
 

Evaluation of biomarkers for clinical hypoxia modification in 

cervical cancer 

 

 

 

 

 

 

 

 

 

A thesis submitted to The University of Manchester for the degree of 

Doctor of Philosophy in the Faculty of Biology, Medicine and Health 

2023 

 

 

 

 

 

 

 

 

 

 

 

Anubhav Datta 

School of Medicine 

 



 2 

List of contents 

LIST OF TABLES 7 

LIST OF FIGURES 10 

LIST OF ABBREVIATIONS 17 

ABSTRACT 19 

DECLARATION 20 

COPYRIGHT STATEMENT 21 

ACKNOWLEDGEMENT 22 

PREFACE 23 

1 INTRODUCTION 25 

1.1 HYPOXIA PATHOPHYSIOLOGY 26 

1.2 TARGETING HYPOXIA 26 

1.2.1 Increasing intratumoural oxygen ......................................................................... 28 

1.2.2 Decreasing tumour oxygen consumption ............................................................ 29 

1.2.3 Hypoxia-specific radiosensitizers and cytotoxins ................................................ 29 

1.2.4 Hyperthermia........................................................................................................ 31 

1.3 FUTURE OF HYPOXIA TARGETING TRIALS 31 

1.4 MEASURING HYPOXIA 31 

1.4.1 Tissue biomarkers ................................................................................................ 35 

1.4.2 Hypoxia imaging biomarkers ............................................................................... 41 

1.5 THE MR LINAC AND ITS ROLE IN EVALUATING HYPOXIA IN PATIENTS WITH LACC 47 

1.5.1 Generic challenges for all anatomical and functional sequences ....................... 48 

1.5.2 Implementation challenges .................................................................................. 50 

1.5.3 Application of functional biomarkers developed on the MR-Linac to large 

multicentre studies ........................................................................................................... 52 

1.6 SUMMARY 53 

1.7 AIMS 57 

2 MATERIALS AND METHODS 58 

2.1 CLINICAL COHORTS 58 

2.1.1 TCGA cohort (gene expression only) .................................................................. 59 

2.1.2 Retrospective patient cohort (gene expression only) .......................................... 59 

2.1.3 Prospective healthy volunteer cohort (imaging only) .......................................... 63 

2.1.4 Prospective patient cohort (gene expression and imaging) ................................ 65 



 3 

2.2 STUDY INTERVENTIONS (PATIENTS ONLY) 67 

2.2.1 Diagnostic tumour biopsy retrieval (retrospective and prospective) ................... 67 

2.2.2 On-treatment tumour biopsy (prospective only) .................................................. 67 

2.2.3 MRI scans (prospective only) .............................................................................. 68 

2.2.4 Timeline in the prospective patient cohort ........................................................... 69 

2.3 CELL LINE EXPERIMENTS 69 

2.3.1 Cell culture ........................................................................................................... 70 

2.3.2 Hypoxia exposure ................................................................................................ 71 

2.4 RNA EXTRACTION 72 

2.4.1 Cell line samples .................................................................................................. 72 

2.4.2 Patient samples ................................................................................................... 72 

2.5 GENE EXPRESSION PROFILING 74 

2.5.1 RNA-sequencing (cell line samples) ................................................................... 74 

2.5.2 Clariom S microarray analysis (patient samples) ................................................ 75 

2.6 BIOINFORMATICS 77 

2.6.1 Data normalisation and batch correction ............................................................. 77 

2.6.2 Differentially expressed gene (DEG) analysis ..................................................... 77 

2.6.3 Labelling the TCGA data ..................................................................................... 77 

2.6.4 Refinement to a gene expression signature ........................................................ 78 

2.6.5 Hypoxia classification of patient samples ............................................................ 78 

2.7 MRI DATA ACQUISITION 78 

2.7.1 MR scanners ........................................................................................................ 78 

2.7.2 MRI sequences .................................................................................................... 78 

2.7.3 Participant preparation ......................................................................................... 82 

2.7.4 Hyperoxic gases and gas delivery (all participants) ............................................ 82 

2.7.5 Gadolinium contrast agents (patients only) ......................................................... 82 

2.7.6 Buscopan (patients only) ..................................................................................... 83 

2.8 IMAGE STORAGE AND TRANSFER 83 

2.9 IMAGE ANALYSIS 83 

2.9.1 OE-MRI ................................................................................................................ 84 

2.9.2 IVIM MRI .............................................................................................................. 84 

2.9.3 DCE MRI .............................................................................................................. 85 

2.9.4 Motion assessments ............................................................................................ 85 

2.10 STATISTICAL ANALYSIS 86 

2.10.1 Gene expression data ...................................................................................... 86 

2.10.2 Imaging data .................................................................................................... 87 



 4 

3 HYPOXIA ASSOCIATED GENE SIGNATURE FOR PATIENTS WITH CARCINOMA OF 

THE UTERINE CERVIX 88 

3.1 INTRODUCTION 88 

3.2 STUDY DESIGN 89 

3.3 CANDIDATE GENE IDENTIFICATION 90 

3.3.1 RNA-sequencing (RNA-seq) quality check ......................................................... 90 

3.3.2 Selection of oxygen concentration level .............................................................. 90 

3.3.3 Selection of candidate genes .............................................................................. 92 

3.4 GENE SIGNATURE DEVELOPMENT 93 

3.4.1 Mapping candidate genes to The Cancer Genome Atlas (TCGA) data ............. 93 

3.4.2 Labelling TCGA cohort ........................................................................................ 93 

3.4.3 Candidate gene set refinement ........................................................................... 94 

3.5 GENE SIGNATURE BIOINFORMATICS ANALYSIS 97 

3.5.1 Enrichment analysis ............................................................................................. 98 

3.5.2 Co-expression analysis ...................................................................................... 100 

3.6 CURATING THE RETROSPECTIVE COHORT 101 

3.6.1 Diagnostic biopsy sample recruitment ............................................................... 101 

3.6.2 RNA quantity and quality assessments ............................................................. 102 

3.6.3 Batch effect assessment .................................................................................... 104 

3.7 EXTERNAL VALIDATION OF THE GENE EXPRESSION SIGNATURE 105 

3.7.1 Signature expression profile .............................................................................. 105 

3.7.2 Baseline characteristic correlation ..................................................................... 106 

3.7.3 Survival analyses ............................................................................................... 108 

3.8 DISCUSSION 111 

4 DEVELOPING NOVEL MAGNETIC RESONANCE IMAGING SEQUENCES IN 

HEALTHY VOLUNTEERS 115 

4.1 INTRODUCTION 115 

4.2 STUDY DESIGN 117 

4.3 FEASIBILITY AND SEQUENCE OPTIMISATION 118 

4.4 MAIN STUDY DATA ACQUISITION 119 

4.4.1 Healthy volunteer recruitment ............................................................................ 119 

4.4.2 MRI assessments overview ............................................................................... 119 

4.5 DIAGNOSTIC MR ASSESSMENTS 120 

4.5.1 Measurement and repeatability of native T1 ...................................................... 120 

4.5.2 Uterine body (UB) motion tracking .................................................................... 122 

4.5.3 Healthy tissue assessment of oxygen-induced ΔR1.......................................... 126 



 5 

4.5.4 Repeatability measurements of oxygen-induced ΔR1 ....................................... 126 

4.6 MR LINAC ASSESSMENTS 129 

4.6.1 Measurement and repeatability of native T1 ...................................................... 129 

4.6.2 Uterine body (UB) motion tracking .................................................................... 131 

4.6.3 Healthy tissue assessment of oxygen-induced ΔR1.......................................... 134 

4.6.4 Repeatability measurement of oxygen-induced ΔR1......................................... 136 

4.7 DISCUSSION 139 

5 INVESTIGATING BIOMARKERS OF HYPOXIA IN PATIENTS WITH LOCALLY 

ADVANCED UTERINE CERVICAL CANCER 142 

5.1 INTRODUCTION 142 

5.2 STUDY DESIGN 144 

5.3 DATA ACQUISITION 145 

5.3.1 Patient recruitment ............................................................................................. 145 

5.3.2 Study interventions ............................................................................................ 145 

