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2,3-D 2-D or 3-D
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t-NAP t-nearest anchor points
ANGEL ANchor GuidEd Local (algorithm)
ANGEL-LR ANGEL with Loop-Replicate optimisation
ANGEL-warm ANGEL with warm-start optimisation
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i-ANGEL incremental ANGEL
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Abstract

Data visualisation is the first stage of analysing data and developing data-driven so-
lutions. A visual understanding of the data can help analysts quickly identify key
data patterns and intrinsic structural information, facilitating data scientists in many
domains and applications. An effective way of “looking at” high-dimensional data
is to embed the patterns into 2,3-D spaces by using dimension reduction techniques.
The main goal of generating a meaningful visualisation for cohort datasets, which are
datasets that contain natural clusters or can be classified by clustering technique, is to
preserve the essential aspects of the intrinsic data information, e.g., local neighbour-
hood of data points, the internal structure of the cohort, positioning, and separation
of data cohorts. It is still an open question on how to well balance between all these
aspects, and the evaluation of the cohort positioning is mostly done qualitatively by
plotting out the embeddings and assessing the plot manually.

This thesis focuses on improving cohort data visualisation and its evaluation. The
first contribution is the ANchor GuidEd Local (ANGEL) algorithm with its variations,
proposed to balance local neighbourhood preservation, cohort positioning, and cohort
separation. The second contribution is the new evaluation approach designed to quan-
titatively measure all these three aspects. ANGEL is evaluated and compared with a
series of state-of-the-art approaches using several benchmark datasets. Results show
that it can effectively generate more informative visualisation. The third contribution
is the incremental extensions of ANGEL. The simple but intuitive p-ANGEL and i-
ANGEL algorithms are proposed to incrementally embed new data points in a batch
embedding setup. It also saves memory cost and accelerates the computational speed,
more applicable to large-scale real-world cohort data visualisations. Overall, this PhD
research pushes the state-of-the-art of cohort data visualisation forward.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Cohort Data Visualisation

Visual analysis of data is an essential pre-processing step in many studies on machine
learning applications, data mining, and pattern recognition [40, 84, 85]. A visual un-
derstanding of the data can help analysts to quickly identify and interpret critical data
patterns and guide the selection of data processing, prediction, and pattern recognition
algorithms, facilitating data scientists in many domains and applications. In most real-
world problems, the dataset fed into prediction and pattern recognition algorithms is
high-dimensional. For example, image data can be represented as a high-dimensional
vector containing thousands of pixels; or textual data, usually represented by high-
dimensional word-count vectors [85].

As human viewers can only perceive 2D or 3D (2,3-D) images, various visu-
alisation techniques such as scatterplot matrices [65, 134] and parallel coordinates
[55, 59, 139] have been introduced to present the information of high-dimensional
datasets in 2,3-D spaces. However, these approaches make no assumptions about the
intrinsic structure of the data. They simply place the relevant information obtained
directly in graphics. In order to efficiently and effectively extract useful information
from high-dimensional data, dimension reduction (DR) methods are widely applied
[40, 94]. These methods have numerous applications in many fields such as biology
[30, 33, 150], chemistry [43] and medicine [4, 26].
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Figure 1.1: Example of DR approach (MDS) applied to a subset of FMNIST dataset.
The Figure a shows 10 image examples selected from the FMNIST dataset. The 10×
10 matrix (Figure b) illustrates the L2-pixel distance between FMNIST images. Each
row shows the distance between the image represented by this row and all other images.
The Figure c scatter plot shows the embedding result using MDS method. The number
enclosed by the red box is the distance between the nearest image and the 10-th image
(the sneaker image in Figure a), which is reflected in the scatter plot as the smallest
distance between their two representative 2-D points, as shown by the red line.

DR methods aim to transform high-dimensional data samples into low-dimensional
points while preserving most of the intrinsic structure in the original dataset [87]. They
can uncover similarities or dissimilarities between data samples and then retain them
by locating embedded points in the targeted space, usually the 2,3-D space, for data
visualisation purposes. For example, the Figure 1.1a shows image examples selected
from the Fashion-MNIST (FMNIST) dataset [136]. The Euclidean distance between
images (L2-pixel distance) can be calculated, which shows the dissimilarities between
data samples. The embedded points can be derived by preserving the same distance
relationships between data points, which involves attracting points whose original im-
ages has lower L2-pixel distance and repelling points whose images are quite differ-
ent from each other. The Figure 1.1c is the scatter plot of the embedded points ob-
tained by using classical multi-dimensional scaling (MDS) [15]. It can be observed
that the L2-pixel distance between image slipper and image sneaker is the smallest of
all the distances between the other images and image sneaker, as shown in the red box.
Therefore, the embedding points between image slipper and image sneaker are also the
closest in the scatter plot, as shown by the red line. From this 2-D plot relationships
between the high-dimensional data samples can be inferred, so that the data set can be
further processed and analysed.

The main research question of this thesis is: What properties can be expected
from a good DR method for data visualisation?

To make this question more specific, this thesis focuses on visualising the cohort
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Figure 1.2: Example of synthetic 2-D flower dataset

data. The cohort data corresponds to the dataset containing either the natural clus-
ters or clusters generated by clustering techniques. For instance, genome data includes
data cohorts corresponding to different populations with different genetic variants [30],
and the textual data 20-Newsgroup [16, 19, 20, 21] contains cohorts of news articles
retrieved from different topic domains. Figure 1.1a shows that the FMNIST dataset
comprises grayscale images of fashion products from ten categories, while Figure 1.2
displays a synthetic 2-D flower dataset that is manually assigned into 7 different co-
horts.

(a) Isomap (b) MDS

Figure 1.3: Embedding results of the Coil20 dataset using Isomap and MDS, respec-
tively. The Coil20 dataset contains 20 different image data cohorts (introduced in Sec-
tion 5.2.1). None of these two global metric approaches could successfully illustrate
the structure of this cohort dataset.
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1.1.2 Properties of a Good Visualisation

With regard the mechanism of the DR visualisation method, it can be straightforward
to infer that the first expected property is that a good DR method for cohort data vi-
sualisation should obtain good point-based visualisation. This means, the user wish
to construct an isometric DR mapping to embed data points so that the similarities or
dissimilarities are perfectly unchanged after DR. However, in reality, it is not possible
to isometrically embed any data with an intrinsic dimensionality more significant than
3 to a 2,3-D space. Methods like MDS, non-metric MDS [3], soft ordinal embed-
ding [116], Isomap and its variations [35, 41, 100, 115] try to retain all the distances
or ordinal information of the dataset. However, as Figure 1.3 shows, for a fairly large
number of data points with relatively high intrinsic dimensionality, the obtained results
mostly do not reflect the original data structure. Compromise is unavoidable. Thus, a
more detailed question related to the property of obtaining good visualisation can be
proposed: What are the main data patterns or structures to preserve in a 2,3-D
spaces?

Most mainstream approaches include these classical techniques of Laplacian eigen-
map (LE) [12], t-distributed stochastic neighbour embedding (t-SNE) [121] and lo-
cal ordinal embedding (LOE) [116], uniform manifold approximation and projection
(UMAP) [90] attempt to preserve a local neighbourhood for each data point. The rea-
son behind this is that the global topological structure of the data can be preserved if the
correct local metric is preserved, which can be approximated by a suitable connectiv-
ity graph of k-nearest neighbours (k-NN). More specifically, the topological manifold
M is defined as a second Hausdorff space where each point on the manifold has a
small local Euclidean region [88]. The assumption of the approximate manifold M

of the unstructured high-dimensional data is to be smooth and locally isometric, thus
the connected graph or simplicial complex generated by k-NN is applied to reconstruct
an equivalent topological representation in the low-dimensional space[60, 81, 88, 90].
Assuming that the reduced dimension is sufficient, there are theoretical guarantees
provided for some local algorithms regarding their isometric mapping capability but
under the assumption that a suitable choice of the neighbourhood size is given [109].

A guidance on neighbourhood size for LOE is larger than O
((

n2 logd n
) 1

d+2

)
if a set

of n data points of dimension d is embedded [116].

To illustrate how sensitive this kind of the algorithms are to the neighbourhood
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(f) LOE k = 80, Ne = 392
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(g) t-SNE kmin = 120, Ne = 213
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(h) UMAP kmin = 60, Ne = 679
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(i) LOE kmin = 150, Ne = 194

Figure 1.4: Embed 2D Flower dataset in 2D space by t-SNE, UMAP, and LOE. The
embedded points with at least one error neighbour in the local neighbourhood iden-
tified by k are highlighted by yellow crosses, and the number of such points Ne is
reported as the 1-nearest neighbour preservation error.
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size k, Figure 1.4 compares three representative techniques: t-SNE, UMAP, and LOE,
using a set of n = 1000 data points of dimension d = 2 (flower dataset), for a small

k = 10, a computed value by k =

⌊(
n2 logd n

) 1
d+2

⌋
= 80, and a tuned k by searching

for the smallest integer that can mostly preserve the correct data shape, referred to as
kmin. Here we embed 2-D data to 2-D dimension spaces, in order to illustrate more
clearly the preservation of the structure and neighbourhood of different embedding
techniques. That is because the unique property of the 2-D data that the figure of the
original dataset can be easily visualised by analysts, which helps to make comparison
and do analysis. Figure 1.4 shows that even using a small synthetic dataset, different
embedding techniques have different k choices. Figure 1.5 also displays embedding re-
sults of 3-D bicycle dataset using t-SNE and UMAP under different k settings. These
are only simple demonstrations for visualising synthetic data points that already show
how hyper-parameter k influences embedding results. In high-dimensional data visu-
alisation, it is difficult to know what the neighbourhood size should be to generate a
reliable visualisation.

Instead of using the large neighbourhood size k to maintain the overall structure
of the dataset, another trend of the visualisation approach is to utilise the property of
the cohort data that each data point has its existing cohort label to display the cohort
structure of the dataset. Many local algorithms have been extended to enhance co-
hort separability so that the between-cohort distance (dissimilarity) is maximised while
the within-cohort distance (dissimilarity) is minimised in the reduced space, such as
supervised LLE [143, 147], supervised t-SNE [27, 53, 91], and supervised UMAP
(s-UMAP) [90]. As explained by Kobak et al. [72] and Mu et al. [92], the draw-
back of these algorithms is that the relative position between the embedded cohorts is
rather random and it can be observed that they are also sensitive to the choice of the
local neighbourhood size. This is illustrated by Figure 1.6, which presents results of
s-UMAP using the same flower dataset as above but for two different runs with two dif-
ferent initialisations in their optimisation (Init1 and Init2) and different neighbourhood
size (10, 80 and kmin).

It can be summarised that generating a good and meaningful visualisation for co-
hort data is not a trivial task. Ideally, it should demonstrate separation between data
cohorts, preserve distances between not only individual data points but also cohorts,
and illustrate some internal cohort structure. Most recent techniques like COVA [92],
At-SNE [39] and PaCMAP [131] have been proposed to preserve both the local and
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(a) t-SNE k = 10 (b) t-SNE, k = 50

(c) UMAP, k = 10 (d) UMAP, k = 100

Figure 1.5: The 3D bicycle dataset is embedded in 2D space by different k settings of
t-SNE and UMAP.
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(a) Init1, k = 10, Ne = 639
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(b) Init1, k = 80, Ne = 748
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(c) Init1, kmin = 300, Ne = 780
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(d) Init2, k = 10, Ne = 635
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(e) Init2, k = 80, Ne = 774
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(f) Init2, kmin = 300, Ne = 779

Figure 1.6: Embed 2D Flower dataset in 2D space by s-UMAP. The embedded points
with at least one error neighbour in the local neighbourhood identified by k are high-
lighted by red crosses, and the number of such points Ne is reported as the 1-nearest
neighbour preservation error.
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the global structure of the dataset. The common idea is to utilise the prototypes or
anchor points or mid-near pairs of neighbours to first capture the cohort structure, and
then refine local neighbouring points. However, COVA fails to maintain the internal
cohort structure, while At-SNE and PaCMAP do not emphasise cohort separation for
visualisation purpose.

To achieve the desired property of producing good visualisation of cohort data, we
propose an ANchor GuidEd Local (ANGEL) algorithm. It is a multi-objective model
that combines the advantage of unsupervised dimensionality reduction approach in
preserving the local neighbourhood with the benefits of maintaining the internal cohort
structure using anchor points. It is designed to provide a better balance regarding local
neighbourhood preservation, cohort localisation and internal structure preservation,
and adjustable cohort separation enhancement in a reduced space.

1.1.3 Visualisation Quality Evaluation

Once a DR algorithm can satisfy all targets of cohort separation, cohort positioning
preservation, and local neighbourhood preservation, it is also essential to measure to
what degree the method satisfies them. Classification accuracy is widely applied to
measure the performance of visualisation algorithms [53, 90, 113]. Mu et al. [92]
proposed the idea of using the 1-nearest neighbour classification rate to examine the
compatibility between cohort memberships and the embedded result, which gives a
reasonable cohort separability measurement. As the most local structure of the dataset
is based on the local neighbourhood preservation, trustworthiness [66, 125, 126] and
the SN score proposed in [92] are introduced to measure the maintenance of k-NN
from high-dimensional space to the target 2,3-D space. However, for visualisation
purposes, it is not necessary to keep every neighbouring point in the exact place, to
retain the minor relaxation around the boundary.

As for the cohort distance preservation, which can also be treated as the global
preservation of the dataset, most data visualisation approaches only discuss the visual
effects of the embedded scatter plots. Only a few recent methods as [103, 131] put for-
ward their measurements on global evaluation. However, they focus more on pairwise
distance comparison over all data samples and do not emphasise the preservation of
the cohort distance.

A new system of evaluation metrics needs to be designed that can take into account
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all three aspects (i.e., separability, local neighbourhood preservation and global cohort
positioning preservation) simultaneously and give convincing results.

1.1.4 Incremental Visualisation

The vast majority of discussed DR visualisation methods operate in a batch mode,
which means that they cannot handle incremental data points, and all the data samples
are required during the embedding process [76]. Once the given data samples are all
embedded in the targeted 2,3-D space, extending the mapping to new data samples
is challenging. Whenever a new data sample arrives sequentially, to obtain a new
embedding result, most of the metric methods like t-SNE and UMAP mentioned above
need to repeat the running of the “batch” version on the “new” dataset, which contains
the newly added data. This process is time-consuming and wastefully discards the
pre-generated embedding results [42, 79].

Figure 1.7: A brief explanation of incremental embedding. Image a shows the batch
embedding result of two data cohorts, namely purple and green cohorts. A new data
sample belonging to the purple cohort comes in Image b. Thus, Image c shows the
results after embedding the new data sample.

A good DR method for cohort data visualisation is expected to possess the ability
of incrementally embedding new data samples. Figure 1.7 shows a brief example of
how incremental embedding works. COVA proposes the COVA-projection algorithms
which map the newly added data sample to the visualisation space by learning para-
metric mapping functions. Similar to the idea of COVA-projection, kernel t-SNE [49]
finds a model-based mapping matrix to embed out-of-sample data. The parametric t-
SNE [118] and parametric UMAP [103] techniques utilise neural networks to train the
batch mode and treat each incoming sample as test data. These extension methods lo-
cate new observations based on the assumption that the batch results are correct. They
may fail if the batch dataset is not uniformly sampled [42].
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Another group of incremental embedding approaches, including incremental LLE
[73], incremental Isomap [76], and progressive UMAP [70], not only process the newly
added data samples but also update the known batch embedding points, to provide
more reliable results. However, as most of these incremental extensions are based on
local metric algorithms, they usually inherit a majority of disadvantage from the origi-
nal methods. Moreover, there is no current research on incremental ordinal embedding
algorithms, which is a research gap that more research needs to be conducted to fill.

1.1.5 Summary

In this thesis, ANGEL algorithm is proposed to have a better balance in local neigh-
bourhood protection, cohort positioning and internal structure protection, and to pro-
vide adjustable cohort separation enhancement in a reduced space. A novel evaluation
approach is also proposed to measure the performance of DR algorithms according
to these properties. The incremental extension of ANGEL is addressed by proposing
a simple but intuitive p-ANGEL and i-ANGEL algorithms. They can save the mem-
ory cost while doing the embedding process and accelerate the computational speed,
making ANGEL more applicable to real-world cohort data visualisations.

1.2 Research Questions, Hypothesis, and Objectives

Considering the research background and the motivations shown in Section 1.1, the
general research question is proposed as “What properties can be expected from a
good DR method for cohort data visualisation?”. Since the strategy of DR algo-
rithms for visualisation is to transform high-dimensional data samples to data points in
2,3-D spaces while preserving the intrinsic structure of the dataset, two questions can
be raised as follows: “What are the main data patterns or structures to preserve in
the 2,3-D spaces?” and “What are limitations and unsolved problems of the recent
DR methods for preserving the data patterns or structures?”.

A comprehensive analysis of the existing DR approaches is required, and their cru-
cial strength and weaknesses of their performance in data structure preservation should
be fully considered and discussed. Then, a question can be raised naturally as “How
could we design a DR method to avoid limitations and to achieve a better perfor-
mance compared with state-of-the-art approaches?”. Another relevant and critical
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question is “How could we measure the performance of a method in preserving the
data patterns or structures?”. To answer these questions, it is required to propose
visualisation algorithms and corresponding measurements based on the properties of
the algorithms. Moreover, the results obtained from the proposed measurement are
expected to satisfy the characteristics of existing state-of-the-art methods at the same
time.

In addition, the problem of big data is recognised as a challenging issue. In many
cases, embedding large dataset is both memory and time consuming. Therefore, a
related question has arisen, “Is that possible to improve the previously proposed
competing DR approach so that it has the potential to process big datasets?”

Moreover, as most popular state-of-the-art methods cannot deal with the new com-
ing data point once the embedding process has been finished, another related question
arises, “Is it possible to extend the previously proposed competing DR methods to
make it potentially feasible to handle incoming data points consistently?”

Based on these research questions, the hypothesis of this thesis can be proposed as
the following:

• The embedded points in the 2,3-D spaces for visualisation purposes should
demonstrate separation between data cohorts, preserve distances between indi-
vidual data points, retain cohort positioning and the cohort’s internal structure.

• The proposed evaluation metric should be able to measure the cohorts’ separa-
tion, distance preservation between data points, and distance preservation be-
tween cohorts.

• The further improved methods should be able to process the large dataset, reduc-
ing both time and memory consumption.

• The further improved methods should be able to process new data points consis-
tently and have the new embedding results satisfy the same properties as the first
hypothesis outlined.

Respectively, the research objectives of this thesis can be divided into the sub-
objectives stated below:

1. Propose a strategy to retain cohort positioning.



1.2. RESEARCH QUESTIONS, HYPOTHESIS, AND OBJECTIVES 33

Similarities or dissimilarities between cohorts can be obtained by applying co-
hort proximity calculation approaches [110, 111] to the cohort data. The posi-
tions of cohorts in the visualisation space should be derived by a global-based
embedding method that preserves most of the information regarding similarities
or dissimilarities retrieved from the high-dimensional space. The generated co-
hort positions should be represented accurately in a position with the respect to
the related cohorts, which is also the basis of preserving the internal structure of
cohorts as shown in Section 4.2

2. Propose a strategy to preserve internal structure of cohorts.

Based on the known cohort label information, anchor-based supervised learn-
ing algorithms [86, 129, 142], Landmark MDS [29], COVA, and At-SNE use
the idea of utilising prototypes or anchor points as the skeleton of the cohorts’
structure. Based on this property of anchor points, corresponding embedded
points should also be generated in the 2,3-D space. The embeddings should
also have the ability to represent most corresponding similarities or dissimilari-
ties between high-dimensional anchor points to preserve the global structure of
datasets. Moreover, the embedded anchor points should also retain the positions
of cohorts. Section 4.3 and 4.4 illustrate how we achieve this objective.

3. Propose a strategy to enhance the separation between cohorts.

Supervised DR approaches for visualisation utilise the cohort label information
to enhancing the separation between cohorts. The basic idea is to enlarge the
dissimilarities of between-cohort data samples and emphasise the similarities of
intra-cohort data samples. As anchor points are applied to control the global
structure of the cohort data, the ability to adjust the degree of separation be-
tween anchor points belonging to different cohorts is required in the process of
embedding. Section 4.4 provides a solution to this objective.

4. Develop an algorithm to simultaneously to achieve the properties of enhanc-
ing separation between data cohorts, preserving distances between individ-
ual data points, and retaining cohort positioning and the cohort’s internal
structure.

Common local embedding algorithms [12, 57, 102, 121] can be employed to
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keep local neighbouring points around each data point. The goal is to simulta-
neously achieve all three aspects (cohort separation, cohort positioning preser-
vation and local neighbourhood preservation) expected from the first hypothesis.
Taking the advantage of the existing multi-objective algorithm from COVA and
PaCMAP, this thesis aims to design an original algorithm to achieve this objec-
tive. In addition, less memory consumption, faster optimisation and accelerated
approximation of the new embedding algorithm should be investigated and de-
signed. Section 4.4.2, 4.5, and 6 show how we set up the model to achieve the
goal and how we improve the model.

5. Develop evaluation approaches to measure the performance of the embed-
ding algorithms for visualisation.

As it is expected that the proposed DR algorithm can achieve three different as-
pects simultaneously, the performance of these three aspects should also be mea-
sured concurrently and quantitatively. The proposed evaluation approach should
be able to balance three numerical scores based on the measurement of cohort
separation, cohort positioning preservation and local neighbourhood preserva-
tion. Section 5 explains the idea of new evaluation techniques.

6. Developing an incremental extension of the proposed DR algorithm for vi-
sualisation.

To incrementally embed newly added data samples, the extension of the pro-
posed DR algorithm should be able to first estimate the similarities or dissimi-
larities between the new data sample and the batch dataset, as well as the rela-
tionship between the new data sample and the generated anchor points. Then,
the embedding point along with the updated batch points should be computed.
Moreover, the result of the incremental extension embedding approach should
not deviate unduly from the result obtained by running the original algorithm
on the whole dataset directly. Section 7 describes our model improvements and
practical solutions.

1.3 Contributions

The main contributions of this thesis are outlined as follows:
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1. The ANGEL algorithm, which is a bi-objective model that combines the local
objective function with the global objective function, is proposed to cope with
the limitations that most state-of-the-art DR approaches have: the inability to
make the embedding results meet the desired expectations (local neighbourhood
preservation, cohort positioning preservation, and cohort separability) simulta-
neously. The proposed algorithm addresses these issues by injecting the global
distance structure into a local ordinal distance structure by controlling a set of
easily generated anchor points for each cohort and the embedded points in 2,3-D
spaces (Chapter 4).

2. A novel evaluation metric was proposed, which provides a quantitative measure
of embedding results and allows comparison of the performance of different DR
methods. Evaluation results confirmed intrinsic characteristics of the existing
algorithms, and illustrated that ANGEL could obtain improved overall perfor-
mance on local neighbourhood preservation, cohort positioning, and separation
compared with state-of-the-art approaches (Chapter 5).

3. Variations of the ANGEL algorithm were proposed to obtain approximate em-
bedding results via novel empirical faster optimisation approaches. In addition,
another variation of ANGEL was also proposed, which substitute the local ob-
jective function with other local metric algorithms, illustrating the feasibility
of applying the ANGEL framework to a popular metric embedding algorithm
(Chapter 6).

4. Two extensions of the ANGEL algorithm were proposed in order to tackle the
following two issues: reducing the memory consumption (p-ANGEL), reducing
the time consumption and enabling the incremental embedding (i-ANGEL). The
experimental results demonstrated the effectiveness of applying p-ANGEL and
i-ANGEL on real-world cohort datasets for the visualisation purpose (Chapter
7).

