmed wrt. G via Rbw

immed

Spassive, Sactive ← simplify Sactive ∪ Spassive wrt. G via Rbw
passive

if G /∈ Simmed (simplified by clauses U ) then
Spassive ← U ∪ Spassive

continue
end
Simmed ← {C} ∪ Simmed on indices Rindex

immed

end
Spassive ← Simmed ∪ Spassive on indices Rindex

passive

Sactive ← {G} ∪ Sactive on indices Rindex
active

end
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• “Backward simplify set S wrt. clause C via simplification rules/criteria
R”, which applies the rules in R, using C , to attempt to simplify clauses
indexed in S.

These are called at several points in the loop (see the pseudocode in Algorithm 2),
and the user can configure which indices/rules (the R’s) are involved in each
operation.

Furthermore, the possibility of manual tuning by the user is not the only
objective. In particular, iProver includes an auto-schedule, which has been tuned
via machine learning [Holden and Korovin 2021].13 The flexibility afforded
by this novel given-clause algorithm enabled the machine learning process
to discover many interesting parameter sets, and combinations thereof, that
(ideally) maximise the number of problems solved.

Note also that generally, when during immediate simplification a parent
clause of a newly derived clause is made redundant, we can remove all the
children of that clause from the immediate set (and thus avoid adding them
to the passive queues), except for the ones which caused it to be redundant.
Currently, we restrict this feature to the given clause rather than to all the
parent clauses, therefore, this simplifies to checking whether the given clause
is made redundant in Simmed, and if so abort the loop, add only the clauses that
made it redundant to the passive set, and remove the given clause.

Implementation

Currently iProver uses non-perfect discrimination trees for implementing uni-
fication for generating inferences [Graf 1995], perfect discrimination trees for
matching for demodulation, ground joinability, and unit subsumption [Graf
1995], hash-tables for light normalisation, feature vector indices for subsump-
tion and subsumption resolution [Schulz 2013a], tries for subset subsumption
[Graf 1995], the MiniSat solver [Eén and Sörensson 2003] for global proposi-
tional subsumption, and the Z3 solver [Moura and Bjørner 2008] for canonic-
alisation and instantiation of arithmetic terms.

As alluded several times before, choosing an appropriate term ordering is
sometimes the difference between finishing in a fraction of a second, or running

13This approach uses a mixture of dynamic clustering (to classify problems, since different
problems require drastically different heuristics), and hyperparameter optimisation (to optimise
the heuristics and schedules thereof, for a given cluster).
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out of time/memory before finding a solution. We also know that certain the-
ories have a “natural” ordering which matches the intuitive direction in which
rewrites should tend to be performed. For example, problems in the theory of
rings often benefit from an LPO ordering where 0 ≺ 1 ≺ + ≺ × ≺ −, which
orders axioms in a way that matches the intuitive direction that a human would
most often choose to apply them, for instance rewriting terms into sums of
monomials (e.g.−(a× (b+ c))→ −(a× b)+−(a× c)). This is despite the fact
that, overall, KBO outperforms LPO most often than not [Schulz 2002; Löchner
2007].

Therefore we have also incorporated a simple scheme for theory detection in
iProver for many common algebraic theories [Hillenbrand, Jaeger and Löchner
1999; Cruanes 2015]. In summary: first, for a given theory, exhaustive testing is
used to establish empirically an ordering (or combination of orderings) that res-
ults in the highest success rate, among a library of pre-existing problems in that
theory; these orderings are recorded in a database embedded in iProver. Then,
in the preprocessing phase of iProver, syntactic detection of algebraic theories
in the input problem takes place, which triggers the usage of the appropriate
ordering (and/or other configurations).
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Chapter 6

Experimental results

Co’um saber só d’experiencias feyto
Tais palauras tirou do experto peito:

Luı́s de Camões, Os Lusı́adas (1572)

In this chapter, we discuss experimental results obtained after implementing
the research described in the preceding chapters in a state-of-the-art theorem
prover.

iProver

iProver1 [Korovin 2008; 2013; Duarte and Korovin 2020] is an automated the-
orem prover for first-order logic. It supports unsorted and many-sorted first-
order logic, as well as interpreted integer, rational, and real arithmetic. Ori-
ginally based on the Inst-Gen calculus, it now has support for running any
number of Inst-Gen, superposition, and resolution components, in sequence
or concurrently. These calculi can be interleaved in a time-sliced fashion, and
clauses and other information can be shared between components.2 It supports

1Available at http://www.cs.man.ac.uk/∼korovink/iprover/.
2For example, superposition can easily derive lemmas which Inst-Gen has a hard time

obtaining, and vice-versa, so both calculi can, for instance, commit clauses to a shared proposi-
tional solver, which can be accessed by any other component for usage in global subsumption
(see Korovin 2013 for an example of this); or a superposition component can query a previous
superposition component for the clauses which were more useful for simplifications during the
former run (and in the contrary, those which were more prolific for generation and less suitable
for simplification), and adjust their position in the clause selection heuristic accordingly.
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sophisticated preprocessing, but depends on external tools for clausification of
non-clausal form problems into CNF. It also implements a general abstraction-
refinement framework [López-Hernández and Korovin 2018].

