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Abstract

There is increasing interest in using real-world data, routinely collected data relating
to the health or healthcare delivery of patients, to generate evidence that has the
potential to alter clinical decision making. Such real-world evidence could help to fill
gaps in clinical knowledge, particularly for patients under-represented in clinical trials
and for changes in radiotherapy workflows which occur as technology and techniques
advance, often without clinical evidence to support the potential benefits. This thesis
investigates the potential of real-world data to improve outcomes for patients with lung
cancer through the analysis of routinely collected clinical and imaging data.

First, the radiomics literature was reviewed to assess whether radiomics had the po-
tential to personalise lung cancer treatment. The reviewed literature suffered from
significant limitations, and no single radiomics biomarker or methodological approach
was used widely, suggesting substantial barriers to clinical translation remain.

Next, the reliability of radiomic features was assessed across four feature extraction
platforms. It was found that choice of feature extraction platform, Imaging Biomarker
Standardisation Initiative (IBSI) compliance, parameter settings and platform version
affected feature reliability. This highlights the difficulty in trusting radiomics biomark-
ers, and the importance of using the latest version of an IBSI compliant software to
ensure reproducibility of radiomics, a key requirement for clinical translation.

The potential of real-world clinical data was then evaluated in the context of various
retrospective changes to practice. First, the introduction of Intensity-modulated ra-
diotherapy (IMRT) at The Christie NHS Foundation Trust was investigated, finding
that the proportion of patients treated with curative-intent radiotherapy had increased
and patient survival had improved following the introduction of IMRT. Second, the
impact of the COVID-19 pandemic on outcomes for patients with lung cancer was
evaluated, finding that patients who had a change to their radiotherapy or chemother-
apy treatment did not have significantly worse survival or relapse rates compared to
patients whose treatments were not changed; however, patients who had a change to
their radiotherapy did have increased odds of > grade 3 acute toxicity.

Finally, the potential of Bayesian methodology for assessing changes to clinical prac-
tice was investigated. A Bayesian analysis of a change to image-guided radiotherapy
protocol found a reduced hazard of death for patients who had residual set-up er-
rors towards the heart post-protocol change. This suggests the potential for Bayesian
methodology to evaluate prospective incremental changes to practice.

Together, these results demonstrate the potential real-world datasets have to monitor
and improve outcomes for patients with lung cancer.
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Chapter 1

Introduction

1.1 Radiotherapy

Soon after Rontgen’s discovery of x-rays in 1895 and Curie’s discovery of radium in
1898, methods were developed to use ionising radiation in the treatment of cancer [1].
Initially, x-rays were used to treat skin malignancies, while radium was inserted directly
into tumours in the first use of brachytherapy. A key breakthrough in using radiation
for cancer was discovered in 1939 by Henri Coutard, who found that treating patients
with lower doses over a longer period of time, rather than a high dose all at once,
decreased side effects while improving control of the cancer [2]. He noted there was
a fine line between the energy that would cure versus harm a patient. Technological
advances throughout the 20th century have led to sophisticated machinery capable of
delivering high energy x-ray beams to solid tumours, known as radiotherapy, while
progress in radiobiology has helped to increase knowledge of the effects of radiation

on tumours and healthy tissue [3].

Radiotherapy plays an essential role in the treatment of over 50% of patients with can-
cer |4, 5|. According to a report published by the Department of Health Cancer Policy
Team, out of all patients in the UK who are cured of their cancer, 40% will have had
radiotherapy as a part of their treatment and 16% will have been cured through radio-
therapy alone [6]. In North America, it is estimated that 29% of cancer survivors have

been treated with radiotherapy [7|. Radiotherapy works by using ionising radiation to
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1.1. RADIOTHERAPY 23

kill cancerous cells through DNA damage [8]. Radiation damage does not discriminate
between healthy and cancerous tissue, so great care must be taken to avoid healthy
tissue and organs near the tumour, so called 'organs at risk’ (OARs). Fractionation,
splitting the total radiotherapy dose into fractions and delivering these over multiple
days or weeks, allows maximum destruction of cancerous cells whilst minimising de-
struction to the surrounding tissue. This happens through DNA damage; healthy cells
are more able to repair from DNA damage than malignant cells, so over the course
of a treatment the irradiated healthy tissue has time to repair, while more malignant

cells are destroyed each time [9].

Radiotherapy begins with a tailored treatment plan. A radiotherapy planning scan,
usually a Computed Tomography (CT) scan, is taken in the position the patient would
be in for the radiotherapy treatment. The visible tumour is then manually delineated
by a radiation oncologist, along with nearby organs at risk. Positron Emission Tomog-
raphy (PET) and Magnetic Resonance Imaging (MRI) scans can give complementary
information to the delineating clinician on disease context and spread. The delineated
tumour is known as the Gross Tumour Volume (GTV). The GTV margins are then ex-
panded to create the Clinical Target Volume (CTV), which is based on the probability
of malignant cells being outside the GTV and hopes to incorporate areas containing
microscopic disease. The Planning Target Volume (PTV) expands the margins further
to take into account anatomical motion, uncertainties and margin errors to ensure the
prescribed dose is being delivered to the CTV [10]. Each contour is presented in Figure
1.1. In the case of tumours that are affected by motion from breathing, for example
lung tumours, 4D-CT scans are taken which take multiple 3D scans over the course of
a breathing cycle, allowing tumour motion to be incorporated into the radiotherapy
planning process [11]. The Internal Gross Tumour Volume (iGTV) compromises of
the GTV and the extent of its motion over the breathing cycle. This is contoured by
either combining the individual GTV contours on each image of the breathing cycle,
or contouring directly on the Maximum Intensity Projection (MIP) image, an image

created from the maximum intensity values from each image.

The radiotherapy delivery is optimised using beams from different angels to ensure

maximum dose is given to the target volume and minimum dose is received by the
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surrounding organs at risk. The radiotherapy beam is generated using a linear ac-
celerator (LINAC) and is shaped using a multileaf collimator (MLC) in the head of
the LINAC. The MLC consists of tungsten leaves that can move to block parts of the
beam to generate any beam shape desired [12]. Radiotherapy delivered in this way is

known as 3D conformal radiotherapy.

Figure 1.1: The GTV in red encloses the visible tumour, the CTV in green extends
the GTV to include microscopic spread of the tumour and the PTV in yellow ensures
the maximum dose is delivered to the CTV.

1.1.1 Intensity-modulated radiotherapy

A key advancement in the field of radiotherapy is the development of intensity-modulated
radiotherapy (IMRT). With this treatment a radiotherapy dose is prescribed to the
tumour and a maximum dose to surrounding organs is defined, then beam delivery
is optimised around these parameters (called inverse planning) by dynamically mov-
ing the MLC leaves during delivery to generate intensity-modulated fields allowing a
sharper dose fall-off and less dose to surrounding organs at risk [13, 14]. Volumetric
modulated arc radiotherapy (VMAT) is a newer form of IMRT where the machine
rotates around the patient in an arc shape and continuously changes the shape of
the beams to conform around the tumour from all directions, significantly decreasing
treatment time. IMRT techniques allow higher radiation doses to be delivered to the
tumour while sparing organs at risk to give a greater chance of treatment response

with minimal toxicity.

1.1.2 Image-guided radiotherapy

Imaging machines can be integrated into LINACs to allow patients to be scanned

before treatment. This is called image-guided radiotherapy (IGRT) and has become
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standard of care in the UK [15|. Immediately prior to treatment, a cone beam CT
(CBCT) scan is taken and the tumour position in the image is matched to the planning
CT scan [16]. CBCT scans use diverging x-rays to provide a volumetric image of
the patient’s tumour, using a lower radiation dose than a traditional CT scan. 4D
CBCT scans acquire respiratory motion data during the imaging process, allowing
tumour motion to be taken into account. The CBCT or 4D CBCT image is then
aligned with the planning CT scan, whether 3D or 4D, and the difference in the
patient’s position determined. If the patient’s position has moved significantly from
the planning position, the distance between them termed a set-up error, the treatment
couch can be adjusted to ensure the radiotherapy beams are reaching the tumour.
If large anatomical changes are detected, reactive adaptive re-planning is required to
ensure the tumour is receiving the correct dose. IGRT reduces radiation damage to
healthy tissue caused by set-up errors, and ensures, as much as possible, the full dose

is actually being delivered to the PTV as planned.

1.1.3 Changes to radiotherapy workflows

IMRT and IGRT are examples of advances in radiotherapy that were implemented
without evidence of clinical benefit from Randomised Control Trials (RCTs). Changes
to radiotherapy workflows happen often as technology and techniques advance, often
without formal evaluation as there is an assumed benefit to technological advance-
ments based on biological or physical characteristics. This in itself makes it difficult
to evaluate technological changes in a RCT as it would be unethical to randomise pa-
tients to a potentially lesser treatment when there is biological or dosimetric evidence
suggesting the newer technique is superior [17]. For example, IGRT was implemented
without RCT evidence as it is difficult to argue that there is a clinical equipoise
between patients who are imaged before treatment to ensure the tumour is in the
planning position, and patients who are not imaged. In the case of IMRT, dosimetric
studies revealed it can achieve better dose conformality [18, 19|, so it was implemented
with an assumed clinical benefit rather than RCT evidence. Furthermore, RCTs are
time consuming; it takes years to develop, recruit and follow-up patients to finally
determine any benefit of technical changes and during that time newer advancements

may be available making the original reason for the trial obsolete. These complexities
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in evaluating technical changes to radiotherapy practice mean there is a distinct lack

of evidence on the impact of such changes on patient outcomes [20].

1.2 Lung cancer

Lung cancer is the leading cause of cancer deaths worldwide, accounting for 18% of
all cancer deaths [21]. Over half of patients die within one year of diagnosis and the
5-year survival is only 8% for men and 12% for women [22]. There had been little
improvement in survival for patients with lung cancer since the 1970s [22]; however,
recent advances in immunotherapy for patients without actionable mutations and ty-
rosine kinase inhibitors for patients with actionable mutations have led to improved
survival rates [23-25|. Many patients are diagnosed with advanced disease which is
more difficult to treat [26]. This is in part due to the symptoms of lung cancer gen-
erally presenting when the disease is in the later stages and even when symptoms
present earlier, people delay seeing their GP as symptoms are non-specific, such as
coughing and chest pain, or smoking-related side effects [27|. Lung cancer screening
initiatives have been rolled out in the UK for those at high risk of the disease, after
pilot initiatives led to many lung cancers being diagnosed at early stages [28]. There
is a high association between lung cancer mortality rates and social deprivation in the
UK [29], likely due to the high prevalence of smoking in deprived areas [30], unhealthy

lifestyles and a lack of symptom awareness.

There are two types of lung cancer, non-small cell lung cancer (NSCLC) and small
cell lung cancer (SCLC). 85% of all lung cancer cases present as NSCLC. There are
three main types of NSCLC: adenocarcinoma, squamous cell carcinoma and large cell
carcinoma. Early stage NSCLC can be treated with surgery or, if surgery is deemed
too dangerous for the patient, radical radiotherapy. Stereotactic ablative radiotherapy
(SABR) is hypofractionated, larger doses given per fraction, and prescribed for small
tumours (up to 5 cm) that are localised and can be precisely targeted by the radiation
whilst avoiding damage to the surrounding tissue. It can achieve a local control rate
similar to that of surgery [31]. If the patient is not eligible for SABR or surgery, for
example if the patient is frail and suffers from many comorbidities, but the disease

is early stage, conventional radiotherapy can be prescribed (i.e. 30-33 Gy in 60-66
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fractions), or hypofractionated radiotherapy (i.e. 60 Gy in 15 fractions). Most cases
of NSCLC present at a locally advanced stage and treatment depends on various cri-
teria including comorbidities, tumour volume, dose to healthy tissue and the fitness
of the patient. Patient fitness is characterised by the performance status, such as
the Eastern Cooperative Oncology Group (ECOG) performance status, which scores
a patient from 0 to 5, 0 meaning the patient is fully active and needs no help in daily
activities, 1 meaning the patient cannot perform physically strenuous activities but is
still able to carry out light work, to 5 meaning the patient is dead. The fittest patients
with a performance score of 0/1 are prescribed the gold standard treatment of concur-
rent chemo-radiotherapy if their cancer is inoperable, as they are deemed fit enough
to withstand the toxicities associated with receiving radiotherapy and chemotherapy
concurrently [32]. This is then followed by consolidation immunotherapy if they meet
the response criteria. Lung and kidney function are assessed before treatment to en-
sure the patient can tolerate the toxicities [33]. If a patient’s tumour is particularly
large or they are not fit enough to withstand a concurrent regimen, sequential chemo-
radiotherapy is preferred. If the patient suffers from poor renal function or is too
ill for chemotherapy, radiotherapy alone is prescribed. For metastatic NSCLC, ra-
diotherapy, chemotherapy, immunotherapy and targeted agents can be prescribed for

palliative treatment.

Small cell lung cancer is the rarer, more aggressive form of lung cancer that typically
presents in the advanced stages and has a median survival of 7 months with treatment
[34]. Incidence of SCLC has decreased over the years, likely due to an increase in
smoking cessation, although in developing countries incidence is the same or increas-
ing [35]. SCLC has historically been classified as either limited or extensive in stage,
where extensive means the cancer has spread outside the thorax. Standard of care
for limited stage SCLC is concurrent chemo-radiotherapy if the patient is fit, if not
then sequential chemo-radiotherapy or radiotherapy alone. For extensive stage SCLC,
chemotherapy and immunotherapy is considered for fit patients, otherwise chemother-
apy alone. Chemotherapy is prescribed for limited as well as extensive stage SCLC

due to the high risk of micro-metastasis. SCLC responds well to initial treatment of
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chemo-radiotherapy; however, it has a very high relapse risk and risk of brain metas-
tasis. Prophylactic cranial irradiation (PCI) is given as standard of care for patients
with all stages of SCLC as it reduces risk of brain metastasis and relapse [36]. How-
ever, recent evidence is challenging the use of PCI, particularly in the extensive stage

setting [37].

1.3 Real-world data

Patients with lung cancer tend to be old, frail, and have a high comorbidity burden.
Such patients are typically under-represented in RCTs [38, 39|. It is vital that clear
evidence is generated for these patients to ensure they are getting the best treat-

ments.

Real-world data are defined by the Food and Drug Administration (FDA) as routinely
collected data relating to the health or healthcare delivery of patients from various
sources [40]. Real-world data have the potential to provide evidence for patients typi-
cally excluded or under-represented in RCTs, as data are captured for every patient.
Real-world data are often though of as the clinical data captured in patient’s elec-
tronic health records, but also includes the large volumes of imaging data patients

accrue during their cancer care.

1.3.1 Real-world clinical data

Clinical data are captured in patient’s Electronic Health Records (EHRs), documenting
their healthcare over their lifetime. Data are captured on patient demographics, diag-
noses, treatments and side effects, laboratory tests, imaging reports, hospital episodes,
outcomes and more. EHRs are used worldwide to document and store healthcare data
with the aim of supporting continuity of care [41]. In the UK, the implementation
of EHRs has been driven by governmental initiatives and financial investments in the
last two decades [42], and the current NHS Long Term Plan aims for all hospitals to
become fully digitised so clinicians can interact with care records where ever they are
[43]. There is increasing interest in using the large, rich datasets derived from EHR

in research, for example to determine incidence/prevalence of a disease, find potential
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risk factors or improve the quality of services [44]. As data are captured for every
patient, there is the potential to develop representative clinical models that describe
and benefit the entire population. Real-world evidence generated from real-world data

can complement evidence from RCTs.

1.3.2 Real-world imaging data

Imaging is used routinely in lung cancer management, helping to determine diagnosis,
prognosis and predict the optimal treatment for each patient. Imaging allows visual-
isation of morphological characteristics of the tumour that can qualitatively help to
determine the stage of the cancer, by identifying and quantifying the extent to which
the tumour has spread to lymph nodes or other organs. Imaging is non-invasive and
is performed throughout the treatment pathway to monitor response to treatment.
Imaging biomarkers, biological features detected from medical images, can help in-
form treatment decisions and are indispensable in oncology [45]. For example, TNM
Classification of Malignant Tumours (TNM) staging is used worldwide to classify solid
tumours by taking into account tumour size, invasion of nearby tissue, involved lymph
nodes and presence of metastasis. These factors can all be determined through various
imaging techniques and in combination become a prognostic factor that helps the clin-
ician to tailor a treatment specific to the patient. Finding imaging biomarkers beyond
TNM that help stratify patient treatment options is crucial in this era of personalised
medicine, particularly in lung cancer where images are taken routinely throughout the
care pathway and improvements in survival have been limited to small patient groups

where immunotherapy has been shown to be beneficial.