1.4 Structure of the Thesis

Here is a summary of the rest of this thesis:
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Figure 1.8: Illustration of anchor embedding using the FMNIST dataset.

Chapter 2 reviews the various prior works on DR approaches for data visualisation.
DR methods can be categorised into several groups based on different purposes: lo-
cal neighbourhood preservation, global information preservation, and multi-objective
preservation. Furthermore, a critical discussion on the limitations of the existing works
is provided. The rest part of this chapter gives a systematic review of incremental DR
methods.

Chapter 3 provides a more detailed technical background which facilitates the un-
derstanding of the model proposed in this thesis. In addition, the embedding results of
some classical and popular DR methods are examined here, and the explanations are
given regarding why such methods are used in the proposed model.

Chapter 4 introduces the construction process of the proposed ANGEL algorithm.
It starts with the cohort embedding process to locate the cohort positioning in 2,3-D
spaces. Then anchor points are generated, embedded, and relocated to maintain the in-
trinsic structure of the cohort while preserving the cohort position. Finally, data points
are embedded regarding the relations between data samples and anchor points while
maintaining the local neighbourhood of each data sample, leading to the construction
of the bi-objective cost function. Different optimisation approaches are also discussed
in solving this bi-objective cost function.

Following from Chapter 4, Chapter 5 proposes a novel evaluation metric to mea-
sure embedding results and compare the performance of different DR methods. Ex-
periments are conducted to compare ANGEL with the state-of-the-art algorithms. Fur-
thermore, a parameter study of the ANGEL model is also conducted and discussed in
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this chapter.

Chapter 6 presents variations of the ANGEL model. This chapter is divided into
2 parts. The first part focuses on applying different novel empirical optimisation ap-
proaches to the ANGEL algorithm to obtain fast approximation results. Experiments
are conducted and the results show the advantage of these proposed optimisation meth-
ods. The second part illustrates the feasibility of applying the ANGEL framework to a
popular metric embedding algorithm. The local objective function is substituted with
another local embedding cost function as ANGEL-tSNE. Experiments are conducted
to compare the results obtained by ANGEL-tSNE and ANGEL.

In Chapter 7, the proposed ANGEL algorithm is extended to reduce memory con-
sumption, time consumption, and make it can continuously process the new coming
data samples. The p-ANGEL algorithm targets at reducing memory consumption. The
i-ANGEL is the incremental DR algorithm, reducing the time consumption. Exper-
imental results show the effectiveness of applying p-ANGEL and i-ANGEL to real-
world cohort datasets for visualisation.

Conclusions and future works are presented in Chapter 8.



Chapter 2

Literature Review

Dimension reduction (DR) is a widely used technique in the machine learning field that
reduces the dimensionality of high-dimensional data to a meaningful target space with
minimal information loss. The main focus of this chapter is to review recent research
advances related to DR algorithms for data visualisation.

For data visualisation purposes, the target space is often a 2-D or 3-D (2,3-D)
spaces. To form the question, a high-dimensional data X ∈ Rn×D is considered with
n observations and D features (dimensions), and X̂ ∈ Rn×d represents a set of low-
dimensional points where d = 2 or 3. Each x̂i can be treated as the corresponding
embedding point of the data sample xi obtained by applying DR methods. The general
goal is to find the best X̂ that retains most of the given dataset X’s information.

The manifold learning discusses the DR from another perspective, which assumes
the observed high-dimensional data X to lie on an embedded sub-manifold of the high-
dimensional space [109, 149]. Intuitively, the DR approaches finds the underlying
low-dimensional space of the sub-manifold and recovers the manifold structure of the
X in that low-dimensional space. The classic DR methods focus on linear dimension
reduction and deal with data with the assumption of lying on a linear manifold [76, 88].
The manifold can be visualised as a line, a plane, or a hyperplane, depending on the
number of dimensions involved [88]. Examples include Principal component analysis
(PCA) [135] and multidimensional scaling (MDS) [15]. However, such methods often
fail when dealing with the dataset containing a non-linear structure [114].

38
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Some proposed non-linear dimension reduction methods (NLDR) focus on non-
linear manifold learning problems. The classical NLDR approach, like isometric fea-
ture mapping (Isomap) [115] mainly keeps the global geometry of the non-linear man-
ifold, while locally linear embedding (LLE) [102] seeks to map neighbourhood points
on manifolds to neighbourhood points in lower dimensional spaces [109]. Thus, based
on a similar categorisation idea, we can classify the popular methods into two cate-
gories, often referred to as local and global approaches. The crucial difference be-
tween the two categories is whether the algorithm aims to preserve the local or global
structure of the high-dimensional dataset.

In general, approaches that focus on local structure preservation seek to preserve
the neighbours of each point in a high-dimensional dataset when embedding the dataset
in a 2,3-D space, and this can be achieved with the preservation of distance informa-
tion or ordinal information among neighbours. To supplement this, neighbourhood
points are a group of points that are small in distance or ordinal ranking from the target
point and are all within a given range. As the approach focuses on global structure
preservation, it will place equal importance on its purpose of preserving distances or
ordinal relationships between the target point and more distant points from the target
point. In addition, for the visualisation of cohort data, the global approach will focus
more on preserving distances between cohorts instead of distances on points.

There are many DR approaches to conducting research in these two directions, and
both have led to awe-inspiring achievements. Recent research works will also address
both directions, implementing as much functionality as possible. This chapter reviews
each of them in Section 2.1, 2.2 and 2.3. Since our proposed DR algorithm does not
give the preliminary manifold assumption of the X, we will not involve mathematical
terminology of the manifold learning. However, this will be involved in the future
direction of our theoretical analysis of our proposed approach.

The methods will be discussed in both directions have a common disadvantage:
they are necessarily only applicable to the batch mode. This means that these methods
only work for a fixed set of data samples but do not support progressively increase the
novel data samples. There have been many attempts to develop incremental algorithms
based on their batch mode. Section 2.4 offers an overview of incremental DR methods.
These studies offer great theoretical support and assistance.
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Category Metric Embedding Ordinal Embedding Supervised Embed-
ding

Description Preserving metric
distances between
data samples in the
target 2,3-D spaces

Preserving ordinal
information derived
from data samples
in the target 2,3-D
spaces

Utilising cohort la-
bel information to
help to enhance the
separation of the em-
bedding results

Strength Straightforward and
easy to implement

Do not rely on ex-
plicit input represen-
tation or similarity
calculation

Enhance cohort sep-
aration, make co-
horts to be better
identified

Weakness Parameters and initialisation need to be
carefully selected, loss of global struc-
ture

Loss of local neigh-
bourhood preserva-
tion

Methods LLE [102], LE [12],
LMDS [24], SNE
[57], t-SNE [121],
EE [22], LargeVis
[113], UMAP [11],
LDP [54], etc.

STE [123], t-STE
[123], LOE [116], t-
ETE [5], etc.

Supervised LLE
[128, 143, 147],
supervised t-SNE
[27, 53, 68], Su-
pervised UMAP,
SLE-ML [112], etc.

Table 2.1: Overview of approaches focusing on local structure preservation

2.1 DR Methods for Local Structure Preservation

One primary approach of DR for data visualisation is the preservation of the local
structure of the dataset. The most straightforward way is to maintain the relations be-
tween the target data sample xi and its nearby data samples. Such relations can be
categorised in the following directions: the distance and the ordinal ranking between
data samples, as displayed in Table 2.1. The main difference between these two di-
rections is whether they utilise an explicit similarity calculation during the embedding
process. The metric DR methods will be reviewed in Section 2.1.1 and ordinal DR
methods in Section 2.1.2.

Since DR approaches reduce the dimensionality of the high-dimensional dataset
sharply to the 2,3-D spaces, attempting to represent the neighbourhood relationships
in 2,3-D spaces that one desires to retain may result in mutual coverage between data
cohorts. Supervised DR methods are proposed to enhance cohort separability and
identify data cohorts better. Section 2.1.3 reviews the supervised extensions developed
based on the popular DR visualisation method.
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2.1.1 Local Metric Preservation Approaches

A straightforward way to preserve the local metric relationships between data sam-
ples is to preserve the coordinate relations between the target data sample xi and its
surrounding neighbourhood points. Locally linear embedding (LLE) [102] analysed
the local symmetries of the dataset to discover nonlinear structure in high dimensional
data and proposed a linear reconstruction idea for constructing 2,3-D embedded points.
The strategy of this algorithm is to reconstruct every data sample as a linear combina-
tion of its nearest neighbours. Thus, each embedded point x̂i is found to be the best
2,3-D representations retaining the linear combination weights derived from the high-
dimensional space. However, it may suffer from ill-conditioned eigen-problems and is
sensitive to noise and control parameters [23].

The modified locally linear embedding (MLLE) [145] was proposed as an exten-
sion of LLE, which tries to overcome these drawbacks. It works by introducing mul-
tiple linearly independent weight vectors for each point in the reconstruction process.
Hessian Eigenmaps [32] is also a variant of the LLE algorithm. Hessian Eigenmaps
applies the LLE strategy but used the Hessian matrices.

Laplacian Eigenmaps retain the local data structure by keeping the similarities be-
tween neighbouring data samples xi and x j. The similarity can be the Euclidean dis-
tance calculated between the high-dimensional data samples and weighted by kernel
functions that emphasise the similarity of close samples. Then, the embedded x̂i will
be constructed to maintain the relative position of neighbouring points based on these
weighted similarities. However, it emphasises samples in the local vicinity and pays
less attention to distant samples. Recently, Local linear laplacian Eigenmaps (LLLE)
[83] combined the idea of the LLE and LE to enhance the robustness and improve the
local structure preservation. Local distances preserving (LDP) [54] is also proposed,
aiming at preserving local distances inspired by LE and LLE.

Local multidimensional scaling (LMDS) [24] was proposed as a local extension of
the classical multidimensional scaling (MDS) approach, which is a global method that
will be discussed in Section 2.2.1. The LMDS algorithm restricts the stress function
to neighbouring points which share small distances. It also inherits the generality of
the MDS that the metric distance will be directly preserved by embedded points in the
2,3-D space. However, when dealing with the real-world dataset, keeping the actual
distance calculated in the high-dimensional spaces is difficult to achieve at the same
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time.

Stochastic neighbourhood embedding (SNE) [57] and t-distributed stochastic neigh-
bor embedding (t-SNE) [121] converts metric distances between samples into proba-
bility distributions. The goal is to create the 2,3-D representations by minimising the
similarity of the probability distributions of the high and low dimensional space us-
ing the Kullback-Leibler convergence function. SNE applies Gaussian distribution in
both high-dimensional space and 2,3-D spaces. At the same time, t-SNE utilise the
Gaussian distribution in the high-dimensional space and the student-t distribution in
the 2,3-D spaces. SNE suffers from asymmetric loss function and crowding prob-
lems, and t-SNE can be seen as a successful extension of SNE, which handles these
problems.

The t-SNE approach has inspired numerous further studies and discussions. Arora
et al. [8], Kobak et al. [71], and Wattenberg et al. [133] gives discussions on the
effective usage of t-SNE, and also gives an analysis of the intrinsic strategy of the
algorithm. Elastic embedding (EE) [22], which combined the idea of SNE with the
idea of LE, was proposed to enhance the robustness of the SNE embedding results.
LargeVis [113], viSNE [7], BH-SNE [120], and FIt-SNE [82] have further improved
t-SNE to accelerate the convergence and offer a better fit to larger datasets.

Uniform manifold approximation and projection (UMAP) is another popular local
metric DR approach proposed in recent years. It use a similar strategy as t-SNE, as
it first constructs a weighted graph of nearest samples where weights denote proba-
bility distributions. It then optimises the graph layout in the low-dimensional space
based on the known graph derived from the high-dimensional space. UMAP is proved
to perform well on biometric data visualisation [10, 11, 33]. However, both t-SNE
and UMAP have their disadvantages in sensitivity to hyper-parameter selection and
initialisation of the algorithm [72].

In general, these DR approaches focus on local structure preservation. They can
be applied to the cohort dataset with label information and unlabelled data samples.
Section 3.1 gives a technical description of the t-SNE method, which facilitates the
proposed ANGEL variations on other local metric embedding strategies.
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2.1.2 Local Ordinal Preservation Approaches

Ordinal embedding is a kind of DR problem without an explicit input representation of
given data samples, or a similarity function between pairs of items [124]. For example,
for multimedia data, it is difficult for people to give a mathematical description of
music in order to state whether they think two songs are similar or not. Despite, they
can provide their inference that song A is more similar to song B than song C. Such
comparison formulates the basis of the ordinal embedding; that is, given a set of triplets
(i, j, l), each refers to the comparison relationship that xi is closer to x j than to xl , the
goal is to find a set of 2,3-D points which satisfies as many of these triplets as possible.

Stochastic triplet embedding (STE) [123] and t-distributed stochastic triplet em-
bedding (t-STE) [123] are proposed to handle the ordinal embedding problem with
reference to the strategies of SNE and t-SNE. They introduce the probability of mea-
suring whether the distance between the embedded points satisfies the corresponding
triplet and then maximising the sum of log probability over all triplets. Violations of
nearby points are emphasised during this process. STE adopts the Gaussian distribu-
tion, and the t-STE utilise the heavy-tailed student-t distribution.

The t-exponential triplet embedding (t-ETE) [5] inherits the heavy-tailed property
of t-STE but proposes a transformation part to reduce the sensitivity to noisy triplets.
The recently proposed Trimap [6] assigns weights to target triplets to reflect the rela-
tive similarities using the embedded points. Trimap also introduces a triplet selection
process where triplets with closer point x j belong to the set of nearest-neighbours of
the point xi and the distant point xk is among the farthest points of xi and chosen uni-
formly at random. This selection process also shows that it places more priority on
preserving neighbourhoods.

Local ordinal embedding (LOE) [116] was proposed to make comparisons between
data samples much easier and focuses more on local neighbour preservation. It sim-
ply interprets the triplet (i, j, l) as x j belongs to the neighbourhood of xi while xl is
not. The number of triplets is reduced, which accelerates the optimisation process.
Moreover, the neighbourhood preservation strategy gives a more accurate view of the
neighbourhood graph as local metric DR approaches, which is easier to construct and
compare with metric DR methods.

The technical detail of the LOE method is given in Section 3.3, which facilitates
the proposed model of the local metric preservation. In addition, Section 4 will explain
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the strategy of applying the LOE algorithm to the ANGEL model.

2.1.3 Supervised DR approaches

Traditional DR methods for visualisation usually process the data without considering
the label information. However, in many real-world cases, these popular approaches
may not be beneficial because of the overlapping between different data cohorts when
the dimensionality of the data samples has been significantly decreased. Therefore,
introducing label information to DR methods can improve the separation between data
cohorts, making the embedding results easier to identify. Moreover, because of the
enhanced separability, the supervised DR method also improves the classification ac-
curacy, leading to more applications in the machine learning field [53].

The main difference between supervised and unsupervised DR techniques is whether
to conduct the step of deriving similarity or dissimilarity between data samples. In-
stead of directly using distance measurements like Euclidean distance, dissimilarity
measures applied in supervised DR approaches enforce the same class data samples
to be close and different class data samples to be far away [52]. After obtaining the
dissimilarities, the rest of the embedding process is the same for both unsupervised
and supervised DR methods.

There are many supervised locally linear embedding (SLLE) [128, 143, 147] pro-
posed as extensions of LLE aiming at classification problems, as well as the Super-
vised Laplacian Eigenmaps for multi-label datasets (SLE-ML) [112]. The goal is to
find the embedding separating a within-cohort structure from a between-cohort struc-
ture [143]. The core idea is to introduce a scale parameter that controls how faithfully
the data sample xi and x j belong to the same cohort. In other words, if xi and x j belong
to a different cohort, the distance between xi and x j would not change. However, if
xi and x j belong to the same cohort, then the similarity is enhanced by multiplying a
scaling parameter.

A similar idea can be applied to the t-SNE algorithm, developing a set of super-
vised t-SNE approaches [27, 53, 68]. The supervised UMAP1 also aims at capturing
the structure of the high-dimensional dataset. However, enhancing the intra-cohort
data relations will change the original similarity between data samples. Therefore, the
embedding result derived by a supervised version of the local DR method could not

1https://umap-learn.readthedocs.io/en/latest/supervised.html
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Category Metric Embedding Ordinal Embedding
Description Aim to preserve metric

distances between all data
samples in the target 2,3-
D spaces

Aim to preserve all ordinal
information derived from
data samples in the target
2,3-D spaces

Strength Retain the overall structure of the high-dimensional
dataset

Weakness
Huge Time consumption

Low local neighbourhood preservation, overlapping
between cohorts

Methods MDS [15], Isomap [115],
LTSA [146], PySef [95],
etc.

GNMDS [3], SPE [106],
Partial Order embedding
[89], SOE [116], etc.

Table 2.2: Overview of approaches focusing on global structure preservation

represent the real structure of the dataset. Doubly supervised t-SNE [68] was proposed
to highlight both the pre-given class information and the original intrinsic structure of
the cohort.

The supervised DR approach focuses more on enhancing the separability between
cohorts, so the cohort’s position is somewhat random. Moreover, local neighbourhood
preservation also drops as a sacrifice since it changes the similarity between data sam-
ples.

2.2 DR Methods for Global Structure Preservation

Compared to the local preservation approach, which only preserves neighbourhood
information, the global preservation approach prefers to maintain the relationships be-
tween all points in the dataset. The global metric techniques aim to keep all the metric
distances, while the global ordinal approach holds all ordinal information. These meth-
ods are reviewed in the following sections and summarised in Table 2.2.

One classical DR approach which has not been mentioned in Table 2.2 is principal
component analysis (PCA) [135]. It is a linear mapping technique that projects all data
samples along the axis with the largest variance of the dataset. However, real-world
datasets such as Coil20 [17, 18] have complex intrinsic structures, leading to the failure
of PCA to project data samples in 2,3-D spaces. In most cases for data visualisation,
PCA is often applied as a pre-processing step to obtain the initialisation of the local



46 CHAPTER 2. LITERATURE REVIEW

DR methods [72].

2.2.1 Global Metric Preservation Approaches

Multidimensional scaling (MDS) refers to a group of classical dimension reduction
techniques which are based on the aim of distance preservation [77]. Classical MDS
[15] preserves the original Euclidean distance between all pair-wise high-dimensional
data samples in the target 2,3-D spaces. Variants for MDS are often based on different
metric distance calculations. To reduce the matrix computation complexity, landmark
MDS [29] is one of the early works that apply landmark points (anchor points) on
embedding problems. This two-phase approach utilises landmarks to process large-
scale datasets. It first embeds the landmarks and then embeds data points based on the
transformation between data samples and landmarks. However, as a linear approach,
MDS has limited capacity to capture the structure of the nonlinear datasets.

As for topology considerations, Isomap [115] replaces the Euclidean distance in
MDS with a geodesic distance to reveal the global structure of the dataset, trying
to assemble local geometry properties learned from the data. In other words, pair-
wise geodesic distances between data samples are calculated by applying the shortest
path algorithm through the k-Nearest neighbour graph constructed using Euclidean
distance. Further studies on Isomap [9, 35, 41, 100] discuss and enhance the topol-
ogy preservation in the low-dimensional space. Many supervised Isomap extensions
introduced in [44] are also proposed to enhance the cohort separability by enlarging
between-cohort dissimilarity compared with within-cohort dissimilarity. Li et al. [78]
improves the supervised Isomap by reducing the sensitivity to noise data, and Zhang et
al. [144] introduces labelled data with unlabelled data as a semi-supervised extension
of Isomap.

Local tangent space alignment (LTSA) [146] proposed that a local tangent space is
constructed for each data point, and a global low-dimensional embedding is obtained
by affine transformation of the local tangent space. It starts with the local information
extraction but ultimately preserves the local geometry as much as possible in the global
coordinates of the embedded points.

PySef [95] further learns the dataset’s global structure through a similarity matrix,
which is formulated using data annotations. It defines the general similarity frame-
work and can derive many existing DR approaches like MDS or generate a novel DR
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approach by appropriately setting the target similarity matrix.

In general, global metric approaches preserving pairwise distances or similarities
between all data samples. However, they have a significant loss in terms of neighbour-
hood preservation. Moreover, they do not handle high data dimensionalities and a large
number of data points well when drastic dimension reduction (to 2,3 D) is required.

2.2.2 Global Ordinal Preservation Approaches

Instead of retaining all metric distances between data samples, global ordinal preser-
vation approaches preserve all ordinal (ranking) information derived from the high-
dimensional dataset. As described in Section 2.1.2, ordinal DR methods aim to find
a 2,3-D embedding that satisfies the known triplets or quadruples that stores relations
between data samples.

The optimisation problem of the general OE method was first proposed by [75,
107, 108]. Generalized non-metric multi-dimensional scaling (GNMDS) [3] proposes
a semi-definite program to solve the ordinal embedding problem based on the given
set of triplets. The embedding result is optimised over the generated Gram matrix.
However, it could not handle large datasets due to the computational complexity.

Structure preserving embedding (SPE) [106] focuses on preserving the global topol-
ogy structure of the high-dimensional dataset. If connectivity algorithms, such as k-
nearest neighbours, can easily recover the edges of the input graph from the coordi-
nates of the nodes only after embedding, then the topology is preserved. Thus, SPE
captures the connectivity of the graph of the input dataset, and finds the 2,3-D points
to reveal the same properties. More applications such as [37] and [137] utilise the net-
work nodes to learn the global topology, which also offers inspirations for topology
preservation.

Partial order embedding [89] utilises the set of quadruples to formulate the relations
between data samples. Similarly to the triplet discussed in Section 2.1.2, quadruples
can be constructed as (i, j,k, l) where sample xi and x j are more similar than sample
xk and xl . The term “Partial Order” means that this set of quadruples satisfies the
properties of a partial order: transitivity and antisymmetry.

Following the quadruple construction, soft ordinal embedding (SOE) [116] is used
to preserve the global structure of the data. The technical detail of the SOE algorithm
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will be discussed in Section 3.2.

Global ordinal approaches suffer from vast time consumption when applied to large
real-world datasets. Applying them to a smaller number of data points is more appro-
priate and gives promising results. The SOE takes advantage of retaining the cohort
relations in the target 2,3 space, which is explained in detail in Section 3.2 and 3.3.

2.3 Multi-objective DR Methods

Instead of solely considering the dataset’s local or global structure, several studies
explore different methods for multi-objective purposes. For example, one direction
of the multi-objective DR problem, which will be discussed in this section, aims at
preserving the local neighbour structure and the cohort relations simultaneously during
the embedding process. The expected embedding result should possess both properties.
However, in most multi-objective cases, a trade-off is unavoidable. Therefore, specific
parameters can be adjusted, then the final result will satisfy the expectation.

Several DR approaches adopt the multi-objective property to improve information
extraction from the dataset. For example, Jiang et al. [63] combines PCA and LE
to achieve robustness of correct manifold information. Abeo et al. [1] incorporates
local graphs with PCA to preserve global and local structures. Another work proposed
by Abeo et al. [2] employs multiple manifold embedding methods and a noise-free
penalty weight PCA approach. However, they are not targeted for data visualisation
purposes.

COVA [92] is among the leading approaches that combine local graph embedding
with consideration of global cohorts. It uses prototypes to represent cohorts to control
the cohort separability and arrangement in the low-dimensional space. First, the dis-
tance between data samples and the closest prototype can be calculated. Then, each
data sample mapped in the target 2,3-D space is distributed approximately around the
corresponding prototype to preserve the data-prototype distance. This forms the first
objective of the COVA algorithm, which refers to the global structure preservation of
the cohort data. The other aim is to retain the local neighbourhood of each data sample.
The control parameters serve to govern the trade-off between the two objectives.