There are hundreds of options that control the behaviour of the prover, from
search parameters, term orderings, to the simplification and inference rules,
or the scheduling of different calculi. The auto-schedule depends on the input
problem, and has been tuned via machine learning [Holden and Korovin 2021].

iProver is written in OCaml, with few external dependencies (some of them
optional). It is free software under GNU GPL v3.

Computational resources
The experiments in this chapter were performed on a computational cluster
composed of 25 nodes, each with an AMD Opteron 4334 CPU, with 6 cores (12
virtual) at 3.1 GHz, and 128 GB of RAM. Each problem is allocated one (physical)
core.

Problem set
We have chosen the TPTP (Thousands of Problems for Theorem Provers) library
[Sutcliffe 2017] as a source of test problems for our evaluation, as it is by far
the most comprehensive freely-available source of first-order logic problems in
a standard input format; it incorporates problems from various domains (from
algebra, analysis, and geometry, to software verification and Sledgehammer3

dumps) and various difficulty levels (from trivial to open).
Our test set is comprised of the CNF and FOF4 portions of the TPTP v8.1.2

library, the latest available version at the time of writing. These amount to
17 436 problems.

TPTP also includes a database of solutions for each problem (called TSTP), by
actively developed as well as legacy theorem provers, including superposition,
resolution, equational completion, tableaux, SMT, higher-order, and other types
of provers. This enables us to easily evaluate our contributions in comparison
to existing provers (especially superposition and equational completion ones),
including identifying problems which have no prior recorded solution. Of the
17 436 problems in our test set, 2349 have no solution in TSTP.

3Blanchette et al. 2016.
4First-order, untyped, no arithmetic.
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6.1 Ground joinability and AC criteria
In this section we evaluate the impact of ground joinability criteria on over-
all problem-solving performance, after implementation in iProver. This is, to
our knowledge, the first implementation of general ground joinability in a su-
perposition prover, and also features our novel incremental ground joinability
algorithm for testing this criterion.

Specifically, we are interested in testing the following aspects.

Problems solved We investigate whether ground joinability increases the
overall number of problems solved, by measuring the impact of enabling this
simplification, as compared to an otherwise identical parameter setup where
this simplification is disabled. Furthermore, we also investigate which new
problems are solved (as there naturally will be problems solved only when
ground joinability is disabled and only where ground joinability is enabled, even
if the overall number of problems solved increases), especially by consulting the
TSTP library of solutions to identify problems which have no previous recorded
solution at all, but which are solved using superposition with ground joinability,
in iProver.

Runtime While solving more problems is usually taken to be the most import-
ant goal of theorem proving, minimising runtime for successful solutions is also
an important goal (of critical importance in many “online” applications, such as
embedding into higher-order provers or compilers, less so in “offline” tasks like
chip verification). Therefore, we will also measure how enabling ground join-
ability affects the time to obtain a solution, among problems which are solved
regardless of whether it is enabled or not. On one hand, ground joinability can
simplify more clauses, on the other hand, it takes time to check even when it is
unsuccessful; this is why it is not clear a priori if the impact on runtime will be
positive or negative.

Incremental ground joinability cost Ground joinability is a very powerful,
but also very heavy simplification rule. Because of this, we have spent signific-
ant effort in designing the incremental ground joinability algorithm (Section 5.1)
for maximum performance and minimal runtime impact. To measure the degree
to which we have been successful, we have also performed measurements of the

113



6. Experimental results

percentage of runtime spent testing ground joinability, compared to the overall
runtime of the prover.

AC simplifications In our treatment in Chapter 4, we have distinguished
between “general” ground joinability, and the specialised AC joinability rule,
which can be implemented in a more efficient way (a simple sort and compare
of AC subterms, versus the intricacies of Algorithm 1). Therefore, in our experi-
ments, we will also measure the impact of these techniques separately.

Experimental design

As noted, iProver is currently a sophisticated system which supports running
several “components” concurrently, i.e. different calculi with different strategies
and options, which may also share information between them. We have per-
formed experiments using manually defined configurations where only one
superposition (and preprocessing) components are enabled. This reduces the
“noise” caused by the complex (and rather inscrutable) interplay between the
different components, which would be a significant confounding factor as the
subtle and non-trivial interactions between the components of the auto-schedule
would prevent us from drawing meaningful conclusions in terms of the impact
of ground joinability on superposition performance. Furthermore, the auto-
schedule is aggressively tuned to the available parameter space [Holden and
Korovin 2021]; restricting this by forcing ground joinability to be on/off will
distort the results. Evaluating the interplay between ground joinability and the
Inst-Gen calculus is, therefore, outside the scope of the present discussion.