Radiomics

Imaging biomarkers have been used in health care for decades, however over the last
10 years or so the concept and work flow of extracting image-based features from
medical images has blossomed. Radiomics is the extraction of numerous quantita-
tive features from medical images to quantify tumour phenotypes [46]. In contrast to
imaging biomarker studies where features of interest are chosen a priori, radiomics is a
data-driven approach where statistical methods are used to find the features most cor-

related to the measure of interest. These image-based features can be combined with
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patient characteristics and other biomarkers, such as genomics and pathology, to create
individualised predictive models of outcome. The rationale behind creating a radio-
graphic tumour phenotype is that medical images harbour information on underlying
pathology which is not revealed by qualitative assessment [47]. If no particular imag-
ing biomarker is of interest to study, then radiomics can be a hypothesis-generating

approach to finding features that are correlated to a measure of interest.

Studies involving radiomics have increased exponentially in the last few years. The
workflow for radiomics analyses is described in detail in Chapter 2 and shown in
Figure 1.2. Briefly, images of tumours are first acquired and reconstructed. The
visible tumour is then contoured and pre-processing steps can be performed on the
image such as discretisation, binning voxel intensities to reduce the total number of
intensity values in the image, or filtering. Features are then extracted; this can include
thousands of features describing the tumour’s shape, texture and intensity. The final
steps involve data analysis and statistical modelling techniques to correlate the features
to clinical endpoints such as survival or treatment response, or biological endpoints

such as genetic mutational status or histology.

Discretization
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Filters

Butterworth smoothing

Laplacian of Gaussian

Figure 1.2: Visualisation of the steps in the radiomics workflow. First, images are
acquired and reconstructed. The region of interest is then segmented, from which
features will be extracted. Next, pre-processing steps are performed to modify the
images before feature extraction. Shape, first order (or histogram) and texture
features are then extracted from the region of interest. Finally, data analysis steps
attempt to find correlations between features and the specified outcome.



1.3. REAL-WORLD DATA 31

Many limitations are inherent at each step of the radiomics workflow, discussed in
detail in Chapters 2 and 3. Key issues include the lack of standardisation with re-
gards to image acquisition, image pre-processing and feature extraction which has been
found to affect feature repeatability and reproducibility [48]. For example, features
extracted from images of the same phantom acquired on different CT scanners are not
always reproducible [49, 50]; in one study the variability between feature values was
comparable to the inter-patient variability [50]. The Imaging Biomarker Standardis-
ation Initiative (IBSI) have done extensive work to standardise the radiomics feature
extraction process by developing a guideline for feature nomenclature and definitions,
and publishing a digital phantom and benchmark datasets so software developers can
benchmark their feature values to be IBSI compliant, promoting reproducibility [51,

52].

There are vast amounts of imaging data available in the field of oncology, and there
is potential to harness the information within using radiomics. Individualised statis-
tical models created using real-world imaging and clinical data could help to identify
potential risk factors, and ultimately lead to changes being made that may improve

outcomes for patients with cancer.

1.3.3 Why are we interested in real-world data?

RCTs are the gold standard in evidence-based medicine for evaluating the effective-
ness of treatments. Their design ensures results are not affected by confounding,
unmeasured variables that influence both cause and effect, as patients are randomised
between treatment options on entry into the trial. This allows a reliable cause and

effect relationship between the intervention and outcome to be established.

While RCTs are a powerful tool for providing evidence of treatment effectiveness,
there are cases where RCT evidence does not exist. For example, RCT evidence
generally does not exist in cases where there is a lack of clinical equipoise, i.e. genuine
uncertainty as to whether one intervention is better than another. As discussed in
Section 1.1.3, technical changes to radiotherapy treatments are often implemented
without RCT evidence, as technological advances are assumed to lead to superior

treatments. While there may be dosimetric or mathematical evidence suggesting the
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advancement is superior, ensuring patient outcomes are also improving, or at least not
getting worse due to a perhaps unforeseen complication, is also important. Real-world
data are vast, and the large, rich datasets can be used to investigate such clinical
questions and generate real-world evidence to fill the evidence-gap when RCT data do
not exist. Real-world data, therefore, have the potential to ensure new advances are

actually effective, and are leading to better outcomes for patients [53].

RCTs are highly selective and tend to exclude, or at least under-represent, patients
who are old, frail and have multiple comorbidities [38, 39]. One study found that 60%
of RCT study eligibility criteria relate to comorbidity or performance status [54]. Tt
is therefore questionable whether results from RCTs have external validity, i.e. that
results are generalizable to the rest of the patient population [55]. A key advantage
of real-world data is that data exist for all patients, including those who are old,
frail and have multiple comorbidities. Real-world datasets can be used to check for
real-world effectiveness of interventions, particularly for patients under-represented in
RCTs. Furthermore, RCTs tend to have short follow-up periods, so long-term effects
of interventions may not be captured. As real-world data derived from EHRs are
longitudinal in nature, analysis of long-term follow-up data could reveal rare adverse
events that otherwise may not be captured. This of course depends on high quality,

long-term data being collected, which can be difficult in practice.

Many treatment decisions made in radiation oncology are done so without RCT ev-
idence to back them [56]. Real-world evidence generated from real-world data could

help to provide evidence where RCT evidence does not, and will not, exist.

1.3.4 The challenges of real-world data

The main challenge of using real-world data to generate evidence is the fact data are
collected for clinical use and not necessarily for research or analytical purposes. This
means the quality of the data is less standardised and potentially inferior to that
from RCTs, where data entry is well defined and controlled. Real-world data are of-
ten incomplete, inaccurate, inconsistent and care records can be dis-jointed making it
difficult to merge databases from different sources. Laboratory and imaging results

may not be comparable across patients due to different protocols and techniques used.
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Retrospective analysis of real-world data suffer with these issues the most, as prospec-
tive data collection can mitigate these issues by clearly defining how data should be

collected.

Developing evidence of both treatment benefit and risk in the real-world setting re-
quires high quality data on outcomes such as survival, local and distant relapse, as
well as long term toxicity and quality of life metrics, which are not always available.
The implementation of electronic Patient-Reported Outcome Measures (ePROMs) for
patients with cancer treated at the Christie NHS Foundation Trust enables collection
of data on patient symptoms and quality of life, an important aspect of treatments
not captured in most EHRs [57|. As well as capturing high quality data, data must be
captured in a structured way so that they can be easily analysed. Unstructured data
are captured as free-text in clinical notes and reports, or imaging data for example.
It is estimated that 80% of healthcare data are unstructured [58] and are therefore
unusable in analyses without manual curation or the development of tools to be able

to convert the data to be amenable for computer processing.

Missing data are a further issue associated with real-world data, and when missing data
are informative, i.e. there is a reason the data are missing and they are not missing
at random, this can introduce bias into an analysis. For example, missing data can
be informative if a particular test is only done on patients with severe disease. If you
included the data from this particular test in your analysis, your results would be
biased as only patients with severe disease would have data for that test. Methods to
overcome missing data include only using complete cases, imputing missing data, and
carrying observations forward in the case of longitudinal data [59]. When missing data
are informative, only using complete cases can introduce bias and reduce statistical

power by reducing the size of the available dataset.

Real-world data are observational by nature, i.e. non-interventional, and as such real-
world evidence can suffer from different types of bias. Selection bias occurs when
selection of participants into a study is not representative of the wider population of
interest. This is a particular issue for retrospective observational studies as patient

inclusion into an analysis is heavily dependent on clinical decisions made in practice
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which could lead to a biased result. For example, a study including patients with
lung cancer who received immunotherapy would have to deal the bias that may arise
from the fact that only patients who responded well to initial chemo-radiotherapy
and had a good performance status would have been offered adjuvant immunotherapy;,
and therefore any results from that study would not be applicable to patients who
did not respond to chemo-radiotherapy or had poor PS. Selection bias compromises
external validity. Confounding occurs when there are systematic differences between
baseline variables of the comparison groups that affect outcome. RCTs mitigate this
bias by randomising patients on entry to the study, but observational data do not have
this advantage and as such choice of a particular treatment or intervention could be
correlated to the outcome of interest. For example, comparing the survival of patients
with lung cancer who received concurrent versus sequential chemo-radiotherapy would
be confounded by the fact that concurrent chemo-radiotherapy is only offered to the
fittest patients. The concurrent group would therefore be expected to live longer in
any case due to better underlying health, rather than purely due to the concurrent
treatment. Methods to mitigate confounding include adjusting for known confounders
in multivariable analyses or using propensity score matching [60]. However, there is
always the limitation that unknown confounders could be influencing the results and
compromising internal validity. It is therefore important to include multidisciplinary
teams when designing and analysing an observational study with real-world data to
ensure all confounders are being taken into account and there is in-depth knowledge

of how treatment decisions are made.

1.3.5 The potential of real-world data

RCTs and real-world evidence are not mutually exclusive. The randomisation from
RCTs is vital to ensure validity of results; however, studies using real-world data can
provide complimentary evidence. Moreover, randomised trials can be done using real-
world data to generate real-world evidence in what is known as a pragmatic trial.
Pragmatic trials use randomisation in a real-world setting to evaluate interventions,
as opposed to RCTs which use optimal settings [61]. They allow the effectiveness of

treatments to be tested in the real-world population. The importance and potential of
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real-world EHR data was highlighted during the COVID-19 pandemic. The RECOV-
ERY trial, a pragmatic trial, found the first effective treatment against COVID-19, an
inexpensive steroid called dexamethasone which reduced deaths by up to a third, sav-
ing countless lives [62]. It had a simple design with minimal data entry requirements,
making it different to standard RCTs, which was necessary at the time to ensure min-
imal burden to an already overworked and understaffed workforce. Staff were only
required to submit essential information, and then routinely collected data available
in EHRs were linked to the trial data to complete the database. This allowed rapid
and reliable results to be discovered. The RECOVERY trial highlights the potential
real-world data have to generate real-world evidence in pragmatic trials and allow the

discovery of safe, effective treatments that will improve the lives of patients.

The potential of real-world data is being recognised. In 2022, the Department of Health
and Social Care commissioned an independent review into improving the safety and
security of healthcare data used in research, and how these data can be harnessed to
improve the lives of patients [63]. The findings from the review, named the Goldacre
report, have shaped the Health and Social Care Data Strategy published in June 2022,
'Data saves lives: reshaping health and social care with data’ [64], which describes
a vision and a roadmap to make better use of NHS data to save lives. The NHS
long term plan also sets out an aim to drive digital transformation within the NHS,
including making clinical data available for research and ensuring clinical records are
all digitised [43]. The National Institute for Health and Care Excellence (NICE)
have ambitions to include real-world data in the development of their evidence-based

guidelines [65].

1.4 Learning Healthcare Systems

Real-world data have the potential to fill current gaps in clinical knowledge, particu-
larly in the case of technical changes to radiotherapy workflows. A Learning Healthcare
System (LHS) is a potential environment within which technical changes to practice
could be evaluated [66]. In the LHS concept, routine, real-world data collated in pa-

tient’s EHRs are analysed to monitor outcomes and identify areas for improvement.
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Changes to practice are implemented and learning cycles monitor the changes in or-
der to improve healthcare delivery [67|. The learning cycle is pictured in Figure 1.3.
Embedding evidence generation and learning cycles into clinical practice could allow
accelerated clinical translation of findings, as well as generate evidence in cases where
traditional trials are not practical or possible. This iterative approach to improving

healthcare delivery is also known as rapid learning.

Research Evidence
and Best Practices

Information-rich
patient-focused
data
Evaluation of
outcomes

Data aggregation,
evidence
generation

QI and transformation
of subsequent care
delivery

Patient-Centered Rapid Learning Health System

Figure 1.3: The Learning Healthcare System [68].

1.4.1 Analyses within a Learning Healthcare System

A LHS encompasses several steps, and each step requires a different analytical ap-
proach. The first step in a LHS is to analyse data to generate clinical insight or
evidence that answers a clinical question, shown as the Research Evidence and Best
Practices in Figure 1.3. This step can include evidence generated from observational
clinical and imaging data, or large scale clinical audits for example. Hypothesis gen-

erating analyses, such as large scale radiomics studies, can help identify potential



1.4. LEARNING HEALTHCARE SYSTEMS 37

biomarkers or variables that can be taken forward and tested in larger validation stud-
ies, or prospectively in a LHS. Such retrospective research evidence plays a key part in
a LHS by generating evidence that, if convincing enough, could subsequently influence
clinical practice. Examples of changes to radiotherapy workflows that might come
from retrospective analyses include reducing radiotherapy margins or an OAR dose

limit.

Once a change to practice has been decided on, implementation within a LHS ensures
rapid feedback on the impact of the change on patient outcomes as more patients
are treated. As data would generally have been collected as a part of routine care in
patient’s EHRs, this does not impose extra time or effort for the healthcare provider.
Outcomes of interest could include treatment-related side effects, patient reported
outcomes, quality of life metrics or increased costs. The real-world evidence generated
from the results could influence the next learning cycle, i.e. make further adjustments
to practice in light of the results, or influence guidelines for other centres to implement

the change if it proves to be successful.

Analysing patient’s data prospectively as soon as outcomes are available allows the
investigator to rapidly find out if the changes are beneficial or otherwise. A vital
part of the LHS is the experimental methodology used to analyse the data to evaluate
the impact of the change to practice. The real-world evidence generated needs to
be of high quality if it is to influence guidelines and ensure patients are receiving
the best quality of care. Experimental or quasi-experimental designs can be used
for rapid learning to evaluate the impact of changes to practice. An experimental
design includes point-of-care randomisation, ensuring high internal validity as with a
RCT. Since the intervention is being tested on real-world patients, the experimental
design also has improved external validity compared to a RCT. Quasi-experimental
designs do not randomise and will therefore suffer from lower internal validity due to
unknown confounding, but will have high external validity due to reduced selection
bias [69]. Both methods attempt to establish a cause-and-effect relationship between

the intervention or change to practice, and the outcomes of interest.

A non-randomised quasi-experimental design may be easier to implement clinically in
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radiotherapy, considering the lack of clinical equipoise means technical changes tend
to be implemented for all patients, rather than randomising patients between proto-
cols. A recent review of the LHS /rapid learning literature in radiation oncology found
that out of 16 studies, 15 used a quasi-experimental design as opposed to randomis-
ing patients [70], 7 of which used a pre/post design i.e. comparing the outcomes of
patients before and after a change to practice without using a control group. Such
designs do not account for secular trends and may suffer from confounding as patient
cohorts may be systematically different before and after the intervention [71]|. This
can be mitigated against with multivariable analyses adjusting for known confounders,
although only one study in the review did this [70]. Moreover, no studies adjusted for
multiple comparisons when performing multiple significance tests on patient outcomes
or variable distributions [70]. The review concludes that there is little consensus as to
the best experimental methods to evaluate changes to practice using real-world data
in a LHS [70]. There is, therefore, an unmet need to develop statistical frameworks
that help investigators understand, as easily and quickly as possible, whether a change

to practice has impacted clinical outcomes or not.

1.5 Aims

Real-world data offer an opportunity to improve outcomes for patients with lung can-
cer. In particular, real-world data could help to provide evidence that changes made
to radiotherapy practice are beneficial, or at the least not detrimental. Real-world
clinical and imaging data can help to achieve this by providing large, representative
and inclusive datasets that can be analysed to find relationships between variables of
interest and outcomes. Retrospective studies done on real-world datasets form part of
the LHS concept by generating insight which can inform changes to practice, ensuring

patients are receiving the best standard of care.

This thesis is presented in alternative format and includes numerous individual studies
which together investigate different aspects of a LHS using concrete case studies with
retrospective, real-world data. First, clinical insight is generated from retrospective
analysis of both imaging and clinical real-world data. This is followed by investigating

the potential of using real-world data to assess the impact of changes to practice. The
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overall aims of this thesis are to:

1. Investigate the potential of routine, real-world radiomics imaging biomarkers
to generate clinical insight and improve patient outcomes through supported

decision making.

2. Develop approaches for using real-world data to assess whether changes to clinical

practice affect patient outcomes.