Anchor-t-SNE (AtSNE) [39] is a recent approach that attempts to balance the
preservation of the local and global data structures for visualisation. It utilises cluster
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Category Out-of-sample Map-
ping Methods

Progressively Incre-
mental methods

Neural network
methods

Description Use Kernel func-
tions to generalise
the embedding of
the new sample

Embed new points
along with updating
the known results

Apply the neural
network to learn the
mapping weights

Strength Straightforward and
easily for calculation

Past embedding re-
sults could be up-
dated

Stronger learning
capacity

Weakness Not accurate embed-
ding result

Time-consuming to
process many new
samples

Training time, de-
sign of the neural
network

Methods Out-of-sample
extensions for
LLE[13, 148],
ISOMAP [13, 25],
LE [13], Kernel
t-SNE [48, 49],
bi-Kernel t-SNE
[141]

Incremental LE
[62], Incremental
LLE [73], Incremen-
tal Isomap [42, 76],
Incremental LTSA
[87], Progressive
UMAP [70]

Parametric t-SNE
[118], Parametric
UMAP[103]

Table 2.3: Overview of Incremental DR methods

centres to pull the data points around them to have control of the global data structure.
However, it does not emphasise cohort separation, and is also time-consuming that
requires GPU support.

Pairwise controlled manifold approximation projection (PaCMAP) [131] optimises
the embedding points using three kinds of pairs of data samples: neighbour pairs, mid-
near pairs, and farther pairs. PaCMAP utilises the attractive force on mid-near points
and repulsion force on farther pairs to preserve the global structure of the dataset, and it
restores the local neighbourhood via neighbour pairs. Weight parameters were applied
to balance three loss functions built on these three groups of pairs.

Inspired by these algorithms, the multi-objective model ANGEL is proposed in
Section 4. It also applies the anchor points strategy to maintain the global and local
structure simultaneously. Variations of the ANGEL model are shown in Section 6.
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2.4 Incremental DR Methods

The DR methods discussed above share a common drawback: they are essentially only
applicable in batch mode. This means that these methods are only feasible for a fixed
set of data samples but do not support the gradual arrival of new data samples. For
example, when a new data sample xn+1 arrives, the Isomap approach needs first to
reconstruct the distance matrix based on the new dataset Xn+1 ∈ R(n+1)×D, and then
process the embedding points using the new distance matrix. Running the entire algo-
rithm repeatedly for newly arrived data samples is both time-consuming and discards
the previous results [42, 79].

The incremental DR methods are developed to handle the streaming data [76],
with an additional ability to visualise the gradual change of the embedding result [79].
Table 2.3 presents summary of some recent popular incremental DR methods. In-
cremental algorithms can be roughly categorised into three groups [42, 79]: out-of-
sample mapping methods, progressively incremental methods, and the neural network
method. The out-of-sample mapping methods and neural network methods belong to
the parametric embedding category, while the progressively incremental methods are
non-parametric [49].

The parametric approach relies on an explicit mapping function to project the high-
dimensional data to the target 2,3-D space [46]. Classical parametric includes PCA
[135], Kernel PCA [104], and Auto-encoder network [58]. Section 2.4.1 will review
out-of-sample mapping methods with kernel tricks. Neural network methods, which
are related to the auto-encoder application, will be reviewed in Section 2.4.3.

The non-parametric approach takes a cost function approach to optimise the low-
dimensional data directly. Many popular algorithms belong to this category, such as
LLE, t-SNE, and UMAP enjoying larger flexibility of embedding [46]. Section 2.4.2
will review the non-parametric progressively incremental methods.

2.4.1 Out-of-sample Mapping Methods

The main assumption of the out-of-sample mapping methods is that all the known
results are correct [42]. Thus, a kernel trick can generate an approximate projection
function based on the known results.

Bengio et al. [13] is an early piece of work discussing the out-of-sample extension



2.4. INCREMENTAL DR METHODS 51

for MDS, LE, Isomap, and LLE. These non-parametric approaches are redefined in the
Kernel PCA framework [105] and the Nystrom approximation is employed [97, 122].
Similar extensions for Isomap are also proposed in [25].

Kernel t-SNE [48, 49] proposed that an explicit solution can be derived from a
simple interpolation given a fixed sample set of projected points. The mapping function
is solved by minimising the distance between the projection of the newly coming data
sample and all existing embedded points. Furthermore, Fisher Kernel [47, 96] is also
applied to improve the projection result while considering the cohort label. Bi-kernel
t-SNE [141] is proposed based on kernel t-SNE and PCA to overcome the drawback
of kernel t-SNE regarding outlier projection.

Although the out-of-sample mapping method can process the new data sample in a
linear time [48, 49, 141], it fails to improve the existing results if the new sample could
change the neighbourhood of some samples, or even the structure of the dataset.

2.4.2 Progressively Incremental methods

The main idea of progressively incremental methods is to embed the new points and
update the existing result simultaneously. Similar to the batch approach, relations be-
tween the new sample xn+1 and the batch set X should be derived first, and then the
overall embedding can be updated based on the new relations. However, progressively
incremental methods do not optimise all the points, but update points that the new point
has influenced, as well as the new point itself.

Incremental LE [62], Incremental LLE [73], Incremental Isomap [42, 76], Incre-
mental LTSA [87] and Progressive UMAP [70] all begin with the update of the k-NN
graph. Points whose neighbours have been changed due to the new sample can also be
observed during this process. Then the optimisation function can be constructed based
on different embedding strategies to optimise the position of the new point and the up-
dated points. Compared with the out-of-sample mapping methods, the progressively
incremental methods can give more credible results [42].

However, progressively incremental methods could only process one new point per
running. If the number of new points increases, the total cost of the time complexity
will be high as the process needs to be repeated many times. Moreover, noisy data may
destroy the overall structure of the embedding result.
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2.4.3 Neural Network Methods

It is a significant branch of DR methods that applies auto-encoder neural networks to
obtain the low-dimensional embeddings. Neural network DR methods are widely used
in feature extraction and classification fields [26, 69, 127, 130, 138].

Parametric t-SNE [118] and Parametric UMAP [103] utilise the auto-encoder neu-
ral network to process the newly coming data samples. They rely on the basic property
of the neural network that the projection of the new data sample can be treated as a test
result, putting the new data sample as the test sample of the network. The weight of
the network is trained by the batch dataset and embedding result of the batch dataset.

Although neural networks are widely applied in real-world applications, they do
not tend to produce accurate visualisations of the high-dimensional dataset [131].
Moreover, training the network requires amounts of time and many data samples,
which may not suitable for simply visualising the data. This thesis will not involve
neural network applications, but it is still an attractive future direction to investigate.

2.5 Chapter Summary

This chapter presents an overview of research topics related to DR approaches for
data visualisation. Each section summarises a group of DR methods with a similar
embedding strategy. Section 2.1 and Section 2.2 describes approaches targeting at pre-
serving local and global structure, respectively. Section 2.3 introduces multi-objective
approaches for satisfying several purposes simultaneously. Section 2.4 provides an
outline of incremental DR methods. Brief analyses of the research gaps of the existing
DR works for cohort data visualisation are also presented in this chapter.



Chapter 3

Technical Background

In this chapter we provide the technical background to the remainder of this disser-
tation to facilitate readers’ understanding of chapters that follow. We provide infor-
mation on several data visualisation approaches that form the basis of our proposed
algorithms.

Following the previous definition of the problem discussed in Section 2, we use
X = {x1,x2, . . . ,xn} ∈Rn×D to denote the original dataset, for which we aim to find an
embedding matrix X̂= {x̂1, x̂2, . . . , x̂n}⊂Rn×d , where d = 2,3. Each xi = [xi1, . . . ,xiD]

T

corresponds to a data pattern (or called object, sample) characterised as a point in a
high-dimensional space RD; each x̂i = [x̂i1, x̂i2, . . . , x̂id]

T stores the coordinates of an
embedded point; n denotes the number of points. We use 0n and 1n to denote the
n-dimensional column vectors with all elements equal to 0 and 1, respectively, while
0n×m and 1n×m the zero and one matrices with n rows and m columns. In denotes an
identity matrix of size n.

3.1 t-SNE Algorithm

The t-distributed stochastic neighbour embedding (t-SNE) algorithm [121] converts a
high-dimensional dataset into 2,3-D data points, where nearby points refer to similar
objects, and distant points represent dissimilar samples. The primary strategy is to
define a probability distribution P to measure the similarity among samples in the high-
dimensional space. Then, a similar probability distribution Q is constructed over data
points in the 2,3-D space that the Kullback-Leibler (KL) divergences between qi j and
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pi j over all data points are minimised. Each pi j and qi j refer to the pairwise similarity
between data points in the high-dimensional space and 2,3-D space, respectively.

Mathematically, the conditional probability p j|i is defined as

p j|i =
exp(−∥xi−x j∥2/2σ2

i )

∑k ̸=i exp(−∥xi−xk∥2/2σ2
i )
, (3.1)

which can be explained as a Gaussian distribution centred at sample xi. Each p j|i is
the probability that sample xi would pick sample x j as a neighbour if neighbours are
picked in proportion to the probability density. Note that pi|i = 0 and ∑ j p j|i = 1.
Define the joint probability pi j to be the symmetrized conditional probability as

pi j =
p j|i + pi| j

2n
, (3.2)

where pii = 0, pi j = p ji, and ∑i, j pi j = 1. Thus, the probability distribution P can
be seen as the joint probability distribution over pairs of data points in the high-
dimensional space. The variance of the Gaussian distribution σi can computed by a
binary search on a defined perplexity function

Perp(Pi) = 2−∑ j p j|i log2 p j|i. (3.3)

Another choice of the σi value can be a user-given fixed number [57]. The user-
defined perplexity Perp(Pi) can be interpreted as a measure of neighbours of the sam-
ple xi. A smaller perplexity indicates the probability concentrated heavily on the near-
est neighbours of samples [119].

In the 2,3-D space, t-SNE employs the Student t-distribution with one degree of
freedom as

qi j =
(1+∥x̂i− x̂ j∥2)−1

∑k ̸=l(1+∥x̂k− x̂l∥)−1 (3.4)

and set qii = 0. The cost function that minimises the KL divergence between P and the
student-t based joint probability distribution Q is given as

C = KL(P||Q) = ∑
i

∑
j

pi j log
pi j

qi j
, (3.5)
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where the gradient of the KL divergence is given by

∂C
∂x̂i

= 4∑
j
(pi j−qi j)(x̂i− x̂ j)(1+∥x̂i− x̂ j∥2)−1. (3.6)

The embedded points {x̂i}n
i=1 can be solved by applying gradient descent method.

Every iteration is

∆x̂(t)i :=−η
∂C
∂x̂i

+α(t)∆x̂(t−1)
i ,

x̂(t)i := x̂(t−1)
i +∆x̂(t)i ,

(3.7)

where the momentum α(t) is used for faster and better convergence [98]. η is the
learning rate that is a positive small constant (η = 0.1) and it can be updated during
the optimisation process [61].

3.2 Soft Ordinal Embedding Algorithm

The SOE algorithm [116] is a typical and efficient ordinal embedding method. It has
a nice feature of preserving both the ordinal structure and the density structure of the
data. Moreover, comparing with other ordinal embedding approaches, SOE is among
the best performing methods for preserving the local neighbourhood of the data [124].
The strategy is to construct the embedded data by enforcing ordinal constraints derived
from the original data samples.

Given a quadruple of data samples (xi,x j,xk,xl), the ordinal constraint of the
quadruple is settled as

If D(xi,x j)< D(xk,xl), then D̂(x̂i, x̂ j)< D̂(x̂k, x̂l). (3.8)

Here D(·, ·) denotes the distance or similarity between two data samples in the original
space, while D̂(·, ·) denotes the distance in the embedded space. As for visualisation,
we consider using Euclidean distance in the embedded 2,3-D space. However, the
distance/similarity calculated in the original space can be measured by different tech-
niques. In the non-metric embedding setting, the value of D(xi,x j) is unknown but the
distance order reflected by the left inequality of Eq. 3.8 is known. The quadruple set,
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as

ΓSOE(X) =
{
(i, j,k, l)|D(xi,x j)< D(xk,xl), i < j, k < l

}
, (3.9)

stores the full distance order obtained in the original space. SOE finds the embedding
coordinates by solving the following optimisation problem:

min
{x̂i}n

i=1
∑

(i, j,k,l)∈ΓSOE(X)

max2 [0, D̂(x̂i, x̂ j)+δ− D̂(x̂k, x̂l)
]
, (3.10)

where max(·, ·) returns the larger one between the two input numbers, and δ > 0 con-
trols the embedding scale.

A simple way to obtain the optimum {x̂i}n
i=1 is the line search gradient descent.

Since the objective function is built on a set of triplet, the update of each x̂i can be
treated as a sum of the gradient of the main function max2 [0, D̂(x̂i, x̂ j)+δ− D̂(x̂k, x̂l)

]
over a subset of quadruples which contains xi.

Alternatively, as proposed by Terada et al. [116], the problem can be solved by
minimising a majorizing function derived from the objective function in Eq. 3.10 [50].
However, compared with line search gradient, the majorizing function based optimi-
sation for SOE requires calculation on huge matrices, which may cause unexpected
memory and time consumption.

The potential number of ordinal constraints employed by SOE is of the order O(n4),
and it becomes computationally very costly when the data size n increases.

3.3 Local Ordinal Embedding Algorithm

Local ordinal embedding (LOE) [116] is a local variation of SOE, which considers
only the k-NNs of each object to formulate the ordinal constraints:

If x j ∈ k-NN(xi) and xl /∈ k-NN(xi), then D̂(x̂i, x̂ j)< D̂(x̂i, x̂l). (3.11)

The triplet set of ordinal constraints is settled as

ΓLOE(X) =
{
(i, j, l)|x j ∈ k-NN(xi),xl /∈ k-NN(xi)

}
. (3.12)
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(a) SOE, Ne = 23 (b) Isomap, k = 40, Ne = 188 (c) LOE, k = 10, Ne = 76

(d) t-SNE, k = 10, Ne = 98 (e) LOE, k = 60, Ne = 188 (f) t-SNE, k = 60, Ne = 216

Figure 3.1: Embed 2-D concentric circles in a 2-D space. The embedded points with
at least one error neighbour in the local neighbourhood of size k are highlighted by red
crosses, and the number of such points Ne is reported.

The similar optimisation problem as Eq. 3.10 is solved by LOE, but replacing the
quadruple set ΓSOE with the triplet set ΓLOE

min
{x̂i}n

i=1
∑

(i, j,l)∈ΓLOE(X)

max2 [0, D̂(x̂i, x̂ j)+δ− D̂(x̂i, x̂l)
]
. (3.13)

Terada et al. [116] also proposed the majorization algorithm to optimise the LOE
update x̂i. Similar line search gradient descent utilised in SOE can also be applied to
LOE.

LOE significantly reduces the required number of ordinal constraints to kn(n− k)

and is computationally much cheaper.

In Figure 3.1, we compare LOE with SOE and Isomap both of which approximate
isometric embeddings, and with t-SNE which is a local neighbourhood preservation
algorithm like LOE. A set of n = 500 data points are sampled from 2-dimensional
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concentric circles (200 points from the inner circle and 300 from the outer one), and
they are embedded into a 2-D space. SOE generated the best embedding but took over
2 hours to produce the result, while the other methods took seconds or minutes. Isomap
requires k ≥ 35 to construct a fully connected neighbour graph for geodesic distance
estimation. LOE requires k ≥ 55 and t-SNE k ≥ 60 to recover the concentric circle
shape. Regardless of whether LOE is able to recover the global structure of concentric
circle, it is fairly robust in preserving a local neighbourhood structure, offering the
lowest neighbour preservation error Ne (see figure caption for error definition). This
encourages us to use LOE as a local component in ANGEL.

3.4 Local Anchor Embedding Algorithm

The usage of anchor points has been widespread in graph-based semi-supervise learn-
ing [86, 129, 142]. In data visualisation, Landmark MDS [29] is the early work using
landmark points (anchor points) on embedding problems. This two-phase approach
utilise landmarks to reduce the computation of the large-scale dataset. COVA [92],
and AtSNE [39] are recent research focusing on applying anchor points as the global
structure representation of the dataset.

The idea is to generate a small set of data points to roughly represent a data dis-
tribution or a graph structure, e.g., by using a clustering algorithm and computing the
cluster centres. These points are referred to as the anchor points, each denoted by
ui ∈ RD, and they are stored in anchor point matrix U = {u1, . . . ,um} ⊂ Rm×D.

The connection between anchor points and data points is the key point to be con-
structed. Inspired by LLE [102], local anchor embedding (LAE) [86] attempts to ap-
proximate each observed data point xi by a convex combination of its t-nearest anchor
points (t-NAP). Let wi = [wi1,wi2, . . . ,wim]

T denote the combination weights for recon-
structing the i-th data point, and W = {wi} is the reconstruction matrix. It is optimised
by solving

w∗i = arg min
wi∈Rm

1
2

∥∥xi−UT wi
∥∥2

2 , (3.14)

subject to 1T wi = 1, wi j ≥ 0,wi j = 0 if u j /∈ t-NAP(xi),

where ∥ · ∥2 denotes the l2 norm. The projected gradient [34] is applied to solve
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Eq. 3.14. It projects the updated point to a multinomial simplex expressed by con-
straints in Eq. 3.14 [86]. The Nesterov’s method is used to accelerate the optimisa-
tion process [86, 93]. It alternates between gradient update and proper extrapolation
for acceleration purpose. Ultimately, LAE is optimised with a total time complexity
O(tmn+ t2T n), where T is the iteration of optimisation process.

Another related concept is about dictionary learning. Treating each original data
sample xi as a signal in RD, the dictionary Dic = {ϕ1, . . . ,ϕm} ⊂ RD×m refers to a
small set of basic independent signals sampled from the high-dimensional space of
the original dataset X where each xi can be seen as a linear combination of Dic. The
dictionary is over-complete if m > D, making the set span the high-dimensional space
[74, 117]. Setting ai ∈ Rm to be the coefficient vector containing the reconstruction
weight, the goal is to find Dic and ai that minimise the following equation

argmin
Dic,ai

1
2
∥xi−Dic ·ai∥2

2 +λ∥ai∥0,

where λ here is the regularisation parameter. However, since the dictionary learning
requires to solve both the Dic and ai, the learning representation computation is com-
putationally expensive [99].

3.5 Progressive UMAP

UMAP [90] is one of the most advanced methods for DR and data visualisation. The
main idea of UMAP is to generate fuzzy topological representations for both high and
low dimensional data points and to change the low dimensional embedding so that
the fuzzy topological representation is similar to that of the high dimensional dataset
[45]. In this thesis, however, the theory of UMAP is not the focus of our work. The
method mentioned in Progressive UMAP [70] on how to make UMAP, which cannot
handle newly arrived data points, continuously process newly coming data points is the
theoretical support for the incremental methods that will be proposed in the following
chapters.

Briefly, the UMAP algorithm consists of two primary phases: graph construction
and layout optimisation. The graph construction starts by generating k-NN graph that
describes the distance between data samples in the high-dimensional space. Then for
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each data sample, a non-zeros distance from xi and its nearest neighbour can be ob-
served as ρi. Thus, the scaling parameter of σi for each xi can be obtained by solving
the equation

log2(k) = ∑
x j∈k-NN(xi)

exp

(
−max

{
0,D(xi,x j)−ρi

}
σi

)
. (3.15)

Using ρi and σi, the graph edge between two data samples xi and x j can be computed
as

v j|i = exp

(
−max

(
0,D

(
xi,x j

)
−ρi

)
σi

)
. (3.16)

Then, the symmetric weight can be computed as

vi j = v j|i + vi| j− v j|i · vi| j, (3.17)

which also indicates the probability distribution of data samples in the high-dimensional
space. As the low-dimensional points are expected to has the similar probability dis-
tribution, the cost function of UMAP is designed as

CUMAP = ∑
i ̸= j

[
vi j · log

(
vi j

wi j

)
−
(
1− vi j

)
· log

(
1− vi j

1−wi j

)]
, (3.18)

where the wi j =
(

1+a
∥∥x̂i− x̂ j

∥∥2b
2

)−1
represents the similarity between embedding

points x̂i and x̂ j.

The layout optimisation phase can be viewed as a stochastic gradient descent on
individual observation, however, no further detailed descriptions will be discussed with
this thesis. The optimisation details can be found in the original paper of UMAP [45].

The algorithm of progressive UMAP is shown is Algorithm 1. The most impor-
tant part is to update the k-NN graph each time when new data point arrives. Denote
the new data point as xnew, the new k-NN graph can be updated applying Progressive
Approximate k-NEarest NEighbors (PANENE) [64]. Thus, data points whose neigh-
bouring points are changed can also be observed from this new k-NN graph, denoting
as Xupdate. Then, both xnew and the subset of the dataset Xupdate will be optimised by
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Algorithm 1 Progressive UMAP algorithm
1: Input: D-dimensional batch data points {xi}n

i=1.
2: User-adjust hyperparameters: Reduced dimension d (2 or 3), local neighbourhood size

k;
3: Construct k-NN graph of the batch dataset.
4: if xnew arrives then
5: Update the new k-NN graph using PANENE.
6: Obtain Xupdate.
7: Embedding xnew and Xupdate using UMAP algorithm.
8: end if
9: Output: Embedded data points x̂new and updated subset of points X̂update in 2 (or 3)-D

space.

UMAP algorithm.

This progressive UMAP algorithm is not a particularly complicated improvement
on UMAP, but it is very effective in embedding the newly arrived data points into the
2,3-D space. This has been a great inspiration to our incremental algorithm which will
be discussed in Chapter 7.

3.6 Chapter Summary

This chapter provides a more detailed technical background of t-SNE, SOE, LOE,
LAE, and progressive UMAP, which help readers in understanding the models pre-
sented in this thesis. Furthermore, it is explained here why these methods were used in
the proposed model presented in Chapter 4 - Chapter 7.



Chapter 4

ANchor GuidEd Local (ANGEL)
Model

4.1 Motivation

As stated in the previous chapters, generating a meaningful visualisation of the cohort
dataset is not a trivial task. A good visualisation approach should demonstrate sep-
aration between data cohorts, preserve distances between individual data points, and
retain cohort positioning and the cohort’s internal structure.

Most popular embedding methods (Section 2.1) focus on local neighbourhood
preservation while constructing low-dimensional embeddings. As we focus on co-
hort data visualisation, some methods can keep the cohort neighbour relationships if
a large neighbourhood is carefully selected. However, in high-dimensional data visu-
alisation, it is difficult to know what the neighbourhood size should be to generate a
reliable visualisation.

Some global embedding methods (Section 2.2) keep all information from the dataset
in the low-dimensional space. However, they have a significant loss in terms of neigh-
bourhood preservation. Moreover, they do not handle high data dimensions and a high
number of data points well when drastic dimension reduction (to 2,3 D) is required.

As shown in Section 2.3, only a limited number of current data visualisation re-
search studies discuss an effective way to demonstrate distinct cohorts by preserving
cohort relationships and keeping the distance between data points. They emphasise
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Figure 4.1: The general framework of the ANGEL algorithm.

the utilisation of prototype or anchor points to represent each cohort and sketch the
cohort relationships. However, the limitation of representing the complex internal co-
hort structure and weak cohort separation disturbs analysts from visualising the high-
dimensional dataset.