Therefore, in this section we have disabled the auto-schedule and ran iProver
with a manual schedule of preprocessing and superposition, whose compon-
ents vary the search heuristics, the simplification setup, term ordering, clause
selection heuristic, among other parameters. This aims to ensure that (i) prob-
lems solved incidently by other means (in superposition, e.g. by varying the
clause selection heuristic, the term ordering, or other simplification rules) will
be solved by both experiments, with and without ground joinability, thereby
ensuring that the differing problems will tend to be more representative of prob-
lems benefiting from ground joinability in a realistic schedule, but not solved
by existing techniques, and (ii) to effectively measure the impact of applying
ground joinability in a wider variety of parameter configurations.
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This experiment was repeated with the following variations (with all other
options being kept equal between them):

• Ground joinability simplifications enabled,

• Ground joinability simplifications disabled,

• General ground joinability disabled but AC joinability enabled.

Then, we also ran another set of experiments (for each of the three variants
above) with a straight schedule consisting of a single saturation loop for the
entire duration of the run (preceded by preprocessing). We call the former set
of experiments “schedule on” and the latter “schedule off”. The former has the
advantage of being more realistic and avoiding spurious results,5 while the latter
has the advantage of introducing less noise and enabling a straight comparison
between runs with and without ground joinability.

Finally, we ran a series of experiments with several different parameters and
schedules — always with ground joinability enabled — in an attempt to find
solutions for hard (or unsolved) problems.

All experiments ran with a time limit of 300 s per problem.

Results

Of the 17 436 eligible problems, ground joinability was not even attempted once
in 7735 of them, either because the problem does not include equality, or because
it is immediately solved through very simple steps or in preprocessing. These
problems are not interesting for the purposes of this analysis, and therefore we
will only consider the universe of the other 9701 problems for the remainder of
this section.

Of these, ground joinability is used to eliminate clauses in 4075 of them (42%,
Figure 6.2a) in the “schedule on” experiment, and 3988 of them (41%, Figure 6.2b)
in the “schedule off” experiment, indicating that ground joinability is applicable
in many classes of problems, including in non-unit problems where it previously
had never been used.

5As discussed, in terms of ensuring that problems which are solvable by other means, such
as by slightly changing the term ordering or the clause selection heuristic, are solved in the
experiment which does not include ground joinability, and do not spuriously show up in analysis
as being solved by ground joinability.
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Table 6.1: Number of problems solved.

Ground joinability Exclusive problems Total problems

On 133 9841
Off 27 9735

(a) Schedule on.

Ground joinability Exclusive problems Total problems

On 117 9496
Off 29 9408

(b) Schedule off.

Problems solved

In Table 6.1, we summarise the number of problems solved in each of the exper-
iments. We observed that turning on ground joinability enabled the solution of
133 problems which it did not solve with an identical schedule without ground
joinability, for a net gain of +106 overall problems (as illustrated in Figure 6.1a).
In the “schedule off” experiment, the gains were slightly more modest, as 117
more problems were solved for a net gain of +88 problems (Figure 6.1b).

We can further distinguish, from among the problems solved with ground
joinability, those that are also solved only with AC joinability (and normalisa-
tion) without the need for general ground joinability. This is summarised in
Figure 6.3, and indicates that while the lighter6 AC joinability rule suffices to
achieve a moderate increase in performance (mostly in problems where AC
reasoning is the most significant challenge), general ground joinability is still
essential for solving other types of problems, and enabling it yields the best
overall performance.

Overall, and in terms of the number of problems solved, these experimental
results enable us to conclude that ground joinability increases the performance
of the superposition calculus, while not being a universal improvement, in
the sense of solving a superset of problems compared to runs without ground

6In terms of implementation effort and of runtime.
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133 279708

Enabled Disabled

(a) Schedule on.

117 299379

Enabled Disabled

(b) Schedule off.

Figure 6.1: Number of problems solved exclusively with and without ground
joinability, and problems solved in both.

joinability. This suggests that these approaches complement each other, and
that a suitable schedule is needed to maximise the number of problems solved,
including components where ground joinability is both enabled and disabled.

As to the specific impact of the concrete implementation of Algorithm 1 for
testing ground joinability, we cannot draw conclusions as we do not have two
reference implementations to compare. Therefore, in this analysis, we cannot
distinguish how much is owed to the application of ground joinability redund-
ancy elimination in abstract, and how much is owed to this novel algorithm for
testing it.

Runtime

As mentioned, while solving problems is the priority, we have also measured
runtime among the problems successfully solved by both approaches, to un-
derstand if enabling ground joinability helps reduce the time to a successful
solution, even where the problem is still solved without ground joinability. We
have found (Table 6.2) that there is only a very modest improvement, as the
weight of ground joinability (being applied everywhere) erases — on an aggreg-
ate level — almost all of the gains from the deletion of ground joinable literals.

Note that this is an aggregate result; we can see that there are pathological
problems where there is substantial speedup (or substantial slowdown). This is
summarised in Table 6.3, in which we can see that there are far more problems
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(b) Schedule off.

Figure 6.2: Number of successful ground joinability simplifications in each prob-
lem, among problems where ground joinability is attempted at least once.
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58 25
50

27

33 22

9653

All Only AC

None

(a) Schedule on.

57 13
47

29

12 18

9349

All Only AC

None

(b) Schedule off.