5.4 PATIENT IMAGING ANALYSIS 146 

5.4.1 Qualitative assessments .................................................................................... 146 

5.4.2 Measurement of native T1 .................................................................................. 147 

5.4.3 OE-MRI quality check for motion corruption ..................................................... 149 

5.4.4 OE-MRI analysis of UB reference region (QA/QC) ........................................... 149 

5.4.5 OE-MRI analysis of cervical tumour .................................................................. 151 

5.4.6 Association with other MRI parameters............................................................. 157 

5.5 PATIENT GENE EXPRESSION ANALYSIS 159 

5.6 IMAGING AND GENE EXPRESSION CORRELATION 160 

5.7 DISCUSSION 162 

6 CONCLUSIONS AND FUTURE WORK 165 

6.1 GENE SIGNATURE IMPROVEMENT 165 

6.2 OE-MRI IMPROVEMENT 168 

6.3 MULTI-OMICS DATA 169 

6.4 TRANSLATIONAL GAPS 171 

6.5 CONCLUSION 173 

7 APPENDIX 174 

7.1 APPENDIX 1 174 

7.2 APPENDIX 2 175 

7.2.1 Water and sponge phantom .............................................................................. 175 

7.2.2 Falcon tubes phantom ....................................................................................... 177 



 6 

7.3 APPENDIX 3 177 

7.3.1 VFA or IR-TFE baseline T1 map ........................................................................ 177 

7.3.2 Averaged over the region of interest vs voxel-by-voxel analysis ...................... 178 

7.3.3 Mean vs median ................................................................................................. 178 

7.3.4 Inversion efficiency parameter ........................................................................... 179 

7.4 APPENDIX 4 179 

REFERENCES 181 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Word count (excluding appendices, acknowledgements, declaration, and 

copyright statements) = 45,888 



 7 

List of tables 

 

TABLE 1.1: HYPOXIA TARGETING STRATEGIES CLASSIFIED BY MECHANISM OF 

ACTION. TABLE REPRODUCED WITH PERMISSION FROM PUBLISHER3. 28 

TABLE 1.2: SELECTED STUDIES INVESTIGATING HYPOXIA RESPONSE-ASSOCIATED 

BIOMARKERS IN CERVICAL CANCER. PATIENTS IN THESE STUDIES RECEIVED 

EITHER SURGERY OR (CHEMO)RADIOTHERAPY OR A COMBINATION OF THE 

TWO. TABLE REPRODUCED PERMISSION FROM PUBLISHER3. 32 

TABLE 1.3: SUMMARY OF PUBLISHED HYPOXIA GENE SIGNATURES FOR PATIENTS 

WITH CERVICAL CANCER. 37 

TABLE 1.4: SUMMARY OF PUBLISHED HYPOXIA ASSOCIATED CERVICAL CANCER 

SIGNATURE GENES. 39 

TABLE 1.5: SELECTED STUDIES INVESTIGATING HYPOXIA-SURROGATE IMAGING 

BIOMARKERS ACQUIRED AT BASELINE IN CERVICAL CANCER. PATIENTS IN 

THESE STUDIES RECEIVED EITHER SURGERY OR (CHEMO)RADIOTHERAPY OR 

A COMBINATION OF THE TWO. TABLE REPRODUCED PERMISSION FROM 

PUBLISHER3. 44 

TABLE 1.6: COMPARISON OF COMBINED MR LINAC SYSTEMS. TABLE REPRODUCED 

PERMISSION FROM PUBLISHER150. 49 

TABLE 1.7: SUMMARY OF POTENTIAL BIOMARKERS USED TO INVESTIGATE 

HYPOXIA. TABLE REPRODUCED PERMISSION FROM PUBLISHER3. 55 

TABLE 2.1: SUMMARY STATISTICS FOR ALL WOMEN (N=168) IN THE 

RETROSPECTIVE PATIENT COHORT. 61 

TABLE 2.2:  CLINICOPATHOLOGICAL DATA OF PROSPECTIVE STUDY PATIENTS. 66 

TABLE 2.3 UTERINE CERVICAL CANCER CELL LINES USED IN STUDY EXPERIMENTS.

 71 

TABLE 2.4 RNA EXTRACTION STEPS FROM FFPE SAMPLES. 73 

TABLE 2.5: SUMMARY OF MRI ACQUISITION PARAMETERS FOR T1 MAPPING AND 

OXYGEN-ENHANCED (OE-MRI) IN HEALTHY VOLUNTEERS. 80 

TABLE 2.6: SUMMARY OF MRI ACQUISITION PARAMETERS USED IN THE PATIENT 

STUDY. ADDITIONAL IMAGING INCLUDED IVIM, A T1 MAP AND DCE-MRI. 81 

TABLE 3.1: NUMBERS OF DIFFERENTIALLY EXPRESSED GENES (DEGS) VARIES 

WITH FALSE DISCOVERY RATE (FDR) CORRECTED P-VALUE AND NUMBER OF 

SELECTED CELL LINES. HIGHLIGHTED* GENE SET WAS SELECTED AS THE 

CANDIDATE GENE LIST. 93 



 8 

TABLE 3.2: SELECTED 31 GENE MODEL FOR THE HYPOXIA ASSOCIATED 

TRANSCRIPTOMIC SIGNATURE. THE TABLE COLUMNS HAVE BEEN POPULATED 

USING STANDARDS SET BY THE HUMAN GENOME ORGANISATION GENE 

NOMENCLATURE COMMITTEE (HGNC)205. GENES WERE COMPARED TO 

PUBLISHED HYPOXIA SIGNATURES AND ENRICHED FOR CELLULAR RESPONSE 

TO HYPOXIA. 97 

TABLE 3.3: THE GENE ONTOLOGY KNOWLEDGEBASE TERMS ENRICHED BY WITH 

SIGNATURE GENES. 99 

TABLE 3.4 RNA QC ASSESSMENTS IN N = 182 SAMPLES (MEAN ± 1 SD) 103 

TABLE 3.5: RNA QC ASSESSMENTS IN N=3 SAMPLES THAT FAILED FOLLOWING 

CLARIOM S GENE EXPRESSION PROFILING. 104 

TABLE 3.6 SUMMARY STATISTICS FOR ALL (N=168) AND (CHEMO)RADIOTHERAPY 

(N=124) PATIENTS IN THE RETROSPECTIVE CHRISTIE VALIDATION COHORT. 

SIGNIFICANCE VALUES WERE CALCULATED USING EITHER THE CHI-SQUARED 

TEST OR THE MANN-WHITNEY U TEST. 107 

TABLE 3.7  CHRISTIE COHORT CENSORED 5-YEAR EVENT RATES. 109 

TABLE 3.8: COX REGRESSION ANALYSES BASED ON ALL PATIENTS (N=168). 110 

TABLE 4.1 HEALTHY TISSUE UTERINE CERVIX (UC) AND UTERINE BODY (UB) T1 

VALUES (MS) FOR ALL PARTICIPANTS SCANNED ON THE DIAGNOSTIC MR. 

REPEATABILITY MEASURES WCV (WITHIN SUBJECT CO-EFFICIENT OF 

VARIATION) AND REPEATABILITY CO-EFFICIENT (RC) ALONG WITH UPPER AND 

LOWER LIMITS OF CONFIDENCE ARE ALSO GIVEN. UC AND UB MEAN AND 1 

STANDARD DEVIATION MEASURES FOR THE SUB-GROUP ARE GIVEN IN THE 

LAST TWO ROWS. 121 

TABLE 4.2: HEALTHY TISSUE UC AND UB ΔR1 VALUES (S-1) FOR ALL PARTICIPANTS 

SCANNED ON THE DIAGNOSTIC MR. SIGNIFICANT PARAMETER CHANGES 

FROM BASELINE ARE HIGHLIGHTED (*). REPEATABILITY MEASURES WCV AND 

RC ALONG WITH UPPER AND LOWER LIMITS OF CONFIDENCE ARE ALSO 

GIVEN. UC AND UB MEAN AND 1 STANDARD DEVIATION MEASURES FOR THE 

SUB-GROUP ARE GIVEN IN THE LAST TWO ROWS. 128 

TABLE 4.3: HEALTHY TISSUE UC AND UB NATIVE T1 VALUES (MS) FOR ALL 

PARTICIPANTS SCANNED ON THE MR LINAC. REPEATABILITY MEASURES WCV 

AND RC ALONG WITH UPPER AND LOWER LIMITS OF CONFIDENCE ARE ALSO 

GIVEN. UC AND UB MEAN AND 1 STANDARD DEVIATION MEASURES FOR THE 

SUB-GROUP ARE GIVEN IN THE LAST TWO ROWS. UC = UTERINE CERVIX, UB = 

UTERINE BODY, HV = HEALTHY VOLUNTEER, WCV = WITHIN SUBJECT CO-

EFFICIENT OF VARIATION AND RC = REPEATABILITY CO-EFFICIENT. 130 



 9 

TABLE 4.4: HEALTHY TISSUE UC AND UB ΔR1 VALUES (S-1) FOR ALL PARTICIPANTS 

SCANNED ON THE MR LINAC. SIGNIFICANT PARAMETER CHANGES FROM 

BASELINE ARE HIGHLIGHTED (*). REPEATABILITY MEASURES WCV AND RC 

ALONG WITH UPPER AND LOWER LIMITS OF CONFIDENCE ARE ALSO GIVEN. 