This chapter introduces a novel data visualisation model called ANchor GuidEd
Local (ANGEL), which provides an improved balance on local neighbourhood preser-
vation, cohort positioning, internal structure preservation, and adjustable cohort sepa-
ration enhancement in the reduced space. The proposed method contains five process-
ing stages, as shown in Figure 4.1:

1. Generate cohort positions in a 2,3-D using the global ordinal embedding method
SOE [116] to keep cohort positions and relations in Section 4.2

2. Generate anchor points to summarise the overall data distribution or structure,
and capture the relationships between the anchor points and the data points in
the original space by LAE [86] in Section 4.3.

3. Embed the anchor points in a 2,3-D space using a triplet ordinal embedding
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method derived based on the SOE strategy, then adjust the internal cohort struc-
ture and the cohort separation using a proposed transformation algorithm in Sec-
tion 4.4.1.

4. Relocate embedded anchor points according to the cohort positions in Section
4.4.2.

5. Embed the data points around the anchor points to maintain the same global
structure as modelled in the first stage while enforcing an additional local neigh-
bouring structure. As for this last step, we introduce several different approaches
to optimise the proposed cost function in Section 4.5, and each of them has dif-
ferent advantages for data visualisation purposes.

4.2 Cohort Position Embedding

Facing a given cohort dataset, where each data point is associated with a cohort label
yi ∈ {1, . . . ,C}, the first step is to identify different cohorts. The relative positions of
each cohort belonging to the cohort dataset are expected to convey important informa-
tion to the viewers [92], and it can be referred to as the global structure of the cohort
dataset. For example, as shown in Figure 1.1, the FMNIST image dataset contains 10
different cohorts. To visualise this dataset in 2,3-D space, embedded points relating to
the cohort “Sneaker” are expected to be placed close to points belonging to the cohort
“Ankle boot”, rather than the points of cohort “Top”. When applying the DR method
to a cohort dataset for visualisation, it is desirable to preserve as much as possible
the relationships between all cohorts. Since the number of cohorts is relatively small
compared with the number of data points, it is suitable to utilise global DR methods in
Section 2.2 to obtain the cohort position embedding.

We first compute the distance between two data cohorts. Measures like single-
linkage distance Eq. 4.1 [110], complete-linkage distance Eq. 4.2 [110, 111], average-
linkage distance Eq. 4.3 [110], and Hausdorff distance Eq. 4.4 [101] can be used.

Single-Linkage: DC(i, j) = min
xp∈Ci,xq∈C j

D(xp,xq), (4.1)

Complete-Linkage: DC(i, j) = max
xp∈Ci,xq∈C j

D(xp,xq), (4.2)
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Average-Linkage: DC(i, j) =
1

nin j
∑

yp=i
∑

yq= j
D(xp,xq), (4.3)

Hausdorff distance: DC(i, j) = min
xp∈Ci

{
max
xq∈C j

D(xp,xq)

}
, (4.4)

where i, j ∈ {1,2, ...C} are cohort indices, ni denotes the number of data points in the i-
th cohort, Ci denotes the i-th cohort containing all data points whose label y= i. We use
Euclidean distance-based average-linkage distance according to practical experience.

In most cases, real-world data sets often contain noisy and outlier data points. In
order to obtain more accurate distances between cohorts, these noisy and outlier data
points are preferably excluded from the cohort distance computation. We assume that
each data cohort can be considered as a Gaussian distribution and that the mean and the
standard deviation of the Gaussian distribution can be obtained statistically. Thus, we
can calculate cohort distance only using data samples within thred standard deviations
from the mean. A larger thred means more relaxation on data selection; however,
thred = 0 refers to no data selection process. The recommend setting is thred = 2 or
3.

After obtaining the distances between C cohorts, we generate a complete set of
ordinal triplets

ΓSOE
C = {(i, j, l)|DC(i, j)< DC(i, l)} , (4.5)

which is used to compute the C cohort embeddings
{

υ̂υυi ∈ Rd}C
i=1 by SOE following

Eq. 3.10. We use these cohort embeddings to decide where the cohorts should be in
the reduced space (see Figure 4.2a as an example).

4.3 Anchor Points Construction

The next step is to construct anchor points, also known as prototypes, in the original
space RD to outline the structure of each cohort. In order to represent the intrinsic
characteristics of each cohort, anchor points are generated by considering the density
of data points in each cohort. For cohorts that have more data points, more anchor
points are generated, and vice versa. To implement this, the K-means algorithm [80]
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(a) Cohort Embeddings (b) Initial Anchor Embeddings
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(c) Enhanced Anchor Embeddings (d) Relocated Anchor Embeddings

Figure 4.2: Illustration of anchor embedding using the FMNIST dataset.

is used to partition each data cohort into several smaller clusters. Each anchor point is
taken as the centroid point of each small cluster.

We use an anchor sparsity parameter 0 < p≪ 1 to control the anchor number, and
normally, set p = 0.05. These m = ⌊pn⌋ ≪ n anchor points serve as an informative
summary of the internal cohort structure. Figure 4.3 shows two examples of the gen-
erated anchor points, and, as seen, they sketch the cohort positioning and shape. We
denote these anchor points as U = {ui}m

i=1, with c(ui) ∈ {1,2, . . . ,C} denotes the co-
hort membership of each anchor point. As for some extremely imbalanced datasets
with some large cohorts with tiny ones, a very small p will be selected, but we will
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(a) Flower
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(b) Circle

Figure 4.3: The original flower and circle datasets, along with their generated anchor
points. Circles in different colours correspond to the original data points from different
cohorts, while stars in yellow to generated anchor points.

force those tiny cohorts to have at least 3 anchor points to support the cohort structure.
Meanwhile, we still support selecting a given number of anchor points in each cohort,
which leads to more freedom to construct appropriate anchor points.

Another way to roughly sketch the dataset is trying to find the vertices of each
cohort simplex. Convex-hull method finds the convex-hull of each cohort and treat
vertices of the convex-hull as anchor points [14]. This method focuses on finding the
boundary of each cohort. With all points of the cohort in the convex-hull, each data
point can be easily represented as the convex combination of vertices of the convex-
hull. The problem is that if the number of the dimension of the dataset is bigger than
the number of the data points in the dataset, the convex-hull cannot be constructed.
Thus, the convex-hull method is not applied in our algorithm.

Other than finding the boundary, the Landmark method uses the sequential maxmin
method [28, 31, 132] to find not only the vertices but also the supporting data points
inner each cohorts. The main idea of this landmark selecting method is to choose
points that are as far apart as possible. To be more specific, the algorithm aims to find
the ui+1 from the data set X which maximise the D(x,ui). That is, suppose {u1, . . . ,ui}
have been chosen as landmarks, the next landmark ui+1) is selected based on
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Figure 4.4: Anchor points generated by applying different approaches.

ui+1 = argmax
x
{F(x)},

where F(x) = minD(x,u1), ....,d(x,ui).

Anchor points generated by the Landmark method can cover the origin dataset. How-
ever, a disadvantage is that the landmark method still prefers to initially select bound-
ary points as anchor points. Figure 4.4 illustrates anchor points generated by using
different approaches. As the flower dataset sketches the shape of the flower, anchor
points generated by applying the Landmark algorithm (Figure 4.4a) are similar to the
anchor points generated by using K-means algorithm (Figure 4.3a). However, it can
be observed from anchor points generated for the “leaf” part of the flower shape and
anchor points generated for the Cloud points dataset (Figures 4.4b and 4.4c) that the
Landmark approach tends to choose the boundary points as anchor points. As for the
real dataset, take the FMNIST dataset as an example (See Section 5.2.1 for more detail
about the dataset), Figure 4.5 shows embedded anchor points of FMNIST, where the
high-dimensional anchor points are generated by different approaches (details of the
anchor embedding algorithms can be found in Section 4.4). Although the dimension
reduction process loses information of original data samples and anchor points, it can
be found in the images that the landmark method outlines the boundary of cohorts
while the K-means method covers more inner structure of cohorts. Thus, the K-means
method is chosen for the ANGEL algorithm. In addition, however, we provide land-
mark choice for specific purposes.

The reconstruction operation of LAE is used to link these anchor points with the
original data points. Since we aim at visualising a cohort dataset and anchor points
are generated based on each cohort, we reconstruct each data point xi with label yi = c
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(a) FMNIST, Landmark (b) FMNIST, K-means

Figure 4.5: Embedded anchor points of FMNIST dataset using anchor embedding and
algorithms introduced in Section 4.4. The high-dimensional anchor points of FMNIST
dataset are generated by applying different approach.

based on anchor points whose c(ui) = yi. That is, we modified the LAE algorithm as

w∗i = arg min
wi∈Rm

1
2

∥∥xi−UT wi
∥∥2

2 . (4.6)

subject to 1T wi = 1, wi j ≥ 0,

wi j = 0 if u j /∈ t-NAP(xi) and c(u) ̸= yi,

The optimised reconstruction weights w∗i will later help to bridge embedded anchor
points with data embeddings to keep the cohort structure of the dataset. However,
since we only select 3-nearest anchor points for each data point, the weight matrix W
containing all reconstruction weights is very sparse. That means we do not need to
acquire large memory to store the global information of the dataset. The pseudo-code
of the anchor generation algorithm is shown as Algorithm 2.

4.4 Anchor Points Embedding

The main driving force of ANGEL is to preserve distance orders, that is, to preserve
the ordinal information of the dataset. When the data has a high intrinsic dimension in
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Algorithm 2 Anchor Generation Algorithm
1: Input: D-dimensional data points {xi}n

i=1 and their cohort labels {yi}n
i=1 .

2: Fixed hyperparameters: anchor point density p = 0.1; reconstruction anchor number
t = 3;

3: Set initial anchor number: m = 0
4: for Each cohort Ci, i ∈ {1,2, . . .C} do
5: Calculate the cluster number Ki = ⌊pni⌋, apply K-means clustering to points from cohort

i, obtain anchor points by taking the centroid point of each cluster.
6: Compute anchor reconstruction weight {w∗i }n

i=1 by Eq. 4.6 for each data point.
7: Update anchor number by m← m+Ki.
8: end for
9: Output: D-dimensional anchor point {ui}m

i=1, anchor labels {c(ui)}m
i=1, and data recon-

struction weights {w∗i }n
i=1,

RD, it is easier to manipulate distance orders for a small set of anchor points instead
of a complete set of data points. This is also computationally much cheaper than
embedding the whole set of data samples. In our algorithm design, we take into account
the following concerns to embed anchor points:

1. Distance order between data cohorts should be kept by embedded anchor points.

2. Distance order between anchor points should be preserved.

3. Control of enhance the separation between data cohorts.

4.4.1 Anchor Embedding Process

We have discussed the cohort position embedding process in Section 4.2. The next
step is to embed anchor points. The starting point is to simply preserve the com-
plete distance orders between all the anchor points by the SOE algorithm [116] as we
did in the cohort position embedding process. However, since the number of anchor
points is much larger than the number of cohorts, applying the SOE algorithm is time-
consuming.

We propose a triplet ordinal embedding algorithm as an approximation of the SOE
algorithm, which leading to the following set of ordinal triplets:

Γ triOE(U) =
{
(i, j, l)|∥ui−u j∥2 < ∥ui−ul∥2

}
, (4.7)

and optimise the equation:
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(a) Isolet, SOE (b) Isolet tri-OE

Figure 4.6: Embedding results of a subset of Isolet dataset (introduced in Section
5.2.1). It can be observed from the image that both embedding results shares simi-
lar relative positions of points.

min
{ûi}m

i=1
∑

(i, j,l)∈Γ triOE(U)

max2 (0, D̂(ûi, û j)+δ− D̂(ûi, ûl)
)
. (4.8)

Compared with SOE (Section 3.2 Eq. 3.10 and 3.9), this modified triplet ordi-
nal embedding reduces the number of constraints from m(m− 1)(m− 2)(m− 3)/4 to
m(m− 1)(m− 2)/6, which accelerate the embedding process. Figure 4.6a and 4.6b
shows that there is little difference between results obtained by SOE and tri-OE re-
spectively, and Figure 4.7 explains that SOE costs much more time than the proposed
tri-OE does as the number of data sample n increases.

However, the direct embedding process of high-dimensional anchor points will
always lead to a mingled 2,3-D result, which is hard to identify cohort membership of
each embedded anchor points. To fix the problem, we define a cohort-based distance
measure between two anchor points:

Dc(ui,u j) = D
(
c(ui),c(u j)

)
. (4.9)

When there exists overlapping between data cohorts, there will be a certain degree
of mismatch between Dc(ui,u j) and D(ui,u j) = ∥ui−u j∥2. Our algorithm provides
the option to enhance the separation between cohorts by selectively letting Dc(ui,u j)
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Figure 4.7: Time recording of SOE and tri-OE as the size of dataset n increases.

override D(ui,u j) for anchor points that are neighbours according to D(ui,u j) but not
to Dc(ui,u j). This is implemented by modifying the original set of ordinal triplets
ΓtriOE(U) to

Γs-OE(U) =
(

ΓtriOE(U)\ΓR(U)
)
∪ΓA(U), (4.10)

where

ΓR(U) =
{
(i, j, l)|u j,ul ∈ ⌊λm⌋-NN(ui),ζζζui

(u j)< ζζζui
(ul),ζζζ

c
ui
(u j)> ζζζc

ui
(ul)

}
,

ΓA(U) =
{
(i, l, j)|u j,ul ∈ ⌊λm⌋-NN(ui),ζζζui

(u j)< ζζζui
(ul),ζζζ

c
ui
(u j)> ζζζc

ui
(ul)

}
,

with ⌊·⌋ denoting the floor operation. We use the parameter 0≤ λ≤ 1 to control how
many ordinal triplets to modify. The vector ζζζui

stores the rankings of the other anchor
points in terms of their closeness to ui based on the distance measure D, and ζζζui

(u j)

denotes the particular ranking of u j. The smaller ζζζui
(u j) is, the closer u j is to ui. The

same definition applies to ζζζc
ui

but based on Dc. This new set Γs-OE(U) removes the
incompatible distance orders between Dc and D for each anchor and its ⌊λm⌋-NNs,
and adds the amended ones following Dc. When λ = 1, all the incompatible triplets
are modified. When λ = 0, there is no modification and ΓR(U) = ΓA(U) = /0.

Anchor embeddings computed by solving the Eq. 4.8 using Γs-OE(U) are denoted
as
{

û(0)
i ∈ Rd

}m

i=1
. One should bear in mind that, for data with comparatively weak
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cohort separation in the high-dimensional space, an overly strong enforcement of co-
hort separation will change the true data structure, particularly resulting in less reliable
preservation of local distance structure. Figures 4.2b and 4.2c illustrate the computed
anchor embeddings at this stage.

After the cohort separation adjustment, the embedded anchor points
{

û(0)
i

}m

i=1
may

result in a cohort positioning arrangement incompatible to what is directly gathered by
{υ̂υυi}Ci=1. For example, Figure 4.2a shows a cohort embedding result of the FMNIST
dataset, while Figure 4.2b presents the anchor embedding result with the parameter
λ = 0.1, which is also referred as the initial anchor embeddings. It can be seen very
explicitly that the distribution of initial anchor embedding points does not coincide
with the positions of the data cohorts. Furthermore, initial anchor embedding points
are mixed up and hard to distinguish from each other. Figure 4.2c shows the separa-
bility enhanced anchor embeddings with the parameter λ = 0.9. Although the anchor
embedding algorithm’s large λ value is capable of putting anchor points into accurate
locations according to the cohort embedding result, it lost inherent cohort structure
since anchor points are embedded to very close points. Thus, it is preferred to relocate
initial anchor points to the cohort positions in order to keep the cohort relations of the
dataset.

4.4.2 Anchor Relocation Process

The anchor embedding process could not demonstrate the cohort structure of the data
successfully. Figure 4.2a shows the cohort embedding result of the FMNIST dataset.
Figures 4.2b and 4.2c demonstrate two anchor embedding results of the same FMNIST
dataset using different hyper-parameter λ settings. It can be clearly seen that the co-
hort structure of both two anchor embedding results do not correspond to the cohort
relationship obtained by cohort embedding result. Therefore, we propose a mild ad-
justment to previously embedded results

{
û(0)

i

}m

i=1
so that they align with {υ̂υυi}Ci=1, but

without changing the internal cohort structure. This is referred to as anchor relocation

process.

Taking
{

û(0)
i

}m

i=1
as an example. Simplifying the notation c(ui) as ci, we use the

following rotation and scaling based transformation for the relocation:
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ûi = ac

(
û(0)

i −
1
ni

∑
cp=ci

û(0)
p

)
Rci + υ̂υυc, (4.11)

where 1
ni

∑cp=ci û(0)
p is the centroid of the initially embedded anchor points that belong

to the same cohort as û(0)
i . The rotation matrix Rc ∈ Rd×d and the scaling parameter

ac ∈ R control the transformation for anchor points from cohort c ∈ {1,2, . . .C}. We
restrict the scaling parameter 0 ≤ ac ≤ 1, allowing only to shrink the cohort coverage
in this relocation process. In the case of d = 2, the rotation matrix is constructed as

Rc =

[
cosθc sinθc

−sinθc cosθc

]
, (4.12)

controlled by the angle parameter −π ≤ θc ≤ π. Take the 2-D visualisation as an
example, the transformation parameters are optimised by incorporating Eq. 4.11 into
the following objective function:

min
{−π≤θc≤π}Cc=1,

{0≤ac≤1}Cc=1

∑
(i, j,l)∈Γs-OE(U)

max2 (0, D̂(ûi, û j)+δ− D̂(ûi, ûl)
)
, (4.13)

A simple gradient descent approach is sufficient for optimisation. Figure 4.2d illus-
trates the final relocated anchor embeddings which has compatible cohort arrangement
to what is captured by {υ̂υυi}Ci=1 and meanwhile preserves the internal cohort structure.
For 3-D visualisation, exactly the same approach is used, but with one more angle
parameter added for each cohort.

4.5 Multi-objective Model Construction

To embed the data objects, the goal is to enable the data points to distribute appro-
priately around the anchor points following the same global structure underpinned by
these anchors, and meanwhile to preserve reasonably well the local neighbourhood of
each data object. We use the LAE reconstruction weights computed by Eq. 3.14 to
bridge the embedded data and anchor points, and minimise an embedding reconstruc-
tion error together with a distance order preservation error. With the generated anchor
points, we preserve the combination relationship between data samples and anchor
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points in the low-dimensional space as

min
{x̂i}n

i=1

OLAE =
1
2 ∑

i
∥x̂i−wiÛ∥2. (4.14)

This proposed objective function OLAE can be seen as the global objective function.
The optimum result can be solved out quickly as when each x̂(0)i = wiÛ , the cost func-
tion OLAE would achieve the minimum value 0. We denote X̂(0) = {x̂(0)i }n

i=1. However,
reconstruction error is unavoidable, which will leading to a loss of the local neighbour-
hood preservation.

The LOE method has the privilege of preserving the neighbourhood information.
Figure 3.1 in Section 3.3 suggests that LOE can reach the higher neighbour preserva-
tion score compared with other classical embedding methods. We treat Eq. 4.5 as the
OLOE to be target local objective function, and restate the equation here as

min
{x̂i}n

i=1
∑

(i, j,l)∈ΓLOE(X)

max2 [0, D̂(x̂i, x̂ j)+δ− D̂(x̂i, x̂l)
]
.

There are multiple ways to construct and optimise the multi-model of ANGEL. In
this section we introduce two classical strategies of multi-model to set up their normal
and straightforward optimisation process. We specify the ANGEL algorithm as the r-
constrained model with the direct optimisation. In Section 6.1, we will propose several
approximate accelerate optimisation process of ANGEL, and each of the optimisation
process will have its own unique superscript or subscript to distinguish it.

4.5.1 Weighted-sum Method

The weighted-sum method [140] depends on the importance of each sub-single objec-
tive problems.

min
{x̂i}n

i=1

αOLAE +(1−α)OLOE

= α
1
2 ∑

i
∥x̂i−wiÛ∥2+

(1−α) ∑
(i, j,l)∈ΓLOE(X)

max2 [0, D̂(x̂i, x̂ j)+δ− D̂(x̂i, x̂l)
] (4.15)
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If the α is chosen to be a large value, the feasible solution would be more focus on the
global structure preservation, and vice versa.

The optimal solution X̂∗ can be found by solving the minimisation problem. A
simple gradient descent method can be directly applied. Since two sub-single objec-
tive problems focus on different targets, they may have variables with different orders
of magnitude. The scaling problem can be avoided by normalising the objective func-
tions. However, if the magnitude difference is enormous, the normalising process has
little effect. Figure 4.8 shows the embedding result of Circle dataset (which contains
500 data points) and Flower dataset (which contains 1000 data points) optimised by
the weighted-sum model. The original data image can refer to Figure 4.3. Figure 4.8b
shows that α = 0.9 emphasises the global structure preservation. It could almost reveal
the concentric circle shape. However, when the number of datapoint increases, Figure
4.8c cannot keep the shape of the flower when α = 0.9. Furthermore, setting one
weight as an extremely large value like 0.9 means sacrificing the other target hugely.
Finding an optimal weight parameter α could be one of the challenging problems of
the weighted-sum method.

(a) Circle, α = 0.1 (b) Circle, α = 0.9 (c) Flower, α = 0.9

Figure 4.8: Embedding results of Circle and Flower dataset using the weighted-sum
model.

4.5.2 r-constrained Model

Another popular way to formulate the multi-model is to construct a constrained prob-
lem [51]. The strategy is to optimise one objective function while the other objective
function is limited to a constrained value [56] . Here, we convert the global objec-
tive function OLAE into constraints, and use the radius parameter r > 0 to adjust the
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Algorithm 3 ANGEL Algorithm
1: Input: D-dimensional data points {xi}n

i=1 and their cohort labels {yi}n
i=1 .

2: User-adjust hyperparameters: Reduced dimension d (2 or 3), cohort separation control
0≤ λ≤ 1; local neighbourhood size k; global vs local control r < 1.

3: Fixed hyperparameters: data selection threshold thred = 2, anchor point density p= 0.1;
reconstruction anchor number t = 3; embedding scale δ = 0.1.

4: Construct cohort ordinal quadruples ΓOE
C by Eq. 3.9 applying the thred data selection

process, and use ΓOE
C to compute cohort embeddings {υ̂υυi}Ci=1 by Eq. 3.10.

5: Obtain D-dimensional anchor point {ui}m
i=1, anchor labels {c(ui)}m

i=1, and data reconstruc-
tion weights {w∗i }n

i=1 by applying Algorithm 2.
6: Construct anchor ordinal triplets Γs-OE following Eq. 4.10, and use Γs-OE to compute initial

anchor embeddings
{

û(0)
i

}m

i=1
by Eq. 4.8.

7: Compute relocated anchor embeddings by Eq. 4.11 and optimise Eq. 4.13 using
{

û(0)
i

}m

i=1
and {υ̂υυi}Ci=1 to obtain the embedded anchor points {ûi}m

i=1.
8: Construct data ordinal triplets ΓLOE(X) using Eq. 3.12, and compute data embeddings
{x̂i}n

i=1 by optimising Eq.(4.16).
9: Output: Embedded data points {x̂i}n

i=1 in 2 (or 3)-D space.

preference of global preservation over the local preservation,

min
{x̂i}n

i=1
∑

(i, j,l)∈ΓLOE(X)

max2 [0,D(x̂i, x̂ j)+δ−D(x̂i, x̂l)
]
,

subject to
∥∥x̂i− ÛT w∗i

∥∥2
2 < r, i = 1,2, . . . ,n, (4.16)

A suggested setting is r ≈ 0.05 according to our empirical experience. The interior-
point approach is used for optimisation. As for gradient calculation, the similar strategy
which SOE applies as mentioned in Section 3.2 is adopted. In general, we use t =

3 anchors points to form the convex combination so that the reconstruction weights
bear richer structural information as compared to weights computed using large t. We
provide pseudo-code of the complete ANGLE implementation in Algorithm 3.