Figure 6.3: Problems solved with general ground joinability, with only AC join-
ability, and with neither.

which are solved significantly faster with ground joinability enabled than vice-
versa, even though the overall number is small (around 90% of problems solved
by both approaches finished within ±30% time of each other).

Nonetheless, we consider that the fact that there is no measured slowdown
among problems solved irrespectively of ground joinability is already an encour-
aging result, as it means we can reap the benefits (more and harder problems
solved) without an unacceptable cost (significant slowdown in other problems).

A commonly-used visualisation of both runtime and number of problems
solved is the graph of the cumulative number of problems solved under a given
time, provided in Figure 6.4.

In terms of the runtime performance impact of enabling ground joinability,
we measured the amount of time spent on ground joinability as a percentage
of total runtime, for each given problem. Discarding problems which finish in
under 1 s, we have plotted the results in Figure 6.5. We observe that, in the
more realistic “schedule on” experiment, in 6613 out of 8281 problems (80%),
the total time spent on ground joinability algorithms and data structures is less
than 1% of total prover time, exceeding 20% only on 93 (1.1%) problems. In the
“schedule off” experiment, the result was slightly better, with 7516 out of 8257
problems (91%) not exceeding 1% of time spent on ground joinability, and only

119



6. Experimental results

0 2000 4000 6000 8000

Problems

0

50

100

150

200

250

300

Ru
nt

im
e

(s)

8600 8800 9000 9200 9400

300

240

180

120

60

Enabled
Disabled

Figure 6.4: Cumulative number of problems solved under a given time, with and
without ground joinability.

Table 6.2: Average runtime among problems solved with and without ground
joinability.

Gr. join. enabled Gr. join. disabled

Schedule on 15.482 s (−0.350 s) 15.832 s
Schedule off 11.078 s (−0.436 s) 11.514 s

Table 6.3: Number of problems solved significantly faster with or without
ground joinability, among problems solved in both experiments, and with
runtime > 1 s (schedule off).

Gr. join. enabled Gr. join. disabled

>30% faster 206 (7.1%) 87 (3.0%)
>60% faster 150 (5.1%) 29 (1.0%)
>100% faster 122 (4.2%) 19 (0.7%)
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88 (1.1%) problems going over 20%. We attribute this in part to the success of
our incremental ground joinability algorithm in finishing quickly in the vast
majority of cases where the two terms are not ground joinable.

For AC joinability, the results are even more dramatic (Figure 6.6), as the
specialised test is extremely fast and does not even exceed 0.1% of total runtime
in 87.2% of the problems (both experiments), for the combined application of
AC joinability and AC normalisation.7 We conclude that it pays off to specialise
the ground joinability test on AC terms, especially as associative-commutative
operators appear quite often in real problems (1268 in the present problem set),
and that AC joinability/normalisation can almost always be enabled without
fear of significant negative performance impact.

Hard and unsolved problems

Let us also search for hard problems which are newly solved by iProver using
ground joinability. TPTP classifies problems by rating in [0, 1], problems with
rating ≳ 0.9 being usually considered to be very challenging. We also search
for problems with no recorded solution in TSTP.

Some interesting problems solved are detailed in Table 6.4. In particular,
these include problems previously solved only by unit equational provers (e.g.
LAT140-1, ROB018-10, REL045-1, GRP196-1), and problems hitherto unsolved
by automated theorem provers (e.g. RNG010-1, RNG029-2, CSR205+1).

The problems in Table 6.4 broadly include:

• Problems in abstract algebra, such as the problems in RNG, LCL, or ROB

in the table, which include not only AC but also other permutative ax-
ioms,8 at which ground joinability excels. The problem RNG029-2, for
instance, which asks to show that one of the Moufang identities holds in
any ring, was solved in only 50 s, with X successful applications of the
ground joinability simplification rule, while no other prover in TSTP has
a recorded solution. This is an example of what we mentioned before
as motivation for our work: as it is not a unit problem, it is outside the
scope of equational completion provers, but at the same time, no other
first-order prover implements ground joinability.

7It is much faster to combine these in one pass, hence why they are counted together.
8Other axioms of the form l ≈ r where l and r are renamings of each other, like the com-

mutativity axiom.
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Figure 6.5: Percentage of total runtime spent testing general ground joinability
(excl. AC), among problems where ground joinability is attempted at least once,
and with total runtime > 1 s.
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Figure 6.6: Percentage of total runtime spent testing AC joinability, among
problems where ground joinability is attempted at least once, and with total
runtime > 1 s.
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Table 6.4: Hard or unsolved problems in TPTP, solved by iProver with ground
joinability.

Name Rating Name Rating

LAT140-1 0.90 ROB018-10 0.95
REL045-1 0.90 LCL477+1 0.97
LCL557+1 0.92 LCL478+1 1.00
LCL563+1 0.92 CSR039+6 1.00
GRP196-1 0.92 CSR040+6 1.00
LCL474+1 0.94 CSR205+1 1.00
RNG028-2 0.94 RNG010-1 1.00
ROB018-1 0.95 RNG029-2 1.00

• Problems with a large number of axioms, such as the CSR problems (which
feature from thousands to millions of input clauses), all of which contain
one conjecture which has a proof involving a relatively small number of
those axioms. In these, the elimination of redundant formulae is critical
to keep the search space manageable and thus to find those elusive proofs.
However, we cannot rule out that these are “spurious” results in the sense
that the application of ground joinability only coincidentally steered the
proof search into the right direction.

