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3D-CRT 3D Conformal Radiotherapy

95% CI 95% Confidence Interval
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Abstract
There is increasing interest in using real-world data, routinely collected data relating
to the health or healthcare delivery of patients, to generate evidence that has the
potential to alter clinical decision making. Such real-world evidence could help to fill
gaps in clinical knowledge, particularly for patients under-represented in clinical trials
and for changes in radiotherapy workflows which occur as technology and techniques
advance, often without clinical evidence to support the potential benefits. This thesis
investigates the potential of real-world data to improve outcomes for patients with lung
cancer through the analysis of routinely collected clinical and imaging data.

First, the radiomics literature was reviewed to assess whether radiomics had the po-
tential to personalise lung cancer treatment. The reviewed literature suffered from
significant limitations, and no single radiomics biomarker or methodological approach
was used widely, suggesting substantial barriers to clinical translation remain.

Next, the reliability of radiomic features was assessed across four feature extraction
platforms. It was found that choice of feature extraction platform, Imaging Biomarker
Standardisation Initiative (IBSI) compliance, parameter settings and platform version
affected feature reliability. This highlights the difficulty in trusting radiomics biomark-
ers, and the importance of using the latest version of an IBSI compliant software to
ensure reproducibility of radiomics, a key requirement for clinical translation.

The potential of real-world clinical data was then evaluated in the context of various
retrospective changes to practice. First, the introduction of Intensity-modulated ra-
diotherapy (IMRT) at The Christie NHS Foundation Trust was investigated, finding
that the proportion of patients treated with curative-intent radiotherapy had increased
and patient survival had improved following the introduction of IMRT. Second, the
impact of the COVID-19 pandemic on outcomes for patients with lung cancer was
evaluated, finding that patients who had a change to their radiotherapy or chemother-
apy treatment did not have significantly worse survival or relapse rates compared to
patients whose treatments were not changed; however, patients who had a change to
their radiotherapy did have increased odds of ≥ grade 3 acute toxicity.

Finally, the potential of Bayesian methodology for assessing changes to clinical prac-
tice was investigated. A Bayesian analysis of a change to image-guided radiotherapy
protocol found a reduced hazard of death for patients who had residual set-up er-
rors towards the heart post-protocol change. This suggests the potential for Bayesian
methodology to evaluate prospective incremental changes to practice.

Together, these results demonstrate the potential real-world datasets have to monitor
and improve outcomes for patients with lung cancer.
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Chapter 1

Introduction

1.1 Radiotherapy

Soon after Röntgen’s discovery of x-rays in 1895 and Curie’s discovery of radium in

1898, methods were developed to use ionising radiation in the treatment of cancer [1].

Initially, x-rays were used to treat skin malignancies, while radium was inserted directly

into tumours in the first use of brachytherapy. A key breakthrough in using radiation

for cancer was discovered in 1939 by Henri Coutard, who found that treating patients

with lower doses over a longer period of time, rather than a high dose all at once,

decreased side effects while improving control of the cancer [2]. He noted there was

a fine line between the energy that would cure versus harm a patient. Technological

advances throughout the 20th century have led to sophisticated machinery capable of

delivering high energy x-ray beams to solid tumours, known as radiotherapy, while

progress in radiobiology has helped to increase knowledge of the effects of radiation

on tumours and healthy tissue [3].

Radiotherapy plays an essential role in the treatment of over 50% of patients with can-

cer [4, 5]. According to a report published by the Department of Health Cancer Policy

Team, out of all patients in the UK who are cured of their cancer, 40% will have had

radiotherapy as a part of their treatment and 16% will have been cured through radio-

therapy alone [6]. In North America, it is estimated that 29% of cancer survivors have

been treated with radiotherapy [7]. Radiotherapy works by using ionising radiation to
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kill cancerous cells through DNA damage [8]. Radiation damage does not discriminate

between healthy and cancerous tissue, so great care must be taken to avoid healthy

tissue and organs near the tumour, so called ’organs at risk’ (OARs). Fractionation,

splitting the total radiotherapy dose into fractions and delivering these over multiple

days or weeks, allows maximum destruction of cancerous cells whilst minimising de-

struction to the surrounding tissue. This happens through DNA damage; healthy cells

are more able to repair from DNA damage than malignant cells, so over the course

of a treatment the irradiated healthy tissue has time to repair, while more malignant

cells are destroyed each time [9].

Radiotherapy begins with a tailored treatment plan. A radiotherapy planning scan,

usually a Computed Tomography (CT) scan, is taken in the position the patient would

be in for the radiotherapy treatment. The visible tumour is then manually delineated

by a radiation oncologist, along with nearby organs at risk. Positron Emission Tomog-

raphy (PET) and Magnetic Resonance Imaging (MRI) scans can give complementary

information to the delineating clinician on disease context and spread. The delineated

tumour is known as the Gross Tumour Volume (GTV). The GTV margins are then ex-

panded to create the Clinical Target Volume (CTV), which is based on the probability

of malignant cells being outside the GTV and hopes to incorporate areas containing

microscopic disease. The Planning Target Volume (PTV) expands the margins further

to take into account anatomical motion, uncertainties and margin errors to ensure the

prescribed dose is being delivered to the CTV [10]. Each contour is presented in Figure

1.1. In the case of tumours that are affected by motion from breathing, for example

lung tumours, 4D-CT scans are taken which take multiple 3D scans over the course of

a breathing cycle, allowing tumour motion to be incorporated into the radiotherapy

planning process [11]. The Internal Gross Tumour Volume (iGTV) compromises of

the GTV and the extent of its motion over the breathing cycle. This is contoured by

either combining the individual GTV contours on each image of the breathing cycle,

or contouring directly on the Maximum Intensity Projection (MIP) image, an image

created from the maximum intensity values from each image.

The radiotherapy delivery is optimised using beams from different angels to ensure

maximum dose is given to the target volume and minimum dose is received by the
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surrounding organs at risk. The radiotherapy beam is generated using a linear ac-

celerator (LINAC) and is shaped using a multileaf collimator (MLC) in the head of

the LINAC. The MLC consists of tungsten leaves that can move to block parts of the

beam to generate any beam shape desired [12]. Radiotherapy delivered in this way is

known as 3D conformal radiotherapy.

Figure 1.1: The GTV in red encloses the visible tumour, the CTV in green extends
the GTV to include microscopic spread of the tumour and the PTV in yellow ensures
the maximum dose is delivered to the CTV.

1.1.1 Intensity-modulated radiotherapy

A key advancement in the field of radiotherapy is the development of intensity-modulated

radiotherapy (IMRT). With this treatment a radiotherapy dose is prescribed to the

tumour and a maximum dose to surrounding organs is defined, then beam delivery

is optimised around these parameters (called inverse planning) by dynamically mov-

ing the MLC leaves during delivery to generate intensity-modulated fields allowing a

sharper dose fall-off and less dose to surrounding organs at risk [13, 14]. Volumetric

modulated arc radiotherapy (VMAT) is a newer form of IMRT where the machine

rotates around the patient in an arc shape and continuously changes the shape of

the beams to conform around the tumour from all directions, significantly decreasing

treatment time. IMRT techniques allow higher radiation doses to be delivered to the

tumour while sparing organs at risk to give a greater chance of treatment response

with minimal toxicity.

1.1.2 Image-guided radiotherapy

Imaging machines can be integrated into LINACs to allow patients to be scanned

before treatment. This is called image-guided radiotherapy (IGRT) and has become
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standard of care in the UK [15]. Immediately prior to treatment, a cone beam CT

(CBCT) scan is taken and the tumour position in the image is matched to the planning

CT scan [16]. CBCT scans use diverging x-rays to provide a volumetric image of

the patient’s tumour, using a lower radiation dose than a traditional CT scan. 4D

CBCT scans acquire respiratory motion data during the imaging process, allowing

tumour motion to be taken into account. The CBCT or 4D CBCT image is then

aligned with the planning CT scan, whether 3D or 4D, and the difference in the

patient’s position determined. If the patient’s position has moved significantly from

the planning position, the distance between them termed a set-up error, the treatment

couch can be adjusted to ensure the radiotherapy beams are reaching the tumour.

If large anatomical changes are detected, reactive adaptive re-planning is required to

ensure the tumour is receiving the correct dose. IGRT reduces radiation damage to

healthy tissue caused by set-up errors, and ensures, as much as possible, the full dose

is actually being delivered to the PTV as planned.

1.1.3 Changes to radiotherapy workflows

IMRT and IGRT are examples of advances in radiotherapy that were implemented

without evidence of clinical benefit from Randomised Control Trials (RCTs). Changes

to radiotherapy workflows happen often as technology and techniques advance, often

without formal evaluation as there is an assumed benefit to technological advance-

ments based on biological or physical characteristics. This in itself makes it difficult

to evaluate technological changes in a RCT as it would be unethical to randomise pa-

tients to a potentially lesser treatment when there is biological or dosimetric evidence

suggesting the newer technique is superior [17]. For example, IGRT was implemented

without RCT evidence as it is difficult to argue that there is a clinical equipoise

between patients who are imaged before treatment to ensure the tumour is in the

planning position, and patients who are not imaged. In the case of IMRT, dosimetric

studies revealed it can achieve better dose conformality [18, 19], so it was implemented

with an assumed clinical benefit rather than RCT evidence. Furthermore, RCTs are

time consuming; it takes years to develop, recruit and follow-up patients to finally

determine any benefit of technical changes and during that time newer advancements

may be available making the original reason for the trial obsolete. These complexities
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in evaluating technical changes to radiotherapy practice mean there is a distinct lack

of evidence on the impact of such changes on patient outcomes [20].

1.2 Lung cancer

Lung cancer is the leading cause of cancer deaths worldwide, accounting for 18% of

all cancer deaths [21]. Over half of patients die within one year of diagnosis and the

5-year survival is only 8% for men and 12% for women [22]. There had been little

improvement in survival for patients with lung cancer since the 1970s [22]; however,

recent advances in immunotherapy for patients without actionable mutations and ty-

rosine kinase inhibitors for patients with actionable mutations have led to improved

survival rates [23–25]. Many patients are diagnosed with advanced disease which is

more difficult to treat [26]. This is in part due to the symptoms of lung cancer gen-

erally presenting when the disease is in the later stages and even when symptoms

present earlier, people delay seeing their GP as symptoms are non-specific, such as

coughing and chest pain, or smoking-related side effects [27]. Lung cancer screening

initiatives have been rolled out in the UK for those at high risk of the disease, after

pilot initiatives led to many lung cancers being diagnosed at early stages [28]. There

is a high association between lung cancer mortality rates and social deprivation in the

UK [29], likely due to the high prevalence of smoking in deprived areas [30], unhealthy

lifestyles and a lack of symptom awareness.

There are two types of lung cancer, non-small cell lung cancer (NSCLC) and small

cell lung cancer (SCLC). 85% of all lung cancer cases present as NSCLC. There are

three main types of NSCLC: adenocarcinoma, squamous cell carcinoma and large cell

carcinoma. Early stage NSCLC can be treated with surgery or, if surgery is deemed

too dangerous for the patient, radical radiotherapy. Stereotactic ablative radiotherapy

(SABR) is hypofractionated, larger doses given per fraction, and prescribed for small

tumours (up to 5 cm) that are localised and can be precisely targeted by the radiation

whilst avoiding damage to the surrounding tissue. It can achieve a local control rate

similar to that of surgery [31]. If the patient is not eligible for SABR or surgery, for

example if the patient is frail and suffers from many comorbidities, but the disease

is early stage, conventional radiotherapy can be prescribed (i.e. 30-33 Gy in 60-66
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fractions), or hypofractionated radiotherapy (i.e. 60 Gy in 15 fractions). Most cases

of NSCLC present at a locally advanced stage and treatment depends on various cri-

teria including comorbidities, tumour volume, dose to healthy tissue and the fitness

of the patient. Patient fitness is characterised by the performance status, such as

the Eastern Cooperative Oncology Group (ECOG) performance status, which scores

a patient from 0 to 5, 0 meaning the patient is fully active and needs no help in daily

activities, 1 meaning the patient cannot perform physically strenuous activities but is

still able to carry out light work, to 5 meaning the patient is dead. The fittest patients

with a performance score of 0/1 are prescribed the gold standard treatment of concur-

rent chemo-radiotherapy if their cancer is inoperable, as they are deemed fit enough

to withstand the toxicities associated with receiving radiotherapy and chemotherapy

concurrently [32]. This is then followed by consolidation immunotherapy if they meet

the response criteria. Lung and kidney function are assessed before treatment to en-

sure the patient can tolerate the toxicities [33]. If a patient’s tumour is particularly

large or they are not fit enough to withstand a concurrent regimen, sequential chemo-

radiotherapy is preferred. If the patient suffers from poor renal function or is too

ill for chemotherapy, radiotherapy alone is prescribed. For metastatic NSCLC, ra-

diotherapy, chemotherapy, immunotherapy and targeted agents can be prescribed for

palliative treatment.

Small cell lung cancer is the rarer, more aggressive form of lung cancer that typically

presents in the advanced stages and has a median survival of 7 months with treatment

[34]. Incidence of SCLC has decreased over the years, likely due to an increase in

smoking cessation, although in developing countries incidence is the same or increas-

ing [35]. SCLC has historically been classified as either limited or extensive in stage,

where extensive means the cancer has spread outside the thorax. Standard of care

for limited stage SCLC is concurrent chemo-radiotherapy if the patient is fit, if not

then sequential chemo-radiotherapy or radiotherapy alone. For extensive stage SCLC,

chemotherapy and immunotherapy is considered for fit patients, otherwise chemother-

apy alone. Chemotherapy is prescribed for limited as well as extensive stage SCLC

due to the high risk of micro-metastasis. SCLC responds well to initial treatment of
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chemo-radiotherapy; however, it has a very high relapse risk and risk of brain metas-

tasis. Prophylactic cranial irradiation (PCI) is given as standard of care for patients

with all stages of SCLC as it reduces risk of brain metastasis and relapse [36]. How-

ever, recent evidence is challenging the use of PCI, particularly in the extensive stage

setting [37].

1.3 Real-world data

Patients with lung cancer tend to be old, frail, and have a high comorbidity burden.

Such patients are typically under-represented in RCTs [38, 39]. It is vital that clear

evidence is generated for these patients to ensure they are getting the best treat-

ments.

Real-world data are defined by the Food and Drug Administration (FDA) as routinely

collected data relating to the health or healthcare delivery of patients from various

sources [40]. Real-world data have the potential to provide evidence for patients typi-

cally excluded or under-represented in RCTs, as data are captured for every patient.

Real-world data are often though of as the clinical data captured in patient’s elec-

tronic health records, but also includes the large volumes of imaging data patients

accrue during their cancer care.

1.3.1 Real-world clinical data

Clinical data are captured in patient’s Electronic Health Records (EHRs), documenting

their healthcare over their lifetime. Data are captured on patient demographics, diag-

noses, treatments and side effects, laboratory tests, imaging reports, hospital episodes,

outcomes and more. EHRs are used worldwide to document and store healthcare data

with the aim of supporting continuity of care [41]. In the UK, the implementation

of EHRs has been driven by governmental initiatives and financial investments in the

last two decades [42], and the current NHS Long Term Plan aims for all hospitals to

become fully digitised so clinicians can interact with care records where ever they are

[43]. There is increasing interest in using the large, rich datasets derived from EHR

in research, for example to determine incidence/prevalence of a disease, find potential
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risk factors or improve the quality of services [44]. As data are captured for every

patient, there is the potential to develop representative clinical models that describe

and benefit the entire population. Real-world evidence generated from real-world data

can complement evidence from RCTs.

1.3.2 Real-world imaging data

Imaging is used routinely in lung cancer management, helping to determine diagnosis,

prognosis and predict the optimal treatment for each patient. Imaging allows visual-

isation of morphological characteristics of the tumour that can qualitatively help to

determine the stage of the cancer, by identifying and quantifying the extent to which

the tumour has spread to lymph nodes or other organs. Imaging is non-invasive and

is performed throughout the treatment pathway to monitor response to treatment.

Imaging biomarkers, biological features detected from medical images, can help in-

form treatment decisions and are indispensable in oncology [45]. For example, TNM

Classification of Malignant Tumours (TNM) staging is used worldwide to classify solid

tumours by taking into account tumour size, invasion of nearby tissue, involved lymph

nodes and presence of metastasis. These factors can all be determined through various

imaging techniques and in combination become a prognostic factor that helps the clin-

ician to tailor a treatment specific to the patient. Finding imaging biomarkers beyond

TNM that help stratify patient treatment options is crucial in this era of personalised

medicine, particularly in lung cancer where images are taken routinely throughout the

care pathway and improvements in survival have been limited to small patient groups

where immunotherapy has been shown to be beneficial.

Radiomics

Imaging biomarkers have been used in health care for decades, however over the last

10 years or so the concept and work flow of extracting image-based features from

medical images has blossomed. Radiomics is the extraction of numerous quantita-

tive features from medical images to quantify tumour phenotypes [46]. In contrast to

imaging biomarker studies where features of interest are chosen a priori, radiomics is a

data-driven approach where statistical methods are used to find the features most cor-

related to the measure of interest. These image-based features can be combined with
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patient characteristics and other biomarkers, such as genomics and pathology, to create

individualised predictive models of outcome. The rationale behind creating a radio-

graphic tumour phenotype is that medical images harbour information on underlying

pathology which is not revealed by qualitative assessment [47]. If no particular imag-

ing biomarker is of interest to study, then radiomics can be a hypothesis-generating

approach to finding features that are correlated to a measure of interest.

Studies involving radiomics have increased exponentially in the last few years. The

workflow for radiomics analyses is described in detail in Chapter 2 and shown in

Figure 1.2. Briefly, images of tumours are first acquired and reconstructed. The

visible tumour is then contoured and pre-processing steps can be performed on the

image such as discretisation, binning voxel intensities to reduce the total number of

intensity values in the image, or filtering. Features are then extracted; this can include

thousands of features describing the tumour’s shape, texture and intensity. The final

steps involve data analysis and statistical modelling techniques to correlate the features

to clinical endpoints such as survival or treatment response, or biological endpoints

such as genetic mutational status or histology.

Figure 1.2: Visualisation of the steps in the radiomics workflow. First, images are
acquired and reconstructed. The region of interest is then segmented, from which
features will be extracted. Next, pre-processing steps are performed to modify the
images before feature extraction. Shape, first order (or histogram) and texture
features are then extracted from the region of interest. Finally, data analysis steps
attempt to find correlations between features and the specified outcome.
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Many limitations are inherent at each step of the radiomics workflow, discussed in

detail in Chapters 2 and 3. Key issues include the lack of standardisation with re-

gards to image acquisition, image pre-processing and feature extraction which has been

found to affect feature repeatability and reproducibility [48]. For example, features

extracted from images of the same phantom acquired on different CT scanners are not

always reproducible [49, 50]; in one study the variability between feature values was

comparable to the inter-patient variability [50]. The Imaging Biomarker Standardis-

ation Initiative (IBSI) have done extensive work to standardise the radiomics feature

extraction process by developing a guideline for feature nomenclature and definitions,

and publishing a digital phantom and benchmark datasets so software developers can

benchmark their feature values to be IBSI compliant, promoting reproducibility [51,

52].

There are vast amounts of imaging data available in the field of oncology, and there

is potential to harness the information within using radiomics. Individualised statis-

tical models created using real-world imaging and clinical data could help to identify

potential risk factors, and ultimately lead to changes being made that may improve

outcomes for patients with cancer.

1.3.3 Why are we interested in real-world data?

RCTs are the gold standard in evidence-based medicine for evaluating the effective-

ness of treatments. Their design ensures results are not affected by confounding,

unmeasured variables that influence both cause and effect, as patients are randomised

between treatment options on entry into the trial. This allows a reliable cause and

effect relationship between the intervention and outcome to be established.

While RCTs are a powerful tool for providing evidence of treatment effectiveness,

there are cases where RCT evidence does not exist. For example, RCT evidence

generally does not exist in cases where there is a lack of clinical equipoise, i.e. genuine

uncertainty as to whether one intervention is better than another. As discussed in

Section 1.1.3, technical changes to radiotherapy treatments are often implemented

without RCT evidence, as technological advances are assumed to lead to superior

treatments. While there may be dosimetric or mathematical evidence suggesting the
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advancement is superior, ensuring patient outcomes are also improving, or at least not

getting worse due to a perhaps unforeseen complication, is also important. Real-world

data are vast, and the large, rich datasets can be used to investigate such clinical

questions and generate real-world evidence to fill the evidence-gap when RCT data do

not exist. Real-world data, therefore, have the potential to ensure new advances are

actually effective, and are leading to better outcomes for patients [53].

RCTs are highly selective and tend to exclude, or at least under-represent, patients

who are old, frail and have multiple comorbidities [38, 39]. One study found that 60%

of RCT study eligibility criteria relate to comorbidity or performance status [54]. It

is therefore questionable whether results from RCTs have external validity, i.e. that

results are generalizable to the rest of the patient population [55]. A key advantage

of real-world data is that data exist for all patients, including those who are old,

frail and have multiple comorbidities. Real-world datasets can be used to check for

real-world effectiveness of interventions, particularly for patients under-represented in

RCTs. Furthermore, RCTs tend to have short follow-up periods, so long-term effects

of interventions may not be captured. As real-world data derived from EHRs are

longitudinal in nature, analysis of long-term follow-up data could reveal rare adverse

events that otherwise may not be captured. This of course depends on high quality,

long-term data being collected, which can be difficult in practice.

Many treatment decisions made in radiation oncology are done so without RCT ev-

idence to back them [56]. Real-world evidence generated from real-world data could

help to provide evidence where RCT evidence does not, and will not, exist.

1.3.4 The challenges of real-world data

The main challenge of using real-world data to generate evidence is the fact data are

collected for clinical use and not necessarily for research or analytical purposes. This

means the quality of the data is less standardised and potentially inferior to that

from RCTs, where data entry is well defined and controlled. Real-world data are of-

ten incomplete, inaccurate, inconsistent and care records can be dis-jointed making it

difficult to merge databases from different sources. Laboratory and imaging results

may not be comparable across patients due to different protocols and techniques used.
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Retrospective analysis of real-world data suffer with these issues the most, as prospec-

tive data collection can mitigate these issues by clearly defining how data should be

collected.

Developing evidence of both treatment benefit and risk in the real-world setting re-

quires high quality data on outcomes such as survival, local and distant relapse, as

well as long term toxicity and quality of life metrics, which are not always available.

The implementation of electronic Patient-Reported Outcome Measures (ePROMs) for

patients with cancer treated at the Christie NHS Foundation Trust enables collection

of data on patient symptoms and quality of life, an important aspect of treatments

not captured in most EHRs [57]. As well as capturing high quality data, data must be

captured in a structured way so that they can be easily analysed. Unstructured data

are captured as free-text in clinical notes and reports, or imaging data for example.

It is estimated that 80% of healthcare data are unstructured [58] and are therefore

unusable in analyses without manual curation or the development of tools to be able

to convert the data to be amenable for computer processing.

Missing data are a further issue associated with real-world data, and when missing data

are informative, i.e. there is a reason the data are missing and they are not missing

at random, this can introduce bias into an analysis. For example, missing data can

be informative if a particular test is only done on patients with severe disease. If you

included the data from this particular test in your analysis, your results would be

biased as only patients with severe disease would have data for that test. Methods to

overcome missing data include only using complete cases, imputing missing data, and

carrying observations forward in the case of longitudinal data [59]. When missing data

are informative, only using complete cases can introduce bias and reduce statistical

power by reducing the size of the available dataset.

Real-world data are observational by nature, i.e. non-interventional, and as such real-

world evidence can suffer from different types of bias. Selection bias occurs when

selection of participants into a study is not representative of the wider population of

interest. This is a particular issue for retrospective observational studies as patient

inclusion into an analysis is heavily dependent on clinical decisions made in practice
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which could lead to a biased result. For example, a study including patients with

lung cancer who received immunotherapy would have to deal the bias that may arise

from the fact that only patients who responded well to initial chemo-radiotherapy

and had a good performance status would have been offered adjuvant immunotherapy,

and therefore any results from that study would not be applicable to patients who

did not respond to chemo-radiotherapy or had poor PS. Selection bias compromises

external validity. Confounding occurs when there are systematic differences between

baseline variables of the comparison groups that affect outcome. RCTs mitigate this

bias by randomising patients on entry to the study, but observational data do not have

this advantage and as such choice of a particular treatment or intervention could be

correlated to the outcome of interest. For example, comparing the survival of patients

with lung cancer who received concurrent versus sequential chemo-radiotherapy would

be confounded by the fact that concurrent chemo-radiotherapy is only offered to the

fittest patients. The concurrent group would therefore be expected to live longer in

any case due to better underlying health, rather than purely due to the concurrent

treatment. Methods to mitigate confounding include adjusting for known confounders

in multivariable analyses or using propensity score matching [60]. However, there is

always the limitation that unknown confounders could be influencing the results and

compromising internal validity. It is therefore important to include multidisciplinary

teams when designing and analysing an observational study with real-world data to

ensure all confounders are being taken into account and there is in-depth knowledge

of how treatment decisions are made.

1.3.5 The potential of real-world data

RCTs and real-world evidence are not mutually exclusive. The randomisation from

RCTs is vital to ensure validity of results; however, studies using real-world data can

provide complimentary evidence. Moreover, randomised trials can be done using real-

world data to generate real-world evidence in what is known as a pragmatic trial.

Pragmatic trials use randomisation in a real-world setting to evaluate interventions,

as opposed to RCTs which use optimal settings [61]. They allow the effectiveness of

treatments to be tested in the real-world population. The importance and potential of
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real-world EHR data was highlighted during the COVID-19 pandemic. The RECOV-

ERY trial, a pragmatic trial, found the first effective treatment against COVID-19, an

inexpensive steroid called dexamethasone which reduced deaths by up to a third, sav-

ing countless lives [62]. It had a simple design with minimal data entry requirements,

making it different to standard RCTs, which was necessary at the time to ensure min-

imal burden to an already overworked and understaffed workforce. Staff were only

required to submit essential information, and then routinely collected data available

in EHRs were linked to the trial data to complete the database. This allowed rapid

and reliable results to be discovered. The RECOVERY trial highlights the potential

real-world data have to generate real-world evidence in pragmatic trials and allow the

discovery of safe, effective treatments that will improve the lives of patients.

The potential of real-world data is being recognised. In 2022, the Department of Health

and Social Care commissioned an independent review into improving the safety and

security of healthcare data used in research, and how these data can be harnessed to

improve the lives of patients [63]. The findings from the review, named the Goldacre

report, have shaped the Health and Social Care Data Strategy published in June 2022,

’Data saves lives: reshaping health and social care with data’ [64], which describes

a vision and a roadmap to make better use of NHS data to save lives. The NHS

long term plan also sets out an aim to drive digital transformation within the NHS,

including making clinical data available for research and ensuring clinical records are

all digitised [43]. The National Institute for Health and Care Excellence (NICE)

have ambitions to include real-world data in the development of their evidence-based

guidelines [65].

1.4 Learning Healthcare Systems

Real-world data have the potential to fill current gaps in clinical knowledge, particu-

larly in the case of technical changes to radiotherapy workflows. A Learning Healthcare

System (LHS) is a potential environment within which technical changes to practice

could be evaluated [66]. In the LHS concept, routine, real-world data collated in pa-

tient’s EHRs are analysed to monitor outcomes and identify areas for improvement.



36 CHAPTER 1. INTRODUCTION

Changes to practice are implemented and learning cycles monitor the changes in or-

der to improve healthcare delivery [67]. The learning cycle is pictured in Figure 1.3.

Embedding evidence generation and learning cycles into clinical practice could allow

accelerated clinical translation of findings, as well as generate evidence in cases where

traditional trials are not practical or possible. This iterative approach to improving

healthcare delivery is also known as rapid learning.

Figure 1.3: The Learning Healthcare System [68].

1.4.1 Analyses within a Learning Healthcare System

A LHS encompasses several steps, and each step requires a different analytical ap-

proach. The first step in a LHS is to analyse data to generate clinical insight or

evidence that answers a clinical question, shown as the Research Evidence and Best

Practices in Figure 1.3. This step can include evidence generated from observational

clinical and imaging data, or large scale clinical audits for example. Hypothesis gen-

erating analyses, such as large scale radiomics studies, can help identify potential
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biomarkers or variables that can be taken forward and tested in larger validation stud-

ies, or prospectively in a LHS. Such retrospective research evidence plays a key part in

a LHS by generating evidence that, if convincing enough, could subsequently influence

clinical practice. Examples of changes to radiotherapy workflows that might come

from retrospective analyses include reducing radiotherapy margins or an OAR dose

limit.

Once a change to practice has been decided on, implementation within a LHS ensures

rapid feedback on the impact of the change on patient outcomes as more patients

are treated. As data would generally have been collected as a part of routine care in

patient’s EHRs, this does not impose extra time or effort for the healthcare provider.

Outcomes of interest could include treatment-related side effects, patient reported

outcomes, quality of life metrics or increased costs. The real-world evidence generated

from the results could influence the next learning cycle, i.e. make further adjustments

to practice in light of the results, or influence guidelines for other centres to implement

the change if it proves to be successful.

Analysing patient’s data prospectively as soon as outcomes are available allows the

investigator to rapidly find out if the changes are beneficial or otherwise. A vital

part of the LHS is the experimental methodology used to analyse the data to evaluate

the impact of the change to practice. The real-world evidence generated needs to

be of high quality if it is to influence guidelines and ensure patients are receiving

the best quality of care. Experimental or quasi-experimental designs can be used

for rapid learning to evaluate the impact of changes to practice. An experimental

design includes point-of-care randomisation, ensuring high internal validity as with a

RCT. Since the intervention is being tested on real-world patients, the experimental

design also has improved external validity compared to a RCT. Quasi-experimental

designs do not randomise and will therefore suffer from lower internal validity due to

unknown confounding, but will have high external validity due to reduced selection

bias [69]. Both methods attempt to establish a cause-and-effect relationship between

the intervention or change to practice, and the outcomes of interest.

A non-randomised quasi-experimental design may be easier to implement clinically in
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radiotherapy, considering the lack of clinical equipoise means technical changes tend

to be implemented for all patients, rather than randomising patients between proto-

cols. A recent review of the LHS/rapid learning literature in radiation oncology found

that out of 16 studies, 15 used a quasi-experimental design as opposed to randomis-

ing patients [70], 7 of which used a pre/post design i.e. comparing the outcomes of

patients before and after a change to practice without using a control group. Such

designs do not account for secular trends and may suffer from confounding as patient

cohorts may be systematically different before and after the intervention [71]. This

can be mitigated against with multivariable analyses adjusting for known confounders,

although only one study in the review did this [70]. Moreover, no studies adjusted for

multiple comparisons when performing multiple significance tests on patient outcomes

or variable distributions [70]. The review concludes that there is little consensus as to

the best experimental methods to evaluate changes to practice using real-world data

in a LHS [70]. There is, therefore, an unmet need to develop statistical frameworks

that help investigators understand, as easily and quickly as possible, whether a change

to practice has impacted clinical outcomes or not.

1.5 Aims

Real-world data offer an opportunity to improve outcomes for patients with lung can-

cer. In particular, real-world data could help to provide evidence that changes made

to radiotherapy practice are beneficial, or at the least not detrimental. Real-world

clinical and imaging data can help to achieve this by providing large, representative

and inclusive datasets that can be analysed to find relationships between variables of

interest and outcomes. Retrospective studies done on real-world datasets form part of

the LHS concept by generating insight which can inform changes to practice, ensuring

patients are receiving the best standard of care.

This thesis is presented in alternative format and includes numerous individual studies

which together investigate different aspects of a LHS using concrete case studies with

retrospective, real-world data. First, clinical insight is generated from retrospective

analysis of both imaging and clinical real-world data. This is followed by investigating

the potential of using real-world data to assess the impact of changes to practice. The
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overall aims of this thesis are to:

1. Investigate the potential of routine, real-world radiomics imaging biomarkers

to generate clinical insight and improve patient outcomes through supported

decision making.

2. Develop approaches for using real-world data to assess whether changes to clinical

practice affect patient outcomes.

The thesis starts with a thorough review in Chapter 2, investigating whether radiomics,

using routinely collected imaging data, has the potential to personalise lung cancer

treatment and improve clinical outcomes, addressing aim 1. Reported methodologi-

cal concerns with CT-based NSCLC radiomics are summarised along with potential

solutions. The published literature that use radiomics to predict patient outcomes

or aspects of tumour biology is then critically appraised with respect to the method-

ological concerns identified in this review. Different scoring systems that appraise

radiomics and prediction modelling studies are applied to each study and compared

to each other. This work has been published in Lung Cancer [72] and is reproduced

here, subject to formatting for consistency throughout the thesis.

The results from Chapter 2 led to the work in Chapter 3, having identified a gap in

the literature. Chapter 3 addresses aim 1 by investigating whether choice of radiomic

feature extraction software influences the statistical reliability of features and the abil-

ity to predict clinical outcome. Four software platforms are compared across three

clinical datasets, and the impact of IBSI compliance, feature calculation settings and

software version are investigated. This work has been published in European Radiol-

ogy [73] and is reproduced here, subject to formatting for consistency throughout the

thesis.

Chapter 4 addresses aim 2 by using routinely collected data to evaluate whether the

introduction of IMRT at The Christie NHS Foundation Trust had an effect on the

proportion of patients treated with curative-intent radiotherapy and whether patient

survival was affected. This work has been published in Frontiers in Oncology [74] and

is reproduced here, subject to formatting for consistency throughout the thesis.
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Chapter 5 also addresses aim 2, by analysing real-world data collected prospectively for

Lung Radiotherapy during the COVID-19 Pandemic (COVID-RT Lung) to assess the

impact of changes to treatments for patients with lung cancer during the first wave of

the COVID-19 pandemic. This work has been published in Clinical Oncology [75] and

is reproduced here, subject to formatting for consistency throughout the thesis. This

paper is a follow-up paper to one published describing the changes made to treatments

of patients enrolled in COVID-RT Lung [76] which is included in the Appendix.

Chapters 6 and 7 both address aim 2, by assessing the potential benefits of using

Bayesian methodology to evaluate changes to practice with real-world data. Chapter 6

takes the form of a teaching article, explaining the differences between frequentist and

Bayesian statistical methodologies using a simulated dataset based on the dataset

used in Chapter 7. This work has been published in the International Journal of

Radiation Oncology-Biology-Physics [77] and is reproduced here, subject to formatting

for consistency throughout the thesis. A Letter to the Editor in response to this

paper [78] and our reply [79] is included in the Appendix. Chapter 7 then uses the

Bayesian methodology on a real-world dataset to investigate whether a change in

IGRT patient set-up protocol at The Christie NHS Foundation Trust reduced the risk

of death associated with having residual set-up errors towards the heart. This work

has been published in Radiotherapy and Oncology [80] and is reproduced here, subject

to formatting for consistency throughout the thesis.
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Abstract

Radiomics has become a popular image analysis method in the last few years. Its

key hypothesis is that medical images harbor biological, prognostic and predictive in-

formation that is not revealed upon visual inspection. In contrast to previous work

with a priori defined imaging biomarkers, radiomics instead calculates image features

at scale and uses statistical methods to identify those most strongly associated to

outcome. This builds on years of research into computer aided diagnosis and pattern

recognition. While the potential of radiomics to aid personalized medicine is widely

recognized, several technical limitations exist which hinder biomarker translation. As-

pects of the radiomic workflow lack repeatability or reproducibility under particular

circumstances, which is a key requirement for the translation of imaging biomark-

ers into clinical practice. One of the most commonly studied uses of radiomics is

for personalized medicine applications in Non-Small Cell Lung Cancer (NSCLC). In

this review, we summarize reported methodological limitations in CT based radiomic

analyses together with suggested solutions. We then evaluate the current NSCLC

radiomics literature to assess the risk associated with accepting the published conclu-

sions with respect to these limitations. We review different complementary scoring

systems and initiatives that can be used to critically appraise data from radiomics

studies. Wider awareness should improve the quality of ongoing and future radiomics

studies and advance their potential as clinically relevant biomarkers for personalized

medicine in patients with NSCLC.

2.1 Introduction

Lung cancer remains the leading cause of cancer-related mortality worldwide [81]. The

5 year survival for patients with non-small cell lung cancer (NSCLC), the most common

form of the disease, is 10-20% [22, 82]. Despite advances in treatment options in recent

years, survival rates have changed little [22, 83]. Given the patient variability and

tumor heterogeneity of this cancer, personalizing treatment is key to improving survival

beyond the current poor prognosis [84]. One requirement for successful delivery of

personalized medicine is the identification and validation of biomarkers that can predict

which patients will benefit from a given therapy. There is an unmet need for such
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biomarkers in lung cancer [85].

Medical imaging plays a key role in the diagnosis and treatment of lung cancer, making

the use of image-based biomarkers to guide clinical decision-making attractive. Over

the last several decades, a number of biomarkers derived from CT, PET and MRI that

measure tumor size, shape and texture, or quantify aspects of the tumor microenviron-

ment have been used in lung cancer studies for diagnosis, prediction, prognostication

and response monitoring [85–87].

There is currently substantial interest in using computer algorithms to extend this ap-

proach to extract tens to thousands of image ‘features’ in an analysis pipeline strategy

termed ‘radiomics’. Such methods test the hypothesis that medical images harbor data

that will provide biomarkers for personalized medicine, but that the optimum biomark-

ers are not readily determined a priori [88]. Imaging biomarker studies postulate that

medical images contain biological, prognostic and predictive information that is not

apparent when clinicians view scans [47]. In radiomics, this information is extracted

from digital images using computer algorithms to form ‘radiomic signatures’, a type of

quantitative imaging biomarker formed by combining the radiomics features that have

the strongest association to the measured outcome. The radiomics workflow consists

of a series of steps [89] summarized in Figure 2.1. Proponents of radiomics hypothesize

that these data-driven approaches will select the most statistically significant signature

that relates to an outcome measure of interest. This approach is extremely popular,

but to date the resultant imaging biomarkers have not been validated as useful tools

for personalized medicine [90].
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Figure 2.1: Visualization of the steps in the radiomics workflow. First, images are
acquired and reconstructed. The region of interest is then segmented, from which
features will be extracted. Next, pre-processing steps are performed to modify the
images before feature extraction. Shape, first order (or histogram) and texture
features are then extracted from the region of interest. Finally, data analysis steps
attempt to find correlations between features and the specified outcome.

CT is the most commonly used modality worldwide for diagnosis, treatment planning,

and follow-up in all stages of lung cancer, meaning that informative imaging biomarkers

discovered from these data could be translated rapidly into clinical practice. In this

review, we summarize the literature supporting use of CT radiomic biomarkers to guide

decision-making in patients with NSCLC. We appraise the published reports of CT

radiomics biomarkers as predictive, prognostic or biologically informative tools and

review literature highlighting methodological limitations. Our aims are to evaluate

how robust the conclusions of these studies are and to assess how well the current

standardization and reporting tools inform readers of the potential limitations when

interpreting their results.

2.2 The potential of radiomics for personalized

decision-making in NSCLC

A review of the literature found 43 CT image based studies that evaluated the prog-

nostic or predictive role of radiomic signatures in patients with NSCLC (Table 2.1).
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Three of these studies, together with a further 21 we separately identified, evalu-

ated the role of radiomic signatures in appraising aspects of tumor biology including

genomic or pathologic biomarkers, signalling pathways, and disease classification in

NSCLC (Table 2.2).

In addition, 42 studies reported on radiomics methodological limitations, potential

problems, and possible solutions in CT based studies using data from NSCLC patients

or imaging phantoms. The frequency of publications, for all types of NSCLC radiomics

study, has markedly increased over the last six years (Figure 2.2). Our search strategies

are described in detail in supplementary materials.

Figure 2.2: Frequency of CT NSCLC radiomics studies published from 2014 to
2019. Publications are categorized as those investigating radiomics methodological
concerns, those evaluating radiomic signatures as prognostic or predictive biomark-
ers of patient outcome, and those evaluating radiomic signatures as biomarkers of
tumor biology.
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Table 2.1: Radiomics studies in NSCLC, categorized into sections based on their investigated endpoint. The Data column specifies the total
number of patients involved in the study, in brackets split by training and validation cohorts if applicable and specifying other cancer types of
cohorts if applicable. Note: Studies marked with * are validation studies and their RQS score components refer to methodology based on the
previous published data. This table has been simplified to clarify presentation – more details for each study are available in Supplementary
Table 2.6.