4.6 Complexity Analysis

ANGEL is a multi-step algorithm, for which we perform a brief complexity analysis:

• To generate anchor points by K-means clustering, the complexity is O(n2Dp/C).
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This corresponds to running K-means once for each of the C cohorts. Each
run partitions approximately n

C data points in the D-dimensional space into K ≈
n
C × p clusters.

• The LAE weight computation requires a computational cost of O(t2nNLAE+tmn),
where NLAE denotes the number of iterations in LAE optimisation.

• The computational complexity of SOE and tri-OE is mainly dominated by the
number of ordinal quadruples or triplets. In each optimisation iteration, the com-
plexity is O(C(C−1)(C−2)(C−3)) for cohort embedding, O

(
n(n−1)(n−2)p3/6

)
for anchor embedding, and O

(
n(C−1)2n2 p3/6C2) for anchor relocation.

• The computational complexity of the data embedding step is mainly dominated
by the number of local ordinal constraints used by LOE, which results in a com-
plexity of O(kn(n− k)) in each optimisation iteration.

In most data analysis practice, the cohort number C is within an acceptable range
of 5−30. The setting p = 0.05 is adopted and the iteration number in optimisation is
usually between 30 and 200. This positions ANGEL as an algorithm with complexity
between O(n2) and O(n3) with respect to the data point number n.

4.7 Chapter Summary

This chapter describes the construction process of the proposed ANGEL algorithm.
It starts with the cohort embedding process, using the SOE method to locate the co-
hort position in 2,3-D space. Then anchor points are generated by K-means algorithm
to represent each cohort. The proposed tri-OE method is then used to embed gener-
ated anchor points to maintain the intrinsic structure of the cohort, and a relocation
method is used to allow the cohort positions to be retained concurrently. Finally, a
multi-objective cost function is constructed by embedding the data points through the
relationship between the data samples and the anchor points while maintaining the
local neighbourhood of each data sample. Different optimisation methods such as
weighted-sum methods and r-constrained method are also discussed in solving this
multi-objective cost function. The ANGEL algorithm adopts the r-constrained method
as the optimisation approach.



Chapter 5

Evaluation and Result

The previous chapter discussed the formulation of the ANGEL model thoroughly.
The proposed multi-objective model ensures the balance between local neighbourhood
preservation and global cohort relationship retention, and it also offers an option for
cohort separability adjustment. The visual effect of the embedding result is an impor-
tant evaluation of the data visualisation approaches. However, how to quantitatively
measure the performance of the embedding result for cohort data visualisation is still
an open question.

Embedding methods focusing on local structure preservation such as [118] and
[141] introduce Trustworthiness [66, 125, 126], which is a measurement score for an-
alysts to trust the embedding result to represent the actual local pattern of the dataset.
To make it simpler, it measures how well the k-NN of each data sample have been
retained around the corresponding embedded points in 2,3-D space. However, for
cohort data visualisation purpose, we can tolerate such an error when a point on the
boundary of a neighbourhood in a high-dimensional space is embedded in the target
2,3-D spaces, the embedded point is still on the boundary but not exactly in the cor-
responding neighbourhood, as Figure 5.1 shows. Thus, it is worth improving the local
measurement to consider a slight relaxation on neighbourhood preservation and giving
a more reasonable evaluation score.

McInnes et al. [90], Tang et al. [113], and Hajderanj et al. [53] utilise a k-NN
classifier to evaluate how well the embedding result works for the supervised classi-
fication. k is a usually set as a small integer for the number of nearest neighbours
in the classification, the k-NN classifier can also be used to evaluate how faithfully

79
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Figure 5.1: A brief explanation of the relaxation on neighbourhood preservation. The
image on the left shows the 5-nearest neighbourhood points to the red dot. However,
such an error is acceptable if the green points marked in the right image have been
taken as neighbourhood points.

the reduced-dimensional data preserves the neighbourhood structure of the original
data. However, in contrast to the the previously mentioned neighbourhood evalua-
tion approach, the k-NN classifier does not provide a clear view of whether the high-
dimensional neighbouring points are retained in the neighbourhood of the embedded
points. Mu et al. [92] proposed 1-NN classification rate could be used to examine the
separability between the embedded cohort cohorts. A higher classification accuracy
indicates a stronger separability between cohorts.

As for the cohort distance preservation, which can also be treated as the global
preservation of the dataset, most data visualisation approaches only discuss the visual
effects of the embedded scatter plots. Only a few recent approaches have presented
the evaluation metrics for the preservation of global structure. Sainburg et al. [103]
introduces the Pearson correlation calculation based on pairwise distances compar-
isons between data points in high-dimensional space and embedding space. However,
it does not emphasise on the preservation of cohort relations. Wang et al. [131] pro-
poses Data Triplet Accuracy to measure how embedded points preserve data triplets
randomly generated over original data samples, which can be treated as a compari-
son between the distance ranking of data points of the high-dimensional dataset and
the embedded datasets. Inspired by the distance ranking comparison, we propose our
global evaluation measure for the cohort structure preservation.

This chapter introduces the proposed evaluation metrics to measure the perfor-
mance of the ANGEL. The experimental results show that we can perform better even
compared to existing approaches in that both local and global targets can be maintained
and balanced.
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5.1 Evaluation

A classical and simple way for assessing embeddings is to compare for each point
the neighbour match in the original and embedded spaces over a changing range of
neighbourhood sizes (from local to global):

P(κ) =
1

nκ

κ

∑
κ=1

n

∑
i=1

|κ-NN(xi)∩κ-NN(x̂i)|
κ

, (5.1)

where κ represents the maximum of the neighbourhood size considered. For instance,
κ = ⌊0.9n⌋ almost covers the whole data region, where n is the number of high-
dimensional data samples. The κ-NN in this context returns the indices of the neigh-
bouring points to enable a comparison between spaces. However, such a score is highly
error sensitive, counting almost every single distance mistake. Given the very low re-
duced dimension d = 2,3, a low score is expected thus it shows the visualisation is
not very informative in this case. It would be useful to employ measures that highlight
more significant errors.

5.1.1 Local Evaluation on Neighbourhood Preservation

To examine how well a local neighbourhood is preserved, we adopt the main idea as
above, alternatively substitute the average calculation based on the range of κ with
the exact local neighbourhood preservation calculation on κ = k0, where k0 a hyper-
parameter to determine the local neighbourhood preservation. Moreover, in order to
filter out minor errors, we tolerate neighbourhood points that are wrongly placed but
still quite close to the neighbourhood boundary by introducing a neighbouring relax-
ation strategy. This motivates the following score:

Pl =
n

∑
i=1

∣∣κ-NN(xi)∩κ-NNδ̂ (x̂i)
∣∣

κ
, (5.2)

A relaxed NN finder is applied in the embedded space:

κ-NNδ̂ (x̂i) =
{

x̂ j |∥x̂i− x̂ j∥2 ≤ ∥x̂i− x̂e1
i (κ)∥2 + δ̂

∥∥x̂e1
i (κ)− x̂e2

i (κ)
∥∥

2

}
, (5.3)
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FMNIST cat-SNE s-UMAP Pysef PaCMAP COVA-1
Trustworthiness 0.9804 0.9783 0.8972 0.9739 0.8776

Pl 0.4307 0.3916 0.1745 0.3378 0.2440
MNIST

Trustworthiness 0.9472 0.9211 0.7547 0.9278 0.7038
Pl 0.5008 0.3840 0.1887 0.3593 0.1861

Table 5.1: Comparison between trustworthiness score and proposed Pl score of MNIST
and FMNIST embedding results generated by existing embedding techniques (details
can be found in Section 5.2). The relative discrepancies of the local neighbourhood
preservation results obtained by the two evaluation methods for different DR methods
are the same, but Pl has the greater amount of difference among results.

where x̂e1
i (κ) and x̂e2

i (κ) denote the first and second farthest neighbours of x̂i within
the k-NN region in the embedded spaces, the relaxation parameter 0 ≤ δ̂ < 1 allows
the placement of neighbouring points outside the target neighbourhood, but not too
far away. When δ̂ = 0, κ-NNδ̂ (x̂i) = κ-NN(x̂i). A recommended setting according to
empirical experience is δ̂ = 0.1. A higher value of Pl indicates a better preservation
of the local distance structure with the local region examined of a half size of the
minimum cohort.

Table 5.1 shows the comparison between the existing trustworthiness score and the
proposed Pl score of FMNIST embedding results generated by 5 existing embedding
techniques (details can be found in Section 5.2. It is convincing that cat-SNE and s-
UMAP share a high local neighbourhood preservation score while Pysef and COVA-1
suffer from loss of local information. However, Pl has more variation than trustworthi-
ness. A larger amount of variation makes the comparison of the results of the different
methods more evident and distinguishable, and the difference is not obliterated when
averaged with the other two evaluation methods targeting global structure preservation
and separability. Thus, the proposed Pl score is preferred.

5.1.2 Global Evaluation on Cohort Distance Preservation

To investigate the global level of cohort structure preservation, we compare the dis-
tance orders of between data cohorts in the original and embedded spaces. The follow-
ing score is used based on the Spearman’s rank correlation coefficient:
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Pg =
1
C

C

∑
c=1

spearman(πππc, π̂ππc) = 1− 6
C

C

∑
c=1

(πππc− π̂ππc)
2

n(n2−1)
, (5.4)

where the (C− 1)-dimensional vector ζζζc stores the cohort rankings in terms of the
closeness between the data cohort c and the remaining C− 1 cohorts in the original
space RD, while ζ̂ζζc is defined in the same way but in the embedded space Rd . In order
to be consistent with the previous cohort embedding process, we also use the Euclidean
distance based average-linkage distance for obtaining ζζζc and ζ̂ζζc. Data selection step
is also applied to compute the cohort rankings with the fixed thred = 2, in order to
remove the influence of outlier points.

To note that, for both Pl and Pg, when computing distances between individual
points, Euclidean distance is used for obtaining κ-NNδ̂ and ζ̂ζζc to suit particularly the
visualisation purpose. While for κ-NN and ζζζc in the original space, other distance
measures could be considered to suit better the nature of the data.

5.1.3 Cohort Separation Evaluation

Additionally, we report a cohort separation score Ps based on 1-NN classification fol-
lowing the standard cohort separation evaluation strategy [92]. We divide the em-
bedded data points into µ partitions and compute the averaged 1-NN classification
accuracy by apply µ-fold cross validation, using the embedded points and their cohort
labels. Here, a default setting is µ = 5 for simplicity. Table 5.2 shows cohort sepa-
ration evaluation results of six real-world datasets (Section 5.2.1 provides details of
these datasets) applying UMAP and s-UMAP algorithms. Both UMAP and s-UMAP
have the same neighbourhood settings, and we keep other hyper-parameters from the
original work. Images of embedding results can be found in Figures 5.8 - 5.13. It is
clear that s-UMAP has a higher separation score than UMAP has, which is sufficient to
confirm the accuracy of our cohort separation evaluation Ps for measuring the degree
of separation.

5.1.4 Embedding Evaluation Score

Overall, a good visualisation is expected to possess high Pl, Pg and Ps in a balanced
manner. Thus, we handle the embedding evaluation score as
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Method MNIST FMNIST Coil20 CIFAR Isolet Reuters
UMAP Ps 0.8160 0.6910 0.9118 0.5700 0.7782 0.8620
s-UMAP Ps 0.9760 0.9660 1.0000 0.9410 0.9987 0.9749

Table 5.2: Ps scores for UMAP and s-UMAP. The bold numbers highlight results which
are higher.

P = ωlPl +ωgPg +ωsPs =
1
3

Pl +
1
3

Pg +
1
3

Ps. (5.5)

However, The coefficients for each score Pl, Pg, and Ps can be adjusted for different
purposes. For example, if the intention of the algorithm is to retain more of the distance
between each cohort, and the preservation of the neighbourhood near individual points
is not of significant importance, then we can adjust the parameters so that the weight
of Pg increases and the weight of Pl decreases. The freely adjustable weights give our
metrics more flexibility and application scenarios.

5.2 Experiments and Results

In this section, we report on the results of a series of experiments conducted to assess
the quality of ANGEL on several datasets, and compare it against leading DR methods.
The qualitative measures show directly the graphical results obtained by the different
methods, and they give us a very intuitive conclusion about what kind of visualisation
effect we prefer to achieve. The quantitative results are based on calculations from pre-
vious measurement methods and show the strengths and weaknesses of the different
methods and allow for more accurate comparisons. In addition, a study of the ANGEL
parameters is reported to illustrate how different parameters affect the embedding re-
sults.

5.2.1 Datasets

Synthetic datasets: In order to see whether the ANGEL can work well on preserving
the internal cohort structure, two 2-D synthetic datasets were annotated as in Figures
5.5a, 5.6a which we refer to circle and flower, and one 3-D synthetic dataset was an-
notated as in Figure 5.7a which we refer to bicycle. These synthetic datasets all have
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a relatively complex structure and have been artificially grouped into different point
clusters.

• Concentric circle (Circle): 2-D dataset which contains 500 data points belong-
ing to 2 data cohorts [38].

• Flower: 2-D synthetic dataset which contains 1000 data points classified into 7
classes.

• Bicycle: 3-D synthetic dataset which contains 500 data points classified into 4
classes.

Real-world cohort datasets: Both qualitative measurements and quantitative evalua-
tions are conducted on the real-world dataset.

• MNIST: 784-D dataset [136] consists of randomly selected 1000 images from
10 classes, with 100 images for each class. Examples of each class is shown is
Figure 5.2a.

• FMIST: 784-D dataset [136] consists of random selected 2500 images of 10
classes, with 250 images for each class. Examples of each class is shown is
Figure 5.2b.

• Coil20: 1024-D dataset [18, 17] consists of 1440 images of 20 objects. The
images of each objects were taken 5 degrees apart as the object is rotated on a
turntable and each object has 72 images. Examples of each class is shown is
Figure 5.3.

• CIFAR: 4096-D CIFAR-10 dataset [36] consists of 1000 images of 10 classes.
Each image was processed through a pre-trained CNN and extracted the acti-
vations in the first fully connected layer as the features. The pre-trained neural
network applied VGG16 architecture that was trained on ImageNet data. Exam-
ples of each class is shown is Figure 5.4.

• Isolet: 1560-D dataset [18, 17] consists of 1560 signal vectors, each vector rep-
resent the voice recording of each letter of the alphabet, leading to 26 different
classes.
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(a) MNIST (b) FMNIST

Figure 5.2: Images examples of MNIST dataset and FMNSIT dataset respectively. As
for FMNIST, the label of each image from the top left to the right bottom are: 0-Top,
1-Trouse, 2-Pullover, 3-Dress, 4-Coat, 5-Scandal, 6-Shirt, 7-Sneaker, 8-Bag, 9-Ankle
boot.

• Reuters: 5685-D Reuters-21578 corpus [16, 19, 20, 21] consists of 877 docu-
ments sampled from 10 classes: trade, ship, sugar, money-supply, cpi, cocoa,
reserves, iron-steel, veg-oil, livestock.

As for synthetic and image datasets, feature distances were calculated by L2-pixel
distance, while for textual datasets, calculation of cosine distances were applied.

5.2.2 Experimental Setup

ANGEL is compared with the six different state-of-the-art DR approaches on both
qualitative measurements and quantitative evaluations. The cat-SNE [27] and the s-
UMAP [90] are supervised extension of two popular data visualisation techniques,
tSNE and UMAP. They are used to compare the advantages and disadvantages between
the ANGEL algorithm and relatively traditional but popular local objective methods.
PySef is a recent proposed supervised global objective algorithm which helps to test
the global structure preservation performance of ANGEL. PaCMAP and COVA are
both multi-objective models. We compare the advantages of ANGEL over these two
methods for the same multi-objective purposes.

For competing algorithms with neighbourhood parameters, two types of neigh-
bourhood size are examined for the competing local algorithms, including a small one

k = 10 (the default setting of ANGEL), and a large one k close to
⌊(

n2 logd n
) 1

d+2

⌋
,
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(a) Coil20

(b) Examples from one cohort

Figure 5.3: Images examples of Coil20 dataset. Figure 5.3a shows 20 cohorts and
numbered them from 1 to 20, from the top left to the right bottom. Figure 5.3b presents
examples selected from one cohort.

which is supposed to retain the global information of the high-dimensional dataset.

Other hyper-parameter settings of each algorithm is presented as the following:

• ANGEL: all of its fixed hyper-parameters are set as values reported in Algorithm
3. Its user-adjust hyper-parameters include d = 2 for 2-D visualisation; λ = 0
and r = 0.05 was set for the 3 synthetic datasets to illustrate the original data
shapes; as for real-world datasets a suitable λ and r was chosen to obtain a better
evaluation score P = 1

3(Pl+Pg+Ps); and k = 10 for a small fixed neighbourhood
size.

• cat-SNE [27]: as the supervised extension of tSNE, it introduced the threshold
θ ∈ [0.5,1] as the perplexity parameter. The suitable theta is chosen by the
maximum evaluation score P.

• s-UMAP [90]1: keep the hyper-parameters from the original work.

• PySef [95]: LinearSEF model was applied with no specific hyper-parameters.

• PaCMAP [131]: the ratio setting for mid-near pair of points and further-pair of
points were the default value.

• COVA-1 [92]: it utilised the cohort position obtained by ANGEL as the posi-
tion of its prototypes. The cohort membership parameter λ = 0. The balancing

1Manual for Supervised UMAP is located at https://readthedocs.org/projects/umap-
learn/downloads/pdf/ latest/
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Figure 5.4: Images examples of Cifar dataset, which is obtained from
https://www.cs.toronto.edu/ kriz/cifar.html.

parameter α varies from 0.1 to 0.9 to find the best one with the maximum eval-
uation score P.

ANGEL is also compared with its transformation models including the ANGEL
with warm-starting optimisation and weighted-sum model with loop-repetitive optimi-
sation. The hyper-parameter study experiments results will be illustrated at the end.

All the experiments are conducted on CSF3 system supported by the University of
Manchester. The CSF3 is a High Performance Computing (HPC) cluster ( 8,644 cores
+ 100 GPUs). The OS on CSF3 nodes is CentOS Linux release 7.9.2009 (Core). We
adopted the standard Ivybridge cores: 38 nodes of 2×8-core Intel Xeon E5-2650 v2,
2.60GHz + 64GB RAM. ANGEL and COVA-1 was conducted based on MATLAB
R2018a and other approaches were running on python.

5.2.3 Visualisation Assessment

Results of the 2-D and 3-D synthetic datasets are directly compared in Figures 5.5, 5.6,
and 5.7. In order to make a comparative visualisation effects, neighbouring parameter
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for each approaches (except for ANGEL k=10) are chosen to be the large neighbour-

hood k =
⌊(

n2 logd n
) 1

d+2

⌋
. It can be seen from Figure 5.5e and Figure 5.6e that PySef

is particularly good with preserving both the correct data shape and the correct local
neighbourhood (high Pl score) for the ideal 2-D to 2-D mapping case. However, as for
a simple 3-D to 2-D case Figure 5.7e, it tries to project the bicycle from the top side
leading to a mixed projections which is hard to identify cohorts. PySef also does not
provide any option to change the direction of the projection for visualisation purpose.
Moreover, as shown in the later results in Table 5.3, its performance drops signifi-
cantly where being used to visualise high-dimensional data when information loss is
unavoidable in the reduced space.

None of the UMAP or the s-UMAP can ideally recover the shape of the synthetic
dataset. COVA-1 is good at positioning cohorts in an appropriate place but fails to
display the internal cohort structure, particularly for the concentric circle and bicycle
cases. The cat-SNE method performs better than PySef since it can capture the global
structure but with a lower local neighbour preservation score. ANGEL can recover
the original data shape as well as PySef, but also with a bit lower local neighbour
preservation score.

Then, we visually compare the results of the 6 high-dimensional real-world datasets
in Figures 5.8-5.13. For image datasets MNSIT and FMNSIT, most algorithms are able
to match their cohort closeness with the image content based similarity, e.g., numbers
like 4 and 9, 1 and 7 possess similar shapes, while numbers like 3, 5, and 8 are more
similar to each other. Similarly, “Ankle boots”, “Sandal”, and “Sneaker” all belong
to the shoes category, while “Top”, “Trouser”, and “Pullover” are clothes with close
shape. Overall, cat-SNE and ANGEL offer better cohort separation and identification
than other methods and display more meaningful internal cohort structures than s-
UMAP.

For the third image dataset Coil20, we manually assign the same colour to cohorts
whose items share a similar shape; for example, the number 3 cohort, the number 6
cohort, and the number 9 cohort are all cars; thus we assign the purple colour to these
three cohorts. This helps us identify the cohort relations preservation in a much more
convenient way. PySef, PaCMAP, COVA and ANGEL can keep the global structure
well according to Figure 5.10. However, only ANGEL can capture most of the internal
cohort structure as a circle.

The results of Cifar dataset are shown in Figure 5.11. We compare the image
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content based similarity via their cohort closeness, e.g., automobile and truck cohorts
are closer, and so are cat and dog cohorts. Results of cat-SNE, UMAP, and PySef
can present the expected relations of these image cohorts, but points are more often
mixed. COVA and ANGEL are able to present distinguished cohorts with a good
cohort relationship preservation.

Figure 5.12 shows results of Isolet dataset. Similar to the Coil dataset, we manually
assign the same colour to the alphabet whose pronunciation is similar, such as “b” and
“d”, “m” and “n”. UMAP, Cova, and ANGEL are capable of identifying each cohort
and revealing their cohort relations. PySef and PaCMAP almost capture the global
structure of the cohort data; however, PySef suffers from mixed points and cohorts
while PaCMAP lost most of the internal structure of the cohort.

As for the text dataset Reuters (Figure 5.13), cat-SNE, UMAP, COVA-1, and AN-
GEL can match their cohort arrangement with the text content based similarity, e.g.,
the money-supply cohort is closer to cpi and reserves, veg-oil to cocoa. Although
PaCMAP can barely retain cohort relations, it is hard to identify different cohorts.

Overall, most methods can result in a relatively good visual effect if a well-designed
parameter can be found. This is in line with the discussion we put forward earlier in
Section 1.1. ANGEL and COVA are among the best algorithms that can consistently
obtain good visualisation results. At the same time, other methods are more or less
likely to show less than satisfactory results in some datasets. ANGEL is the only one
who can successfully show the inherent cohort structure of the Coil20 dataset.

The following section will compare and discuss the evaluation results among all
approaches.