Overall, we can conclude that ground joinability in superposition (i) in-
creases overall performance, (ii) finds solutions to previously unsolved problems,
and (iii) does not significantly impact runtime on the majority of cases.

Encompassment demodulation

Although ground joinability is one of the main contributions of this work, the
strengthening of standard demodulation into encompassment demodulation is
also an important contribution to the theory and practice of the superposition
calculus. However, it is difficult to measure the impact of this rule in isolation
with the rest of the techniques that were implemented; this is due to the fact
that (i) one of the advantages of encompassment demodulation is that indexing
and application of the completeness condition is considerably simplified (and
faster) — and so having an option to switch between standard and encompass-
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ment demodulation implies an inefficient implementation which negates this
advantage — and (ii) the other simplification rules such as ground joinability
subsume some applications of encompassment demodulation, which makes it
impossible to actually measure the impact of the latter without turning all other
rewrite-based rules off.

Therefore we do not have as of yet experimental data that measures the
impact of encompassment demodulation and ground joinability independently
of each other. This would require some amount of implementation effort in
“backporting” the standard demodulation conditions onto the remaining rewrite-
based simplification rules, and maintaining two separate implementations of
every algorithm and data structure used in either variant. Having this data in
the future may help us establish the actual practical impact of replacing standard
demodulation with encompassment demodulation.

Connectedness

Likewise, we do not have as of yet a satisfactory implementation of connected-
ness or ground connectedness. Implementation of the former (in its equational
completion version) is known to be very challenging [Bachmair and Dershow-
itz 1988; Smallbone 2021], and the latter is an entirely novel contribution of
this work. Intuitively, we expect that connectedness and ground connectedness
complement ground joinability, but we do not currently have experimental data
to verify this intuition.

6.2 iProver loop

In this section, we evaluate the implementation of our novel iProver given-
clause loop. We compare it with two existing and widely used algorithms, as
first implemented in Otter [McCune 1990] and as first implemented in Discount
[Denzinger, Kronenburg and Schulz 1997];9 in Section 5.2, we discussed these
algorithms and how they compare to our novel given-clause loop. Due to be-
ing used in many very successful theorem provers, we have chosen them to
benchmark our own contribution against.

9These algorithms have been used in many theorem provers besides; we name them thus
for the first provers which implemented them.
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The experimental setup is as follows. We run iProver with three distinct sets
of options, identical except for the simplification setup.

• In the Otter experiments, we do all simplifications at clause creation time,
with respect to all other clauses, in the forward and backward directions.

• In the Discount experiments, we do the same simplifications in the same
order, but only among activated clauses.

• In the iProver loop, we perform ”light” simplifications (subset subsump-
tion, light normalisation [Duarte and Korovin 2020], etc.) among all
clauses, at clause derivation time, and ”heavy” simplifications (demodula-
tion, ground joinability, subsumption resolution [Schulz 2002; Kovács and
Voronkov 2013], etc.) among active clauses, at clause activation time; we
also apply immediate simplification (see page 106) using subsumption and
subsumption resolution, as well as attempting backward demodulation
on the given clause via the derived clauses. We detail this in the appendix.

In all three experiments, the remaining options are identical. The auto-
schedule is disabled and we run only one superposition calculus; i.e. we only run
a single saturation loop for 300 s with the given options. Again, note that this is
significantly less powerful than using a complex schedule of many components,
but it ensures we are only measuring the impact of the superposition saturation
loop setup, rather than having the results being confounded by the many subtle
and non-trivial interactions between the components of the auto-schedule.

The results for the number of solved problems are summarised in Table 6.5.
We can see that “Discount” leads “Otter”,10 but crucially, our novel simplification
setup leads both of them, improving on Discount (as measured) about as much
as Discount improves on Otter. The “iProver” loop solves 202 more problems
than Discount and 397 more problems than Otter. An interesting fact is that
these problems are mostly of increased difficulty: the average rating of problems
solved exclusively by iProver is 0.546, compared to the average rating of 0.147
for problems solved by all three.

The distribution of problems solved by each of these approaches is also
summarised in Figure 6.7. Note that, as expected, the majority of problems are
solved by all three approaches, if given 300 s to complete.

10This is in line with ”folklore”, see e.g. Schulz [2002, 2009].
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As mentioned before, the most important metric that can be used to judge
a theorem prover’s success is usually taken to be solving more problems. How-
ever, we also measured the average time taken per problem solved11 (Table 6.6).
We can observe that our novel simplification loop also succeeded in reducing
the average time for a successful solution, from 8.111 s in Otter and 6.144 s in
Discount to 4.802 s in our approach (−22% compared to Discount).