Reference Stage Data (training + valida-
tion)

Radiomic features in final
model

Result

Overall survival

Aerts et al. 2014 1-3b 647 pCT
(422 + 225)

Shape, first order and texture CI=0.65

Van Timmeren et al.
2017*

1-4 252 pCT and CBCT
(102 + 56 + 94)

Shape, first order and texture CI=0.69, 0.61, 0.59 (pCT)
CI=0.66,0.63,0.59 (CBCT)

Grossman et al. 2017* 1-3 351 diagnostic CT
(262 + 89)

Shape, first order and texture CI=0.60

Grossman et al. 2017 1-3 351 diagnostic CT
(262 + 89)

Not specified CI=0.61

Yu et al. 2017 1 442 diagnostic CT
(147 + 295)

First order and texture CI=0.64

Chaddad et al. 2017 1-3b 315 pCT Shape and texture Average AUC=0.70-0.76

Fave et al. 2017 3 107 4DCT end of exhale,
planning and CBCT

Shape and texture CI=0.672

Li et al. 2017 1-2a 59 follow up CT Texture AUC=0.81
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Table 2.1 continued from previous page

Reference Stage Data (training + valida-
tion)

Radiomic features in final
model

Result

Li et al. 2017 1-2a 92 4DCT
Average-CT or 50% phase-
CT images were used for
analysis

Shape and first order AUC=0.728

Tang et al. 2018 1-3 290 staging CT
(114 + 176)

Shape, first order and texture CI=0.72

Bianconi et al. 2018 1-3 203 pCT Shape and texture HR=1.06-1.48

De Jong et al. 2018* 4 195 diagnostic CT Shape, first order and texture CI=0.576

Lee et al. 2018 1-3 339 CT (type not defined,
just pre-operative within 2
weeks before surgery)

Shape, first order and texture CI=0.772

He et al. 2018 1-3 186 CT
(298 after oversampling (223
+ 75)) type not defined

Not specified AUC=0.9296

Starkov et al. 2018 1 116 pCT Texture High risk vs low risk me-
dian p-values=0.04–0.07

Yang et al. 2018 1-4 371 CT
(239 + 132)

First order and texture CI=0.702

Wang et al. 2019 3 70 pre-treatment and 97
post treatment CT from 118
patients

Texture CI=0.743
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Table 2.1 continued from previous page

Reference Stage Data (training + valida-
tion)

Radiomic features in final
model

Result

Shi et al. 2019 3 11 CBCT from 23 patients First order HR=0.21

Van Timmeren et al.
2019

1-4 337 pCT and 2154 CBCTs
from 337 patients
(141 + 94 + 61 + 41)

First order and texture CI=0.59, 0.54, 0.57

Huang et al. 2019 1-4 371 CT
(254 + 63 + 54)

Shape, first order and texture CI=0.621, 0.649

Franceschini et al. 2019 1-2 102 4DCT (start of inspira-
tion)
(70 + 32)

Shape and texture AUC=0.85

Local or metastatic recurrence

Coroller et al. 2015 2-3 182 pCT
(98 + 84)

First order and texture CI=0.6

Mattonen et al. 2016 1 45 follow-up CT First order and texture AUC=0.85

Huynh et al. 2016 1-2 113 CT (free breathing) First order and texture Median CI=0.67

Huynh et al. 2017 1-2a 112 free breathing CT and
AIP CT

Shape, first order and texture AIP radiomics CI=0.667
FB radiomics CI=0.601

Fave et al. 2017 3 107 4DCT end of exhale,
planning and CBCT

Shape and texture CI=0.632, 0.558 (DM,
LRR)

Li et al. 2017 1-2a 59 follow up CT Texture AUC=0.80, 0.80 (RFS,
LR-RFS)
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Table 2.1 continued from previous page

Reference Stage Data (training + valida-
tion)

Radiomic features in final
model

Result

Li et al. 2017 1-2a 92 4DCT
Average-CT or 50% phase-
CT images were used for
analysis

Shape AUC=0.747, 0.690 (RFS,
LL-RFS)

Dou et al. 2018 2-3 200 pCT
(100 + 100)

Texture CI=0.65

Ferreira Junior et al.
2018

1-4 68 CT
(52 + 16)

Shape and texture AUC=0.75, 0.71
(lymph node metastasis,
DM)

Yang et al. 2018 1-3 159 CT
(106 + 53)

Shape, first order and texture AUC=0.856

Zhong et al. 2018 1-2 492 CT First order and texture AUC=0.972

Lafata et al. 2019 1 70 CT Texture Maximum AUC=0.72,
0.83, 0.60 (recurrence, LR,
non-LR)

Akinci D’Antonoli et
al. 2019

1-2b 124 CT Shape, first order and texture AUC 0.731, 0.750 (LR,
DM)

He et al. 2019 Not speci-
fied

717 CT
(423 + 294)

First order and texture CI=0.734

Xu et al. 2019 3-4 132 CT
(106 + 26)

Texture AUC=0.642
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Table 2.1 continued from previous page

Reference Stage Data (training + valida-
tion)

Radiomic features in final
model

Result

Franceschini et al. 2019 1-2 102 4DCT (start of inspira-
tion)
(70 + 32)

Shape, first order and texture AUC=0.73

Ferreira-Junior et al.
2019

1-4 85 CT Shape, first order and texture AUC=0.92, 0.84 (DM,
nodal metastasis)

Cong et al. 2019 1a 649 venous phase CT
(455 + 194)

Shape, first order and texture AUC=0.851

Treatment response, disease-free or progression-free survival

Coroller et al. 2016 2-3 127 pCT Shape, first order and texture Median AUC=0.65, 0.61
(GRD, pCR)

Huang et al. 2016 1-2 282 CT (141 + 141) First order and texture HR=2.09

Song et al. 2016 1-4 152 CT
(80 + 72)

Texture HR= 2.35, 2.75

Coroller et al. 2017 2-3 85 pCT Shape, first order and texture Median AUC=0.68, 0.71
(pCR, GRD)

Tunali et al. 2019 3b-4 228 CT Texture AUC=0.804

Franceschini et al. 2019 1-2 102 4DCT (start of inspira-
tion)
(70 + 32)

Texture AUC=0.88

Lung toxicity

Moran et al. 2017 1 14 diagnostic CT First order and texture AUC=0.689-0.750
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Table 2.1 continued from previous page

Reference Stage Data (training + valida-
tion)

Radiomic features in final
model

Result

Krafft et al. 2018 Not speci-
fied

192 50% 4DCT phase First order and texture Average AUC=0.68

Staging

Yuan et al. 2018 1 327 CT First order and texture AUC=0.938

Yang et al. 2019 1-3 256 CT First order and texture AUC= 0.93

Abbreviations: AUC, area under the curve; CBCT, cone-beam CT; CI, concordance index; DFS, disease free survival; DM, distant metas-
tasis; GRD, gross residual disease; H&N, head and neck; HR, hazard ratio; LR, local relapse; LRR, local regional recurrence; LR-RFS, loco-
regional recurrence-free survival; OS, overall survival; pCR, pathological complete response; pCT, radiotherapy planning CT scan; PFS,
progression free survival; RFS, recurrence free survival.
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Table 2.2: Radiomics studies in NSCLC with an aspect of biology as the endpoint. The column labeled ‘Data’ specifies the total number of
patients involved in the study, in brackets split by training and validation cohorts if applicable and specifying other cancer types of cohorts if
applicable. This table has been simplified to clarify presentation – more details for each study are available in Supplementary Table 2.7

Reference Stage Endpoint Data (training +
validation)

Radiomic features in
final model

Result

Genomics

Aerts et al. 2016 Early stage EGFR 47 diagnostic CT
and follow-up

Shape and texture AUC=0.74-0.91

Rios Velazquez et
al. 2017

1-4 EGFR, KRAS 705 diagnostic CT
(353 + 352)

Shape, first order and
texture

AUC=0.69-0.80

Mei et al. 2018 Not speci-
fied

EGFR 296 CT Texture AUC=0.664

Digumarthy et al.
2019

Not speci-
fied

EGFR 93 CT First order AUC=0.713

Jia et al. 2019 1-4 EGFR 504 CT
(345 + 158)

Shape, first order and
texture

AUC=0.802

Li et al. 2019 1-4 EGFR sub-
types (19Del and
L858R)

312 CT
(236 + 76)

Shape and first order AUC= 0.775-0.793

Tu et al. 2019 1-4 EGFR 404 CT
(243 + 161)

First order and texture AUC=0.775

Yang et al. 2019 Not speci-
fied

EGFR 467 CT
(306 + 161)

Shape, first order and
texture

AUC=0.789
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Table 2.2 continued from previous page

Reference Stage Endpoint Data (training +
validation)

Radiomic features in
final model

Result

Wang et al. 2019 1-2 EGFR, TP53 61 CT
(41 + 20)

First order and texture AUC=0.604, 0.586

Wang et al. 2019 1-2 Tumor mutation
burden

61 CT
(41 + 20)

Texture AUC=0.606

Signaling pathways

Grossman et al.
2017

1-3 Various 351 CT
(262 + 89)

Shape, first order and
texture

AUC=0.62-0.72

Bak et al. 2018 1-4 Various 57 CT First order and texture OR=0.08-23.94

Histopathology

Patil et al. 2016 Not speci-
fied

ADC, LCC, SCC,
NOS

317 pCT Shape, first order and
texture

88% accuracy

Wu et al. 2016 1-4 ADC, SCC 350 pCT
(198 + 152)

First order and texture AUC=0.72

Ferreira Junior et
al. 2018

1-4 ADC, SCC 68 CT
(52 + 16)

Not specified AUC=0.81

Zhu et al. 2018 Not speci-
fied

ADC, SCC 129 CT
(81 + 48)

First order and texture AUC=0.893

Digumarthy et al.
2019

Not speci-
fied

ADC, SCC 93 CT First order AUC=0.744

E et al. 2019 Not speci-
fied

ADC, SCC,
SCLC

229 CT Shape, first order and
texture

AUC=0.657-0.875
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Table 2.2 continued from previous page

Reference Stage Endpoint Data (training +
validation)

Radiomic features in
final model

Result

Ferreira-Junior et
al. 2019

1-4 ADC, SCC 85 CT Shape, first order, texture AUC=0.88

Liu et al. 2019 Not speci-
fied

ADC, LCC, SCC,
NOS

349 CT
(278 + 71)

Not specified AUC=0.86

Zhou et al. 2018 1-4 Ki-67 110 CT Shape and texture AUC=0.61-0.77

Gu et al. 2019 Not speci-
fied

Ki-67 245 CT First order and texture AUC=0.776

Song et al. 2017 1-3 Micropapillary
pattern

339 CT First order AUC=0.751

Chen et al. 2018 Not speci-
fied

Degree of differ-
entiation

487 CT
(303 + 184)

First order and texture AUC=0.782

She et al. 2018 Not speci-
fied

Invasive vs non-
invasive adeno-
carcinoma

402 CT
(207 + 195)

Shape, first order and
texture

AUC=0.89

Yang et al. 2019 Not speci-
fied

Invasive vs non-
invasive adeno-
carcinoma

192 CT
(116 + 76)

First order and texture AUC=0.77

Abbreviations: ADC, adenocarcinoma; AUC, area under the curve; CI, concordance index; EGFR, epidermal growth factor receptor; KRAS,
Kirsten rat sarcoma viral oncogene homolog; LCC, large cell carcinoma; NOS, not otherwise specified; OR, odds ratio; SCC, squamous cell
carcinoma.
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The initial studies labelled as ‘radiomics’ were published in 2014 and 2015. Aerts and

colleagues showed that a radiomic signature based on shape and texture metrics was

associated with overall survival, validating the signature in patients with NSCLC and

patients with head and neck cancers [91]. The study also found positive associations

between the radiomic signature and gene expression. Coroller and colleagues showed

that a different set of texture metrics were associated with the subsequent development

of distant metastases [92]. The hypothesized mechanism was that tumor heterogene-

ity, identified by the radiomics analyses, drives worse outcomes. Both studies were

performed using radiotherapy planning CT data.

Over the next four years (2015–2019), 41 CT studies were published that linked ra-

diomics to lung cancer patient outcome. In general, studies sought to evaluate whether

or not radiomic signatures could outperform existing methods for patient risk stratifi-

cation. 20 studies related radiomics to overall survival [91, 93–111], 18 to the likelihood

of local or metastatic recurrence [92, 104, 108–110, 112–124], 6 to response, disease-free

or progression-free survival [104, 125–129], and 2 to staging [130, 131]. Two further

studies focused on the association of radiomics signatures to lung toxicity [132, 133],

Four studies investigated multiple endpoints.

The majority of studies derived radiomics signatures in radiotherapy planning or di-

agnostic images acquired prior to therapy. Nearly all studies evaluated patients un-

dergoing treatment with cytotoxic chemo-radiotherapy. More recently, a number of

studies have evaluated the potential of radiomics to improve patient stratification for

targeted therapies and immunotherapy agents [111, 129, 134]. For example, Tang and

colleagues linked radiomic features to a tumor immune phenotype in patients with

stage I-III NSCLC, finding patients with heterogeneous tumors, which correlated with

low PD-L1 and high CD3 cell count, had better prognosis [111].

There are 24 CT studies evaluating how radiomic signatures of NSCLC relate to ge-

nomics [134–142], signalling pathways [105, 143] and histopathology [112, 119, 137,

144–154]. For example, Rios Velazquez and colleagues found distinct imaging pheno-

types for EGFR and KRAS mutations from CT images of patients with NSCLC [135].

Some of the studies that relate radiomics to patient outcome also relate their radiomic



2.3. METHODOLOGICAL LIMITATIONS 57

signature to genomics [91] or biological markers [99].

Collectively, these 64 studies present a positive view of the potential for radiomics

signatures to deliver personalized medicine. However, two important limitations are

readily apparent. Firstly, while nearly all studies report at least one positive asso-

ciation between CT radiomic signature and either outcome (OS, PFS, recurrence or

toxicity) or tumor biology (genomic or pathology biomarkers and signalling pathways),

the particular radiomic signature derived varies substantially between studies. Con-

sequently, few study signatures are directly comparable with one another, and so the

literature does not identify specific candidate radiomic signatures for further large

multicenter evaluation.

Secondly, it has become clear that studies can suffer from significant technical limita-

tions. Studies of these limitations have also increased over the last five years, although

at a slower pace than the patient outcome studies Figure 2.2.

2.3 Reported methodological limitations of CT based

radiomics studies

All biomarkers, including radiomic signatures, must undergo technical and biological

validation to become robust tools used to guide clinical decision-making. These vali-

dation steps take a biomarker from discovery to research assay where the biomarker

can be used with confidence to determine an outcome in a research setting (termed

’crossing translational gap 1’). The regulatory approval process (through e.g. the FDA

or EMA) then takes the biomarker from research assay to clinically approved assay for

use in decision-making in patients (termed ’crossing translational gap 2’) [90].

To date, very few radiomics signatures have crossed either of these translational gaps.

The first radiology product with radiomics capabilities to receive such approvals was

QuantX for detection of breast abnormalities based on MRI, receiving FDA approval

in 2017 [155]. Soon afterwards, Feedback Medical received CE approval for TexRAD

Lung, a quantitative image texture analysis technology [156].
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In this section, we evaluate the methodological limitations preventing CT based ra-

diomics signatures from crossing these translational gaps. We review the potential

problems and proffered solutions identified in 42 studies of imaging phantoms or pa-

tients with NSCLC (summarized in Table 2.3 and expanded in Supplementary Ta-

ble 2.5).
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Table 2.3: Potential problems at each step of the radiomics workflow along with possible solutions offered by the literature. Each workflow step
with potential problems and solutions identified by the literature is labelled with a letter A-H to reference in-text. Note: Modelling does not have
a letter associated with since there is no consensus on the best statistical modelling strategies.

Problem area Potential problems Potential solutions

Image acquisition A Different scanners and acquisition protocols affect
feature reproducibility [49, 50, 157–167]

Image phantoms on different scanners to pro-
vide baseline [49], establish credibility of scanners
and protocols [50], catalogue reproducible features
[159, 166], model a correction algorithm [158], har-
monize data [160].

B Patient motion affects feature reproducibility [161,
168, 169]

Set motion tolerances, reduce ROI boundaries
[161], use single phase from 4D images [168], find
robust features using 4DCT data [169].

Image acquisition and
reconstruction

C Image resolution parameters (voxel size, slice
thickness) affect feature values [49, 157, 170–174],
model performance [175].

Control resolution [49] parameters in prospective
studies, resample to common resolution and voxel
depth [170–172, 174], apply smoothing image fil-
ters [171], apply deep learning methods [176].

Image reconstruction D Image reconstruction algorithm and reconstruc-
tion parameters (kernel) affects features [173, 177,
178]

Pre-processing image correction [177] and harmo-
nization of acquisition techniques [173, 178].

Segmentation E Delineation variability [159, 179–183] affects fea-
tures and is time consuming [182, 183]. Results
from one disease site are not necessarily trans-
ferrable to another [184].

Expert ROI definition [179], multiple observers
[179, 180, 184], identification of stable features
with respect to delineation [159, 180, 181], au-
tomated segmentation [182, 183], image filtering
[184]
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Table 2.3 continued from previous page

Problem area Potential problems Potential solutions

Pre-processing F Number of grey levels used to discretize histogram
and texture features affects feature values [172,
174, 185], as does bin width [170].

Texture features can be normalized to reduce de-
pendency on the number of grey levels [174], num-
ber of grey levels used for discretization should
be recorded with feature formula. 128 grey levels
may be optimal for texture features, along with
thresholding [185]

Feature extraction No studies found in the literature search.

Feature correlation G Strong correlations between tumor volume and ra-
diomic features exist [174, 186–188]

Normalization of features to volume [174], bit
depth resampling [186], feature redesign [186],
more robust statistics to check added value of ra-
diomics signatures [187].

Test re-test H Radiomic features may not be repeatable over
multiple measurements [189–191], repeatable fea-
tures are not generalizable to other disease sites
[192].

Test-retest data acquisition [189, 192], use of mul-
tiple 4D phases [189, 191], use of simulated retest
by image perturbation [190].

Modelling clinical out-
come

Different modelling strategies affect model perfor-
mance [193–196]

Sample sizes above 50 give better predictive per-
formance [194], as does normalizing features [193].
No consensus on best modelling strategies to use.
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2.3.1 Image acquisition

Many radiomics studies are retrospective evaluations of CT images, often with data

acquired at multiple different institutions and on different CT scanner vendor plat-

forms. Consequently, nearly all studies contend with variations in image acquisition

and reconstruction protocols.

Studies assessing the impact of different CT scanners and protocols on radiomic fea-

tures have shown some features have poor reproducibility [49, 50, 161, 165–167]. Per-

forming phantom studies on different scanners as a quality assurance step may ensure

a level of feature consistency [50]. Indeed, one study showed that using a controlled

protocol across different CT scanners reduced feature variability by over 50% com-

pared to using local protocols [49]. Other studies used post-extraction deep learning

[176] or correction factors [158] to reduce feature variability.

Restricting study data to one scanner make and model along with one set of acquisition

parameters, to reduce variability in image capture acquisition, is seldom feasible for a

multicentre research study. Therefore, many of these issues still remain when setting

up a well powered prospective clinical trial with radiomic signatures as exploratory

endpoints.

2.3.2 Image reconstruction

Retrospective data analyses are constrained by image reconstruction parameters deter-

mined by clinical department protocols, chosen to optimize image anatomical quality.

While variations in image reconstruction, slice thickness and in plane pixel dimensions

may have negligible effect for clinical interpretation, they can induce variability in

radiomic feature values, since many features correlate to these parameters [49, 170–

174].

Resampling the image to an equal voxel size has reduced feature dependency on acqui-

sition in some studies [170, 172] but not others [49, 171]. Smoothing filters have also

been suggested as a method for reducing voxel size dependency [171], as has limiting

inclusion criteria to particular resolution ranges. For example, Lu et al. found that

features calculated from images with 1.25mm and 2.5mm thick slices were comparable
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to each other but that both differed from those calculated on 5mm slice thickness

images [173].

Reconstruction techniques also influence feature values with studies demonstrating dif-

ferences between features calculated on images reconstructed with soft or sharp kernels

[173, 178]. Potential solutions include the application of correction factors based on

the image noise power spectrum [177]. Solutions that balance feature robustness with

the need to make image inclusion criteria as permissive as possible are vital given the

small cohorts size issues that blight many studies.

2.3.3 Segmentation

The ROI definition for feature extraction is known to be a particularly sensitive step

in the radiomics pipeline [179–183]. Radiomics studies are popular in radiotherapy

given the ready availability of pre-defined ROIs on treatment planning scans, typically

using the clinically defined Gross Tumor Volume (GTV). The subjectivity of GTV

definition can depend on the operator, as expert delineations may generate features

with better predictive power than those from a non-specialist [179].

Frequently suggested solutions include the inclusion of multiple observers or the use

of semi-automated delineation tools [182, 183]. However, few studies have adopted

these solutions, most likely due to the difficulty of getting clinically qualified staff to

delineate ROIs. In studies not using radiotherapy planning CT scans, the ROIs must

be drawn specifically for the purpose of the radiomics analysis and will suffer from all

of the same issues discussed above.

2.3.4 Pre-processing

The preparation of images for feature extraction has a marked effect on feature value.

Reducing the number of image grey-levels (voxel depth re-binning) is a commonly used

method to supress image noise. However, studies have shown that radiomic features

are not comparable when computed with a differing intensity bin sizes [170, 172, 174].

This has led to the proposed use of standardized bin resolution [174].
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2.3.5 Feature extraction

Radiomics features span a range of calculation classes. Shape features contain in-

formation about the ROI morphology (such as volume and measures of sphericity).

First-order image intensity features assess properties of the intensity histogram of

voxels within the ROI (e.g. the mean intensity and other statistical moments of the

histogram). Texture features summarize different measures of the way in which voxel

intensities change across the ROI (e.g. voxel variation coarseness and homogeneity).

These features may be calculated on the original image or derived after various filters

have been applied that modify particular aspects of it, for example to enhance the

edges where image intensity changes [89].

Many different software platforms exist for performing the feature extraction step,

including free open-source software, commercial software, and software developed in-

house by individual institutions. The Image Biomarker Standardization Initiative

(IBSI) is an international collaboration between research groups with the aim of stan-

dardizing image biomarker extraction [51]. To date only one study has investigated

whether feature extraction software influences radiomic features from CT scans of pa-

tients with NSCLC [73], which shows, consistent with data from other cancer types

[197, 198], that this can have substantial impact on feature values.

2.3.6 Feature correlation

Since many tens to thousands of features are calculated from images in radiomics, it

is unsurprising that many features often correlate with one another. However, the

fact that features often correlate strongly with tumor volume and clinical factors [174,

186, 187] is not well appreciated. While it has been suggested that radiomic feature

calculations formulae should be modified to be account for tumor volume [174], it

is crucial that studies also include transparent and robust feature reduction steps to

account for other clinical prognostic and predictive factors. Robust feature reduction

is also crucial in limiting the risk of model overfitting.
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2.3.7 Test-retest

As highlighted by several studies, [189, 192] and by consensus statements on imaging

biomarkers [90], radiomics studies usually lack an assessment of the signatures’ single

centre repeatability or multicentre reproducibility. The use of test-retest datasets in

which multiple images of the same subjects or phantom have been acquired in quick

succession have been proposed as a means to assess repeatability [189, 192]. Alternative

options include the use of multiple 4D image phases [189] and the simulation of retest

data by image perturbation [190] where test-retest data are not available. Few radiomic

studies incorporate any of these approaches.

2.3.8 Modelling clinical outcome

Typically, studies derive between tens to a few thousand image features in develop-

ment datasets [45]. Dimensionality reduction to remove highly correlated and unstable

radiomic features is often employed before finding the most informative features for a

specific outcome, such as overall survival, treatment-related toxicities or cancer recur-

rence in a test dataset. Many different statistical options exist for deriving a model

based on radiomic features. The choice of model and statistical methods can influence

results [194–196].

Random forests have been found by some authors to give higher performance compared

to other methods for classification tasks using radiomics features [194, 196], with

Naïve Bayes and Support Vector Machines also reported to perform well [194]. For

radiomic feature based time-to-event analyses, one study found cox regression with

gradient boost performed better than traditional cox regression (0.614 versus 0.660

concordance index) [195]. In terms of feature selection, there is no consensus on the

best method to use. Optimal performance of feature selection techniques depend

on the outcome of interest [194]. A contemporary non-radiomics study of classifier

performance in radiotherapy datasets found that random forest and elastic net logistic

regression performed best, but that classification accuracy depended on the specific

dataset [199]. To summarize, there is limited consensus as to the best machine learning

methods to employ for radiomics studies, and that the optimum choice may depend

on the specific dataset used in the study.
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Regardless of feature selection and modelling methodology, the resulting model (often

termed a ‘radiomic signature’) should be robustly validated in line with the TRIPOD

guidelines to ascertain if it is reproducible across different clinical datasets. This tests

if the observed signature relates to the desired outcome in a different patient group,

and aims to reduce the risk of overfitting in the training cohort [45].

Lastly, whatever approach is taken it is vital that investigators test whether incorpo-

rating radiomic features into a clinical model adds any benefit to well-known clinical

prognostic factors such as tumor stage and performance status. Radiomic features will

only have clinical utility if they provide more predictive information than is currently

available in the clinic.

2.4 Assessing the quality of radiomics studies in NSCLC

We evaluated the quality of the 43 radiomics studies we identified that report a rela-

tionship between a CT defined radiomic signature and clinical outcome in patients with

NSCLC (Supplementary Table 2.6) using both established assessment tools and the

results of our review of methodological limitations reported above. We then applied

the same tools to the 24 studies that evaluated the relationship between CT radiomic

signatures and genomic, protein expression, and pathology biomarkers in patients with

NSCLC (Supplementary Table 2.7). Some studies investigated multiple endpoints, so

in total we evaluated 75 outcomes. The four tools we use to interpret the technical

validation of these studies are:

1. The strength of the validation in each study, assessed by the Transparent Re-

porting of a multivariable prediction model for Individual Prognosis Or Diagnosis

(TRIPOD) guidelines [200]. TRIPOD provides an ordinal score (1-4, with 4 be-

ing the most robust). These guidelines are not specific to radiomics studies, but

provide insight into the level of validation in a study (details in Supplementary

Table 2.8).

2. The Radiomics Quality Score (RQS) developed by Lambin and colleagues [201].

RQS provides a checklist to evaluate aspects of study design, by assessing vari-

ous technical and statistical aspects of the radiomics pipeline. It consists of 16
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components, each of which award or penalize points, to provide the RQS. The

total number of points available range from -8 to 36 (the more points the better)

and are often presented as a percentage (Supplementary Table 2.9).

3. Qualitative assessment of radiomics methodological limitations resulting from

our literature review and labelled as A–H and listed in Table 2.3.

4. The reported evidence for added value of the radiomics signature to a clinical

model of outcome tested in the study (for the patient outcome studies only).

This provides an assessment of clinical utility.

2.5 Interpreting the quality of radiomics studies in

NSCLC

Studies linking CT radiomics signatures to clinical outcome and tumor biology were

found to have a high incidence of methodological limitations (summarized in Table 2.4).

Overall, half of studies had a TRIPOD type of either 1a or 1b (meaning the results

were not validated or validated within the same dataset). Only 13/75 studies had

TRIPOD type of 3 or 4 (meaning the results were validated in an external dataset).

The median RQS was 6 (range of -8 to 36). Details on RQS and TRIPOD are found

in supplementary material. We found that 70% of studies (52 of 75) had six or more

methodological limitations, and no study had less than three methodological limita-

tions. Finally, over half of studies relating radiomics to patient outcome did test the

added benefit of the radiomic signature to a clinical model.
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Table 2.4: Summary of the 4 assessment criteria - TRIPOD score, RQS, number of method-
ological limitations and testing the added value of radiomics to a clinical model. The added
value of radiomics to a clinical model was only tested for the patient outcome studies (N=50).

N=75
TRIPOD type (n (%))

1a – no validation 10 (13)
1b – internal validation 27 (36)
2a – dataset randomly split for validation 18 (24)
2b – dataset non-randomly split for validation 7 (9)
3 – external validation 10 (13)
4 – validation only 3 (4)

RQS (median, [IQR]) 6 [2-12.25]
Number of methodological limitations (n (%))

0-2 0 (0)
3 4 (5)
4 4 (5)
5 15 (20)
6 21 (28)
7 23 (31)
8 8 (11)

N=50
Added value of radiomics to clinical model tested? (n (%))

Yes 32 (64)
No 18 (36)

Our analysis suggests that the four assessment tools provide useful and complimentary

critiques. Figure 2.3A shows that the TRIPOD ordinal score focusing on validation

and the RQS score focusing on study reporting are correlated (Pearson correlation

coefficient 0.70). This reflects the importance the RQS places on study validation.

However, both the TRIPOD score and RQS score were relatively independent of our

assessment of study methodological limitations (Figure 2.3B-C, Pearson correlation

coefficients -0.12 and 0.13). Indeed, some studies with high TRIPOD and RQS scores

had several technical limitations listed. For example, two studies with a TRIPOD

score of 4 and the highest reported RQS scores (16 and 18 respectively) [103, 105]

had five and six identified methodological limitations respectively. In contrast, one

study with a low TRIPOD score of 1b and a moderate RQS score (of 7) had just three
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pipeline technical limitations [108].

Figure 2.3: The assessment of the literature plotted against each other as box-
plots. (A) RQS versus TRIPOD, (B) RQS versus the number of methodological
limitations found in this review and (C) TRIPOD versus the number of method-
ological limitations found in this review.

An illustrative example is given by three studies [94, 103, 105] that externally val-

idated the landmark radiomic signature developed by Aerts and colleagues in 2014

[91]. However, subsequent work [187, 202] has suggested that the prognostic value

of the signature reflected the correlation of the signature with tumor volume, rather

than reflecting underlying tumor heterogeneity. An important workflow step our re-

view identified is the assessment of feature correlations and potential confounders (G).

While the RQS recommends performing multivariable analysis and testing the benefit

of the radiomics signature to a gold standard, it does not explicitly recommend testing

for feature correlations or confounders.

Study quality depends not only on quality of reporting, but also on ensuring that

features used are robust against potential problems. There is a raised recognition of

the methodological issues that limit the potential utility of the radiomics concept, as

shown by the increase in studies in this area Figure 2.2. However, we find that only

39% of the patient outcome studies and 50% of the biology studies we identified cite
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methodology papers. This suggests that there is still limited appreciation of the need to

employ more rigorous radiomics workflows. The IBSI guidelines and RQS are aimed at

addressing these issues. For example the IBSI reference manual gives recommendations

for image processing techniques as well as suggesting standardized feature definitions,

nomenclature, and guidelines for reporting [51]. The RQS rewards the use of test-

retest approaches, multiple segmentation analyses, and the use of phantoms to resolve

inter-scanner differences.

However, our review of limitations highlights further concerns, such as differing slice

thickness or voxel size (C) and the specification of grey-level binning size (F). These

are not included in RQS (only 58% of studies in Table 2.1, Table 2.2 specified the grey-

level binning method or size). The IBSI guidelines, the RQS and TRIPOD assessment

schemes are important steps that should improve the technical quality of radiomics

studies. However, they are not sufficient alone and review of the literature suggests

a need to either update them to include more granular limitations or to use them

alongside other assessment tools.

One result of the increase prevalence of studies investigating methodological limitations

that would accelerate clinical translation would be the identification of a subset of

robust features that should be used in outcome studies. Unfortunately, comparing

results across studies is difficult. In addition to the risks to reliability listed in Table 2.3,

the software used for feature extraction often uses different nomenclature (one of issues

the IBSI addresses) and can calculate ostensibly similar features in different ways and

with different parameter settings so that they are not comparable [73]. Software use

varied greatly across all studies included in this review. Of the patient outcome and

biology studies, 15% did not specify the software used, 48% used in-house developed

software and just 37% used free or commercial options. These numbers are similar for

the methodology studies; 14% did not specify the software used, 40% used in-house

developed software and 47% used free or commercial options. Four of the patient

outcome and biology studies did not specify the features in the final radiomic signature

at all. The result is that there is no consensus on which particular features or feature

signatures should be used for clinical studies. However, there are now increasing

numbers of studies that employ the techniques used to determine which features are
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reliable. Table 2.3 and Supplementary Tables 2.6 and 2.7 list the remaining limitations

for each clinical and biological study - 42% of the assessed studies applied at least one

of the suggested solutions to methodological limitations to increase feature robustness.

Of these studies, 46% used a test re-test dataset, 58% used multiple segmentations and

4% tested CT model dependence.

A further important step in the radiomics workflow where community consensus would

increase the comparability of studies is that of the optimal machine learning techniques

that should be used to develop the resulting statistical models. We found that the top

feature reduction technique used in all studies was univariable analysis (53%) followed

by LASSO (27%). The most common modelling technique was logistic regression

(39%) followed by cox regression (34%). 16% of studies used random forest and 11%

SVM, both of which were highlighted as high performing by the methodology studies

[194, 196]. The techniques used in each study are listed in Supplementary Tables 2.6

and 2.7. Four outcome studies used multiple modelling techniques to determine which

one performed best on their data; a recommended method as model performance is

dataset-dependent [199]. Out of these four studies, the best performing classifiers were

random forest [144] and Naïve Bayes [112, 150]. One study did not reveal the best

performing model [152].

The lack of consensus in how to address limitations to the reliability of radiomics

features, or of a preferred way to conduct the subsequent statistical modelling, means

there is still significant variability in approach, with each finely tuned to its own

particular dataset. Progress along the imaging biomarker translation roadmap [90] is

dependent on the development of reliable measures that can be used to test clinical

hypotheses. These findings agree with those of previous authors [51, 201] and show

there is still an unmet need to move away from the current heterogeneous landscape

to one that is more standardized. The validation of existing signatures in different

datasets [94, 103, 105] discussed above is a vital part of this effort.

Lastly, in addition to the assessment of technical quality, radiomic signatures need

to be evaluated for clinical relevance. It is important to test whether incorporating

radiomic features into a clinical model improves performance over known prognostic
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or predictive factors. This need is well-recognized with 64% of the studies in Table 2.1

making its assessment. Future studies will be most impactful if they explicitly evaluate

the clinical utility of a radiomic signature as part of data reporting.

In summary, use of the four different assessment tools allows us to draw three con-

clusions. Firstly, there is a high prevalence of methodological limitations among

CT radiomics studies exploring the potential of the approach to guide personalized

medicine. Secondly, there remains considerable variability in the approach to ad-

dressing these limitations, and that modelling approaches are likely tuned to specific

datasets. Thirdly, different assessment tools provided complementary information,

which taken together provided the greatest insight into how study data could be im-

proved.

2.6 Future directions

Personalized medicine is of great potential benefit to patients, but this vision is de-

pendent on the identification of stratification and predictive biomarkers [84]. Imaging

biomarkers, derived from routinely acquired patient images, have enormous transla-

tional potential given the ubiquity of imaging in clinical workflows. Evaluation of

the radiomics literature in NSCLC reveals the exponential rate of publication of new

radiomics studies, which, in their conclusions, present a very positive view of the

potential for radiomics to deliver this goal.

This review puts these findings in context for NSCLC, but the messages are likely to

be generic to all cancer types. All published studies are at risk of translational hurdles

due to technical and methodological issues. Importantly, some of these limitations are

well recognized, well investigated and have solutions proposed that are beginning to

be applied to clinical studies. In distinction, other limitations are poorly understood

or researched, and so substantial barriers to translation remain. In addition, wider

concerns surrounding over-fitting data and biological validation persist. Lastly, no

single radiomic signature or methodological approach is used widely, so further work

is required to identify candidates to take forward in larger multicenter studies.

The fact that all the radiomics studies identified in the NSCLC literature have some
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limitations should not infer that the published data and conclusions are incorrect;

rather that risk exists in interpreting their findings at face value. Standardization

issues, variability in methodology and a general lack of reporting hinders comparison

of results across studies. Identifying limitations, by employing recognized assessment

methodology tools, can help inform and educate design of future radiomics studies in

NSCLC and beyond. This will improve study quality and expedite the translation of

radiomic biomarkers as tools in personalized medicine.
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2.8 Supplementary materials

Supplementary

Literature search

Search strategy

Publications that report radiomics analyses on NSCLC data with the aim of predicting

patient outcome were identified by searching the PubMed database using the key

words “radiomics” and “lung cancer” or “NSCLC”. The search was conducted on the

08/01/2020 and no start date limit was used.

A second search was undertaken to find studies that addressed a methodological con-

cern of radiomics. The PubMed database was searched using a combination of the

following keys words (a) “radiomics” or “radiomics” and (b) “cancer” and (c) “standard-

ization” or “reliable” or “impact of” or “improvement” or “repeatable” or “reproducible”

or “repeatability” or “reproducibility” or “test–retest” or “variability” or “limitation” or
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“limitations” or “vulnerability” or “vulnerabilities” or “stability” or “stable” or “robust-

ness” or “robust” or “quality” or “agreement” or “effect of”. The search was conducted

on the 13/01/2020 and no start date limit was used.

Search outcomes

The results of the search for radiomics studies in lung cancer were screened by the

title and abstract to find studies whose primary aim was either to create predictive

radiomics models of clinical outcome or link radiomics to biology for NSCLC patients

from CT images. Inclusion criteria were publications assessing outcomes of overall

survival, metastases, treatment-induced toxicities or finding biological correlations.

Studies using a modality other than CT, where the primary cancer was not NSCLC

and review articles were not included in this step. 282 publications were found and

after screening titles and abstracts based on the inclusion criteria, 116 publications

remained. Exclusion criteria included CT studies not from planning CT, CBCT or

diagnostic CT, if access to the article could not be gained, if the article was in a

language other than English, if the study included deep learning as opposed to the

traditional radiomics workflow discussed in this review, and studies predicting nodule

malignancy. Studies of analysis reproducibility or methodology limitations were also

excluded from this search, as they were included in the second evaluation. In all,

64 publications remained for analysis (Supplementary Figure 2.4). Included studies

are summarized in Tables 2.1 and 2.2 and expanded in Supplementary Tables 2.6

and 2.7.



74 CHAPTER 2. RADIOMICS REVIEW IN LUNG CANCER

Figure 2.4: Flow diagram for the patient outcome and biology radiomics studies
in lung cancer search outcomes.

The results of the search for studies of radiomics limitations were screened by titles

and abstract to identify studies whose primary aim was to address a radiomics-based

methodological concern using human or phantom scans. 489 publications were found

and a further 3 studies previously known to the authors but not returned by our

search were added to the results. After applying screening by inclusion criteria 132

studies remained. The following exclusion criteria were then applied: the study data

was not CT-based, the CT data was from a cancer other than NSCLC or not clearly

specified, the study investigated variability in deep learning models rather than the

traditional radiomics workflow, and the article was a review or report of a published

public dataset, rather than original research. This approach left 42 studies for in-

clusion in this review (Supplementary Figure 2.5). Included studies are presented in

Supplementary Table 2.5 and summarized in Table 2.3.
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Figure 2.5: Flow diagram for the methodological radiomics studies in lung cancer
search outcomes.

Search constraints and limitations

Conference abstracts were not included in the search. While this would have in-

creased the number of studies included, abstracts had insufficient detail for our criti-

cal appraisal. Publication bias is a potential limitation of this review, since negative

results are less likely to be published. This review included publications that inves-

tigated methodological concerns in the radiomics workflow for NSCLC and phantom

CT scans and as such concerns that had been addressed in another cancer type or

imaging modality were excluded from this analysis.
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Table 2.5: Radiomics methodological studies selected for inclusion.

Reference Workflow
stage(s)

Study data Software Features Identified problems Solution

Ger et al.
2018

Image acqui-
sition.
Pre-
processing.

Updated CCR
phantom.
20 NSCLC and
30 HNSCC CT
scans.

IBEX. First
order and
texture.

CT scanner, protocol
and slice thickness af-
fect feature values. In
general, resampling does
not change feature val-
ues or remove feature
correlations with slice
thickness.

Correct for the CT manufacturer
and model by scanning a phan-
tom on each scanner. Control or
limit the range of slice thickness in
studies.

Fave et
al. 2015

Image acqui-
sition.
Test-retest.
Volume
dependence.

CCR phantom.
10 NSCLC
CBCT test-
retest scans.

IBEX. First
order and
texture.

Features are more likely
to be reproducible when
the same CBCT scanner
manufacturer and proto-
col are used. Increased
motion reduces feature
reproducibility.

A motion threshold of at most
10mm, preferably 5mm, increases
feature reproducibility, as does ex-
cluding edges of the ROI. Texture
features should not be compared
across images acquired using differ-
ent imaging protocols and CBCT
manufacturers.

Lafata et
al. 2018

Image acqui-
sition.

Dynamic dig-
ital phantom
simulation.
31 NSCLC free
breathing CT
scans, AIP and
end of exhale
4DCT scans.

In-house
Matlab.

Shape,
first or-
der and
texture.

Image noise and motion
affects feature repro-
ducibility.

The end of exhale phase of a 4DCT
is least affected by motion.
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Table 2.5 continued from previous page

Reference Workflow
stage(s)

Study data Software Features Identified problems Solution

Du et al.
2019

Image acqui-
sition.

20 NSCLC
4DCT scans.
140 NSCLC
4DCT scans.

3D Slicer. Shape,
first or-
der and
texture.

Motion affects feature
reproducibility.

Assessing feature stability across
all 4DCT phases can find features
robust to motion which can im-
prove the predictive performance of
radiomic models.

Larue et
al. 2017

Image acqui-
sition.
Pre-
processing.

CCR phantom. In-house. First
order and
texture.

Feature values are differ-
ent between CT scanners,
even with similar acqui-
sition protocols. Most
radiomic features are
affected by slice thick-
ness. Choice of bin width
influences feature values.
The resampling method
can induce variability in
texture features.

Grey-level discretization could
be optimized to improve prog-
nostic value of features. Resam-
pling decreases variability and
reduces feature correlations with
slice thickness. Cubic or linear
interpolation induce less feature
variability than nearest neighbour
interpolation when resampling to
1x1x3mm3 voxels.

Mackin
et al.
2015

Image acqui-
sition.

CCR phantom.
20 NSCLC CT
scans.

IBEX. First
order and
texture.

Feature values are differ-
ent between CT scanners.

Credentialing CT scanners could
reduce variability across features
measured on different scanners.
CT scanners could be corrected for
during data analysis.
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Table 2.5 continued from previous page

Reference Workflow
stage(s)

Study data Software Features Identified problems Solution

Mackin
et al.
2017

Image acqui-
sition.
Pre-
processing.

CCR phantom.
8 NSCLC un-
constructed CT
scans.

IBEX. Shape,
first or-
der and
texture.

Variation in pixel size
causes the intra-patient
variability to be large rel-
ative to the inter-patient
variability.

Feature variability due to differ-
ences in pixel size can be reduced
through resampling and Butter-
worth low-pass filtering.

MacKin
et al.
2018

Image acqui-
sition.

CCR phantom. IBEX. First
order and
texture.

The impact of noise, i.e.
tube current values, is
more apparent for homo-
geneous materials than
for textured.

Features are not substantially af-
fected by variations in x-ray tube
current. Tube current would not
need to be harmonized across
patients in a study.

Mahmood
et al.
2017

Image acqui-
sition.
Image recon-
struction.

Anthropomorphic
phantom.

IBEX. First
order and
texture.

Texture features are
not reproducible across
different CT scanners,
even whilst using al-
most identical scanning
parameters.

Robust correction factors need to
be developed to reduce feature
variability across CT scanners.

Midya et
al. 2018

Image acqui-
sition.
Image recon-
struction.

A uniform water
phantom and an
anthropomor-
phic phantom.
A single ab-
dominal CT
scan.

In-house
Matlab.

First
order and
texture.

CT scanner tube cur-
rent, noise index and
reconstruction technique
influence feature repro-
ducibility.

Only use features robust to
changes in tube current, noise
index and reconstruction technique.
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Table 2.5 continued from previous page

Reference Workflow
stage(s)

Study data Software Features Identified problems Solution

Shafiq-ul-
Hassan et
al. 2017

Image acqui-
sition.
Image recon-
struction.

CCR phantom. In-house. Shape,
first or-
der and
texture.

Most texture features
are reconstruction kernel
dependent.

The variability in features due to
different reconstruction kernels can
be reduced by applying the Noise
Power Spectrum peak frequency
and ROI maximum intensity as
correction factors.

Shafiq-ul-
Hassan et
al. 2017

Image acqui-
sition.
Pre-
processing.

CCR phantom. In-house. Shape,
first or-
der and
texture.

Features are dependent
on voxel size and number
of grey levels used for
discretization.

Feature definitions can be normal-
ized by voxel size and number of
grey levels to reduce their depen-
dency.

Yasaka et
al. 2017

Image acqui-
sition.
Pre-
processing.

CCR phantom. TexRad. First
order.

Unfiltered and filtered
features are variable
across different CT scan-
ners.

Feature variability due to different
CT scanners needs to be taken into
consideration.

Lu et al.
2016

Image acqui-
sition.
Image recon-
struction.

32 NSCLC CT
scans.

Not
specified.

Shape,
first or-
der and
texture.

Changing reconstruc-
tion algorithm and slice
thickness affects feature
values.

Image acquisition techniques needs
to be standardized.

Zhao et
al. 2016

Image acqui-
sition.
Test re-test.
Image recon-
struction.

31 NSCLC CT
test-retest scans.

In-house. Shape,
first or-
der and
texture.

Features depend on the
reconstruction algorithm
used.

Features derived from images re-
constructed with sharp and smooth
algorithms should not be com-
pared.
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Table 2.5 continued from previous page

Reference Workflow
stage(s)

Study data Software Features Identified problems Solution

Li et al.
2018

Image acqui-
sition.
Image recon-
struction.

51 NSCLC CT
scans.

In-house
Matlab.

Shape
and
texture.

Images with 1mm slice
thickness give models
with greater predictive
performance than those
with 5mm slice thickness.

Use thinner slice thickness to in-
crease predictive performance of
models.

Park et
al. 2019

Image acqui-
sition.

100 NSCLC CT
scans.

Not
specified.

First
order and
texture.

Radiomic features are
not reproducible across
different slice thicknesses.

Reproducibility can be improved
by converting images to 1mm
slice thickness using a convo-
lutional neural network-based
super-resolution algorithm.

Kim et
al. 2019

Image acqui-
sition.
Image recon-
struction.

Thoracic phan-
tom.

Not
specified.

First
order and
texture.

CT slice thickness, expo-
sure setting and recon-
struction algorithm affect
radiomic features.

Image acquisition and reconstruc-
tion parameters need to be stan-
dardized to avoid variability.

Zhovannik
et al.
2019

Image acqui-
sition.

Phantom.
221 NSCLC
pCT scans.

PyRadiomics. First
order and
texture.

Radiomic features depend
on scanner signal-to-noise
ratio (exposure setting).

A correction algorithm can be
modelled to make radiomic fea-
tures reproducible across different
signal-to-noise ratios.
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Table 2.5 continued from previous page

Reference Workflow
stage(s)

Study data Software Features Identified problems Solution

Tunali et
al. 2019

Image acqui-
sition.
Segmentation.

40 NSCLC CT
scans.
32 NSCLC
non-contrast
enhanced CT
scans.
212 NSCLC CT
scans.

In-house
C++.

First
order and
texture.

Radiomic features are
not reproducible across
multiple segmentations or
different image acquisi-
tions.

Use stable and reproducible ra-
diomic features as a feature selec-
tion tool in the radiomics workflow.

Kakino
et al.
2019

Image acqui-
sition.

269 NSCLC di-
agnostic delayed
phase CT scans.

PyRadiomics. First
order and
texture.

Not all features are
reproducible across
contrast enhanced and
non-contrast enhanced
CT images. This also
depends on patient char-
acteristics.

Do not combine contrast enhanced
and non-contrast enhanced images
in radiomics analysis.

Hepp et
al. 2020

Image acqui-
sition.

69 NSCLC CT
with simulated
dose reduction.

PyRadiomics. First
order and
texture.

Radiomic feature values
differed when CT dose
level was changed.

Differences in CT dose levels
should be taken into account in
radiomics studies.

Mahon et
al. 2019

Image acqui-
sition.

Gammex CT
electron density
phantom and
Qasar body
phantom.
135 NSCLC CT.

PyRadiomics. Shape,
first or-
der and
texture.

Variability in imaging
protocols can induce
variability in extracted
radiomic features.

ComBat harmonization can har-
monize radiomic features extracted
from CT images using different
imaging protocols.
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Table 2.5 continued from previous page

Reference Workflow
stage(s)

Study data Software Features Identified problems Solution

Haga et
al. 2018

Segmentation. 40 NSCLC max-
imum exhale
4DCT scans.

In-house
Matlab.

Shape,
first or-
der and
texture.

Differences in tumor
segmentation can cause
different features to be-
come significant in the
feature selection stage.

Multiple segmentation analysis
can reveal features that are robust
to delineation uncertainties. For
good predictions ROIs need to be
contoured by a specialist, such as a
radiation oncologist.

Huang et
al. 2017

Segmentation. 46 NSCLC CT
scans.

In-house. Shape,
first
order,
texture
and delta
features.

Differences in tumor seg-
mentation can lead to
differences in a feature’s
predictive power.

Multiple segmentation analysis
should be done to find robust
features.

Kalpathy-
Cramer
et al.
2016

Segmentation. 40 NSCLC CT
scans.
Thoracic phan-
tom.

Various. Shape,
first or-
der and
texture.

Some features are not
robust to multiple seg-
mentations.

Features need to be assessed for
their robustness to segmentation
and their usefulness in a predictive
models.

Owens et
al. 2018

Segmentation. 10 NSCLC CT
scans.

IBEX. Shape,
first or-
der and
texture.

Segmentation is time
consuming and subject to
inter-observer variability.

Semi-automatic segmentations per-
formed by non-specialists can give
segmentations comparable to those
from clinicians.

Parmar
et al.
2014

Segmentation. 20 NSCLC CT
scans.

In-house
Matlab.

Shape,
first or-
der and
texture.