The thesis starts with a thorough review in Chapter 2, investigating whether radiomics,
using routinely collected imaging data, has the potential to personalise lung cancer
treatment and improve clinical outcomes, addressing aim 1. Reported methodologi-
cal concerns with CT-based NSCLC radiomics are summarised along with potential
solutions. The published literature that use radiomics to predict patient outcomes
or aspects of tumour biology is then critically appraised with respect to the method-
ological concerns identified in this review. Different scoring systems that appraise
radiomics and prediction modelling studies are applied to each study and compared
to each other. This work has been published in Lung Cancer [72| and is reproduced

here, subject to formatting for consistency throughout the thesis.

The results from Chapter 2 led to the work in Chapter 3, having identified a gap in
the literature. Chapter 3 addresses aim 1 by investigating whether choice of radiomic
feature extraction software influences the statistical reliability of features and the abil-
ity to predict clinical outcome. Four software platforms are compared across three
clinical datasets, and the impact of IBSI compliance, feature calculation settings and
software version are investigated. This work has been published in European Radiol-
ogy [73] and is reproduced here, subject to formatting for consistency throughout the

thesis.

Chapter 4 addresses aim 2 by using routinely collected data to evaluate whether the
introduction of IMRT at The Christie NHS Foundation Trust had an effect on the
proportion of patients treated with curative-intent radiotherapy and whether patient
survival was affected. This work has been published in Frontiers in Oncology [74] and

is reproduced here, subject to formatting for consistency throughout the thesis.
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Chapter 5 also addresses aim 2, by analysing real-world data collected prospectively for
Lung Radiotherapy during the COVID-19 Pandemic (COVID-RT Lung) to assess the
impact of changes to treatments for patients with lung cancer during the first wave of
the COVID-19 pandemic. This work has been published in Clinical Oncology [75] and
is reproduced here, subject to formatting for consistency throughout the thesis. This
paper is a follow-up paper to one published describing the changes made to treatments

of patients enrolled in COVID-RT Lung [76] which is included in the Appendix.

Chapters 6 and 7 both address aim 2, by assessing the potential benefits of using
Bayesian methodology to evaluate changes to practice with real-world data. Chapter 6
takes the form of a teaching article, explaining the differences between frequentist and
Bayesian statistical methodologies using a simulated dataset based on the dataset
used in Chapter 7. This work has been published in the International Journal of
Radiation Oncology-Biology-Physics [77] and is reproduced here, subject to formatting
for consistency throughout the thesis. A Letter to the Editor in response to this
paper |78] and our reply [79] is included in the Appendix. Chapter 7 then uses the
Bayesian methodology on a real-world dataset to investigate whether a change in
IGRT patient set-up protocol at The Christie NHS Foundation Trust reduced the risk
of death associated with having residual set-up errors towards the heart. This work
has been published in Radiotherapy and Oncology [80] and is reproduced here, subject

to formatting for consistency throughout the thesis.
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Abstract

Radiomics has become a popular image analysis method in the last few years. Its
key hypothesis is that medical images harbor biological, prognostic and predictive in-
formation that is not revealed upon visual inspection. In contrast to previous work
with a priori defined imaging biomarkers, radiomics instead calculates image features
at scale and uses statistical methods to identify those most strongly associated to
outcome. This builds on years of research into computer aided diagnosis and pattern
recognition. While the potential of radiomics to aid personalized medicine is widely
recognized, several technical limitations exist which hinder biomarker translation. As-
pects of the radiomic workflow lack repeatability or reproducibility under particular
circumstances, which is a key requirement for the translation of imaging biomark-
ers into clinical practice. One of the most commonly studied uses of radiomics is
for personalized medicine applications in Non-Small Cell Lung Cancer (NSCLC). In
this review, we summarize reported methodological limitations in CT based radiomic
analyses together with suggested solutions. We then evaluate the current NSCLC
radiomics literature to assess the risk associated with accepting the published conclu-
sions with respect to these limitations. We review different complementary scoring
systems and initiatives that can be used to critically appraise data from radiomics
studies. Wider awareness should improve the quality of ongoing and future radiomics
studies and advance their potential as clinically relevant biomarkers for personalized

medicine in patients with NSCLC.

2.1 Introduction

Lung cancer remains the leading cause of cancer-related mortality worldwide [81]. The
5 year survival for patients with non-small cell lung cancer (NSCLC), the most common
form of the disease, is 10-20% [22, 82|. Despite advances in treatment options in recent
years, survival rates have changed little |22, 83]. Given the patient variability and
tumor heterogeneity of this cancer, personalizing treatment is key to improving survival
beyond the current poor prognosis [84]. One requirement for successful delivery of
personalized medicine is the identification and validation of biomarkers that can predict

which patients will benefit from a given therapy. There is an unmet need for such
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biomarkers in lung cancer [85].

Medical imaging plays a key role in the diagnosis and treatment of lung cancer, making
the use of image-based biomarkers to guide clinical decision-making attractive. Over
the last several decades, a number of biomarkers derived from CT, PET and MRI that
measure tumor size, shape and texture, or quantify aspects of the tumor microenviron-
ment have been used in lung cancer studies for diagnosis, prediction, prognostication

and response monitoring [85-87].

There is currently substantial interest in using computer algorithms to extend this ap-
proach to extract tens to thousands of image ‘features’ in an analysis pipeline strategy
termed ‘radiomics’. Such methods test the hypothesis that medical images harbor data
that will provide biomarkers for personalized medicine, but that the optimum biomark-
ers are not readily determined a priori [88]. Imaging biomarker studies postulate that
medical images contain biological, prognostic and predictive information that is not
apparent when clinicians view scans [47]. In radiomics, this information is extracted
from digital images using computer algorithms to form ‘radiomic signatures’, a type of
quantitative imaging biomarker formed by combining the radiomics features that have
the strongest association to the measured outcome. The radiomics workflow consists
of a series of steps [89] summarized in Figure 2.1. Proponents of radiomics hypothesize
that these data-driven approaches will select the most statistically significant signature
that relates to an outcome measure of interest. This approach is extremely popular,
but to date the resultant imaging biomarkers have not been validated as useful tools

for personalized medicine [90].
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Figure 2.1: Visualization of the steps in the radiomics workflow. First, images are
acquired and reconstructed. The region of interest is then segmented, from which
features will be extracted. Next, pre-processing steps are performed to modify the
images before feature extraction. Shape, first order (or histogram) and texture
features are then extracted from the region of interest. Finally, data analysis steps
attempt to find correlations between features and the specified outcome.

CT is the most commonly used modality worldwide for diagnosis, treatment planning,
and follow-up in all stages of lung cancer, meaning that informative imaging biomarkers
discovered from these data could be translated rapidly into clinical practice. In this
review, we summarize the literature supporting use of C'T radiomic biomarkers to guide
decision-making in patients with NSCLC. We appraise the published reports of CT
radiomics biomarkers as predictive, prognostic or biologically informative tools and
review literature highlighting methodological limitations. Our aims are to evaluate
how robust the conclusions of these studies are and to assess how well the current
standardization and reporting tools inform readers of the potential limitations when

interpreting their results.

2.2 The potential of radiomics for personalized

decision-making in NSCLC

A review of the literature found 43 CT image based studies that evaluated the prog-

nostic or predictive role of radiomic signatures in patients with NSCLC (Table 2.1).
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Three of these studies, together with a further 21 we separately identified, evalu-
ated the role of radiomic signatures in appraising aspects of tumor biology including

genomic or pathologic biomarkers, signalling pathways, and disease classification in

NSCLC (Table 2.2).

In addition, 42 studies reported on radiomics methodological limitations, potential
problems, and possible solutions in CT based studies using data from NSCLC patients
or imaging phantoms. The frequency of publications, for all types of NSCLC radiomics
study, has markedly increased over the last six years (Figure 2.2). Our search strategies

are described in detail in supplementary materials.
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Figure 2.2: Frequency of CT NSCLC radiomics studies published from 2014 to
2019. Publications are categorized as those investigating radiomics methodological
concerns, those evaluating radiomic signatures as prognostic or predictive biomark-
ers of patient outcome, and those evaluating radiomic signatures as biomarkers of
tumor biology.



Table 2.1: Radiomics studies in NSCLC, categorized into sections based on their investigated endpoint. The Data column specifies the total
number of patients involved in the study, in brackets split by training and validation cohorts if applicable and specifying other cancer types of
cohorts if applicable. Note: Studies marked with * are validation studies and their RQS score components refer to methodology based on the

previous published data. This table has been simplified to clarify presentation — more details for each study are available in Supplementary
Table 2.6.

Reference Stage Data (training + valida- Radiomic features in final Result

tion) model

Overall survival

Aerts et al. 2014 1-3b 647 pCT Shape, first order and texture CI=0.65

(422 + 225)
Van Timmeren et al. 1-4 252 pCT and CBCT Shape, first order and texture CI=0.69, 0.61, 0.59 (pCT)
2017* (102 + 56 + 94) CI=0.66,0.63,0.59 (CBCT)
Grossman et al. 2017* 1-3 351 diagnostic CT Shape, first order and texture CI=0.60

(262 + 89)
Grossman et al. 2017 1-3 351 diagnostic CT Not specified CI=0.61

(262 + 89)
Yu et al. 2017 1 442 diagnostic CT First order and texture CI=0.64

(147 + 295)
Chaddad et al. 2017 1-3b 315 pCT Shape and texture Average AUC=0.70-0.76
Fave et al. 2017 3 107 4DCT end of exhale, Shape and texture CI=0.672

planning and CBCT
Li et al. 2017 1-2a 59 follow up CT Texture AUC=0.81
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Table 2.1 continued from previous page

Reference Stage Data (training + valida- Radiomic features in final Result
tion) model
Li et al. 2017 1-2a 92 4DCT Shape and first order AUC=0.728
Average-CT or 50% phase-
CT images were used for
analysis
Tang et al. 2018 1-3 290 staging CT Shape, first order and texture CI=0.72
(114 + 176)
Bianconi et al. 2018 1-3 203 pCT Shape and texture HR=1.06-1.48
De Jong et al. 2018* 4 195 diagnostic CT Shape, first order and texture CI=0.576
Lee et al. 2018 1-3 339 CT (type not defined, Shape, first order and texture CI=0.772
just pre-operative within 2
weeks before surgery)
He et al. 2018 1-3 186 CT Not specified AUC=0.9296
(298 after oversampling (223
+ 75)) type not defined
Starkov et al. 2018 1 116 pCT Texture High risk vs low risk me-
dian p-values=0.04-0.07
Yang et al. 2018 1-4 3711 CT First order and texture CI=0.702
(239 + 132)
Wang et al. 2019 3 70 pre-treatment and 97 Texture CI=0.743

post treatment CT from 118

patients

8

HHONVO ONNT NI MHIAHY SOINOIAVYH ¢ HALdVHO



Table 2.1 continued from previous page

Reference Stage Data (training + valida- Radiomic features in final Result
tion) model
Shi et al. 2019 3 11 CBCT from 23 patients First order HR=0.21
Van Timmeren et al. 1-4 337 pCT and 2154 CBCTs First order and texture CI=0.59, 0.54, 0.57
2019 from 337 patients
(141 + 94 + 61 + 41)
Huang et al. 2019 1-4 371 CT Shape, first order and texture CI=0.621, 0.649

Franceschini et al. 2019 1-2

Local or metastatic recurrence

Coroller et al. 2015 2-3
Mattonen et al. 2016 1
Huynh et al. 2016 1-2
Huynh et al. 2017 1-2a
Fave et al. 2017 3

Li et al. 2017 1-2a

(254 + 63 + 54)
102 4DCT (start of inspira-

tion)
(70 + 32)

182 pCT
(98 + 84)

45 follow-up CT
113 CT (free breathing)

112 free breathing CT and
AIP CT

107 4DCT end of exhale,
planning and CBCT

59 follow up CT

Shape and texture

First order and texture

First order and texture
First order and texture

Shape, first order and texture

Shape and texture

Texture

AUC=0.85

SOINOIAVY A0 TVILNHLOd HHI ¢°¢

CI=0.6

AUC=0.85
Median CI=0.67

AIP radiomics CI=0.667
FB radiomics CI=0.601

C1=0.632, 0.558 (DM,
LRR)

AUC=0.80, 0.80 (RFS,
LR-RFS)
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Table 2.1 continued from previous page

Reference Stage Data (training + valida- Radiomic features in final Result
tion) model
Li et al. 2017 1-2a 92 4DCT Shape AUC=0.747, 0.690 (RF'S,
Average-CT or 50% phase- LL-RFS)
CT images were used for
analysis
Dou et al. 2018 2-3 200 pCT Texture CI=0.65
(100 + 100)
Ferreira Junior et al. 1-4 68 CT Shape and texture AUC=0.75, 0.71
2018 (52 + 16) (lymph node metastasis,
DM)
Yang et al. 2018 1-3 159 CT Shape, first order and texture AUC=0.856
(106 + 53)
Zhong et al. 2018 1-2 492 CT First order and texture AUC=0.972
Lafata et al. 2019 1 70 CT Texture Maximum AUC=0.72,
0.83, 0.60 (recurrence, LR,
non-LR)
Akinci D’Antonoli et 1-2b 124 CT Shape, first order and texture AUC 0.731, 0.750 (LR,
al. 2019 DM)
He et al. 2019 Not speci- 717 CT First order and texture CI=0.734
fied (423 + 294)
Xu et al. 2019 3-4 132 CT Texture AUC=0.642
(106 + 26)

0¢
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Table 2.1 continued from previous page

Reference Stage Data (training + valida- Radiomic features in final Result

tion) model
Franceschini et al. 2019 1-2 102 4DCT (start of inspira- Shape, first order and texture AUC=0.73

tion)

(70 + 32)
Ferreira-Junior et al. 1-4 85 CT Shape, first order and texture AUC=0.92, 0.84 (DM,
2019 nodal metastasis)
Cong et al. 2019 la 649 venous phase CT Shape, first order and texture AUC=0.851

(455 + 194)

Treatment response, disease-free or progression-free survival

Coroller et al. 2016

Huang et al. 2016
Song et al. 2016

Coroller et al. 2017
Tunali et al. 2019

Franceschini et al. 2019

Lung toxicity
Moran et al. 2017

2-3

1-2
1-4

2-3

3b-4
1-2

127 pCT

282 CT (141 + 141)

152 CT
(80 + 72)

85 pCT

228 CT

102 4DCT (start of inspira-

tion)
(70 + 32)

14 diagnostic CT

Shape, first order and texture

First order and texture

Texture

Shape, first order and texture

Texture

Texture

First order and texture

Median AUC=0.65, 0.61
(GRD, pCR)

HR—2.09
HR= 2.35, 2.75

Median AUC=0.68, 0.71
(pCR, GRD)

AUC=0.804
AUC=0.88

AUC=0.689-0.750

SOINOIAVY A0 TVILNHLOd HHI ¢°¢

19



Table 2.1 continued from previous page

Reference Stage Data (training + valida- Radiomic features in final Result
tion) model
Krafft et al. 2018 Not speci- 192 50% 4DCT phase First order and texture Average AUC=0.68
fied
Staging
Yuan et al. 2018 1 327 CT First order and texture AUC=0.938
Yang et al. 2019 1-3 256 CT First order and texture AUC= 0.93

Abbreviations: AUC, area under the curve; CBCT, cone-beam CT; CI, concordance index; DFS, disease free survival, DM, distant metas-
tasis; GRD, gross residual disease; H&N, head and neck; HR, hazard ratio; LR, local relapse; LRR, local regional recurrence; LR-RF'S, loco-
regional recurrence-free survival; OS, overall survival; pCR, pathological complete response; pCT, radiotherapy planning CT scan; PFS,

progression free survival; RFS, recurrence free survival.
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Table 2.2: Radiomics studies in NSCLC with an aspect of biology as the endpoint. The column labeled ‘Data’ specifies the total number of
patients involved in the study, in brackets split by training and validation cohorts if applicable and specifying other cancer types of cohorts if
applicable. This table has been simplified to clarify presentation — more details for each study are available in Supplementary Table 2.7

Reference Stage Endpoint Data (training + Radiomic features in Result
validation) final model

Genomics

Aerts et al. 2016 Early stage EGFR 47 diagnostic CT Shape and texture AUC=0.74-0.91
and follow-up

Rios Velazquez et 1-4 EGFR, KRAS 705 diagnostic CT Shape, first order and AUC=0.69-0.80

al. 2017 (353 + 352) texture

Mei et al. 2018 Not speci- EGFR 296 CT Texture AUC=0.664

fied

Digumarthy et al. Not speci- EGFR 93 CT First order AUC=0.713

2019 fied

Jia et al. 2019 1-4 EGFR 504 CT Shape, first order and AUC=0.802
(345 + 158) texture