6.3 CADE ATP System Competition
Finally, we will note that iProver runs in the annual CASC competition of auto-
mated theorem provers [Sutcliffe 2016]. In 2021, after implementation of AC
joinability and normalisation, of the iProver given clause loop, and of meta-
optimisation of the auto-schedule [Holden and Korovin 2021], iProver came in
2nd place on the main FOF division12 of the competition, narrowly edging out E
[Schulz 2013b], a theorem prover with over 25 years of continuous and active
development. In 2022, iProver came in 3rd place, after E re-gained the lead (the
Vampire theorem prover [Kovács and Voronkov 2013] won the division in both
years).

11Among all problems solved in common, since problems solved exclusively in one or two
experiments tend to be unrepresentatively difficult.

12First-order theorems.
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Saturation loop Solved problems

Otter 9068 (+0)
Discount 9263 (+195)
iProver 9465 (+397)

Table 6.5: Total number of problems solved by each loop.

143 216
53

220

251 373

8621

Otter Discount

iProver

Figure 6.7: Number of problems solved by each combination of loops.

Saturation loop Avg. runtime (s)

Otter 8.111 (−0)
Discount 6.144 (−1.967)
iProver 4.802 (−3.309)

Table 6.6: Average runtime among problems solved by all loops.
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Chapter 7

Conclusion and outlook

‘Don’t adventures ever have an end?’ Bilbo
said, ‘I suppose not. Someone else always has
to carry on the story.’

J.R.R. Tolkien, The Lord of the Rings (1954)

In this work, we have extended the state of the art of theoretical treatments
of the superposition calculus, by means of a novel notion of redundancy in-
volving closures and of a definition of closure orderings. These theoretical
advances yielded a plethora of further theoretical and practical results, namely
several simplification rules for the superposition calculus, such as encompass-
ment demodulation, ground joinability, connectedness, AC normalisation, and
others. We also contributed two novel algorithms which address relevant is-
sues vis-à-vis this work, namely checking ground joinability of two terms, and
controlling the search and the application of simplifications in a saturation pro-
cedure. Finally, we have implemented most of our work in iProver, and analysed
its practical performance.

In particular, we have shown that simplification by rewriting with oriented
instances of equations, used in unfailing completion, can coincide exactly with
the equivalent notion in superposition, rather than the latter being more re-
strictive — and in a similar fashion, simplification rules like ground joinability
and critical pair criteria like connectedness can also carry over to superposition
unchanged — thereby bridging a frustrating gap that stood for decades, and
unifying the theory of equational completion and superposition. This is a task
that can be said to have begun in the 1970s with paramodulation and Knuth-
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Bendix completion [Bonacina 2022], whose development eventually produced
the superposition calculus [Bachmair and Ganzinger 1994], which as noted did
completely generalise the generating rule of unfailing equational completion to
the non-unit case, but did not generalise its notion of simplification or redund-
ancy.

Furthermore, our formulation of simplification rules such as encompassment
demodulation or ground joinability not only coincides with equational comple-
tion on unit equations, but also extends cleanly to the non-unit, non-equality,
and negative equality cases. For example, encompassment demodulation allows
rewriting with an oriented unit equation to succeed on other unit equations
exactly whenever it would succeed in equational completion, and to succeed on
negative or non-unit or non-equational clauses at all times.

This opens the door to bringing the most successful techniques from equa-
tional completion to bear fruit on the superposition calculus, including — for
the first time — on non-unit problems. As discussed, techniques like ground
joinability are part of the reason why equational completion outperforms super-
position on unit-equational problems, and with this work they are now available
in superposition provers, for application on non-unit-equational problems. In-
deed, we identified already some hard problems, with no recorded solutions by
automated theorem provers, which were solved by our implementation. Fur-
thermore, we are aware of state-of-the-art projects that have already adopted
some of the techniques in this dissertation, and implemented them in their own
theorem provers.

We also studied key aspects related to algorithms necessary for a practical
realisation of these results, contributing algorithms for ground joinability, and
for performing simplifications in a given-clause loop. The former algorithm aims
to improve the efficiency of this very costly simplification rule, by optimising
the most common case, and attempting to reduce the number of rewrite steps
performed (which involve expensive matching, ordering checks, etc.). The latter
algorithm subsumes some of the most widely-used given-clause loop setups
into a more flexible algorithm that outperforms them.

Further to this, we have also implemented the most significant practical
contributions presented in this dissertation into a robust and mature theorem
prover for first-order logic, iProver. This has enabled us to demonstrate empiric-
ally some of the practical performance gains we claimed as a result of this work,
namely that ground joinability, AC joinability, AC normalisation, and encom-
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passment demodulation help improve the overall number of problems solved,
that they unlock solutions for very hard or hitherto unsolved problems, and
that runtime efficiency is not affected negatively. We have also shown that our
novel given-clause loop outperformed the two given-clause algorithms which
are most widely used in superposition provers.

Future work

As mentioned, the theoretical unification embodied in this work opens the door
to further work which builds on top of it. There are also many theoretical and
practical questions that remain to be addressed.