UC AND UB MEAN AND 1 STANDARD DEVIATION MEASURES FOR THE SUB-

GROUP ARE GIVEN IN THE LAST TWO ROWS. UC = UTERINE CERVIX, UB = 

UTERINE BODY, HV = HEALTHY VOLUNTEER, WCV = WITHIN SUBJECT CO-

EFFICIENT OF VARIATION AND RC = REPEATABILITY CO-EFFICIENT. 138 

TABLE 5.1: TEMPORAL RELATIONSHIPS OF STUDY INTERVENTIONS FOR EACH 

PATIENT. NUMBERS ARE EITHER DAYS TO (-) OR DAYS FROM (+) START OF 

TREATMENT. 146 

TABLE 5.2: MRI PARAMETER VALUES (S-1) FOR UTERINE BODY ASSESSMENTS. 

SIGNIFICANT CHANGE FROM BASELINE CALCULATED USING AN UNPAIRED T-

TEST AND DENOTED BY *. 150 

TABLE 5.3: MRI PARAMETER VALUES (S-1) FOR TUMOUR ASSESSMENTS. 

SIGNIFICANT CHANGE FROM BASELINE CALCULATED USING AN UNPAIRED T-

TEST AND DENOTED BY *. 156 

TABLE 5.4: RNA QC OF PROSPECTIVE SAMPLES. 159 

TABLE 5.5: PATIENT HYPOXIA ASSESSMENTS RANKED BY ΔR1 (S-1) MEASUREMENTS 

AND COMPARED TO CLASSIFIER (GENE EXPRESSION STATUS), KTRANS (MIN-1), 

F, D (µM2/S) AND TUMOUR VOLUME (CM3). MRI PARAMETERS PRESENTED ARE 

WHOLE TUMOUR VALUES. 00* DENOTES PRE-TREATMENT BIOPSY AND 01* 

DENOTES ON TREATMENT BIOPSIES. 160 

TABLE 7.1: PRELIMINARY EXPERIMENTAL DATA TO DETERMINE THE OPTIMUM 

DURATION OF HYPOXIA EXPOSURE. CELL LINES WERE EXPOSED TO 0.1% 

HYPOXIA FOR DURATIONS OF 24, 48 AND 72 HOURS. PERCENTAGE 

CONFLUENCE WAS ESTIMATED USING A MICROSCOPE. 175 

 

 

 

 

 

 

 

 

 

 



 10 

List of figures 

 

FIGURE 1.1: AGE-STANDARDIZED MORTALITY PER 100,000 FEMALES OF SOME OF 

THE WORST AND LEAST AFFECTED REGIONS. WOMEN IN REGIONS WITH A 

LOW OR MEDIUM HUMAN DEVELOPMENT INDEX (ORANGE BARS) EXPERIENCE 

HIGHER MORTALITY RATES COMPARED TO THOSE IN HIGH OR VERY HIGH 

HUMAN DEVELOPMENT INDEX REGIONS (BLUE BARS). (ADAPTED FROM 

SOURCE: GLOBOCAN 2020 HTTPS://DOI.ORG/10.3322/CAAC.21660). FIGURE 

REPRODUCED WITH PERMISSION FROM PUBLISHER3. 25 

FIGURE 1.2: (A) THE ‘OXYGEN EFFECT’. FREE RADICALS GENERATED WHEN 

SPARSELY IONIZING RADIATION INTERACTS WITH TISSUE (GREEN) ARE FIXED 

TO A NON-RESTORABLE FORM IN THE PRESENCE OF OXYGEN (BLUE) 

CAUSING MORE DAMAGE TO DNA. (B) HIGHER DOSES OF SPARSELY IONIZING 

RADIATION ARE REQUIRED UNDER HYPOXIC CONDITIONS TO KILL THE SAME 

FRACTION OF TUMOUR CELLS. FIGURE REPRODUCED WITH PERMISSION 

FROM PUBLISHER3. 27 

FIGURE 1.3: WHY MEASURING HYPOXIA IS A CHALLENGE. FIGURE REPRODUCED 

WITH PERMISSION FROM PUBLISHER3. 34 

FIGURE 1.4: (ADAPTED FROM O’CONNOR ET AL 107). OE-MRI DISTINGUISHES 

BETWEEN NORMOXIC (A AND B) AND HYPOXIC (C AND D) TISSUE 

ENVIRONMENTS. IN NORMOXIC TISSUE: (A) AND (B) INHALATION OF A 

HYPEROXIC GAS INCREASES THE AMOUNT OF DISSOLVED PLASMA O2, BUT 

OXYGENATED HAEMOGLOBIN (HBO2) CONCENTRATION IS ESSENTIALLY 

UNALTERED. IT IS THE INCREASED PO2 IN INTERSTITIAL FLUID AND PLASMA 

THAT INCREASES TISSUE R1. IN HYPOXIC TISSUE: (C) AND (D) INHALATION OF 

A HYPEROXIC GAS INCREASES THE OXY-HAEMOGLOBIN TO DEOXY-

HAEMOGLOBIN RATIO AS THERE IS A PAUCITY OF HAEMOGLOBIN THAT IS 

FULLY SATURATED. THIS HAS A NEGLIGIBLE EFFECT ON DISSOLVED PLASMA 

O2. THIS HAS A NEGLIGIBLE CHANGE IN PO2 AND THE R1 REMAINS NEARLY 

CONSTANT (STRAIGHT BLACK LINE). 43 

FIGURE 1.5: (ADAPTED FROM HOMPLAND ET AL136). THE CONSUMPTION AND 

SUPPLY-BASED HYPOXIA MODEL HAS BEEN USED TO INTEGRATE IVIM DWI 

DERIVED BIOMARKERS RELATED TO OXYGEN SUPPLY AND CONSUMPTION. 47 

FIGURE 2.1: CONSORT FLOW DIAGRAM FOR RETROSPECTIVE TISSUE 

COLLECTION. 61 



 11 

FIGURE 2.2: ALL THE PATIENTS TREATED WITH PRIMARY RADIOTHERAPY 

RECEIVED 5 WEEKS OF EXTERNAL BEAM RADIOTHERAPY (N=124). THE VENN 

DIAGRAM SHOWS THE BREAKDOWN OF ADDITIONAL TREATMENTS GIVEN TO 

THIS COHORT (BRACHYTHERAPY, EXTERNAL BEAM BOOST AND 

CHEMOTHERAPY). *SEVENTY PATIENTS RECEIVED 5 WEEKS OF EXTERNAL 

BEAM RADIOTHERAPY AND 2 COURSES OF BRACHYTHERAPY, WITH AT LEAST 

1 SESSION OF CHEMOTHERAPY. 63 

FIGURE 2.3: CONSORT FLOW DIAGRAM FOR HEALTHY VOLUNTEERS RECRUITED 

TO THE BIOCHECC STUDY. 64 

FIGURE 2.4 : CONSORT FLOW DIAGRAM FOR PATIENTS RECRUITED TO THE 

BIOCHECC STUDY. 66 

FIGURE 2.5: AXIAL T2 WEIGHTED IMAGE ACQUIRED TOWARDS THE END OF 

EXTERNAL BEAM RADIOTHERAPY FOR CLINICAL USE (BRACHYTHERAPY 

PLANNING). (A) THE CERVIX IS OUTLINED BY THE DASHED WHITE LINES. ‘T’ 