Segmentation is time
consuming and subject to
inter-observer variability.

Semi-automatic segmentation led
to a smaller range of feature val-
ues across observers than manual
segmentation.
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Table 2.5 continued from previous page

Reference Workflow
stage(s)

Study data Software Features Identified problems Solution

Pavic et
al. 2018

Segmentation. 11 NSCLC, 11
HNSCC, 11
MPM CT scans.

In-house
Python.

Shape,
first or-
der and
texture.

Features affected by de-
lineation uncertainty are
different between cancer
types. Shape features are
most affected across all
tumor types.

Filtering the image increases the
number of stable features. Multiple
segmentation analysis should be
performed to find robust features.
Averaging texture matrices rather
than merging results in more stable
features with respect to segmenta-
tion.

Shafiq-ul-
Hassan et
al. 2018

Pre-
processing.
Volume
dependence.

CCR phantom.
18 NSCLC CT
scans.

Not
specified.

First
order and
texture.

Some texture features are
not stable across a differ-
ent number of grey levels
used for discretization or
voxels in the ROI.

Normalization by the number of
grey levels or number of voxels In
the ROI made some features more
reproducible.

Fave et
al. 2016

Pre-
processing.
Volume
dependence.

107 NSCLC
4DCT end of
exhale scans.

IBEX. First
order and
texture.

Some features are entirely
ROI volume dependent.
Features tended to be
more correlated with ROI
volume after Butterworth
smoothing.

Feature formulas can be corrected
to remove ROI volume dependence.
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Table 2.5 continued from previous page

Reference Workflow
stage(s)

Study data Software Features Identified problems Solution

Wang et
al. 2019

Pre-
processing.
Volume
dependence.

50 NSCLC CT
scans.

Matlab
open-
source
toolkit
[185].

First
order and
texture.

Texture features may be
sensitive to the number
of grey levels used for dis-
cretization, the method
of discretization and
the use of an intensity
threshold.

Discretization of 128 grey lev-
els provides a set of reproducible
texture features, regardless of dis-
cretization method. Thresholding
the ROIs before feature extraction
also improves reproducibility.

Welch et
al. 2019

Volume
dependence.

421 NSCLC CT
scans.

PyRadiomics. Shape,
first or-
der and
texture.

Features from a previ-
ously published radiomic
signature were found to
be correlated with tumor
volume.

Features should be tested for
multicollinearity using statistical
analysis or by data perturbation.

Choi et
al. 2018

Volume
dependence.

14 NSCLC free
breathing pCT
scans.

Not
specified.

First
order and
texture.

Features may not be
robust to variations in
tumor size and may
be correlated with the
normal lung volume
surrounding the tumor.

Simulations involving tumors of
different sizes can reveal features
robust to changes in tumor volume.

Larue et
al. 2017

Test-retest. 26 NSCLC CT
scans test-retest.
20 NSCLC and
20 oesophageal
4DCT scans.
120 oesophageal
CT scans.

In-house. Shape,
first or-
der and
texture.

Test-retest is not always
available for the pheno-
type of interest.

A 4DCT dataset can be used to
find robust features across phases,
as an alternative to a test-retest
dataset.
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Table 2.5 continued from previous page

Reference Workflow
stage(s)

Study data Software Features Identified problems Solution

Van Tim-
meren et
al. 2016

Test-retest. 40 rectal cancer
CT scans.
27 NSCLC CT
scans.

Not
specified.

Shape,
first or-
der and
texture.

Test-retest results are
not generalizable across
different cancer types.

Test-retest analysis should be
performed for each cancer type
with controlled CT scanners and
imaging protocols.

Zwanenburg
et al.
2019

Test-retest. 31 NSCLC and
19 HNSCC CT
scans.

In-house
Python.

Shape,
first or-
der and
texture.

Test-retest is not always
available for the pheno-
type of interest.

Image perturbation could be an
alternative to test-retest, giving
multiple images to compare fea-
tures across.

Tanaka
et al.
2019

Test-retest. 14 NSCLC
4DCT scans.
14 NSCLC CT
scans test-retest.

IBEX. Shape,
first or-
der and
texture.

Results from test-retest
may not be generalizable
to different CT protocols.

4DCT could be used as an alterna-
tive to test-retest imaging. Finding
robust features across phases
around the end-of-exhale phase
rather than all 10 phases prevents
excessive dimension reduction.

Parmar
et al.
2015

Modelling. 464 NSCLC
pCT scans (spi-
ral thoracic CT
with or without
contrast).

In-house
Matlab.

Shape,
first or-
der and
texture.

Choice of classification
method causes variation
in a model’s predictive
performance.

Particular combinations of feature
selection and classification methods
give classification models with high
predictive performance.

Sun et al.
2018

Modelling. 283 NSCLC
pCT scans (spi-
ral thoracic CT
with or without
contrast).

In-house
Matlab.

Shape,
first or-
der and
texture.

Statistical methods to
predict overall survival
differ in their predictive
performance.

Particular combinations of feature
selection and machine learning
methods give survival models with
high predictive performance.
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Table 2.5 continued from previous page

Reference Workflow
stage(s)

Study data Software Features Identified problems Solution

Zhang et
al. 2017

Modelling. 112 NSCLC CT
scans.

In-house
Matlab.

First
order and
texture.

Endpoints, feature se-
lection and classification
methods affect predictive
performance.

Sample sizes above 50 give better
predictive performance. Subsam-
pling data to add to the minority
class increases predictive perfor-
mance.

Haga et
al. 2019

Modelling. 40 NSCLC max-
imum exhale
4DCT scans.
29 NSCLC CT
scans.

In-house
Matlab.

Shape,
first or-
der and
texture.

Feature normalization
can affect predictive
performance.

Performance of classification mod-
els can be improved by normalizing
features, particularly z-score nor-
malization.

Abbreviations: AUC, area under the curve; CBCT, cone-beam CT; CI, concordance index; DFS, disease free survival; DM, distant metastasis; GRD,
gross residual disease; H&N, head and neck; HR, hazard ratio; LR, local relapse; LRR, local regional recurrence; LR-RFS, loco-regional recurrence-free
survival; OS, overall survival; pCR, pathological complete response; pCT, radiotherapy planning CT scan; PFS, progression free survival; RFS, recurrence
free survival.
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Table 2.6: Radiomics studies in NSCLC, split into sections based on their investigated endpoint. The Data column specifies the total number
of patients involved in the study, in brackets split by training and validation cohorts if applicable and specifying other cancer types of cohorts
if applicable. Note: Studies marked with * are validation studies and their RQS score components refer to methodology based on the previous
published data. The ’Added value?’ column shows whether the added value of radiomics to a clinical model was tested.

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Overall survival

Aerts et
al. 2014
[91]

1-
3b

647 pCT
(422 +
225)

In-house
MAT-
LAB

Shape,
first or-
der and
texture

CI=0.65 Test re-test,
Multiple
segmen-
tations,
Univariable
analysis

Cox re-
gression

3 19 A, B, C,
D, G

Yes

Van
Tim-
meren
et al.
2017*

1-4 252 pCT
and CBCT
(102 + 56
+ 94)

In-house
MAT-
LAB

Shape,
first or-
der and
texture

CI=0.69,
0.61, 0.59
(pCT)
CI=0.66,
0.63, 0.59
(CBCT)

Validation of
Aerts et al.
2014 [91]

Validation
of Aerts
et al.
2014 [91]

4 16 A, B, C,
D, F, G

No

Grossman
et al.
2017*

1-3 351 di-
agnostic
CT
(262 + 89)

Not
specified

Shape,
first or-
der and
texture

CI=0.60 Validation of
Aerts et al.
2014 [91]

Validation
of Aerts
et al.
2014 [91]

4 18 A, B, C,
D, G

Yes
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Grossman
et al.
2017

1-3 351 di-
agnostic
CT
(262 + 89)

Not
specified

Not
specified

CI=0.61 mRMR,
Stepwise
selection

Cox re-
gression

3 9 A, B, C,
D, E,
G, H

Yes

Yu et
al. 2017

1 442 di-
agnostic
CT
(147 +
295)

IBEX First
order and
texture

CI=0.64 Multiple
segmen-
tations,
Random sur-
vival forests,
Correlation
analysis,
Correlation
to tumor
size, Uni-
variable
analysis

Cox re-
gression

3 15 A, B, C Yes

Chaddad
et al.
2017

1-
3b

315 pCT In-house
MAT-
LAB

Shape
and
texture

Average
AUC=0.70-
0.76

None per-
formed

Random
forest

1b 6 A, B, C,
D, E,
G, H

Yes
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Fave et
al. 2017

3 107 4DCT
end of
exhale,
planning
and CBCT

IBEX Shape
and
texture

CI=0.672 CT model
dependence,
Correlation
to tumor
volume,
Stepwise
selection

Cox re-
gression

1b 7 D, E, H Yes

Li et al.
2017

1-
2a

59 follow
up CT

Definiens
Devel-
oper

Texture AUC=0.81 Correlation
analysis,
PCA, Uni-
variable
analysis,
Stepwise
selection or
backward
stepwise
selection

Cox re-
gression

1b 6 A, B, C,
D, E, F,
G, H

Yes
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Li et al.
2017

1-
2a

92 4DCT
Average-
CT or 50%
phase-CT
images
were used
for analy-
sis

Definiens
Devel-
oper

Shape
and first
order

AUC=0.728 Correlation
analysis,
Stepwise
selection or
backward
stepwise
selection

Cox re-
gression

1b 6 B, C, D,
E, F, G,
H

Yes

Tang et
al. 2018

1-3 290 stag-
ing CT
(114 +
176)

IBEX Shape,
first or-
der and
texture

CI=0.72 Multiple
segmen-
tations,
Clustering,
Univariable
analysis

Cox re-
gression

3 10 A, B,
C, D, F,
G, H

No

Bianconi
et al.
2018

1-3 203 pCT Not
specified

Shape
and
texture

HR=1.06-
1.48

Univariable
analysis

Kaplan-
Meier

1a 1 A, B, C,
D, E, H

No

De Jong
et al.
2018*

4 195 di-
agnostic
CT

In-house
MAT-
LAB
and
CERR

Shape,
first or-
der and
texture

CI=0.576 Validation of
Aerts et al.
2014 [91]

Validation
of Aerts
et al.
2014 [91]

4 14 A, B, C,
D, F, G

Yes
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Lee et
al. 2018

1-3 339 CT
(type not
defined,
just pre-
operative
within
2 weeks
before
surgery)

In-house
MAT-
LAB

Shape,
first or-
der and
texture

CI=0.772 Univariable
analysis,
Stepwise
selection,
LASSO

Cox re-
gression

1b 5 A, B, C,
D, E,
G, H

Yes

He et
al. 2018

1-3 186 CT
(298 after
oversam-
pling (223
+ 75))
type not
defined

Py-
Radiomics

Not
specified

AUC=0.9296 None per-
formed

Random
forest

2a 1 A, B, C,
D, E, F,
G, H

No

Starkov
et al.
2018

1 116 pCT MATLAB
Gener-
alized
Riesz-
Wavelet
Toolbox
v 1.0

Texture High
risk vs
low risk
median p-
values=0.04–0.07

LASSO Kaplan-
Meier

1b -5 A, B, C,
D, E, F,
H

No
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Yang et
al. 2018

1-4 371 CT
(239 +
132)

In-house
MAT-
LAB

First
order and
texture

CI=0.702 Multiple
segmen-
tations,
LASSO

Cox re-
gression

3 11 A, B,
C, D, F,
G, H

Yes

Wang et
al. 2019

3 70 pre-
treatment
and 97
post treat-
ment CT
from 118
patients

Not
specified

Texture CI=0.743 Multiple
segmen-
tations,
Clustering,
Random sur-
vival forest,
Backward
stepwise
selection,
Correlation
analysis

Cox re-
gression

1b 6 B, C, D,
F, H

No

Shi et
al. 2019

3 11 CBCT
from 23
patients

IBEX First
order

HR=0.21 Test re-test,
Multiple
segmen-
tation,
Correlation
analysis

Kaplan-
Meier

1a 4 A, B, C,
D

Yes
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Van
Tim-
meren
et al.
2019

1-4 337 pCT
and 2154
CBCTs
from 337
patients
(141 + 94
+ 61 +
41)

In-house
MAT-
LAB

First
order and
texture

CI=0.59,
0.54, 0.57

Correlation
analysis,
LASSO

Cox re-
gression

3 19 B, C, D,
E, G, H

Yes

Huang
et al.
2019

1-4 371 CT
(254 + 63
+ 54)

In-house
MAT-
LAB

Shape,
first or-
der and
texture

CI=0.621,
0.649

Test re-test,
LASSO

Cox re-
gression

2a 4 A, B, C,
D, E, F,
G

No

Franceschini
et al.
2019

1-2 102 4DCT
(start of
inspira-
tion)
(70 + 32)

LIFEx Shape
and
texture

AUC=0.85 Univariable
analysis,
Elastic net
Backward
stepwise
selection

Cox re-
gression

2a 2 C, D, E,
G, H

No

Local or metastatic recurrence
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Coroller
et al.
2015

2-3 182 pCT
(98 + 84)

In-house
MAT-
LAB
and
CERR

First
order and
texture

CI=0.6 mRMR,
Univariable
analysis,
Stepwise
selection

Cox re-
gression

2b 13 A, B, C,
D, E,
G, H

Yes

Mattonen
et al.
2016

1 45 follow-
up CT

In-house
MAT-
LAB

First
order and
texture

AUC=0.85 Stepwise
selection

SVM 1b -2 B, C, D,
E, G, H

Yes

Huynh
et al.
2016

1-2 113 CT
(free
breathing)

In-house
MAT-
LAB
and 3D
Slicer

First
order and
texture

Median
CI=0.67

Test re-test,
PCA, Uni-
variable
analysis

Cox re-
gression

1b 6 A, B, C,
D, E, G

Yes

Huynh
et al.
2017

1-
2a

112 free
breathing
CT and
AIP CT

In-house
MAT-
LAB
and 3D
Slicer

Shape,
first or-
der and
texture

AIP ra-
diomics
CI=0.667
FB ra-
diomics
CI=0.601

Test re-test,
PCA, Uni-
variable
analysis,
LASSO

Cox re-
gression

1b 4 A, B, C,
E, G

Yes
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Fave et
al. 2017

3 107 4DCT
end of
exhale,
planning
and CBCT

IBEX Shape
and
texture

CI=0.632,
0.558
(DM,
LRR)

Stepwise
selection

Cox re-
gression

1b 7 D, E, H Yes

Li et al.
2017

1-
2a

59 follow
up CT

Definiens
Devel-
oper

Texture AUC=0.80,
0.80
(RFS,
LR-RFS)

Correlation
analysis,
PCA, Uni-
variable
analysis,
Stepwise
selection or
backward
stepwise
selection

Cox re-
gression

1b 6 A, B, C,
D, E, F,
H

Yes
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Li et al.
2017

1-
2a

92 4DCT
Average-
CT or 50%
phase-CT
images
were used
for analy-
sis

Definiens
Devel-
oper

Shape AUC=0.747,
0.690
(RFS,
LL-RFS)

Correlation
analysis,
Univariable
analysis,
Stepwise
selection or
backward
stepwise
selection

Cox re-
gression

1b 6 B, C, D,
E, F, H

Yes

Dou et
al. 2018

1-3 200 pCT
(100 +
100)

Py-
Radiomics

Texture CI=0.65 Test re-test,
mRMR,
Stepwise
selection

Cox re-
gression

2b 16 A, C, E,
G

Yes

Ferreira
Junior
et al.
2018

1-4 68 CT
(52 + 16)

IBEX Shape
and
texture

AUC=0.75,
0.71
(lymph
node
metas-
tasis,
DM)

ReliefF Naive
Bayes, k
-nearest
neigh-
bors and
neural
network

2a 9 A, B, C,
D, E, F,
G, H

No
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Yang et
al. 2018

1-3 159 CT
(106 + 53)

Py-
Radiomics

Shape,
first or-
der and
texture

AUC=0.856 LASSO,
Backward
stepwise
selection

Logistic
regres-
sion

2b 13 B, E, F,
G, H

Yes

Zhong
et al.
2018

1-2 492 CT MaZda First
order and
texture

AUC=0.972 Multiple
segmen-
tations,
ReliefF,
PCA

SVM 1b 3 A, B, C,
D, F, H,
G

Yes

Lafata
et al.
2019

1 70 CT In-house
MAT-
LAB

Texture Maximum
AUC=0.72,
0.83, 0.60
(recur-
rence, LR,
non-LR)

Univariable
analysis,
Truncated
singular
value de-
composition,
LASSO

Logistic
regres-
sion

1b 2 A, B, C,
D, E, F,
G, H

No

Akinci
D’Antonoli
et al.
2019

1-
2b

124 CT Moddicom Shape,
first or-
der and
texture

AUC
0.731,
0.750
(LR, DM)

Univariable
analysis,
Stepwise
selection

Cox re-
gression

1b 13 A, B, E,
F, G, H

Yes
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

He et
al. 2019

Not
spec-
i-
fied

717 CT
(423 +
294)

In-house
MAT-
LAB

First
order and
texture

CI=0.734 Multiple
segmen-
tations,
Correlation
analysis,
Univariable
analysis,
LASSO,
Backward
stepwise
selection

Logistic
regres-
sion

2b 13 A, B,
C, D, F,
G, H

No

Xu et
al. 2019

3-4 132 CT
(106 + 26)

In-house
MAT-
LAB

Texture AUC=0.642 Test re-test,
LASSO

Cox re-
gression

2a 12 B, C, D,
E, G, H

No

Franceschini
et al.
2019

1-2 102 4DCT
(start of
inspira-
tion)
(70 + 32)

LIFEx Shape,
first or-
der and
texture

AUC=0.73 Backward
stepwise
selection

Logistic
regres-
sion

2a 2 C, D, E,
G, H

No
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Ferreira-
Junior
et al.
2019

1-4 85 CT IBEX Shape,
first or-
der and
texture

AUC=0.92,
0.84 (DM,
nodal
metasta-
sis)

Univariable
analysis,
ReliefF

Neural
network

1b -2 A, B, C,
G, H

No

Cong et
al. 2019

1a 649 venous
phase CT
(455 +
194)

Artificial
Intelli-
gence
Kit

Shape,
first or-
der and
texture

AUC=0.851 Multiple
segmen-
tations,
Univariable
analysis,
LASSO

Random
forest

2a 14 B, C, D,
G, H

Yes

Treatment response, disease-free or progression-free survival

Coroller
et al.
2016

2-3 127 pCT In-house
MAT-
LAB
and 3D
Slicer

Shape,
first or-
der and
texture

Median
AUC=0.65,
0.61
(GRD,
pCR)

Test re-test,
PCA, Uni-
variable
analysis

Logistic
regres-
sion

1b 7 A, B, C,
D, E, G

Yes

Huang
et al.
2016

1-2 282 CT
(141 +
141)

In-house
MAT-
LAB

First
order and
texture

HR=2.09 Multiple
segmen-
tations,
LASSO

Cox re-
gression

2a 13 A, B,
C, D, F,
G, H

Yes
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Song et
al. 2016

1-4 152 CT
(80 + 72)

Not
specified

Texture HR=
2.35, 2.75

Univariable
analysis

Cox re-
gression

2a 4 A, B, C,
D, E, F,
G, H

No

Coroller
et al.
2017

2-3 85 pCT In-house
MAT-
LAB
and 3D
Slicer

Shape,
first or-
der and
texture

Median
AUC=0.68,
=0.71
(pCR,
GRD)

Test re-test,
PCA, Uni-
variable
analysis

Random
forest

1b 3 A, B, C,
D, E, G

Yes

Tunali
et al.
2019

3b-
4

228 CT In-house
MAT-
LAB
and
C++

Texture AUC=0.804 Test re-test,
Univariable
analysis,
Correlation
to tumor
volume,
Backwards
stepwise
selection

Logistic
regres-
sion

1a 5 A, B,
D, E

Yes

Franceschini
et al.
2019

1-2 102 4DCT
(start of
inspira-
tion)
(70 + 32)

LIFEx Texture AUC=0.88 Univariable
analysis,
Elastic net,
Backward
stepwise
selection

Cox re-
gression

2a 2 C, D, E,
G, H

No
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Table 2.6 continued from previous page

Reference Stage Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Added
value?

Lung toxicity

Moran
et al.
2017

1 14 diag-
nostic
CT

Not
specified

First
order and
texture

AUC=0.689-
0.750

Univariable
analysis

Logistic
regres-
sion

1a -2 A, B, C,
E, G, H

Yes

Krafft
et al.
2018

Not
spec-
i-
fied

192 50%
4DCT
phase

In-house
MAT-
LAB

First
order and
texture

Average
AUC=0.68

LASSO Logistic
regres-
sion

1b 0 A, E,
G, H

Yes

Staging

Yuan et
al. 2018

1 327 CT Artificial
intelli-
gence
kit

First
order and
texture

AUC=0.938 Recursive
feature
elimination

SVM 1b 2 A, B, C,
F, G, H

No

Yang et
al. 2019

1-3 256 CT Py-
Radiomics

First
order and
texture

AUC=
0.93

LASSO Logistic
regres-
sion

1b -3 B, C, E,
F, G, H

No

Abbreviations: AUC, area under the curve; CBCT, cone-beam CT; CI, concordance index; DFS, disease free survival; DM, distant metastasis; GRD,
gross residual disease; H&N, head and neck; HR, hazard ratio; LR, local relapse; LRR, local regional recurrence; LR-RFS, loco-regional recurrence-free
survival; OS, overall survival; pCR, pathological complete response; pCT, radiotherapy planning CT scan; PFS, progression free survival; RFS, recurrence
free survival.
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Table 2.7: Radiomics studies in NSCLC with an aspect of biology as the endpoint. The Data column specifies the total number of patients
involved in the study, in brackets split by training and validation cohorts if applicable and specifying other cancer types of cohorts if applicable.

Reference Stage Endpoint Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Genomics

Aerts et
al. 2016

Early
stage

EGFR 47 diag-
nostic
CT and
follow-up

Not
specified

Shape
and
texture

AUC=0.74-
0.91

Coefficient
of variation
Correlation
analysis
Univariable
analysis

Logistic
regres-
sion

1a 2 B, E, F

Rios Ve-
lazquez
et al.
2017

1-4 EGFR,
KRAS

705 di-
agnostic
CT
(353 +
352)

In-house
plug in
for 3D
Slicer

Shape,
first or-
der and
texture

AUC=0.69-
0.80

Test re-
test, PCA,
mRMR

Random
forest

3 14 A, B, C,
D, E, F

Mei et
al. 2018

Not
spec-
i-
fied

EGFR 296 CT PyRadiomics Texture AUC=0.664 Univariable
analysis

Logistic
regres-
sion

1a -2 A, B, C,
E, F, G,
H

Digumarthy
et al.
2019

Not
spec-
i-
fied

EGFR 93 CT TexRAD First
order

AUC=0.713 Univariable
analysis

Logistic
regres-
sion

1a -1 A, B, C,
E, F, G,
H
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Table 2.7 continued from previous page

Reference Stage Endpoint Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Jia et
al. 2019

1-4 EGFR 504 CT
(345 +
158)

Not
specified

Shape,
first or-
der and
texture

AUC=0.802 Univariable
analysis

Random
forest

2a 5 A, B,
D, E, F,
G, H

Li et al.
2019

1-4 EGFR
sub-
types
(19Del
and
L858R)

312 CT
(236 + 76)

In-house
C++

Shape
and first
order

AUC=
0.775-
0.793

Multiple
segmen-
tations,
Univariable
analysis,
Stepwise
selection

Logistic
regres-
sion

2b 14 B, C, F,
G, H

Tu et
al. 2019

1-4 EGFR 404 CT
(243 +
161)

In-house
MAT-
LAB

First
order and
texture

AUC=0.775 Multiple
segmen-
tations,
Univariable
analysis,
Clustering,
Backwards
stepwise
selection

Logistic
regres-
sion

2a 13 A, B,
C, D, F,
G, H
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Table 2.7 continued from previous page

Reference Stage Endpoint Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Yang et
al. 2019

Not
spec-
i-
fied

EGFR 467 CT
(306 +
161)

PyRadiomics Shape,
first or-
der and
texture

AUC=0.789 Mean de-
crease
impurity
importance
from ran-
dom forest

Random
forest

2a 13 B, D, E,
F, G, H

Wang et
al. 2019

1-2 EGFR,
TP53

61 CT
(41 + 20)

PyRadiomics First
order and
texture

AUC=0.604,
0.586

LASSO SVM 2a 10 B, C, E,
F, G, H

Wang et
al. 2019

1-2 Tumor
muta-
tion
bur-
den

61 CT
(41 + 20)

PyRadiomics Texture AUC=0.606 LASSO SVM 2a 10 B, C, E,
F, G, H

Signaling pathways

Grossman
et al.
2017

1-3 Various 351 CT
(262 + 89)

Not
specified

Shape,
first or-
der and
texture

AUC=0.62-
0.72

Clustering Logistic
regres-
sion

3 9 A, B, C,
D, E,
G, H

Bak et
al. 2018

1-4 Various 57 CT In-house
MAT-
LAB

First
order and
texture

OR=0.08-
23.94

Univariable
analysis

Logistic
regres-
sion

1a -5 B, C, E,
F, G, H
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Table 2.7 continued from previous page

Reference Stage Endpoint Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Histopathology

Patil et
al. 2016

Not
spec-
i-
fied

ADC,
LCC,
SCC,
NOS

317 pCT In-house
MAT-
LAB

Shape,
first or-
der and
texture

88%
accuracy

None SVM 1b 3 A, B, C,
D, E,
G, H

Wu et
al. 2016

1-4 ADC,
SCC

350 pCT
(198 +
152)

In-house
MAT-
LAB

First
order and
texture

AUC=0.72 Correlation
analysis,
Univariable
analysis

Random
forest,
naive
Bayes,
and k-
nearest
neighbors

3 13 A, B, C,
D, E,
G, H

Ferreira
Junior
et al.
2018

1-4 ADC,
SCC

68 CT
(52 + 16)

IBEX Not
specified

AUC=0.81 ReliefF Naive
Bayes
and k-
nearest
neigh-
bors and
neural
network

2a 6 A, B, C,
D, E,
G, H



106
C

H
A

P
T

E
R

2.
R

A
D

IO
M

IC
S

R
E

V
IE

W
IN

LU
N

G
C

A
N

C
E

R
Table 2.7 continued from previous page

Reference Stage Endpoint Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Zhu et
al. 2018

Not
spec-
i-
fied

ADC,
SCC

129 CT
(81 + 48)

In-house
MAT-
LAB

First
order and
texture

AUC=0.893 Multiple
segmen-
tations,
LASSO

Logistic
regres-
sion

2a 11 A, B,
C, D, F,
G, H

Digumarthy
et al.
2019

Not
spec-
i-
fied

ADC,
SCC

93 CT TexRAD First
order

AUC=0.744 Univariable
analysis

Logistic
regres-
sion

1a -1 A, B, C,
E, F, G,
H

E et al.
2019

Not
spec-
i-
fied

ADC,
SCC,
SCLC

229 CT In-house
MAT-
LAB

Shape,
first or-
der and
texture

AUC=0.657-
0.875

Test re-test,
Clustering,
mRMR,
Incremen-
tal forward
search

Naive
Bayes,
logistic
regres-
sion and
random
forest

1b 5 B, C, E,
F, G

Ferreira-
Junior
et al.
2019

1-4 ADC,
SCC

85 CT IBEX Shape,
first
order,
texture

AUC=0.88 Univariable
analysis,
ReliefF

Neural
network

1b -2 A, B, C,
G, H
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Table 2.7 continued from previous page

Reference Stage Endpoint Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Liu et
al. 2019

Not
spec-
i-
fied

ADC,
LCC,
SCC,
NOS

349 CT
(278 + 71)

Not
specified

Not
specified

AUC=0.86 l2,1-norm
minimiza-
tion

SVM 3 4 A, B, C,
D, E, F,
G, H

Zhou et
al. 2018

1-4 Ki-67 110 CT 3D
Slicer

Shape
and
texture

AUC=0.61-
0.77

Univariable
analysis,
Backwards
stepwise
selection

Logistic
regres-
sion

1a 11 B, D, E,
F, G, H
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Table 2.7 continued from previous page

Reference Stage Endpoint Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Gu et
al. 2019

Not
spec-
i-
fied

Ki-67 245 CT MaZda First
order and
texture

AUC=0.776 Feature
selection
algorithm
based on
random
forest

Logistic
regres-
sion,
linear
discrim-
inant
analysis,
classifica-
tion tree
and re-
gression
tree, k-
neighbour
cluster-
ing, SVM
and ran-
dom
forest

1b -2 A, B, C,
D, E, F,
G, H
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Table 2.7 continued from previous page

Reference Stage Endpoint Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Song et
al. 2017

1-3 Micro-
papillary
pat-
tern

339 CT Not
specified

First
order

AUC=0.751 Multiple
segmen-
tation,
Univariable
analysis,
Stepwise
selection

Logistic
regres-
sion

1b 8 B, C, D,
F, G, H

Chen et
al. 2018

Not
spec-
i-
fied

Degree
of
differ-
entia-
tion

487 CT
(303 +
184)

In-house
MAT-
LAB

First
order and
texture

AUC=0.782 Univariable
analysis,
mRMR,
Backwards
stepwise
selection

Logistic
regres-
sion

2b 3 A, B, C,
D, E, F,
G, H

She et
al. 2018

Not
spec-
i-
fied

Invasive
vs
non-
invasive
ADC

402 CT
(207 +
195)

In-house
Python

Shape,
first or-
der and
texture

AUC=0.89 LASSO Logistic
regres-
sion

2b 8 A, B, C,
D, E, F,
G, H
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Table 2.7 continued from previous page

Reference Stage Endpoint Data
(training
+ valida-
tion)

Software Radiomic
features
in final
model

Result Feature
selection

Model
building

TRI-
POD

RQS
(max
36)

Methodo-
logical
limita-
tions

Yang et
al. 2019

Not
spec-
i-
fied

Invasive
vs
non-
invasive
ADC

192 CT
(116 + 76)

Artificial
intelli-
gence
kit

First
order and
texture

AUC=0.77 Multiple
segmen-
tations,
Correlation
analysis,
LASSO

Logistic
regres-
sion

2a 13 B, C, D,
F, G, H

Abbreviations: ADC, adenocarcinoma; AUC, area under the curve; CI, concordance index; EGFR, epidermal growth factor receptor; KRAS, Kirsten rat
sarcoma viral oncogene homolog; LCC, large cell carcinoma; NOS, not otherwise specified; OR, odds ratio; SCC, squamous cell carcinoma.
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Table 2.8: Transparent Reporting of a multivariable prediction model for Individual Prog-
nosis Or Diagnosis (TRIPOD) analysis types [200].

Analysis type Description

Type 1a Development of a prediction model where predictive per-
formance is then directly evaluated using exactly the same
data (apparent performance).

Type 1b Development of a prediction model using the entire data
set, but then using resampling (e.g. bootstrapping or cross-
validation) techniques to evaluate the performance and op-
timism of the developed model.

Type 2a The data are randomly split into two groups: one to de-
velop the prediction model, and one to evaluate its predic-
tive performance.

Type 2b The data are non-randomly split (e.g. by location or time)
into two groups: one to develop the prediction model and
one to evaluate its predictive performance.

Type 3 Development of a prediction model using one data set and
an evaluation of its performance on separate data (e.g.
from a different study).

Type 4 The evaluation of the predictive performance of an existing
(published) prediction model on separate data.
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Table 2.9: The radiomics quality score (RQS) scoring criteria developed by Lambin et al. [201].

Criteria Points

Image protocol quality – well-documented image protocols (e.g., contrast, slice thickness, energy,
etc.) and/or usage of public image protocols allow reproducibility/ replicability

+1 (if protocols are well-documented)
+1 (if public protocol is used)

Multiple segmentations – possible actions are: segmentation by different physicians/ algorithms/-
software, perturbing segmentations by (random) noise, segmentation at different breathing cycles.
Analyze feature robustness to segmentation variabilities

+1

Phantom study on all scanners – detect inter-scanner differences and vendor-dependent features.
Analyze feature robustness to these sources of variability

+1

Imaging at multiple time points – collect individuals’ images at additional time points. Analyze
feature robustness to temporal variabilities (e.g., organ movement, organ expansion/shrinkage).

+1

Feature reduction or adjustment for multiple testing – decreases the risk of overfitting. Overfitting
is inevitable if the number of features exceeds the number of samples. Consider feature robustness
when selecting features

+3 (if neither measure is implemented)
+3 (if either measure is implemented)

Multivariable analysis with non radiomic features (e.g., EGFR mutation) – is expected to provide a
more holistic model. Permits correlating/inferencing between radiomics and non radiomics features

+1

Detect and discuss biological correlates – demonstration of phenotypic differences (possibly asso-
ciated with underlying gene–protein expression patterns) deepens understanding of radiomics and
biology

+1

Cut-off analyses – determine risk groups by either the median, a previously published cut-off or
report a continuous risk variable. Reduces the risk of reporting overly optimistic results

+1

Discrimination statistics – report discrimination statistics (e.g., C-statistic, ROC curve, AUC) and
their statistical significance (e.g., p-values, confidence intervals). One can also apply resampling
method (e.g., bootstrapping, cross-validation)

+1 (if a discrimination statistic and its statis-
tical significance are reported)
+1 (if also an resampling method technique is
applied)
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Table 2.9 continued from previous page

Criteria Points

Calibration statistics – report calibration statistics (e.g., Calibration-in-the-large/slope, calibration
plots) and their statistical significance (e.g., p-values, confidence intervals). One can also apply
resampling method (e.g., bootstrapping, cross-validation)

+1 (if a calibration statistic and its statistical
significance are reported)
+1 (if also an resampling method technique is
applied)

Prospective study registered in a trial database – provides the highest level of evidence supporting
the clinical validity and usefulness of the radiomics biomarker

+7 (for prospective validation of a radiomics
signature in an appropriate trial)

Validation – the validation is performed without retraining and without adaptation of the cut-off
value, provides crucial information with regard to credible clinical performance

-5 (if validation is missing)
+2 (if validation is based on a dataset from
the same institute)
+3 (if validation is based on a dataset from
another institute)
+4 (if validation is based on two datasets from
two distinct institutes)
+4 (if the study validates a previously pub-
lished signature)
+5 (if validation is based on three or more
datasets from distinct institutes)
*Datasets should be of comparable size and
should have at least 10 events per model fea-
ture.

Comparison to ‘gold standard’ – assess the extent to which the model agrees with/is superior to
the current ‘gold standard’ method (e.g., TNM-staging for survival prediction). This comparison
shows the added value of radiomics

+2

Potential clinical utility – report on the current and potential application of the model in a clinical
setting (e.g., decision curve analysis)

+2
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Table 2.9 continued from previous page

Criteria Points

Cost-effectiveness analysis – report on the cost-effectiveness of the clinical application (e.g., quality
adjusted life years generated)

+1

Open science and data – make code and data publicly available. Open science facilitates knowledge
transfer and reproducibility of the study

+1 (if scans are open source)
+1 (if region of interest segmentations are
open source)
+1 (if code is open source)
+1 (if radiomics features are calculated on
a set of representative ROIs and the calcu-
lated features + representative ROIs are open
source

Total points (36 = 100%)
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Abstract

Objective

To investigate the effects of Image Biomarker Standardisation Initiative (IBSI) com-

pliance, harmonisation of calculation settings and platform version on the statistical

reliability of radiomic features and their corresponding ability to predict clinical out-

come.

Methods

The statistical reliability of radiomic features was assessed retrospectively in three

clinical datasets (patient numbers: 108 head and neck cancer, 37 small-cell lung can-

cer, 47 non-small-cell lung cancer). Features were calculated using four platforms

(PyRadiomics, LIFEx, CERR and IBEX). PyRadiomics, LIFEx and CERR are IBSI-

compliant, whereas IBEX is not. The effects of IBSI compliance, user-defined calcula-

tion settings and platform version were assessed by calculating intraclass correlation

coefficients and confidence intervals. The influence of platform choice on the relation-

ship between radiomic biomarkers and survival was evaluated using univariable cox

regression in the largest dataset.

Results

The reliability of radiomic features calculated by the different software platforms was

only excellent (ICC > 0.9) for 4/17 radiomic features when comparing all four plat-

forms. Reliability improved to ICC > 0.9 for 15/17 radiomic features when analysis

was restricted to the three IBSI-compliant platforms. Failure to harmonise calcula-

tion settings resulted in poor reliability, even across the IBSI-compliant platforms.

Software platform version also had a marked effect on feature reliability in CERR and

LIFEx. Features identified as having significant relationship to survival varied between

platforms, as did the direction of hazard ratios.

Conclusion

IBSI compliance, user-defined calculation settings and choice of platform version all

influence the statistical reliability and corresponding performance of prognostic models

in radiomics.
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3.1 Introduction

There is considerable current interest in calculating features from medical images using

high-throughput methods and then relating these features to clinical endpoints [88,

201]. This approach has been termed ‘radiomics’. The principal hypothesis is that

medical images contain information beyond that identified readily by traditional ra-

diological examination, and that this information can be extracted through advanced

image analysis. Since imaging plays a key role in cancer diagnosis, treatment and

follow-up, radiomics provides potential non-invasive and inexpensive methods for de-

veloping biomarkers for prognosis and/or prediction in oncology.

The potential value of radiomic biomarkers has been well documented [88, 89], but

recent literature have highlighted potential barriers to the translation of radiomics into

useful decision-making tools [48, 90]. For example, studies have demonstrated that

radiomic features can be heavily influenced by scanner acquisition and reconstruction

parameters [166, 203], or inter-observer variability in defining target lesions [184], both

of which influence model performance [179, 204].

One critical aspect of the radiomics workflow that remains relatively unexamined is the

implementation of the software platforms used to calculate radiomic features. Many

radiomic software platforms are reported in the literature, ranging from in-house devel-

opments [91], to open-source [205–207], freeware [208] and commercial offerings [209].

With in-house and commercial products, the source code for calculating features is not

always publicly available. This can prevent comparison of results between studies in

the literature. This is contrary to current moves towards an open-science approach in

‘big data’ analyses and in artificial intelligence, where open-source and freeware devel-

opers publish feature definitions alongside software code, including the values chosen

for any calculation settings, and the user-defined free parameters that are required for

the calculation of some features [210].

Several studies have previously demonstrated that features can vary when calculated

in different software platforms [197, 211, 212]. The Image Biomarker Standardisa-

tion Initiative (IBSI) is an international collaboration developed to help standardise
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radiomic feature calculation and has provided a framework to deliver practical solu-

tions to this problem [51]. The IBSI has made recommendations concerning feature

calculation, standardised feature definition and nomenclature. It has also provided a

digital phantom with benchmark values to validate feature calculation platforms (to

become IBSI-compliant) [213]. However, IBSI does not address calculation settings or

evaluate versions of software.

In this article, we expand on this work by looking in three clinical datasets. We aimed

to investigate the effects of IBSI compliance, harmonisation of calculation settings and

choice of platform version on the statistical reliability of radiomic features and their

corresponding ability to predict clinical outcome.

3.2 Methods and materials

In this study, we evaluated three different clinical datasets using four different radiomic

feature calculation platforms.

3.2.1 Patient data

Data analysis was performed following institutional board approval and was compliant

with UK research governance (ref. 17/NW/0060). We examined three datasets:

1. One hundred eight radiotherapy planning contrast-enhanced CT scans from

patients with oropharyngeal head and neck (H&N) cancer treated with either

chemo-radiotherapy or radiotherapy alone at The Christie NHS Foundation Trust,

Manchester, UK.

2. Thirty-seven radiotherapy planning contrast-enhanced CT scans from a cohort

of patients with small-cell lung cancer (SCLC) who had been enrolled in the

CONVERT trial [214], acquired in nine different institutions (supplementary

material A).

3. Forty-seven diagnostic contrast-enhanced CT scans from a cohort of patients

with stage 4 non-small-cell lung cancer (NSCLC) cancer treated with first-line

immunotherapy at The Christie NHS Foundation Trust, Manchester, UK.
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The gross tumour volume, the extent of the visible tumour on the CT scan, was

extracted from the radiotherapy structure set for both the H&N and SCLC cohorts.

Original contours were drawn by the treating physician using the Pinnacle3 Treatment

Planning system (versions 8.0, 9.0, 9.8 or 16.0, Philips Healthcare) and used as the

analysis region of interest (ROI). Twelve H&N and 10 SCLC patients did not have

contrast due to poor renal function or IV access. For the NSCLC dataset, ROIs were

drawn by a thoracic oncologist (C.A.; 5 years’ experience) using the same Pinnacle

software (version 9.8). ROIs were checked by a board-certified radiologist J.O.C.: 14

years’ experience). Full details of patient cohorts, image acquisition and reconstruction

are detailed in Supplementary Tables 3.4 and 3.5.

3.2.2 Radiomic software platform selection

To our knowledge, 14 different radiomics software platforms are reported in the lit-

erature (Table 3.1) [205–208, 215–220]. Four of these software platforms are freely

available, used widely in the literature and have mathematical equations documented

to sufficient detail to understand the basis for their analysis.
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Table 3.1: Details of various software packages available for radiomic feature calculation. The listed number of citations are those that cite the
initial publication introducing the platform according to PubMed (search on 30/01/2020)

Software Year of
publica-
tion

Citations IBSI-
compliant?

Free? Open
source?

Feature sets
calculated

Mathematical
equations doc-
umented?

MaZda [216] 2009 366 ✗ ✓ ✗ Shape, intensity
and texture

✗

Chang-Gung Image Texture
Analysis (CGITA) [217]

2014 65 ✗ ✓ ✓ Intensity and
texture

✗

IBEX [206] 2015 134 ✗ ✓ ✓ Shape, intensity
and texture

✓

Moddicom [218] 2015 13 ✗ ✓ ✓ Shape, intensity
and texture

✗

PyRadiomics [207] 2017 324 ✓ ✓ ✓ Shape, intensity
and texture

✓

LIFEx [208] 2018 84 ✓ ✓ ✗ Shape, intensity
and texture

✓

Quantitative Image Feature
Engine (QIFE) [219]

2018 13 ✗ ✓ ✓ Shape, intensity
and texture

✗

CERR [205] 2018 25 ✓ ✓ ✓ Shape, intensity
and texture

✓
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Table 3.1 continued from previous page

Software Year of
publica-
tion

Citations IBSI-
compliant?

Free? Open
source?

Feature sets
calculated

Mathematical
equations doc-
umented?

MITK Phenotyping [220] 2019 6 ✓ ✓ ✓ Shape, intensity
and texture

✓

RaCat [215] 2019 4 ✓ ✓ ✓ Shape, intensity
and texture

✗

PORTS v.1.1 matlab soft-
ware (www.ncihub.org/
resources/1663)

Not pub-
lished

Not
published

✗ ✓ ✓ Intensity and
texture

✓

MatLab package
(www.github.com/
mvallieres/radiomics)

Not pub-
lished

Not
published

✓ ✓ ✓ Shape, intensity
and texture

✓

TexRad Not pub-
lished

Not
published

Unknown ✗ ✗ Unknown Unknown

Oncoradiomics Not pub-
lished

Not
published

Unknown ✗ ✗ Unknown Unknown
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For all of the study, we used the latest version of the following platforms: LIFEx v5.47

[208], IBEX v1.0 beta [206], PyRadiomics v2.2.0 [207] and the Computational Envi-

ronment for Radiological Research (CERR) commit a1c8181 (05/09/2019) available

at https://github.com/cerr/CERR [205]. Notably, LIFEx, PyRadiomics and CERR

claim compatibility with the IBSI standard, whereas IBEX does not (Table 3.1).

For the comparison between software versions, we used LIFEx v5.1, CERR commit

50530f7 (29/08/2019) and PyRadiomics v2.1.2. IBEX has only released one ver-

sion.

3.2.3 Feature calculation

We analysed radiomic features common to the four software platforms. These 17 fea-

tures included three shape parameters, four intensity feature, one histogram feature,

six 3D grey level co-occurrence matrix (GLCM) features and three 3D neighbourhood

grey tone difference matrix (NGTDM) features measuring ROI heterogeneity (Ta-

ble 3.2; example of the shape feature ‘sphericity’ shown in Figure 3.1). Since naming

conventions for these features are not consistent across software (see Table 3.2), we

used the feature names most closely in keeping with IBSI nomenclature, but simplified

where appropriate. No image pre-processing was performed.
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Table 3.2: Differences in naming conventions defined by the IBSI across the radiomic software.