5.2.4 Comparative Analysis

We have mentioned in Section 1.1 that, many existing visualisation techniques are sen-
sitive to its neighbourhood size, which is often difficult to choose. One advantage of
ANGEL is that it is sufficient to use a small neighbourhood size. We first compare
ANGEL with the competing methods under the same neighbourhood size setting of
k = 10. This is shown by Table 5.3, which reports the Pl, Pg and Ps scores for the
5 high-dimensional real-world datasets. The cat-SNE, s-UMAP, PaCMAP have rela-
tively high local preservation score Pl as expected, while COVA and PySef is much
better at cohort positioning with higher Pg. We notice that the approaches of cat-SNE
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Method cat-SNE s-UMAP PySef PaCMAP COVA-1 ANGEL
Pl 0.5008 (1) 0.3840 (2) 0.1887 (5) 0.3593 (3) 0.1861(6) 0.2617 (4)

MNIST Pg 0.1794 (5) 0.1648 (6) 0.4261 (3) 0.2885 (4) 0.5697 (2) 0.6170 (1)
Ps 0.9020 (2) 0.9760 (1) 0.5160 (6) 0.7450 (5) 0.8870 (3) 0.8610 (4)
P 0.5274(3) 0.5083 (4) 0.3169 (6) 0.4643 (5) 0.5476 (2) 0.5799 (1)
Pl 0.4307 (1) 0.3916 (2) 0.1745 (6) 0.3378(3) 0.2440 (5) 0.3211 (4)

FMNIST Pg 0.5224 (4) 0.2800 (6) 0.6000 (3) 0.5200(5) 0.7321 (2) 0.7988 (1)
Ps 0.7985 (3) 0.9660 (1) 0.5765(6) 0.6585 (5) 0.8750 (2) 0.7620 (4)
P 0.5081 (4) 0.5459 (3) 0.4503 (6) 0.5054 (5) 0.6170 (2) 0.6276 1)
Pl 0.6506 (1) 0.5642 (2) 0.3006 (6) 0.5385 (4) 0.4219(5) 0.5426(3)

Coil20 Pg 0.0071 (5) 0.0634 (4) 0.1041 (3) -0.0726 (6) 0.2125(2) 0.2250(1)
Ps 0.9988 (2) 1.0000 (1) 0.8104(6) 0.8937 (5) 0.9785 (3) 0.9312(4)
P 0.5522 (2) 0.5425 (3) 0.4051 (6) 0.4532 (5) 0.5376 (4) 0.5663 (1)
Pl 0.2606 (2) 0.2349 (3) 0.1006 (6) 0.2739 (1) 0.1378 (5) 0.2258 (4)

CIFAR Pg 0.2070 (4) 0.0461 (6) 0.0533 (5) 0.2805 (2) 0.2873 (1) 0.2752 (3)
Ps 0.7560(4) 0.9410 (1) 0.3580 (6) 0.4860 (5) 0.8480 (2) 0.7810 (3)
P 0.4079 (3) 0.4073 (4) 0.1706 (6) 0.3468 (5) 0.4244 (2) 0.4273 (1)
Pl 0.4425 (1) 0.3243 (2) 0.1918 (5) 0.3235 (4) 0.0592 (6) 0.3212 (3)

Isolet Pg 0.0436 (6) 0.1375 (5) 0.2237 (3) 0.1578 (4) 0.4630 (1) 0.2458 (2)
Ps 0.9270 (4) 0.9987 (1) 0.4263 (6) 0.6936 (5) 0.9453 (3) 0.9897(2)
P 0.4711 (4) 0.4868(3) 0.2246 (6) 0.3916 (5) 0.4892 (2) 0.5189 (1)
Pl 0.3146 (2) 0.4390 (1) 0.1213 (5) 0.3876(3) 0.0545 (6) 0.2458 (4)

Reuters Pg 0.0909 (6) 0.0521 (5) 0.1661 (4) 0.3030 (3) 0.5103 (1) 0.3212 (2)
Ps 0.9327 (3) 0.9749 (2) 0.8164(6) 0.8472 (5) 0.9225 (4) 0.9897 (1)
P 0.4904 (4) 0.4887 (5) 0.3667(6) 0.5126 (2) 0.4957 (3) 0.5189 (1)

Table 5.3: Visualisation scores of different methods with the best bold and the second
underlined. Relative ranks are displayed in brackets. To make the result comparable,
all the neighbourhood parameter k = 10. Other hyper-parameter settings followed the
experimental setup.

and s-UMAP have very poor Pg scores. Such result is not surprising as the neigh-
bourhood parameter is set to a small number. Unlike COVA-1 and ANGEL, they are
not designed to match the distances between the embedded cohorts to a desired set of
between-cohort distances in the original space. PaCMAP and Pysef suffers from low
separation score Ps. PySef and COVA also has a relatively low neighbour preservation
score comparing with ANGEL.

Overall, ANGEL achieves the highest P = 1
3(Pl+Pg+Ps) among all the compared

approaches and for all the 5 datasets. Local neighbourhood preservation score Pl have
been sacrificed as expected, but not that significantly. ANGEL can best preserve the
positioning relationships between point clouds, as well as the relatively good separa-
tion between point clouds.
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Method MNIST FMNIST Coil20 CIFAR Isolet Reuters
cat-SNE ∆Pg -0.2097 -0.0679 0.0980 0.0863 0.0871 0.2485
s-UMAP ∆Pg -0.0627 0.1830 0.0088 0.0654 -0.0800 -0.0412
PySef ∆Pg -0.2116 -0.1794 0.0617 0.1346 0.0156 -0.1394
PaCMAP ∆Pg -0.0715 -0.1394 0.3079 -0.1072 -0.1102 -0.2206

Table 5.4: ∆Pg scores for s-tSNE, s-UMAP, PySef and PaCMAP, which is the dif-
ference between Pg the using single-linkage distance to calculate between-cohort dis-
tances and Pg using average distance to do so. The bold numbers highlight the positive
results which infer that the Pg scores have been improved compared with 5.3 after
change the cohort distance measurement.

Method MNIST FMNIST Coil20 CIFAR Isolet Reuters
cat-SNE ∆Pg -0.6473 -0.3443 -0.1199 0.0181 -0.1151 0.0182
s-UMAP ∆Pg -0.5152 -0.3358 -0.1528 -0.1637 -0.1883 -0.3103
PySef ∆Pg -0.4025 -0.3782 -0.0592 -0.0873 -0.0065 -0.2945
PaCMAP ∆Pg -0.4000 -0.4182 0.0103 -0.1019 -0.1982 -0.2388

Table 5.5: ∆Pg scores for s-tSNE, s-UMAP, PySef and PaCMAP, which is the dif-
ference between Pg the using single-linkage distance to calculate between-cohort dis-
tances and Pg of ANGEL algorithm using average distance to do so. The bold numbers
highlight the positive results which infer that the Pg scores of SOTA methods higher
than ANGEL algorithm after change the cohort distance measurement.

In case these methods, by any chance, preserve certain cohort structural informa-
tion that may not be compatible to the average-linkage distances that we used in eval-
uation, we further experiment with multiple between-cohort distance measures and
choose the best one, which is the single-linkage distance, to recalculate their Pg scores.
Table 5.4 reports the ∆Pg, which is the difference between Pg the using single-linkage
distance to calculate between-cohort distances and Pg using average distance to do
so. The scores are improved in many cases, but overall, they are still not satisfactory
since only few of the Pg results are comparable to results of ANGEL, which has been
reported in Table 5.5.

Additionally, we report performance for the ocal method s-UMAP using a larger

neighbourhood size k =

⌊(
n2 logd n

) 1
d+2

⌋
. Although PaCMAP and COVA-1 are not

local methods, they have the neighbourhood parameter choice that can be adjusted.
Table 5.6 reports the evaluation score of the large k.

It can be seen that the overall evaluation scores do not improve much as the k
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Method MNIST FMNIST Coil20 CIFAR Isolet Reuters
k = 55 k = 81 k = 55 k = 55 k = 50 k = 70

Pl 0.4114* 0.3746 0.5218 0.2349 0.3029 0.3414
s-UMAP Pg 0.2085* 0.3261* 0.0071 0.0461 0.0604 0.0097

Ps 1.0000* 0.9950 1.0000 0.9400 0.9994 0.9989*
P 0.5400* 0.5652* 0.5096 0.4070 0.4542 0.4500
Pl 0.3593 0.3077 0.5368 0.2805* 0.2922 0.2624

PaCMAP Pg 0.2885 0.5624* 0.0867* 0.2739 0.1525 0.2097
Ps 0.7450 0.6455 0.8396 0.4740 0.7481* 0.7879
P 0.4643 0.5052 0.4877* 0.3428 0.3976* 0.4200
Pl 0.2212* 0.2262 0.4378* 0.1620* 0.2526* 0.0545

COVA-1 Pg 0.5818* 0.7442* 0.1676 0.1442 0.2896 0.5103
Ps 0.8420 0.8485 0.9757 0.7920 0.9026 0.9236*
P 0.5483 0.6063 0.5270 0.3661 0.4807 0.4961*

Table 5.6: Visualisation scores for s-UMAP, PaCMAP and COVA with larger k which

is calculated by the given k which is close to the
⌊(

n2 logd n
) 1

d+2

⌋
based on each

dataset. The * highlights the improving score after using the larger k compared with
Table 5.3. The underlined number refers to the score which is higher than score of
ANGEL obtained in Table 5.3.

becomes larger. None of the new P is higher than the P of ANGEL results. As for their
global score Pg is not very sensitive to the choice of the neighbourhood size for the
high-dimensional datasets, but the local neighbour preservation score Pl can drop with
larger k in some cases. Moreover, increasing k may even reduce the cohort separability
Ps. The overall preservation score P is still lower than the result obtained by ANGEL
in Table 5.3.

In summary, our evaluation approach successfully proved that cat-SNE and s-
UMAP are good at preserving local neighbourhood while PySef and COVA-1 are capa-
ble of maintaining the cohort position as a global structure preservation. These results
prove the reliability of our evaluation tools. Therefore, we can then claim that our AN-
GEL model outperforms all other methods based on the overall P score, as it balances
all the three aspects: local neighbourhood preservation, cohort position preservation,
and cohort separability.

5.2.5 ANGEL’s Parameter Study

As shown in Algorithm 3, there are some important hyper-parameters: the local neigh-
bourhood size k, the cohort separation control λ, and the global vs local control r.
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In this section, we will compare ANGEL results for different values of these hyper-
parameters. The target is to investigate how this hyper-parameters will influence the
embedding result of ANGEL.

First, we change the local neighbourhood size k from 10 to 50. Since this hyper-
parameter focuses on local neighbourhood preservation, we are not intend to set k to
a very large value. Figure 5.14 shows the trend line of the evaluation scores of all six
real-world dataset. It can be deducted that increasing k does not leading to a significant
change on the preservation score for all these dataset. When k = 50, some Pl, Pg, and
P even have a sizeable decline. Figure 5.15 also shows that changing neighbourhood
size k would not change much on visualisation. A smaller k may even produce a better
evaluation score and visualisation image.

Thus we can conclude that our ANGEL algorithm is insensitive to the neighbour-
hood choice, which is much more convenient for analysts to apply.
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Figure 5.14: Preservation scores of ANGEL embedding results of the different datasets
applying different k = 10,20,30,40,50. The x axis of each sub-figure denotes different
k value, the y axis of each sub-figure denotes the preservation value. Different colours
refer to different preservation score respectively: blue: Pl, pink: Pg, black: Ps, red: P.

Then we set the cohort separation control λ to different values, and Figure 5.17
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Figure 5.15: Embedding results of all real-world datasets with neighbourhood size k
changes from 10 - 50.

shows the trend line of the evaluation score while Figures 5.16, 5.18 shows the em-
bedding results. Figure 5.16 shows how λ changes the separation between cohorts in
synthetic flower dataset. However, such changes are not very obvious in real-world
data visualisation images. From Figure 5.18, we can barely notice that some cohorts
are more compact and the separation between cohorts has been enhanced, as the λ in-
creases from 0.1 to 0.9. Furthermore, the Ps in Figure 5.17 also shows that λ would
not significantly change the cohort separation score.

Thus, λ is a mild separation control for real-world dataset, however, it performs
well on low-dimensional dataset. Thus, the value of λ could be set any λ < 0.5 as an
easier choice for Algorithm application.

Finally, we focus on the global vs local control r. We compare different r from 0.1,
0.05, to 0.01 with the result X̂(0), which is the optimisation result of the global cost
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(a) Flower, λ = 0 (b) λ = 0.5 (c) λ = 0.9

Figure 5.16: Embedding results of flower dataset with λ changes from 0 - 0.9.
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Figure 5.17: Preservation scores of ANGEL embedding results of the different datasets
applying different λ = 0.1,0.3,0.5,0.7,0.9. The x axis of each sub-figure denotes
different λ value, the y axis of each sub-figure denotes the preservation value. Different
colours refer to different preservation score respectively: blue: Pl, pink: Pg, black: Ps,
red: P.
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(a) MNSIT, λ = 0.1 (b) MNSIT, λ = 0.9 (c) FMNSIT, λ = 0.1 (d) FMNSIT, λ = 0.9

(e) Coil20, λ = 0.1 (f) Coil20, λ = 0.9 (g) Cifar, λ = 0.1 (h) Cifar, λ = 0.9

(i) Isolet, λ = 0.1 (j) Isolet, λ = 0.9 (k) Reuters, λ = 0.1 (l) Reuters, λ = 0.9

Figure 5.18: Embedding results of real-world datasets under different settings of the
cohort separation parameter λ.
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function OLAE (Eq. 4.14) in Section 4.5. X̂(0) can be treated as a special case when
r = 0.

From Figure 5.19, as r decreases, the embedding results collapse to the X̂(0). This
can also be considered as an enhanced cohort separation process, making each cohort
more recognisable. Ps score presented in Figure 5.20 also confirms this inference.
However, except for MNSIT, r with other meaningful values can achieve a higher
local neighbourhood preservation score Pl than the score obtained by X̂(0).

Thus, the choice of r is relatively important compared with other hyper-parameters
k and λ. Users need to make trade-offs between the separation and the local neigh-
bourhood preservation.

(a) FMNIST, r = 0.1 (b) r = 0.05 (c) r = 0.01 (d) OLAE result

(e) Coil20, r = 0.1 (f) r = 0.05 (g) r = 0.01 (h) OLAE result

(i) Reusters, r = 0.1 (j) r = 0.05 (k) r = 0.01 (l) OLAE result

Figure 5.19: Embedding results of real-world datasets under different settings of the
global vs local control parameter r.
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Figure 5.20: Preservation scores of ANGEL embedding results of the different datasets
applying different r = 0.1,0.05,0.01,0. The x axis of each sub-figure denotes different
r value, the y axis of each sub-figure denotes the preservation value. Different colours
refer to different preservation score respectively: blue: Pl, pink: Pg, black: Ps, red: P.
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5.3 Chapter Summary

In this chapter, a new evaluation metric is proposed to measure embedding results
and compare performance of different DR methods. Experiments are conducted to
compare ANGEL with state-of-the-art algorithms. The experimental results show that
ANGEL is the only method that can represent both point cohort position management
and the internal structure of each cohort in 2,3-D spaces. It is also able to achieve the
highest preservation score among all DR approaches. In addition, a parametric study
of the ANGEL model is presented and discussed in this chapter. It is concluded that
the neighbourhood size k essentially does not affect the DR results too much. The
λ has a strong separation for synthetic data points and a visual separation for high-
dimensional data points. The r parameter enhances the degree of separation between
data but affects local neighbourhood preservation and visual effects.



Chapter 6

ANGEL Variations

The previous chapters illustrate the proposed ANGEL model and demonstrate experi-
mental results on how ANGEL works as a visualisation tool.

This chapter introduces the variations of the ANGEL algorithm. First three variants
for ANGEL focus on algorithm acceleration. The warm-start optimisation method
is based on the ε-constrained optimisation algorithm. It gives a fast approximation
within only a few iterations of running time. The Loop-Replicate (LR) optimisation
is developed based on the weighted sum optimisation approach. It iteratively changes
the weight values in circular iterations, allowing a reasonably good approximation to
be obtained in a relatively short period of time. The stochastic ordinal constraints
selection is adapted to reduce the number of ordinal constraints to reduce the time
consumption of the local ordinal embedding. However, it does not introduce severely
negatively impact the local neighbourhood preservation.

It should be highlighted that none of these three optimisation methods proposed for
ANGEL algorithm are currently theoretically supported, and only experimental results
are available to prove that they are effective and accessible.

The last extension shows the feasibility of applying the ANGEL framework to a
popular metric embedding algorithm such as t-SNE, where ANGEL construction is
more generalised for different applications.

110
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Algorithm 4 Warm-start optimisation for ANGEL Step 8
1: Input: Reconstruction weights {w∗i }n

i=1; anchor embeddings {ûi}m
i=1.

2: Hyperparameter: Small iteration number Niter = 10.
3: Compute warm-start data embeddings

{
x̂(0)i

}n

i=1
by Eq. 6.1.

4: Construct data ordinal triplets ΓLOE(X) following Eq. 3.12, and use ΓLOE(X) to compute
data embeddings {x̂i}n

i=1 by Eq. 4.5, where gradient descent updates are conducted for

Niter iterations using
{

x̂(0)i

}n

i=1
as the initialisation.

5: Record results obtained from each iteration, and set the one with best P as the embedding
result.

6: Output: Embedded data points {x̂i}n
i=1 in 2 (or 3)-D space.

6.1 Different Optimisations for ANGEL

6.1.1 The Warm-start (Warm) Optimisation Method

Given large-scale dataset, solving Eq. 4.16 can be costly. We propose an alternative
way to find a quick and fairly good solution to Eq. 4.16. Taking the LAE reconstruc-
tion weights {w∗i }n

i=1 and the computed anchor embedding {ûi}m
i=1 as the input, we

approximate the data embeddings by directly solve the global objective function OLAE

(Eq. 4.14) and obtain

x̂(0)i =
m

∑
i=1

w∗i ûi. (6.1)

From Figures 5.20 and 5.19, it can be observed that
{

x̂(0)i

}n

i=1
has the advantage of

keeping the cohort structure of the original dataset, however, it suffers from a local
neighbourhood preservation loss comparing with results obtained using ANGEL algo-
rithm.

We then use
{

x̂(0)i

}n

i=1
as a warm-start initialisation of the LOE optimisation in Eq.

4.5, using the triplet set ΓLOE(X). Only a smaller number of iteration is performed.
According to our empirical experience, less than 10 iterations for optimising Eq. 4.5 is
sufficient. Such an setting of early stopping moves the data points

{
x̂(0)i

}n

i=1
towards

more correct local neighbourhood but without distorting much the global structure car-
ried by

{
x̂(0)i

}n

i=1
. Pseudo-code of the proposed acceleration is provided in Algorithm

4. We denote the ANGEL model with this warm-start optimisation as ANGEL-warm,
in order to avoid misunderstanding.
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Algorithm 6 Loop-Replicate optimisation for ANGEL Step 8
1: Input: Initialisation X̂0; Initial parameter α0 = 0 or 1; Maximum iteration Iter; The batch

loop length T ; Critical time point tα.
2: Set the iteration counter t = 0. Set α = α0 for the Eq. 4.15
3: while t < Iter do
4: if t == tα or t == nT, n = 1,2, . . . then
5: Set α = 1−α.
6: end if
7: Compute the Euclidean gradient of the Eq. 4.15 with respect to α .
8: Do the gradient descent optimisation process for one iteration to update X̂t .
9: X̂t+1← updated X̂t

10: t = t +1
11: end while
12: Output: Embedded data points {x̂i}n

i=1 in 2 (or 3)-D space.

6.1.2 Loop-Replicate (LR) Optimisation Method

In the weighted-sum method (Eq. 4.15), if the value of the weight parameter α is set to
1, then only the global structure preservation will be considered when finding the op-
timal solution. Also, if the value of the weight parameter α is set to 0, then converting
a single-objective problem will only rely on the local neighbour characteristics.

The LR optimisation method is proposed that alters α from 0 to 1 within each small
loop of iterations repetitively. The complete pseudo-code is presented in Algorithm 6.

The initialisation α is set to be 0 or 1, corresponding to the preference of which
sub-single objective problem to be optimised first. The parameter Iter restricts the
maximum iterations used in the optimisation process. We divided Iter into many small
repetitive loops; each loop has the time length T . With each loop, we set the critical
time point tα to change the value of the α. Since the value of the α is restrict to be 0 or 1,
changing the value in the optimisation process will influence the gradient of the multi-
objective model (Eq. 4.15). In other words, we only optimise one sub-single objective
function in the first tα iterations, then optimise the other sub-single objective function
at the next T − tα iterations, and repeat this process until it reaches the maximum Iter

iterations. Figure 6.1 presents a general framework of the LR algorithm.

From another perspective, except for the first tα iterations, the initialisation of the
next period of the optimisation process is the result of the previous optimisation pro-
cess. It can be seen as we repeat the process of reaching the first and second targets.
The critical time point tα is set to balance two sub-single objectives. Iter is limited
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Figure 6.1: The general framework of the Loop-Replicate optimisation algorithm.

to be a non-integer value and multiplies the loop length T. The exact value of Iter is
computed by searching for the optimal endpoint to solve both sub-single objectives.

There is no analytical proof that this Loop-Replicate optimisation method can reach
the optimal set of the multi-objective model. However, it improves the optimisation
result of the weighted-sum model. The common setting is the Iter = 1000, T = 100,
then set tα = 90 with α = 1 at the beginning point, which optimises OLAE first. We
denote the ANGEL model with this LR optimisation as ANGEL-LR.

6.1.3 Stochastic Optimisation Method

The novel optimisation approaches proposed in Section 6.1 and 6.1.2 mainly focus
on reducing the number of iterations to accelerate the optimisation process. In this
section, we will discuss its capability to reduce the number of triplets when applied to
the cost function for reducing the time consumption.

As discussed in the previous chapter, the ANGEL algorithm has a relatively high
complexity between O(n2) and O(n3) concerning the data point number n. The main
reason is that the size of the data ordinal constraints boosts rapidly when the num-
ber of data points increases. Take the concentric circle dataset as an example. The
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Algorithm 7 Subset selection for ANGEL stochastic optimisation
1: Input: full ordinal triplet set ΓLOE(X).
2: Hyperparameter: random sampling portion par.
3: Set the empty subset ΓLOE

sub
4: for each data point xi do
5: for each index of neighborhood point j do
6: get the set of ordinal triplets ΓLOE

i, j = {(i, j, l)} ⊂ ΓLOE and the number of triplets in
this set ni, j.

7: compute the nl = ⌊ni, j× par⌋ .
8: randomly select nl ordinal triplets from ΓLOE

i, j and stores them in ΓLOE
sub .

9: end for
10: end for
11: Output: The subset ΓLOE

sub used for each iteration of the optimisation process

dataset contains 500 data points that belongs to 2 different cohorts. Setting the k-
nearest neighbourhood as k = 10, the total number of the ordinal constraints will be
500×10× (500−1−10). For each data point xi, the triplet constraint (i, j, l) has only
k = 10 choices of j, however, the l varies from 500−11 = 489 different indices. If we
use another flower dataset that contains 1000 data points belonging to 7 cohorts, under
the same k = 10 setting, the choice of l will increase to 1000− 11 = 989 selections,
which overwhelms the variation of the j. With the increasing size of the datasets, the
number of the choice of l increases that leads to the increase of the triplets to be fed
into the optimisation equation of ANGEL algorithm.

One straightforward idea is to reduce the number of ordinal triplets used in each
gradient optimisation process by finding a fast approximation of the ANGEL embed-
ding result. Inspired by the stochastic gradient descent, where each iteration measures
the gradient based on a single randomly picked data sample, a subset of the ordinal
triplets is randomly selected for each iteration to accelerate the optimisation process.

Algorithm 7 is proposed as the stochastic triplet selection. This selection process
ensures that for each data point xi, all neighbouring points have been considered in
every optimisation process but points not positioned in the neighbourhood of xi are
randomly optimised. We denote the ANGEL model with this stochastic optimisation
as s-ANGEL.