HIGHLIGHTS THE TUMOUR RETURNING HETEROGENOUS T2 SIGNAL AS 

OPPOSED TO THE LOW SIGNAL USUALLY SEEN FROM NORMAL CERVICAL 

TISSUE. THE TUMOUR PREDOMINANTLY INVOLVES THE ANTERIOR AND RIGHT 

SIDE OF THE UTERINE CERVICAL RING. ‘*’ HIGHLIGHTS THE HIGH T2 SIGNAL 

(FLUID SIGNAL) WITHIN THE ENDO CERVICAL CANAL. (B) THE UTERINE 

CERVICAL RING CAN BE IMAGINED AS HAVING 4 REGIONS REPRESENTED BY A 

CLOCK FACE: 12 (BLUE), 3 (ORANGE), 6 (GREY) AND 9 (GREEN) O’CLOCK 

POSITIONS. BIOPSIES FROM EACH REGION WERE ACQUIRED UNDER DIRECT 

VISION. 68 

FIGURE 2.6: STUDY INTERVENTIONS IN THE PATIENT COHORT. 69 

FIGURE 2.7: FLOW DIAGRAM OF OXYGEN EXPOSURE AND RNA EXTRACTION FOR A 

CELL LINE EXPERIMENT (SN = SAMPLE NUMBER). CELLS CULTURED IN ONE 75 

CM2 FLASK WERE SEEDED ACROSS THREE PETRI DISHES AT A PRE-

DETERMINED DENSITY, EXPOSED TO DIFFERENT OXYGEN CONDITIONS AND 

THE RNA WAS EXTRACTED. EXPERIMENTS WERE REPEATED FOR THREE 

DIFFERENT PASSAGES FOR A CELL LINE, AND 6 CELL LINES WERE INCLUDED 

IN THE EXPERIMENT. 70 

FIGURE 2.8: FLOW DIAGRAM OF THE RNA-SEQUENCING PATHWAY. 74 

FIGURE 2.9: PICO AMPLIFICATION AND LABELLING PROCESS (ADAPTED FROM 

HTTPS://ASSETS.THERMOFISHER.COM/TFS-

ASSETS/LSG/MANUALS/703308_GENECHIP_3PRIME_IVT_PICO_UG.PDF – LAST 

ACCESSED NOVEMBER 2022) 76 

FIGURE 2.10: IMAGING PROTOCOL FOR HEALTHY VOLUNTEERS IN THE STUDY. 79 



 12 

FIGURE 2.11: IMAGING PROTOCOL FOR THE PATIENT STUDY. *IVIM WAS 

PERFORMED ON THE DIAGNOSTIC MRI SCANNER ONLY. †PATIENT 1 HAD A 

SLIGHTLY DIFFERENT PROTOCOL: 21% O2 (TIMEPOINTS 0 – 25); 100% O2 (26 – 

65); 21% O2 (66 – 81). 80 

FIGURE 2.12: FIVE ROIS WERE DRAWN FOR EACH VISIT TO DEVELOP THE ‘MOTION 

TRACKING’ MODEL. 86 

FIGURE 3.1: FLOW DIAGRAM OF STUDY DESIGN. 89 

FIGURE 3.2: THE MEAN QUALITY VALUE (PHRED SCORE) ACROSS EACH BASE 

POSITION IN THE READ. 90 

FIGURE 3.3: SILHOUETTE ANALYSIS OF THE TOP DIFFERENTIALLY EXPRESSED 

GENES RESULTED IN 5 OPTIMAL CLUSTERS. CLUSTER 3 IS THE SMALLEST 

WHEREAS THE OTHER CLUSTERS ARE OF SIMILAR SIZES. 91 

FIGURE 3.4: (A) HEATMAP OF THE TOP DIFFERENTIALLY EXPRESSED GENES 

WITHIN EACH CLUSTER AT VARYING OXYGEN CONCENTRATIONS. HIGH 

EXPRESSION IS IN RED AND LOW EXPRESSION IN BLUE. (B) THE MEAN 

EXPRESSION PROFILE OF THE HYPOXIA ASSOCIATED ‘CLUSTER 2’ GENE SET.

 92 

FIGURE 3.5: HEATMAP SHOWING EXPRESSION OF CANDIDATE GENES IN THE TCGA 

TRAIN COHORT (N=70). GREEN INDICATES LOWER EXPRESSION AND RED 

INDICATES HIGHER EXPRESSION. ‘CLASS 1’ AND ‘CLASS 2’ ARE REPRESENTED 

BY THE PALE BLUE AND PALE RED HORIZONTAL BARS RESPECTIVELY. ‘CLASS 

2’ WAS ENRICHED FOR HYPOXIA ASSOCIATED PATHWAYS USING THE 

MOLECULAR SIGNATURES DATABASE (MSIGDB). 94 

FIGURE 3.6: (A) ESTIMATED MODEL ERROR (MISCLASSIFICATION ERROR) FOR A 

GIVEN MODEL SIZE. THE BLACK DASHED LINES INDICATE THE RANGE OF 

MODEL SIZES INVESTIGATED. THE MODEL WITH THE LOWEST ERROR (N=43 

GENES; GREEN LINE) HAD AN ESTIMATED 1% ERROR RATE. THE SELECTED 

MODEL (N=31; RED LINE) HAS AN ESTIMATED 5% MISCLASSIFICATION RATE. 

(B) CONFUSION MATRIX OF ACTUAL AND PREDICTED CONDITIONS WITHIN THE 

CELL LINE EXPERIMENTS. THE CHOSEN 31 GENE SIGNATURE MODEL HAS A 

93% ACCURACY. 95 

FIGURE 3.7: KAPLAN-MEIER ANALYSIS FOR (A) OVERALL SURVIVAL (OS) TRAIN, (B) 

PROGRESSION FREE INTERVAL (PFI) TRAIN, (C) OS TEST AND (D) PFI TEST 

COHORTS. THE MODEL WAS TRAINED FOR PROGNOSTIC SIGNIFICANCE IN 

THE TCGA COHORT. 96 



 13 

FIGURE 3.8: SIGNATURE GENES IN RESPECTIVE SUBCELLULAR COMPARTMENTS, 

AND ASSOCIATIONS BETWEEN SELECTED GENES AND TOP CANONICAL 

PATHWAYS. 100 

FIGURE 3.9: PLOT SHOWING SPEARMAN’S RANK CORRELATION (BENJAMINI-

HOCHBERG CORRECTED) MATRIX FOR THE 31-SIGNATURE GENES AS 

EXPRESSED IN ALL TCGA COHORT PATIENTS. 101 

FIGURE 3.10: CLARIOM S ANALYSIS WAS PERFORMED ON 177 TUMOURS AND 

SAMPLE CONSISTENCY ASSESSED USING THE TRANSCRIPTOME ANALYSIS 

CONSOLE. THE SCORE IS CALCULATED BY COMPARING THE INTRON (FALSE 

POSITIVES) AND EXON CONTROLS (TRUE NEGATIVES), AND A SCORE OF 1 

REFLECTS PERFECT SEPARATION. THE RECOMMENDED THRESHOLD IS SET 

AT 0.7. PASSED (GREEN) AND FAILED (RED) SAMPLES ARE SHOWN. 103 

FIGURE 3.11: PRINCIPAL COMPONENT ANALYSIS FOR (A) PLATE-NORMALISED AND 

(B) COMBAT-CORRECTED GENE EXPRESSION DATA (N=168 SAMPLES) 

SHOWED NO SIGNIFICANT DIFFERENCE BETWEEN BATCHES FOLLOWING 

COMBAT CORRECTION. 105 

FIGURE 3.12. PLOT SHOWING SPEARMAN’S RANK CORRELATION (BENJAMINI-

HOCHBERG CORRECTED) MATRIX FOR THE 31-SIGNATURE GENES AS 

EXPRESSED IN ALL RETROSPECTIVE COHORT PATIENTS. 106 

FIGURE 3.13: KAPLAN-MEIER (A) OVERALL SURVIVAL AND (B) PROGRESSION FREE 

INTERVAL ANALYSES IN ALL CHRISTIE PATIENTS (N=168). 109 

FIGURE 3.14: KAPLAN-MEIER (A) OVERALL SURVIVAL AND (B) PROGRESSION FREE 

INTERVAL ANALYSES IN EXTERNAL BEAM RADIOTHERAPY TREATED CHRISTIE 

PATIENTS (N=124). 110 

FIGURE 4.1: AN OUTLINE OF THE STEPS TAKEN IN THIS CHAPTER. 117 

FIGURE 4.2: EARLY EXAMPLES OF HEALTHY VOLUNTEER PELVIC IMAGING USING 

OE-MRI SEQUENCES IN DEVELOPMENT. ARTEFACT (*) FROM AREAS OF 

SIGNAL DROP OUT IN (A) AND OXYGEN TUBING INTERPOSED BETWEEN 

PARTICIPANT AND THE ANTERIOR BODY COIL IN (B). INITIAL ASSESSMENT OF 

THE UTERINE BODY (C) IN A HIGHER QUALITY OE-MRI SCAN RESULTED IN (D) 