Li et al. 2019 1-4 EGFR sub- 312 CT Shape and first order AUC= 0.775-0.793

types (19Del and (236 + 76)
L858R)

Tu et al. 2019 1-4 EGFR 404 CT First order and texture AUC=0.775
(243 + 161)

Yang et al. 2019 Not speci- EGFR 467 CT Shape, first order and AUC=0.789

fied (306 + 161) texture
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Table 2.2 continued from previous page

Reference Stage Endpoint Data (training + Radiomic features in Result
validation) final model
Wang et al. 2019 1-2 EGFR, TP53 61 CT First order and texture AUC=0.604, 0.586
(41 + 20)
Wang et al. 2019 1-2 Tumor mutation 61 CT Texture AUC=0.606
burden (41 + 20)
Signaling pathways
Grossman et al. 1-3 Various 351 CT Shape, first order and AUC=0.62-0.72
2017 (262 + 89) texture
Bak et al. 2018 1-4 Various 57 CT First order and texture OR=0.08-23.94
Histopathology
Patil et al. 2016 Not speci- ADC, LCC, SCC, 317 pCT Shape, first order and 88% accuracy
fied NOS texture
Wu et al. 2016 1-4 ADC, SCC 350 pCT First order and texture AUC=0.72
(198 + 152)
Ferreira Junior et 1-4 ADC, SCC 68 CT Not specified AUC=0.81
al. 2018 (52 + 16)
Zhu et al. 2018 Not speci- ADC, SCC 129 CT First order and texture AUC=0.893
fied (81 + 48)
Digumarthy et al. Not speci- ADC, SCC 93 CT First order AUC=0.744
2019 fied
E et al. 2019 Not speci- ADC, SCC, 229 CT Shape, first order and AUC=0.657-0.875
fied SCLC texture

24
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Table 2.2 continued from previous page

Reference Stage Endpoint Data (training + Radiomic features in Result
validation) final model
Ferreira-Junior et 1-4 ADC, SCC 85 CT Shape, first order, texture AUC=0.88
al. 2019
Liu et al. 2019 Not speci- ADC, LCC, SCC, 349 CT Not specified AUC=0.86
fied NOS (278 + 71)
Zhou et al. 2018 1-4 Ki-67 110 CT Shape and texture AUC=0.61-0.77
Gu et al. 2019 Not speci- Ki-67 245 CT First order and texture AUC=0.776
fied
Song et al. 2017 1-3 Micropapillary 339 CT First order AUC=0.751
pattern
Chen et al. 2018 Not speci- Degree of differ- 487 CT First order and texture AUC=0.782
fied entiation (303 + 184)
She et al. 2018 Not speci- Invasive vs non- 402 CT Shape, first order and AUC=0.89
fied invasive adeno- (207 + 195) texture
carcinoma
Yang et al. 2019 Not speci- Invasive vs non- 192 CT First order and texture AUC=0.77
fied invasive adeno- (116 + 76)

carcinoma

Abbreviations: ADC, adenocarcinoma; AUC, area under the curve; CI, concordance index; EGFR, epidermal growth factor receptor; KRAS,

Kirsten rat sarcoma viral oncogene homolog; LCC, large cell carcinoma; NOS, not otherwise specified; OR, odds ratio; SCC, squamous cell

carcinoma.
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The initial studies labelled as ‘radiomics’ were published in 2014 and 2015. Aerts and
colleagues showed that a radiomic signature based on shape and texture metrics was
associated with overall survival, validating the signature in patients with NSCLC and
patients with head and neck cancers [91]. The study also found positive associations
between the radiomic signature and gene expression. Coroller and colleagues showed
that a different set of texture metrics were associated with the subsequent development
of distant metastases [92]. The hypothesized mechanism was that tumor heterogene-
ity, identified by the radiomics analyses, drives worse outcomes. Both studies were

performed using radiotherapy planning CT data.

Over the next four years (2015-2019), 41 CT studies were published that linked ra-
diomics to lung cancer patient outcome. In general, studies sought to evaluate whether
or not radiomic signatures could outperform existing methods for patient risk stratifi-
cation. 20 studies related radiomics to overall survival [91, 93-111], 18 to the likelihood
of local or metastatic recurrence [92, 104, 108-110, 112-124], 6 to response, disease-free
or progression-free survival [104, 125-129], and 2 to staging [130, 131]. Two further
studies focused on the association of radiomics signatures to lung toxicity [132, 133],

Four studies investigated multiple endpoints.

The majority of studies derived radiomics signatures in radiotherapy planning or di-
agnostic images acquired prior to therapy. Nearly all studies evaluated patients un-
dergoing treatment with cytotoxic chemo-radiotherapy. More recently, a number of
studies have evaluated the potential of radiomics to improve patient stratification for
targeted therapies and immunotherapy agents [111, 129, 134|. For example, Tang and
colleagues linked radiomic features to a tumor immune phenotype in patients with
stage I-IIT NSCLC, finding patients with heterogeneous tumors, which correlated with
low PD-L1 and high CD3 cell count, had better prognosis [111].

There are 24 CT studies evaluating how radiomic signatures of NSCLC relate to ge-
nomics [134-142], signalling pathways [105, 143] and histopathology [112, 119, 137,
144-154]. For example, Rios Velazquez and colleagues found distinct imaging pheno-
types for EGFR and KRAS mutations from CT images of patients with NSCLC [135].

Some of the studies that relate radiomics to patient outcome also relate their radiomic



2.3. METHODOLOGICAL LIMITATIONS 57
signature to genomics [91] or biological markers [99].

Collectively, these 64 studies present a positive view of the potential for radiomics
signatures to deliver personalized medicine. However, two important limitations are
readily apparent. Firstly, while nearly all studies report at least one positive asso-
ciation between CT radiomic signature and either outcome (OS, PFS, recurrence or
toxicity) or tumor biology (genomic or pathology biomarkers and signalling pathways),
the particular radiomic signature derived varies substantially between studies. Con-
sequently, few study signatures are directly comparable with one another, and so the
literature does not identify specific candidate radiomic signatures for further large

multicenter evaluation.

Secondly, it has become clear that studies can suffer from significant technical limita-
tions. Studies of these limitations have also increased over the last five years, although

at a slower pace than the patient outcome studies Figure 2.2.

2.3 Reported methodological limitations of CT based
radiomics studies

All biomarkers, including radiomic signatures, must undergo technical and biological
validation to become robust tools used to guide clinical decision-making. These vali-
dation steps take a biomarker from discovery to research assay where the biomarker
can be used with confidence to determine an outcome in a research setting (termed
‘crossing translational gap 1’). The regulatory approval process (through e.g. the FDA
or EMA) then takes the biomarker from research assay to clinically approved assay for

use in decision-making in patients (termed ’crossing translational gap 2’) [90].

To date, very few radiomics signatures have crossed either of these translational gaps.
The first radiology product with radiomics capabilities to receive such approvals was
QuantX for detection of breast abnormalities based on MRI, receiving FDA approval
in 2017 [155]. Soon afterwards, Feedback Medical received CE approval for TexRAD

Lung, a quantitative image texture analysis technology [156].
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In this section, we evaluate the methodological limitations preventing CT based ra-
diomics signatures from crossing these translational gaps. We review the potential
problems and proffered solutions identified in 42 studies of imaging phantoms or pa-
tients with NSCLC (summarized in Table 2.3 and expanded in Supplementary Ta-
ble 2.5).



Table 2.3: Potential problems at each step of the radiomics workflow along with possible solutions offered by the literature. Each workflow step
with potential problems and solutions identified by the literature is labelled with a letter A-H to reference in-text. Note: Modelling does not have
a letter associated with since there is no consensus on the best statistical modelling strategies.

Problem area

Potential problems

Potential solutions

Image acquisition

Image acquisition and

reconstruction

Image reconstruction

Segmentation

Different scanners and acquisition protocols affect
feature reproducibility [49, 50, 157-167]

Patient motion affects feature reproducibility [161,
168, 169|

Image resolution parameters (voxel size, slice
thickness) affect feature values [49, 157, 170-174],

model performance [175].

Image reconstruction algorithm and reconstruc-

tion parameters (kernel) affects features [173, 177,

178

Delineation variability [159, 179-183] affects fea-
tures and is time consuming [182, 183|. Results
from one disease site are not necessarily trans-
ferrable to another [184].

Image phantoms on different scanners to pro-
vide baseline [49], establish credibility of scanners
and protocols [50], catalogue reproducible features
[159, 166, model a correction algorithm [158]|, har-
monize data [160].

Set motion tolerances, reduce ROI boundaries
[161], use single phase from 4D images [168], find
robust features using 4DCT data [169].

Control resolution [49] parameters in prospective
studies, resample to common resolution and voxel
depth [170-172, 174], apply smoothing image fil-
ters [171], apply deep learning methods [176].

Pre-processing image correction [177] and harmo-

nization of acquisition techniques [173, 178|.

Expert ROI definition [179], multiple observers
[179, 180, 184], identification of stable features
with respect to delineation [159, 180, 181], au-
tomated segmentation [182, 183|, image filtering
[184]
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Table 2.3 continued from previous page

Problem area

Potential problems

Potential solutions

Pre-processing

Feature extraction

Feature correlation

Test re-test

Modelling clinical out-

come

Number of grey levels used to discretize histogram
and texture features affects feature values [172,
174, 185], as does bin width [170].

No studies found in the literature search.

Strong correlations between tumor volume and ra-
diomic features exist [174, 186-188|

Radiomic features may not be repeatable over
multiple measurements [189-191|, repeatable fea-
tures are not generalizable to other disease sites

[192].

Different modelling strategies affect model perfor-
mance [193-196|

Texture features can be normalized to reduce de-
pendency on the number of grey levels [174], num-
ber of grey levels used for discretization should
be recorded with feature formula. 128 grey levels
may be optimal for texture features, along with

thresholding [185]

Normalization of features to volume [174], bit
depth resampling [186], feature redesign [186],
more robust statistics to check added value of ra-

diomics signatures [187].

Test-retest data acquisition [189, 192], use of mul-
tiple 4D phases [189, 191], use of simulated retest
by image perturbation [190].

Sample sizes above 50 give better predictive per-
formance [194], as does normalizing features [193].

No consensus on best modelling strategies to use.

09
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2.3.1 Image acquisition

Many radiomics studies are retrospective evaluations of CT images, often with data
acquired at multiple different institutions and on different CT scanner vendor plat-
forms. Consequently, nearly all studies contend with variations in image acquisition

and reconstruction protocols.

Studies assessing the impact of different CT scanners and protocols on radiomic fea-
tures have shown some features have poor reproducibility [49, 50, 161, 165-167|. Per-
forming phantom studies on different scanners as a quality assurance step may ensure
a level of feature consistency [50]. Indeed, one study showed that using a controlled
protocol across different CT scanners reduced feature variability by over 50% com-
pared to using local protocols [49]. Other studies used post-extraction deep learning

[176] or correction factors [158| to reduce feature variability.

Restricting study data to one scanner make and model along with one set of acquisition
parameters, to reduce variability in image capture acquisition, is seldom feasible for a
multicentre research study. Therefore, many of these issues still remain when setting
up a well powered prospective clinical trial with radiomic signatures as exploratory

endpoints.

2.3.2 Image reconstruction

Retrospective data analyses are constrained by image reconstruction parameters deter-
mined by clinical department protocols, chosen to optimize image anatomical quality.
While variations in image reconstruction, slice thickness and in plane pixel dimensions
may have negligible effect for clinical interpretation, they can induce variability in
radiomic feature values, since many features correlate to these parameters [49, 170

174].

Resampling the image to an equal voxel size has reduced feature dependency on acqui-
sition in some studies [170, 172] but not others [49, 171]. Smoothing filters have also
been suggested as a method for reducing voxel size dependency [171], as has limiting
inclusion criteria to particular resolution ranges. For example, Lu et al. found that

features calculated from images with 1.25mm and 2.5mm thick slices were comparable
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to each other but that both differed from those calculated on 5mm slice thickness

images [173].

Reconstruction techniques also influence feature values with studies demonstrating dif-
ferences between features calculated on images reconstructed with soft or sharp kernels
[173, 178]. Potential solutions include the application of correction factors based on
the image noise power spectrum [177]. Solutions that balance feature robustness with
the need to make image inclusion criteria as permissive as possible are vital given the

small cohorts size issues that blight many studies.

2.3.3 Segmentation

The ROI definition for feature extraction is known to be a particularly sensitive step
in the radiomics pipeline [179-183|. Radiomics studies are popular in radiotherapy
given the ready availability of pre-defined ROIs on treatment planning scans, typically
using the clinically defined Gross Tumor Volume (GTV). The subjectivity of GTV
definition can depend on the operator, as expert delineations may generate features

with better predictive power than those from a non-specialist [179].

Frequently suggested solutions include the inclusion of multiple observers or the use
of semi-automated delineation tools [182, 183|. However, few studies have adopted
these solutions, most likely due to the difficulty of getting clinically qualified staff to
delineate ROIs. In studies not using radiotherapy planning CT scans, the ROIs must
be drawn specifically for the purpose of the radiomics analysis and will suffer from all

of the same issues discussed above.

2.3.4 Pre-processing

The preparation of images for feature extraction has a marked effect on feature value.
Reducing the number of image grey-levels (voxel depth re-binning) is a commonly used
method to supress image noise. However, studies have shown that radiomic features
are not comparable when computed with a differing intensity bin sizes [170, 172, 174].

This has led to the proposed use of standardized bin resolution |174].
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2.3.5 Feature extraction

Radiomics features span a range of calculation classes. Shape features contain in-
formation about the ROI morphology (such as volume and measures of sphericity).
First-order image intensity features assess properties of the intensity histogram of
voxels within the ROI (e.g. the mean intensity and other statistical moments of the
histogram). Texture features summarize different measures of the way in which voxel
intensities change across the ROI (e.g. voxel variation coarseness and homogeneity).
These features may be calculated on the original image or derived after various filters
have been applied that modify particular aspects of it, for example to enhance the

edges where image intensity changes [89].

Many different software platforms exist for performing the feature extraction step,
including free open-source software, commercial software, and software developed in-
house by individual institutions. The Image Biomarker Standardization Initiative
(IBSI) is an international collaboration between research groups with the aim of stan-
dardizing image biomarker extraction [51]. To date only one study has investigated
whether feature extraction software influences radiomic features from CT scans of pa-
tients with NSCLC [73], which shows, consistent with data from other cancer types

[197, 198], that this can have substantial impact on feature values.

2.3.6 Feature correlation

Since many tens to thousands of features are calculated from images in radiomics, it
is unsurprising that many features often correlate with one another. However, the
fact that features often correlate strongly with tumor volume and clinical factors 174,
186, 187| is not well appreciated. While it has been suggested that radiomic feature
calculations formulae should be modified to be account for tumor volume [174], it
is crucial that studies also include transparent and robust feature reduction steps to
account for other clinical prognostic and predictive factors. Robust feature reduction

is also crucial in limiting the risk of model overfitting.
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2.3.7 Test-retest

As highlighted by several studies, [189, 192] and by consensus statements on imaging
biomarkers [90], radiomics studies usually lack an assessment of the signatures’ single
centre repeatability or multicentre reproducibility. The use of test-retest datasets in
which multiple images of the same subjects or phantom have been acquired in quick
succession have been proposed as a means to assess repeatability [189, 192]. Alternative
options include the use of multiple 4D image phases [189] and the simulation of retest
data by image perturbation [190] where test-retest data are not available. Few radiomic

studies incorporate any of these approaches.

2.3.8 Modelling clinical outcome

Typically, studies derive between tens to a few thousand image features in develop-
ment datasets [45]. Dimensionality reduction to remove highly correlated and unstable
radiomic features is often employed before finding the most informative features for a
specific outcome, such as overall survival, treatment-related toxicities or cancer recur-
rence in a test dataset. Many different statistical options exist for deriving a model
based on radiomic features. The choice of model and statistical methods can influence

results [194-196].