6.1.4 Experiments and Results

Dataset: We use the same datasets as in Section 5.2.1.
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Experimental Setup:

• To make fair comparison, we adopt the same cohort position embeddings, an-
chor points, and anchor embeddings for the preliminary preparation. We only
compare the data embedding result utilising different optimisation methods.

• As for ANGEL-warm, we set Niter = 10, and present the best result from 10
iterations.

• As for ANGEL-LR, we set α= 0 as the first weight, Iter = 1000, batch T = 100,
and the critical time point tα = 90, leading to 90 times of OLAE optimisation and
10 times of OLOE optimisation in each batch T .

• As for s-ANGEL, we find par < 0.5 to accelerate the optimisation. Thus, we set
par into 0.5 and 0.1 and compare embedding results.

First, we show the convergence of these algorithms in Figures 6.2 and 6.3. Since
ANGEL-LR mainly applies the LOE approach in the optimisation process, its conver-
gence is not concerned in this section. As shown in Figures 6.2a and 6.2d, the original
ANGEL model converges really fast from a large error value. Thus, we apply the log
error and obtained Figures 6.2b and 6.2e. Figures 6.2c and 6.2f shows the log(Error)
of the LR optimisation method.

Comparing the ANGEL-LR with ANGEL, they both converge very fast during the
first few iterations of the OLOE optimisation process. (Note that the OLOE optimisation
begins at the 90-th iteration of ANGEL-LR). Then ANGEL smoothly achieves the
optimal point, while ANGEL-LR oscillates with respect to optimisation of different
objective functions. However, the cost error changes in a stable way. The user can stop
the optimisation process at any time and obtain an approximation result. Figures 6.4
and 6.5 shows the visualisation results under different iterations of ANGEL, ANGEL-
warm and ANGEL-LR.

As for the s-ANGEL, we compare the convergence under different settings of par.
When par = 1, the original ANGEL is adopted. From Figure 6.3, the log error con-
verges fast for all settings. s-ANGEL with par = 0.1 is the slowest one but still could
converge after around 50 iterations. It appears the situation that the log error first be-
comes smaller, then larger and then smooths during the optimisation process. That is
because we applied the log function and it amplifies normal oscillations of the gradient
descent method. Figure 6.6 presents the image results with different par value. The
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(a) Flower, ANGEL error (b) ANGEL log error (c) ANGEL-LR log error

(d) FMNIST, ANGEL error (e) ANGEL log error (f) ANGEL-LR log error

Figure 6.2: Convergence of the optimisation process of the Flower and FMNIST
datasets. The first row demonstrate Flower convergence, the second row shows con-
vergence result of FMNIST.
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result with par = 0.1 gives the most different result compared with the result of AN-
GEL as expected. However, if we wish to obtain a quick view of the ANGEL result,
these images are all acceptable as an approximation.

(a) FMNIST (b) Coil20

Figure 6.3: Convergence of the optimisation process of the FMNIST and Coil20
datasets using s-ANGEL with different par settings. The log error is recorded.

Then we evaluate the performance of these fast-approximation results. Table 6.1
and 6.2 demonstrates preservation scores of each method applied to each dataset.
Compared with the ANGEL (the columns with par = 1 in Table 6.2), ANGEL-warm
achieves the worst performance on all three scores. Results of ANGEL-LR and s-
AGNEL with par = 0.5 are relatively competitive, and it even achieves better results
using some datasets. Taking account into the time-consumption recored in Table 6.3,
ANGEL-warm and s-ANGEL with par = 0.1 is among the fastest ones to finish the
optimisation, while those with better scores costs much more time than s-ANGEL
with par = 0.1. However, none of the methods are as competitive as SOTA in terms
of speed. Here, to guarantee consistency, the time measurement experiments are all
conducted on CSF3 system supported by the University of Manchester. The CSF3 is a
High Performance Computing (HPC) cluster ( 8,644 cores + 100 GPUs). The OS on
CSF3 nodes is CentOS Linux release 7.9.2009 (Core). We adopted the standard Ivy-
bridge cores: 38 nodes of 2×8-core Intel Xeon E5-2650 v2, 2.60GHz + 64GB RAM.
Codes running on Matlab used the tic and toc commands, and algorithms running on
Python used the time library.
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(a) ANGEL, 10 iters (b) 30 iters (c) 50 iters (d) 70 iters (e) 90 iters

(f) ANGEL-warm, 1
iter

(g) 2 iters (h) 3 iters (i) 4 iters (j) 5 iters

(k) ANGEL-LR, 90
iters

(l) 100 iters (m) 190 iters (n) 390 iters (o) 490 iters

Figure 6.4: Visualisations of the flower embedding during different ANGEL optimi-
sation iterations. The first line demonstrates the ANGEL algorithm. The second line
demonstrates the ANGEL warm approach. The last line shows the ANGEL-LR opti-
misation method. All the optimisation processes start with a random initialisation.
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(a) ANGEL, 10 iters (b) 30 iters (c) 50 iters (d) 70 iters (e) 90 iters

(f) ANGEL-warm, 1
iter

(g) 2 iters (h) 3 iters (i) 4 iters (j) 5 iters

(k) ANGEL-LR, 90
iters

(l) 100 iters (m) 190 iters (n) 390 iters (o) 490 iters

Figure 6.5: Visualisations of the FMNIST embedding during different ANGEL opti-
misation iterations. The first row demonstrates the ANGEL algorithm. The second
row demonstrates the ANGEL-warm approach. The last row shows the ANGEL-LR
optimisation method. All the optimisation processes start with a random initialisation.

(a) MNSIT (b) par = 0.5 (c) par = 0.1 (d) FMNSIT (e) par = 0.5 (f) par = 0.1

(g) Coil20 (h) par = 0.5 (i) par = 0.1 (j) Cifar (k) par = 0.5 (l) par = 0.1

(m) Isolet (n) par = 0.5 (o) par = 0.1 (p) Reusters (q) par = 0.5 (r) par = 0.1

Figure 6.6: Embedding results using s-ANGEL with different par settings.
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Method MNIST FMNIST Coil20 CIFAR Isolet Reuters
Pl 0.2485 0.2563 0.4628 0.1882 0.3006 0.1812

ANGEL-warm Pg 0.5842 0.8436 0.2033 0.1273 0.2541 0.4061
Ps 0.6380 0.6555 0.9125 0.4720 0.7397 0.8176
P 0.4902 0.5851 0.5262 0.2625 0.4315 0.4683
Pl 0.2682 0.2892 0.5712 0.1872 0.3292 0.3221

ANGEL-LR Pg 0.5588 0.7600 0.1544 0.1576 0.2465 0.4206
Ps 0.7620 0.6625 0.9167 0.4670 0.7635 0.8677
P 0.5297 0.5705 0.5474 0.2706 0.4464 0.5368

Table 6.1: Performance difference between the ANGEL based on different optimisa-
tion approaches.

Concisely, all the fast optimisation approaches proposed in this section could suc-
cessfully find an approximation result of ANGEL. Therefore, according to the perfor-
mance of each algorithm, we offer suggestions based on the need of optimisation tool
selection as follows:

• If the users concern the speed, ANGEL-warm and s-ANGEL (par = 0.1) are
best choices.

• If the users concern the the balance between the speed and preservation score,
s-ANGEL (par = 0.1) is the most suitable one.

• If the users concern the accuracy over the speed, ANGEL-LR and s-ANGEL
(par = 0.5) are better choices. Moreover, par is a hyper-parameter for users to
adjust to meet their own goal.

6.2 ANGEL-tSNE Model Construction

This section presents that instead of applying OLOE as the local objective function,
other popular local embedding method can also be adopted. Here, we introduce an
ANGEL variation utilising t-SNE as the local objective function.

6.2.1 Method

We restate the t-SNE cost function (Eq. 3.5) as
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par = 1 par =0.5 par =0.1 par = 1 par =0.5 par =0.1
Pl 0.2560 0.2279 0.1803 Pl 0.2979 0.2793 0.2079

MNSIT Pg 0.5636 0.5782 0.5055 FMN- Pg 0.7648 0.7539 0.7479
Ps 0.8770 0.8540 0.8550 IST Ps 0.7815 0.7770 0.7810
P 0.5655 0.5534 0.5136 P 0.6148 0.6034 0.5778
Pl 0.5283 0.5072 0.4349 Pl 0.2155 0.1799 0.1621

Coil20 Pg 0.2262 0.2315 0.2378 Cifar Pg 0.2145 0.1624 0.1503
Ps 0.9153 0.9361 0.9528 Ps 0.5050 0.7720 0.8780
P 0.5566 0.5538 0.5418 P 0.3117 0.3714 0.3968
Pl 0.3571 0.3144 0.3182 Pl 0.2117 0.2171 0.2301

Isolet Pg 0.2374 0.2089 0.2112 Reu- Pg 0.3127 0.3067 0.3552
Ps 0.8583 0.9647 0.9622 ters Ps 0.9772 0.9567 0.9396
P 0.4843 0.4960 0.4972 P 0.5006 0.4935 0.5083

Table 6.2: ANGEL performance change under different settings of the cohort sepa-
ration parameter par. The bold number highlights the highest score obtained using
different par settings.

Method MNIST FMNIST Coil20 CIFAR Isolet Reuters
cat-SNE 91.4s 284.48s 154.8s 112.2s 204.1s 78.3s
s-UMAP 7.9s 16.9s 16.6s 15.2s 12.9s 10.7s
PaCMAP 2.63s 4.7s 3.1s 3.7s 4.1s 2.7s
ANGEL 339.9s 2336.4s 1525.3s 913.6s 1828.4s 846.0s
ANGEL-warm 131.7s 389.5s 292.7s 188.0s 441.8s 232.1s
ANGEL-LR 203.3s 1245.8s 328.2s 318.9s 489.8s 134.2s
s-ANGEL par = 0.5 205.3s 1368.4s 828.1s 406.0s 1355.3s 415.7s
s-ANGEL par = 0.1 52.0s 684.4s 320.5s 131.3s 336.3s 134.7s

Table 6.3: Time consumption of the ANGEL based on different optimisation ap-
proaches (only data embedding part). The bold number highlights the fastest ap-
proach among different ANGEL optimisations. The time of SOTA (cat-SNE, s-UMAP,
PaCMAP) are also reported.

C = KL(P||Q) = ∑
i

∑
j

pi j log
pi j

qi j
,

where pi j =
p j|i+pi| j

2n , p j|i =
exp(−∥xi−x j∥2/2σ2

i )

∑k ̸=i exp(−∥xi−xk∥2/2σ2
i )

, and qi j =
(1+∥x̂i−x̂ j∥2)−1

∑k ̸=l(1+∥x̂k−x̂l∥)−1 .

The Barnes-Hut-SNE [119] introduces a sparse approximation of input similarities,
emphasising nearest neighbours more. As the Gaussian distribution rapidly converges
to zero when moving outwards from the mean, the probability p j|i of distant dissimilar
data points xi and x j will be almost zero. Thus, we use a sparse approximation as Eq.
6.2 to substitute the original p j|i without materially adversely affecting the quality of
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the embedding.

p j|i =


exp
(
−D

(
xi,x j

)2
/2σ2

i

)
∑xl∈k-NN(xi) exp

(
−D(xi,xl)

2 /2σ2
i

) , if x j ∈ k-NN(xi)

0, otherwise

(6.2)

In [119], the value of k is set to be ⌊3Perp(Pi)⌋ where the perplexity Perp(Pi) is de-
fined as Eq. 3.3. Since all σi is derived from the user-given Perp(Pi) by a simple
binary search, we can easily convert the σi from the nearest neighbour number k di-
rectly. Thus, it is more straightforward for us to compare the sparse approximation of
t-SNE with other k-nearest neighbour based embedding algorithms under the same k

selection.

Similar to the construction of ANGEL, for ANGEL-tSNE, we set the same global
objective function OLAE as Eq. 4.14, whereas change the local objective function to the
cost function of the sparse-tSNE. That is, we can implement the r-constrained model
of the ANGEL-tSNE as

min
{x̂i}n

i=1
∑

i
∑

j
pi j log

pi j

qi j
,

subject to
∥∥x̂i− ÛT w∗i

∥∥2
2 < r, i = 1,2, . . . ,n, (6.3)

where pi j =
p j|i+pi| j

2n , p j|i is computed using Eq. 6.2, and qi j =
(1+∥x̂i−x̂ j∥2)−1

∑k ̸=l(1+∥x̂k−x̂l∥)−1 .

6.2.2 Experiment and Results

Dataset: We use the same data sets used in Section 5.2.1.

Experimental Setup:

• As for ANGEL-tSNE, we followed the parameter settings used in ANGEL.

Figure 6.7 shows the image embedding result of ANGEL-tSNE. Compared with
results generated by ANGEL in Section 5.2, ANGEL-tSNE produces similar image
results. This ensures that anchor points can well represent the overall structure of the
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(a) Circle (b) Flower (c) Bicycle

(d) MNSIT (e) FMNIST (f) Coil20

(g) Cifar (h) Isolet (i) Reusters

Figure 6.7: Embedding results of real-world datasets applying ANGEL-tSNE.

embedding points, while the local objective function is only utilised to modify the local
neighbour preservation.

Table 6.4 compares evaluation score between ANGEL and ANGEL-tSNE. Al-
though ANGEL-tSNE maintains the global score Pg and the separation score Ps, it
suffers from the loss of the local preservation score Pl. However, it has the much more
accelerated optimisation process than ANGEL has according to Table 6.5, which is
also consistent with the fact that the t-SNE algorithms runs much faster than the LOE
algorithm. It is obvious in Table 6.5 that AGNEL-tSNE achieves a comparable speed
as t-SNE has. Here, to guarantee consistency, the time measurement experiments are
all conducted on CSF3 system supported by the University of Manchester. The CSF3 is
a High Performance Computing (HPC) cluster ( 8,644 cores + 100 GPUs). The OS on
CSF3 nodes is CentOS Linux release 7.9.2009 (Core). We adopted the standard Ivy-
bridge cores: 38 nodes of 2×8-core Intel Xeon E5-2650 v2, 2.60GHz + 64GB RAM.
Codes running on Matlab used the tic and toc commands, and algorithms running on
Python used the time library.

Finally, we will investigate the neighbourhood size k applied to the ANGEL-tSNE
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Figure 6.8: Preservation scores of ANGEL-tSNE embedding results of the different
datasets applying different k = 10,20,30,40,50. The x axis of each sub-figure denotes
different k value, the y axis of each sub-figure denotes the preservation value. Different
colours refer to different preservation score respectively: blue: Pl, pink: Pg, black: Ps,
red: P.
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ANGEL ANGEL-tSNE ANGEL ANGEL-tSNE
Pl 0.2560 0.1463 Pl 0.2979 0.0935

MNSIT Pg 0.5636 0.4509 FMN- Pg 0.7648 0.7830
Ps 0.8770 0.9640 IST Ps 0.7815 0.8515
P 0.5655 0.5204 P 0.6148 0.5760
Pl 0.5283 0.1581 Pl 0.2259 0.1184

Coil20 Pg 0.2262 0.2144 Cifar Pg 0.2570 0.2315
Ps 0.9153 0.8215 Ps 0.7550 0.8220
P 0.5566 0.3980 P 0.4216 0.3906
Pl 0.3571 0.1460 Pl 0.2117 0.0868

Isolet Pg 0.2374 0.3601 Reu- Pg 0.3127 0.3546
Ps 0.8583 0.7218 ters Ps 0.9772 0.9624
P 0.4843 0.3760 P 0.5006 0.4685

Table 6.4: Compare ANGEL with ANGEL-tSNE. The bold number reports the higher
score compared between ANGEL and ANGEL-tSNE.

Method MNIST FMNIST Coil20 CIFAR Isolet Reuters
t-SNE 7.3s 10.7s 6.3s 7.4s 7.8s 5.9s
ANGEL 339.9s 2336.4s 1525.3s 913.6s 1828.4s 846.0s
ANGEL-tSNE 13.0s 43.5s 23.4s 13.5s 32.5s 11.5s

Table 6.5: Time consumption of the t-SNE, ANGEL, and ANGEL-tSNE. As for AN-
GEL and ANGEL-tSNE, only data embedding part has been reported.

algorithm. Similarly, we change k from 10 to 50 and construct the t-SNE algorithm
based on Eq. 6.2. Figure 6.8 shows the trend of the preservation scores of different
datasets under different k settings. When k increases, Pl increases for some dataset
but the change is very mild. The overall score is not affected by the change of the
neighbourhood size, which proves that our construction of the algorithm can reduce
the sensitivity of the local metric algorithm as t-SNE.

6.3 Chapter Summary

This chapter describes the variations of the ANGEL model. The chapter is organised
into two parts. The first part focuses on applying different newly proposed optimisation
methods to the ANGEL algorithm to obtain fast approximation results. Experimental
results show the advantages of these optimisation methods in terms of algorithm speed-
up and give recommendations on the choice of parameters for different scenarios. The
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second section illustrates the feasibility of applying the ANGEL framework to a pop-
ular embedding algorithm. The previously used local objective function is replaced by
another local embedding cost function, namely ANGEL-t-SNE. Experimental results
show that replacing the local objective function does not affect the global results but
only for the neighbourhood preservation case.



Chapter 7

Incremental ANGEL

The vast majority of the DR visualisation methods operate in a batch mode, which
means that they cannot process new coming data points [76]. When new data sam-
ples arrive sequentially, to obtain a new embedding result, most of the approaches
such as LOE, t-SNE and UMAP, need to repeat running of the “batch” version on
the “new” dataset, which is updated by adding the new data sample. This process is
time-consuming and wastefully discards the pre-generated embedding results [42, 79].

The incremental DR methods are developed to handle the streaming data [76], with
an additional ability to visualise the gradual change of the embedding result [79]. There
are plenty of incremental methods developed based on metric embedding approaches
as reviewed in Section 2.4. However, it is worth mentioning that there is no incremental
extensions on ordinal embedding approaches.

We proposed two extensions of ANGEL targeting at dealing with new coming
data samples. The first approach progressive ANGEL (p-ANGEL) (Section 7.1) aims
at memory reduction, which treats portions of datasets as the new coming samples
and embedded these “new” points progressively. Another incremental ANGEL (i-
ANGEL) approach (Section 7.2) can process the real new data points, however, when
applying this extension to the existing dataset, it aims at speeding up the acceleration.
Experimental results shows their performance on 6 real-world datasets and compared
ANGEL with these two approaches.

127



128 CHAPTER 7. INCREMENTAL ANGEL

7.1 Memory Reduction: p-ANGEL

One of the limitations of ANGEL is the memory consumption, since it requires to com-
pute the overall distance matrix among all data samples and embedded points while
processing the data embedding. When coming across a dataset containing n data sam-
ples, an essential step is to construct an n×n matrix to store the distance between data
samples. However, when n is larger than 20k, it is difficult for a normal computational
node to handle the large matrix.

Inspired by progressive DR algorithms [42, 70, 76, 87], the progressive ANGEL (p-
ANGEL) is proposed to reduce the size of the distance matrix. The idea is to separate
the existing dataset into a batch dataset and a progressive dataset, and embedded data
samples in the progressive dataset one by one as the new coming data sample. Thus,
the distances between the “new” data sample and the batch dataset are computed to
obtain the updated k-nearest neighbourhood. For each embedding process, the updated
points along with “new” coming data sample will be optimised, which ideally reduce
the memory cost compared with ANGEL. To be more specific, in Algorithm 8, the
distance matrix calculation is replaced by line 8 where the maximum distance matrix
has the size (n−1)×1. The trade-off is between the time and memory since we do the
embedding of each data point xi one by one in a loop instead of finding the embedding
of the whole dataset.

The algorithm p-ANGEL starts with the same cohort embedding, anchor genera-
tion and embedding as the ANGEL model. Then it updates the ordinal triplets based
on the updated k-nearest neighbourhood, as shown in Section 7.1.1. The data embed-
ding process is based on the updated ordinal triplets to obtain the embedded points in
2,3-D spaces. The full algorithm is stated in Section 7.1.2

7.1.1 Updating Ordinal Triplet Constraints

The construction of ordinal triplet constraints of data points is a critical step for the
ANGEL algorithm, because it keeps the local neighbourhood information of each data
point while doing the embedding process. When a new data point xn+1 arrives, it only
influence directly the ordinal triplet constraints of batch data points that includes xn+1

in their k-nearest neighbours or belongs to the k-nearest neighbours of the new data
point xn+1. We can update the set ΓLOE(Xn) by calculating k-nearest neighbourhood
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among the new dataset Xn+1 that holds the batch dataset Xn with the data point xn+1

as

ΓLOE(Xn+1) =
{
(i, j, l)|x j ∈ k-NN(xi),xl /∈ k-NN(xi)

}
, (7.1)

here Xn+1 = [Xn;xn+1]. We use XA where each xi, i ∈ A whose ordinal triplet con-
straints are affected, and we denote XAn = [XA;xn+1] includes the new data points into
the XA.

Unlike progressive metric embedding algorithms, we do not require updating the
exact edges of neighbourhood graph as [42, 70] do. However, we only need to replace
the data point that is not in the updated neighbourhood with the new coming data
point xn+1. That is, taking xn+1 among the new k-nearest neighbour of the set XA, the
dropped ordinal triplet constraint set is

ΓLOE−P(xn+1) =
{
(i, j,k)|xi ∈ XA,D(xi,x j)> D(xi,xn+1),xl /∈ k-NN(xi)

}
, (7.2)

where the ΓLOE−P ⊂ ΓLOE , and the updated ordinal triplet constraint set is

ΓLOE−U(xn+1) =
{
(i, j,k)|xi ∈ XA,x j = xn+1,xl /∈ k-NN(xi)

}
. (7.3)

Furthermore, the new generated ordinal constraint set according to the new data
point x∗ is

ΓLOE−N(xn+1) =
{
(i, j,k)|xi = xn+1,x j ∈ k-NN(xn+1),xl /∈ k-NN(xn+1)

}
. (7.4)

Then the full updated ordinal constraint set regarding to the xn+1 is given as

ΓLOE∗(xn+1) = ΓLOE−U(xn+1)∪ΓLOE−N(xn+1). (7.5)

The whole triplet set ΓLOE(Xn+1) can also be denoted by

ΓLOE(Xn+1) =
(

ΓLOE(Xn)\ΓLOE−P(xn+1)
)
∪ΓLOE∗(xn+1). (7.6)
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We will emphasize the ΓLOE∗(xn+1) in the following optimisation algorithm. The sim-
ple and straightforward computation leads to a memory reduction, as there is no need
to find the updated triplets by recalculating the k-NN graph among all data samples
using Eq. 7.1.

7.1.2 p-ANGEL Algorithm Implementation

The pseudo-code of the modified algorithm is shown in Algorithm 8. Similar to the
constrained optimisation problem Eq. 4.16 of ANGEL algorithm, we can construct

min
{x̂i},i∈An

∑
(i, j,l)∈ΓLOE*(xn+1)

max2 (0,D(x̂i, x̂ j)+δ−D(x̂i, x̂l)
)
,

subject to
∥∥x̂i− ÛT w∗i

∥∥2
2 < r, i ∈ An. (7.7)

A suggested setting is δ = 0.1 and r ≈ 0.05, which follows the suggested batch em-
bedding setting. The final optimum embedding result X̂n+1 is obtained by updating
X̂A ⊂ X̂n and including the new embedding x̂n+1.

Comparing with the original ANGEL algorithm, this p-ANGEL algorithm reduces
memory consumption from n×n to (n−1)×1, but suffers from the local neighbour-
hood preservation loss. It is hard to practically qualify and evaluate the usage memory
cost in MATLAB under Linux or Mac OS. However, this will be an interesting future
direction to be discussed in our potential works.