Feature IBSI
terminology

LIFEx IBEX PyRadiomics CERR

Volume Volume (mesh)
and volume (voxel
counting)

Volume Volume Mesh volume and
voxel volume

Volume

Sphericity Sphericity Sphericity Sphericity Sphericity Sphericity

Area Surface area
(mesh)

Surface area Surface area Surface area Surface area

Skewness Discretised inten-
sity skewness

Histogram skew-
ness

Intensity his-
togram skewness

First-order skew-
ness

Skewness

GLCM correlation GLCM correlation GLCM correlation GLCM correlation GLCM correlation GLCM correlation

GLCM contrast GLCM contrast GLCM contrast =
variance

GLCM contrast GLCM contrast GLCM contrast

GLCM angular
Second moment

GLCM angular
Second moment

GLCM energy =
angular second
moment

GLCM energy GLCM joint en-
ergy

GLCM joint en-
ergy

GLCM joint en-
tropy

GLCM joint en-
tropy

GLCM entropy
Log2 = joint en-
tropy

GLCM entropy GLCM joint en-
tropy

GLCM joint en-
tropy

GLCM difference
average

GLCM difference
average

GLCM dissimi-
larly

GLCM dissimi-
larly

GLCM difference
average

Dissimilarity (dif-
ference average)
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Table 3.2 continued from previous page

Feature IBSI
terminology

LIFEx IBEX PyRadiomics CERR

GLCM inverse
difference

GLCM inverse
difference

GLCM homo-
geneity = inverse
difference

GLCM homogene-
ity

GLCM ID GLCM inverse
difference

NGTDM busyness NGTDM busyness NGLDM busyness Neighbour inten-
sity difference
busyness

NGTDM busyness NGTDM busyness

NGTDM coarse-
ness

NGTDM coarse-
ness

NGLDM coarse-
ness

Neighbour inten-
sity difference
coarseness

NGTDM coarse-
ness

NGTDM coarse-
ness

NGTDM contrast NGTDM contrast NGLDM contrast Neighbour inten-
sity difference
contrast

NGTDM contrast NGTDM contrast

Minimum Minimum intensity Conventional HU
minimum

Global Minimum First-order mini-
mum

Minimum

Maximum Maximum inten-
sity

Conventional HU
maximum

Global maximum First-order maxi-
mum

Maximum

Mean Mean intensity Conventional HU
mean

Global mean First-order mean Mean
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Table 3.2 continued from previous page

Feature IBSI
terminology

LIFEx IBEX PyRadiomics CERR

Standard deviation Not defined (vari-
ance is defined)

Conventional HU
standard deviation

Global standard
deviation

First-order stan-
dard deviation

Standard deviation

Abbreviations: ID, inverse difference; GLCM, grey-level co-occurrence matrix; HU, Hounsfield Unit; NGLDM, neighborhood grey-level differ-
ent matrix; NGTDM, neighboring grey tone difference matrix.
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Figure 3.1: Example tumours and corresponding values for the feature ‘sphericity’
from each dataset.

The absolute numerical value of some radiomic features depend heavily on choice of

default or user-defined settings. For example, the number of bins used to discretise

image intensities do not have consistent default values across the platforms (see Ta-

ble 3.3). Therefore, as well as performing inter-platform comparison of the results

from different platforms, we also investigated the effect harmonising these parameters

to common values. The harmonised calculation settings are presented in Table 3.3.

Differences between platforms are detailed in supplementary material B.
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Table 3.3: Default calculation settings for each software platform along with the harmonised settings used in this study.

Calculation settings LIFEx IBEX PyRadiomics CERR Harmonised settings
(this study)

Histogram

Number of grey levels 400 256 Bin width 25 Bin width 25 64

Lower bound - 1000 0 Minimum 0 Minimum

Upper bound 3000 4096 Maximum 500 Maximum

GLCM

Number of grey levels 400 100 Bin width 25 Bin width 25 64

Lower bound - 1000 0 Minimum 0 Minimum

Upper bound 3000 2100 Maximum 500 Maximum

Directions 13 13 13 4 13

Offset 1 1, 4 and 7 1 1 1

Symmetric Yes Yes Yes Yes Yes

NGTDM

Number of grey levels 400 256 Bin width 25 Bin width 25 64

Lower bound - 1000 0 Minimum 0 Minimum

Upper bound 3000 4096 Maximum 500 Maximum

Distance 1 2 1 1 1

Abbreviations: GLCM, grey-level co-occurrence matrix; NGTDM, neighboring grey tone difference matrix.
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3.2.4 Statistical analysis

To assess the effect of software platform variation on the reliability of radiomic biomark-

ers, we calculated two-way mixed effect intraclass correlation coefficients (ICC) and

their 95% confidence intervals (CIs) for each feature. The ICC quantifies the absolute

agreement between features computed by each platform. The ICC estimates and CI

were stratified to indicate poor (ICC CI < 0.5), moderate (0.5 < ICC CI < 0.75), good

(0.75 < ICC CI < 0.9) and excellent (ICC CI > 0.9) reliability [221]. Negative ICC

estimates and CI were truncated at zero.

To assess the effect of software platform variation on the relationship of radiomic

biomarkers to clinical outcome, we applied univariable cox regression against overall

survival in the H&N dataset for each feature in Table 3.2. We repeated this analysis for

each software platform using both their default calculation settings and the harmonised

settings. Feature values were normalised to uniform scale (mean 0, standard deviation

1) to permit relative comparison of effect sizes.

All statistical analyses were performed in R 3.5.2 [222] with packages irr v0.84 [223]

and survival v2.44.1.1 [224].

3.3 Results

3.3.1 Poor radiomic biomarker reliability across software plat-

forms is improved by IBSI standardisation

We assessed the statistical reliability between radiomic features calculated from four

software platforms using harmonised calculation settings in three clinical datasets.

The distribution of feature values across all platforms and cohorts is available in the

supplementary data. In each case, ICC and confidence intervals were derived (Fig-

ure 3.2A). Reliability between all four software was excellent (ICC CI > 0.9) in all

datasets for only 4/17 features (volume, skewness, mean and maximum intensity).

Reliability between software was poor (ICC CI < 0.5) in all datasets for 6/17 features

(sphericity, some GLCM features and all NGTDM features). The other features had

moderate or good reliability. Overall, the level of reliability for each individual feature
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was highly consistent across the three clinical datasets.
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Figure 3.2: Boxplots of ICC estimates and CI for each cohort (H&N in green,
NSCLC in pink, SCLC in blue) for all 17 features, showing the statistical reliability
between the different software platforms. A ICC estimates and CI for all four
software with harmonised calculation settings. B ICC estimates and CI for the
three IBSI-compliant software with harmonised calculation settings (i.e. with IBEX
excluded from analysis).
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We repeated the analysis for only the IBSI-compliant software platforms, by remov-

ing IBEX data (Figure 3.2B). This had a marked effect, with 15/17 features now

showing excellent reliability across all datasets. Overall, these data show that the

level of reliability across different radiomic biomarkers can vary substantially between

different software platforms in the absence of IBSI-compliant standardisation. Once

standardisation is adopted, this divergence is reduced substantially for most radiomic

biomarkers.

3.3.2 IBSI standardisation is only effective when calculation

settings are harmonised

IBSI guidelines provide clear instructions and definitions for the process of image

biomarker calculation. However, no recommendations are given for calculation set-

tings. We evaluated the influence of using the default calculation settings versus

harmonising them across software platforms using the three IBSI-compliant software

platforms (Figure 3.3A). Reliability was excellent for only 6/17 features (volume, skew-

ness, standard deviation and mean, minimum, maximum intensity) when default cal-

culation settings were used, despite all software being IBSI-compliant. In distinction,

10/17 features (sphericity, all six GLCM-based features and all three NGTDM-based

features) had poor reliability across all three datasets.
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Figure 3.3: Boxplots of ICC estimates and CI for each cohort (H&N in green,
NSCLC in pink, SCLC in blue) across all 17 features, showing the statistical reli-
ability between the different software platforms. A ICC estimates and CI for the
three IBSI-compliant software with default calculation settings (i.e. with IBEX
excluded from analysis). B ICC estimates and CI for the three IBSI-compliant soft-
ware with harmonised calculation settings (i.e. with IBEX excluded from analysis).
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Once calculation settings were harmonised, the reliability reverted to that seen for

IBSI-compliant software (Figure 3.3B). These data reveal the importance of these user-

defined free parameters to the calculation of radiomic features. Without harmonisation

of calculation settings, even IBSI-compliant platforms generate unreliable features,

with the effect remarkably consistent across the three different tumour types and two

different types of CT data (diagnostic and radiotherapy planning scans).

3.3.3 Different versions of each software platform influence the

statistical reliability of radiomic biomarkers

Software platforms undergo frequent updates. We evaluated the effect of changing

between software versions for all three IBSI-compliant platforms by calculating the

ICC between the newer and older versions. PyRadiomics had excellent reliability for

all features (Figure 3.4A). CERR had a discretisation error in an older version (com-

mit 50530f7 (29/08/2019) available at https://github.com/cerr/CERR) which affected

texture features calculation (GLCM and NGTDM) (Figure 3.4B). We identified this

difference and, after making the developers aware, the source of error issue was dis-

covered and corrected for the newest version, which is used in our full analysis.
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Figure 3.4: Boxplots of ICC estimates and CI for each cohort (H&N in green,
NSCLC in pink, SCLC in blue) across all 17 features, showing the reliability between
different versions of the same software platform. ICC estimates and CI are presented
for A PyRadiomics version 2.2.0 versus 2.1.2 with harmonised calculation settings,
B CERR commit a1c8181 versus 50530f7 with harmonised calculation settings and
C LIFEx version 5.47 versus 5.1 with harmonised calculation settings (NB: area is
not calculated in LIFEx version 5.1 and so does not appear in C).

Initial experiments showed that sphericity had poor reliability in all datasets, even

when comparison was restricted to IBSI-compliant software platforms (Figure 3.2B).

Investigation traced this uncertainty to LIFEx (the sphericity values for CERR and

PyRadiomics had ICC estimates with 95% CI of 0.996 to 0.999 (CI 0.992-1) for the

three clinical datasets). Comparing the latest LIFEx release (5.1) with the develop-

ment version used in this study (5.47) shows significant changes in sphericity (Fig-

ure 3.4C). The minimum value calculation also changed between these versions with

a knock-on effect on dependent features, such as skewness, some GLCM features and

standard deviation.

Taken together, these data reveal the importance of study authors reporting which

software version was used for data analysis. The data also highlight the difficulty in
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comparing studies that initially appear to be similar to one another.

3.3.4 Software platform and calculation settings affect the sig-

nificance and direction of correlation of radiomic features

to overall survival

We assessed how the choice of software platform and calculation settings influences the

relationship of radiomic features to patient outcome. These analyses were performed

in the largest of our clinical datasets (H&N cancer; N = 108). Overall survival was de-

termined, with 28 patients dying within the follow-up period of 2.2 years. Univariable

Cox regression results are presented for all 17 features with harmonised calculation

settings and default calculation settings (Figure 3.5).

Figure 3.5: Heat-map of the p values (and associated hazard ratios) from univari-
able Cox regression for each radiomic feature, with harmonised calculation settings
on the left A and default calculation settings on the right B. Cells are colour-coded
according to the following p value thresholds: p value < 0.05 (red), 0.05 < p value
< 0.1 (orange) and p value > 0.1 light orange. ASM, angular second moment; HR,
hazard ratio.

The p values and associated hazard ratios for each feature when using harmonised cal-

culation settings are presented in Figure 3.5A. Eight features (volume, area, sphericity,

GLCM correlation, NGTDM busyness, NGTDM coarseness, minimum and maximum)

were significant at p < 0.05 in all four platforms. A further five features (GLCM an-

gular second moment, GLCM joint entropy, GLCM difference average, GLCM inverse

difference and standard deviation) were significant at p < 0.05 for the three IBSI-

compliant software platforms but not in IBEX. When a given radiomic feature was
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deemed significant at the p < 0.05 threshold for multiple software platforms, the haz-

ard ratios were generally in close agreement across the software platforms.

The p values and associated hazard ratios for each feature when using default calcu-

lation settings are presented in Figure 3.5B. Since shape and most first-order features

are not dependent on these parameters, they were unaffected by the changed calcula-

tion settings. Texture features, however, are dependent on the user-defined calculation

settings and all became no longer significant at the p < 0.05 threshold, with the ex-

ception of GLCM correlation. Notably, IBEX diverged further from agreement with

the three IBSI-compliant software platforms.

Of particular note, the hazard ratio for GLCM joint entropy changed from 0.56–0.59

(i.e. less than 1.0 and significant p value) when harmonised calculation settings were

used to 1.5 (i.e. more than 1.0 and significant p value) when default calculation

settings were used. Thus, significant correlations were detected that had opposing

hazard ratio directions depending on choice of parameter input. This effect is shown

clearly in Figure 3.6, where the direction of the hazard ratio changed from protective

to harmful. These data reveal that both IBSI compliance and calculation settings can

affect the significance and direction of relationships between radiomic features and

clinical outcome.
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Figure 3.6: GLCM joint entropy (here calculated in PyRadiomics) against 2-year
survival for patients with H&N cancer when calculated with harmonised settings
(blue) and default settings (orange).

3.4 Discussion

Radiomics has great potential to produce independent predictive biomarkers for per-

sonalised healthcare, particularly in the management of patients with cancer [201].

Many studies have been published describing prognostic and predictive radiomic sig-

natures, but significant methodological limitations have hindered clinical translation

of these techniques [225].

In this study, we investigated the importance of IBSI compliance, harmonising calcula-

tion settings and choice of platform version when using different radiomics calculation

platforms. We tested how these factors affect the statistical reliability of features and

showed how these factors also influence the relationship between radiomic biomarkers

and clinical outcome (in this case, the overall survival).

Radiomic feature calculation is an important part of the radiomics workflow. Studies

can use a variety of commercial or freely available software platforms to achieve this

[209] or use in-house developed software. A study by Foy et al compared two in-house
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developed software to IBEX and found that for head and neck CT scans, histogram

features had excellent reliability but GLCM features varied between poor and excellent

reliability [211]. The software packages in that study were not IBSI-compliant.

Our study demonstrates the benefits of standardising feature calculation platforms

according to the IBSI. Features calculated in IBSI-compliant software had greater sta-

tistical reliability than features calculated in non-compliant platforms, but only when

calculation settings were also harmonised. The method of grey level discretisation has

been shown to affect feature reproducibility within the same software platform [170,

174]. Our results both confirm these findings and extend the principle to all those

user-defined parameters listed in Table 3.3, emphasising the need to harmonise cal-

culation settings even when an IBSI-compliant platform is used. Results were highly

consistent across three clinical datasets.

Our data has also highlighted the importance of inter-software comparison. By doing

so, we identified potential errors in both the CERR and LIFEx code bases, leading to

subsequent corrections and improved reliability. It is vital that investigators document

the version and date of the software platform used in their study to ensure results are

reproducible between institutions. Our data also highlight the benefits of open-source

tools and the importance of the relevant scientific communities actively working with

their developers to improve them.

Univariable survival analysis revealed substantial differences in prognostic power be-

tween supposedly similar features derived from different software platforms. We make

three observations. Firstly, some features had significant association with H&N can-

cer overall survival in the IBSI-compliant software but not in IBEX. These findings

concur with Liang et al who investigated two platforms and found differences in down-

stream clustering of known prognostic factors in patients with nasopharyngeal carci-

noma [212]. Similar conclusions were drawn by Bogowicz et al who investigated this in

PET scans of patients with H&N cancer [197]. Secondly, when only evaluating IBSI-

compliant software, there was a divergence of feature to survival correlation between

software platforms when calculation settings varied.

Thirdly, our study demonstrates that when different calculation settings are used, the
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relationship of significant features to survival can remain significant but the direction

of that relationship (hazard ratio) can invert from protective to harmful. This effect

may reflect that for some features, altering calculation settings radically alters the

biophysical property being measured. In this study, there is no ground truth against

which the ‘true’ direction of a feature can be established, but the data demonstrates

the important role calculation settings play in selecting features for radiomic signa-

tures.

There are several limitations to this study. Our inclusion criteria for feature calculation

platforms that they are freely available, widely cited, and sufficiently well documented

for analysis limited the number of assessed platforms to four, only one of which was not

IBSI-compliant. There are also more features available in each of the software plat-

forms that were not included in this study, as only features that were available across

all four software platforms were analysed. The clinical datasets used were sufficiently

large to evaluate ICC with CIs but the number of events only permitted univariable

survival analysis of outcome. Lastly, LIFEx is a closed-source project, which precluded

thorough investigation of the observed difference in sphericity calculation compared to

other IBSI-compliant software.

In conclusion, this study has shown that use of IBSI-compliant radiomic feature calcu-

lation platforms appears to increase the statistical reliability of features. However, even

IBSI-compliant platforms are affected strongly by user-defined calculation settings and

changes between software versions. Future radiomics studies should be aware of po-

tential differences between software platforms and ensure platforms used for radiomics

studies are IBSI-compliant. Studies should ensure software version and user-defined

parameters are clearly reported. Furthermore, the radiomics community should con-

sider working towards a recommended set of harmonised calculation settings. Locking

imaging biomarkers down in this way will improve the technical quality of data from

subsequent studies, a vital step towards their translation into clinical decision-making

tools [45].
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3.6 Supplementary materials

Table 3.4: Patient characteristics for the H&N, NSCLC and SCLC cohorts.

H&N
(n=108)

NSCLC
(n=47)

SCLC
(n=37)

Sex (n (%))
Female 26 (24.1) 20 (42.6) 15 (40.5)
Male 82 (75.9) 27 (57.4) 22 (59.5)

Age at start of treatment
(median [IQR])

61.50 [56.00,
67.00]

68.50 [63.00,
73.00]

60.00 [54.00,
66.00]

T stage (n (%))
X 0 (0) 3 (6.4) 0 (0)
1 18 (16.7) 5 (10.6) 0 (0)
2 41 (38.0) 12 (25.5) 9 (24.3)
3 20 (18.5) 7 (14.9) 14 (37.8)
4 26 (24.1) 20 (42.6) 12 (32.4)
Unknown 3 ( 2.8) 0 (0) 2 (5.4)

N stage (n (%))
X 0 (0) 2 (4.2) 0 (0)
0 40 (37.0) 6 (12.8) 9 (24.3)
1 14 (13.0) 2 (4.3) 4 (10.8)
2 46 (42.6) 22 (46.8) 18 (48.6)
3 6 (5.6) 15 (31.9) 2 (5.4)
Unknown 2 (1.9) 0 (0) 4 (10.8)

Performance status (n (%))
0 56 (51.9) 5 (10.6) 13 (35.1)
1 40 (37.0) 38 (80.9) 24 (64.9)
2 9 (8.3) 4 (8.5) 0 (0)
3 3 (2.8) 0 (0) 0 (0)

HPV status (n (%))
Negative 14 (13.0) NA NA
Positive 51 (47.2) NA NA
Unknown 43 (39.8) NA NA

Chemotherapy (n (%))
No 50 (46.3) 47 (100) 0 (0)
Yes 58 (53.7) 0 (0) 37 (100)

Radiotherapy prescribed
dose (median [IQR])

65.40 [59.03,
66.00]

NA 55.00 [45.00,
66.00]



3.6.
SU

P
P

LE
M

E
N

TA
R
Y

M
A
T

E
R

IA
LS

143

Table 3.5: Image acquisition and reconstruction parameters for the SCLC, NSCLC and H&N CT datasets.

H&N (n=108) NSCLC (n=47) SCLC (n=37)

Manufacturer, model Philips, Brilliance Big Bore
(n=94, 87.0%)
SIEMENS, SOMATOM
Definition AS (n=14, 13.0%)

GE MEDICAL SYSTEMS,
LightSpeed VCT (n=4,
8.5%)
GE MEDICAL SYSTEMS,
Optima CT660 (n=3, 6.4%)
Philips, Ingenuity CT (n=1,
2.1%)
SIEMENS, SOMATOM
Definition AS (n=38, 80.9%)
SIEMENS, SOMATOM
Definition AS+ (n=1, 2.1%)

GE MEDICAL SYSTEMS,
HiSpeed CT/I (n=9, 24.3%)
GE MEDICAL SYSTEMS,
LightSpeed RT16 (n=4,
10.8%)
Philips, Brilliance Big Bore
(n=3, 8.1%)
Philips, Gemini (n=1, 2.7%)
SIEMENS, Definition AS
(n=16, 43.2%)
SIEMENS, Sensation Open
(n=2, 5.4%)
SIEMENS, Spirit (n=2,
5.4%)

Slice thickness (mm)
(median [IQR])

3 [3.00, 3.00] 3 [3.00, 3.00] 3.00 [3.00, 5.00]

Pixel spacing (mm) (me-
dian [IQR])

1.17 x 1.17 [1.17, 1.18] 0.68 x 0.68 [0.63, 0.79] 0.98 x 0.98 [0.94, 0.98]

Tube voltage (kVp) 120 120 120

Tube current (mAs) (me-
dian [IQR])

177.00 [99.00, 296.75] 313.00 [267.00, 413.00] 167.00 [140.00, 285.00]
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Table 3.5 continued from previous page

H&N (n=108) NSCLC (n=47) SCLC (n=37)

Convolution kernel B (n=94, 87.0%)
B31f (n=14, 13.0%)

[’I70f’, ’2’] (n=20, 42.6%)
[’I70f’, ’3’] (n=2, 4.3%)
B70f (n=1, 2.1%)
B80f (n=16, 34.0%)
C (n=1, 2.1%)
LUNG (n=7, 14.9%)

B (n=4, 10.8%)
B31f (n=16, 43.2%)
B31s (n=2, 5.4%)
B41s (n=2, 5.4%)
SOFT (n=9, 24.3%)
STANDARD (n=4, 10.8%)
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Supplementary material A

The 37 radiotherapy planning contrast-enhanced CT scans from a cohort of patients

with small cell lung cancer (SCLC) were acquired in nine different institutions, namely

the Christie Hospital (Manchester, UK, N=28), Beatson Cancer Centre (Glasgow, UK,

N=1), Bristol Haematology & Oncology Centre (Bristol, UK, N=1), Freeman Hospi-

tal (Newcastle-upon-Tyne, UK, N=1), Royal Marsden Hospital (London, UK, N=1),

Institut Ste Catherine, Avignon, France (N=1), Centre Hospitalier Universitaire de

Clermont-Ferrand (Clermont-Ferrand, France, N=2), Universiteit Gent (Gent, Bel-

gium, N=1), Medical University of Gdansk (Gdansk, Poland, N=1).

Supplementary material B

In LIFEx, features are calculated on the largest cluster of continuous voxels within the

ROI only. To be able to compare results from LIFEx to results from PyRadiomics,

IBEX and CERR, which use the whole ROI regardless of whether the voxels are

continuous or not, only ROI’s with one cluster of voxels according to LIFEx were

analyzed. This left 37 ROIs for comparison in the SCLC dataset, 108 ROIs in the

H&N dataset and 47 ROIs in the NSCLC dataset.

In IBEX, the Hounsfield Units (HU) of the CT scan have 1000 added to them to

ensure non-negative values, despite the fact that the lowest HU for a CT scan is -1014.

Negative HU after this transformation are truncated at 0. To adjust for this in the

minimum, maximum and mean comparison in Table 3.3, 1000 HU were taken from

the IBEX values.

The IBSI define two methods for calculating the volume of a region of interest (ROI).

The first is a mesh-based approach, where the surface of the ROI is represented as a

mesh of triangles. The second method simply multiplies the volume of one voxel by the

total number of voxels in the ROI. The voxel counting method does not handle partial

volume effects at the ROI edge, which is particularly important for smaller volumes,

and therefore the mesh-based approach is preferred [51]. PyRadiomics provide both

options for volume calculation. In LIFEx, IBEX and CERR, volume is calculated

using a voxel-counting approach.
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The neighborhood grey tone difference matrix (NGTDM) as defined by the IBSI,

PyRadiomics and CERR varies in its nomenclature. In IBEX it is known as the

neighbor intensity difference matrix and in LIFEx as the neighborhood grey-level dif-

ferent matrix (NGLDM). The original definition of the NGTDM was developed by

Amadasun and King [226]. The IBSI define the NGLDM as a different matrix en-

tirely, originally developed by Sun and Wee [227], however the NGLDM in LIFEx is

the same as the NGTDM as defined by the IBSI. Other than this, LIFEx correct their

feature names to comply with the IBSI, for example “GLCM Homogeneity=Inverse

Difference” since inverse difference is the IBSI-compliant feature definition.
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Abstract

Background

Lung cancer survival remains poor. The introduction of Intensity-Modulated Radio-

therapy (IMRT) allows treatment of more complex tumours as it improves conformity

around the tumour and greater normal tissue sparing. However, there is limited evi-

dence assessing the clinical impact of IMRT. In this study, we evaluated whether the

introduction of IMRT had an influence on the proportion of patients treated with

curative-intent radiotherapy over time, and whether this had an effect on patient sur-

vival.

Materials and Methods

Patients treated with thoracic radiotherapy at our institute between 2005 and 2020

were retrospectively identified and grouped into three time periods: A) 2005-2008

(pre-IMRT), B) 2009-2012 (selective use of IMRT), and C) 2013-2020 (full access to

IMRT). Data on performance status (PS), stage, age, gross tumour volume (GTV),

planning target volume (PTV) and survival were collected. The proportion of patients

treated with a curative dose between these periods was compared. Multivariable sur-

vival models were fitted to evaluate the hazard for patients treated in each time period,

adjusting for PS, stage, age and tumour volume.

Results

12,499 patients were included in the analysis (n=2675 (A), n=3127 (B), and n=6697

(C)). The proportion of patients treated with curative-intent radiotherapy increased

between the 3 time periods, from 38.1% to 50.2% to 65.6% (p<0.001). When stage IV

patients were excluded, this increased to 40.1% to 58.1% to 82.9% (p<0.001). This

trend was seen across all PS and stages. The GTV size increased across the time

periods and PTV size decreased. Patients treated with curative-intent during period

C had a survival improvement compared to time period A when adjusting for clinical

variables (HR=0.725 (0.632-0.831), p<0.001).

Conclusion

IMRT was associated with more patients receiving curative-intent radiotherapy. In ad-

dition, it facilitated the treatment of larger tumours that historically would have been
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treated palliatively. Despite treating larger, more complex tumours with curative-

intent, a survival benefit was seen for patients treated when full access to IMRT was

available (2013-2020). This study highlights the impact of IMRT on thoracic oncol-

ogy practice, accepting that improved survival may also be attributed to a number

of other contributing factors, including improvements in staging, other technological

radiotherapy advances and changes to systemic treatment.

4.1 Introduction

Lung cancer is the third most common cancer and the leading cause of cancer death

in the UK [81]. For some time it has been recognised that better treatments are ur-

gently required to improve lung cancer survival. Over the last two decades, increasing

knowledge regarding the biology of lung cancer has led to the development of new

systemic agents such as tyrosine kinase inhibitors and immunotherapy, leading to im-

provements in survival in locally advanced and metastatic non-small cell lung cancer.

However outcome of lung cancer patients remains poor compared to the majority of

other cancer types [22, 83].

Radiotherapy (RT) plays an important role in the management of lung cancer with

over 50% patients receiving this modality at some point during their cancer journey [6].

Radiotherapy can either be given with palliative intent to control symptoms, or radi-

cally with curative intent – in patients with early and locally advanced disease.

Radiotherapy treatment planning is a careful balancing act between optimal tumour

control and limitation of damage to normal tissue. In order to avoid undue toxicity,

dose constraints are placed on the normal tissues such as the lungs, heart, oesophagus

and spinal cord to minimise functional damage. The radiotherapy dose delivered to

the tumour is therefore often limited by the dose that can be safely delivered to the

normal tissues. This is particularly challenging in patients who have large volume

disease and/or disease close to critical normal structures, such as the spinal cord.

In some situations this can lead to patients being treated with a safer, lower, but

ultimately palliative dose. As local control correlates with improved survival [32, 228],

these patients naturally have a poorer outcome.
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Over the last two decades, great advancements have been made in radiotherapy tech-

nology [1, 229]. Prior to the 1980’s radical lung patients were planned with fluoroscopy,

however the introduction of computed tomography (CT) allowed improved tumour lo-

calisation and conformal planning. In addition, the advent of the multi-leaf collimator

(MLC) enabled fields to be shaped around a target volume. This three-dimensional

conformal radiotherapy (3DCRT) has been the gold standard for radical RT to the

lung since the 1980’s. Subsequently, 4D planning was introduced which incorporates

tumour motion into the radiotherapy planning process, allowing more bespoke plans

based on tumour motion and a reduction in margins. In addition there have been

improved methods of image guidance, allowing the verification of the tumour position

during the treatment course with increasing accuracy. This again has allowed a reduc-

tion in tumour margins and therefore dose delivered to normal tissue [230]. Despite

these improvements in technology, there are still a significant proportion of lung can-

cer patients, in particular those with locally advanced disease, who are treated with a

palliative approach either due to the treatment volume or its proximity to a critical

structure [231].

Intensity-modulated radiotherapy (IMRT) is an advanced form of 3DCRT that mod-

ifies the intensity of the radiation across each beam, sculpting the high-dose volume

around the site of disease and thereby sparing adjacent organs at risk. This technology

has been available since the early 2000s, however the routine implementation of IMRT

in the setting of lung cancer treatment has been slow, due partly to the increased

planning and quality assurance time required by this techniques, and a perceived lack

of evidence for using it [232]. To date there are a handful of large retrospective stud-

ies evaluating 3DCRT against IMRT in lung cancer, and only one publication in a

randomised, prospective setting which addresses this issue [233]. There is a lack of

data on the impact of modern RT technology on patient management and outcome,

particularly for patients that are typically excluded from clinical trials [20].

We have been treating lung cancer patients in our institution routinely with IMRT for

over a decade. This study aims to evaluate whether the introduction of IMRT has had

an influence on the proportion of patients we are able to treat with curative intent

over time, and whether this has had any impact on patient survival.
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4.2 Methods and Materials

A retrospective review of patients in our institution treated with thoracic RT for

lung cancer between 2005-2020 was carried out. Approval was granted to collect and

analyse this patient data by the UK Computer Aided Theragnostics (ukCAT) Research

Database Management Committee (REC reference: 17/NW/0060).

Patients between 2005-2012 were identified by ICD-10 codes on MOSAIQ and patients

between 2013-2020 were identified via the Christie web portal (CWP – an in house e-

record system designed to collect structured data on patients, tumour characteristics

and outcome data). For all patients, data on age, sex, ECOG performance status

(PS), stage, gross tumour volume (GTV), planning target volume (PTV) and survival

were collected. For patients planned using 4D-CT imaging, GTV data was synthesized

from the internal gross tumour volume (iGTV) using a previously published method

[234].

Patients were grouped into 3 time periods, determined by the year the first radiother-

apy fraction was delivered: A (2005-2008, pre IMRT), B (2009-2012, some availability

IMRT) and C (2013-2020, full access IMRT). SABR was introduced in 2011 in our

institution. Any patient who received an absolute physical dose of greater than 40 Gy

was classed as having ‘curative-intent’ thoracic RT. This dose was chosen to cover pa-

tients receiving radical doses such as 45 Gy/30 fractions twice-daily (EQD2 43.1 Gy)

or 40 Gy/15 fractions daily (EQD2 42.2 Gy) for limited stage small cell lung cancer

(SCLC). For patients receiving palliative radiotherapy, records were manually checked

to ensure these patients received palliative radiotherapy to the lung (and not a site of

metastatic disease). Those that had not were excluded from this study.

The proportion of patients treated with curative-intent RT was compared between the

3 time periods and the Chi-squared test was used to compare differences between the

groups. We performed 2 analyses, one including all stages and the other including

only patients with stage I-III. The proportion of patients treated with curative-intent

RT was also compared across all PS groupings and stages of disease. For curative-

intent patients, the trend of tumour volume treated over time was reviewed and the

Mann–Whitney U test used to compare GTV and PTV across time periods. Survival
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curves were generated using the Kaplan-Meier method and compared using the log-

rank test. Univariable and multivariable cox survival models were fitted to evaluate the

hazard of being treated in one of the 3 time periods, adjusting for baseline PS, stage at

diagnosis, age at the start of treatment and GTV. These analyses were then repeated

excluding patients who had received stereotactic radiotherapy (SABR). All statistical

analyses were performed in R 4.0.0 [222] with package survival v3.1-12 [224].

4.3 Results

In total, 12499 patients were identified as having received radiotherapy to the lung be-

tween 2005 and 2020; 2675 in group A (2005-2008, pre IMRT), 3127 in group B (2009-

2012, some availability IMRT) and 6697 in group C (2013-2020, full access IMRT).

Patients in time period B receiving IMRT were planned with this technique only if

3D conformal radiotherapy was unable to achieve a dosimetrically acceptable radical

plan.

Baseline characteristics are presented in Table 4.1. Median age was 70 (63-77), 71

(64-78) and 72 (65-78) in each group respectively. 985 patients received SABR, 0 in

group A, 33 in group B and 952 in group C.
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Table 4.1: Baseline characteristics.

A: 2005-2008
n=2675

B: 2009-2012
n=3127

C: 2013-2020
n=6697

Age at start of treatment
(median [IQR])

70.00 [63.00,
77.00]

71.00 [64.00,
78.00]

72.00 [65.00,
78.00]

Sex (n (%))
Male 1527 (57.8) 1729 (56.0) 3435 (52.3)
Female 1117 (42.2) 1358 (44.0) 3139 (47.7)

Treatment intent (n (%))
Curative 1018 (38.1) 1570 (50.2) 4391 (65.6)
Palliative 1657 (61.9) 1557 (49.8) 2306 (34.4)

SABR (n (%)) 0 (0.0) 33 (1.1) 952 (14.2)
ECOG performance status
(n (%))

0 284 (10.6) 281 (9.0) 588 (8.8)
1 852 (31.9) 1071 (34.3) 2301 (34.4)
2 474 (17.7) 762 (24.4) 2012 (30.0)
3 167 (6.2) 348 (11.1) 813 (12.1)
4 3 (0.1) 5 (0.2) 17 (0.3)
Missing 895 (33.5) 660 (21.1) 966 (14.4)

Stage (n (%))
I 321 (12.0) 443 (14.2) 1490 (22.2)
II 158 (5.9) 243 (7.8) 628 (9.4)
III 552 (20.6) 810 (25.9) 1875 (28.0)
IV 142 (5.3) 512 (16.4) 1706 (25.5)
Missing 1502 (56.1) 1119 (35.8) 998 (14.9)

Abbreviations: SABR, stereotactic ablative radiotherapy; ECOG, Eastern
Cooperative Oncology Group.

There was a progressive increase in the proportion of patients receiving curative-intent

radiotherapy year on year since 2005, with a step wise change occurring from 2011 as

shown in Figure 4.1. This increase in the proportion of patients receiving a cura-

tive dose was highlighted further when patients were grouped into the 3 previously

specified time periods (Figure 4.2). Patients receiving curative-intent RT increased

between groups A (2005-2008) and B (2009-2013) (38.1% to 50.2%, p<0.0001), and

B and C (2014-2020) (50.2% to 65.6%, p<0.0001). Results were similar when the pa-

tients treated with SABR were removed from the analysis (Supplementary Figures 4.8
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and 4.9). These percentages increased when only stage I-III patients were examined

(Figure 4.3) with patients receiving curative-intent RT increasing from 40.1% to 58%

to 82.9% in A, B and C respectively.

Figure 4.1: Yearly percentage of patients treated with curative versus palliative
intent radiotherapy from 2005 to 2020.

Figure 4.2: Percentage of patients treated with curative versus palliative intent
radiotherapy (whole population) in each of the pre-specified time periods.
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Figure 4.3: Percentage of patients treated with curative versus palliative intent
radiotherapy (stages I-III) in each of the pre-specified time periods.

Further sub-classification according to PS and stage are presented in Tables 2, 3 re-

spectively. The proportion of patients treated with curative-intent radiotherapy in-

creased between the three time periods, regardless of PS and stage of disease. Stage

IV patients have been included to reflect the increasing use of ‘radical’ radiotherapy to

achieve optimal local disease control, typically in the setting of oligometastatic disease.

Results were similar when patients treated with SABR were removed from the analysis

(Supplementary Tables 4.5 and 4.6). Table 4 presents sub-classification according to

PS for stage III patients only, showing that the proportion of curative-intent patients

has increased across all PS for these patients.
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Table 4.2: Proportion of patients treated with curative-intent radiotherapy across each
PS and time period.

PS A: 2005-2008
% curative-intent

(n curative-intent/n total)

B: 2009-2012
% curative-intent

(n curative-intent/n total)

C: 2013-2020
% curative-intent

(n curative-intent/n total)

0
(n=1153)

52.1
(148/284)

65.5
(184/281)

71.3
(419/588)

1
(n=4224)

43.9
(374/852)

60.5
(648/1071)

70.7
(1627/2301)

2
(n=3248)

34.8
(165/474)

51.3
(391/762)

67.8
(1365/2012)

3
(n=1328)

15.6
(26/167)

21.8
(76/348)

47.8
(389/813)

Table 4.3: Proportion of patients treated with curative-intent radiotherapy across each
stage and time period.

Stage A: 2005-2008
% curative-intent

(n curative-intent/n total)

B: 2009-2012
% curative-intent

(n curative-intent/n total)

C: 2013-2020
% curative-intent

(n curative-intent/n total)

I
(n=2254)

76.9
(247/321)

91.4
(405/443)

97.5
(1453/1490)

II
(n=1029)

70.3
(111/158)

84.8
(206/243)

91.6
(575/628)

III
(n=3237)

40.4
(223/552)

66.4
(538/810)

75.9
(1424/1875)

IV*
(n=2360)

2.11
(3/142)

9.96
(51/512)

14.9
(255/1706)

* Patients with oligometastatic disease treated with curative intent.

Table 4.4: Proportion of patients treated with curative-intent radiotherapy across each
PS and time period for stage III patients only.

PS A: 2005-2008
% curative-intent

(n curative-intent/n total)

B: 2009-2012
% curative-intent

(n curative-intent/n total)

C: 2013-2020
% curative-intent

(n curative-intent/n total)

0
(n=451)

66.7
(48/72)

79.4
(77/97)

87.2
(246/282)

1
(n=1430)

46.0
(116/252)

77.9
(306/393)

85.2
(669/785)

2
(n=819)

28.7
(31/108)

57.6
(110/191)

72.1
(375/520)

3
(n=296)

10.5
(4/38)

32.9
(27/82)

34.1
(60/176)
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GTV data was available for 4306 patients treated with curative-intent. The distribu-

tion of GTVs in each time period is presented in Figure 4.4A, showing larger GTVs

have been treated in group C compared to A and B. Median GTV was 35.5 cm3 [16.8,

60.1], 39.2 cm3 [15.1, 82.9] and 32.5 cm3 [9.9, 91.8] for groups A, B and C respec-

tively. There was a significant decrease in median GTV between time periods B and C

(p=0.00597). However, when patients treated with SABR (n=546) were removed from

the analysis (violin plot in Figure Figure 4.4B), median GTV was 35.5 cm3 [16.8, 60.1],

41.7 cm3 [16.3, 85.8] and 47.6 cm3 [17.6, 112.1] for groups A, B and C respectively,

showing a significant increase in GTV size in each time period in non-SABR patients

(A to B, p=0.00383; B to C, p=0.00136). The maximum treated GTV also increased

across each time period, from 254.0 cm3 to 534.4 cm3 to 916.3 cm3.
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Figure 4.4: Violin plot presenting the distribution of GTVs in patients treated
with curative-intent radiotherapy in each time period. (A) SABR patients included
(B) SABR patients excluded.

PTV data was available for 4915 curative-intent patients. The distribution of PTVs

in each time period is presented in Figure 4.5. Median PTV was 319.2 cm3 [225.8,

433.2], 326.3 cm3 [202.3, 502.2] and 235.9 cm3 [97.8, 401.7] for groups A, B and C

respectively. There was a significant decrease in PTV between time periods B and
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C (p<0.0001). When patients treated with SABR were removed from the analysis,

median PTV was 319.2 cm3 [225.8, 433.2], 334.1 cm3 [211.8, 506.7] and 282.2 cm3

[169.7, 438.9] for groups A, B and C respectively, again showing a significant decrease

in PTV between time periods B and C (p<0.0001).

Figure 4.5: Violin plot presenting the distribution of PTVs from patients treated
with curative-intent radiotherapy in each time period. (A) SABR patients included
(B) SABR patients excluded.
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Univariable survival analysis showed that the survival of patients treated with curative-

intent radiotherapy has significantly improved in time period C compared to A (HR=0.847

(0.786-0.913), p<0.001). When patients treated with SABR were removed from the

analysis, there was only a survival benefit for patients in time period B compared to

A (HR=1.09 (1.00-1.18), p=0.0486), not for time period C compared to A (HR=0.949

(0.879-1.02), p=0.180). Kaplan-Meier curves are presented in Figure 4.6 for all curative-

intent patients and curative-intent without SABR. Multivariable survival analysis,

however, showed a survival benefit for patients treated in time period C compared to

A for all curative-intent patients (HR=0.725 (0.632-0.831), p<0.001) as well as when

patients treated with SABR were removed from the analysis (HR=0.757 (0.658-0.870),

p<0.001). Full results are presented in Supplementary Tables 4.7 and 4.8.
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Figure 4.6: Kaplan-Meier survival curves for each time period for all patients
treated with curative-intent radiotherapy (A) and curative-intent without SABR
(B).

We conducted an analysis in patients with stage III disease. Kaplan-Meier curve is
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presented in Figure 4.7 for patients with stage III treated with curative-intent. Uni-

variable survival analysis showed no significant improvement or worsening of survival

for time period C compared to A (HR=0.969 (0.832, 1.13), p=0.683). Multivariable

survival analysis however, showed a survival benefit for patients treated in time pe-

riod C compared to A for patients with stage III disease treated with curative-intent

(HR=0.740 (0.600-0.913), p=0.00489). Full results are presented in Supplementary

Table 4.9.

Figure 4.7: Kaplan-Meier survival curves for each time period for patients with
stage III disease curative-intent radiotherapy.

4.4 Discussion

In this big data analysis, there has been a steady increase in the proportion of patients

treated with curative-intent radiotherapy, across all PS groups and stages of disease. In

addition, survival improved in the era when there was full access to IMRT (2013-2020)

compared to no access to IMRT (2005-2008) when clinical variables were adjusted

for. The introduction of IMRT has allowed the delivery of curative-intent doses to

patients with tumours previously considered to be unsuitable for such an approach
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due to large volume or proximity to critical organs at risk. In addition, the normal

tissue sparing that IMRT facilitates enabled the treatment of patients with poorer

performance status due to better tolerance of the treatment.

Our analysis showed that the proportion of patients with stage III lung cancer re-

ceiving curative-intent treatment has increased over the time periods, across all PS.

This change has been partly facilitated by IMRT which allows the treatment of large

and complex volumes. Other factors may have played a role, such as 4D CT plan-

ning (introduced 2011) facilitating more individualised treatment volumes, and also

availability of radiotherapy at new satellite centres from 2010, allowing more patients

(particularly the elderly and patients with poorer PS) to be treated nearer home. Ac-

cepting this, we still feel that as GTV volumes increased over the time periods studied,

the introduction of IMRT is likely to have contributed greatly towards the proportion

of patients able to receive curative-intent treatment. Baseline PET imaging has been

standard at our institution since 2001 and so should not account for differences ob-

served between the groups.

The survival benefit demonstrated on multivariable analysis was not seen in the un-

adjusted analysis, reflecting that patients with poorer performance status and larger

tumours are being treated in the latest time period. As lung cancer outcome is asso-

ciated with tumour volume [235, 236], it was expected that the survival in this group

might have been worse in comparison to earlier time frames. However, survival im-

proved for patients in the latest time period despite larger gross tumour volumes and

an increased number of patients with poorer PS suggesting that planning with IMRT

leads to at least non-inferior survival. In particular, when patients treated with SABR

were removed from the analysis we showed that despite a significant increase in GTV

in patients treated with curative-intent, the survival benefit in the latest time period

remained.

Whilst this survival gain could be partly attributed to IMRT it is important to recog-

nise that other changes in lung cancer management have occurred in the intervening

time period we examined, and so we cannot claim that IMRT has directly led to an

improvement in survival. Technological advances such as SABR, 4D radiotherapy and
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image guidance radiotherapy have allowed reduced radiotherapy planning margins,

leading to reduced normal tissue doses. The doses we used for curative intent stayed

the same throughout the study. In our series, median PTV volumes were lower in the

later timeframe (C) compared to either of the earlier timeframes, even when patients

treated with SABR were excluded. This is likely to reflect a change in our CTV-PTV

expansion margins which were introduced in the later time period following a move to

daily image verification. It is unlikely that this reduction in PTV volume is responsible

for the increased survival seen in the later timeframe, as although the difference was

found to be statistically significant, in clinical terms the differences in PTV volume

seen between group C and groups A and B is small. Also, GTV volume is known to

be an independent prognostic factor for lung cancer survival, and we have previously

demonstrated that this parameter increased between the three time periods.

Non-radiotherapy factors such as improved diagnostic imaging techniques, endobronchial

ultrasound (EBUS) and associated stage migration, a change in staging classification,

improvements in systemic therapy and supportive care may all have led to better out-

comes. With regards to systemic therapy, the last 15 years have seen better integration

of radiotherapy and systemic treatment, as well as the development of more targeted

agents and immunotherapy that can be used on progression. Unfortunately due to

the fact that this study started in 2005 data on chemotherapy were not as complete

in the first time period due to lack of availability of electronic records for systemic

therapy at the time. It was therefore not possible to guarantee a full, accurate and

therefore meaningful collection of data on systemic treatment the patient may have

received at the time of radiotherapy, or subsequently on progression. It is worth not-

ing however that systemic treatment in the context of concurrent chemoradiotherapy

had not changed significantly until the introduction of adjuvant Durvalumab, which

has only been in routine use in the U.K. since 2019 (the latter part of our latest time

period).