Random forests have been found by some authors to give higher performance compared
to other methods for classification tasks using radiomics features [194, 196], with
Naive Bayes and Support Vector Machines also reported to perform well [194]. For
radiomic feature based time-to-event analyses, one study found cox regression with
gradient boost performed better than traditional cox regression (0.614 versus 0.660
concordance index) [195]. In terms of feature selection, there is no consensus on the
best method to use. Optimal performance of feature selection techniques depend
on the outcome of interest [194]. A contemporary non-radiomics study of classifier
performance in radiotherapy datasets found that random forest and elastic net logistic
regression performed best, but that classification accuracy depended on the specific
dataset [199]. To summarize, there is limited consensus as to the best machine learning
methods to employ for radiomics studies, and that the optimum choice may depend

on the specific dataset used in the study.
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Regardless of feature selection and modelling methodology, the resulting model (often
termed a ‘radiomic signature’) should be robustly validated in line with the TRIPOD
guidelines to ascertain if it is reproducible across different clinical datasets. This tests
if the observed signature relates to the desired outcome in a different patient group,

and aims to reduce the risk of overfitting in the training cohort [45].

Lastly, whatever approach is taken it is vital that investigators test whether incorpo-
rating radiomic features into a clinical model adds any benefit to well-known clinical
prognostic factors such as tumor stage and performance status. Radiomic features will
only have clinical utility if they provide more predictive information than is currently

available in the clinic.

2.4 Assessing the quality of radiomics studies in NSCLC

We evaluated the quality of the 43 radiomics studies we identified that report a rela-
tionship between a CT defined radiomic signature and clinical outcome in patients with
NSCLC (Supplementary Table 2.6) using both established assessment tools and the
results of our review of methodological limitations reported above. We then applied
the same tools to the 24 studies that evaluated the relationship between CT radiomic
signatures and genomic, protein expression, and pathology biomarkers in patients with
NSCLC (Supplementary Table 2.7). Some studies investigated multiple endpoints, so
in total we evaluated 75 outcomes. The four tools we use to interpret the technical

validation of these studies are:

1. The strength of the validation in each study, assessed by the Transparent Re-
porting of a multivariable prediction model for Individual Prognosis Or Diagnosis
(TRIPOD) guidelines [200]. TRIPOD provides an ordinal score (1-4, with 4 be-
ing the most robust). These guidelines are not specific to radiomics studies, but
provide insight into the level of validation in a study (details in Supplementary

Table 2.8).

2. The Radiomics Quality Score (RQS) developed by Lambin and colleagues [201].
RQS provides a checklist to evaluate aspects of study design, by assessing vari-

ous technical and statistical aspects of the radiomics pipeline. It consists of 16
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components, each of which award or penalize points, to provide the RQS. The
total number of points available range from -8 to 36 (the more points the better)

and are often presented as a percentage (Supplementary Table 2.9).

3. Qualitative assessment of radiomics methodological limitations resulting from

our literature review and labelled as A-H and listed in Table 2.3.

4. The reported evidence for added value of the radiomics signature to a clinical
model of outcome tested in the study (for the patient outcome studies only).

This provides an assessment of clinical utility.

2.5 Interpreting the quality of radiomics studies in

NSCLC

Studies linking CT radiomics signatures to clinical outcome and tumor biology were
found to have a high incidence of methodological limitations (summarized in Table 2.4).
Overall, half of studies had a TRIPOD type of either 1a or 1b (meaning the results
were not validated or validated within the same dataset). Only 13/75 studies had
TRIPOD type of 3 or 4 (meaning the results were validated in an external dataset).
The median RQS was 6 (range of -8 to 36). Details on RQS and TRIPOD are found
in supplementary material. We found that 70% of studies (52 of 75) had six or more
methodological limitations, and no study had less than three methodological limita-
tions. Finally, over half of studies relating radiomics to patient outcome did test the

added benefit of the radiomic signature to a clinical model.
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Table 2.4: Summary of the 4 assessment criteria - TRIPOD score, RQS, number of method-
ological limitations and testing the added value of radiomics to a clinical model. The added
value of radiomics to a clinical model was only tested for the patient outcome studies (N=50).

N=75

TRIPOD type (n (%))

la — no validation 10 (13)

1b — internal validation 27 (36)

2a — dataset randomly split for validation 18 (24)

2b — dataset non-randomly split for validation 7(9)

3 — external validation 10 (13)

4 — validation only 3(4)
RQS (median, [IQR]) 6 [2-12.25]
Number of methodological limitations (n (%))

0-2 0 (0)

3 4 (5)

4 4 (5)

5 15 (20)

6 21 (28)

7 23 (31)

8 8 (11)

N=50

Added value of radiomics to clinical model tested? (n (%))

Yes 32 (64)

No 18 (36)

Our analysis suggests that the four assessment tools provide useful and complimentary
critiques. Figure 2.3A shows that the TRIPOD ordinal score focusing on validation
and the RQS score focusing on study reporting are correlated (Pearson correlation
coefficient 0.70). This reflects the importance the RQS places on study validation.
However, both the TRIPOD score and RQS score were relatively independent of our
assessment of study methodological limitations (Figure 2.3B-C, Pearson correlation
coefficients -0.12 and 0.13). Indeed, some studies with high TRIPOD and RQS scores
had several technical limitations listed. For example, two studies with a TRIPOD
score of 4 and the highest reported RQS scores (16 and 18 respectively) [103, 105]
had five and six identified methodological limitations respectively. In contrast, one

study with a low TRIPOD score of 1b and a moderate RQS score (of 7) had just three
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pipeline technical limitations [108].
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Figure 2.3: The assessment of the literature plotted against each other as box-
plots. (A) RQS versus TRIPOD, (B) RQS versus the number of methodological
limitations found in this review and (C) TRIPOD versus the number of method-
ological limitations found in this review.

An illustrative example is given by three studies [94, 103, 105] that externally val-
idated the landmark radiomic signature developed by Aerts and colleagues in 2014
[91]. However, subsequent work [187, 202] has suggested that the prognostic value
of the signature reflected the correlation of the signature with tumor volume, rather
than reflecting underlying tumor heterogeneity. An important workflow step our re-
view identified is the assessment of feature correlations and potential confounders (G).
While the RQS recommends performing multivariable analysis and testing the benefit
of the radiomics signature to a gold standard, it does not explicitly recommend testing

for feature correlations or confounders.

Study quality depends not only on quality of reporting, but also on ensuring that
features used are robust against potential problems. There is a raised recognition of
the methodological issues that limit the potential utility of the radiomics concept, as
shown by the increase in studies in this area Figure 2.2. However, we find that only

39% of the patient outcome studies and 50% of the biology studies we identified cite
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methodology papers. This suggests that there is still limited appreciation of the need to
employ more rigorous radiomics workflows. The IBSI guidelines and RQS are aimed at
addressing these issues. For example the IBSI reference manual gives recommendations
for image processing techniques as well as suggesting standardized feature definitions,
nomenclature, and guidelines for reporting [51|. The RQS rewards the use of test-
retest approaches, multiple segmentation analyses, and the use of phantoms to resolve

inter-scanner differences.

However, our review of limitations highlights further concerns, such as differing slice
thickness or voxel size (C) and the specification of grey-level binning size (F). These
are not included in RQS (only 58% of studies in Table 2.1, Table 2.2 specified the grey-
level binning method or size). The IBSI guidelines, the RQS and TRIPOD assessment
schemes are important steps that should improve the technical quality of radiomics
studies. However, they are not sufficient alone and review of the literature suggests
a need to either update them to include more granular limitations or to use them

alongside other assessment tools.

One result of the increase prevalence of studies investigating methodological limitations
that would accelerate clinical translation would be the identification of a subset of
robust features that should be used in outcome studies. Unfortunately, comparing
results across studies is difficult. In addition to the risks to reliability listed in Table 2.3,
the software used for feature extraction often uses different nomenclature (one of issues
the IBSI addresses) and can calculate ostensibly similar features in different ways and
with different parameter settings so that they are not comparable |73]. Software use
varied greatly across all studies included in this review. Of the patient outcome and
biology studies, 15% did not specify the software used, 48% used in-house developed
software and just 37% used free or commercial options. These numbers are similar for
the methodology studies; 14% did not specify the software used, 40% used in-house
developed software and 47% used free or commercial options. Four of the patient
outcome and biology studies did not specify the features in the final radiomic signature
at all. The result is that there is no consensus on which particular features or feature
signatures should be used for clinical studies. However, there are now increasing

numbers of studies that employ the techniques used to determine which features are
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reliable. Table 2.3 and Supplementary Tables 2.6 and 2.7 list the remaining limitations
for each clinical and biological study - 42% of the assessed studies applied at least one
of the suggested solutions to methodological limitations to increase feature robustness.
Of these studies, 46% used a test re-test dataset, 58% used multiple segmentations and
4% tested CT model dependence.

A further important step in the radiomics workflow where community consensus would
increase the comparability of studies is that of the optimal machine learning techniques
that should be used to develop the resulting statistical models. We found that the top
feature reduction technique used in all studies was univariable analysis (53%) followed
by LASSO (27%). The most common modelling technique was logistic regression
(39%) followed by cox regression (34%). 16% of studies used random forest and 11%
SVM, both of which were highlighted as high performing by the methodology studies
[194, 196]. The techniques used in each study are listed in Supplementary Tables 2.6
and 2.7. Four outcome studies used multiple modelling techniques to determine which
one performed best on their data; a recommended method as model performance is
dataset-dependent [199]. Out of these four studies, the best performing classifiers were
random forest [144]| and Naive Bayes [112, 150]. One study did not reveal the best

performing model [152].

The lack of consensus in how to address limitations to the reliability of radiomics
features, or of a preferred way to conduct the subsequent statistical modelling, means
there is still significant variability in approach, with each finely tuned to its own
particular dataset. Progress along the imaging biomarker translation roadmap [90] is
dependent on the development of reliable measures that can be used to test clinical
hypotheses. These findings agree with those of previous authors [51, 201] and show
there is still an unmet need to move away from the current heterogeneous landscape
to one that is more standardized. The validation of existing signatures in different

datasets [94, 103, 105] discussed above is a vital part of this effort.

Lastly, in addition to the assessment of technical quality, radiomic signatures need
to be evaluated for clinical relevance. It is important to test whether incorporating

radiomic features into a clinical model improves performance over known prognostic
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or predictive factors. This need is well-recognized with 64% of the studies in Table 2.1
making its assessment. Future studies will be most impactful if they explicitly evaluate

the clinical utility of a radiomic signature as part of data reporting.

In summary, use of the four different assessment tools allows us to draw three con-
clusions. Firstly, there is a high prevalence of methodological limitations among
CT radiomics studies exploring the potential of the approach to guide personalized
medicine. Secondly, there remains considerable variability in the approach to ad-
dressing these limitations, and that modelling approaches are likely tuned to specific
datasets. Thirdly, different assessment tools provided complementary information,
which taken together provided the greatest insight into how study data could be im-

proved.

2.6 Future directions

Personalized medicine is of great potential benefit to patients, but this vision is de-
pendent on the identification of stratification and predictive biomarkers [84]. Imaging
biomarkers, derived from routinely acquired patient images, have enormous transla-
tional potential given the ubiquity of imaging in clinical workflows. Evaluation of
the radiomics literature in NSCLC reveals the exponential rate of publication of new
radiomics studies, which, in their conclusions, present a very positive view of the

potential for radiomics to deliver this goal.

This review puts these findings in context for NSCLC, but the messages are likely to
be generic to all cancer types. All published studies are at risk of translational hurdles
due to technical and methodological issues. Importantly, some of these limitations are
well recognized, well investigated and have solutions proposed that are beginning to
be applied to clinical studies. In distinction, other limitations are poorly understood
or researched, and so substantial barriers to translation remain. In addition, wider
concerns surrounding over-fitting data and biological validation persist. Lastly, no
single radiomic signature or methodological approach is used widely, so further work

is required to identify candidates to take forward in larger multicenter studies.

The fact that all the radiomics studies identified in the NSCLC literature have some
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limitations should not infer that the published data and conclusions are incorrect;
rather that risk exists in interpreting their findings at face value. Standardization
issues, variability in methodology and a general lack of reporting hinders comparison
of results across studies. Identifying limitations, by employing recognized assessment
methodology tools, can help inform and educate design of future radiomics studies in
NSCLC and beyond. This will improve study quality and expedite the translation of

radiomic biomarkers as tools in personalized medicine.
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2.8 Supplementary materials

Supplementary

Literature search
Search strategy

Publications that report radiomics analyses on NSCLC data with the aim of predicting
patient outcome were identified by searching the PubMed database using the key
words “radiomics” and “lung cancer” or “NSCLC”. The search was conducted on the

08/01/2020 and no start date limit was used.

A second search was undertaken to find studies that addressed a methodological con-
cern of radiomics. The PubMed database was searched using a combination of the
following keys words (a) “radiomics” or “radiomics” and (b) “cancer” and (c) “standard-
ization” or “reliable” or “impact of” or “improvement” or “repeatable” or “reproducible”

or “repeatability” or “reproducibility” or “test—retest” or “variability” or “limitation” or
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“limitations” or “vulnerability” or “vulnerabilities” or “stability” or “stable” or “robust-
y
ness” or ‘“robust” or “quality” or “agreement” or “effect of”. The search was conducted

on the 13/01/2020 and no start date limit was used.

Search outcomes

The results of the search for radiomics studies in lung cancer were screened by the
title and abstract to find studies whose primary aim was either to create predictive
radiomics models of clinical outcome or link radiomics to biology for NSCLC patients
from CT images. Inclusion criteria were publications assessing outcomes of overall
survival, metastases, treatment-induced toxicities or finding biological correlations.
Studies using a modality other than CT, where the primary cancer was not NSCLC
and review articles were not included in this step. 282 publications were found and
after screening titles and abstracts based on the inclusion criteria, 116 publications
remained. Exclusion criteria included CT studies not from planning CT, CBCT or
diagnostic CT, if access to the article could not be gained, if the article was in a
language other than English, if the study included deep learning as opposed to the
traditional radiomics workflow discussed in this review, and studies predicting nodule
malignancy. Studies of analysis reproducibility or methodology limitations were also
excluded from this search, as they were included in the second evaluation. In all,
64 publications remained for analysis (Supplementary Figure 2.4). Included studies
are summarized in Tables 2.1 and 2.2 and expanded in Supplementary Tables 2.6

and 2.7.
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Figure 2.4: Flow diagram for the patient outcome and biology radiomics studies
in lung cancer search outcomes.

The results of the search for studies of radiomics limitations were screened by titles
and abstract to identify studies whose primary aim was to address a radiomics-based
methodological concern using human or phantom scans. 489 publications were found
and a further 3 studies previously known to the authors but not returned by our
search were added to the results. After applying screening by inclusion criteria 132
studies remained. The following exclusion criteria were then applied: the study data
was not CT-based, the CT data was from a cancer other than NSCLC or not clearly
specified, the study investigated variability in deep learning models rather than the
traditional radiomics workflow, and the article was a review or report of a published
public dataset, rather than original research. This approach left 42 studies for in-
clusion in this review (Supplementary Figure 2.5). Included studies are presented in

Supplementary Table 2.5 and summarized in Table 2.3.
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Figure 2.5: Flow diagram for the methodological radiomics studies in lung cancer
search outcomes.

Search constraints and limitations

Conference abstracts were not included in the search. While this would have in-
creased the number of studies included, abstracts had insufficient detail for our criti-
cal appraisal. Publication bias is a potential limitation of this review, since negative
results are less likely to be published. This review included publications that inves-
tigated methodological concerns in the radiomics workflow for NSCLC and phantom
CT scans and as such concerns that had been addressed in another cancer type or

imaging modality were excluded from this analysis.



Table 2.5: Radiomics methodological studies selected for inclusion.