AN ARBITRARY SIGNAL TIME-SERIES WHICH SHOWS A CHANGE IN SIGNAL 

FOLLOWING 100% OXYGEN DELIVERY. 118 

FIGURE 4.3: AN EXAMPLE OF ‘NOISY’ SIGNAL FROM SUBCUTANEOUS FAT (LEFT 

PANEL) WHICH FAILED TO SHOW A MEANINGFUL ΔR1 TRACE FOLLOWING 

SIGNAL CONVERSION (RIGHT PANEL). 120 

FIGURE 4.4: NATIVE T1 REPEATABILITY MEASUREMENTS FOR UTERINE CERVIX IN 

(A) AND (B), AND UTERINE BODY IN (C) AND (D) AS ACQUIRED ON THE 



 14 

DIAGNOSTIC MR. WCV = WITHIN SUBJECT CO-EFFICIENT OF VARIATION AND 

RC = REPEATABILITY CO-EFFICIENT. HV = HEALTHY VOLUNTEER. 122 

FIGURE 4.5. R1 TIME SERIES IN THE UB FOR PARTICIPANTS IMAGED ON THE 

DIAGNOSTIC MR DERIVED USING TWO METHODS: MOTION TRACKED (RED) 

AND STATIC (BLUE) REGIONS OF INTEREST (ROIS). NOTE THAT THE Y AXIS IS 

SCALED TO FIT EACH HEALTHY VOLUNTEER (HV) VISIT AND VARIES BETWEEN 

CASES. 124 

FIGURE 4.6: ALL HEALTHY TISSUE ASSESSMENTS ON DIAGNOSTIC MR FOR (A) 

UTERINE CERVIX, (B) UTERINE BODY, (C) PSOAS MUSCLE, AND (D) L5 

VERTEBRAL BODY. COHORT LEVEL CHANGES FOR ALL PARTICIPANT VISITS 

ARE SHOWN IN THE TOP ROW, WITH ERROR BARS REPRESENTING THE 

STANDARD ERROR OF THE MEAN. INDIVIDUAL ΔR1 TIME SERIES ARE SHOWN 

FOR VISIT 1 (MIDDLE ROW) AND VISIT 2 (BOTTOM ROW). NOTE THE 

DIFFERENCE IN Y AXIS SCALE FOR COHORT AND INDIVIDUAL TIME SERIES.  HV 

= HEALTHY VOLUNTEER. 125 

FIGURE 4.7: EXAMPLE IMAGES ACQUIRED OVER TWO VISITS FOR PARTICIPANT (HV 

7) IMAGED ON THE DIAGNOSTIC MR ARE SHOWN: T2-W ANATOMY (TOP ROW) 

AND ΔR1 PARAMETER MAPS (UC = MIDDLE ROW; UB = BOTTOM ROW) 

OVERLAID ON THE INVERSION RECOVERY T1 MAPPING SEQUENCE. HV = 

HEALTHY VOLUNTEER; UB = UTERINE BODY; UC = UTERINE CERVIX. 127 

FIGURE 4.8: ΔR1 REPEATABILITY MEASUREMENTS FOR UTERINE CERVIX IN (A) AND 

(B), AND UTERINE BODY IN (C) AND (D) AS ACQUIRED ON THE DIAGNOSTIC MR. 

WCV = WITHIN SUBJECT CO-EFFICIENT OF VARIATION AND RC = 

REPEATABILITY CO-EFFICIENT. HV = HEALTHY VOLUNTEER. 128 

FIGURE 4.9: NATIVE T1 REPEATABILITY MEASUREMENTS FOR UTERINE CERVIX IN 

(A) AND (B), AND UTERINE BODY IN (C) AND (D) AS ACQUIRED ON THE MR 

LINAC. WCV = WITHIN SUBJECT CO-EFFICIENT OF VARIATION AND RC = 

REPEATABILITY CO-EFFICIENT. HV = HEALTHY VOLUNTEER. 131 

FIGURE 4.10: R1 TIME SERIES IN THE UB FOR PARTICIPANTS IMAGED ON THE MR 

LINAC DERIVED USING TWO METHODS: MOTION TRACKED (RED) AND STATIC 

(BLUE) ROIS. NOTE THAT THE Y AXIS IS SCALED TO FIT EACH HV VISIT AND 

VARIES BETWEEN CASES. HV = HEALTHY VOLUNTEER. 133 

FIGURE 4.11: UC ΔR1 TIME SERIES FROM TWO SELECTED PARTICIPANTS. 

ANALYSIS OF THE IMAGES SHOWS SIGNIFICANT COLORECTAL WALL MOTION 

CORRUPTING THE DYNAMIC OE SIGNAL, AND THE MEASUREMENTS ARE NOT 

ANALYSED ANY FURTHER. HV = HEALTHY VOLUNTEER. 134 



 15 

FIGURE 4.12: ALL HEALTHY TISSUE ASSESSMENTS ON MR LINAC FOR (A) UTERINE 

CERVIX, (B) UTERINE BODY, (C) PSOAS MUSCLE, AND (D) L5 VERTEBRAL BODY. 

COHORT LEVEL CHANGES FOR ALL PARTICIPANT VISITS ARE SHOWN IN THE 

TOP ROW, WITH ERROR BARS THE STANDARD ERROR OF THE MEAN. 

INDIVIDUAL ΔR1 TIME SERIES ARE SHOWN FOR VISIT 1 (MIDDLE ROW) AND 

VISIT 2 (BOTTOM ROW). NOTE THE DIFFERENCE IN Y AXIS SCALE FOR 

COHORT AND INDIVIDUAL TIME SERIES. HV = HEALTHY VOLUNTEER. 135 

FIGURE 4.13: EXAMPLE IMAGES ACQUIRED OVER TWO VISITS FOR PARTICIPANT 

(HV 10) IMAGED ON THE MR LINAC ARE SHOWN: T2W ANATOMY (TOP ROW) 

AND ΔR1 PARAMETER MAPS (UC = MIDDLE ROW; UB = BOTTOM ROW) 

OVERLAID ON THE INVERSION RECOVERY T1 MAPPING SEQUENCE. UC = 

UTERINE CERVIX, UB = UTERINE BODY AND HV = HEALTHY VOLUNTEER. 136 

FIGURE 4.14:  ΔR1 REPEATABILITY MEASUREMENTS FOR UTERINE CERVIX IN (A) 

AND (B), AND UTERINE BODY IN (C) AND (D) AS ACQUIRED ON THE 

DIAGNOSTIC MR. WCV = WITHIN SUBJECT CO-EFFICIENT OF VARIATION AND 

RC = REPEATABILITY CO-EFFICIENT. HV = HEALTHY VOLUNTEER. 137 

FIGURE 5.1: AN OUTLINE OF THE STEPS TAKEN IN THIS CHAPTER. 144 

FIGURE 5.2 : TWO PATIENTS WITH HEMATOMETRA (WHITE ASTERISK, LEFT AND 

MIDDLE PANEL), AND A PATIENT WITH MULTIPLE LARGE LEIOMYOMAS (WHITE 

STAR, RIGHT PANEL) ALMOST REPLACING THE ENTIRE NORMAL UTERINE 

BODY TISSUE. 147 

FIGURE 5.3: HEALTHY TISSUES (UTERINE BODY AND UTERINE CERVIX) AND 

CERVICAL TUMOUR T1 VALUES MEASURED IN THE BIOCHECC STUDY WERE 

COMPARED TO THOSE IN PUBLISHED LITERATURE. HEALTHY TISSUE VALUES 

ARE THE MEAN OF THE TWO VISITS. GREY = HEALTHY VOLUNTEER; AND 

BLACK = PATIENT + = DIAGNOSTIC MR PATIENTS; AND X = MR LINAC SYSTEM

 148 

FIGURE 5.4: ΔR1 TIME SERIES OF THE TUMOUR REGIONS FOR PATIENTS 3 AND 9 

SHOW SIGNIFICANT MOTION CORRUPTION. 149 

FIGURE 5.5: ΔR1 PARAMETER TIMESERIES AND BOXPLOTS SHOW COHORT LEVEL 

CHANGES IN THE UTERINE BODY. PATIENT 1 HAS BEEN OMITTED FROM THE 

TIMESERIES DUE TO THE DIFFERENT ACQUISITION PROTOCOL. SIGNIFICANCE 

FROM BASELINE MARKED ABOVE MID AND END BOXPLOTS SO THAT * = 

SIGNIFICANT RESULT AND NS = NON-SIGNIFICANT RESULT. 150 

FIGURE 5.6: ΔR1 PARAMETER MAPS OVERLAID ON THE T1 MAPPING SEQUENCE 

PAIRED WITH THE ΔR1 TIMESERIES FOR EACH PATIENT VISIT. *PATIENT 10 

END- ΔR1 TIMESERIES Y-AXIS LIMITS ARE CONSISTENT WITH THE REST OF THE 



 16 

DATA THOUGH THIS HAS RESULTED IN 3 DATAPOINTS NOT BEING DISPLAYED.