There are other limitations to this study including its retrospective design, and as

is always the case when performing big data analyses, there is a significant amount

of missing data within the clinical variables, including the lack of data on systemic

therapy. This was more evident in the earlier time frames which were prior to our
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in house electronic e-record being created, which facilitated the prospective collection

of key data on outcome forms. We feel the large number of patients included in this

analysis in part mitigates the issue of missing data [59]. Furthermore, this study

reports on a unique dataset that evaluates real-world data from patients that are

typically excluded from clinical trials. It is also worth noting that we have purposefully

included a heterogeneous population of lung cancer patients with differing histologies

into this analysis as we were interested in evaluating the impact of IMRT on curative-

intent treatment. Admittedly the dose threshold for curative intent of greater than

40 Gy may also have included patients with NSCLC who did not fully complete their

treatment, but in the context of such a large study, the numbers of patients whom this

applies to are expected to be low.

These results are of particular importance in the UK, following publication of the most

recent national lung cancer audit [231]. This highlighted that the majority of stage

III NSCLC patients are receiving best supportive care or palliative treatment, even

when patients have a PS of 0/1. In addition, there was a large regional variation in

the percentage of patients receiving curative intent treatment from 8-80% [231]. It

has been suggested that the centres offering a greater proportion of patients curative

intent treatment may have better access to optimal radiotherapy planning techniques

and image guided treatment [237]. Indeed, in the Royal College of Radiologists (RCR)

published consensus statements for radiotherapy for lung cancer, it is recommended

that patients receiving radical radiotherapy are planned with advanced techniques such

as IMRT or VMAT [238].

The implementation of IMRT for the curative-intent treatment of lung cancer has

lagged behind that of other disease sites such as head & neck cancers. This may stem

from a perceived lack of high level evidence for using the technique. To date, there has

only been one prospective study looking at the impact of IMRT on treatment toxicity

and survival [233]. Chun et al. compared the outcome of patients treated with IMRT

to 3D-CRT within the RTOG 0617 trial, reporting that despite larger planning target

volumes in the IMRT group, patients had lower rates of grade 3+ pneumonitis and

lower cardiac doses, however no difference in survival between the groups was observed

[233]. A retrospective study by Yom et al. showed that patients treated with IMRT had
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larger GTVs compared to matched patients treated with 3D-CRT. Similarly to Chun

et al., they reported lower rates of grade 3+ pneumonitis in the IMRT group [239].

On the other hand, due to the complexity and cost of delivering IMRT, it has been

suggested that 3D-CRT is still an equally sound option for locally advanced NSCLC,

particularly for less experienced centres [240]. A meta-analysis of studies comparing

IMRT to 3D-CRT reported survival to be similar between the two techniques, however

there were reduced incidence of grade 2 pneumonitis and increased grade 3 oesophagitis

in the IMRT group [241]. Overall the available data suggests that IMRT facilitates

treatment of larger volumes, does not lead to inferior survival in NSCLC patients and

should be employed to reduce dose to organs at risk, particularly to the heart and lung

[233, 241].

IMRT and other advanced radiotherapy planning techniques offer the opportunity

to achieve more than just treating larger volumes. Due to its ability to sculpt dose

around the treatment volume, it may be possible to safely deliver a higher dose to the

tumour, without compromising normal tissue toxicity. The hypothesis is that higher

dose should equate to improved local control, and subsequently better survival. The

RTOG 0617 study results however suggested that dose escalating with conventional

fractionation does not seem to offer a benefit. It should be noted that only 47%

patients in this study were planned with IMRT, dose to the heart was not prioritised

in radiotherapy planning and further analysis has shown that higher cardiac dose

in this trial is associated with worse survival [233]. Since the publication of RTOG

0617, further studies have demonstrated that excess radiation dose to the heart is

associated with a decrease in survival [242]. A number of studies are have addressed

the question of isotoxic dose escalation and dose painting based on FDG PETCT which

are facilitated by the use of IMRT [243].

Looking forward, it may be possible in the future to perform causal inference analyses,

which would help establish whether the increased proportion of patients treated with

curative intent, and their improved survival, is indeed attributable to the introduction

on IMRT. The data could also be enhanced by including treatment related toxicity,

something that can now be achieved through the use of patient reported outcomes and

proactive, prospective clinician reported toxicity, which we are now documenting at
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our centre on an eform at each outpatient visit [57].

In summary, this big data analysis has demonstrated that the introduction of IMRT

was associated with an increasing proportion of patients with lung cancer receiving

curative-intent radiotherapy, across all PS and stages of disease. Despite treating

larger, more complex tumours with curative-intent, and more patients with poor per-

formance status, a survival benefit was seen for patients treated when full access to

IMRT was available. This study highlights the impact IMRT has had on our practice,

acknowledging that other contributing factors such as improvement in staging, tech-

nical radiotherapy and systemic therapy may have also contributed to the improved

survival. We would recommend that IMRT is available for routine use for lung cancer

patients who are being considered for treatment with curative intent. Current evi-

dence suggests that this technique, at the very least, leads to non-inferior outcomes,

and may facilitate improved outcomes firstly through the greater number of patients

with stage III disease being able to receive a curative-intent dose, and secondly through

a reduction of dose to the normal tissues.
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4.6 Supplementary materials

Figure 4.8: Percentage of patients treated with curative versus palliative intent,
non-SABR radiotherapy year on year from 2005 to 2020.

Figure 4.9: Percentage of patients treated with curative versus palliative intent,
non-SABR radiotherapy in each of the pre-specified time periods.
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Table 4.5: Proportion of patients treated with curative-intent, non-SABR radiotherapy
across each PS and time period.

PS A: 2005-2008
% curative-intent

(n curative-intent/n total)

B: 2009-2012
% curative-intent

(n curative-intent/n total)

C: 2013-2020
% curative-intent

(n curative-intent/n total)

0
(n=1119)

52.1
(148/284)

65.1
(181/278)

69.7
(388/557)

1
(n=3938)

43.9
(374/852)

60.1
(636/1059)

66.7
(1353/2027)

2
(n=2863)

34.8
(165/474)

59.7
(381/752)

60.5
(990/1637)

3
(n=1190)

15.6
(26/167)

21.4
(74/346)

37.4
(253/677)

Table 4.6: Proportion of patients treated with curative-intent, non-SABR radiotherapy
across each stage and time period.

Stage A: 2005-2008
% curative-intent

(n curative-intent/n total)

B: 2009-2012
% curative-intent

(n curative-intent/n total)

C: 2013-2020
% curative-intent

(n curative-intent/n total)

I
(n=1420)

76.9
(247/321)

90.9
(378/416)

94.6
(646/683)

II
(n=1008)

70.3
(111/158)

84.8
(206/243)

91.3
(554/607)

III
(n=3231)

40.4
(223/552)

66.3
(536/808)

75.9
(1420/1871)

IV*
(n=2351)

2.11
(3/142)

9.96
(51/512)

14.5
(246/1697)
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Table 4.7: Survival analysis results from the multivariable analysis of all curative-intent
patients. 3188 patients with no missing variables were included.

HR (95% CI) P value
Time period (ref A: 2005-2008)

B: 2009-2012 0.953 (0.822, 1.11) 0.523
C: 2013-2020 0.725 (0.632, 0.831) <0.001

PS (ref 0)
1 1.31 (1.15, 1.50) <0.001
2 1.64 (1.42, 1.89) <0.001
3 1.73 (1.44, 2.08) <0.001
4 1.28 (0.318, 5.16) 0.726

Stage (ref I)
II 1.54 (1.36, 1.74) <0.001
III 1.67 (1.50, 1.86) <0.001
IV 2.04 (1.70, 2.43) <0.001

Age at start of treatment (years) 1.01 (1.01,1.02) <0.001
GTV (cm3) 1.00 (1.00, 1.00) <0.001

Table 4.8: Survival analysis results from the multivariable analysis of curative-intent
patients without SABR. 2749 patients with no missing variables were included.

HR (95% CI) P value
Time period (ref A: 2005-2008)

B: 2009-2012 0.966 (0.832, 1.12) 0.646
C: 2013-2020 0.757 (0.658, 0.870) <0.001

PS (ref 0)
1 1.29 (1.12, 1.47) <0.001
2 1.58 (1.37, 1.83) <0.001
3 1.62 (1.33, 1.97) <0.001
4 1.04 (0.145, 7.40) 0.972

Stage (ref I)
II 1.41 (1.24, 1.61) <0.001
III 1.53 (1.37, 1.72) <0.001
IV 1.93 (1.59, 2.33) <0.001

Age at start of treatment (years) 1.01 (1.01,1.02) <0.001
GTV (cm3) 1.00 (1.00, 1.00) <0.001
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Table 4.9: Survival analysis results from the multivariable analysis of stage III curative-
intent patients. 1370 patients with no missing variables were included.

HR (95% CI) P value
Time period (ref A: 2005-2008)

B: 2009-2012 0.966 (0.771, 1.21) 0.767
C: 2013-2020 0.740 (0.600, 0.913) 0.00489

PS (ref 0)
1 1.30 (1.09, 1.54) 0.00282
2 1.58 (1.30, 1.91) <0.001
3 1.86 (1.37, 2.52) <0.001

Age at start of treatment (years) 1.01 (1.01,1.02) <0.001
GTV (cm3) 1.00 (1.00, 1.00) <0.001
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Abstract

Background

Previous work found that during the first wave of the COVID-19 pandemic, 34% of

patients with lung cancer treated with curative-intent radiotherapy (RT) in the UK

had a change to their centre’s usual standard of care treatment (Banfill 2021). We

present the impact of these changes on patient outcomes.

Materials and Methods

The COVID-RT Lung database was a prospective multicentre UK cohort study in-

cluding patients with stage I-III lung cancer referred for and/or treated with radical

RT between April and October 2020. Data were collected on patient demographics,

RT and systemic treatments, toxicity, relapse, and death. Multivariable cox and lo-

gistic regression were used to assess the impact of having a change to RT on survival,

distant relapse and ≥ grade 3 acute toxicity. The impact of omitting chemotherapy

on survival and relapse was assessed using multivariable cox regression.

Results

Patient and follow-up forms were available for 1280 patients. Seven hundred and sixty-

five (59.8%) patients were aged over 70 and 603 (47.1%) were female. Median follow-up

was 213 days (119, 376). Patients with stage I-II NSCLC who had a change to their

RT had no significant increase in distant relapse (p=0.859) or death (p=0.884); how-

ever, did have increased odds of ≥ grade 3 acute toxicity (p=0.0348). Patients with

stage III NSCLC who had a change to their RT had no significant increase in distant

relapse (p=0.216) or death (p=0.789); however, did have increased odds of ≥ grade 3

acute toxicity (p<0.001). Patients with stage III NSCLC who had their chemotherapy

omitted had no significant increase in distant relapse (p=0.0827) or death (p=0.0661).

Conclusion

This study suggests changes to RT and chemotherapy made in response to the COVID-

19 pandemic did not significantly affect distant relapse or survival. Changes to RT,

namely increased hypofractionation, led to increased odds of ≥ grade 3 acute toxic-

ity. These results are important as hypofractionated treatments can help to reduce
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hospital attendances in the context of potential future emergency situations.

5.1 Introduction

The COVID-19 pandemic put an unprecedented demand on NHS services which in

turn affected cancer treatments, including radiotherapy [244, 245]. The effects of the

COVID-19 pandemic on outcomes for patients with cancer is of increasing concern. It

is known that patients with cancer have higher rates of severe disease and death with

COVID-19 compared to the general population [246], however evidence is still lacking

on the indirect impact of COVID-19 on cancer treatments.

Radiotherapy plays a key role in the treatment of lung cancer, with radiotherapy

being indicated for 61-82% of patients [247, 248]. Radiotherapy alone or in combina-

tion with chemotherapy and/or immunotherapy is an important treatment modality

in the curative-intent setting. These patients are particularly vulnerable due to the

immunosuppressive nature of treatments and multiple comorbidities [249]. Therefore,

guidelines were rapidly produced at the start of the pandemic with the aim to reduce

hospital visits without compromising treatment benefit by using reduced-fractionation

regimens for patients receiving curative-intent radiotherapy [250].

COVID-RT lung was a UK data collection initiative that aimed to assess the impact

of the COVID-19 pandemic in patients with stage I-III lung cancer receiving curative-

intent radiotherapy [76]. Previous analysis reported that 34% of patients had a change

to their centre’s usual standard of care treatment [76], and 17.5% of patients had a

different radiotherapy dose and/or fractionation, with an increased use of hypofrac-

tionated regimens as was recommended by UK guidelines [250]. In patients with stage

III disease considered for chemotherapy, 10.7% of patients had this treatment modality

omitted, and 6.7% had a reduced chemotherapy dose. We present in this paper the

impact of these changes to treatment on patient outcomes.
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5.2 Methods and Materials

COVID-RT Lung is a prospective, multicentre UK cohort study. Data were prospec-

tively collected on all patients with stage I-III lung cancer referred for and/or treated

with curative-intent radiotherapy (biologically equivalent dose >50 Gy) between April

and October 2020. The data collection procedure has been described previously [76].

For this analysis, the following baseline clinical information was extracted from the

COVID-RT Lung database on the 25/07/2022: age at the time of treatment; gender;

histology; stage; baseline Eastern Cooperative Oncology Group (ECOG) Performance

Status (PS); radiotherapy dose and fractionation; dates of radiotherapy; chemotherapy

delivery; and immunotherapy delivery. Data were also collected on whether patients

had a change to their centre’s standard of care treatment pre-COVID-19, radiother-

apy treatment, or chemotherapy treatment. The specific changes made to radiotherapy

and chemotherapy treatment were not recorded. A reduction in systemic treatment

was defined as a reduced number of planned cycles and/or a reduced dose for any

single cycle. Follow-up data were collected 12 months after the end of treatment,

or earlier for acute toxicity or if the patient died. Follow-up data were collected on:

distant and loco-regional relapse within a year post radiotherapy, death, ≥ grade 3

treatment related acute toxicity (toxicity within 3 months of the end of radiotherapy)

and late toxicity (toxicity from 3 months after the end of radiotherapy) according to

CTCAE v5.0 (oesophageal, pulmonary and cardiac toxicity, lung infection and chest

pain).

Baseline characteristics were summarised as counts and percentages, and medians with

the lower and upper quartiles. Age was dichotomised at 70 years in line with the UK

Government’s shielding advice. Dose per fraction was grouped into < 2 Gy/fraction, 2

Gy/fraction, >2-2.9Gy/fraction, 3-5.9 Gy/fraction and ≥ 6 Gy/fraction. These group-

ings were chosen to highlight different fractionation regimens; 2 Gy/fraction represents

conventional fractionation, and above that moderate to ultra-hypofractionation. Pa-

tients with a radiological diagnosis of cancer were assumed to have NSCLC. Hazard

ratios (HR) and 95% confidence intervals were estimated to describe the hazard of

death, and distant and loco-regional relapse for patients who had a change to their

radiotherapy dose and/or fractionation, in response to the COIVD-19 pandemic, using
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multivariable cox regression. Regressions were adjusted for age, gender, PS, whether

the patient received chemotherapy, and radiation dose per fraction. Adjusted odds

ratios (aOR) and 95% confidence were estimated to describe the risk of developing ≥

grade 3 acute toxicity for patients who had a change to their radiotherapy dose and/or

fractionation, in response to the COVID-19 pandemic, using multivariable logistic re-

gression, adjusting for age, gender, PS, whether the patient received chemotherapy,

and radiation dose per fraction. HRs and 95% confidence intervals were estimated to

describe the hazard of death and distant relapse for patients who had their chemother-

apy omitted using multivariable cox regression, adjusting for age, gender, PS, whether

the patient had a change to their radiotherapy dose/and or fractionation, and ra-

diation dose per fraction. Multivariable analysis was not performed for the SCLC

data, or late toxicity, due to insufficient sample size in these cohorts. Multivariable

logistic regression was used to determine whether patients who had a change to their

chemotherapy regimen in response to the COVID-19 pandemic were also more likely

to have a change to their radiotherapy dose and/or fractionation, adjusting for age and

PS. Mean dose per fraction was compared between groups using the t-test. Patients

who had their radiotherapy delivered in < 15 fractions were removed from the stage

III NSCLC and SCLC analyses, as they are palliative or Stereotactic Ablative Body

Radiotherapy (SABR) regimens.

All statistical analyses were performed in R 4.0.0 [222] with package survival v3.1-12

[224].

5.3 Results

Completed patient and follow-up forms were available in the COVID-RT Lung database

for 1280 patients (out of 1717) treated between April and October 2020. Median

follow-up was 213 days (119, 376). Baseline characteristics split by change to local

standard of care treatment are presented in Table 5.1. Seven hundred and sixty-five

(59.8%) patients were aged over 70 and 603 (47.1%) were female. Two hundred and

fifty-nine (61.7%) patients who had a change to treatment were aged over 70 and 116

(27.6%) patients who had a change to treatment had a PS of 2-3. A higher proportion

of patients who had their treatment changed received 3-5.9 Gy/fraction compared to
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patients who had no change to treatment (16.0% vs 5.6%).

Changes to local standard of care treatment have been presented previously [76]. To

briefly summarise, the main change to treatment for patients with stage I-II disease was

a change to radiotherapy dose and/or fractionation (16.1%), followed by radiotherapy

being given instead of surgery (9.5%) [76]. For patients with stage III disease, the main

change was a change to radiotherapy dose and/or fractionation (19.5%), followed by

having their chemotherapy omitted (10.7%), or receiving a reduced chemotherapy dose

(6.8%) [76].

Table 5.1: Baseline characteristics. The percentages describe the percentage of patients
for each clinical variable per column.

No change
to treatment
(N=860)

Change to
treatment
(N=420)

All patients
(N=1280)

Age in years, n (%)
< 70 351 (40.8) 161 (38.3) 512 (40.0)
≥ 70 506 (58.8) 259 (61.7) 765 (59.8)
Missing 3 (0.3) 0 3 (0.2)

Gender, n (%)
Female 422 (49.1) 181 (43.1) 603 (47.1)
Male 437 (50.8) 239 (56.9) 676 (52.8)
Missing 1 (0.1) 0 1 (0.1)

PS, n (%)
0 100 (11.6) 65 (15.5) 165 (12.9)
1 416 (48.4) 239 (56.9) 655 (51.2)
2–3 342 (39.8) 116 (27.6) 458 (35.8)
Missing 2 (0.2) 0 2 (0.2)

Histology, n (%)
NSCLC 508 (59.1) 276 (65.7) 784 (61.3)
SCLC 62 (7.3) 54 (12.9) 116 (9.1)
Radiological diagnosis 289 (33.6) 215 (51.2) 379 (29.6)
Missing 1 (0.1) 0 1 (0.1)

Stage, n (%)
I 395 (45.9) 147 (35.0) 542 (42.3)
II 135 (15.7) 56 (13.3) 191 (14.9)
III 327 (38.0) 215 (51.2) 542 (42.3)
Missing 3 (0.3) 2 (0.5) 5 (0.4)

Mean dose per fraction in
Gy/fraction (SD)

6.61 (5.12) 6.61 (6.70) 6.61 (5.68)
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Table 5.1 continued from previous page
No change
to treatment
(N=860)

Change to
treatment
(N=420)

All patients
(N=1280)

Dose per fraction grouped,
n (%)

< 2 Gy/fraction 36 (4.2) 1 (0.2) 37 (2.9)
2 Gy/fraction 37 (4.3) 9 (2.1) 46 (3.6)
>2-2.9 Gy/fraction 372 (43.3) 211 (50.2) 583 (45.5)
3-5.9 Gy/fraction 48 (5.6) 67 (16.0) 115 (9.0)
≥ 6 Gy/fraction 357 (41.5) 127 (30.2) 484 (37.8)
Missing 10 (1.2) 5 (1.2) 15 (1.2)

Abbreviations: Gy, Gray; NSCLC, non-small cell lung cancer; PS, Performance sta-
tus; RT, Radiotherapy; SCLC, small cell lung cancer; SD, standard deviation.

5.3.1 Changes to radiotherapy dose and/or fractionation

Stage I-II NSCLC

Seven-hundred and six patients had stage I-II NSCLC, of which 106 (15.0%) had a

change to their radiotherapy dose and/or fractionation. Table 5.2 presents toxicity

and outcomes data for these patients. Rates of distant and loco-regional relapse and

death were similar between stage I-II NSCLC patients who had a change to their

radiotherapy and those who did not (6.6% vs 8.7%, 11.3% vs 11.7% and 11.3% vs

13.0%). For patients who had a change to their radiotherapy, 5 (4.7%) had ≥ grade 3

acute toxicity and 1 (0.9%) had ≥ grade 3 late toxicity. For patients who did not have

a change to their radiotherapy, 13 (2.2%) had ≥ grade 3 acute toxicity and 8 (1.3%)

had ≥ grade 3 late toxicity.

Multivariable analysis showed that patients with stage I-II NSCLC who had a change

to their radiotherapy dose and/or fractionation had no significant increased hazard

of distant relapse (HR=1.09 (0.412, 2.90), p=0.859), loco-regional relapse (HR=1.25

(0.609, 2.58), p=0.541), or death (HR=0.951 (0.480, 1.88), p=0.884). These patients

did, however, have increased odds of developing ≥ grade 3 acute toxicity (aOR=3.46

(1.01, 10.6), p=0.0348) in this dataset. The full multivariable results can be found in

Supplementary Tables 5.5 and 5.6. Patients with stage I-II NSCLC who had a change
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to their radiotherapy dose and/or fractionation received a higher dose per fraction

(mean 12.1 vs 9.22, p<0.001) compared to patients who had no change.

Table 5.2: Toxicity and disease status for patients with stage I-II NSCLC split by
whether they had a change to their radiotherapy dose and/or fractionation or not.

Change to RT
(N=106)

No change to
RT (N=600)

Acute toxicity ≥ grade 3, n (%) 5 (4.7) 13 (2.2)
Oesophageal 1 (0.9) 4 (0.7)
Pulmonary 2 (1.9) 4 (0.7)
Cardiac 0 2 (0.3)
Lung infection 2 (1.9) 2 (0.3)
Chest pain 0 0
Other 0 1 (0.2)
Missing 6 (5.7) 34 (5.7)

Late toxicity ≥ grade 3, n (%) 1 (0.9) 8 (1.3)
Oesophageal 0 1 (0.2)
Pulmonary 0 2 (0.3)
Cardiac 0 0
Lung infection 1 (0.9) 3 (0.5)
Chest pain 0 2 (0.3)
Other 0 0
Missing 22 (20.8) 121 (20.2)

Disease status, n (%)
Distant relapse 7 (6.6) 52 (8.7)
Loco-regional relapse 12 (11.3) 70 (11.7)
No evidence recurrence 79 (74.5) 416 (69.3)

Death, n (%) 12 (11.3) 78 (13.0)
Abbreviations: RT, Radiotherapy.

Supplementary Table 5.7 presents ≥ grade 3 acute and late toxicity for patients with

stage I-II NSCLC who received 5 fraction SABR versus 3 fraction SABR. Rates of ≥

grade 3 acute (2.3% vs 3.5%) and late toxicity (1.5% vs 2.1%) were similar between

patients who received 5 fraction SABR versus 3 fraction SABR. Overall toxicity rates

were low. There were no cases of ≥ grade 3 chest wall pain for patients who received

3 or 5 fraction SABR in this dataset.
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Stage III NSCLC

Four hundred and twenty-five patients had stage III NSCLC, of which 77 (18.1%)

had a change to their radiotherapy dose and/or fractionation. Table 5.3 presents

toxicity and outcomes data for these patients. Patients who had a change to their

radiotherapy had lower rates of distant (10.4% vs 21.3%) and loco-regional (7.8% vs

21.6%) relapse, but death rates were similar (23.4% vs 25.9%). A higher proportion of

patients who had a change to their radiotherapy had ≥ grade 3 acute and late toxicity

compared to patients who did not have a change to their radiotherapy (acute toxicity

19.5% vs 9.2%, late toxicity 5.2% vs 1.7%). For patients who had a change to their

radiotherapy, the majority of ≥ grade 3 acute (80.0%) and late (75.0%) toxicity was

seen in patients who received concurrent chemotherapy; however, for patients who did

not have a change to their radiotherapy, the majority of ≥ grade 3 acute (46.9%) and

late (66.7%) toxicity was seen in patients who had no chemotherapy, although numbers

are low (Supplementary Table 5.8).

Multivariable analysis revealed that patients with stage III NSCLC who had a change

to their radiotherapy dose and/or fractionation had no significant increased hazard

of distant relapse (HR=1.71 (0.731, 4.00), p=0.216), loco-regional relapse (HR=0.880

(0.316, 2.45), p=0.806), or death (HR=1.08 (0.606, 1.94), p=0.789). They did how-

ever, have increased odds of developing ≥ grade 3 acute toxicity (aOR=4.78 (2.11,

10.7), p<0.001) in this dataset. The full multivariable results can be found in Sup-

plementary Tables 5.9 and 5.10. Patients with stage III NSCLC who had a change to

their radiotherapy dose and/or fractionation received a higher dose per fraction (mean

3.01 vs 2.65, p<0.001) compared to patients who had no change to their radiotherapy

dose and/or fractionation.
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Table 5.3: Toxicity and disease status for patients with stage III NSCLC split by whether
they had a change to their radiotherapy dose and/or fractionation or not.

Change to RT
(N=77)

No change to
RT (N=348)

Acute toxicity ≥ grade 3, n (%) 15 (19.5) 32 (9.2)
Oesophageal 5 (6.5) 15 (4.3)
Pulmonary 6 (7.8) 7 (2.0)
Cardiac 0 0
Lung infection 2 (2.6) 4 (1.1)
Chest pain 0 1 (0.3)
Other 1 (1.3) 5 (1.4)
Missing 11 (14.3) 7 (2.0)

Late toxicity ≥ grade 3, n (%) 4 (5.2) 6 (1.7)
Oesophageal 3 (3.9) 1 (0.3)
Pulmonary 1 (1.3) 4 (1.1)
Cardiac 0 0
Lung infection 0 0
Chest pain 0 0
Other 0 1 (0.3)
Missing 22 (28.6) 63 (18.1)

Disease status, n (%)
Distant relapse 8 (10.4) 74 (21.3)
Loco-regional relapse 6 (7.8) 75 (21.6)
No evidence recurrence 46 (59.7) 188 (54.0)

Death, n (%) 18 (23.4) 90 (25.9)
Abbreviations: RT, Radiotherapy.

Three hundred and twenty-eight (77.2%) patients with stage III NSCLC received 55

Gy in 20 fractions, of which 169 (51.5%) had radiotherapy alone, 79 (24.1%) received

concurrent chemotherapy and 80 (24.4%) sequential chemotherapy. Thirty (7.1%) pa-

tients with stage III NSCLC received 60-66 Gy in 30-33 fractions, of which 24 (80.0%)

received concurrent chemotherapy, 5 (16.7%) received sequential chemotherapy and 1

(3.3%) had radiotherapy alone.

Seventeen (21.5%) patients with stage III NSCLC who received 55 Gy in 20 fractions

with concurrent chemotherapy had ≥ grade 3 acute toxicity, 7 (8.9%) of which were

pulmonary and 5 (6.3%) oesophageal. 4 (5.1%) patients had ≥ grade 3 late toxicity.

Five (20.8%) patients with stage III NSCLC who received 60-66 Gy in 30-33 fractions

with concurrent chemotherapy had ≥ grade 3 acute toxicity, 1 (20.0%) pulmonary, 1
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(20.0%) oesophageal and 2 (40.0%) lung infection. Four (16.7%) patients had ≥ grade

3 late toxicity.

SCLC

One hundred and nine patients had SCLC, of which 34 (31.2%) had a change to their

radiotherapy dose and/or fractionation. Supplementary Table 5.11 presents toxicity

and outcomes data for these patients. Patients who had a change to their radiotherapy

had higher rates of distant relapse (35.3% vs 26.7%), loco-regional relapse (20.6% vs

14.7%), and death (35.3% vs 26.7%). 2 (5.9%) patients who had a change to their

radiotherapy had ≥ grade 3 acute toxicity and 2 (5.9%) had ≥ grade 3 late toxicity.

For patients who did not have a change to their radiotherapy, 9 (12.0%) had ≥ grade

3 acute toxicity and none had ≥ grade 3 late toxicity. Patients with SCLC who had

a change to their radiotherapy dose and/or fractionation received a higher dose per

fraction (mean 2.68 vs 2.34, p<0.001) compared to patients who had no change to

their radiotherapy dose and/or fractionation.

Fifty-six (51.4%) patients with SCLC received 40 Gy in 15 fractions, of which 36

(64.3%) received sequential chemotherapy, 12 (21.4%) concurrent chemotherapy and 8

(14.3%) radiotherapy alone. Nineteen (17.4%) patients received 55 Gy in 20 fractions,

of which 14 (73.7%) received sequential chemotherapy, 3 (15.8%) radiotherapy alone

and 2 (10.5%) concurrent chemotherapy. 16 (14.7%) patients received 45 Gy in 30

twice-daily fractions, all of whom received concurrent chemotherapy. Three (2.8%)

patients received 60-66 Gy in 30-33 fractions, of which 2 (66.7%) received concurrent

chemotherapy and 1 (33.3%) received sequential chemotherapy. No patients with

SCLC who had a change to their radiotherapy received ≤ 2 Gy/fraction.

5.3.2 Changes to chemotherapy regimen

Stage III NSCLC

Two hundred and sixty-one (61.4%) patients with stage III NSCLC were considered

for chemotherapy as part of their management plan. However, 48 (18.0%) had their

chemotherapy omitted and 35 (13.4%) had their chemotherapy dose and/or number of

planned cycles reduced (Table 5.4). Patients who had their chemotherapy omitted had
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a higher rate of distant relapse compared to those who had no change (31.2% vs 14.6%),

and a higher rate of death (35.4% vs 20.2%). Fifty-six (21.5%) patients with stage III

NSCLC who were considered for chemotherapy had consolidation immunotherapy. Of

the patients with stage III NSCLC who had a change to their chemotherapy regimen,

12 (14.5%) also had a change to their RT dose and/or fractionation. Patients who

had a change to their chemotherapy regimen were significantly less likely to have a

change to their radiotherapy dose and/or fractionation (aOR=0.479 (0.222, 0.963),

p=0.0470).

Multivariable analysis demonstrated no significant increase in distant relapse (HR=1.85

(0.923, 3.71), p=0.0827), loco-regional relapse (HR=1.03 (0.468, 2.27), p=0.940) or

death (HR=1.80 (0.961, 3.40) P=0.0661) for patients who had their chemotherapy

omitted, suggesting the higher rates of distant relapse and death in this group were

not significantly associated with having their chemotherapy omitted. The full multi-

variable results can be found in Supplementary Table 5.12.

Table 5.4: Disease status for patients with stage III NSCLC split by whether they had
their chemotherapy omitted, reduced, or received standard of care chemotherapy i.e. no
change to chemotherapy regimen.

Chemotherapy
omitted
(N=48)

Chemotherapy
dose/number
of cycles re-
duced (N=35)

No change to
chemotherapy
(N=178)

Disease status, n (%)
Distant relapse 15 (31.2) 5 (14.3) 26 (14.6)
Loco-regional relapse 10 (20.8) 2 (5.7) 28 (15.7)
No evidence recurrence 24 (50.0) 23 (65.7) 98 (55.1)

Death, n (%) 17 (35.4) 5 (14.3) 36 (20.2)

SCLC

One hundred and four (95.4%) patients with SCLC were considered for chemotherapy

as part of their management plan. However, 7 (6.7%) had their chemotherapy omitted

and 14 (13.5%) had their chemotherapy dose and/or number of planned cycles reduced

(Supplementary Table 5.13). Patients who had their chemotherapy omitted or reduced

had higher rates of distant relapse compared to those who had no change (42.9%

vs 50.0% vs 26.5%), and loco-regional relapse (57.1% vs 21.4% vs 10.8%). Rates
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of death were similar between patients who had their chemotherapy reduced vs no

change (35.7% vs 28.9%), and 1 (14.3%) patient who had their chemotherapy omitted

died. Of the patients with SCLC who had a change to their chemotherapy regimen,

10 (47.6%) also had a change to their RT dose and/or fractionation. Patients who

had a change to their chemotherapy regimen were not significantly more or less likely

to have a change to their radiotherapy dose and/or fractionation (aOR=2.35 (0.851,

6.51), p=0.0965).

5.4 Discussion

The initial analyses of the COVID-RT Lung data found a third of patients had their

treatment changed, from what they would usually have received, due to the COVID-

19 pandemic. The most common change was receiving a different radiotherapy dose

and/or fractionation to the centre’s usual standard of care, typically increased use

of hypofractionated radiotherapy [76]. This increased used of hypofractionated ra-

diotherapy during the COVID-19 pandemic is in line with UK recommendations to

reduce hospital attendances [250]. The key findings in this analysis are that there

was no significant impact on distant/loco-regional relapse or mortality for patients

with NSCLC who had a change to their radiotherapy dose and/or fractionation, and

there was a small increase in ≥ grade 3 acute toxicity. Furthermore, for patients

with stage III NSCLC who were considered for chemotherapy, omitting or reducing

chemotherapy dose and/or number of cycles did not lead to a significant impact on

distant/loco-regional relapse or mortality.

The effect of hypofractionated radiotherapy on outcomes is an important considera-

tion, particularly as it has the advantage of fewer hospital visits and reduced overall

treatment times. Although we did not have information on the specific radiotherapy

regimen changes that took place in this study, patients who had a change to their

radiotherapy received a higher dose per fraction, indicating increased use of hypofrac-

tionation. A randomised phase III trial with 96 patients with stage II-III NSCLC

not fit for concurrent chemotherapy compared 60 Gy in 15 fractions over 3 weeks

(hypofractionated arm) to 60 Gy in 30 fractions over 6 weeks (conventional arm), re-

porting no significant difference in 1-year survival (37.7% in the hypofractionated arm
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vs 44.6% in the conventional arm), local and distant relapse, and ≥ grade 3 toxicity,

although there was a higher rate of grade 2 toxicity in the hypofractionated group

[251]. Our study, in contrast, did find increased ≥ grade 3 toxicity for patients who

had a change to their radiotherapy, and therefore increased dose per fraction, however

we did not compare specific radiotherapy regimens.

A retrospective analysis of 111 patients with NSCLC compared node-negative pa-

tients (a surrogate for patients not eligible for SABR) to node-positive patients (a

surrogate for those unfit for chemo-radiotherapy) who received 60 Gy in 15 fractions

at one institution [252]. The study found acceptable 1-year survival rates (86.5%

node-negative versus 69.1% node-positive), local control and ≥ grade 3 toxicity. The

study is limited by selection bias, as patients were treated with 60 Gy in 15 fractions

when conventional radiotherapy or SABR were not appropriate. Another retrospec-

tive population-based study in the UK, however, reported significantly worse survival

for patients with stage I-III NSCLC treated with 55 Gy in 20 fractions compared to

60-66 Gy in 30-33 fractions (25 months v 28 months, p = 0.02) [253]. This study

was retrospective in nature, and did not distinguish between patients who received

concurrent and sequential chemotherapy. The survival differential may therefore be

caused by selection bias rather than the hypofractionated regimen, as patients in the

UK often receive 55 Gy in 20 fractions following induction chemotherapy or if they

are not fit enough for chemotherapy. Our study suggests the use of hypofractionated

treatments during the pandemic did not affect survival.

The increased odds of ≥ grade 3 acute toxicity for patients with NSCLC who had a

change to their radiotherapy dose and/or fractionation is to be expected due to the

higher dose per fraction used in hypofractionated radiotherapy. The rate of COVID-19

infection in the COVID-RT Lung study was low (33 (2.1%) patients) [76]. Outcomes

for patients with cancer who are infected with COVID-19 are worse [246], so our

results suggest the changes to treatment put in place to reduce COVID-19 exposure

were effective and may have prevented vulnerable deaths due to COVID-19, at the

expense of a small increase in acute toxicity. Data on long-term toxicity were not

collected. For patients with stage III NSCLC who had a change to their radiotherapy,

the majority of toxicity was seen in patients who received concurrent chemotherapy;
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however, for patients who did not have a change to their radiotherapy, the majority

of toxicity was seen in patients who had no chemotherapy. There was a higher rate

of patients with PS 2-3 in the no change to treatment group, which may explain this

difference in toxicity, however it is important to note that numbers for this analysis

were low.

Most patients with stage III NSCLC received the moderately hypofractionated regimen

of 55 Gy in 20 fractions in this study, compared with the conventional radiotherapy

regimen of 60-66 Gy in 30-33 fractions (77.2% vs 7.1%). Rates of ≥ grade 3 acute

toxicity were similar between both regimens for patients who also received concur-

rent chemotherapy. A randomised phase II trial including 130 patients with stage III

NSCLC and PS 0-1 receiving either concurrent or sequential chemotherapy with stan-

dard 55 Gy in 20 fractions over 4 weeks (SOCCAR) reported that 32% of patients who

had concurrent chemotherapy had ≥ grade 3 acute toxicity [254]. Our study reported

a lower rate of ≥ grade 3 acute toxicity (21.5%), which may relate to the use of more

advanced radiotherapy techniques, such as IMRT and VMAT, since the completion of

SOCCAR recruitment in 2010.

No patients with SCLC who had a change to their radiotherapy received twice-daily

radiotherapy, suggesting once-daily radiotherapy was preferred to reduce the time

spent in hospital during the pandemic. The CONVERT trial compared once-daily to

twice-daily chemo-radiotherapy and found no difference in survival outcomes, although

the study was powered to show superiority of once-daily chemo-radiotherapy and not

equivalence [214].

This analysis found that patients with stage III NSCLC who had their chemotherapy

omitted did not have a significant increase in risk of distant/loco-regional relapse or

death in the multivariable analysis. This is in contrast to meta-analyses that show

chemotherapy improves survival and tumour control in locally advanced lung cancer

[32, 255]. Our results do show, however, that there was a higher rate of distant relapse

and death in the chemotherapy omitted group compared to standard of care. This sug-

gests there may be a baseline difference between patients who had their chemotherapy

omitted and those who did not, which was taken into account in the multivariable



5.4. DISCUSSION 189

analysis by adjusting for clinical variables. Also, it is likely, since the confidence inter-

val for the hazard ratio of both distant relapse and death is close to 1 and the p-values

close to the significance cut-off of 0.05, that there may be a negative effect of omitting

chemotherapy that could not be detected with the sample size or follow-up available

in COVID-RT Lung. Unfortunately, a limitation of this study is that we could not

collect more data as this is a unique dataset from a fixed time period. The risk of

death due to COVID-19 is less now as many vulnerable patients with lung cancer

are vaccinated and there are more effective treatments for patients hospitalised with

COVID-19 [256]. Therefore, given the evidence that chemotherapy given in addition to

radiotherapy improves survival in patients with stage III NSCLC [257], chemotherapy

should no longer be omitted due to COVID-19 risk.

The results from this study are encouraging since the National Lung Cancer Audit

found decreased 1-year survival for patients with lung cancer from 2019 to 2020, re-

versing the improvement in survival seen previously [258]. Our analysis did not find an

increased risk of death for patients who had a change to radiotherapy or chemotherapy

treatments between April and October 2020; however, our data only included patients

who were treated with curative-intent radiotherapy and median follow-up is shorter.

Previous analysis found that patients who had a change to treatment were more likely

to be elderly (≥ 70 years) [76], which is in line with the UK Government’s shielding

advice. This is important to consider when interpreting the mortality results from this

analysis.

This study is subject to limitations, namely the sample size and short median follow-up

of 7 months. Effects may, therefore, have been missed due to a lack of statistical power.

Due to the unique circumstance of data collection, more data could not be collected

during the time period encapsulating the first wave of the COVID-19 pandemic, from

April to October 2020. Unfortunately, 437 follow-up forms were not filled out and

therefore these patients could not be included in the outcomes analysis. Longer follow-

up would be required to verify the findings in this study. Despite this, our study

provides valuable information to inform treatments for patients with lung cancer in

such exceptional circumstances.
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In conclusion, this study showed that changes made to radiotherapy and chemotherapy

treatments during the COVID-19 pandemic did not significantly impact distant/loco-

regional relapse or survival. Patients who had a change to their radiotherapy treat-

ment, namely increased hypofractionation, had increased odds of ≥ grade 3 acute

toxicity. These results are important as they can inform practice in the context of

potential future emergency situations requiring a need to reduce hospital attendances.

Furthermore, hypofractionated treatments are a more convenient and cheaper alterna-

tive to conventional fractionation regimens without significant compromise on tumour

control or mortality.
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5.6 Supplementary materials

5.6.1 Changes to radiotherapy dose and/or fractionation

Stage I-II NSCLC
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Table 5.5: Survival, distant relapse and loco-regional relapse results from the multivariable analysis of patients with stage I-II NSCLC, investi-
gating the effect of having a change to radiotherapy dose and/or fractionation.

Survival Distant relapse Loco-regional relapse
HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Change to radiotherapy
dose and/or fractionation

0.951 (0.480, 1.88) 0.884 1.09 (0.412, 2.90) 0.859 1.25 (0.609, 2.58) 0.541

Gender (reference male)
Female 0.999 (0.646, 1.54) 0.996 1.69 (0.957, 2.97) 0.0706 1.21 (0.764, 1.93) 0.413

Age (reference <70 years)
≥ 70 years 1.01 (0.643, 1.58) 0.970 0.838 (0.467, 1.50) 0.552 1.55 (0.892, 2.68) 0.120

PS (reference 0)
1 1.14 (0.462, 2.81) 0.779 0.783 (0.331, 1.86) 0.579 0.655 (0.315, 1.36) 0.258
2-3 1.83 (0.748, 4.49) 0.185 0.604 (0.245, 1.49) 0.274 0.643 (0.305, 1.36) 0.247

Chemotherapy 2.16 (0.847, 5.52) 0.107 2.39 (0.757, 7.54) 0.138 1.70 (0.395, 7.29) 0.478
Dose per fraction (refer-
ence 2 Gy/fraction)

>2- 2.9 Gy/fraction 1.15 (0.141, 9.31) 0.898 1.40 (0.154, 12.8) 0.764 0.944 (0.0857,
10.4)

0.963

<2 Gy/fraction 0.437 (0.0266,
7.17)

0.562 1.99 (0.104, 38.2) 0.648 1.49 (0.0677, 32.9) 0.800

3-5.9 Gy/fraction 0.732 (0.0820,
6.54)

0.780 0.804 (0.0803,
8.04)

0.852 0.806 (0.0748,
8.68)

0.859

≥ 6 Gy/fraction 0.660 (0.0808, 540) 0.699 0.374 (0.0394,
3.54)

0.391 0.619 (0.0561,
6.82)

0.695

Abbreviations: Gy, Gray; HR, Hazard Ratio; PS, Performance Status.
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Table 5.6: Results from the multivariable analysis of ≥ grade 3 acute toxicity in patients
with stage I-II NSCLC, investigating the effect of having a change to radiotherapy dose
and/or fractionation.

aOR (95% CI) P value
Change to radiotherapy dose
and/or fractionation

3.46 (1.01, 10.6) 0.0348

Gender (reference male)
Female 1.99 (0.734, 5.81) 0.185

Age (reference <70 years)
≥ 70 years 1.04 (0.378, 3.22) 0.941

PS (reference 0)
1 0.816 (0.183, 5.92) 0.810
2-3 1.08 (0.233, 8.29) 0.929

Chemotherapy 2.26 (0.218, 15.8) 0.440
Dose per fraction (reference 2
Gy/fraction)

>2- 2.9 Gy/fraction 0.500 (0.0448, 12.7) 0.605
<2 Gy/fraction 3.50e-8 (NA, 3.87e+100) 0.997
3-5.9 Gy/fraction 2.18e-8 (NA, 4.50e+31) 0.990
≥ 6 Gy/fraction 0.300 (0.0249, 8.49) 0.393

Abbreviations: aOR, adjusted Odds Ratio; Gy, Gray; PS, Performance Status.
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Table 5.7: Toxicity data for patients with stage I-II NSCLC who received 5 fraction
SABR versus 3 fraction SABR.

5 fraction SABR
(N=262)

3 fraction SABR
(N=143)

Acute toxicity ≥ grade 3, n (%) 6 (2.3) 5 (3.5)
Oesophageal 1 (0.4) 1 (0.7)
Pulmonary 4 (1.5) 2 (1.4)
Cardiac 0 2 (1.4)
Lung infection 1 (0.4) 0
Chest pain 0 0
Other 0 0
Missing 15 (5.7) 6 (4.2)

Late toxicity ≥ grade 3, n (%) 4 (1.5) 3 (2.1)
Oesophageal 0 0
Pulmonary 1 (0.4) 1 (0.7)
Cardiac 0 0
Lung infection 3 (1.1) 1 (0.7)
Chest pain 0 1 (0.7)
Other 0 0
Missing 46 (17.6) 43 (30.1)

Abbreviations: SABR, Stereotactic Ablative Radiotherapy.

Stage III NSCLC

Table 5.8: Rates of ≥ grade 3 acute and late toxicity for patients with stage III NSCLC
who received concurrent, sequential or no chemotherapy, split by whether they also had a
change to their radiotherapy.