7.2 Speed Acceleration: i-ANGEL

As for incremental ANGEL (i-ANGEL), we start with the real batch dataset {xi}n
i=1

and their cohort labels {yi}n
i=1. The first step is to embed these high-dimensional data

points to the target 2,3-D space applying ANGEL algorithm. The embedding of the
new data sample will depends on embedded anchor points and data points of the batch
dataset.

Following the the progressive incremental approaches discussed in Section 2.4.2,
the incremental methods also begin with updating of the k-nearest neighbour graph, as
proposed in Section 7.1.1. Then the optimisation function can be constructed based on
to optimise the position of the new point and the updated points. Since we applied the
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Algorithm 8 p-ANGEL Algorithm
1: Input: D-dimensional data samples {xi}n

i=1 and their cohort labels {yi}n
i=1;

2: User-adjust hyper-parameters: Reduced dimension d (2 or 3), cohort separation control
0≤ λ≤ 1; local neighbourhood size k; global vs local control r ≈ 0.05; batch size b;

3: Fixed hyper-parameters: anchor point density p = 0.1; reconstruction anchor number
t = 3; neighbour margin δ = 0.1; stochastic triplet selection par = 0.5.

4: Step 4 - 7 of the ANGEL Algorithm 3
5: Sample a batch data set Xb = {xi}b

i=1 ⊂ {xi}n
i=1 with their cohort labels {yi}b

i=1 ⊂ {yi}n
i=1,

then we denote the rest of the data set as Xn−b = {xi}n−b
i=1 with {yi}n−b

i=1
6: Construct data ordinal triplets ΓLOE(Xb), and compute data embeddings {x̂i}b

i=1 by opti-
mising Eq. 4.16.

7: for Each data point xi ∈ {xi}n−b
i=1 do

8: Compute distance between new data sample xi and batch dataset Xb.
9: Obtain the set of affected data points XA and the full updated ordinal triplet set

ΓLOE∗(xb+1) by Eq. 7.5.
10: Initialise x̂b+1← ∑m

i=1 w∗i ûi or initialise x̂b+1 as a random coordiante.
11: Compute the updated embeddings X̂A and x̂b+1 by optimise Eq. 7.7.
12: Update the batch embeddings using X̂A and add x̂b+1 to batch embeddings to obtain

{x̂i}b+1
i=1 .

13: end for
14: Output: Embedded data points {x̂i}n

i=1 in 2 (or 3)-D space.

ordinal embedding method as the local objective function, we need to update the set
of triplets, and then update the anchor-point reconstruction weights, and finally embed
the data samples. We will discuss the detailed steps in the following sections.

7.2.1 Calculating Anchor Reconstruction Weights

Assuming we fix the anchor points U ∈ Rm×D derived from the batch dataset Xn, the
critical step of our proposed i-ANGEL algorithm is to derive the anchor reconstruction
weights of the new coming data xn+1. Since anchor points sketch the global structure
of the dataset, anchor reconstruction weights of the xn+1 ensures the embedded x̂n+1

to allocate around the reasonable position.

If xn+1 comes with the corresponding cohort label yn+1, then anchor reconstruction
weights can be directly calculated using Eq. 3.14 based on anchor points belonging
to that cohort. However, suppose we only know the coordinates of the new data point
xn+1. In that case, we need to firstly obtain a cohort label to xn+1, then derive the
anchor reconstruction weights simultaneously.

The question is, how to obtain the cohort label of the new data point xn+1. Since we
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Algorithm 9 i-ANGEL Algorithm
1: Input: D-dimensional batch data points {xi}n

i=1 and their cohort labels {yi}n
i=1; D-

dimensional new data point xn+1;
2: User-adjust hyper-parameters: Reduced dimension d (2 or 3), cohort separation control

0≤ λ≤ 1; local neighbourhood size k; global vs local control r ≈ 0.05.
3: Fixed hyper-parameters: anchor point density p = 0.1; reconstruction anchor number

t = 3; neighbour margin δ = 0.1; stochastic triplet selection par = 0.5.
4: Embed batch data points using Algorithm 3 and obtained the batch embeddings {x̂i}n

i=1,
D-dimensional anchor points {ui}m

i=1, d-dimensional anchor embeddings {ûi}m
i=1, the cor-

responding cohort membership of anchor points, anchor reconstruction weights of each
data point {w∗i }n

i=1.
5: Compute distance between new data sample xn+1 and batch dataset {xi}n

i=1.
6: Obtain the set of affected data points XA and the full updated ordinal triplet set ΓLOE∗(xn+1)

by Eq. 7.5
7: if ∄ yn+1 then
8: Compute the yn+1 using k-NN classifier.
9: end if

10: Compute the new anchor reconstruction weight w∗n+1 by Eq. 4.6 for the new data point
xn+1

11: Initialise x̂n+1← ∑m
i=1 w∗i ûi.

12: Compute the updated embeddings X̂A and x̂n+1 by optimise Eq. 7.7.
13: Update the batch embeddings using X̂A and add x̂n+1 to batch embeddings {x̂i}n

i=1
14: Output: Embedded data points {x̂i}n+1

i=1 in 2 (or 3)-D space.

have already gathered k-nearest neighbours of xn+1 from the previous section, we can
apply the k-NN classification method [67] directly to retrieve the cohort membership
of xn+1. To make it simple, we use k-NN classifier in our algorithm to obtain the yn+1,
where k is exactly the number of the k-nearest neighbours used to generate ordinal
constraint triplets. Then the Eq. 3.14 is utilised to derive the new anchor reconstruction
weights w∗n+1.

7.2.2 i-ANGEL Algorithm Implementation

Holding the updated triplet set, ΓLOE(Xn+1), and the adjusted anchor reconstruction
weights, w∗n+1, the most direct way to get the new data embedding result is to opti-
mise the Eq. 4.5. However, this means we need to go through all the ordinal triplet
constraints and try to optimise the embedding of all data points, which is cumbersome
and time-consuming.

We propose the i-ANGEL algorithm that only utilises the updated ordinal triplet



7.3. EXPERIMENTS AND RESULTS 133

constraints ΓLOE∗(xn+1) and optimise X̂An = {x̂i}, i ∈ An, which contains the embed-
ding of data points XA whose neighbourhood is affected by the new data point xn+1

and the embedding point of xn+1 itself.

The pseudo-code of i-ANGEL implementation is shown in Algorithm 9. This algo-
rithm can continuously optimise the streaming out-of-sample data points by updating
the batch embedding and cohort labels after each optimisation process.

7.3 Experiments and Results

Dataset: We apply the same data sets used in Section 5.2.1.

Experimental Setup:

• The batch size of the dataset is set to b = ⌊0.3n⌋ as a default setting. Rest of
hyper-parameters are set as the same as the ANGEL does.

• The s-ANGEL optimisation will also be applied to optimise i-ANGEL and p-
ANGEL respectively as an acceleration choice. In order to compete with the
s-ANGEL with par = 0.1, we also set par = 0.1 for i-ANGEL and p-ANGEL
optimisation.

Figure 7.1 shows the embedding image of the batch dataset and the embedding
result of the whole dataset after applying p-ANGEL or i-ANGEL. It is clear that the
incremental embedding approach can successfully embed new data to the relevant co-
hort and obtain a reliable visualisation result.

As shown in Table 7.1 we compare the overall evaluation score between s-ANGEL,
p-ANGEL, and i-ANGEL with the batch size as the default value. For all these three
methods, we set the stochastic parameter par = 0.1 for a fast implementation. It is ob-
vious that for most datasets, all the embedding results obtained by three algorithms
share the similar Pg and Ps, while i-ANGEL has a relatively low local neighbour-
hood preservation score Pl. That is mainly because that i-ANGEL rely on 1-NN
classier to determine the label of the newly coming point, which may cause con-
flicts between anchor-point reconstruction and local neighbourhood preservation. As
p-ANGEL adopts the same anchor points and anchor-data reconstruction weights of
s-ANGEL, the overall score of p-ANGEL is more close to the score of s-ANGEL.
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Method MNIST FMNIST Coil20 CIFAR Isolet Reuters
Pl 0.1803 0.2089 0.4349 0.1621 0.3182 0.2301

s-ANGEL Pg 0.5055 0.7479 0.2378 0.1503 0.2112 0.3552
par = 0.1 Ps 0.8550 0.7810 0.9528 0.8780 0.9622 0.9396

P 0.5136 0.5778 0.5418 0.3968 0.4972 0.5083
p-ANGEL Pl 0.1729 0.0987 0.3478 0.1420 0.2647 0.1528
par = 0.1 Pg 0.5939 0.6933 0.1891 0.2230 0.2591 0.3915
b = ⌊0.3n⌋ Ps 0.8320 0.7005 0.9319 0.6820 0.8173 0.9373

P 0.5329 0.4975 0.4896 0.3490 0.4470 0.4939
i-ANGEL Pl 0.1607 0.1336 0.2603 0.1351 0.2092 0.1251
par = 0.1 Pg 0.5855 0.7042 0.1355 0.2873 0.2842 0.2267
b = ⌊0.3n⌋ Ps 0.8460 0.8745 0.8847 0.7320 0.7103 0.9122

P 0.5307 0.5708 0.4268 0.3848 0.4012 0.4213

Table 7.1: Evaluation results comparison of s-ANGEL, p-ANGEL, and i-ANGEL. The
bold number highlights the highest score among all ANGEL variations.

Considering the time consumption in Table 7.2, i-ANGEL has the shortest run-
ning time since it reduces the anchor embedding running time sharply. However, if we
simply pay attention to the time cost of data embedding process, both i-ANGEL and
p-ANGEL require much more time than s-ANGEL, with the same par = 0.1 setting.
Moreover, the time consumed by i-ANGEL and p-ANGEL increases as the number
of data points increases. Here, the motivation of comparing p-ANGEL and i-ANGEL
with s-ANGEL is to reduce the experimental time consumption. We apply the same
stochastic part to both p-ANGEL and i-ANGEL as setting of the s-ANGEL to ensure
the consistency. To guarantee more experimental consistency, the time measurement
experiments are all conducted on CSF3 system supported by the University of Manch-
ester. The CSF3 is a High Performance Computing (HPC) cluster ( 8,644 cores +
100 GPUs). The OS on CSF3 nodes is CentOS Linux release 7.9.2009 (Core). We
adopted the standard Ivybridge cores: 38 nodes of 2×8-core Intel Xeon E5-2650 v2,
2.60GHz + 64GB RAM. Codes running on Matlab used the tic and toc commands, and
algorithms running on Python used the time library.

Finally, we focus on parameter study of the p-ANGEL algorithm. Table 7.3 reports
evaluation results of p-ANGEL under different settings. The results confirmed that
parameter par only influences Pl. A smaller par can significantly reduce the time con-
sumption of data embedding process, but only suffers from a minor local neighbour-
hood preservation loss. Reducing the batch data size to b = ⌊0.1n⌋ does not ensure
that optimisation times can be reduced. However, it may get a better evaluation score
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Method MNIST FMNIST Coil20 CIFAR Isolet Reuters
cat-SNE 91.4s 284.48s 154.8s 112.2s 204.1s 78.3s
s-UMAP 7.9s 16.9s 16.6s 15.2s 12.9s 10.7s
PaCMAP 2.63s 4.7s 3.1s 3.7s 4.1s 2.7s

Anchor embedding 484.3s 4864.9s 2429.1s 922.9s 2750.9s 770.2s
ANGEL Data embedding 339.9s 2336.4s 1525.3s 913.6s 1828.4s 846.0s

Overall time 824.2s 7201.3s 3954.4s 1836.5s 4589.3s 1616.2s
Anchor embedding 484.3s 4864.9s 2429.1s 922.9s 2750.9s 770.2s

p-ANGEL Data embedding 1362.6s 4364.2s 2459.7s 3018.2s 2549.7s 1779.0s
par = 1 Overall time 1846.9s 9229.1s 4888.8s 3941.1s 5300.6s 25492s

Anchor embedding 484.3s 4864.9s 2429.1s 922.9s 2750.9s 770.2s
s-ANGEL Data embedding 52.0s 684.4s 320.5s 131.3s 1355.3s 137.4s
par = 0.1 Overall time 536.3s 5549.3s 2749.6s 1054.2s 4106.2s 907.6s

Anchor embedding 484.3s 4864.9s 2429.1s 922.9s 2750.9s 652.1s
p-ANGEL Data embedding 284.1s 1454.5s 835.8s 1052.6s 826.3s 1058.1s
par = 0.1 Overall time 768.4s 6319.4s 3264.9s 1975.5s 3577.2s 1710.2s

Anchor embedding 64.5s 55.6s 298.7s 63.9s 696.5s 61.9s
i-ANGEL Data embedding 264.0s 1626.0s 806.1s 984.6s 608.8s 861.9s
par = 0.1 Overall time 328.5s 1681.6s 1104.8s 1048.5s 1305.3s 923.8s

Table 7.2: Optimisation time difference between the ANGEL, p-ANGEL, s-ANGEL,
and i-ANGEL. The bold number highlights the fastest approach among different AN-
GEL variations. The time of SOTA (cat-SNE, s-UMAP, PaCMAP) are also reported.

compared with results obtained by setting a larger batch data size b = ⌊0.3n⌋. Thus,
users can choose the appropriate batch data size to cope with different sizes of datasets
and expectations of results. As i-ANGEL shares a similar strategy and parameters of
p-ANGEL, we do not do further research on the parameters of the i-ANGEL.

7.4 Chapter Summary

This chapter presents an extended algorithm for ANGEL to reduce memory consump-
tion and time consumption and enable it to process new data samples continuously.
The p-ANGEL aims to reduce memory consumption. The i-ANGEL is an incremen-
tal DR algorithm that can process truly new data samples and has the advantage of
reduced time consumption. Experimental results demonstrate the effectiveness of ap-
plying p-ANGEL and i-ANGEL to real-world queueing datasets for visualisation.
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Method b = ⌊0.3n⌋ b = ⌊0.3n⌋ b = ⌊0.1n⌋ Method b = ⌊0.3n⌋ b = ⌊0.3n⌋ b = ⌊0.1n⌋
par = 1 par = 0.5 par = 0.5 par = 1 par = 0.5 par = 0.5

Pl 0.1888 0.1664 0.1811 Pl 0.1535 0.1326 0.1521
MNSIT Pg 0.5370 0.5370 0.5588 FMN- Pg 0.7624 0.7333 0.7685

Ps 0.8840 0.8400 0.8520 IST Ps 0.8265 0.8215 0.8140
P 0.5366 0.5145 0.5306 P 0.5808 0.5625 0.5782
t 1362.6 632.6 772.2 t 4364.2 3049.0 2184.5
Pl 0.3540 0.3171 0.3176 Pl 0.1449 0.1400 0.1394

Coil20 Pg 0.2156 0.2289 0.2180 Cifar Pg 0.3018 0.4655 0.3442
Ps 0.8972 0.8910 0.8826 Ps 0.7790 0.6710 0.7040
P 0.4889 0.4790 0.4728 P 0.4086 0.4225 0.3959
t 2459.7 993.8 954.0 t 3018.2 1219.6 1323.7
Pl 0.2063 0.2029 0.1980 Pl 0.2009 0.1746 0.1838

Isolet Pg 0.2525 0.2061 0.2115 Reu- Pg 0.2667 0.2630 0.3382
Ps 0.7558 0.6929 0.7071 ters Ps 0.9567 0.9532 0.9327
P 0.4048 0.3673 0.3722 P 0.4747 0.4636 0.4849
t 2549.7 1012.8 958.7 t 1779.0 1150.2 1089.2

Table 7.3: Evaluation results of p-ANGEL under different parameter settings. t refers
to the time of the data embedding process. The bold number highlights the best score:
highest preservation score and the lowest t.



7.4. CHAPTER SUMMARY 137

(a) FMNSIT, p-batch (b) FMNSIT, p-all (c) FMNSIT, i-batch (d) FMNSIT, i-new

(e) Coil20, p-batch (f) Coil20, p-all (g) Coil20, i-batch (h) Coil20, i-new

(i) Isolet, p-batch (j) Isolet, p-all (k) Isolet, i-batch (l) Isolet, i-new

(m) Reusters, p-batch (n) Reusters, p-all (o) Reusters, i-batch (p) Reusters, i-new

Figure 7.1: Embedding results of real-world datasets using p-ANGEL and i-ANGEL.
The p-batch and i-batch refers to the embedding results of the batch dataset, while the
p-all refers to the embedding results of all data samples, i-new refers to the embedding
results containing all new coming samples.



Chapter 8

Conclusions and Future Direction

This thesis discusses dimension reduction methods applied to data visualisation tasks,
i.e. transforming a high-dimensional dataset into 2,3-D representation points that re-
tain the inherent structure of the dataset. The ANGEL algorithm was proposed as
a response to a limitation of most state-of-the-art DR methods: the incapability of
making the embedding achieve the desired properties (local neighbourhood preserva-
tion, cohort positioning preservation, and cohort separability) simultaneously. A novel
evaluation approach was also presented to give more reliable quantitative measure-
ments of embedding results, allowing ANGEL to compete with other state-of-the-art
approaches. Variations and extensions of the ANGEL algorithm were discussed to
handle the time and memory combustion problems of ANGEL. Moreover, incremental
ANGEL (i-ANGEL) was proposed to continuously deal with the new coming data.

In this chapter, the contributions and findings of the project are summarised, and
an overview of future directions is presented.

8.1 Conclusions

This section summarises the work that have been carried out and presented in Chapter
4, 5, 6 and 7. It also outlines how the project met the objectives stated in Section 1.2.

1. Propose a strategy to retain cohort positioning

Similarities/dissimilarities between cohorts can be obtained by applying cohort

138
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proximity calculation approaches [110, 111] to the cohort dataset. The average-
linkage distance is utilised to calculate the distance between cohorts. Then, the
SOE algorithm is applied to embed each cohort to 2,3-D space to preserve the
relative cohort relations based on the cohorts’ distances. The obtained embed-
ding points retain the positions of cohorts due to the advantage of the SOE algo-
rithm. Main procedures can be found in Section 4.2. The minor contribution is to
apply the data selection process based on the Gaussian distribution assump-
tion, in order to make each cohort more identifiable and make cohort relations
more accurate.

2. Propose a strategy to preserve cohorts’ internal structure

In order to represent the intrinsic characteristics of each cohort, anchor points are
generated by considering the density of data points in each cohort. The K-means
algorithm [80] is used to partition each data cohort into several smaller clusters.
Each anchor point is taken as the centroid point of each small cluster.A novel
tri-OE approach is proposed to embed the generated anchor points to the target
2,3-D space, preserving as much ordinal information of anchor points as possi-
ble but use less ordinal constraints than the original soft ordinal embedding. The
proposed method reduces time consumption but does not reduce the embedding
quality. This is a minor contribution and has been stated in Section 4.4.

3. Propose strategy to enhance the separation between cohorts

The basic idea of enhancing the separability between cohorts is to enlarge the
dissimilarities of between-cohort data samples and emphasise similarities be-
tween intra-cohort samples. As anchor points represent each cohort, we pro-
posed the supervised tri-OE algorithm in Section 4.4. The label information
is introduced to the proposed tri-OE approach in order to manually adjust the
ordinal triplets to enhance the separability of between-cohort anchor points. The
modification process we proposed is controlled by the parameter λ, which will
also be studied in Section 5.2. Moreover, in order to maintain the cohort po-
sitioning, an anchor relocation algorithm is proposed to adjust the locations
of anchor points according to the position of cohorts in 2,3-D space in Section
4.4.2. These are major contributions of the thesis.
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4. Develop an algorithm to simultaneously to achieve the property of enhanc-
ing separation between data cohorts, preserving distances between individ-
ual data points, and retaining cohort positioning and the cohort’s internal
structure

A multi-objective function is proposed to achieve the objectives simultaneously,
which is the last part of the ANGEL model. The cost function combines the lo-
cal objective function and the global objective function. The proposed objective
function OLAE (Eq.4.14) is the global objective function proposed based on LAE
approach (Section 3.4). The OLOE (Eq.4.5) is set to be local objective function
(Section 4.5). Another local objective function t-SNE is also discussed in Sec-
tion 6.2. Two different ways of constructing and optimising the multi-objective
model have been discussed: the weighted-sum optimisation method and the r-
constrained optimisation method. The latter approach is adopted as the optimi-
sation method used in the ANGEL model (Section 4.5). Moreover, variations
of ANGEL are proposed in Section 6 to obtain approximate embedding results
via novel empirical faster optimisation approaches. To reduce the memory cost
of the ANGEL model, p-ANGEL is proposed in Section 7.1, which also leads to
the construction of the incremental extension of ANGEL. This part is the major
contribution of the thesis.

5. Develop evaluation approaches to measure the performance of the embed-
ding algorithm for visualisation

A novel evaluation metric was proposed, which provides a quantitative measure
of embedding results and compares the performance of different DR methods. It
averages the proposed approximated local neighbourhood preservation score, the
global cohort positioning preservation score, and the cohort separability score.
Evaluation results confirmed the intrinsic characteristics of the existing algo-
rithms and illustrated that ANGEL could obtain improved overall performance
compared with state-of-the-art approaches. This is a major contribution and is
stated in Chapter 5.

6. Developing an incremental extension of the proposed DR algorithm for vi-
sualisation

The incremental extension of ANGEL (i-ANGEL) is proposed to process the
new coming data samples, which is a major contribution described in Section
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7.2. The nearest neighbourhood is first updated based on the coming data sam-
ple. Then, the influenced points and the new data sample are updated via the
data embedding process of the ANGEL model. Experimental results illustrate
that the i-ANGEL is able to preserve the properties as the ANGEL does but
suffers a local neighbourhood preservation loss.

8.2 Future Direction

Even though some progress on generating a good cohort data visualisation has been
made, these achievements are only the tip of the iceberg. There are still many problems
that are expected to be investigated in the future. This section gives an overview of
potential future directions in DR techniques for data visualisation:

• ANGEL is proposed to simultaneously enhance the separation between data co-
horts, preserve distances between individual data points, and retain cohort po-
sitioning and the cohort’s internal structure. However, since the construction of
ANGEL is based on the LOE methods, the time consumption is one of the major
limitations of applying ANGEL to the large real-world dataset. In addition, al-
though many acceleration algorithms have been proposed in this project, it is still
difficult to obtain fast embedding results for large datasets. As a result, further
works can be done in order to deal with this time-consuming problem.

• Various optimisation approaches are proposed to solve the ANGEL model. How-
ever, most of them are based on the empirical experimental observations but
no theoretical support. For example, the stochastic optimisation of ANGEL (s-
ANGEL) results show the convergence of the s-ANGEL, but no mathematical
support is given. Therefore, further work can focus on giving theoretical proof
and explanations of proposed optimisation approaches.

• The proposed evaluation metric adopts Spearman’s rank correlation coefficient
to measure the preservation of the cohorts’ positioning. However, the measure-
ment of the preservation of the global structure of the embedded points is still
an open question. It is an important topic that can also lead to the development
of global structure preservation approaches. For this reason, developing a better
evaluation metic can be a direction of future research.
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• Another research gap lies in the visualisation of the multi-label data. Classical
approaches such as tSNE, UMAP, and recently proposed methods such as COVA
and PaCAMP are all unable to deal with the multi-label dataset. ANGEL also
shares this limitation. The SLE-ML [112] and KSLE-ML [112] handle this issue,
and it would be meaningful to develop further extensions of ANGEL to deal with
the multi-label dataset.
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