For instance, while we have contributed a novel algorithm for ground join-
ability, connectedness is an equally challenging rule to implement. Current
approaches are limited and based on rough heuristics on a best-effort basis, and
we believe that there is significant room for improvement on this front. Namely,
a unified algorithm for treating all rewrite-based simplification rules — from
demodulation to joinability and ground joinability to connectedness and ground
connectedness — could introduce significant benefits as intermediate results are
cached and repeated work is avoided.

Backward ground joinability is another aspect which is challenging to get
right. While we contributed an algorithm for checking ground joinability of two
terms under a fixed set of equations, whose natural application is in checking
whether two sides of a literal of a new clause are ground joinable wrt. a kept set
of equations (i.e. a forward simplification), checking whether a new equation
makes two sides of a literal in a kept clause ground joinable (i.e. a backward
simplification) is significantly more difficult. Without any further improvement,
a naı̈ve approach would require prohibitive amounts of memory for storing the
intermediate state of all failed ground joinability attempts (see Algorithm 1), or
simply re-doing all the work on all kept clauses for each backward simplification
attempt, which is also highly inefficient. Further work on this front is needed,
as this is a significant weakness in our implementation: since only one of the
directions is available, success in ground joinability may be heavily dependant
on the order in which clauses are derived/activated (and thus considered for
simplification by ground joinability).

As remarked in the previous chapter, our measurements were done with
an ad-hoc configuration of either a manual schedule of several superposition
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components, or a single saturation loop for the duration of the run. But iProver
supports a considerably more powerful method of controlling its vast number
of parameters: an auto mode which takes into account the syntactic features of
the input problem (and the available time) to spawn a strategy which is most
likely to solve it. After extensive machine-learning optimisation, this auto mode
has drastically improved the performance of iProver as compared to its previ-
ous manually-written configuration. However, at present this does not include
ground joinability (in the contrary, it is agressively tuned to a hyperparameter
space that does not include it).

Crucial to the success of the auto mode is the fact that different configura-
tions or techniques “complement” each other, and hence a schedule with several
different components is more likely to succeed at solving problems than a sched-
ule that only includes one, or a few similar ones. It is also very unintuitive to a
human how to best combine hundreds of options across two saturation calculi
and dozens of preprocessing steps, hence the poor performance of manually
tuned schedules versus automatically tuned ones. Hence: there is significant
interest in having the auto schedule make use of ground joinability, encompass-
ment demodulation, and AC normalisation and joinability (despite the fact that
the machine-learning optimisation procedure is very time-consuming). Not
only will this (i) serve as a better benchmark of the practical performance of
those techniques in a production-ready theorem prover, but also (ii) help us un-
derstand to which degree, and in what types of problems, are these techniques
complementary to existing ones. It is our hope that this can be available in the
mainline iProver version in the near future.

Furthermore, we have shown that specialising algorithms for specific the-
ories of interest (as was done in this work for AC) offers advantages both in
theoretical terms (e.g. AC normalisation being stronger than demodulation) as
well as in practical terms (e.g. AC joinability being much faster than “manually”
applying general ground joinability with the AC axioms).

This leads us to believe that investigating further particular theories is a very
promising avenue of research, as (for instance) abelian groups, idempotence ax-
ioms, partial orders, lattices, etc. are all examples of theories which are ubiquit-
ous in wide-ranging domains — from abstract algebra to software verification —
but currently very challenging for superposition. This idea has been extensively
researched in the domain of unit-equational completion [Peterson and Stickel
1981; Martin and Nipkow 1990; Baader and Nipkow 1998; Hillenbrand, Jaeger
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and Löchner 1999, to name a few], and now, with the theoretical framework
presented in this work, the results can be extended and generalised to full clausal
first-order logic, in superposition.

Moreover, we have noticed that sensitivity to term order is, empirically, a
major hurdle to applicability of the techniques described (as the term order
underpins all rewrite-based simplification rules). Investigating this issue could
be fruitful to improve performance, and enable application in more problems.
Some preliminary work has been done on this front (page 109), but it needs to
be further systematised.

It is our hope that the theoretical tools presented in this work will prove
useful in a wide range of fields, and serve as the basis for further theoretical
developments in the future. Usage of these techniques, either in iProver or in
other superposition provers which adopt them, may prove the key for solving
presently open problems in abstract algebra, or other domains of mathematics,
just as developments in SAT solving or equational theorem proving proved
the key in solving other, long-standing open problems [Appel and Haken 1989;
McCune 1997; Heule, Kullmann and Marek 2016].
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Appendix A

iProver loop experimental setup

Here we detail the contents of Rpassive, Ractive, Rimmed, and Rinput,1 for each of
the three experiments in Section 6.2.

Otter

• Simplify new clause wrt. passive clauses

– Fw: demodulation, subsumption, subsumption resolution, AC nor-
malisation, ground joinability, global subsumption.

– Bw: demodulation, subsumption, subsumption resolution, ground
joinability.

• Simplify new clause wrt. active clauses

– Fw: demodulation, subsumption, subsumption resolution, AC nor-
malisation, ground joinability, global subsumption.