Change to RT No change to RT
≥ grade 3
acute toxic-
ity (N=15)

≥ grade 3
late toxicity
(N=4)

≥ grade 3
acute toxic-
ity (N=32)

≥ grade 3
late toxicity
(N=6)

Concurrent
chemotherapy

12 (80.0) 3 (75.0) 13 (40.6) 1 (16.7)

Sequential
chemotherapy

2 (13.3) 1 (25.0) 3 (9.4) 1 (16.7)

No chemotherapy 1 (6.7) 0 15 (46.9) 4 (66.7)
Abbreviations: RT, Radiotherapy.
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Table 5.9: Survival, distant relapse and loco-regional relapse results from the multivariable analysis of patients with stage III NSCLC, investi-
gating the effect of having a change to radiotherapy dose and/or fractionation.

Survival Distant relapse Loco-regional relapse
HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Change to radiotherapy
dose and/or fractionation

1.08 (0.606, 1.94) 0.789 1.71 (0.731, 4.00) 0.216 0.880 (0.316, 2.45) 0.806

Gender (reference male)
Female 0.601 (0.392,

0.920)
0.019 0.777 (0.492, 1.23) 0.280 0.617 (0.383,

0.995)
0.0478

Age (reference <70 years)
≥ 70 years 1.23 (0.833, 1.83) 0.294 1.06 (0.680, 1.66) 0.786 0.829 (0.524, 1.31) 0.425

PS (reference 0)
1 1.29 (0.710, 2.36) 0.400 1.38 (0.734, 2.58) 0.320 2.07 (0.997, 4.28) 0.0509
2-3 1.67 (0.872, 3.19) 0.122 1.08 (0.513, 2.27) 0.843 1.70 (0.739, 3.93) 0.212

Chemotherapy 0.750 (0.482, 1.17) 0.204 0.662 (0.396, 1.11) 0.116 0.666 (0.391, 1.14) 0.135
Dose per fraction (refer-
ence 2 Gy/fraction)

>2- 2.9 Gy/fraction 1.45 (0.514, 4.10) 0.481 2.14 (0.506, 9.03) 0.302 0.867 (0.329, 2.28) 0.771
<2 Gy/fraction 2.08 (0.494, 8.78) 0.318 1.95 (0.258, 14.8) 0.517 2.15 (0.516, 8.93) 0.293
3-5.9 Gy/fraction 1.28 (0.337, 4.89) 0.713 1.80 (0.249, 13.0) 0.559 2.85 (0.661, 12.3) 0.160
≥ 6 Gy/fraction NA NA NA NA NA NA

Abbreviations: Gy, Gray; HR, Hazard Ratio; PS, Performance Status.
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Table 5.10: Results from the multivariable analysis of ≥ grade 3 acute toxicity in patients
with stage III NSCLC, investigating the effect of having a change to radiotherapy dose
and/or fractionation.

aOR (95% CI) P value
Change to radiotherapy dose
and/or fractionation

4.78 (2.11, 10.7) 0.000148

Gender (reference male)
Female 1.15 (0.589, 2.20) 0.685

Age (reference <70 years) 0.848
≥ 70 years 1.07 (0.549, 1.06)

PS (reference 0)
1 1.19 (0.512, 3.06) 0.693
2-3 1.60 (0.561, 4.82) 0.385

Chemotherapy 1.83 (0.871, 3.96) 0.115
Dose per fraction (reference 2
Gy/fraction)

>2- 2.9 Gy/fraction 0.479 (0.177, 1.45) 0.163
<2 Gy/fraction 2.37 (0.385, 12.9) 0.324
3-5.9 Gy/fraction 0.0873 (0.0101, 0.533) 0.0127
≥ 6 Gy/fraction NA NA

Abbreviations: aOR, adjusted Odds Ratio; Gy, Gray; PS, Performance Status.
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SCLC

Table 5.11: Follow-up data for patients with SCLC split by whether they had a change to
their radiotherapy dose and/or fractionation or not.

Change to RT
(N=34)

No change to
RT (N=75)

Acute toxicity ≥ grade 3, n (%) 2 (5.9) 9 (12.0)
Oesophageal 2 (5.9) 3 (4.0)
Pulmonary 0 0
Cardiac 0 1 (1.3)
Lung infection 0 0
Chest pain 0 0
Other 0 5 (6.7)
Missing 1 (2.9) 3 (4.0)

Late toxicity ≥ grade 3, n (%) 2 (5.9) 0
Oesophageal 1 (2.9) 0
Pulmonary 1 (2.9) 0
Cardiac 0 0
Lung infection 0 0
Chest pain 0 0
Other 0 0
Missing 4 (11.8) 13 (17.3)

Disease status, n (%)
Distant relapse 12 (35.3) 20 (26.7)
Loco-regional relapse 7 (20.6) 11 (14.7)
No evidence recurrence 17 (50.0) 38 (50.7)

Death, n (%) 12 (35.3) 20 (26.7)
Abbreviations: RT, Radiotherapy.

5.6.2 Changes to chemotherapy regimen

Stage III NSCLC
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Table 5.12: Survival, distant relapse and loco-regional relapse results from the multivariable analysis of patients with stage III NSCLC who
were considered for chemotherapy, investigating the effect of having chemotherapy omitted or the dose/number of cycles reduced.

Survival Distant relapse Loco-regional relapse
HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Change to chemother-
apy regimen (reference no
change)

Chemotherapy omitted 1.81 (0.961, 3.40) 0.0661 1.85 (0.923, 3.71) 0.0827 1.03 (0.468, 2.27) 0.940
Chemotherapy

dose/number of cycles
reduced

0.733 (0.273, 1.97) 0.537 1.26 (0.451, 3.49) 0.664 0.387 (0.0883,
1.70)

0.208

Gender (reference male)
Female 0.591 (0.334, 1.05) 0.0712 0.985 (0.539, 1.80) 0.960 0.695 (0.366, 1.32) 0.267

Age (reference <70 years)
≥ 70 years 1.34 (0.771, 2.33) 0.298 0.878 (0.455, 1.69) 0.698 0.717 (0.347, 1.48) 0.367

PS (reference 0)
1 1.04 (0.497, 2.17) 0.922 1.46 (0.652, 3.25) 0.360 2.98 (1.03, 8.60) 0.0431
2-3 2.11 (0.921, 4.85) 0.0773 2.58 (0.919, 7.26) 0.0718 3.59 (0.951, 13.5) 0.0594

Change to radiotherapy
dose and/or fractionation

1.15 (0.524, 2.54) 0.725 1.78 (0.669, 4.71) 0.249 0.794 (0.196, 3.21) 0.747

Dose per fraction (refer-
ence 2 Gy/fraction)

> 2- 2.9 Gy/fraction 1.31 (0.453, 3.80) 0.617 1.81 (0.420, 7.75) 0.427 0.820 (0.305, 2.21) 0.695
<2 Gy/fraction 8.90 (1.51, 52.4) 0.0156 1.33e-5 (0, Inf) 0.998 4.14e-6 (0, Inf) 0.998
3-5.9 Gy/fraction 1.87 (0.333, 10.5) 0.478 1.28 (0.0902, 18.0) 0.857 5.69 (0.720, 45.0) 0.0992
≥ 6 Gy/fraction NA NA NA NA NA NA

Abbreviations: Gy, Gray; HR, Hazard Ratio; PS, Performance Status.
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SCLC

Table 5.13: Disease status for patients with SCLC split by whether they had their
chemotherapy omitted, reduced, or received standard of care chemotherapy i.e. no change
to chemotherapy regimen.

Chemotherapy
omitted
(N=7)

Chemotherapy
dose/number
of cycles re-
duced (N=14)

No change to
chemotherapy
(N=83)

Disease status, n (%)
Distant relapse 3 (42.9) 7 (50.0) 22 (26.5)
Loco-regional relapse 4 (57.1) 3 (21.4) 9 (10.8)
No evidence recurrence 3 (42.9) 6 (42.9) 43 (51.8)

Death, n (%) 1 (14.3) 5 (35.7) 24 (28.9)
Abbreviations: RT, Radiotherapy.
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Highlights

• There are 2 main approaches to statistical inference, frequentist and Bayesian,

differing in their interpretation of uncertainty.

• The frequentist approach deals with long-run probabilities (ie, how probable is

this data set given the null hypothesis), whereas the Bayesian approach deals

with the probability of a hypothesis given a particular data set.

• Bayesian analysis incorporates prior information into the analysis, whereas a

frequentist analysis is purely driven by the data.

• The Bayesian approach can calculate the probability that a particular hypothesis

is true, whereas the frequentist approach calculates the probability of obtaining

another data set at least as extreme as the one collected (giving the P value).

• Interpretation of results is more intuitive with a Bayesian approach compared

with the frequentist approach, which can often be misinterpreted.

6.1 Case Vignette

Changes to radiation therapy workflows happen continuously as technology and tech-

niques are optimized. One may wonder what the clinical outcomes of such changes

are, or if there is any effect at all, because formal evaluation through a clinical trial

rarely takes place. An example might be the modification of treatment protocols such

as those used in image guided radiation therapy (IGRT). Suppose a large cancer center

uses an IGRT action threshold during lung cancer patient setup. Patients whose posi-

tion in their daily cone beam computed tomography (CBCT) is more than a threshold

distance from that in their radiation therapy planning CT scan have their position

corrected before treatment, whereas those with smaller offsets are treated without

correction. The center updates its protocol to reduce the action threshold so that

smaller setup errors are corrected. Published results suggest this change may have

an impact on patient survival, and the team wants to determine whether this is the

case in their center. Statisticians are tasked with identifying the appropriate statisti-

cal methodologies for such an evaluation as well as considering whether the approach
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could be embedded into routine practice to monitor the impact of future changes in

clinical management.

6.2 Introduction

Just like Liverpool versus Manchester United, the Yankees versus the Red Sox, or

Coke versus Pepsi, there are 2 main schools of statistics, and you may have heard the

proponents of each noisily arguing their respective benefits. The first is the frequentist

approach, which dominates the medical literature and consists of null hypothesis sig-

nificance testing (think P values and confidence intervals). The other is the Bayesian

approach, governed by Bayes’ theorem. The fundamental difference between these 2

schools is their interpretation of uncertainty and probability [259]: the frequentist ap-

proach assigns probabilities to data, not to hypotheses, whereas the Bayesian approach

assigns probabilities to hypotheses. Furthermore, Bayesian models incorporate prior

knowledge into the analysis, updating hypotheses probabilities as more data become

available. The goal of this article is to educate readers about the differences between

frequentist and Bayesian inference, discuss potential advantages or disadvantages of

each approach, and use the case vignette to highlight how these 2 methods may be

implemented in a real-world example in a radiation therapy clinic.

6.3 Introduction to Frequentist Statistics

Frequentist statistics is all about probability in the long run; the data set collected

and analyzed is one of many hypothetical data sets addressing the same question, and

uncertainty is due to sampling error alone. For example, the probability of getting

heads when flipping a coin in the long run is 0.5; if we flip the coin many times, we

would expect to see heads 50% of the time, whereas if we had flipped the coin only a

few times we could reasonably expect to observe a different distribution (eg, all heads)

just by chance.

Frequentist inference begins by assuming a null hypothesis to be true before data are

collected (eg, that there is no effect of a particular treatment on survival). Investigators

then collect data, analyze them, and ask, “How surprising is my result if there is
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actually no effect of the treatment on survival?” The data would be surprising if there

was a low probability by chance alone of obtaining another data set at least as extreme

(ie, far away from the null hypothesis and unlikely to occur by chance) than that

collected (eg, showing a large difference in survival between patients having different

treatments when our null hypothesis states there is no difference). If this is the case,

then the collected data are considered unlikely under the null hypothesis and we can

reject it, inferring that the null hypothesis does not adequately explain our data and

that something else (eg, the new treatment) must account for our results.

This probability of obtaining another data set as extreme as the one collected is known

as the P value. The P value is often criticized for being misunderstood and misused

in the field of medicine [260, 261]. For example, in contrast to popular belief, the P

value is not a measure of how correct a hypothesis is, nor is it a measure of the size

or importance of an effect [261]. In particular, large P values do not provide evidence

of no effect [262]. A P value is simply the probability of obtaining another data set at

least as extreme as the one collected by chance alone.

For example, suppose we run an analysis and get a highly significant P value of .001 for

our treatment variable—how do we interpret this? Formally, there is a 0.1% chance

of collecting data equal to or more extreme than this result if the null hypothesis

were true—it would be surprising to collect these data if there is, in fact, no effect

of treatment on survival. If we had run the analysis and got a P value of .46, then

there is a 46% chance of collecting data equal to or more extreme than this if the

null hypothesis is true—it would not be surprising to obtain these results if there is

no effect of treatment on survival. This result is not evidence of no effect, however,

because the inference began by assuming there would be no effect of treatment. The

key here is that probabilistic statements (ie, P values) can only be made about the

data, not about hypotheses or parameters (ie, the treatment effect) [263].

Reporting confidence intervals can improve the interpretation of results compared with

a P value alone and can give information on the size and direction of an effect [264].

A 95% confidence interval tells us that if we were to repeat the experiment over and

over (remember, frequentist statistics are long run), 95% of the computed confidence
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intervals would contain the true mean [265]. This is different than saying there is 95%

chance the true mean lies within the interval, because frequentist statistics cannot

assign probabilities to parameters—the true mean either lies within the interval or it

does not [266].

6.4 Introduction to Bayesian Statistics

Bayesian statistics are named after the Reverend Thomas Bayes, whose theorem de-

scribes a method to update probabilities based on data and past knowledge. In contrast

to the frequentist approach, parameters and hypotheses are seen as probability distri-

butions and the data as fixed. This idea is perhaps more intuitive because generally

the data we collect are the only data set we have, so it does not necessarily make sense

to perform statistical analysis assuming it is one of many potential data sets. Prob-

ability distributions summarize the current state of knowledge about a parameter or

hypothesis and can be updated as more data becomes available using Bayes’ theorem,

presented in Equation (6.1).

p(θ|Data) =
p(Data|θ) · p(θ)

p(Data)
(6.1)

The probability distribution that summarizes what is known about an outcome before

a test or piece of information is obtained is known as the prior distribution, often just

dubbed “the prior.” Such an outcome may be the prevalence of disease or a specific

diagnosis. The prior probability of the outcome θ (eg, of having the disease) is labeled

P (θ) in Equation (6.1). The prior is one of the key differences between frequentist and

Bayesian inference; frequentist analyses base their results only on the data they collect.

The prior could be formulated by expert beliefs, historical data, or a combination of

the two.

Consider now that one has a positive test for the disease. What is the probability

of θ (having the disease), given these new data (ie, that the test was positive)? The

notation for this scenario is P (θ|test+), where the “|” can be translated as “given”

and we set the Data variable in Equation (6.1) to test+. In Bayesian terminology,
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this probability is known as the posterior distribution (or post test distribution) and

summarizes what is known about the outcome using both the prior information and

the new data.

Among all potential patients, regardless of whether they have the disease, the prob-

ability of a positive test (ie, true positive plus false positive) is P (test+). Therefore,

the relative probability of having a positive test if a patient is truly positive versus the

probability of someone randomly selected from the population (who may or may not

have the disease) having a positive test is the ratio P (test+|θ)/P (test+). The poste-

rior probability of having the disease if you have a positive test is then the baseline

prevalence of the disease in the population (the prior probability) multiplied by this

factor.

We can further illustrate how Bayes’ theorem and the use of prior information can help

to answer important questions using the example of COVID-19 testing. For this ex-

ample, let’s assume that a test for COVID-19 infection is guaranteed (100% chance) to

detect the COVID-19 virus in someone who has the infection (P [test+|virus])=1.0) and

has a 99.9% chance of correctly identifying that someone does not have the virus (or a

0.1% chance of a false positive: P [test−|no virus]=0.999 and P [test+|no virus]=0.001)

[267]. That sounds like a high probability, but what we are really interested in is if you

have a positive test, how likely is it that you actually have the virus (P [virus|test+]).

We can calculate this probability using Bayes’ theorem. As discussed, this probabil-

ity depends on some prior information—how likely you were to have the virus (ie,

P [virus]) before taking the test.

p(virus|test+) =
p(test+|virus) · p(virus)

p(test+)
(6.2)

If we assume the prior probability is the prevalence of the virus in the population

at the height of the pandemic, 2%, then P (virus)=0.02. Out of 1 million people,

20,000 will have the virus and 980,000 will not. If we test them all, 20,000 will

have a true positive test, 979,020 will have a true negative test, and 980 will have

a false positive test (980,000 x 0.001). Thus, there would be 20,980 positive tests

in total (P [test+]=20,980/1,000,000=0.02098), and the chance of having the virus
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given a positive test could be calculated using Equation (6.2): P (virus|test+)=(1.0 x

0.02)/0.02098=0.953, which can be approximated as 95%. In this setting, if the test

is positive, one should believe the test.

However, what if the prevalence of COVID-19 was estimated to be much less, say, 0.2%

(P [virus]=0.002), such as during a period of a governmental stay-at-home order?

In this scenario, when we test 1 million people, 2000 will have a true positive test,

997,002 will have a true negative test, and 998 will have a false positive test (998,000 x

0.001), giving 2998 positive test results, and P (test+)=2988/1,000,000=0.002988. The

probability of having the virus after a positive test now becomes P (virus|test+)=(1.0

x 0.002)/0.002988=0.669. In this scenario, one may truly question whether a positive

test is diagnostic of infection, because the likelihood of a false positive is approximately

1 in 3.

Therefore, knowledge of the prior information (in this case, the prevalence of COVID-

19 in a population) can alter the chance of having a virus when a test is positive from

95% to 67% when the sensitivity and specificity of the test remain unaltered. On the

other hand, if we were testing hospitalized patients, for example, the prevalence would

be expected to be much higher, and there would be a lower chance of obtaining a

false positive result. This simple calculation highlights the importance of taking into

account prior information, something a frequentist analysis does not do.

Sometimes formulating a prior is not that easy or clear. In such cases, the use of

priors can be seen as a drawback to Bayesian inference, particularly when results

depend on the chosen prior, and thus the analysis could be manipulated to get a

positive result. In such cases, an “uninformative” prior that provides no additional

information could be used, or multiple priors (eg, with either optimistic or skeptical

assumptions) could be tested to determine the sensitivity of the results to particular

priors. As with all analyses, it is vital that researchers are transparent in their methods

and assumptions.

The posterior distribution captures our “updated” estimate of the probability of the

outcome after incorporating new data, including our uncertainties, and can be ana-

lyzed to give various statistics, such as the mean and 95% credible interval. The 95%
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credible interval is different from a frequentist 95% confidence interval; it is the pa-

rameter range that has a 95% probability of including the true parameter value. The

frequentist confidence interval is often misinterpreted in this way; however, one must

remember that the 95% confidence interval assumes that the experiment is hypotheti-

cally repeated over and over and that 95% of the computed confidence intervals would

contain the true mean. Perhaps more importantly, and one of the big advantages

of Bayesian inference, is that the posterior distribution can also be used to directly

calculate the probability of different hypotheses (eg, that one treatment is superior to

another or that survival is improved by at least 3 months).

In this respect, Bayesian inference is more intuitive at its core and in closer alignment

with our natural mode of probabilistic reasoning than frequentist inference. For exam-

ple, we are more interested in the probability that 1 treatment is superior to another

(Bayesian probability) than in the probability of obtaining certain data assuming the

treatments are equal (frequentist null hypothesis). This advantage in interpretability

remains even if our analysis uses an uninformative prior.

6.5 Case Study in Radiation Therapy

Let’s look now at the real-world example in radiation therapy from our case vignette

and compare the use of a frequentist and Bayesian approach to evaluating the clinical

impact of a change in practice. In image guided radiation therapy (IGRT), an action

threshold is often used as a decision threshold. At each daily fraction, the patient is

set up on the radiation therapy treatment couch. They are then imaged using a CBCT

system and their position is compared with the ideal position in the treatment plan.

If the offset between the daily CBCT image and the planning CT image is greater

than the action threshold, the couch is moved to better align the patient’s position

to that in the plan. If the offset is less than the threshold, the patient’s setup is

considered accurate enough and they receive their daily treatment without any shifts,

the assumption being that setup errors less than the action threshold will not alter

the clinical target volume dose owing to the planning target volume margin or change

organ-at-risk doses enough to have a clinical impact. Previous analyses of patients with

lung cancer treated with IGRT have shown that the residual setup errors that remain
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after the action threshold has been applied (ie, positional errors that are less than

the threshold and are considered acceptable enough to treat with) are associated with

survival [268]. Patients with average residual setup errors that pushed the radiation

therapy dose toward the heart were found to have worse survival than those who had

average residual errors moving the dose away from the heart. In this previous study,

the action threshold was 5 mm.

Let us assume that after this finding, the department decided to reduce the action

threshold from 5 mm to 2 mm in the hope of ameliorating the effect. A year after

implementing the change in protocol (post-protocol change), a physician wants to

know the impact on clinical outcome. The hypothesis is that the effect of the average

residual setup error direction (toward vs away from the heart) on patient survival will

be decreased after reducing the action threshold from 5 mm to 2 mm (ie, the hazard

ratio [HR] between the 2 directions will have decreased), because only trivial offsets

would remain with the new policy.

We have 2 simulated data sets: 1 before protocol change, where residual setup errors

range from –5 mm to 5 mm, as in the original study, and 1 after protocol change,

with errors from –2 mm to 2 mm. The direction of the average residual setup error is

calculated and dichotomized as either closer to or farther from the heart. We want to

know if the difference in survival between patients with average residual setup errors

toward versus away from the heart observed in the pre-change patients (5 mm action

threshold) is reduced with the new 2 mm protocol (ie, the HR of death between toward

and away patients is reduced). We fit survival models to the pre- and post-protocol

change data separately and look at how the HR changes, adjusting for the clinical

variables accounted for in the cited study [268]: performance status, age, prescribed

radiation therapy fractions, and tumor volume. The hypothesis is that the HR should

be closer to 1 in the post-protocol change data, because a smaller action threshold

should lead to smaller residual setup errors, and hence, less difference in the magnitude

of heart irradiation and subsequent toxicity.

First, we take a frequentist approach. We fit a survival model to the pre-protocol

change data and post-protocol change data separately. The null hypothesis is that
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there is no effect of setup error on survival, and our model will indicate how surprising

the data we collect are if this is true. Before protocol change, we have an HR of

1.26 (95% confidence interval, 1.05-1.48), and P=0.013; that is, the risk of death is

26% (with a confidence interval of 5%-48%) higher in the group of patients with the

average setup error direction toward the heart compared with those with the average

setup error direction away from the heart. If there were actually no effect of setup

error on survival, it would be surprising to see an HR this extreme (ie, this far from

1.0). After the protocol change, we have an HR of 1.07 (95% confidence interval,

0.91-1.27), and P=0.41. This P value is greater than the widely used 5% threshold,

so seeing these results is not particularly unexpected if there were no difference in

outcome associated with setup error. However, remember that this is not evidence

of no effect, so we cannot conclude that the effect of residual setup error on survival

is eliminated. Indeed, if we look at the 95% confidence interval, the HR of the post-

protocol change could be as high as 1.27 (ie, a 27% increase in the risk of death). If

we had a very tight confidence interval around the null (HR=1), we would be more

confident that there was no effect, but with such a wide confidence interval, the result

is not informative.

Now we can analyze the data using Bayesian statistics. We again fit a survival model

to the post-protocol change data, but this time, we specify a prior. To assess the

sensitivity of the results to the prior, we choose 3 priors - an uninformative, a skeptical,

and an enthusiastic one. The uninformative prior lets the post-protocol change data

alone drive the inference, like in a frequentist setting. The skeptical prior (ie, skeptical

that the change reduces the impact of the setup error) uses the data about the impact

of the residual setup errors on survival from before the new protocol was changed

(the pre-protocol change patient cohort). The use of such historic data is a common

scenario as it allows us to include existing observations (eg, from previous clinical

trials) in our analysis and, for example, indicate how confident we are in the quality of

the evidence (for observational data we might include greater uncertainty in the prior

distribution). Where we are investigating a change in practice, it also allows us to be

cautious in our assessment of the intervention by starting from the assumption that

patients will experience the historically observed outcomes. The enthusiastic prior (ie,
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enthusiastic that there will no longer be an impact of setup error) assumes that there

will be no survival difference between patients with residual setup errors toward versus

away from the heart before the model sees the post-protocol change data. Enthusiastic

priors are typically used for sensitivity analyses to evaluate how strongly the choice of

the prior influences the analysis result. Given enough data, both the enthusiastic and

skeptical priors would eventually evolve to the same posterior distribution (conversely,

experiments with few data are unlikely to move the prior by a large amount).

Figure 6.1 presents the probability distributions for the HR before and after protocol

change for the different priors, calculated via the Bayes theorem (Equation (6.1)). We

know the prior distribution (P [θ], or the belief about the distribution of the HR of

death between patients with average setup errors toward and away from the heart)

and obtain the distribution of the likelihood function (P [Data|θ], the probability of

observing our survival data for a range of possible HR values) from our survival model.

This information allows us to calculate the numerator of the Bayes equation, but cal-

culating the denominator, P (Data), is often very difficult for nontrivial (ie, real-life)

situations, meaning it is often not possible to directly calculate the posterior distri-

bution. Fortunately, we can instead use a computer to numerically sample a close

approximation to it, typically using a technique called Markov chain Monte Carlo

(MCMC) sampling. Briefly, MCMC iteratively samples different positions (ie, param-

eter values) in a hypothetical posterior distribution, using a set of rules to decide how

to move from 1 position to the next (the rules are the Markov chain). At each new

position we calculate the ratio of the new posterior probability to that in the previous

position based on the obtained data. As Equation (6.3) shows, taking the ratio of

the probability at the 2 positions means that we cancel out of the part of the Bayes

equation that we have difficulty calculating, meaning we can easily calculate the ratio

for each successive position. If the ratio is greater than 1 (ie, the new position is more

probable given the data), we accept the move, and if it is less than 1 (ie, the previ-

ous position was more probable given the data), we calculate a random number and

accept the move if the ratio is larger than the random number, rejecting it otherwise.

By repeating this process many times and keeping a record of the different accepted

sample positions (the record is known as the MCMC trace), we obtain an increasingly
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accurate estimation of the posterior distribution as the histogram of how often each

parameter position “wins” relative to the competing value. Most commonly used an-

alytical software languages contain MCMC sampling libraries to calculate posterior

distributions using more sophisticated implementations of this general approach [269,

270].

p(θnew|Data)

p(θprevious|Data)
=

p(Data|θnew)·p(θnew)
p(Data)

p(Data|θprevious)·p(θprevious)
p(Data)

=
p(Data|θnew) · p(θnew)

p(Data|θprevious) · p(θprevious)
(6.3)
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Figure 6.1: Posterior distributions of the hazard ratio (HR) for residual setup error
direction toward the heart. The red distribution in the top 3 plots shows the skep-
tical, uninformative, and enthusiastic priors used to calculate the HR distributions
after protocol change, with the corresponding posteriors shown in blue. The bottom
plot shows all 3 posterior HR distributions together with the HR distribution from
before the protocol change (the pre-change cohort).

We can see that the post-protocol change HRs shown in Figure 6.1 are different de-

pending on which prior was chosen; the posterior calculated with the skeptical prior

has the largest HR and is closest to the pre-protocol change HR distribution, the pos-

terior with the enthusiastic prior has the HR distribution closest to the null (HR=1),

and the posterior using the uninformative prior has an HR somewhere in the middle.

This result shows us how choice of prior influences inference in the Bayesian setting.

With the skeptical prior, there is a post-protocol change HR=1.15 (credible interval,

1.02-1.3). With the uninformative prior, it is slightly less (1.08 [0.91-1.27]), and with
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the enthusiastic prior, it is even less (1.04 [0.91-1.16]). Another key advantage of the

Bayesian approach is that the HR point estimate and 95% credible intervals are not

the only information that can be obtained from the posterior distributions; we can also

directly quantify the evidence for multiple hypotheses using probabilities, examples of

which are summarized in Table 6.1.

Table 6.1: Bayesian probabilities for the skeptical, uninformative, and enthusiastic priors.

Skeptical prior Uninformative
prior

Enthusiastic
prior

P(HR reduced) 0.760 0.882 0.961
P(HR>1) 0.988 0.786 0.712
Abbreviations: HR, hazard ratio; P(HR reduced), probability that the HR for pa-
tients with average residual setup error direction toward the heart (compared with
those with average residual setup error directions away from the heart) was reduced
after the protocol change; P(HR>1), probability that the HR for the average residual
setup error direction toward the heart was greater than 1 after protocol change.

Interpretation of the results is different depending on the prior used. For the skeptical

prior, there is a high probability that an effect of residual setup error direction toward

the heart exists after protocol change, because we have a high probability (0.988) of

an HR>1. The probability that the HR is reduced after protocol change is lower, at

0.760. With the uninformative prior, there is a moderate probability both that an

HR>1 exists after protocol change and that the HR is reduced. With the enthusiastic

prior, there is a high probability that the HR is reduced after protocol change and a

lower probability (0.712) that an HR>1 exists.

So which prior and interpretation do we trust? That depends on our beliefs prior to

the analysis and can be subjective. Presenting how sensitive results are to the choice

of prior is therefore important so readers can fully understand how the prior affects

the results and how this in turn affects the study’s interpretation. For example, the

results in Table 6.1 show that even when using an enthusiastic prior that assumed

changing the IGRT protocol would eliminate the increased risk of death in patients

whose setup errors move the heart toward the high dose region, there was a reasonably

high probability that a residual effect remained. On the other hand, even when using

a skeptical prior that assumed there would be no change in the HR after the protocol
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change, there was a reasonably high probability that the HR was reduced. As such, we

can be confident that this finding (ie, the HR was decreased by the protocol change,

but a reduced effect still remained) is a real effect, whereas the frequentist analysis

does not allow us to make this inference and would be at risk of researchers reaching

the opposite conclusion if only looking at the P value.

Use of an uninformative prior lets the data alone drive the inference and gives results

similar to a frequentist analysis, but a Bayesian analysis allows one to directly calcu-

late the probabilities for potential hypotheses. Furthermore, Bayesian posteriors allow

us to calculate the probability of many different hypotheses (eg, that the HR is >1,

that the HR is >1.1, that the effect is reduced by 20%). If we wanted to do this in the

frequentist setting, we would need to separately assess different hypotheses and con-

sider if multiplicity corrections were required. Similarly, the ease with which Bayesian

analyses can accommodate prior information also means that it is straightforward to

collect more data after an analysis has taken place if results are inconclusive.

Unlike the somewhat rigid orthodoxy that has developed around the interpretation of

frequentist analyses (eg, P-value thresholds), Bayesian probabilities need to be placed

into context to aid subsequent decision-making. The probability of different (compet-

ing) hypotheses can be directly cited as evidence and used to inform clinical decisions

(in our example, if we consider that there is a strong probability that a residual setup

error effect remains, we might then want to reduce the action threshold further). For-

mal frameworks for decision-making based on Bayesian probabilities have also been

developed that are more akin to the hypothesis-testing approaches used in the frequen-

tist setting. Bayes factors, for example, assess the ratio of the likelihood of 1 hypothesis

over an alternative hypothesis given the observed data. The higher the Bayes factor,

the more likely that 1 hypothesis (in the numerator) is correct. Standardized scales

of this factor have been developed to decide which hypothesis is the most compelling.

A more detailed explanation of Bayes factors is given by both Goodman [271] and

Schonbrodt and Wagenmakers [272].
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6.6 Conclusions

Both the frequentist and Bayesian approaches are useful for data analysis as long as

they are interpreted correctly. The strength of the Bayesian approach is the incor-

poration of prior information and the ability to directly calculate the probability of

different hypotheses from the posterior distribution. It is more in line with our natural

mode of reasoning; if we are sure in our belief of something (eg, we have a strong prior

formed from evidence of a large effect from a phase 3 clinical trial), data will have to

be highly convincing to alter this belief, whereas if we are unsure either way (uninfor-

mative prior), inference is driven more by the data than by the prior, and our beliefs

are more easily overturned. In contrast, the frequentist approach is driven by the data

only, so there is no issue of subjectivity owing to the prior. Although on one hand, this

means one cannot manipulate priors to get a particular result in a frequentist analy-

sis, the findings can be manipulated in other ways, such as P-value fishing, and the

interpretation of the results is less intuitive and can easily lead to misinterpretation.

However you choose to analyze your data, it is of utmost importance to be transparent

in the methodology and to correctly interpret the results in a manner consistent with

the underlying statistical approach and any limitations in how the data were collected

(eg, in a prospective randomized trial or from a retrospective observational cohort).

Proper inference, and thus the clinical impact of one’s analysis, depends critically on

these principles.

6.7 Dos and don’ts

• Do define the data available and the clinical question and then select the most

appropriate statistical analysis.

• Do investigate the influence of your prior on the result when performing a

Bayesian analysis.

• Do ensure your interpretation of either a frequentist or a Bayesian analysis is

correct, with particular attention to P values, confidence intervals, and credible

intervals.
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• Do not assume a Bayesian analysis will solve the problem of insufficient or poor-

quality (ie, incorrectly recorded) data; the most important part of an analysis is

the quality of the data.
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Abstract

Purpose

Retrospective studies have identified a link between the average set-up error of lung

cancer patients treated with image-guided radiotherapy (IGRT) and survival. The

IGRT protocol was subsequently changed to reduce the action threshold. In this

study, we use a Bayesian approach to evaluate the clinical impact of this change to

practice using routine ’real-world’ patient data.

Methods and materials

Two cohorts of NSCLC patients treated with IGRT were compared: pre-protocol

change (N=780, 5 mm action threshold) and post-protocol change (N=411, 2 mm

action threshold). Survival models were fitted to each cohort and changes in the haz-

ard ratios (HR) associated with residual set-up errors was assessed. The influence of

using an uninformative and a skeptical prior in the model was investigated.

Results

Following the reduction of the action threshold, the HR for residual set-up error to-

wards the heart was reduced by up to 10%. Median patient survival increased for

patients with set-up errors towards the heart, and remained similar for patients with

set-up errors away from the heart. Depending on the prior used, a residual hazard

ratio may remain.

Conclusion

Our analysis found a reduced hazard of death and increased survival for patients with

residual set-up errors towards versus away from the heart post-protocol change. This

study demonstrates the value of a Bayesian approach in the assessment of techni-

cal changes in radiotherapy practice and supports the consideration of adopting this

approach in further prospective evaluations of changes to clinical practice.

7.1 Introduction

Radiotherapy plays a key role in the treatment of cancer. In particular, radiotherapy

is indicated as a treatment option in more than 60% of lung cancer patients during
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the course of their management [273]. Radiotherapy has a rich history of technological

innovation [230], with much of this transformation occurring through rapid succes-

sive changes to the techniques and technologies at each workflow stage. Randomized

controlled trials (RCTs) are frequently used to evaluate well defined changes in ra-

diotherapy such as large changes in dose and fractionation [274], or the addition of

new systemic treatments [275]. However, conventional RCTs are not well suited to

the evaluation of incremental technical changes [20, 276]. Not only may such changes

evolve further during trial recruitment [277, 278], but also there is often an implicit

assumption that advances will be associated with clinical benefit, making it difficult

to argue the equipoise needed for randomisation [17]. As a result, incremental changes

in technique are often adopted within radiotherapy departments without formal eval-

uation.

Real-world data can be defined as observational data that is collected electronically as

a part of patients’ routine care. It offers an opportunity to provide evidence in patient

populations well-known to be under-represented in conventional medical research. The

potential of such data has been recognized by the UK National Institute for Health

and Care Excellence (NICE) [65] and US Food and Drugs Administration (FDA) [40]

who have developed real-world evidence frameworks.

Previous work by Johnson-Hart et al. [268] found that the average residual set-up

error following Image Guided Radiotherapy (IGRT) position correction was related

to survival in cohorts of patients with lung cancer and esophageal cancer. Patients

who had an average residual set-up error moving the radiotherapy dose towards the

heart had worse survival than those with set-up errors moving the dose away from

the heart. The action threshold (the discrepancy allowed between planning position

and treatment day position) was subsequently reduced from 5 mm to 2 mm at The

Christie NHS Foundation Trust.

The aim of this paper is to use a Bayesian approach [77] with real-world data to

evaluate the clinical impact of this change in IGRT protocol and investigate the effect

of incorporating prior information into the analysis.
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7.2 Methods and materials

Two anonymized cohorts of NSCLC patients treated with each action threshold were

retrospectively collected: i) Pre-protocol change: 780 patients treated before November

2016 (action threshold 5 mm); and ii) Post-protocol change: 411 patients treated

between November 2016 and March 2020 (action threshold 2 mm). All data analysis

was performed following institutional board approval and was compliant with UK

research governance (ref. 17/NW/0060).

The data preparation steps for each cohort have been previously described in full by

Johnson-Hart et al. [268] and are summarized in Supplementary Materials. Age,

performance status, prescribed radiotherapy fractions and gross tumor volume (GTV)

were collected for each cohort with missing data imputed using a random forest method

(R library randomForestSRC v2.9.2). We investigated three clinical research ques-

tions:

1. Did the introduction of a reduced action threshold reduce the HR of death for

patients with average residual set-up errors towards versus away from the heart?

2. Does a residual HR of death remain for patients with average set-up error towards

versus away from the heart post-protocol change?

3. Was patient survival improved post-protocol change?

The first and second research questions were addressed by assessing how the HR of

the pre-existing survival differential between patients with average residual set-up

errors towards and away from the heart changed following the introduction of the new

IGRT protocol. The third research question evaluated changes in median survival by

considering patients who had average set-up errors towards and away from the heart

separately.

Johnson-Hart et al. found that the association of residual set-up error with survival

is not constant with time, as the Kaplan-Meier survival curves split and then come

back together [268]. The excess mortality associated with residual set-up errors is

hypothesized to result from radiation induced cardiac toxicity that manifests soon



222 CHAPTER 7. BAYESIAN METHODS TO EVALUATE IMPACT

after completion of radiotherapy in patients with lung cancer. Thereafter, cancer

deaths dominate mortality in both cohorts bringing the Kaplan-Meier curves back

together [268]. Rather than adding complexity to the analysis by modelling a time-

varying hazard ratio in this exemplar analysis, we selected a set of constant hazard

ratio multivariable Weibull survival models [279] after right censoring patients at 12,

18, 24 and 30 months. This parametric survival model can provide more power than

non-parametric methods as it assumes that an underlying distribution for survival can

be characterized by a small number of parameters (2 in the case of the Weibull model:

the shape and scale parameters), enabling a better fit to survival data than non– or

semi-parametric methods [280].

All survival models included the explanatory variables reported by Johnson-Hart et

al: age, performance status, prescribed radiotherapy fractions and logarithm of GTV

[268]. The first and second analyses also included the average residual set-up error

direction as a binary variable (towards or away from the heart). The HRs of death

for each factor were calculated from the model beta coefficients using the formula

HR=exp(-beta coefficient*shape). In the third analysis, median patient survival was

calculated using the formula median survival=scale*(ln(2))ˆ1/shape. The shape and

scale parameters are the Weibull parameters that describe the overall shape and fitting

of the survival curve [279, 281].

A brief introduction to Bayesian analysis is provided in Supplementary Materials. Two

priors were used during analysis, a skeptical prior (i.e. based on the belief that large

effects from an intervention are unlikely) and an uninformative prior (i.e. there is

no prior information available). This led to two models: a skeptical model, using a

skeptical prior calculated from the pre-protocol change cohort (i.e. incorporating the

increase in hazard of death associated with residual set-up errors towards the heart)

and an uninformative model, using an uninformative prior that let the post-protocol

change cohort drive the model fit. The uninformative prior was default in the R

package brms [269]; an improper flat prior over real numbers for the model variables,

and a gamma (0.01, 0.01) for the shape parameter. Posterior distributions were calcu-

lated using Markov Chain Monte Carlo (MCMC) sampling (4 chains, 10,000 iterations,

5000 warm up) with MCMC chain convergence checked graphically (Supplementary
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Figure 7.4). The HR and median survival distributions were plotted and the mean

and 95% credible intervals tabulated for each. We calculated the probability for vari-

ous hypotheses for each analysis: that the post-protocol change HR was less than the

pre-protocol change HR; that the post-protocol change HR remained greater than 1;

and that median survival had increased or decreased post-protocol change.

All statistical analyses were performed in R 4.0.0 [222] with package brms v2.13.0 [269,

282].

7.3 Results

The clinical variables for each cohort are listed in Table 7.1, demonstrating that pa-

tient, tumor and treatment characteristics are well balanced between cohorts.
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Table 7.1: Baseline characteristics.

Variable Pre-protocol
change cohort
(N=780)

Post-protocol
change cohort
(N=411)

Age in years, median (IQR) 71 (64-78) 72 (65-78)
Sex, n (%)

Male 421 (54.0) 229 (55.7)
Female 359 (46.0) 182 (44.3)

ECOG PS, n (%)
0 111 (14.2) 35 (8.5)
1 364 (46.7) 190 (46.2)
2 198 (25.4) 127 (30.9)
3 47 (6.0) 32 (7.8)
4 2 (0.3) 1 (0.2)
Missing 58 (7.4) 26 (6.3)

Stage, n (%)
I 18 (2.3) 22 (5.4)
II 113 (14.5) 68 (16.5)
III 520 (66.7) 235 (57.2)
IV 38 (4.9) 13 (3.2)
Missing 91 (11.7) 73 (17.8)

GTV in cm3, median (IQR) 45 (20-94) 48 (20-119)
Missing, n (%) 104 (13) 33 (8)

Dose and Fractionation, n (%)
60-66 Gy in 30-33 159 (20.4) 50 (12.2)
55 Gy in 20 621 (79.6) 361 (87.8)

Residual set-up error direction, n (%)
Towards 337 (43.2) 220 (53.5)
Away 443 (56.8) 191 (46.5)

Follow-up months, median (IQR) 99.3 (66.0, 118.2) 32.9 (29.0, 39.6)
Abbreviations: GTV, gross tumor volume; IQR, interquartile range.

Following the reduction in action threshold, the HR for residual set-up error towards

the heart reduced (Table 7.2 and Figure 7.1). There was a high probability that the

HR reduced by at least 5% for the skeptical model (Probability P>0.78), and 10% for

the uninformative model (P>0.9) (Table 7.3). The HR was higher for the skeptical

model than for the uninformative model. The HRs for the other variables included in

the models remained similar pre- and post-protocol change (Supplementary Table 7.4).
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Probabilities of a 15%, 20% and 25% reduction in HR are presented in Supplementary

Table 2. Figure 7.2 shows the evolution of the HR posterior distribution as patients

were sequentially added to the analysis, for both the uninformative and the skeptical

model. The mean HR of the posterior distribution shifted to the left (i.e. towards

HR of 1) as more patients were added to the models. The probability the HR had

reduced increased from 0.608 to 0.994 for the uninformative model, and from 0.541

to 0.915 for the skeptical model. The skeptical model’s HR posterior distribution

approached HR=1 more slowly than the uninformative model. Together, these show

that reducing the action threshold led to a reduced hazard of death for patients with

residual set-up errors towards the heart, and the conclusion was reached more quickly

for the uninformative model than for the skeptical model.

Table 7.2: HR for residual set-up error towards the heart for models with different cen-
sored follow-up times. Mean posterior HR is presented with 95% credible intervals.

Follow-up
months

Pre-protocol
change (N=780)

Post-protocol
change, uninforma-
tive prior (N=411)

Post-protocol
change, skeptical
prior (N=411)

Mean HR and 95% credible interval
12 1.58 (1.24, 2.00) 0.937 (0.659, 1.30) 1.31 (1.07, 1.59)
18 1.43 (1.16, 1.73) 0.908 (0.68, 1.19) 1.19 (1.01, 1.40)
24 1.34 (1.11, 1.60) 0.909 (0.702, 1.16) 1.14 (0.980, 1.31)
30 1.26 (1.05, 1.49) 0.903 (0.702, 1.14) 1.09 (0.950, 1.26)
Abbreviations: HR, hazard ratio.
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Figure 7.1: Posterior distributions for the HR of residual set-up error towards
the heart with 24 months censored follow-up. The blue distribution presents the
pre-protocol change data which creates the skeptical prior i.e. the HR in the data
pre-protocol change. The red distribution is the posterior of the HR post-protocol
change for the uninformative model, and the green distribution the posterior of the
HR post-protocol change for the skeptical model.
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Table 7.3: Bayesian probabilities calculated directly from the posterior distributions for the HR of residual set-up error towards the heart with
different censored follow-up times. P(HR_post < HR_pre) is the probability that the HR is reduced in the post-protocol change cohort com-
pared to the pre-protocol change cohort. P(5%|10% HR reduction) is the probability that the HR is reduced by 5% or 10% in the post-protocol
change cohort. P(HR_post > 1) is the probability that the HR in the post-protocol change cohort is greater than 1.

Uninformative prior Skeptical prior
Follow-up
months

P(HR_post
< HR_pre)

P(5% HR
reduction)

P(10% HR
reduction)

P(HR_post
> 1)

P(HR_post
< HR_pre)

P(5% HR
reduction)

P(10% HR
reduction)

P(HR_post
> 1)

12 0.994 0.988 0.977 0.325 0.886 0.809 0.704 0.996
18 0.995 0.991 0.978 0.229 0.911 0.832 0.711 0.981
24 0.994 0.986 0.966 0.209 0.915 0.828 0.685 0.954
30 0.986 0.970 0.934 0.186 0.892 0.786 0.615 0.891
Abbreviations: HR, hazard ratio.
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Figure 7.2: Evolving posterior distributions as more post-protocol data is added
to the models. P1 and P2 are the probabilities that the HR for residual set-up error
towards the heart is less in the post-protocol change data than the pre-protocol
change data for the uninformative and skeptical models respectively. The blue dis-
tribution presents the pre-protocol change data, which creates the skeptical prior,
the red distribution the posterior of the HR post-protocol change for the uninforma-
tive model, and the green distribution the posterior of the HR post-protocol change
for the skeptical model.