 155 

FIGURE 5.7: ΔR1 PARAMETER TIMESERIES AND BOXPLOTS SHOWING COHORT 

LEVEL CHANGES. PATIENT 1 HAS BEEN OMITTED FROM THE TIMESERIES DUE 

TO THE DIFFERENT ACQUISITION PROTOCOL. SIGNIFICANCE FROM BASELINE 

MARKED ABOVE MID AND END BOXPLOTS SO THAT * = SIGNIFICANT RESULT 

AND NS = NON-SIGNIFICANT RESULT. 156 

FIGURE 5.8: PEARSON’S RANK CORRELATION MATRIX OF THE MRI PARAMETERS 

AT BASELINE. 157 

FIGURE 5.9: ΔMRI PARAMETERS (PRE TO MID OR PRE TO END) RANKED BY 

INCREASING ΔR1. 158 

FIGURE 5.10: PASS/FAIL RESULTS FROM CLARIOM S TAC QC, GREEN AND RED 

BARS RESPECTIVELY. 00* DENOTES PRE-TREATMENT BIOPSIES AND 01* 

DENOTES ON TREATMENT BIOPSIES. EIGHT OF THE TWELVE PRE-TREATMENT 

BIOPSIES FAILED. 159 

FIGURE 5.11: PAIRED T2W AND OE-MRI IMAGES FROM TWO OPPOSITE SIDES OF 

THE TUMOUR – 3 O’CLOCK (TOP ROW) AND 9 O’CLOCK (BOTTOM ROW). 161 

FIGURE 7.1: ANNOTATED PHOTOGRAPH OF WATER AND SPONGE PHANTOM IN THE 

MR-LINAC. 176 

FIGURE 7.2: OXYGEN ENHANCEMENT CURVE OF SPONGE PHANTOM 176 

FIGURE 7.3: PHOTOGRAPH OF FALCON TUBES PHANTOM. THIS IS A SIMILAR SET 

UP TO A CONVENTIONAL T1 MR PHANTOM AND AIMS TO QUANTIFY T1 

MEASUREMENTS AT DIFFERENT OXYGENATION LEVELS. 177 

FIGURE 7.4: CONVERTING THE ARBITRARY SIGNAL INTO ΔR1 REQUIRES 

KNOWLEDGE OF THE BASELINE T1 MAP. A SIGNIFICANT DIFFERENCE WAS 

NOTED WHEN ANALYSING THE DATA FOR PATIENT 11 VISIT 1, USING THE A) 

VFA T1 MAP OR B) IR T1 MAP. 178 

FIGURE 7.5: TWO SUGGESTED WORKFLOWS TO RIGIDLY TRANSFORM THE 

DYNAMIC OE-MR IMAGES ONTO THE ANATOMICAL T2W IMAGE. THIS IS 

NECESSARY BECAUSE THE REGION OF INTEREST IS DRAWN ON THE 

ANATOMICAL IMAGE. 180 

 

 

 

 



 17 

List of abbreviations 

 

AC/ASC Adenocarcinoma/adenosquamous carcinoma 

BIGART Biological Image-Guided Adaptive Radiotherapy  

BioCHECC Biomarkers for Clinical Hypoxia Evaluation in Cervical Cancer study 

BOLD MRI Blood Oxygen Level Dependent MRI 

CA IX  Carbonic Anhydrase IX 

CO2  Carbon dioxide 

CON  Carbogen and Nicotinamide 

CRT  Chemo-radiotherapy 

CRUK  Cancer Research United Kingdom 

CSS   Cancer Specific Survival 

CT  Computed Tomography 

CTV  Clinical Target Volume 

DCE MRI Dynamic Contrast Enhanced MRI 

DFS   Disease Free Survival 

DNA  Deoxyribonucleic acid 

DW MRI Diffusion Weighted MRI 

EBRT  External beam radiotherapy 

EPI  Echo-Planar Imaging 

EQD2   Equivalent dose in 2-Gy fractions 

FDA  Food and Drug Administration 

FFPE  Formalin-Fixed Paraffin-Embedded 

FIGO  International Federation of Gynaecology and Obstetrics 

GEO  Gene Expression Omnibus 

GTV  Gross Tumour Volume 

Gy  Gray (units) 

HF   Hypoxic Fraction 

HIF  Hypoxia-Inducible Factor 

HPV  Human papillomavirus 

HV  Healthy Volunteer 

IGABT  MRI Guided Adaptive Brachytherapy 

IHC  Immunohistochemistry 

IR-TFE  Inversion Recovery Turbo Field Echo 

IR-TSE Inversion Recovery Turbo Spin Echo 

IVIM MRI Intravoxel incoherent motion MRI 



 18 

LACC  Locally Advanced Cervical Cancer 

LRC   Locoregional Control 

LVSI  Lymphovascular Space Invasion 

MFS   Metastasis Free Survival 

MRI  Magnetic Resonance Imaging 

MR Linac MRI scanner and Linear Accelerator 

MSigDB Molecular Signatures Database 

NCITA  National Cancer Imaging Translational Accelerator 

NifTI  Neuroimaging Informatics Technology Initiative 

NHS  National Health Service 

NIH  National Institutes of Health 

OE-MRI Oxygen Enhanced MRI 

OS  Overall Survival 

pO2  Partial pressure of Oxygen 

PAM  Prediction Analysis for Microarrays 

PET  Positron Emission Tomography 

PFS   Progression Free Survival 

PTV  Planning Target Volume 

QBI  Quantitative Biomedical Imaging group 

QIB(s)  Quantitative Imaging Biomarker(s) 

QIBA  Quantitative Imaging Biomarkers Alliance 

qMRI  Quantitative MRI 

RC  Repeatability Coefficient 

(m)RNA (messenger) Ribonucleic acid 

ROI(s)  Region(s) Of Interest 

RT  Radiotherapy 

SCC  Squamous Cell Carcinoma 

TBR   Tumour to Blood Ratio 

TCGA  The Cancer Genome Atlas 

TMR   Tumour to Muscle Ratio 

TNM  Tumour Node Metastasis 

TRB  Translational Radiobiology group 

UB  Uterine Body 

UC  Uterine Cervix 

VEGF  Vascular Endothelial Growth Factors 

wCV  within-subject Coefficient of Variation 

 



 19 

Abstract 

 

Cervical cancer is a major problem in low/middle income countries where 85% of the new 

cases/deaths occur. Secondary prevention measures reduced incidence and mortality in 

developed countries over the last 30 years, but cervical cancer remains a major cause of 

cancer deaths in women. Hypoxia, or low tumoural oxygenation, is a ubiquitous feature of 

solid tumours which drives disease progression and restricts treatment efficacy. Hypoxia 

targeting therapies have shown great promise, however there is an unmet need for hypoxia 

biomarkers to select patients most likely to benefit from hypoxia modification treatment. The 

thesis aimed to develop hypoxia biomarkers in patients with cervical cancer which may be 

used in future hypoxia modification trials. The investigated biomarkers were derived from gene 

expression and magnetic resonance imaging (MRI) data. The gene expression signature 

development was from cell line experiments, developed using a publicly available dataset and 

validated in an independent retrospective cohort of women treated at The Christie with 4-5 

years of clinical outcome data. The de novo 31-gene signature was enriched for known 

hypoxia pathways and biological processes, and showed prognostic significance in the 

external validation cohort. Oxygen enhanced (OE) -MRI of the female pelvis was developed 

in healthy volunteers and translated onto the MR Linac for the first time. The results showed 

quantitative T1 values derived using the inversion recovery sequence to be comparable with 

published literature. The ΔR1 parameter was shown to be repeatable across the two imaging 

systems (a Diagnostic MR and MR Linac) and using two hyperoxic gases (100% O2 and 98% 

O2 / 2% CO2). Finally, I identified the uterine body as a quality control region for OE-MRI. In a 

prospective patient pilot study, I analysed data from locally advanced cervical tumours in three 

world firsts: a) tumour biopsies acquired following five weeks of chemoradiation assessed with 

the de novo hypoxia signature; b) serial assessments of patient tumours using OE-MRI during 

chemoradiotherapy; and c) exploratory imaging-genomic correlations using independently 

derived hypoxia biomarkers. Unfortunately, a batch processing error meant I could not analyse 

all the prospective patient biopsies. The data suggested intra-tumoural heterogeneity of the 

transcriptional and imaging biomarkers. The ΔR1 parameter was able to map, quantify and 

track whole tumour changes in hypoxia modification secondary to chemoradiation during the 

five weeks of external beam radiotherapy.  