Reference = Workflow Study data Software Features Identified problems Solution
stage(s)
Ger et al. Image acqui- Updated CCR IBEX. First CT scanner, protocol Correct for the CT manufacturer
2018 sition. phantom. order and and slice thickness af- and model by scanning a phan-
Pre- 20 NSCLC and texture. fect feature values. In tom on each scanner. Control or
processing. 30 HNSCC CT general, resampling does limit the range of slice thickness in
scans. not change feature val- studies.
ues or remove feature
correlations with slice
thickness.
Fave et Image acqui- CCR phantom. IBEX. First Features are more likely A motion threshold of at most
al. 2015 sition. 10 NSCLC order and to be reproducible when 10mm, preferably 5mm, increases
Test-retest. CBCT test- texture. the same CBCT scanner feature reproducibility, as does ex-
Volume retest scans. manufacturer and proto- cluding edges of the ROI. Texture
dependence. col are used. Increased features should not be compared
motion reduces feature across images acquired using differ-
reproducibility. ent imaging protocols and CBCT
manufacturers.
Lafata et Image acqui- Dynamic dig- In-house Shape, Image noise and motion The end of exhale phase of a 4DCT
al. 2018 sition. ital phantom Matlab. first or- affects feature repro- is least affected by motion.
simulation. der and ducibility.
31 NSCLC free texture.

breathing CT
scans, AIP and
end of exhale
4DCT scans.
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Table 2.5 continued from previous page

Reference = Workflow Study data Software Features Identified problems Solution
stage(s)
Du et al. Image acqui- 20 NSCLC 3D Slicer. Shape, Motion affects feature Assessing feature stability across
2019 sition. 4DCT scans. first or- reproducibility. all 4DCT phases can find features
140 NSCLC der and robust to motion which can im-
4DCT scans. texture. prove the predictive performance of
radiomic models.
Larue et Image acqui- CCR phantom. In-house. First Feature values are differ- Grey-level discretization could
al. 2017 sition. order and ent between CT scanners, be optimized to improve prog-
Pre- texture. even with similar acqui- nostic value of features. Resam-
processing. sition protocols. Most pling decreases variability and
radiomic features are reduces feature correlations with
affected by slice thick- slice thickness. Cubic or linear
ness. Choice of bin width interpolation induce less feature
influences feature values. variability than nearest neighbour
The resampling method interpolation when resampling to
can induce variability in 1x1x3mm3 voxels.
texture features.
Mackin Image acqui- CCR phantom. IBEX. First Feature values are differ- Credentialing CT scanners could
et al. sition. 20 NSCLC CT order and ent between CT scanners. reduce variability across features
2015 scans. texture. measured on different scanners.

CT scanners could be corrected for

during data analysis.
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Table 2.5 continued from previous page

Reference = Workflow Study data Software Features Identified problems Solution
stage(s)
Mackin Image acqui- CCR phantom. IBEX. Shape, Variation in pixel size Feature variability due to differ-
et al. sition. 8 NSCLC un- first or- causes the intra-patient ences in pixel size can be reduced
2017 Pre- constructed CT der and variability to be large rel- through resampling and Butter-
processing. scans. texture. ative to the inter-patient worth low-pass filtering.
variability.
MacKin Image acqui- CCR phantom. IBEX. First The impact of noise, i.e. Features are not substantially af-
et al. sition. order and tube current values, is fected by variations in x-ray tube
2018 texture. more apparent for homo- current. Tube current would not
geneous materials than need to be harmonized across
for textured. patients in a study.
Mahmood Image acqui- Anthropomorphic IBEX. First Texture features are Robust correction factors need to
et al. sition. phantom. order and not reproducible across be developed to reduce feature
2017 Image recon- texture. different CT scanners, variability across CT scanners.
struction. even whilst using al-
most identical scanning
parameters.
Midya et Image acqui- A uniform water In-house First CT scanner tube cur- Only use features robust to
al. 2018 sition. phantom and an Matlab. order and rent, noise index and changes in tube current, noise
Image recon- anthropomor- texture. reconstruction technique index and reconstruction technique.

struction.

phic phantom.

A single ab-
dominal CT

scan.

influence feature repro-
ducibility.

8L
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Reference = Workflow Study data Software Features Identified problems Solution
stage(s)
Shafig-ul- Image acqui- CCR phantom. In-house. Shape, Most texture features The variability in features due to
Hassan et sition. first or- are reconstruction kernel different reconstruction kernels can
al. 2017 Image recon- der and dependent. be reduced by applying the Noise
struction. texture. Power Spectrum peak frequency
and ROI maximum intensity as
correction factors.
Shafig-ul- Image acqui- CCR phantom. In-house. Shape, Features are dependent Feature definitions can be normal-
Hassan et sition. first or- on voxel size and number ized by voxel size and number of
al. 2017 Pre- der and of grey levels used for grey levels to reduce their depen-
processing. texture. discretization. dency.
Yasaka et Image acqui- CCR phantom. TexRad. First Unfiltered and filtered Feature variability due to different
al. 2017 sition. order. features are variable CT scanners needs to be taken into
Pre- across different CT scan- consideration.
processing. ners.
Lu et al. Image acqui- 32 NSCLC CT Not Shape, Changing reconstruc- Image acquisition techniques needs
2016 sition. scans. specified. first or- tion algorithm and slice to be standardized.
Image recon- der and thickness affects feature
struction. texture. values.
Zhao et Image acqui- 31 NSCLC CT In-house. Shape, Features depend on the Features derived from images re-
al. 2016 sition. test-retest scans. first or- reconstruction algorithm constructed with sharp and smooth
Test re-test. der and used. algorithms should not be com-
Image recon- texture. pared.

struction.

STVIHALVIN AHVILNANHTddNS 8¢

6L
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Reference = Workflow Study data Software Features Identified problems Solution
stage(s)
Li et al. Image acqui- 51 NSCLC CT In-house Shape Images with 1mm slice Use thinner slice thickness to in-
2018 sition. scans. Matlab. and thickness give models crease predictive performance of
Image recon- texture. with greater predictive models.
struction. performance than those
with 5mm slice thickness.
Park et Image acqui- 100 NSCLC CT Not First Radiomic features are Reproducibility can be improved
al. 2019 sition. scans. specified. order and not reproducible across by converting images to Imm
texture. different slice thicknesses. slice thickness using a convo-
lutional neural network-based
super-resolution algorithm.
Kim et Image acqui- Thoracic phan- Not First CT slice thickness, expo- Image acquisition and reconstruc-
al. 2019 sition. tom. specified. order and sure setting and recon- tion parameters need to be stan-
Image recon- texture. struction algorithm affect dardized to avoid variability.
struction. radiomic features.
Zhovannik Image acqui- Phantom. PyRadiomics. First Radiomic features depend A correction algorithm can be
et al. sition. 221 NSCLC order and on scanner signal-to-noise modelled to make radiomic fea-
2019 pCT scans. texture. ratio (exposure setting). tures reproducible across different

signal-to-noise ratios.
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Reference = Workflow Study data Software Features Identified problems Solution
stage(s)
Tunali et Image acqui- 40 NSCLC CT In-house First Radiomic features are Use stable and reproducible ra-
al. 2019 sition. scans. Ct+. order and not reproducible across diomic features as a feature selec-
Segmentation. 32 NSCLC texture. multiple segmentations or tion tool in the radiomics workflow.
non-contrast different image acquisi-
enhanced CT tions.
scans.
212 NSCLC CT
scans.
Kakino Image acqui- 269 NSCLC di- PyRadiomics. First Not all features are Do not combine contrast enhanced
et al. sition. agnostic delayed order and reproducible across and non-contrast enhanced images
2019 phase CT scans. texture. contrast enhanced and in radiomics analysis.
non-contrast enhanced
CT images. This also
depends on patient char-
acteristics.
Hepp et Image acqui- 69 NSCLC CT PyRadiomics. First Radiomic feature values Differences in CT dose levels
al. 2020 sition. with simulated order and differed when CT dose should be taken into account in
dose reduction. texture. level was changed. radiomics studies.
Mahon et Image acqui- Gammex CT PyRadiomics. Shape, Variability in imaging ComBat harmonization can har-
al. 2019 sition. electron density first or- protocols can induce monize radiomic features extracted
phantom and der and variability in extracted from CT images using different
Qasar body texture. radiomic features. imaging protocols.
phantom.

135 NSCLC CT.
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Table 2.5 continued from previous page

Reference = Workflow Study data Software Features Identified problems Solution
stage(s)
Haga et Segmentation. 40 NSCLC max- In-house Shape, Differences in tumor Multiple segmentation analysis
al. 2018 imum exhale Matlab. first or- segmentation can cause can reveal features that are robust
4DCT scans. der and different features to be- to delineation uncertainties. For
texture. come significant in the good predictions ROIs need to be
feature selection stage. contoured by a specialist, such as a
radiation oncologist.
Huang et Segmentation. 46 NSCLC CT In-house. Shape, Differences in tumor seg- Multiple segmentation analysis
al. 2017 scans. first mentation can lead to should be done to find robust
order, differences in a feature’s features.
texture predictive power.
and delta
features.
Kalpathy- Segmentation. 40 NSCLC CT Various. Shape, Some features are not Features need to be assessed for
Cramer scans. first or- robust to multiple seg- their robustness to segmentation
et al. Thoracic phan- der and mentations. and their usefulness in a predictive
2016 tom. texture. models.
Owens et Segmentation. 10 NSCLC CT IBEX. Shape, Segmentation is time Semi-automatic segmentations per-
al. 2018 scans. first or- consuming and subject to formed by non-specialists can give
der and inter-observer variability. segmentations comparable to those
texture. from clinicians.
Parmar Segmentation. 20 NSCLC CT In-house Shape, Segmentation is time Semi-automatic segmentation led
et al. scans. Matlab. first or- consuming and subject to to a smaller range of feature val-
2014 der and inter-observer variability. ues across observers than manual
texture. segmentation.
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Table 2.5 continued from previous page

Reference = Workflow Study data Software Features Identified problems Solution
stage(s)
Pavic et Segmentation. 11 NSCLC, 11 In-house Shape, Features affected by de- Filtering the image increases the
al. 2018 HNSCC, 11 Python. first or- lineation uncertainty are number of stable features. Multiple
MPM CT scans. der and different between cancer segmentation analysis should be
texture. types. Shape features are performed to find robust features.
most affected across all Averaging texture matrices rather
tumor types. than merging results in more stable
features with respect to segmenta-
tion.
Shafig-ul- Pre- CCR phantom. Not First Some texture features are Normalization by the number of
Hassan et processing. 18 NSCLC CT specified. order and not stable across a differ- grey levels or number of voxels In
al. 2018 Volume scans. texture. ent number of grey levels the ROI made some features more
dependence. used for discretization or reproducible.
voxels in the ROI.
Fave et Pre- 107 NSCLC IBEX. First Some features are entirely Feature formulas can be corrected
al. 2016 processing. 4DCT end of order and ROI volume dependent. to remove ROI volume dependence.
Volume exhale scans. texture. Features tended to be
dependence. more correlated with ROI

volume after Butterworth

smoothing.
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Table 2.5 continued from previous page

Reference = Workflow Study data Software Features Identified problems Solution
stage(s)
Wang et Pre- 50 NSCLC CT Matlab First Texture features may be Discretization of 128 grey lev-
al. 2019 processing. scans. open- order and sensitive to the number els provides a set of reproducible
Volume source texture. of grey levels used for dis- texture features, regardless of dis-
dependence. toolkit cretization, the method cretization method. Thresholding
[185]. of discretization and the ROIs before feature extraction
the use of an intensity also improves reproducibility.
threshold.
Welch et Volume 421 NSCLC CT PyRadiomics. Shape, Features from a previ- Features should be tested for
al. 2019 dependence. scans. first or- ously published radiomic multicollinearity using statistical
der and signature were found to analysis or by data perturbation.
texture. be correlated with tumor
volume.
Choi et Volume 14 NSCLC free Not First Features may not be Simulations involving tumors of
al. 2018 dependence. breathing pCT specified. order and robust to variations in different sizes can reveal features
scans. texture. tumor size and may robust to changes in tumor volume.
be correlated with the
normal lung volume
surrounding the tumor.
Larue et Test-retest. 26 NSCLC CT In-house. Shape, Test-retest is not always A 4DCT dataset can be used to
al. 2017 scans test-retest. first or- available for the pheno- find robust features across phases,
20 NSCLC and der and type of interest. as an alternative to a test-retest
20 oesophageal texture. dataset.

4DCT scans.
120 oesophageal

CT scans.

78
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Table 2.5 continued from previous page

Reference = Workflow Study data Software Features Identified problems Solution
stage(s)
Van Tim- Test-retest. 40 rectal cancer Not Shape, Test-retest results are Test-retest analysis should be
meren et CT scans. specified. first or- not generalizable across performed for each cancer type
al. 2016 27 NSCLC CT der and different cancer types. with controlled CT scanners and
scans. texture. imaging protocols.
Zwanenburg  Test-retest. 31 NSCLC and In-house Shape, Test-retest is not always Image perturbation could be an
et al. 19 HNSCC CT Python. first or- available for the pheno- alternative to test-retest, giving
2019 scans. der and type of interest. multiple images to compare fea-
texture. tures across.
Tanaka, Test-retest. 14 NSCLC IBEX. Shape, Results from test-retest 4DCT could be used as an alterna-
et al. 4DCT scans. first or- may not be generalizable tive to test-retest imaging. Finding
2019 14 NSCLC CT der and to different CT protocols. robust features across phases
scans test-retest. texture. around the end-of-exhale phase
rather than all 10 phases prevents
excessive dimension reduction.
Parmar Modelling. 464 NSCLC In-house Shape, Choice of classification Particular combinations of feature
et al. pCT scans (spi- Matlab. first or- method causes variation selection and classification methods
2015 ral thoracic CT der and in a model’s predictive give classification models with high
with or without texture. performance. predictive performance.
contrast).
Sun et al. Modelling. 283 NSCLC In-house Shape, Statistical methods to Particular combinations of feature
2018 pCT scans (spi- Matlab. first or- predict overall survival selection and machine learning
ral thoracic CT der and differ in their predictive methods give survival models with
with or without texture. performance. high predictive performance.

contrast).
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Table 2.5 continued from previous page

Reference = Workflow Study data Software Features Identified problems Solution
stage(s)
Zhang et Modelling. 112 NSCLC CT In-house First Endpoints, feature se- Sample sizes above 50 give better
al. 2017 scans. Matlab. order and lection and classification predictive performance. Subsam-
texture. methods affect predictive pling data to add to the minority
performance. class increases predictive perfor-
mance.

Haga et Modelling. 40 NSCLC max- In-house Shape, Feature normalization Performance of classification mod-

al. 2019 imum exhale Matlab. first or- can affect predictive els can be improved by normalizing
4DCT scans. der and performance. features, particularly z-score nor-
29 NSCLC CT texture. malization.
scans.

Abbreviations: AUC, area under the curve; CBCT, cone-beam CT; CI, concordance index; DFS; disease free survival; DM, distant metastasis; GRD,

gross residual disease; H&N, head and neck; HR, hazard ratio; LR, local relapse; LRR, local regional recurrence; LR-RF'S, loco-regional recurrence-free

survival; OS, overall survival; pCR, pathological complete response; pCT, radiotherapy planning CT scan; PFS, progression free survival; RFS, recurrence

free survival.
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Table 2.6: Radiomics studies in NSCLC, split into sections based on their investigated endpoint. The Data column specifies the total number
of patients involved in the study, in brackets split by training and validation cohorts if applicable and specifying other cancer types of cohorts

if applicable. Note: Studies marked with * are validation studies and their RQS score components refer to methodology based on the previous
published data. The ’Added value?’ column shows whether the added value of radiomics to a clinical model was tested.

Reference Stage Data Software Radiomic Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
-+ valida- in final 36) limita-
tion) model tions
Overall survival
Aerts et 1- 647 pCT In-house Shape, CI=0.65 Test re-test, Cox re- 3 19 A, B, C, Yes
al. 2014 3b (422 + MAT- first or- Multiple gression D, G
[91] 225) LAB der and segmen-
texture tations,
Univariable
analysis
Van 1-4 252 pCT In-house Shape, CI=0.69, Validation of Validation 4 16 A, B, C, No
Tim- and CBCT MAT- first or- 0.61, 0.59 Aerts et al. of Aerts D,F, G
meren (102 + 56 LAB der and (pCT) 2014 [91] et al.
et al. + 94) texture CI=0.66, 2014 [91]
2017* 0.63, 0.59
(CBCT)
Grossman  1-3 351 di- Not Shape, CI=0.60 Validation of Validation 4 18 A, B, C, Yes
et al. agnostic specified first or- Aerts et al. of Aerts D, G
2017* CT der and 2014 [91] et al.
(262 + 89) texture 2014 [91]
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic  Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
-+ valida- in final 36) limita-
tion) model tions
Grossman  1-3 351 di- Not Not CI=0.61 mRMR, Cox re- 3 9 A, B, C, Yes
et al. agnostic specified specified Stepwise gression D, E,
2017 CT selection G, H
(262 + 89)
Yu et 1 442 di- IBEX First CI=0.64 Multiple Cox re- 3 15 A B, C Yes
al. 2017 agnostic order and segmen- gression
CT texture tations,
(147 + Random sur-
295) vival forests,
Correlation
analysis,
Correlation
to tumor
size, Uni-
variable
analysis
Chaddad 1- 315 pCT In-house Shape Average None per- Random 1b 6 A, B, C, Yes
et al. 3b MAT- and AUC=0.70-  formed forest D, E,
2017 LAB texture 0.76 G, H

88

HHONVO ONNT NI MHIAHY SOINOIAVYH ¢ HALdVHO



Table 2.6 continued from previous page

Reference Stage Data Software Radiomic Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
+ valida- in final 36) limita-
tion) model tions
Fave et 3 107 4DCT IBEX Shape CI=0.672 CT model Cox re- 1b 7 D,EH Yes
al. 2017 end of and dependence, gression
exhale, texture Correlation
planning to tumor
and CBCT volume,
Stepwise
selection
Li et al. 1- 59 follow Definiens Texture AUC=0.81 Correlation Cox re- 1b 6 A, B, C, Yes
2017 2a up CT Devel- analysis, gression D, E, F,
oper PCA, Uni- G, H
variable
analysis,
Stepwise

selection or
backward
stepwise
selection
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic  Result Feature Model TRI- RQS Methodo- Added

(training features selection building POD (max logical value?