The probability that the post-protocol change HR remained greater than 1 (i.e. that

we still observe an effect) was moderately low (P<0.4) for the uninformative model,

and high (P>0.8) for the skeptical model. This suggests a residual HR may remain

following the reduction in action threshold, depending on choice of prior. The median

survival (with 24 months follow-up) for patients with residual set-up errors towards

the heart remained similar pre and post-protocol change for the skeptical model, from
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17.1 (15.2–19.3) months to 17.7 (16.0–19.5) months, but increased for the uninforma-

tive model to 21.8 (18.2–26.4) months. For patients with residual set-up errors away

from the heart, median survival decreased slightly from 20.8 (18.8–23.0) months to

19.6 (18.0–21.2) months (skeptical model) and 20.2 (17.0–24.3) months (uninforma-

tive model). Results for all follow-up times are presented in Supplementary Tables 7.6

and 7.7. Posterior distributions for median survival are presented in Figure 7.3. The

uninformative model suggests there is a high probability that patients with residual

set-up errors towards the heart have increased median survival post-protocol change

(P=0.987), likely by at least 1 month (P=0.959). The skeptical model suggests median

survival is moderately likely to have increased (P=0.678). For patients with residual

set-up errors away from the heart, the uninformative model suggests median survival is

moderately likely to have decreased (P=0.620), whereas the skeptical model suggests it

is likely to have decreased (P=0.812). These results suggest patient survival increased

post-protocol change for patients with residual set-up errors towards the heart, but

patient survival may have decreased for patients with residual set-up errors away from

the heart, depending on choice of prior.

Figure 7.3: Posterior distributions for the median survival of patients with residual
set-up errors towards the heart (left) and away from the heart (right) with 24
months censored follow-up. The blue distribution presents the skeptical prior, i.e.
the median survival in the data pre-protocol change. The red distribution is the
median survival posterior for the uninformative model, and the green distribution
the median survival posterior for the skeptical model.
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7.4 Discussion

Evaluating changes to clinical practice in radiotherapy is important to ensure techno-

logical advances lead to improved patient outcome, or more importantly, to equivalence

with no worsening of outcome. Learning from data routinely collected in radiotherapy

departments has the potential to allow us to monitor the impact of such changes as

part of standard practice.

In this study, we used a Bayesian approach to analyze the impact of a change in IGRT

protocol. We found that the difference between patient outcomes associated with

patients having average residual set-up errors towards and away from the heart during

a course of radiotherapy [268] was reduced when the action threshold was changed from

5 mm to 2 mm. We also found an increase in median survival post-protocol change

for patients with average residual set-up errors towards the heart and, more weakly,

a decrease in median survival in those patients with residual set-up errors away from

the heart. These findings are in keeping with the theory that the survival differential

results from cardiac toxicity caused by increased or decreased heart radiation dose

when moving it on average towards (a harmful effect) or away from (a protective

effect) the high dose treatment region [283].

The main limitation in reaching this conclusion is that it is drawn from a historically

controlled retrospective observational dataset in which the outcome is simply compared

before and after the intervention (the change in protocol). This experimental design is

at risk from secular confounding, and may overestimate the effect of the intervention

[284]. However, this approach is the closest fit to how radiotherapy is typically changed

in practice, and would thus be the most amenable to adoption with minimal impact

on current workflows. Furthermore, in the context of radiotherapy treatment we often

have a good understanding of the potential confounders to our analyses. For example,

Table 7.1 shows the distribution of confounding variables is very similar in the cohorts

treated with the two different protocols, and the multivariable analysis reported in

Supplementary Table 7.4 also shows there have been no major changes in the HR

associated with each. Together these data give us confidence that the circumstances

of the two patient groups are comparable and there is a good chance the effect we
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observe is due to the change in IGRT protocol. Brink et al. used a time-dependent Cox

model to analyse the effect of residual set-up errors on survival, finding the influence of

set-up errors does vary over time [285], as expected from the Kaplan-Meier in Johnson-

Hart et al.’s original study [268]. Instead of using a time varying hazard function we

analyzed the data with different follow-up periods, finding similarly that the effect of

residual set-up errors changes as patients are followed up for longer. We can see from

Tables 7.2 and 7.3 and Supplementary Tables 7.5 to 7.7 that although the hazard

ratios and probabilities raw values change, the interpretation when comparing the

values pre-protocol change and post-protocol change does not.

This study compared a model with an uninformative prior for the HR of residual

set-up error towards versus away from the heart, to a skeptical one incorporating the

knowledge that there was a previously known harmful effect of having residual set-up

errors towards the heart. The results highlight the influence using prior information

has on the results. Both models suggest (with different certainties) a reduction in

the difference in risk of death due to the protocol change, and differences in median

survival following the change, which allows us to be confident in reporting these result.

However, the models differ in their conclusion on whether a residual risk remains. The

use of a skeptical prior in an analysis is important to ensure results are not over-

interpreted and while using multiple priors for a Bayesian analysis is recommended, it

is not necessary to interpret each result with equal weight [286]. In this case we cannot

conclusively say whether a residual risk remains as the skeptical model incorporates

the original effect the 5 mm action threshold had on patient survival, but equally we

cannot rule it out. This result suggests further investigation of any residual risk is

warranted.

The skeptical and uninformative models gave high and moderate probabilities that

median survival decreased for patients with average residual set-up errors away from

the heart. While ideally both models would clearly be in agreement, there is actually

little difference between the point estimates for the uninformative and skeptical models

(19.6 vs 20.2 months). Instead, this difference in probability is driven by the tighter

distribution in the posterior when using the skeptical prior (Figure 7.3) that results

from the additional information provided by the prior. Dependence on choice of prior
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could be seen as a criticism of the Bayesian approach, but can also be viewed as a

means to incorporate uncertainty and difference in expert opinion into the analytical

process [287]. Meaningful priors can be generated for real world scenarios, such as we

describe, by using historical data, as was done in this study, previous clinical trial data,

or expert belief if no data is available. Incorporating historical data into analyses in

the form of a prior has been shown to improve study power by improving the precision

of the estimates [288, 289]. Indeed, Ryan et al. found that the use of informative

priors in the analysis of RCTs could lead to fewer patients being enrolled and earlier

completion of trials, due to increased study power for hypothesis testing [290]. This

can clearly be seen in Figure 7.3 where the post-protocol change HR distribution is

consistently tighter with the skeptical model than with the uninformative one.

We chose to analyze this data using a Bayesian approach rather a frequentist one due

to the ease of interpretability with Bayesian analyses [77]. Whilst frequentist analyses

are ubiquitous in medical sciences, so too is their misinterpretation [261, 262, 291].

Largely, this results from the underlying assumptions of the Null Hypothesis Signifi-

cance Testing approach, which require careful study to fully appreciate. In contrast,

by directly calculating parameter distributions Bayesian analyses allow multiple hy-

potheses to be tested while incorporating prior information from previous studies or

expert belief. An important point is that even when an uninformative prior is used,

and thus the results will be otherwise similar to those from a frequentist analysis, the

approach to asking questions of the posterior is still Bayesian, including the ability to

evaluate multiple hypotheses. Furthermore, in the context of evaluating changes to

radiotherapy practice with real world data, Bayesian methodology allows for continu-

ous updating of the posterior distribution as more data becomes available, as shown

in Figure 7.2.

To conclude, the data we present provides real-world evidence that reducing the IGRT

action threshold improved patients’ clinical outcomes. The use of Bayesian methodol-

ogy permitted us to test our results using both a skeptical and an uninformative prior,

allowing us to be confident in some of our conclusions (decreased hazard ratio between

patients with residual set-up errors towards and away from the heart, increased median

survival in patients with shifts towards the heart) and cautious in others (the presence
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of a residual hazard ratio with the 2 mm action threshold). The Bayesian approach

is well suited for the assessment of technical changes in radiotherapy practice, and

should be considered for the prospective evaluation of such changes.
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7.6 Supplementary materials

7.6.1 Data preparation steps

Briefly, the image registration translations required to match the bony structures on

the Cone Beam CT (CBCT) taken at the time of treatment to the planning CT scan

were collected for each treatment fraction from CBCT (Elekta XVI) database archives.

The action threshold was virtually applied to the recorded daily CBCT to CT image

registration offsets, with those with offsets greater than the action threshold set to

zero (assuming a perfect correction process). This yielded the residual set-up errors

on days where CBCT images were acquired. These data were imputed to non-imaging

days through nearest neighbor interpolation. The direction of residual errors relative

to the heart were calculated using the center of mass of the heart and PTV delineations

in the planning scan.

7.6.2 Bayesian analysis

In a Bayesian analysis, the data is fixed and parameters have probability distributions.

This is in contrast to a frequentist analysis where probabilistic statements are made

about the data (i.e. a P value tells us how surprising the data is, given the null

hypothesis) and not hypotheses. In a Bayesian analysis, probabilistic statements can

be made about hypotheses and parameters (i.e. how likely is one treatment to be
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superior to another?). Bayesian models can incorporate prior information, known

as the prior distribution, which gets updated when the model is introduced to the

collected data, using Bayes Rule, to give the posterior distribution. The posterior

probability distribution summarizes the current state of knowledge about a parameter,

and the mean or median value can be derived to get a point estimate. Credible intervals

can also be derived, which give a parameter range that has a particular probability

of including the true unknown parameter value i.e. 95% credible interval. This is

different to a frequentist confidence interval, which cannot be assigned a probability.

Probabilities of hypotheses can also be calculated from the posterior distribution, for

example, that one treatment is superior to another, or that survival is improved by at

least 3 months.
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7.6.3 Supplementary Figures

Figure 7.4: Example of chain convergence for the Bayesian survival model.

7.6.4 Supplementary Tables
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Table 7.4: HR for all variables in the Bayesian survival model with different censored follow-up times. Mean posterior HR is presented with
95% credible intervals.

Follow-up
months

Variable Pre-protocol
change HR
(N=780)

Post-protocol change,
uninformative prior
(N=411)

Post-protocol
change, skeptical
prior (N=411)

12 Residual set-up error towards heart 1.58 (1.24, 2.00) 0.937 (0.659, 1.30) 1.31 (1.07, 1.59)

PS 1.17 (0.994, 1.37) 1.01 (0.795, 1.27) 1.12 (0.981, 1.28)

Age 1.00 (0.989, 1.02) 1.01 (0.992, 1.03) 1.01 (0.994, 1.02)

Prescribed fractions 0.958 (0.930, 0.987) 0.942 (0.893, 0.990) 0.959 (0.935, 0.983)

Log(GTV) 1.54 (1.37, 1.73) 1.72 (1.46, 2.02) 1.58 (1.44, 1.73)

18 Residual set-up error towards heart 1.43 (1.16, 1.73) 0.908 (0.680, 1.19) 1.19 (1.01, 1.4)

PS 1.17 (1.02, 1.33) 1.10 (0.907, 1.33) 1.14 (1.02, 1.26)

Age 1.00 (0.992, 1.01) 1.01 (0.993, 1.03) 1.00 (0.996, 1.01)

Prescribed fractions 0.958 (0.935, 0.981) 0.960 (0.920, 0.997) 0.963 (0.944, 0.983)

Log(GTV) 1.62 (1.46, 1.78) 1.54 (1.35, 1.75) 1.57 (1.45, 1.69)

24 Residual set-up error towards heart 1.34 (1.11, 1.60) 0.909 (0.702, 1.16) 1.14 (0.98, 1.31)

PS 1.15 (1.02, 1.29) 1.18 (0.984, 1.39) 1.15 (1.04, 1.27)

Age 1.00 (0.995, 1.01) 1.01 (0.999, 1.03) 1.01 (1.00, 1.02)

Prescribed fractions 0.962 (0.941, 0.982) 0.97 (0.934, 1.00) 0.969 (0.951, 0.986)

Log(GTV) 1.57 (1.44, 1.72) 1.51 (1.33, 1.69) 1.53 (1.43, 1.64)

30 Residual set-up error towards heart 1.26 (1.05, 1.49) 0.903 (0.702, 1.14) 1.09 (0.950, 1.26)

PS 1.13 (1.01, 1.26) 1.16 (0.979, 1.36) 1.13 (1.03, 1.24)
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Table 7.4 continued from previous page

Follow-up
months

Variable Pre-protocol
change HR
(N=780)

Post-protocol change,
uninformative prior
(N=411)

Post-protocol
change, skeptical
prior (N=411)

Age 1.01 (0.998, 1.02) 1.02 (1.00, 1.03) 1.01 (1.00, 1.02)

Prescribed fractions 0.965 (0.945, 0.984) 0.974 (0.941, 1.01) 0.971 (0.955, 0.988)

Log(GTV) 1.53 (1.41, 1.66) 1.46 (1.30, 1.63) 1.50 (1.40, 1.60)

Abbreviations: HR, hazard ratio; Log(GTV), logarithm of gross tumor volume.
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Table 7.5: Probabilities calculated directly from the posterior distributions for the HR of residual set-up error towards the heart with different
censored follow-up times.

Uninformative prior Skeptical prior
Follow-up
months

P(15% HR
reduction)

P(20% HR
reduction)

P(25% HR
reduction)

P(15% HR
reduction)

P(20% HR
reduction)

P(25% HR
reduction)

12 0.960 0.926 0.876 0.571 0.414 0.266
18 0.955 0.908 0.834 0.551 0.369 0.205
24 0.927 0.855 0.745 0.493 0.299 0.141
30 0.874 0.772 0.628 0.412 0.225 0.090
Abbreviations: HR, hazard ratio.
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Table 7.6: Median survival pre- and post-protocol change for patients with residual set-up
errors towards the heart.

Follow-up
months

Pre-protocol
change

Post-protocol
change, skeptical
prior

Post-protocol
change, uninfor-
mative prior

Mean HR and 95% credible interval
12 15.9 (13.6-18.9) 16.0 (14.2-18.2) 21.6 (16.4-29.9)
18 16.3 (14.4-18.6) 16.8 (15.2-18.6) 21.5 (17.5-26.8)
24 17.1 (15.2-19.3) 17.7 (16.0-19.5) 21.8 (18.2-26.4)
30 17.9 (15.8-20.2) 18.2 (16.5-20.1) 21.6 (18.3-25.7)
Abbreviations: HR, hazard ratio.

Table 7.7: Median survival pre- and post-protocol change for patients with residual set-up
errors away from the heart.

Follow-up
months

Pre-protocol
change

Post-protocol
change, skeptical
prior

Post-protocol
change, uninfor-
mative prior

Mean HR and 95% credible interval
12 22.8 (18.6-28.7) 20.4 (17.7-23.8) 19.8 (15.1-27.4)
18 20.8 (18.5-23.6) 19.4 (17.7-21.3) 19.7 (16.2-24.5)
24 20.8 (18.8-23.0) 19.6 (18.0-21.2) 20.2 (17.0-24.3)
30 21.1 (19.3-23.2) 19.8 (18.3-21.4) 20.1 (17.1-23.9)
Abbreviations: HR, hazard ratio.



Chapter 8

Discussion

The aim of this thesis was to investigate the potential of real-world clinical and imag-

ing data to gain clinical insight from patients with lung cancer. Real-world data

derived from EHRs can provide large, representative and inclusive datasets which can

be used to investigate important clinical questions and generate real-world evidence.

In particular, patients with lung cancer who are old, frail and comorbid tend to be

under-represented in RCTs, and could, therefore, benefit from the evidence generated

from real-world data. Furthermore, in radiotherapy, changes to workflows are often

not assessed in RCTs due to impracticality; they are expensive, difficult to implement

and take a long time. There is also an implicit assumption new technological advances

are superior to previous, and this can lead to evidence-gaps when the clinical impact

of the implemented changes is not assessed. Methods of evidence generation are re-

quired to ensure such changes are beneficial, or at the least not detrimental, to patient

outcomes. Ensuring decisions made in oncology are backed by high quality evidence

is key to improving outcomes for all patients. The ultimate goal would be to prospec-

tively monitor changes to clinical practice in a LHS environment using real-world data

to generate high quality, real-world evidence. An essential part of the LHS concept

is generating clinical insight through retrospective analyses. This thesis included nu-

merous individual studies of retrospective analyses of real-world clinical and imaging

data, which together addressed the following aims:

1. To investigate the potential of routine, real-world radiomics imaging biomarkers
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to generate clinical insight and improve patient outcomes through supported

decision making.

2. To develop approaches for using real-world data to assess whether changes to

clinical practice affect patient outcomes.

The first aim was addressed in Chapters 2 and 3. Chapter 2 systematically reviewed

the radiomics literature and found potential methodological limitations along the ra-

diomics workflow that could be hindering clinical translation of radiomics biomarkers.

The clinical radiomics literature in lung cancer was assessed, finding that all studies

suffered from significant technical limitations, and that no single radiomics biomarker

or methodological approach was used widely. Therefore, substantial barriers to clini-

cal translation of radiomics biomarkers remain and further methodological studies are

required to overcome these barriers.

Chapter 3 investigated how the platform used to extract radiomics features from real-

world imaging data affected feature reliability and ability to predict survival. This

work addressed a gap in the literature identified in Chapter 2. Choice of feature

extraction platform, IBSI compliance, parameter settings and platform version were

all found to affect feature reliability. This work led to the recommendations that

radiomics studies use the latest version of an IBSI compliant software with harmonised

parameter settings, and to publish parameter settings and software version to ensure

reproducibility of the resulting radiomics biomarker, a key requirement for clinical

translation.

The second aim was addressed in Chapters 4 to 7, which all investigated changes to

clinical practice. Chapter 4 investigated the introduction of IMRT at The Christie

NHS Foundation Trust by comparing 3 cohorts of patients treated in different time

periods: pre-IMRT, some availability IMRT and full access to IMRT. The study found

that the proportion of patients treated with curative-intent increased over the 3 time

periods, and a survival benefit was found for patients treated in the latest time period

with full access to IMRT compared to patients treated pre-IMRT, despite treating

larger tumours and patients with poorer performance status.
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Chapter 5 found that patients who had a change to their radiotherapy or chemotherapy

treatments due to the COVID-19 pandemic did not have significantly worse overall

survival or progression-free survival compared to patients whose treatments were not

changed. Patients who had a change to their radiotherapy treatment had increased

odds of ≥ grade 3 acute toxicity. This study produced real-world evidence that the

recommendations put in place to reduce hospital attendances during the pandemic did

not negatively affect outcomes.

Chapters 6 and 7 addressed the second aim by investigating whether Bayesian method-

ology would be suited to assessing changes to clinical practice. Chapter 6 presented

the differences between Bayesian and frequentist statistics. Data were simulated to

investigate the effect of a protocol change reducing the action threshold (the discrep-

ancy allowed between planning position and treatment day position) in IGRT from

5 mm to 2 mm, using data from previous work that found that patients who had

residual-set up errors pushing the heart towards the radiotherapy high dose region

had worse survival compared to patients who had residual-set up errors pushing the

heart away from the high dose region. The simulated data were analysed using both

frequentist and Bayesian methods, demonstrating that Bayesian methods can lead to

more informative and intuitive results. It also demonstrated how results are influenced

by the choice of prior in a Bayesian analysis.

Chapter 7 then used Bayesian methodology to investigate the effect of a real-world

dataset that the simulated dataset from Chapter 6 was based on. Models incorporating

a skeptical prior (i.e. the model incorporated the known increased hazard of death

for patients with residual-set up errors towards the heart pre-protocol change) and an

uninformative prior (i.e. no prior information influenced the model) were compared.

A reduced hazard of death was found for patients who had residual set-up errors

that moved the heart towards the radiotherapy high dose region post-protocol change,

for both the skeptical and the uninformative model. Depending on the choice of

prior, a residual hazard of death may remain post-protocol change. There is strong

real-world evidence where results agree with different priors, and weaker real-world

evidence where results disagree depending on choice of prior. Overall, the results from

Chapters 6 and 7 suggest that Bayesian methods would be well suited to evaluating the
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impact of changes to practice in a LHS, as the data pre-change could be incorporated

into the analysis and the results from different priors compared to decide how confident

one is in the results.

8.1 Novelty and comparison to recent studies

Despite huge research interest in radiomics, clinical translation of radiomics biomark-

ers has been limited [292]. This is likely due to a lack of standardised methodology

across radiomics studies, leading to irreproducible results [72]. The results from Chap-

ters 2 and 3 aim to benchmark the methodology of radiomics studies and suggest how

shortcomings may be improved. Another review article also evaluated the quality of

radiomics studies in oncology according to RQS, a score that summarises the quality

of a radiomics study, and TRIPOD, a statement provided to aid in transparent report-

ing of prediction models, finding the quality and the reporting of the included studies

were poor [293], in agreement with the results from Chapter 2. The work in Chap-

ter 2, however, goes beyond this by summarising the methodological limitations with

radiomics and providing solutions to common issues along the radiomics workflow.

It is also interesting to note that there is a difference in the reporting of results, for

example both AUC (area under the curve) and CI (concordance index) are reported

in Table 2.1, highlighting that reporting of results is not standardised. A roadmap for

the clinical translation of radiomics biomarkers into clinically useful tools was recently

published by a group of radiologists, physicists, and statisticians [292], providing 16

criteria to achieve this aim. The criteria include defining the target population for

which the radiomics test will be useful, standardising imaging protocols, ensuring re-

producibility of the test, as well as ensuring there is sufficient patient benefit resulting

from acting on the results of the radiomic test. These criteria are reassuringly similar

to the conclusions of the results from Chapters 2 and 3, and the work from Chapter 3

was referenced.

Various studies have investigated methodological issues with radiomics, which were

summarised in Chapter 2. The work in Chapter 3 was the first to investigate the

impact of IBSI compliance (an initiative set up to standardise feature extraction) and

platform version on feature reliability in lung cancer. Mistakes were found in the code
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of LIFEx and CERR, 2 widely used platforms in the radiomics community, and relia-

bility was improved once the mistakes were corrected. Differences in feature reliability

between platforms had previously been investigated in other cancer sites and imaging

modalities, for example Foy et al. compared features extracted from Mammograms

and H&N CT scans across two in-house platforms, MaZda v4.6 and IBEX, finding less

than excellent reliability for many features, particularly texture features [211]. De-

fault settings were initially used, and then texture feature settings were harmonised,

as much as possible, and reliability increased, but not for all features. The study did

not include IBSI-compliant platforms, which may have increased reliability further af-

ter harmonising parameter settings. Bogowicz et al. compared two in-house developed

platforms and extracted features from H&N PET scans, finding 88% of features were

not reproducible between platforms [197]. This study implemented a fixed bin size for

image intensity discretisation, however did not document whether other parameters

were harmonised, such as lower and upper bounds for histogram and texture features

which can differ between platforms, as was found in Chapter 3 [73]. Harmonising

all parameter settings may have improved feature reproducibility between platforms.

Liang et al. compared the IBSI compliant platform PyRadiomics v2.1.2 with the non-

IBSI compliant Moddicom v0.51 across CT and MRI images, finding 76.1% of features

were highly correlated from the CT extracted features, but only 28.6% of the MRI ex-

tracted features were highly correlated [212]. The study also extracted MRI features

using CERR, an IBSI-compliant platform, and found shape and intensity features to

be reproducible between CERR and PyRadiomics, but not texture. This is in contrast

to the study in Chapter 3, which found CERR and PyRadiomics to have excellent re-

liability for all features; however, the version of CERR that was used in the analysis

was not documented, so it is likely an older and different version of CERR was used.

It is also unclear whether parameter settings were default or harmonised; if default,

then this may explain the difference in texture features. These studies highlight the

importance of the IBSI to standardise feature extraction platforms, and suggest the

issues of reliability found in Chapter 3 for SCLC planning CTs, NSCLC diagnostic CTs

and H&N planning CTs are also applicable to other cancer sites and imaging modali-

ties. Chapter 3 is a particularly important contribution to the radiomics community

as it highlights how important using the latest version of a publicly available software
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is, as well as harmonising parameters when comparing results from different software.

Furthermore, the comparison of IBSI compliant platforms revealed not all features

had excellent reliability, so it is important to test platforms to ensure IBSI-compliance

rather than assuming it to be true.

A recently published paper compared features extracted from three IBSI platforms

across CT and MRI scans and found some features to have poor reliability, particu-

larly when extracted from perfusion MRI-based maps [294]. However, the study did

not harmonise parameter settings which may have led to improved reliability as found

in Chapter 3 [73]. LIFEx was one of the three platforms that were compared, and a

discretisation error was found in LIFEx v7.0 when compared to v6.65. These versions

of LIFEx are updates to the ones compared in Chapter 3, suggesting that even us-

ing the latest version of a platform may not be reliable. Platforms should therefore

be checked before use to ensure IBSI compliance. A highly cited ’how-to’ guide for

radiomics analyses recommends using an IBSI-compliant feature extraction platform

[295], concurring with the results in Chapter 3. However, this guide does not mention

the importance of using and testing the latest version of the platform, which is also

important when considering some versions may have mistakes in the feature calcula-

tion code [73, 294]. Ensuring software are actually IBSI-compliant when they claim to

be is important, as studies could become obsolete with software updates if the features

calculated were different. It can be difficult to know this without explicitly testing the

software against another before conducting the study.

Chapter 4 provided real-world evidence that outcomes had improved since the intro-

duction of IMRT, and more patients were being treated with curative-intent. While

this was not a causal analysis, we are confident that IMRT at least contributed to this

increase in patients being treated with curative intent and improved survival, due to

the finding in Chapter 4 that patients treated when there was full access to IMRT had

poorer performance status and larger tumours than patients treated in previous time

periods. This evidence is important, as a lung cancer national audit found that the

majority of stage III NSCLC patients were receiving palliative treatments, even those

with a PS of 0/1 [231]. A secondary analysis of a RCT compared patients treated with

IMRT to 3D conformal radiotherapy, finding survival to be similar between the groups
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[233]. Patients treated with IMRT had larger planning target volumes [233], which is

different to our findings that PTV decreased in the latest time period with full access

to IMRT. We did find that gross tumour volume increased in the latest time period,

so the discrepancy may be due to differences in PTV margins. The IMRT group had

lower rates of ≥ grade 3 pneumonitis and received lower cardiac doses, and the the

volume of the heart receiving 40 Gy was associated with worse survival [233]. Given

the results from Chapter 7 and the wider literature suggesting increased radiation

dose to the heart may lead to worse survival [242, 296, 297], IMRT could help improve

survival through decreased cardiac toxicity.

The study in Chapter 5 is the first, to our knowledge, to look at differential outcomes

for patients who did and did not have their treatment changed due to the COVID-

19 pandemic. The findings that patients who had a change to their radiotherapy or

chemotherapy treatment did not have worse outcomes will be useful in the context

of another pandemic or emergency situation requiring a reduction in hospital visits.

The National Lung Cancer Audit found 1-year survival decreased from 2019 to 2020

[258], so the results from Chapter 5 are encouraging, although our study only included

patients treated with curative-intent. Our results also suggest outcomes are compa-

rable between conventional and hypofractionated radiotherapy, as patients who had a

change to their radiotherapy treatment received a higher dose per fraction compared

to patients who did not have a change, which is in line with published guidelines rec-

ommending hypofractionation during the COVID-19 pandemic [250]. This result is

in contrast with a study by Brada et al., who performed a retrospective analysis of

169,863 patients and found that patients with stage I-III NSCLC who received moder-

ately hypofractionated radiotherapy of 55 Gy in 20 fractions had worse survival than

patients who received conventional radiotherapy of 60-66 Gy in 30-33 fractions (25

months vs 28 months, p=0.02) [253]. This study, however, suffers from selection bias

as it does not differentiate between patients who received concurrent and sequential

chemotherapy, and patients in the UK often receive 55 Gy in 20 fractions if they are

not fit enough for chemotherapy, or following induction chemotherapy. Therefore, the

survival difference could be due to patients being more unwell in the hypofractionated

arm rather than due to hypofractionation itself. The study did adjust for potential
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confounders

High quality clinical evidence that hypofractionated radiotherapy is equivalent, or su-

perior, to conventional radiotherapy in locally advanced lung cancer is lacking [298].

A randomised phase III trial investigated whether 60 Gy in 15 fractions over 3 weeks

(hypofractionated arm) was superior to 60 Gy in 30 fractions over 6 weeks (conven-

tional arm) for patients with stage II-III NSCLC not fit for concurrent chemotherapy,

however the trial was closed early when an interim analysis failed to show a survival

benefit [251]. The study was not powered to show equivalence; however, no significant

difference in 1-year survival (37.7% in the hypofractionated arm vs 44.6% in the con-

ventional arm), local and distant relapse, and ≥ grade 3 toxicity was found, although

there was a higher rate of grade 2 toxicity in the hypofractionated group. In contrast,

our study in Chapter 5 found increased odds of ≥ grade 3 toxicity for patients who

had a change to their radiotherapy, however we did not compare specific radiotherapy

regimens.

The COVID-19 pandemic highlighted the importance of real-world data and gener-

ating rapid, high-quality evidence to inform clinical practice. A LHS could lead to

accelerated identification of effective treatments, as well as allow continuous monitor-

ing and improvement of treatments using routinely collected data [299]. A team at

Stanford Hospital developed a LHS environment during the COVID-19 pandemic to

generate evidence that would inform guidelines to manage a predicted surge in patients

infected with COVID-19 [300]. In 2 weeks, 4 clinical questions were answered using

EHR data which influenced hospital guidelines. For example, an analysis found that

patients who were discharged with home oxygen had similar readmission rates to those

who no longer required oxygen, allowing quicker discharge of patients still on oxygen

[300]. Had the infrastructure been in place, the work in Chapter 5 could have been

evaluated in a LHS environment across multiple hospitals, although this would require

data sharing agreements and therefore added complexity. Whilst LHS are often talked

about in the literature, their use in the real world is limited [70].

While the COVID-19 pandemic was a specific situation where changes to practice

occurred and rapid answers to clinical questions were required, radiotherapy is also
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a field where changes to practice often occur without formal evaluation. Chapters 6

and 7 demonstrated how Bayesian methodology could be used to assess the impact

of changes to clinical practice in radiotherapy, using the example case of a change

in IGRT protocol. Chapter 7 provided real-world evidence that a change in IGRT

protocol led to a reduced hazard of death for patients who had residual set-up errors

moving the radiotherapy dose towards the heart. Work by McWilliam et al. found that

dose to the base of the heart was significantly associated with worse patient survival

[296, 297], suggesting the reduced action threshold investigated in Chapter 7 may have

reduced heart toxicity and therefore risk of death.

The work in Chapter 6 used a simulated dataset based on the data used in Chap-

ter 7. To simulate the datasets, a patient distribution was first created using different

explanatory variables (age, performance status, stage and GTV). Dose to GTV, dose

to heart and shift to heart were added, and hazard ratios assigned to all parameters

based on the literature. A baseline hazard was simulated using a weibull model with

multivariable hazard ratios. Uniform patient accrual was assumed and patients were

censored according to the accrual and follow-up period specified. The action threshold

could be modified (i.e. to create the 5mm and 2mm datasets), and the hazard ratio

of the residual set-up error per mm was included which was derived from the original

study by Johnson-Hart et al. [268]. This allowed two datasets to be simulated, one

with a 2mm action threshold and one with a 5mm action threshold, both simulating

the effect of having a residual-set up error pushing the dose towards versus away from

the heart.

The Bayesian analysis of the change in IGRT protocol presented in Chapter 7 used

a before/after design to assess the protocol change. Bayesian designs have previously

been adopted in the field of radiotherapy to compare treatments using observational

data. A study by He et al. used Bayesian statistics to compare patients with oe-

sophageal cancer who received either 3DCRT or IMRT, finding the group treated with

IMRT had lower risks of pericardial effusion, pleural effusion and death [301]. The

authors calculated probabilities of harmful effects, deciding that probabilities ≥ 0.95

or ≤ 0.05 were significant. This is a frequentist way of thinking, particularly the use of

the arbitrary cut-off value 0.05. The study also did not specify what prior distributions
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were used. As discussed and demonstrated in Chapters 6 and 7, incorporating prior

information into analyses can improve precision, as well as allow sensitivity analyses

to be performed to discover how reliable the results are. Ensuring methods and sta-

tistical analyses are well documented and reported is vital to allow critical appraisal

and comparison of studies, as highlighted in the radiomics review in Chapter 2.

8.2 Limitations and future work

This thesis has demonstrated the potential of using real-world imaging and clinical data

to generate clinical insight and real-world evidence. However, there are limitations to

the included studies and plenty of opportunities for future work.

The work in Chapters 2 and 3 aim to improve the quality of future radiomics studies.

Future radiomics work should be methodological in nature, aiming to ensure results are

reproducible and repeatable across different imaging machines, protocols and users.

Radiomics may be moving towards a fully machine-learning based approach in the

future, such as using deep-learning methods to extract and create features, and perform

analyses [292]. Chapter 2 did not include deep-learning studies; however, the use of

artificial intelligence to learn from imaging and clinical data is of increasing interest

and may help to solve standardisation issues by developing robust imaging features

and complex correction algorithms. Further research will be required to ensure results

from such models are interpretable, and that models can be tested and re-calibrated

as required as time goes on. Indeed, the radiomics quality score has been updated

since the work in Chapter 2 to the RQS 2.0, which now includes a specific score for

deep learning radiomics studies [302]. Additionally, the TRIPOD statement, initially

developed to aid in improving reporting and critical appraisal of prediction/prognostic

models, is in the process of being extended for machine learning models with TRIPOD-

AI [303]. Most of the studies included in Chapter 2 were done on pre-treatment or

planning scans; however, there is the potential to use follow-up scans, for example

to use radiomics to replace repeat tissue biopsies or compliment liquid biopsies. It

may be more useful to look at endpoints that come from biopsies, such as mutational

status, than typical endpoints investigated such as overall survival, which some studies

did look at in Chapter 2. We found no feature class to be more prominent amongst
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particular endpoints; however we did not look into this in detail. It would be interesting

to look at whether shape or texture features are generally favoured for particular

outcomes.

A key challenge of real-world data is that it is collected during the course of clinical

care and is not intended to be used in analyses. This means the datasets used in

real-world analyses are not always of high quality due to poor recording, missing data

and variations in terminology for example [304, 305]. The work in Chapter 4 included

data collected from as early as 2005 which predated EHRs at The Christie NHS Foun-

dation Trust; therefore, potentially important confounding variables, such as systemic

therapies or radiotherapy technique, were not available. Furthermore, GTV and PTV

data were not complete due to older radiotherapy planning data being archived and

difficult to retrieve. Had the radiotherapy technique used been known for the work in

Chapter 4, a quasi-experimental comparative analysis of patients treated with IMRT

versus 3D conformal RT could have been performed; for example, in a difference-in-

differences analysis which would have compared the difference in outcomes over time

between patients treated with IMRT and 3D conformal radiotherapy. Moreover, ide-

ally we would have looked at all patients with lung cancer to ensure we had the optimal

denominator when looking at the proportion of patients treated with curative intent,

rather than just those treated with radiotherapy. However, we only had data from

patients who were referred for radiotherapy. Datasets that include patients within

greater Manchester diagnosed with cancer could mitigate this issue. It is also impor-

tant to note that the number of patients treated with palliative radiotherapy could

have decreased due to improved systemic anti-cancer therapies; however, we did not

have data on chemotherapy or immunotherapy to investigate this. In Chapter 5, the

finding that patients had increased grade 3 toxicity could be confounded by undiag-

nosed COVID-19 infection, since the results were driven by pulmonary toxicity. Since

COVID-19 testing was sporadic during the first wave of the pandemic, we do not have

the data to be able to investigate this.

Structured toxicity data have been collected at The Christie NHS Foundation Trust

since 2020 in lung cancer, however prior to this it was difficult and time consuming
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to derive toxicity data from EHRs. Unstructured notes may contain toxicity informa-

tion; however, it is often not graded (for example according to Common Terminology

Criteria for Adverse Events (CTCAE), it is time consuming to go through patient’s

notes to find these data and it is not guaranteed to be recorded for all patients. Had

structured toxicity data been collected for the patients in the IMRT analysis in Chap-

ter 4, it would have been interesting to look at whether patients who received IMRT

had reduced toxicity compared to 3D conformal radiotherapy, as the modulation of

the beam intensities helps to avoid nearby organs at risk and therefore reduces nor-

mal tissue toxicity. It would have also been interesting to look at the impact of the

IGRT protocol change, evaluated in Chapter 7, on cardiac toxicity as well as survival,

had these data been collected. Future work could investigate these questions when

high quality data on toxicity outcomes become available, for example from electronic

patient-reported outcome measures (ePROMS) which have recently been implemented

at The Christie NHS Foundation Trust [57].

Further data quality issues associated with real-world data include missing data. A

large proportion of data were missing in the IMRT analysis in Chapter 4. The multi-

variable analysis only included patients who had complete data; however, this reduced

the power of the analysis due to reducing the sample size. A larger proportion of miss-

ing data occurred in the earliest time period, as this pre-dated EHRs at The Christie

NHS Foundation Trust. Within each time period, however, data were assumed to be

missing at random, as data entry relied on the treating clinician and not on the pa-

tient’s prognosis. Therefore, it is unlikely that the worse survival seen in the earliest

time period (pre IMRT) compared to the latest time period (full access to IMRT) is

biased due to missing data. A key advantage of the COVID-19 study in Chapter 5 was

that the data had been collected prospectively, meaning there was very little missing

data for the clinical variables. Unfortunately, we cannot know how many patients are

missing from that analysis as it was up to the individual centres to fill out the forms

for each patient referred for curative-intent radiotherapy. Prospective data collection

could increase the quality of real-world datasets, but at the cost of increased time and

effort on behalf of healthcare professionals inputting the data. It would also require

educating clinicians who input data on the importance of ensuring the inputted data
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are accurate. Research is ongoing at The Christie NHS Foundation Trust to quantify

the quality of data in EHRs, which could help to appraise results of studies that use

the data. Furthermore, a large amount of clinical data are held in an unstructured

format, so future work around developing computational tools to convert the unstruc-

tured data into easily useable formats is key to increasing the amount and type of data

available.

RCTs are the gold standard of evidence in medicine, and their design allows causal

relationships to be established. It is much more difficult to establish a causal rela-

tionship in an observational, real-world study; however, statistical techniques can help

to infer causality. It is important to remember, however, that correlations are not

necessarily causal. Adjusting for confounding variables, as done in Chapters 4 to 7, is

important to ensure results are not biased and helps towards inferring causality [306].

Cox proportional hazard models were fitted throughout this thesis, and this model

assumes proportional hazards. This was checked using Schoenfeld residuals. A frame-

work for inferring causality from observational data in the absence of a RCT has been

developed by Hernan et al., called the target trial [307]. The target trial framework

works to emulate a RCT and derive effect estimates from observational data that are

the same, or very similar, to those that would have been derived from a RCT. Such

a framework could be used to investigate comparative studies. In order to emulate

randomisation, however, confounding variables must be accounted for. If the data

required is not available, then a successful target trial is not possible.

It is vital to have clinical engagement in real-world evidence studies to ensure all con-

founding variables are taken into account, as much as possible depending on the data

available, as well as helping to interpret results soundly. In Chapters 4 to 7, confound-

ing factors were carefully identified through discussions with treating clinicians and

accounted for where possible. In Chapter 4, we could not conclude a causal relation-

ship between the survival benefit seen in the time period with full access to IMRT, as

other changes to clinical practice had occurred during the time span of the study which

were not accounted for due to a lack of available data. On the other hand, we can

be more confident that the IGRT protocol change in Chapter 7 did lead to a reduced

hazard of death for patients with residual-set up errors towards the heart because of
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the adjustment for key confounding variables, the balance of variables between cohorts

and the fact the posterior hazard ratios for the clinical variables included in the models

did not change significantly between protocols. To increase confidence in the results

of observational studies in future work, casual graphs, such as directed acyclic graphs,

could be used to determine casual and non-casual pathways between variables. This

can help to determine which variables need to be accounted for.

Another limitation of working with retrospective, real-world data can be the sample

size. Real-world datasets can be large, such as the IMRT work in Chapter 4 which

included 12,499 patients; however, depending on the data collected they can also be

small. It can, therefore, be difficult to identify small signals from the data due to

insufficient statistical power. In Chapter 5, the amount of data collected could not be

increased due to the unique time period they were collected in: the first wave of the

COVID-19 pandemic. The association between omitting chemotherapy and survival

and distant relapse was not significant, but the confidence intervals were close to 1,

suggesting there may be a small effect which could not be detected with the sample

size in the study. Of course, we cannot conclusively infer this, as there may well be no

significant impact; however, had we had more data this could have been investigated. A

Bayesian analysis would have allowed incorporation of prior information, so we could

have included the known detrimental effect omitting chemotherapy has for patients

with lung cancer [255], as well as allow a decision to be made that more data are

required to reach a conclusion without penalty. Future work could attempt to find

larger retrospective datasets during that same period; however, it is unlikely that data

will have been collected on treatment changes made due to COVID-19. Sample size

was also an issue in the Bayesian analysis of the IGRT protocol change in Chapter 7,

as some results differed depending on the choice of prior used, and more data would be

required to make a solid conclusion that both priors agreed with. Unfortunately, more

data could not be collected for that study either, as all patients with lung cancer treated

with the 2 mm IGRT protocol at The Christie NHS Foundation Trust were included.

Shortly after the implementation of the 2 mm action threshold, the action threshold

was eliminated such that all patient set-up errors were corrected. Future work could

involve collecting data from other centres who also implemented this protocol change
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and repeat the analysis.

The Bayesian methodology used in Chapters 6 and 7 highlights how the choice of prior

affects results. In particular, Chapter 6 shows how the uninformative prior does not

give exactly the same results as the frequentist analysis. If a prior is truly uninforma-

tive, these should be identical. It is important to note that even uninformative priors

contain some information, so are not completely uninformative. It can, therefore, be

difficult to pick an appropriate prior, both informative or uninformative. Priors are

subjective, and frequentist methods may therefore be preferred by some as they allow

only the data to drive the inference. While testing multiple priors can help ensure

validity of results, it could also lead to exploitation if the investigator only chooses to

present results with priors that make their results look better. It is therefore important

to check results against an uninformative prior, and have solid reasoning for picking

a particular prior. Deciding on the prior in an analysis plan prior to performing the

analysis would be best practice.

Bayesian methods could now be applied to other retrospective changes to clinical

practice, across different cancer sites. It would be interesting to also investigate dif-

ferent endpoints, if the data are available, for example treatment-related toxicity or

ePROMS. Implementing a causal framework into the analysis would also be of interest

to improve the quality of the resulting real-world evidence, for example by emulating

a target trial [307]. The ultimate goal would be to design high quality, real-world

evidence studies to prospectively monitor changes to practice in a LHS environment.

Such methods could be resource-intensive, due to data quality checks and updating

results in real-time using a Bayesian approach. One such study is the RAPID-RT

project [308], which aims to prospectively use rapid learning in the clinic to introduce

a heart dose-limit for lung cancer radiotherapy and optimise the limit via learning

cycles to give the best clinical outcome. The study also aims to investigate the costs

associated with such a LHS environment, and how much resource is required to expand

it to other centres. It is an exciting opportunity to demonstrate how real-world data

can be used within a LHS to generate real-world evidence to compliment RCTs.
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8.3 Impact

The radiomics review presented in Chapter 2 has been cited 57 times (Scopus, 22/06/2023)

since its publication in 2020 [72], suggesting the radiomics community is becoming

aware of the limitations in the literature and taking steps to improve future stud-

ies.

The study presented in Chapter 3 discovered errors in two of the four radiomic fea-

ture extraction platforms that were compared [73]. An error in CERR was found

when calculating texture features; the minimum and maximum value of the defined

ROI was meant to be used but instead the platform used the minimum and maxi-

mum of the entire image. An error in LIFEx was found when calculating sphericity,

however the platform is closed-source and so the specific issue could not be iden-

tified. The developers of CERR fixed the error as soon as they were made aware

(https://github.com/cerr/CERR/commit/50530f7). LIFEx took 6 months to fix the

error, during which the paper was published. An ESTRO poster presentation was

adapted to include the updated and corrected version of the LIFEx code, LIFEx version

6.0, demonstrating excellent reliability with other software for all features (Figure 8.1)

[309]. Over 400 papers have been published using LIFEx software; unfortunately, most

papers do not specify the software version used in their analysis. This work, therefore,

led to effective improvement in two tools used widely by the radiomics community.