 

In summary, this thesis presents important new insights on hypoxia associated gene 

expression and OE-MRI data acquisition and analysis. I highlight a potential role for the 

combined imaging-genomic evaluation of tumour hypoxia and highly targeted radiation 

delivery on the MR Linac system. 
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1 Introduction 

 

Cervical cancer is a major global health problem. It is the fourth most frequent cancer in 

women worldwide, with an estimated 604,000 new cases in 2020 and approximately 342,000  

new deaths1. Age-standardized survival correlates strongly with socioeconomic deprivation 

(Figure 1.1). Given that 90% of cervical cancer deaths are in low- and middle- income 

countries, the World Health Organization Cervical Cancer Elimination Modelling Consortium 

mentions no single intervention can eliminate cervical cancer, and that treatment is a key 

intervention alongside vaccination, screening and palliation2. 

 

 

Figure 1.1: Age-standardized mortality per 100,000 females of some of the worst and least 

affected regions. Women in regions with a low or medium human development index (orange 

bars) experience higher mortality rates compared to those in high or very high human 

development index regions (blue bars). (Adapted from source: GLOBOCAN 2020 

https://doi.org/10.3322/caac.21660). Figure reproduced with permission from publisher3. 

 

Cancer treatment has seen a paradigm shift towards targeted therapy. Two notable examples 

which have significantly improved survival are tyrosine kinase inhibitors4 and trastuzumab in 

HER2-positive breast cancer5. Oxygen deficiency, termed hypoxia, is a hallmark of solid 

tumours that encourages tumour angiogenesis, genetic instability and metastasis6. 

Furthermore, as hypoxia is a feature of cancer and not normal tissue, hypoxia targeting drugs 

offer a high therapeutic index7. However, hypoxia-targeted therapy is not standard treatment 

and many factors have contributed to poor clinical translation of these therapies8. In particular, 

it is the inability to reliably select the most hypoxic tumours to benefit from hypoxia targeting 

https://doi.org/10.3322/caac.21660
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treatments. This introduction briefly describes the role of hypoxia and highlights key studies 

targeting hypoxia. Specifically, I will discuss the different hypoxia measurement techniques, 

examine candidate biomarkers, and outline the requirements of a robust biomarker than can 

be used in the clinic. 

 

1.1 Hypoxia pathophysiology 

 

The oxygenation status of normal uterine cervix tissue is different than that of cancerous 

tissue9. In normal tissues, the oxygen supply matches the metabolic demand due to 

homeostasis and does not usually cause hypoxia. In the tumour, hypoxia is a 

pathophysiological consequence of disturbed and deficient microcirculation resulting in a 

hypoxia-glycolysis-acidosis paradigm10. The result is a relatively avascular tumour 

microenvironment which is deficient in oxygen10. Oxygenation below a critical threshold 

restricts or eliminates normal biologic functions such as mitochondrial oxygen (O2) 

consumption rate and ATP production11. Glucose deprivation, along with severe long-lasting 

hypoxia, ends in the central necrotic core often noted on histological examinations. 

 

1.2 Targeting Hypoxia 

 

The stage at diagnosis strongly influences the choice of treatment, along with the patient’s 

performance status and preference for their own management. Early-stage cancers (stage 

1A) are mostly treated by surgery alone whereas however a combination of radiotherapy and 

chemotherapy plays the dominant therapeutic role in locally advanced cervical cancer (LACC). 

In high-resource settings, around 40% of cervical cancer patients undergo potentially curative 

or palliative radiotherapy every year12. In low resource settings, the main stay of treatment is 

(chemo)radiotherapy with only a small portion of early-stage cancers being surgically 

removed.  

 

Radiosensitivity, defined as the susceptibility of cells to ionizing radiation, varies between 

individuals and tissues. Sensitivity to sparsely ionizing radiation is affected by oxygen levels 

(Figure 1.2).   
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Figure 1.2: (A) The ‘oxygen effect’. Free radicals generated when sparsely ionizing radiation 

interacts with tissue (green) are fixed to a non-restorable form in the presence of oxygen 

(blue) causing more damage to DNA. (B) Higher doses of sparsely ionizing radiation are 

required under hypoxic conditions to kill the same fraction of tumour cells. Figure reproduced 

with permission from publisher3. 

 

 

 

Radiation interacts with tissue producing free radicals. DNA radicals can be chemically 

restored by antioxidants or ‘fixed’ to a non-restorable form by oxygen. This ‘oxygen effect’ 

means that cellular radiosensitivity decreases with decreasing oxygen levels. Gottwald 

Schwartz first identified the clinical effects of low oxygen states (hypoxia) on radiotherapy in 

19098. Along with being a key factor in radioresistance, tumour hypoxia adversely affects 

prognosis and is associated with reduced patient survival independent of treatment option13. 

Hypoxia represents a convincing therapeutic target and several strategies have been 

researched (Table 1.1). 
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Table 1.1: Hypoxia targeting strategies classified by mechanism of action. Table reproduced 

with permission from publisher3. 

Mechanism of action 
 

Hypoxia targeting approach 
 

Comments 
 

Increasing 

intratumoural oxygen 

Increasing haemoglobin Either via transfusion or 

erythropoietin  
  

Hyperbaric oxygen (HBO) Increases oxygen transfer within 

the lungs 
  

Carbogen and nicotinamide 

(CON) 

Improves oxygen diffusion and 

perfusion within tumour 
 

Decreasing tumour 

oxygen consumption 

Biguanides (metformin and 

phenformin) 

Inhibition of the mTOR-HIF-1α 

axis (mitochondrial inhibitors) 
 

Hypoxia-specific 

radiosensitizers and 

cytotoxins 

Nitroaromatic compounds 

(metronidazole, misonidazole, 

nimorazole and pimonidazole) 
 

Mimic the effect of oxygen 

causing radiosensitisation 

 
Quinone based moieties 

(mitomycin C, porfiromycin) 
 

Cytotoxins causing DNA 

alkylation 
 

N-oxide (tirapazamine) 
 

Free radical formation 

Various Hyperthermia Increased oxygen delivery, 

direct thermal damage, selective 

destruction of hypoxic cells 
 

 

 

1.2.1 Increasing intratumoural oxygen 

 

The most intuitive way to combat hypoxia is to increase oxygen delivery to the tumour. Oxygen 

bound to haemoglobin is transported in the blood and the negative prognostic impact of low 

haemoglobin levels at time of presentation or during radiotherapy is clear14. However, 

approaches to increase haemoglobin levels either via transfusions or via erythropoietin 

injections have produced a mixed clinical response and their use as hypoxia-targeting 

approaches is not clear8. Anaemia is a complex phenomenon which may reflect a higher 

cancer burden, general wellbeing, nutrition and other co-morbidities rather than being wholly 

related to hypoxia15. 