– Bw: demodulation, subsumption, subsumption resolution, ground
joinability.

• Simplify given clause wrt. passive clauses

– Fw: none.
– Bw: none.

• Simplify given clause wrt. active clauses

– Fw: none.
– Bw: none.

1See Section 5.2.
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A. iProver loop experimental setup

• Simplify new clause wrt. immediate set

– Fw: none.
– Bw: none.

• Simplify input clause

– Fw: demodulation, subsumption, subsumption resolution, AC nor-
malisation, ground joinability, global subsumption.

– Bw: demodulation, subsumption, subsumption resolution, ground
joinability.

Discount

• Simplify new clause wrt. passive clauses

– Fw: none.
– Bw: none.

• Simplify new clause wrt. active clauses

– Fw: none.
– Bw: none.

• Simplify given clause wrt. passive clauses

– Fw: demodulation, subsumption, subsumption resolution, AC nor-
malisation, ground joinability, global subsumption.

– Bw: demodulation, subsumption, subsumption resolution, ground
joinability.

• Simplify given clause wrt. active clauses

– Fw: demodulation, subsumption, subsumption resolution, AC nor-
malisation, ground joinability, global subsumption.

– Bw: demodulation, subsumption, subsumption resolution, ground
joinability.

• Simplify new clause wrt. immediate set

– Fw: none.
– Bw: none.

• Simplify input clause
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– Fw: none.
– Bw: none.

iProver

• Simplify new clause wrt. passive clauses

– Fw: none.
– Bw: none.

• Simplify new clause wrt. active clauses

– Fw: AC normalisation, unit subsumption.
– Bw: demodulation, unit subsumption.

• Simplify given clause wrt. passive clauses

– Fw: demodulation, AC normalisation.
– Bw: none.

• Simplify given clause wrt. active clauses

– Fw: demodulation, subsumption, subsumption resolution, AC nor-
malisation, ground joinability, global subsumption.

– Bw: demodulation, subsumption, subsumption resolution, ground
joinability.

• Simplify new clause wrt. immediate set

– Fw: subsumption, subsumption resolution, AC normalisation.
– Bw: subsumption, subsumption resolution.

• Simplify input clause

– Fw: demodulation, subsumption, subsumption resolution, AC nor-
malisation, ground joinability, global subsumption.

– Bw: demodulation, subsumption, subsumption resolution, ground
joinability.
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Index

AC demodulation, 88
AC joinability, 82
AC normalisation, 86
active set, 104
admissible, 66
associative-commutative, 80
atom, 40
automated theorem proving, 22

backward simplification, 107

Church-Rosser property, 41
clause, 40
closure, 45
closure ordering, 47
closure redundancy, 53, 55
conclusion, 41
confluence, 41, 56
confluent, 56
conjunctive normal form, 39
connectedness, 76
constant, 39
critical pair criteria, 76

demodulation, 67
Discount loop, 105

edge, 95
encompassment demodulation, 67

entailment, 41
equal modulo renaming, 41
equational completion, 42
expression, 40

forward simplification, 107

given-clause loop, 104
ground, 40
ground closures, 45
ground connectedness, 79
ground joinability, 73

immediate simplification, 106
incomparable, 38
incremental ground joinability, 93
indexing, 105
interactive theorem proving, 22
irreflexive, 37

joinability, 41, 70

KBO, 102

lexicographic extension, 38
literal, 40

model, 41
model construction, 56
more general, 40, 41
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Index

most general unifier, 40
multiset extension, 38

order extension, 92
Otter loop, 105

partial order, 38
passive set, 104
premise, 41
preorder, 38
productive, 56

reduction ordering, 42
reductive, 55
redundant clause, 43
redundant inference, 43
reflexive, 37
reflexive-transitive, 38
refutational completeness, 43
renaming, 40
resolution, 25
rewrite ordering, 42
rewrite relation, 41
rewrite rules, 41
rewrite via, 42

satisfiability, 41
saturation, 44, 55
signature, 39
simplification orderings, 42
simplification rule, 66
simplification set, 107
soundness, 43
strict subterm, 40
strong ground joinability, 73
strong joinability, 69
substitution, 40
subterm, 40

superposition, 43

term, 39
term rewrite system, 41
terminating, 37
total, 37
transitive, 37
transitive closure, 37
transitive reduction, 37, 95

unfailing completion, 42
unification, 40

variable, 39

well-founded, 37
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Bernd Löchner (2007). “Things to Know when Implementing KBO”. In: Journal
of Automated Reasoning 36.4, pp. 289–310. issn: 0168-7433, 1573-0670. doi:
10.1007/s10817-006-9031-4. (Visited on 19/03/2019) (cit. on p. 110).

151

https://doi.org/10.1145/1629575.1629596
https://doi.org/https://doi.org/10.1016/B978-0-08-012975-4.50028-X
https://doi.org/https://doi.org/10.1016/B978-0-08-012975-4.50028-X
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-642-37651-1_10
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/s10817-006-9031-4


Bibliography
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