Furthermore, the paper covering work in Chapter 3 has been cited 85 times (Scopus,

22/06/2023) since publication in 2020, suggesting the radiomics community is tak-

ing steps to use IBSI compliant platforms, and in particular the corrected version of

LIFEx [73]. This work has also been cited in two key roadmap papers written by

leading experts in translational imaging science [292, 310].

https://github.com/cerr/CERR/commit/50530f7
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Figure 8.1: Boxplot of ICC estimates and CI for each cohort (H&N in green,
NSCLC in pink, SCLC in blue) across comparable features, showing the statis-
tical reliability across three IBSI-compliant software with harmonised calculation
parameters. A ICC estimates and CI for the three IBSI-compliant software from
Chapter 3 (PyRadiomics, CERR and LIFEx v5.47) B ICC estimates and CI for the
three IBSI-compliant software with the corrected version of LIFEx (LIFEx version
6.0).
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The IMRT work presented in Chapter 4 and the COVID-19 work presented in Chap-

ter 5 both demonstrate how real-world data can be used to monitor and assess the

impact of changes to practice. In particular, the IMRT study demonstrated how real-

world data can be used to ensure new treatments are beneficial to patient populations

where clinical trials are not typically done [74]. The COVID-19 study contributed to

the body of evidence that the increased use of hypofractionated radiotherapy treat-

ments did not significantly compromise tumour control or mortality, while being more

convenient and a cheaper alternative to conventional fractionation regimens. Further-

more, the study suggests the guidelines put in the place at the start of the COVID-19

pandemic were effective, and may have prevented vulnerable deaths due to COVID-

19.

The Bayesian versus frequentist teaching article presented in Chapter 6 [77] received

a Letter to the Editor that argued in favour of frequentist statistics over Bayesian

[78]. We replied to their points, concluding that the study design and statistical as-

sumptions are more important to the results than the analytical approach itself [79].

Both letters can be found in the Appendix. This shows the impact of our original pa-

per by engaging radiation oncologists in such discussions. A podcast was recorded for

the International Journal of Radiation Oncology-Biology-Physics discussing the results

of the paper (https://www.redjournal.org/audio-do/red-journal-podcast-april-1-2022)

and the paper has been used in teaching materials. The paper has also been cited in

fields outside of radiation oncology, such as the financial, educational and environmen-

tal sectors, promoting the wider use of Bayesian methods.

The Bayesian analysis of the IGRT reduced action threshold presented in Chapter 7

concluded that Bayesian methods would be well suited to monitoring of changes to

clinical practice [80]. The methodological research helped to inform the statistical

design of the NIHR funded RAPID-RT study, which aims to prospectively assess the

impact of a change in protocol aiming to avoid a region of the heart associated with

increased risk of death [296, 297].

https://www.redjournal.org/audio-do/red-journal-podcast-april-1-2022


Chapter 9

Conclusion

This thesis presents multiple studies with the overall aim of investigating the potential

of using real-world data to gain clinical insight from patients with lung cancer. The

key findings of this thesis are:

1. Clinical translation of radiomics, using real-world imaging data, is presently

hindered by various technical validation shortcomings.

2. The platform used for radiomics feature extraction, as well as parameter settings,

IBSI-compliance and platform version, affect feature reliability which in turn can

affect outcomes analyses.

3. The introduction of IMRT for patients with lung cancer led to an increased num-

ber of patients being treated with curative intent and improved patient survival.

4. Changes made to radiotherapy treatments for patients with stage I-III NSCLC

due to the COVID-19 pandemic did not significantly affect overall survival or

progression-free survival; however, did increase odds of ≥ grade 3 acute toxicity.

5. A change in protocol reducing the IGRT action threshold reduced the risk of

death associated with residual set-up errors for patients with lung cancer.

6. Bayesian methods are well suited to monitoring changes to clinical practice with

real-world data.
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Together, these results demonstrate the potential large, real-world datasets have to

monitor and improve outcomes for patients with lung cancer. The research setting

is a powerful tool for generating evidence and insight from retrospective data. The

NHS have key aims to make better use of EHR data to save lives [64], and NICE

and the FDA have developed real-world evidence frameworks to make better use of

real-world evidence in the development of guidelines and medical products [40, 65].

The promise of real-world data is being recognised. The ultimate goal and next chal-

lenge is to embed real-world evidence generation into clinical practice to prospectively

monitor changes to practice and the impact on patient outcomes, for example in a

LHS environment. In this way, practice could be adapted in real-time in response to

study results. Ultimately, this would ensure every patient is receiving the best possible

treatment backed by the highest quality evidence.
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Abstract

Aims

In response to the COVID-19 pandemic, guidelines on reduced fractionation for pa-

tients treated with curative-intent radiotherapy were published, aimed at reducing the

number of hospital attendances and potential exposure of vulnerable patients to min-

imise the risk of COVID-19 infection. We describe the changes that took place in the

management of patients with stage I–III lung cancer from April to October 2020.

Materials and Methods

Lung Radiotherapy during the COVID-19 Pandemic (COVID-RT Lung) is a prospec-

tive multicentre UK cohort study. The inclusion criteria were: patients with stage

I–III lung cancer referred for and/or treated with radical radiotherapy between 2nd

April and 2nd October 2020. Patients who had had a change in their management and

those who continued with standard management were included. Data on demograph-

ics, COVID-19 diagnosis, diagnostic work-up, radiotherapy and systemic treatment

were collected and reported as counts and percentages. Patient characteristics asso-

ciated with a change in treatment were analysed using multivariable binary logistic

regression.

Results

In total, 1553 patients were included (median age 72 years, 49% female); 93 (12%)

had a change to their diagnostic investigation and 528 (34%) had a change to their

treatment from their centre’s standard of care as a result of the COVID-19 pandemic.

Age ≥ 70 years, male gender and stage III disease were associated with a change in

treatment on multivariable analysis. Patients who had their treatment changed had

a median of 15 fractions of radiotherapy compared with a median of 20 fractions in

those who did not have their treatment changed. Low rates of COVID-19 infection

were seen during or after radiotherapy, with only 21 patients (1.4%) developing the

disease.

Conclusion

The COVID-19 pandemic resulted in changes to patient treatment in line with national

recommendations. The main change was an increase in hypofractionation. Further
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work is ongoing to analyse the impact of these changes on patient outcomes.

A.1 Introduction

At the outset of the coronavirus pandemic in early 2020, there was paucity of data

about the risk of COVID-19 in patients with lung cancer. Initial reports suggested

that patients with cancer had both a higher risk of COVID-19 and an increased inci-

dence of intensive care unit admissions and death [1]. There were concerns that im-

munosuppression due to chemotherapy and thoracic radiotherapy [2] would increase

the likelihood of severe COVID-19 infection in patients with lung cancer. Moreover,

cigarette smoking and comorbidities, such as hypertension and chronic obstructive

pulmonary disease, that are common in patients with lung cancer, increased the risk

of hospital admission or death from COVID-19 [3]. Consequently, in the UK, patients

undergoing radical radiotherapy for lung cancer were identified as clinically extremely

vulnerable and advised to shield [4].

Radiotherapy is used in the primary treatment of 20–60% of patients with lung cancer

[5]. It was therefore crucial to find ways to balance continued access of cancer patients

to radiotherapy while minimising the risk of COVID-19 infection. To this end, at

the start of the first wave of the COVID-19 pandemic in the UK, a group of clinical

oncologists published guidelines based on current literature and practice, on how to

safely reduce the number of fractions (and therefore hospital visits) when delivering

curative-intent radiotherapy in patients with lung cancer [6].

Following the publication of the UK recommendations [6], it is now important to assess

their impact on practice and on the clinical outcome of lung cancer patients consid-

ered for radiotherapy in the UK during the COVID-19 pandemic. Lung Radiotherapy

during the COVID-19 Pandemic (COVID-RT Lung) is a UK-wide cohort study estab-

lished to record and analyse changes in lung cancer management and outcomes, with a

specific focus on radical radiotherapy treatment. The study aims to assess the effect of

the COVID-19 pandemic on the diagnostic and treatment pathways for patients with

lung cancer. Here we outline the initial results from COVID-RT Lung.



298 APPENDIX A. CHANGES IN MANAGEMENT DUE TO COVID-19

A.2 Methods and Materials

COVID-RT Lung is a national, multicentre prospective registry cohort study. Radio-

therapy centres in the UK were sent a letter of invitation to participate in COVID-RT

Lung. Interested centres then registered the project locally as a clinical audit. Local

approval to enter anonymous patient data was obtained by each participating centre

from their Caldicott Guardian.

A.2.1 Patient Cohort

Patients were eligible for inclusion in COVID-RT Lung if they had stage I–III lung

cancer and were referred for curative-intent radiotherapy (biologically equivalent dose

> 50 Gy) at a participating centre between 2nd April and 2nd October 2020. Par-

ticipating radiotherapy centres prospectively collected data from the patient records

on all patients referred for and treated with radical radiotherapy during the inclusion

period, whether or not their treatment was changed due to the COVID-19 pandemic.

Radiotherapy centres were divided by UK region.

A patient was defined as having a change to their diagnostic investigations if standard

investigations that would usually be carried out prior to radiotherapy at their treating

centre were not undertaken as a result of the COVID-19 pandemic. A patient was

defined as having a change to treatment if they had a different treatment to their cen-

tre’s standard of care treatment, taking into account individual patient characteristics,

such as performance status, and tumour characteristics, such as stage.

The following information was collected for each patient: age at the time of treatment;

gender; histology; stage; baseline Eastern Cooperative Oncology Group Performance

Status (PS) and comorbidities; radiotherapy dose and fractionation; dates of radio-

therapy; chemotherapy or immunotherapy delivery. Stereotactic ablative body radio-

therapy (SABR) was defined as radiotherapy delivered in ≤ 8 fractions of more than

6 Gy per fraction. Specific details on the chemotherapy drugs used were not collected.

A systemic therapy dose reduction was defined as a reduction in the number of planned

cycles of therapy and/or a reduction in the dose for any single cycle.
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The presence of the following comorbidities was recorded: ischaemic heart disease; con-

gestive heart failure; cardiac arrhythmia, hypertension; chronic obstructive pulmonary

disease; chronic kidney disease; diabetes; stroke; dementia and any previous malig-

nancy prior to the current lung cancer diagnosis. Other comorbidities were recorded

as free text.

Data were collected on COVID-19 diagnosis. Patients were classified as having COVID-

19 if they had a positive reverse transcriptase polymerase chain reaction (RT-PCR)

nasopharyngeal swab or if they had a clinical diagnosis of COVID-19 in the absence

of an RT-PCR swab.

In addition, the following data were collected if available: Rockwood clinical frailty

scale; smoking history; administration of granulocyte colony stimulating factor (G-

CSF) during treatment; neutrophil and lymphocyte count in the final week of radio-

therapy.

Study data were collected and managed using the Research Electronic Data Capture

(REDCap) cloud platform (nPhase Inc, CA, USA) [7] administered by the University

of Manchester Clinical Trials Unit.

A.2.2 Statistical Analysis

Key baseline characteristics were summarised as categorical variables and reported

as counts and percentages. Adjusted odds ratios and 95% confidence intervals for a

change to diagnostic investigations and treatment from the centre’s standard of care

were estimated by multivariable binary logistic regression. Age was dichotomised at

70 years in line with the UK Government’s shielding advice. The Rockwood frailty

score was excluded from multivariable analysis as more than 50% of the data were

missing. North West England was chosen as the base factor in regional analysis as it

had the largest number of patients. The median number of radiotherapy fractions were

compared using the Wilcoxon signed rank test. The statistical analysis was carried

out in R studio version 3.6.3.
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A.3 Results

Data on 1553 patients were available for analysis on 17 March 2021. The median

age was 72 years (37–93 years), 762 (49%) were female. There were 906 patients

(58.3%) with non-small cell lung cancer (NSCLC) and 482 (31%) had a radiological

diagnosis of cancer. Only 167 patients (10.8%) had no comorbidities prior to their

diagnosis of lung cancer and 624 patients (40.2%) had three or more comorbidities. The

most common comorbidity was chronic obstructive pulmonary disease, recorded in 667

patients (42.9%). A list of participating radiotherapy centres and their region is given

in Supplementary Table A.5. Baseline characteristics are summarised in Table A.1

.

Table A.1: Baseline characteristics stratified by change to treatment [n (%)]

No change Changed Total
Total n (%) 1025 (66.0) 528 (34.0) 1553
Age (years)

< 70 405 (39.5) 203 (38.4) 608 (39.2)
≥ 70 610 (59.5) 325 (61.6) 935 (60.2)
Missing 10 (1.0) 0 (0.0) 10 (0.6)

Gender
Female 524 (51.1) 238 (45.1) 762 (49.1)
Male 495 (48.3) 290 (54.9) 785 (50.5)
Missing 6 (0.6) 0 (0.0) 6 (0.4)

Performance status
0 118 (11.5) 96 (18.2) 214 (13.8)
1 509 (49.7) 309 (58.5) 818 (52.7)
2–3 390 (38.0) 123 (23.3) 513 (33.0)
Missing 8 (0.8) 0 (0.0) 8 (0.5)

Clinical frailty scale
1 18 (1.8) 14 (2.7) 32 (2.1)
2 72 (7.0) 59 (11.2) 131 (8.4)
3 143 (14.0) 115 (21.8) 258 (16.6)
4 101 (9.9) 62 (11.7) 163 (10.5)
5 56 (5.5) 22 (4.2) 78 (5.0)
6 27 (2.6) 10 (1.9) 37 (2.4)
7 7 (0.7) 1 (0.2) 8 (0.5)
Missing 601 (58.6) 245 (46.4) 846 (54.5)

Smoking status
Current smoker 298 (29.1) 148 (28.0) 446 (28.7)
Ex-smoker 594 (58.0) 317 (60.0) 911 (58.7)
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Table A.1 continued from previous page
No change Changed Total

Never smoker 29 (2.8) 22 (4.2) 51 (3.3)
Missing 104 (10.1) 41 (7.8) 145 (9.3)

Histology
NSCLC 576 (56.2) 330 (62.5) 906 (58.3)
SCLC 87 (8.5) 70 (13.3) 157 (10.1)
Radiological diagnosis 354 (34.5) 128 (24.2) 482 (31.0)
Missing 8 (0.8) 0 (0.0) 8 (0.5)

Stage
I 473 (46.1) 189 (35.8) 662 (42.6)
II 164 (16.0) 71 (13.4) 235 (15.1)
III 380 (37.1) 265 (50.2) 645 (41.5)
Missing 8 (0.8) 3 (0.6) 11 (0.7)

Region
North West England 166 (16.2) 159 (30.1) 325 (20.9)
Yorkshire & North East

England
161 (15.7) 106 (20.1) 267 (17.2)

South East England 151 (14.7) 77 (14.6) 228 (14.7)
London 46 (4.5) 17 (3.2) 63 (4.1)
South West England 50 (4.9) 28 (5.3) 78 (5.0)
Midlands 123 (12.0) 49 (9.3) 172 (11.1)
Northern Ireland 88 (8.6) 30 (5.7) 118 (7.6)
Wales 63 (6.1) 42 (8.0) 105 (6.8)
Scotland 177 (17.3) 20 (3.8) 197 (12.7)

IHD
No IHD 819 (79.9) 439 (83.1) 1258 (81.0)
IHD 206 (20.1) 89 (16.9) 295 (19.0)

CHF
No CHF 964 (94.0) 506 (95.8) 1470 (94.7)
CHF 61 (6.0) 22 (4.2) 83 (5.3)

Cardiac arrhythmia
No arrhythmia 912 (89.0) 471 (89.2) 1383 (89.1)
Arrhythmia 113 (11.0) 57 (10.8) 170 (10.9)

Hypertension
No hypertension 660 (64.4) 354 (67.0) 1014 (65.3)
Hypertension 365 (35.6) 174 (33.0) 539 (34.7)

COPD
No COPD 574 (56.0) 312 (59.1) 886 (57.1)
COPD 451 (44.0) 216 (40.9) 667 (42.9)

CKD
No CKD 961 (93.8) 507 (96.0) 1468 (94.5)
CKD 64 (6.2) 21 (4.0) 85 (5.5)



302 APPENDIX A. CHANGES IN MANAGEMENT DUE TO COVID-19

Table A.1 continued from previous page
No change Changed Total

Diabetes
No diabetes 859 (83.8) 449 (85.0) 1308 (84.2)
Diabetes 166 (16.2) 79 (15.0) 245 (15.8)

Stroke/TIA
No stroke 930 (90.7) 493 (93.4) 1423 (91.6)
Stroke 95 (9.3) 35 (6.6) 130 (8.4)

Dementia
No dementia 1011 (98.6) 522 (98.9) 1533 (98.7)
Dementia 14 (1.4) 6 (1.1) 20 (1.3)

Previous malignancy
No previous malignancy 772 (75.3) 423 (80.1) 1195 (76.9)
Previous malignancy 253 (24.7) 105 (19.9) 358 (23.1)

Abbreviations: CHF, congestive heart failure; COPD, chronic obstructive pulmonary
disease; CKD, chronic kidney disease; IHD, ischaemic heart disease; NSCLC, non-
small cell lung cancer; SCLC, small cell lung cancer; TIA, transient ischaemic attack.

One hundred and ninety-three patients (12%) had their diagnostic investigations af-

fected by the pandemic (Table A.2). The characteristics of patients who had their

diagnostic investigations changed are listed in Supplementary Table A.6. The most

common change was not obtaining histology prior to treatment in 66 patients.

Table A.2: Changes to diagnostic investigations.

Change to diagnostic investigations Patients n=1553
Histology not obtained 66 (4.3%)
No nodal sampling 38 (2.5%)
No pulmonary function tests 29 (1.9%)
No brain imaging 32 (2.1%)
No PET-CT or PET-CT out of date∗ 50 (3.2%)
Delays in diagnosis 11 (0.7%)
∗Defined by the local clinical teams. Abbreviations: PET-CT, positron emission
tomography-computed tomography.

Radiotherapy details were not recorded for 11 patients. In 33 patients (2.1%), a watch

and wait approach was adopted, 26 of whom went on to have radiotherapy at a later

date. Three patients (0.2%) had best supportive care instead of radical treatment and

26 patients referred for radical treatment had a palliative radiotherapy schedule. In
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patients with stage I–II lung cancer, 579 (64.5%) had SABR, 296 (33%) had fraction-

ated curative-intent radiotherapy. Eight patients had single fraction SABR with 34

Gy. In patients with stage III lung cancer, 356 patients (55%) had sequential or con-

current chemoradiotherapy and 264 patients (40.9%) had curative-intent radiotherapy

alone.

Changes to treatment due to the pandemic are shown in Table 3. The most com-

mon change was to the centre’s standard radiotherapy dose or fractionation. The

median number of fractions of radiotherapy received by patients who had their treat-

ment changed was significantly lower than those without a change to their standard

radiotherapy (15 fractions versus 20 fractions, P<0.001).

Table A.3: Changes made to patients’ treatment according to lung cancer stage (informa-
tion on stage was missing for four patients).

Change to treatment Stage I–II
(n=897)

Stage III
(n=645)

Any change 260 (29%) 265 (41.1%)
Change to radiotherapy dose/fractionation 144 (16.1%) 126 (19.5%)
Radiotherapy given instead of surgery 85 (9.5%) 18 (2.8%)
Chemotherapy dose reduced 12 (1.3%) 59 (6.8%)
Chemotherapy omitted 9 (1%) 69 (10.7%)
Immunotherapy dose reduced or omitted 0 8 (1.2%)
Watch and wait 31 (3.5%) 2 (0.3%)
Best supportive care 1 (0.1%) 2 (0.3%)
Other 2 (0.2%) 4 (0.6%)

A higher proportion of patients with small cell lung cancer (SCLC) had their treatment

changed compared with patients with NSCLC (44.6% versus 36.4%). The median

radiotherapy dose per fraction for patients with SCLC was 2.67 Gy to a total of 40 Gy,

delivered once daily. This schedule was used with concurrent chemotherapy in 18

patients, with sequential chemotherapy in 65 patients and without chemotherapy in 10

patients. The schedule of 45 Gy in 30 fractions bi-daily with concurrent chemotherapy

was delivered in 25 patients with SCLC.

The median radiotherapy dose per fraction for patients with NSCLC was 2.75 Gy to

a total of 55 Gy, delivered with sequential chemotherapy in 142 patients, concurrent
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chemotherapy in 146 patients and without chemotherapy in 616 patients. In patients

with a radiological diagnosis of lung cancer (assumed to be NSCLC by the multidis-

ciplinary team), the median radiotherapy dose per fraction was 11 Gy to a total of

55 Gy; five patients with a radiological diagnosis had chemotherapy.

Five hundred and twenty-eight patients (34%) had their treatment changed from their

centre’s standard of care treatment due to the COVID-19 pandemic. The North West

and Yorkshire/North East of England had the highest proportion of patients who had

their treatment changed from their centre’s standard of care. Multivariable analysis

revealed that male gender, age ≥ 70 years and stage III lung cancer were associated

with a change in treatment (Table A.4). Patients of performance status 2–3 were

less likely to have their treatment changed. A change in diagnostic investigations was

associated with a radiological diagnosis of lung cancer, chronic kidney disease and

treatment in Northern Ireland.

Table A.4: Adjusted odds ratio (aOR) of baseline factors with change to treatment and
change to diagnostic investigations.

Change to treat-
ment aOR (95%
CI)

Change to investi-
gations aOR (95%
CI)

Age (years) <70 versus ≥ 70 1.34 (1.03–1.74) 0.95 (0.64–1.42)
Gender, female versus male 1.36 (1.07–1.73) 0.90 (0.63–1.29)
Performance status, versus 0

1 0.78 (0.55–1.12) 1.00 (0.57–1.82)
2–3 0.37 (0.25–0.56) 0.72 (0.38–1.39)

Smoking status, versus current smoker
Ex-smoker 0.96 (0.73–1.25) 0.74 (0.50–1.10)
Never smoker 1.51 (0.78–2.86) 0.65 (0.20–1.77)

Histology, versus NSCLC
SCLC 1.27 (0.86–1.89) 0.97 (0.46–1.90)
Radiological diagnosis 0.88 (0.64–1.20) 3.83 (2.44–6.09)

Stage, versus stage I
II 0.95 (0.65–1.38) 1.25 (0.73–2.10)
III 1.56 (1.15–2.13) 1.42 (0.88–2.30)

Region, versus North West England
Yorkshire & North East England 0.62 (0.43–0.90) 0.81 (0.43–1.46)
South East England 0.41 (0.27–0.61) 0.34 (0.13–0.75)
London 0.34 (0.18–0.63) 0.29 (0.05–1.02)
South West England 0.41 (0.23–0.71) 1.62 (0.75–3.36)
Midlands 0.41 (0.26–0.65) 0.64 (0.29–1.31)
Northern Ireland 0.33 (0.20–0.54) 13.87 (8.05–24.47)
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Table A.4 continued from previous page
Change to treat-
ment aOR (95%
CI)

Change to investi-
gations aOR (95%
CI)

Wales 0.62 (0.39–1.01) 2.36 (1.22–4.48)
Scotland 0.09 (0.05–0.14) 0.44 (0.21–0.88)

Ischaemic heart disease, no versus yes 0.94 (0.68–1.28) 1.22 (0.78–1.89)
Congestive heart failure, no versus yes 0.98 (0.54–1.74) 0.54 (0.20–1.27)
Arrhythmia, no versus yes 1.07 (0.71–1.60) 1.04 (0.56–1.86)
Hypertension, no versus yes 0.80 (0.62–1.03) 1.15 (0.79–1.68)
COPD, no versus yes 1.24 (0.96–1.60) 1.29 (0.88–1.88)
Chronic kidney disease, no versus yes 0.78 (0.43–1.36) 2.13 (1.03–4.19)
Diabetes, no versus yes 0.99 (0.71–1.39) 1.08 (0.65–1.75)
Stroke, no versus yes 0.83 (0.52–1.30) 1.03 (0.54–1.87)
Dementia, no versus yes 1.19 (0.39–3.27) 0.91 (0.18–3.36)
Previous malignancy, no versus yes 0.86 (0.64–1.15) 1.12 (0.72–1.70)
Abbreviations: CI, confidence interval; COPD, chronic obstructive pulmonary disease;
NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer.

Figure A.1 shows the changes in radiotherapy dose per fraction for patients who did

and did not have their treatment changed. A higher proportion of the change to

treatment group were treated with 3–5.9 Gy/fraction across all stages compared with

the no change group (27.2% versus 5.1%). No patient in the change to treatment

group received a radiotherapy schedule with <2 Gy/fraction.

Figure A.1: Bubble plot of radiotherapy dose per fraction by stage for patients
who had standard of care treatment and those who had their treatment changed.
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Figure A.2 shows how the changes to treatment varied between April and October

2020. In April 2020, 105 of 180 (37%) patients had their treatment changed; in May

2020, 154 of 345 (45%) had their treatment changed. The total number of patients

treated and the proportion of patients who had a change to their treatment decreased

from June to August 2020.

Figure A.2: Monthly number of patients referred for radical radiotherapy for lung
cancer and the number who had a change to their treatment from April to September
2020.

A.3.1 Lymphocyte Count at End of Radiotherapy

Lymphocyte count in the final week of radiotherapy was available for 90 patients with

stage I–II lung cancer (10%) and 210 patients with stage III lung cancer (32.6%). Sixty

patients for whom counts were available had sequential chemoradiotherapy and 114

had concurrent chemoradiotherapy. The median lymphocyte count in the last week

of radiotherapy for patients who had any chemotherapy was 0.6 × 109/l (0.2–2.4 ×

109/l) and in patients who did not have chemotherapy the median lymphocyte count

was 0.7 × 109/l (0.2–2.3 × 109/l). Fourteen patients out of 33 who had a diagnosis of

COVID-19 had a lymphocyte count from the last week of radiotherapy available for

analysis and nine of these patients had a lymphocyte count ≤ 0.5 × 109/l.
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Seventy-eight patients in COVID-RT Lung received G-CSF during treatment. Sixty-

one patients who received G-CSF underwent concurrent chemoradiotherapy; 43 for

NSCLC and 18 for SCLC. Three patients who received G-CSF had a diagnosis of

COVID-19 during their radiotherapy.

A.3.2 COVID-19 Diagnosis and Treatment Delays

Thirty-three (2.1%) patients had a diagnosis of COVID-19, 26 of whom had RT-

PCR swab confirmation. Twelve patients were diagnosed with COVID-19 prior to

starting treatment for lung cancer, six were diagnosed during radiotherapy and 15

were diagnosed after the end of radiotherapy. Of the 21 patients who had COVID-19

during or after radiotherapy, seven patients had stage I–II lung cancer (0.8% of all

early stage patients) and 14 had stage III disease (2.2% of all stage III patients). Six

patients died with COVID-19 at a median of 175 days (21–279 days) after the start of

radiotherapy.

The median duration of treatment interruption for patients with confirmed or sus-

pected COVID-19 was 4 days (1–16 days). In total, 83 patients (5.3%) had an in-

terruption to radiotherapy for any reason, 18 of whom had their treatment stopped

early. No patient with a diagnosis of COVID-19 had their treatment stopped early.

The most common reasons for treatment interruptions, apart from COVID-19, were

other infections (10 patients) or treatment toxicity (10 patients). One patient (who

had RT-PCR-confirmed COVID-19) had a radiotherapy delay compensation with the

addition of two extra fractions at the end of radiotherapy, making a total dose of

60.5 Gy in 22 fractions.

A.4 Discussion

This first analysis of the UK COVID-RT Lung cohort study has shown that the

COVID-19 pandemic led to a subsequent change to treatment in a third of lung cancer

patients referred for radical radiotherapy between April and October 2020. In addition,

the diagnostic pathway was altered in 12% of patients of the same cohort.
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The most common change to treatment was the use of a different radiotherapy dose/frac-

tionation from the centre’s usual standard of care in 17.5% of patients, resulting in

a higher proportion of patients with lung cancer treated with hypofractionated ra-

diotherapy. These changes are in line with a national UK guidance document of

hypofractionated radiotherapy [6]. Greater use of hypofractionation in all cancers

during the COVID-19 pandemic was reported in a population-based study analysing

data from the UK National Radiotherapy Dataset [8]. The national dataset showed

an increase in moderately hypofractionated radiotherapy for patients with lung cancer

(2.5–4.9 Gy/fraction) but little change in ultra-hypofractionated radiotherapy (≥ 5 Gy

per fraction). In COVID-RT Lung, there was an increase in the use of 3–5.9 Gy/frac-

tion regimens in patients who had their treatment changed for all stages of lung cancer.

This change reflects the increased use of 15-fraction schedules during the pandemic.

The evidence for the use of 60 Gy in 15 fractions comes from a phase II trial in patients

with T1-3 N0 M0 NSCLC, which reported an overall survival of 68.7% at 2 years with

a low rate of grade 3+ toxicity [9].

Radiotherapy was suggested as an alternative to surgery at the start of the COVID-19

pandemic if there was pressure on operating and anaesthetic resources [8, 10]. We

found that radiotherapy was used as an alternative treatment to surgery in 9.5% of

stage I–II and 2.8% of stage III operable patients between April and October 2020.

The number of patients who had changes to treatment changed over time with, the

largest number of treatment changes in April and May 2020. Our results show a fall in

the number of referrals for radical radiotherapy in June, July and August 2020 which

could be explained by the fall in suspected lung cancer referrals [11].

Multivariable analysis of baseline factors found that male gender, age ≥ 70 years and

stage III lung cancer were associated with patients having a change to their treatment

from their centre’s standard of care. Spencer et al. [8] also found that there was

more of a decrease in the number of radiotherapy treatment courses for all cancer

patients in patients aged ≥ 70 compared with patients < 70 years. Older age and

male gender have consistently been associated with a higher morbidity and mortality

with COVID-19 [3], leading to adjustment in treatments to mitigate the risk.
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When interpreting the results of COVID-RT Lung it should be noted that standard of

care treatment for stage I–III lung cancer varies considerably between UK centres. For

this reason, the central question of the analysis was whether the patient’s treatment

had been changed from their centre’s standard of care.

Results from the National Lung Cancer Audit 2016 reported that 65% of patients who

received radical radiotherapy for stage III lung cancer had sequential or concurrent

chemotherapy [12]. Only 55% of patients with stage III disease in COVID-RT Lung

had chemotherapy in addition to radical radiotherapy and 10.7% had their chemother-

apy omitted because of the pandemic. The lower rates of chemotherapy in our study

may be due to the perceived risk of COVID-19 in patients who are immunosuppressed

[13]. The combination of lower rates of chemotherapy and more hypofractionated

radiotherapy resulted in patients with stage III disease having more changes to treat-

ment than those with stage I disease. Furthermore, we found that patients with PS

2–3 were less likely to have their treatment changed. Patients with PS 2–3 often re-

ceive curative-intent radiotherapy alone rather than surgery or chemoradiotherapy [12,

14], leaving less scope for their treatment to be changed as a result of the pandemic.

No specific comorbidity was associated with a change in treatment, although patients

with chronic kidney disease were more likely to have a change to their diagnostic

investigations.

COVID-RT Lung demonstrates geographical variation in treatment changes, with the

North of England having the greatest proportion of patients with changes to their

treatment. These regions had some of the highest rates of COVD-19 infection in the

UK [15]. Pre-pandemic regional treatment variations may also explain why some areas

of the country recorded a lower proportion of patients with a change to treatment.

The incidence of COVID-19 infections in the COVID-RT Lung cohort was low (2.1% of

patients in total and only 1.4% were infected during or after radiotherapy). Variations

in COVID-19 testing policies between centres and over time, especially the slow roll

out of COVID-19 testing nationally during the initial months of the pandemic, will

influence the reported incidence rate in this study. Nevertheless, the low COVID-

19 rate is reassuring given the high rates of lymphopenia reported during the last
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week of radiotherapy in a subgroup of patients. The low rates of COVID-19 infection

and death may reflect the UK Government’s shielding advice [4] for patients having

thoracic radiotherapy. In addition the use of hypofractionated radiotherapy, as per

UK and international guidance [6, 16], may have reduced the patients’ exposure to

COVID-19.

Only six patients in our study died with COVID-19, in contrast to the high rate of

death from COVID-19 reported in the TERAVOLT [17] registry. TERAVOLT was

a small cohort of 200 patients, most with stage IV disease, and included a skewed

population of symptomatic patients on active treatment who presented to oncological

services. The UK Coronavirus Cancer Monitoring project is a larger UK-based registry

of patients with COVID-19 and cancer, which did not find an increased case-fatality

rate due to COVID-19 in patients with lung cancer [18]. There were also concerns in

April 2020 that patients having radiotherapy for lung cancer would have treatment de-

lays as a result of COVID-19 and therefore the Royal College of Radiologists produced

guidance on compensating for treatment gaps [19]. We found that 5.3% of patients

in the COVID-RT Lung cohort had a treatment gap, but this was more often due

to treatment toxicity or an infection other than COVID-19. The median treatment

gap for patients with suspected COVID-19 during treatment was 4 days (range 1–16

days), which implies that most patients continued their treatment during the self-

isolation period, in order to maximise the potential for cure [20]. Nevertheless, it is

surprising that only one patient in this cohort had treatment compensation for a gap

in radiotherapy.

Our analysis has limitations as it only includes data from 30 UK radiotherapy cen-

tres across the whole of the UK and participating centres had not completed data

collection on all treated patients at the time of this initial analysis. Consequently, the

denominator of patients with lung cancer receiving radiotherapy during this period of

the pandemic is not known. The analysis of lymphopenia following radiotherapy is

limited by the small proportion of patients in COVID-RT Lung for whom lymphocyte

count was available. COVID-RT Lung demonstrates the same pattern of radiother-

apy hypofractionation as reported in national datasets during the pandemic [8], which

indicates that it is probably representative of changes across the country. Our study
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provides more granular detail on the changes to diagnostic pathways, radiotherapy and

systemic therapy in patients with lung cancer and specifically asks if the patient had

a change to treatment compared with the local standard of care rather than inferring

this from changes in national datasets over time.

We have shown that the risk of developing COVID-19 in lung cancer patients receiving

radical radiotherapy was low during the first wave of the pandemic, showing that

the measures put in place by radiotherapy departments to protect patients [16] were

adequate. We have described the characteristics of patients who had changes to their

centre’s standard of care management and the regional differences in the management

of patients with lung cancer. An important next step is to report the outcomes of

patients treated during the pandemic in order to assess the effect of radiotherapy

and chemotherapy adaptations on survival and toxicity. Outcome data are being

collected as data matures. Given the current concerns regarding the cancer backlog

and National Health Service pressures as a consequence of the pandemic, our study

will provide valuable information to the oncology community to help guide optimal

treatment for lung cancer patients going forward.
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A.7 Supplementary materials

Table A.5: Number of patients in COVID-RT Lung from each participating centre.

Participating centre N
Scotland

Beatson West of Scotland Cancer Centre 161
Aberdeen Royal Infirmary 24
Ninewells Hospital 12

Wales
Swansea Bay University Hospital Trust 39
Velindre Cancer Centre 66

Northern Ireland
Northern Ireland Cancer Centre 118

North West England
The Christie NHS Foundation Trust 257
Clatterbridge Cancer Centre 68

North East England
Leeds Cancer Centre 14
Weston Park Cancer Centre 120
James Cook University Hospital 133

Midlands
University Hospital Birmingham 115
Wolverhampton 32
University Hospital North Midlands 25
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Table A.5 continued from previous page
Participating centre N
South West England

Cheltenham Hospital 6
Plymouth Oncology Centre 12
Poole Hospital 14
Royal Devon and Exeter Hospital 15
Taunton and Somerset Hospital 11
Torbay and South Devon Hospital 15
University Hospitals Bristol and Weston 5

South East England
Brighton and Sussex University Hospital 20
Cambridge University Hospital 44
University Hosptial Southampton 82
Oxford Universities NHS Foundation Trust 66
Peterborough City Hospital 11
Portsmouth Hospital 5

London
Guy’s and St Thomas’ NHS Foundation Trust 20
Royal Free London NHS Foundation Trust 16
University College London Hospitals 27

Table A.6: Baseline characteristics stratified by change to diagnostic investigations [n
(%)]

No change Changed Total
Total n (%) 1361 (87.6) 192 (12.4) 1553
Age (years)

< 70 531 (39.0) 77 (40.1) 608 (39.2)
≥ 70 821 (60.3) 114 (59.4) 935 (60.2)
Missing 9 (0.7) 1 (0.5) 10 (0.6)

Gender
Female 663 (48.7) 99 (51.6) 762 (49.1)
Male 692 (50.8) 93 (48.4) 785 (50.5)
Missing 6 (0.4) 0 (0.0) 6 (0.4)

Performance status
0 194 (14.3) 20 (10.4) 214 (13.8)
1 713 (52.4) 105 (54.7) 818 (52.7)
2–3 446 (32.8) 67 (34.9) 513 (33.0)
Missing 8 (0.6) 0 (0.0) 8 (0.5)

Clinical frailty scale
1 29 (2.1) 3 (1.6) 32 (2.1)
2 119 (8.7) 12 (6.2) 131 (8.4)
3 236 (17.3) 22 (11.5) 258 (16.6)
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Table A.6 continued from previous page
No change Changed Total

4 146 (10.7) 17 (8.9) 163 (10.5)
5 74 (5.4) 4 (2.1) 78 (5.0)
6 35 (2.6) 2 (1.0) 37 (2.4)
7 8 (0.6) 0 (0.0) 8 (0.5)
Missing 714 (52.5) 132 (68.8) 846 (54.5)

Smoking status
Current smoker 380 (27.9) 66 (34.4) 446 (28.7)
Ex-smoker 798 (58.6) 113 (58.9) 911 (58.7)
Never smoker 46 (3.4) 5 (2.6) 51 (3.3)
Missing 137 (10.1) 8 (4.2) 145 (9.3)

Histology
NSCLC 820 (60.2) 86 (44.8) 906 (58.3)
SCLC 145 (10.7) 12 (6.2) 157 (10.1)
Radiological diagnosis 388 (28.5) 94 (49.0) 482 (31.0)
Missing 8 (0.6) 0 (0.0) 8 (0.5)

Stage
I 571 (42.0) 91 (47.4) 662 (42.6)
II 203 (14.9) 32 (16.7) 235 (15.1)
III 576 (42.3) 69 (35.9) 645 (41.5)
Missing 11 (0.8) 0 (0.0) 11 (0.7)

Region
North West England 290 (21.3) 35 (18.2) 325 (20.9)
North East England 244 (17.9) 23 (12.0) 267 (17.2)
South East England 219 (16.1) 9 (4.7) 228 (14.7)
London 61 (4.5) 2 (1.0) 63 (4.1)
South West England 65 (4.8) 13 (6.8) 78 (5.0)
Midlands 161 (11.8) 11 (5.7) 172 (11.1)
Northern Ireland 52 (3.8) 66 (34.4) 118 (7.6)
Wales 85 (6.2) 20 (10.4) 105 (6.8)
Scotland 184 (13.5) 13 (6.8) 197 (12.7)

IHD
No IHD 1113 (81.8) 145 (75.5) 1258 (81.0)
IHD 248 (18.2) 47 (24.5) 295 (19.0)

CHF
No CHF 1285 (94.4) 185 (96.4) 1470 (94.7)
CHF 76 (5.6) 7 (3.6) 83 (5.3)

Cardiac arrhythmia
No arrhythmia 1210 (88.9) 173 (90.1) 1383 (89.1)
Arrhythmia 151 (11.1) 19 (9.9) 170 (10.9)

Hypertension
No hypertension 892 (65.5) 122 (63.5) 1014 (65.3)
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Table A.6 continued from previous page
No change Changed Total

Hypertension 469 (34.5) 70 (36.5) 539 (34.7)
COPD

No COPD 789 (58.0) 97 (50.5) 886 (57.1)
COPD 572 (42.0) 95 (49.5) 667 (42.9)

CKD
No CKD 1290 (94.8) 178 (92.7) 1468 (94.5)
CKD 71 (5.2) 14 (7.3) 85 (5.5)

Diabetes
No diabetes 1148 (84.3) 160 (83.3) 1308 (84.2)
Diabetes 213 (15.7) 32 (16.7) 245 (15.8)

Stroke/TIA
No stroke 1249 (91.8) 174 (90.6) 1423 (91.6)
Stroke 112 (8.2) 18 (9.4) 130 (8.4)

Dementia
No dementia 1344 (98.8) 189 (98.4) 1533 (98.7)
Dementia 17 (1.2) 3 (1.6) 20 (1.3)

Previous malignancy
No previous malignancy 1053 (77.4) 142 (74.0) 1195 (76.9)
Previous malignancy 308 (22.6) 50 (26.0) 358 (23.1)

Abbreviations: CHF, congestive heart failure; COPD, chronic obstructive pulmonary
disease; CKD, chronic kidney disease; IHD, ischaemic heart disease; NSCLC, non-
small cell lung cancer; SCLC, small cell lung cancer; TIA, transient ischaemic attack.
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To the Editor:

We appreciate the authors bringing attention to controversies surrounding the use of

Bayesian and frequentist statistics [1]. There are many benefits to frequentist statistics

and disadvantages of Bayesian statistics which were not discussed in the referenced

article. We write this accompanying letter to aim for a more balanced presentation of

Bayesian and frequentist statistics.

With frequentist statistical significance tests, we can learn whether the data indicate

there is a genuine effect or difference in a statistical analysis, as they have the ability

to control type I and type II error probabilities [2]. Posteriors and Bayes factors

do not ensure that the method rarely reports one treatment is better or worse than

the other erroneously. A well-known threat to reliable results stems from the ease of

using high powered methods to data-dredge and try to hunt for impressive-looking

results that fail to replicate with new data. However, the Bayesian assessment is not

altered by things like stopping rules—at least not without violating inference by Bayes

theorem [3]. The frequentist account [4], by contrast, is required to take account

of such selection effects in reporting error probabilities. Another caution for those

unfamiliar with practical Bayesian research is that estimation of a prior distribution

is nontrivial. The priors they discuss are subjective degrees of belief, but there is

considerable disagreement about which beliefs are warranted, even among experts.

Furthermore, should conclusions differ if the prior is chosen by a radiation oncologist

or a surgeon? [5] These considerations are some of the reasons why most phase 3

studies in oncology rely on frequentist designs.

The article equates frequentist methods with simple null hypothesis testing without

alternatives, thereby overlooking hypothesis testing methods that control both type I

and II errors. The frequentist takes account of type II errors and the corresponding

notion of power. If a test has high power to detect a meaningful effect size, then failing

to detect a statistically significant difference is evidence against a meaningful effect.

Therefore, a P value that is not small is informative.
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The authors write that frequentist methods do not use background information, but

this is to ignore the field of experimental design and all of the work that goes into

specifying the test (eg, sample size, statistical power) and critically evaluating the

connection between statistical and substantive results. An effect that corresponds to a

clinically meaningful effect, or effect sizes well warranted from previous studies, would

clearly influence the design.

Although their article engenders important discussion, these differences between fre-

quentist and Bayesian methods may help readers understand why so many researchers

around the world still prefer the frequentist approach.
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To the Editor:

We thank the authors for their response [1] to our “statistics for the people” article [2]

that aimed to introduce perhaps unfamiliar readers to Bayesian statistics and some

potential advantages of their use. We agree that frequentist statistics are a useful

and widespread statistical analytical approach, and we are not aiming to revisit the

frequentist versus Bayesian arguments that have been well articulated in the literature

[3–5]. However, there are a couple of points we would like to make.

First, we acknowledge that the majority of phase 3 studies use frequentist designs,

and this has the advantage of facilitating meta-analyses using established techniques.

However, we would argue that the reason such frequentist designs are so prevalent

is likely to have as much to do with convention (from funders/regulators as well as

from researchers themselves), the relative exposure of the 2 approaches in educational

materials, and the historic difficulties in calculating Bayesian posteriors as it does with

the arguments the authors make [6, 7].

Second, although we agree with Chowdhry et al that there are many challenges as-

sociated with the estimation of prior probability distributions, we note that similar

arguments apply to effect size estimation, which they cite as a strength of the Neyman-

Pearson/null hypothesis significance testing approach (ie, the use of power calculations

to limit the risk of type II errors) [8, 9]. We would also re-enforce the point we make

in the article about the importance of testing the influence of the prior (represented as

the divergent beliefs of the hypothetical radiation oncologist and surgeon in the com-

munication by Chowdhry et al) in the analysis results. If the data are strong enough,

the posterior distributions will be in close enough agreement to convince both parties.

As we noted, it is also possible to undertake Bayesian analyses without prior informa-

tion, using an uninformative prior, in which case the analysis is driven directly by the

data, as for a frequentist calculation. As an aside, there is continued debate about the

relative merits and deficiencies of the different frequentist approaches to significance

testing, particularly around the widespread use of the hybrid Neyman-Pearson/null

hypothesis significance testing approach [10].

There have, undoubtedly, been important practice changing studies delivered using
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frequentist approaches, but equally there is often erroneous interpretation of frequen-

tist results [11, 12]. Indeed, the American Statistical Society had to issue guidance

on the misuse of frequentist significance testing [13]. We would argue that the often-

counterintuitive nature of null hypothesis significance testing likely makes such inter-

pretation errors inevitable. One of the principal strengths of the Bayesian approach

we discuss in the article is that the researcher can directly ask the question they are

interested in, that is, what is the probable effect size and uncertainty of an intervention

compared with an alternative.

Finally, as we note in our original concluding paragraph, “both frequentist and Bayesian

approaches are useful for data analysis as long as they are interpreted correctly” and

that “however data are analyzed, it is of utmost importance to be transparent and to

correctly interpret the results in a manner consistent with. . . limitations in how data

were collected.” That is, that the quality of the whole study design and its execution,

including its assumptions and data collection approaches, is likely more important to

the inferences one can make than the analytical approach itself.
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