-+ valida- in final 36) limita-

tion) model tions
Li et al. 1- 92 4DCT Definiens Shape AUC=0.728  Correlation Cox re- 1b 6 B, C, D, Yes
2017 2a Average- Devel- and first analysis, gression E, F, G,

CT or 50% oper order Stepwise H

phase-CT selection or

images backward

were used stepwise

for analy- selection

sis
Tang et 1-3 290 stag- IBEX Shape, CI=0.72 Multiple Cox re- 3 10 A, B, No
al. 2018 ing CT first or- segmen- gression C,D, F,

(114 + der and tations, G, H

176) texture Clustering,

Univariable
analysis
Bianconi 1-3 203 pCT Not Shape HR=1.06- Univariable Kaplan- la 1 A, B, C, No
et al. specified and 1.48 analysis Meier D, E H
2018 texture
De Jong 4 195 di- In-house Shape, CI=0.576 Validation of Validation 4 14 A, B, C, Yes
et al. agnostic MAT- first or- Aerts et al. of Aerts D, F, G
2018* CT LAB der and 2014 [91] et al.
and texture 2014 [91]
CERR

06
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
+ valida- in final 36) limita-
tion) model tions
Lee et 1-3 339 CT In-house Shape, CI=0.772 Univariable Cox re- 1b 5 A, B, C, Yes
al. 2018 (type not MAT- first or- analysis, gression D, E,
defined, LAB der and Stepwise G, H
just pre- texture selection,
operative LASSO
within
2 weeks
before
surgery)
He et 1-3 186 CT Py- Not AUC=0.9296 None per- Random 2a 1 A, B, C, No
al. 2018 (298 after Radiomics  specified formed forest D, E, F,
oversam- G, H
pling (223
+ 75))
type not
defined
Starkov 1 116 pCT MATLAB Texture High LASSO Kaplan- 1b -5 A, B, C, No
et al. Gener- risk vs Meier D, E, F,
2018 alized low risk H
Riesz- median p-
Wavelet values=0.04-0.07
Toolbox
v 1.0
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic  Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
-+ valida- in final 36) limita-
tion) model tions
Yang et 1-4 371 CT In-house First CI=0.702 Multiple Cox re- 3 11 A, B, Yes
al. 2018 (239 + MAT- order and segmen- gression C, D, F,
132) LAB texture tations, G, H
LASSO
Wang et 3 70 pre- Not Texture CI=0.743 Multiple Cox re- 1b 6 B, C, D, No
al. 2019 treatment specified segmen- gression F, H
and 97 tations,
post treat- Clustering,
ment CT Random sur-
from 118 vival forest,
patients Backward
stepwise
selection,
Correlation
analysis
Shi et 3 11 CBCT IBEX First HR=0.21 Test re-test, Kaplan- la 4 A, B, C, Yes
al. 2019 from 23 order Multiple Meier D
patients segmen-
tation,
Correlation
analysis
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
+ valida- in final 36) limita-
tion) model tions
Van 1-4 337 pCT In-house First CI=0.59, Correlation Cox re- 3 19 B, C, D, Yes
Tim- and 2154 MAT- order and 0.54, 0.57 analysis, gression E, G H
meren CBCTs LAB texture LASSO
et al. from 337
2019 patients
(141 + 94
+ 61 +
41)
Huang 1-4 371 CT In-house Shape, CI=0.621, Test re-test, Cox re- 2a 4 A, B, C, No
et al. (254 + 63 MAT- first or- 0.649 LASSO gression D,E, F,
2019 + 54) LAB der and G
texture
Franceschini 1-2 102 4DCT LIFEx Shape AUC=0.85 Univariable Cox re- 2a 2 C, D, E, No
et al. (start of and analysis, gression G, H
2019 inspira- texture Elastic net
tion) Backward
(70 + 32) stepwise
selection

Local or metastatic recurrence
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic  Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
-+ valida- in final 36) limita-
tion) model tions
Coroller 2-3 182 pCT In-house First CI=0.6 mRMR, Cox re- 2b 13 A, B, C, Yes
et al. (98 + 84) MAT- order and Univariable gression D, E,
2015 LAB texture analysis, G, H
and Stepwise
CERR selection
Mattonen 1 45 follow- In-house First AUC=0.85 Stepwise SVM 1b -2 B, C, D, Yes
et al. up CT MAT- order and selection E, G H
2016 LAB texture
Huynh 1-2 113 CT In-house First Median Test re-test, Cox re- 1b 6 A, B, C, Yes
et al. (free MAT- order and CI=0.67 PCA, Uni- gression D, E, G
2016 breathing) LAB texture variable
and 3D analysis
Slicer
Huynh 1- 112 free In-house Shape, ATP ra- Test re-test, Cox re- 1b 4 A, B, C, Yes
et al. 2a breathing MAT- first or- diomics PCA, Uni- gression E, G
2017 CT and LAB der and CI=0.667 variable
ATP CT and 3D texture FB ra- analysis,
Slicer diomics LASSO
CI=0.601
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
+ valida- in final 36) limita-
tion) model tions
Fave et 3 107 4DCT IBEX Shape CI=0.632, Stepwise Cox re- 1b 7 D, EH Yes
al. 2017 end of and 0.558 selection gression
exhale, texture (DM,
planning LRR)
and CBCT
Li et al. 1- 59 follow Definiens Texture AUC=0.80, Correlation Cox re- 1b 6 A, B, C, Yes
2017 2a up CT Devel- 0.80 analysis, gression D, E, F,
oper (RFS, PCA, Uni- H
LR-RFS) variable
analysis,
Stepwise

selection or
backward
stepwise

selection
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic  Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
-+ valida- in final 36) limita-
tion) model tions
Li et al. 1- 92 4DCT Definiens Shape AUC=0.747, Correlation Cox re- 1b 6 B, C, D, Yes
2017 2a Average- Devel- 0.690 analysis, gression E, F . H
CT or 50% oper (RFS, Univariable
phase-CT LL-RFS) analysis,
images Stepwise
were used selection or
for analy- backward
sis stepwise
selection
Dou et 1-3 200 pCT Py- Texture CI=0.65 Test re-test, Cox re- 2b 16 A, C E, Yes
al. 2018 (100 + Radiomics mRMR, gression G
100) Stepwise
selection
Ferreira 1-4 68 CT IBEX Shape AUC=0.75, ReliefF Naive 2a, 9 A, B, C, No
Junior (52 + 16) and 0.71 Bayes, k D,E, F,
et al. texture (lymph -nearest G, H
2018 node neigh-
metas- bors and
tasis, neural
DM) network

96
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
+ valida- in final 36) limita-
tion) model tions
Yang et 1-3 159 CT Py- Shape, AUC=0.856  LASSO, Logistic 2b 13 B,E, F, Yes
al. 2018 (106 + 53) Radiomics  first or- Backward regres- G, H
der and stepwise sion
texture selection
Zhong 1-2 492 CT MaZda First AUC=0.972  Multiple SVM 1b 3 A, B, C, Yes
et al. order and segmen- D, F, H,
2018 texture tations, G
ReliefF,
PCA
Lafata 1 70 CT In-house Texture Maximum Univariable Logistic 1b 2 A, B, C, No
et al. MAT- AUC=0.72, analysis, regres- D, E, F,
2019 LAB 0.83, 0.60 Truncated sion G, H
(recur- singular
rence, LR, value de-
non-LR) composition,
LASSO
Akinci 1- 124 CT Moddicom  Shape, AUC Univariable Cox re- 1b 13 A, B, E, Yes
D’Antonoli  2b first or- 0.731, analysis, gression F,GH
et al. der and 0.750 Stepwise
2019 texture (LR, DM) selection
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic  Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
-+ valida- in final 36) limita-
tion) model tions
He et Not 717 CT In-house First CI=0.734 Multiple Logistic 2b 13 A, B, No
al. 2019 spec- (423 + MAT- order and segmen- regres- C, D, F,
i- 294) LAB texture tations, sion G, H
fied Correlation
analysis,
Univariable
analysis,
LASSO,
Backward
stepwise
selection
Xu et 3-4 132 CT In-house Texture AUC=0.642  Test re-test, Cox re- 2a, 12 B, C, D, No
al. 2019 (106 + 26) MAT- LASSO gression E, G H
LAB
Franceschini 1-2 102 4DCT LIFEx Shape, AUC=0.73 Backward Logistic 2a 2 C, D, E, No
et al. (start of first or- stepwise regres- G, H
2019 inspira- der and selection sion
tion) texture
(70 + 32)
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
+ valida- in final 36) limita-
tion) model tions
Ferreira- 1-4 85 CT IBEX Shape, AUC=0.92, Univariable Neural 1b -2 A, B, C, No
Junior first or- 0.84 (DM, analysis, network G, H
et al. der and nodal ReliefF
2019 texture metasta-
sis)
Cong et la 649 venous Artificial Shape, AUC=0.851  Multiple Random 2a, 14 B, C, D, Yes
al. 2019 phase CT Intelli- first or- segmen- forest G, H
(455 + gence der and tations,
194) Kit texture Univariable
analysis,
LASSO
Treatment response, disease-free or progression-free survival
Coroller 2-3 127 pCT In-house Shape, Median Test re-test, Logistic 1b 7 A, B, C, Yes
et al. MAT- first or- AUC=0.65, PCA, Uni- regres- D,E, G
2016 LAB der and 0.61 variable sion
and 3D texture (GRD, analysis
Slicer pCR)
Huang 1-2 282 CT In-house First HR=2.09 Multiple Cox re- 2a 13 A, B, Yes
et al. (141 + MAT- order and segmen- gression C, D, F,
2016 141) LAB texture tations, G, H
LASSO
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic  Result Feature Model TRI- RQS Methodo- Added
(training features selection building POD (max logical value?
-+ valida- in final 36) limita-
tion) model tions
Song et 1-4 152 CT Not Texture HR= Univariable Cox re- 2a, 4 A, B, C, No
al. 2016 (80 + 72) specified 2.35, 2.75 analysis gression D, E, F,
G, H
Coroller 2-3 85 pCT In-house Shape, Median Test re-test, Random 1b 3 A, B, C, Yes
et al. MAT- first or- AUC=0.68, PCA, Uni- forest D, E, G
2017 LAB der and =0.71 variable
and 3D texture (pCR, analysis
Slicer GRD)
Tunali 3b- 228 CT In-house Texture AUC=0.804  Test re-test, Logistic la 5 A, B, Yes
et al. 4 MAT- Univariable regres- D, E
2019 LAB analysis, sion
and Correlation
C++ to tumor
volume,
Backwards
stepwise
selection
Franceschini 1-2 102 4DCT LIFEx Texture AUC=0.88 Univariable Cox re- 2a 2 C, D, E, No
et al. (start of analysis, gression G, H
2019 inspira- Elastic net,
tion) Backward
(70 + 32) stepwise
selection
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Table 2.6 continued from previous page

Reference Stage Data Software Radiomic Result Feature Model TRI- RQS Methodo- Added

(training features selection building POD (max logical value?

+ valida- in final 36) limita-

tion) model tions
Lung toxicity
Moran 1 14 diag- Not First AUC=0.689- Univariable Logistic la -2 A, B, C, Yes
et al. nostic specified order and 0.750 analysis regres- E, G H
2017 CT texture sion
Krafft Not 192 50% In-house First Average LASSO Logistic 1b 0 A E, Yes
et al. spec- 4DCT MAT- order and AUC=0.68 regres- G, H
2018 i- phase LAB texture sion

fied
Staging
Yuan et 1 327 CT Artificial First AUC=0.938  Recursive SVM 1b 2 A, B, C, No
al. 2018 intelli- order and feature F, G, H
gence texture elimination
kit
Yang et 1-3 256 CT Py- First AUC= LASSO Logistic 1b -3 B, C, E, No
al. 2019 Radiomics  order and 0.93 regres- F, G H
texture sion

Abbreviations: AUC, area under the curve; CBCT, cone-beam CT; CI, concordance index; DFS, disease free survival; DM, distant metastasis; GRD,

gross residual disease; H&N, head and neck; HR, hazard ratio; LR, local relapse; LRR, local regional recurrence; LR-RFS, loco-regional recurrence-free

survival; OS, overall survival; pCR, pathological complete response; pCT, radiotherapy planning CT scan; PFS, progression free survival; RFS, recurrence

free survival.
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Table 2.7: Radiomics studies in NSCLC with an aspect of biology as the endpoint. The Data column specifies the total number of patients
involved in the study, in brackets split by training and validation cohorts if applicable and specifying other cancer types of cohorts if applicable.

Reference Stage Endpoint Data Software Radiomic Result Feature Model TRI- RQS Methodo-
(training features selection building POD (max logical
+ wvalida- in final 36) limita-
tion) model tions
Genomics
Aerts et Early EGFR 47 diag- Not, Shape AUC=0.74- Coefficient Logistic la 2 B,E, F
al. 2016 stage nostic specified and 0.91 of variation regres-
CT and texture Correlation sion
follow-up analysis
Univariable
analysis
Rios Ve- 1-4 EGFR, 705 di- In-house Shape, AUC=0.69- Test re- Random 3 14 A, B, C,
lazquez KRAS agnostic plug in first or- 0.80 test, PCA, forest D,E, F
et al. CT for 3D der and mRMR
2017 (353 + Slicer texture
352)
Mei et Not EGFR 296 CT PyRadiomics Texture AUC=0.664  Univariable Logistic la -2 A, B, C,
al. 2018 spec- analysis regres- E, F, G,
i- sion H
fied
Digumarthy Not EGFR 93 CT TexRAD First AUC=0.713  Univariable Logistic la -1 A, B, C,
et al. spec- order analysis regres- E, F, G,
2019 i- sion H
fied
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Table 2.7 continued from previous page

Reference Stage Endpoint Data Software Radiomic Result Feature Model TRI- RQS Methodo-
(training features selection building POD (max logical
-+ valida- in final 36) limita-
tion) model tions
Jia et 1-4 EGFR 504 CT Not Shape, AUC=0.802  Univariable Random 2a 5 A, B,
al. 2019 (345 + specified first or- analysis forest D,E, F,
158) der and G, H
texture
Li et al. 1-4 EGFR 312 CT In-house Shape AUC= Multiple Logistic 2b 14 B, C, F,
2019 sub- (236 + 76) C++ and first 0.775- segmen- regres- G, H
types order 0.793 tations, sion
(19Del Univariable
and analysis,
L858R) Stepwise
selection
Tu et 1-4 EGFR 404 CT In-house First AUC=0.775  Multiple Logistic 2a 13 A, B,
al. 2019 (243 + MAT- order and segmen- regres- C,D,F,
161) LAB texture tations, sion G, H
Univariable
analysis,
Clustering,
Backwards
stepwise
selection

STVIHALVIN AHVILNANHTddNS 8¢

€01



Table 2.7 continued from previous page

Reference Stage Endpoint Data Software Radiomic Result Feature Model TRI- RQS Methodo-
(training features selection building POD (max logical
-+ valida- in final 36) limita-
tion) model tions
Yang et Not EGFR 467 CT PyRadiomics Shape, AUC=0.789  Mean de- Random 2a 13 B, D, E,
al. 2019 spec- (306 + first or- crease forest F,G H
i- 161) der and impurity
fied texture importance
from ran-
dom forest
Wang et 1-2 EGFR, 61 CT PyRadiomics First AUC=0.604, LASSO SVM 2a 10 B, C, E,
al. 2019 TP53 (41 + 20) order and 0.586 F,G H
texture
Wang et 1-2 Tumor 61 CT PyRadiomics Texture AUC=0.606 LASSO SVM 2a 10 B, C, E,
al. 2019 muta- (41 + 20) F,G H
tion
bur-
den
Signaling pathways
Grossman  1-3 Various 351 CT Not Shape, AUC=0.62- Clustering Logistic 3 9 A, B, C,
et al. (262 + 89) specified first or- 0.72 regres- D, E,
2017 der and sion G, H
texture
Bak et 1-4 Various 57 CT In-house First OR=0.08- Univariable Logistic la -5 B, C, E,
al. 2018 MAT- order and 23.94 analysis regres- F,G H
LAB texture sion
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Table 2.7 continued from previous page

Reference Stage Endpoint Data Software Radiomic Result Feature Model TRI- RQS Methodo-
(training features selection building POD (max logical
-+ valida- in final 36) limita-
tion) model tions
Histopathology
Patil et Not ADC, 317 pCT In-house Shape, 88% None SVM 1b 3 A, B, C,
al. 2016 spec- LCC, MAT- first or- accuracy D, E,
i- SCC, LAB der and G, H
fied NOS texture
Wu et 1-4 ADC, 350 pCT In-house First AUC=0.72 Correlation Random 3 13 A, B, C,
al. 2016 SCC (198 + MAT- order and analysis, forest, D, E,
152) LAB texture Univariable naive G, H
analysis Bayes,
and k-
nearest
neighbors
Ferreira 1-4 ADC, 68 CT IBEX Not AUC=0.81 ReliefF Naive 2a 6 A, B, C,
Junior SCC (52 + 16) specified Bayes D, E,
et al. and k- G, H
2018 nearest
neigh-
bors and
neural
network
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Table 2.7 continued from previous page

Reference Stage Endpoint Data Software Radiomic Result Feature Model TRI- RQS Methodo-
(training features selection building POD (max logical
-+ valida- in final 36) limita-
tion) model tions
Zhu et Not ADC, 129 CT In-house First AUC=0.893  Multiple Logistic 2a 11 A, B,
al. 2018 spec- SCC (81 + 48) MAT- order and segmen- regres- C, D, F,
i- LAB texture tations, sion G, H
fied LASSO
Digumarthy Not ADC, 93 CT TexRAD First AUC=0.744  Univariable Logistic la -1 A, B, C,
et al. spec- SCC order analysis regres- E, F, G,
2019 i- sion H
fied
E et al. Not ADC, 229 CT In-house Shape, AUC=0.657- Test re-test, Naive 1b 5 B, C, E,
2019 spec-  SCC, MAT- first or- 0.875 Clustering, Bayes, F, G
i- SCLC LAB der and mRMR, logistic
fied texture Incremen- regres-
tal forward sion and
search random
forest
Ferreira- 1-4 ADC, 85 CT IBEX Shape, AUC=0.88 Univariable Neural 1b -2 A, B, C,
Junior SCC first analysis, network G, H
et al. order, ReliefF
2019 texture
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Table 2.7 continued from previous page

Reference Stage Endpoint Data Software Radiomic Result Feature Model TRI- RQS Methodo-
(training features selection building POD (max logical
-+ valida- in final 36) limita-
tion) model tions
Liu et Not ADC, 349 CT Not Not AUC=0.86 12,1-norm SVM 3 4 A, B, C,
al. 2019 spec- LCC, (278 + 71) specified specified minimiza- D,E, F,
i- SCC, tion G, H
fied NOS
Zhou et 1-4 Ki-67 110 CT 3D Shape AUC=0.61- Univariable Logistic la 11 B, D, E,
al. 2018 Slicer and 0.77 analysis, regres- F, G H
texture Backwards sion
stepwise
selection
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Table 2.7 continued from previous page

Reference Stage Endpoint Data

(training
-+ valida-

tion)

Software

Radiomic
features
in final

model

Result

Feature

selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-

tions

Gu et
al. 2019

Not Ki-67
spec-
i-

fied

245 CT

MaZda,

First
order and

texture

AUC=0.776

Feature
selection
algorithm
based on
random

forest

Logistic
regres-
sion,
linear
discrim-
inant
analysis,
classifica-
tion tree
and re-
gression
tree, k-
neighbour
cluster-
ing, SVM
and ran-
dom

forest

1b

A’ B7 C’
D? E’ F7
G, H
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Table 2.7 continued from previous page

Reference Stage Endpoint Data Software Radiomic Result Feature Model TRI- RQS Methodo-
(training features selection building POD (max logical
-+ valida- in final 36) limita-
tion) model tions
Song et 1-3 Micro- 339 CT Not First AUC=0.751  Multiple Logistic 1b 8 B, C, D,
al. 2017 papillary specified order segmen- regres- F,G H
pat- tation, sion
tern Univariable
analysis,
Stepwise
selection
Chen et Not Degree 487 CT In-house First AUC=0.782  Univariable Logistic 2b 3 A, B, C,
al. 2018 spec-  of (303 + MAT- order and analysis, regres- D, E, F,
i- differ- 184) LAB texture mRMR, sion G, H
fied entia- Backwards
tion stepwise
selection
She et Not Invasive 402 CT In-house Shape, AUC=0.89 LASSO Logistic 2b 8 A, B, C,
al. 2018 spec- Vs (207 + Python first or- regres- D, E, F,
i- non- 195) der and sion G, H
fied invasive texture
ADC
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Table 2.7 continued from previous page

Reference Stage Endpoint Data Software Radiomic Result Feature Model TRI- RQS Methodo-
(training features selection building POD (max logical
-+ valida- in final 36) limita-
tion) model tions
Yang et Not Invasive 192 CT Artificial First AUC=0.77 Multiple Logistic 2a 13 B, C, D,
al. 2019 spec-  vs (116 + 76) intelli- order and segmen- regres- F,GH
i- non- gence texture tations, sion
fied invasive kit Correlation
ADC analysis,
LASSO

Abbreviations: ADC, adenocarcinoma; AUC, area under the curve; CI, concordance index; EGFR, epidermal growth factor receptor; KRAS, Kirsten rat

sarcoma viral oncogene homolog; LCC, large cell carcinoma; NOS, not otherwise specified; OR, odds ratio; SCC, squamous cell carcinoma.
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2.8. SUPPLEMENTARY MATERIALS 111

Table 2.8: Transparent Reporting of a multivariable prediction model for Individual Prog-
nosis Or Diagnosis (TRIPOD) analysis types [200].

Analysis type Description

Type la Development of a prediction model where predictive per-
formance is then directly evaluated using exactly the same
data (apparent performance).

Type 1b Development of a prediction model using the entire data
set, but then using resampling (e.g. bootstrapping or cross-
validation) techniques to evaluate the performance and op-
timism of the developed model.

Type 2a The data are randomly split into two groups: one to de-
velop the prediction model, and one to evaluate its predic-
tive performance.

Type 2b The data are non-randomly split (e.g. by location or time)
into two groups: one to develop the prediction model and
one to evaluate its predictive performance.

Type 3 Development of a prediction model using one data set and
an evaluation of its performance on separate data (e.g.
from a different study).

Type 4 The evaluation of the predictive performance of an existing
(published) prediction model on separate data.



Table 2.9: The radiomics quality score (RQS) scoring criteria developed by Lambin et al. [201].

Criteria

Points

Image protocol quality — well-documented image protocols (e.g., contrast, slice thickness, energy,

etc.) and/or usage of public image protocols allow reproducibility/ replicability

Multiple segmentations — possible actions are: segmentation by different physicians/ algorithms/-
software, perturbing segmentations by (random) noise, segmentation at different breathing cycles.

Analyze feature robustness to segmentation variabilities

Phantom study on all scanners — detect inter-scanner differences and vendor-dependent features.

Analyze feature robustness to these sources of variability

Imaging at multiple time points — collect individuals’ images at additional time points. Analyze

feature robustness to temporal variabilities (e.g., organ movement, organ expansion/shrinkage).

Feature reduction or adjustment for multiple testing — decreases the risk of overfitting. Overfitting
is inevitable if the number of features exceeds the number of samples. Consider feature robustness

when selecting features

Multivariable analysis with non radiomic features (e.g., EGFR mutation) — is expected to provide a

more holistic model. Permits correlating/inferencing between radiomics and non radiomics features

Detect and discuss biological correlates — demonstration of phenotypic differences (possibly asso-
ciated with underlying gene—protein expression patterns) deepens understanding of radiomics and

biology

Cut-off analyses — determine risk groups by either the median, a previously published cut-off or
report a continuous risk variable. Reduces the risk of reporting overly optimistic results

Discrimination statistics — report discrimination statistics (e.g., C-statistic, ROC curve, AUC) and
their statistical significance (e.g., p-values, confidence intervals). One can also apply resampling

method (e.g., bootstrapping, cross-validation)

+1 (if protocols are well-documented)

+1 (if public protocol is used)

+1

+1

+1

+3 (if neither measure is implemented)

+3 (if either measure is implemented)

+1

+1

+1

+1 (if a discrimination statistic and its statis-
tical significance are reported)

+1 (if also an resampling method technique is
applied)

¢l

HHONVO ONNT NI MHIAHY SOINOIAVYH ¢ HALdVHO



Table 2.9 continued from previous page

Criteria

Points

Calibration statistics — report calibration statistics (e.g., Calibration-in-the-large/slope, calibration
plots) and their statistical significance (e.g., p-values, confidence intervals). One can also apply

resampling method (e.g., bootstrapping, cross-validation)

Prospective study registered in a trial database — provides the highest level of evidence supporting

the clinical validity and usefulness of the radiomics biomarker

Validation — the validation is performed without retraining and without adaptation of the cut-off

value, provides crucial information with regard to credible clinical performance

Comparison to ‘gold standard’ — assess the extent to which the model agrees with/is superior to
the current ‘gold standard’ method (e.g., TNM-staging for survival prediction). This comparison

shows the added value of radiomics

Potential clinical utility — report on the current and potential application of the model in a clinical

setting (e.g., decision curve analysis)

+1 (if a calibration statistic and its statistical
significance are reported)

+1 (if also an resampling method technique is
applied)

+7 (for prospective validation of a radiomics

signature in an appropriate trial)

-5 (if validation is missing)

+2 (if validation is based on a dataset from
the same institute)

+3 (if validation is based on a dataset from
another institute)

+4 (if validation is based on two datasets from
two distinct institutes)

+4 (if the study validates a previously pub-
lished signature)

+5 (if validation is based on three or more
datasets from distinct institutes)

*Datasets should be of comparable size and
should have at least 10 events per model fea-

ture.

+2

+2
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Table 2.9 continued from previous page

Criteria

Points

Cost-effectiveness analysis — report on the cost-effectiveness of the clinical application (e.g., quality

adjusted life years generated)

Open science and data — make code and data publicly available. Open science facilitates knowledge

transfer and reproducibility of the study

+1

+1 (if scans are open source)

+1 (if region of interest segmentations are
open source)

+1 (if code is open source)

+1 (if radiomics features are calculated on
a set of representative ROIs and the calcu-
lated features + representative ROIs are open

source

Total points (36 = 100%)

4N}
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Abstract

Objective

To investigate the effects of Image Biomarker Standardisation Initiative (IBSI) com-
pliance, harmonisation of calculation settings and platform version on the statistical
reliability of radiomic features and their corresponding ability to predict clinical out-

come.

Methods

The statistical reliability of radiomic features was assessed retrospectively in three
clinical datasets (patient numbers: 108 head and neck cancer, 37 small-cell lung can-
cer, 47 non-small-cell lung cancer). Features were calculated using four platforms
(PyRadiomics, LIFEx, CERR and IBEX). PyRadiomics, LIFEx and CERR are IBSI-
compliant, whereas IBEX is not. The effects of IBSI compliance, user-defined calcula-
tion settings and platform version were assessed by calculating intraclass correlation
coefficients and confidence intervals. The influence of platform choice on the relation-
ship between radiomic biomarkers and survival was evaluated using univariable cox

regression in the largest dataset.

Results

The reliability of radiomic features calculated by the different software platforms was
only excellent (ICC > 0.9) for 4/17 radiomic features when comparing all four plat-
forms. Reliability improved to ICC > 0.9 for 15/17 radiomic features when analysis
was restricted to the three IBSI-compliant platforms. Failure to harmonise calcula-
tion settings resulted in poor reliability, even across the IBSI-compliant platforms.
Software platform version also had a marked effect on feature reliability in CERR and
LIFEx. Features identified as having significant relationship to survival varied between

platforms, as did the direction of hazard ratios.

Conclusion
IBSI compliance, user-defined calculation settings and choice of platform version all
influence the statistical reliability and corresponding performance of prognostic models

in radiomics.
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3.1 Introduction

There is considerable current interest in calculating features from medical images using
high-throughput methods and then relating these features to clinical endpoints [88,
201]. This approach has been termed ‘radiomics’. The principal hypothesis is that
medical images contain information beyond that identified readily by traditional ra-
diological examination, and that this information can be extracted through advanced
image analysis. Since imaging plays a key role in cancer diagnosis, treatment and
follow-up, radiomics provides potential non-invasive and inexpensive methods for de-

veloping biomarkers for prognosis and/or prediction in oncology.

The potential value of radiomic biomarkers has been well documented [88, 89|, but
recent literature have highlighted potential barriers to the translation of radiomics into
useful decision-making tools [48, 90]. For example, studies have demonstrated that
radiomic features can be heavily influenced by scanner acquisition and reconstruction
parameters [166, 203], or inter-observer variability in defining target lesions [184], both

of which influence model performance [179, 204].

One critical aspect of the radiomics workflow that remains relatively unexamined is the
implementation of the software platforms used to calculate radiomic features. Many
radiomic software platforms are reported in the literature, ranging from in-house devel-
opments [91], to open-source [205-207|, freeware [208] and commercial offerings [209].
With in-house and commercial products, the source code for calculating features is not
always publicly available. This can prevent comparison of results between studies in
the literature. This is contrary to current moves towards an open-science approach in
‘big data’ analyses and in artificial intelligence, where open-source and freeware devel-
opers publish feature definitions alongside software code, including the values chosen
for any calculation settings, and the user-defined free parameters that are required for

the calculation of some features [210].

Several studies have previously demonstrated that features can vary when calculated
in different software platforms [197, 211, 212]. The Image Biomarker Standardisa-

tion Initiative (IBSI) is an international collaboration developed to help standardise
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radiomic feature calculation and has provided a framework to deliver practical solu-
tions to this problem [51]. The IBSI has made recommendations concerning feature
calculation, standardised feature definition and nomenclature. It has also provided a
digital phantom with benchmark values to validate feature calculation platforms (to
become IBSI-compliant) [213|. However, IBSI does not address calculation settings or

evaluate versions of software.

In this article, we expand on this work by looking in three clinical datasets. We aimed
to investigate the effects of IBSI compliance, harmonisation of calculation settings and
choice of platform version on the statistical reliability of radiomic features and their

corresponding ability to predict clinical outcome.

3.2 Methods and materials

In this study, we evaluated three different clinical datasets using four different radiomic

feature calculation platforms.

3.2.1 Patient data

Data analysis was performed following institutional board approval and was compliant

with UK research governance (ref. 17/NW /0060). We examined three datasets:

1. One hundred eight radiotherapy planning contrast-enhanced CT scans from
patients with oropharyngeal head and neck (H&N) cancer treated with either
chemo-radiotherapy or radiotherapy alone at The Christie NHS Foundation Trust,
Manchester, UK.

2. Thirty-seven radiotherapy planning contrast-enhanced CT scans from a cohort
of patients with small-cell lung cancer (SCLC) who had been enrolled in the
CONVERT trial [214], acquired in nine different institutions (supplementary

material A).

3. Forty-seven diagnostic contrast-enhanced CT scans from a cohort of patients
with stage 4 non-small-cell lung cancer (NSCLC) cancer treated with first-line

immunotherapy at The Christie NHS Foundation Trust, Manchester, UK.
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The gross tumour volume, the extent of the visible tumour on the CT scan, was
extracted from the radiotherapy structure set for both the H&N and SCLC cohorts.
Original contours were drawn by the treating physician using the Pinnacle3 Treatment
Planning system (versions 8.0, 9.0, 9.8 or 16.0, Philips Healthcare) and used as the
analysis region of interest (ROI). Twelve H&N and 10 SCLC patients did not have
contrast due to poor renal function or IV access. For the NSCLC dataset, ROIs were
drawn by a thoracic oncologist (C.A.; 5 years’ experience) using the same Pinnacle
software (version 9.8). ROIs were checked by a board-certified radiologist J.O.C.: 14
years’ experience). Full details of patient cohorts, image acquisition and reconstruction

are detailed in Supplementary Tables 3.4 and 3.5.

3.2.2 Radiomic software platform 