 

A more promising avenue of hypoxia modification involved patients breathing high-oxygen 

content gas within hyperbaric chambers. The Medical Research Council multicentre 

randomized trials in the late 1970s comparing hyperbaric oxygen v air reported 67% v 47% 
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locoregional control at 5 years and 37% v 25% overall survival at 5 years16. More recently, 

hypoxia modification using normobaric carbogen gas (95-98% oxygen and 2-5% carbon 

dioxide) along with nicotinamide have been used in clinical trials with improved outcomes in 

head and neck and bladder cancers17,18.  Carbogen gas is preferred to pure oxygen as it is 

thought to have a greater intratumoural O2 diffusion capacity and does not cause the same 

degree of vasoconstriction. Nicotinamide, the amide derivative of vitamin B3, is a potent 

vasodilator and improves tumour perfusion. Together the compounds complement each other 

to target chronic and acute hypoxia respectively19. A phase II clinical trial of 139 patients with 

LACC concluded that the addition of carbogen and nicotinamide (CON) hypoxia modification 

to standard therapy was feasible and safe20. More work is needed to investigate the 

therapeutic effects of this promising approach in cervical cancers. 

 

1.2.2 Decreasing tumour oxygen consumption 

 

An alternative strategy to combat hypoxia is to reduce oxygen consumption within tumour 

cells. Metformin, an antidiabetic agent, reduces cancer incidence in diabetic patients21. 

Subsequent studies highlight a complex interplay with hypoxia-associated molecular 

pathways, likely through the inhibition of the mTOR-HIF-1α axis22. Two phase II randomized 

clinical trials, NCT02394652 and NCT04275713, are currently investigating the use of 

metformin as a hypoxia-modifying therapy for LACC, following the evidence in other tumour 

types, such as non-small cell lung cancer, that this strategy is feasible and may be beneficial23. 

These trials will assess metformin-induced changes in tumour hypoxia using imaging and 

gene expression biomarkers. 

 

1.2.3 Hypoxia-specific radiosensitizers and cytotoxins 

 

Hypoxia-specific radiosensitizers are given with radiation and mimic the effects of oxygen. 

Hypoxia-selective drugs can be administered in the form of a bioreductive compound, which 

is reduced in hypoxia to form a cytotoxic agent24. Nitroimidazole compounds have been 

extensively researched as radiosensitising agents which undergo enzymatic and radiation-

induced redox reactions in an oxygen deficient environment25. Despite the success of first and 

second generation nitroimidazoles in pre-clinical models, the drugs resulted in high toxicity 

and limited radiosensitisation in humans26. The third generation drug, pimonidazole, also failed 

to show any added benefit in the treatment of uterine cervix cancers despite being developed 

to have a lower toxicity profile27. However, a large multi-centre study of 333 patients concluded 

that giving the nitrotriazole Sanazol with radical radiotherapy significantly improved local 
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tumour control and overall survival without an increase in major toxicity28. Continued research 

of nitroaromatic compounds remains valuable as illustrated by the Danish Head and Neck 

Cancer 5 (DAHANCA 5) study29, which led to the routine clinical use of nimorazole in the 

treatment of head and neck cancers in some countries. 

 

There are several classes of hypoxia-specific cytotoxins. Quinone based agents selectively 

activate in hypoxia through a reductive mechanism and induce a DNA-alkylation mediated 

cytotoxicity30. 160 patients with locally advanced squamous-cell carcinoma of the uterine 

cervix participated in a multicentre phase III trial which randomized participants to receive 

radiotherapy alone or radiotherapy with concomitant mitomycin C31. Despite improved four-

year disease-free survival rates in the intervention group (71% vs 44% in control group, p = 

0.01), the study failed to demonstrate a significant benefit in overall survival or local recurrence 

rates. Mitomycin C is the most widely used hypoxia-activated prodrug but has very minor 

increased toxicity towards hypoxic versus normoxic cells in vivo. In other words, this is a dose 

related effect which is only hypoxia sensitising at high non-clinical doses. The related 

compound, porfiromycin, displays a greater hypoxic selectivity, which makes it a possible 

candidate for future clinical trials.  

 

Tirapazamine was discovered nearly 40 years ago and is the first purely hypoxic cytotoxin and 

one of the most advanced bioreductive drugs in clinical trials. The best-known aromatic N-

oxide is used as an anticancer drug which undergoes enzymatic one-electron reduction and 

converts to an electron-donating mono-N-oxide metabolite (tirapazamine radical)32. Murine 

model experiments showed considerably more tumour cell death when tirapazamine was 

combined with radiotherapy or cisplatin chemotherapy33,34. Following these encouraging 

results, early phase clinical trials focused on the synergistic interactions between tirapazamine 

and cisplatin in treating cervical cancer patients35,36. When combined with radiotherapy in the 

treatment of locally advanced cervical cancers, Rischin et al. recommend a weekly maximum 

tolerated dose of 260 mg/m2 tirapazamine and 30 mg/m2 cisplatin though the authors reported 

higher than expected toxicity37. Craighead et al. preferred an alternating weekly regimen of 

between 220 mg/m2 and 290 mg/m2 tirapazamine with 75 mg/m2 cisplatin, reporting an 

acceptable toxicity profile at these doses. The latter dosing schedule was used in the 

interventional arm of a prospective, randomized phase III intergroup trial38. 402 locally 

advanced cervical cancer patients were randomly assigned to cisplatin chemoradiotherapy 

versus cisplatin/tirapazamine chemoradiotherapy. However, cisplatin/tirapazamine 

chemoradiotherapy was not superior to cisplatin chemoradiotherapy for either progression 

free survival or overall survival. 
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1.2.4 Hyperthermia 

 

A strategy which encompasses a variety of hypoxia targeting mechanisms is hyperthermia. It 

is assumed to improve oxygenation by causing vasodilatation, as well as direct cellular 

damage, an immune-mediated killing of tumour cells and inhibition of DNA repair39. In cervical 

cancers, hyperthermia has been used to sensitize tumours to radiotherapy and the evidence 

suggests that combining radiotherapy with hyperthermia results in improved locoregional 

control when compared to using radiotherapy alone (77% vs 52%)40. There is ongoing 

research using hyperthermia to treat cancer patients with a focus on hyperthermic 

intraperitoneal chemotherapy after cytoreductive surgery (HIPEC) and homogeneous tumour 

heating41. 

 

1.3 Future of hypoxia targeting trials 

 

A meta-analysis used data from 19 cervix trials of patients undergoing primary radiotherapy 

with and without a range of hypoxia-modifying therapies. The authors reported an odds ratio 

of 0.80 (0.69-0.94) in favour of hypoxia modification for locoregional control and an odd ratio 

of 0.91 (0.78-1.05) in favour of hypoxia modification benefitting overall survival8. Despite the 

evidence supporting hypoxia targeted treatments, nothing is used routinely in the treatment of 

cervical cancer patients. This may in part be due to the earlier studies being small and 

underpowered, or that hypoxia-targeting treatments which largely comprise inexpensive drugs 

are of limited financial interest to industry.  

 

An important observation is that hypoxia modification is most likely to impact outcome in the 

most hypoxic tumours. A hypoxia PET imaging sub-study of a larger tirapazamine trial in stage 

II/IV head and neck cancer patients exemplifies this point42. Though the main study did not 

show any significant difference in outcome between the control and intervention groups, 

hypoxia PET imaging was able to identify patients who benefitted from tirapazamine 

containing chemoradiation. This study illustrates the potential for a predictive hypoxia 

biomarker selecting patients who are likely to benefit from hypoxia-targeting treatment. 

 

1.4 Measuring hypoxia 

 

A biomarker is a “defined characteristic that is measured as an indicator of normal biological 

processes, pathogenic processes or responses to an exposure or intervention, including 

therapeutic intervention. The current FDA-NIH Biomarker Working Group definition states 
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explicitly that “molecular, histologic, radiographic or physiologic characteristics are examples 

of biomarkers” 43. Routinely used biomarkers in cervical cancer patient stratification are clinical 

stage, histological grade, lymphovascular space invasion and radiographic lymph node 

metastasis. Biomarkers can be used to make diagnoses, monitor disease status, inform on 

drug levels, or assess clinical outcome. There is no validated hypoxia biomarker in routine 

clinical practice (Table 1.2). 

 

Table 1.2: Selected studies investigating hypoxia response-associated biomarkers in cervical 

cancer. Patients in these studies received either surgery or (chemo)radiotherapy or a 

combination of the two. Table reproduced permission from publisher3. 

Assay platform/ 

Imaging modality 

(NCT ID) 

Biomarker* Number of 

patients 

Clinical 

outcome** 

Year 

IHC staining CA-IX 

expression 

130 OS and MFS (+) 2001 44 

 
CA-IX 

expression 

166 OS and PFS (+) 2010 45 

IHC staining Pimonidazole 

staining 

127 Tumour control or 

OS (na) 

2006 46 

Illumina bead array Gene 

expression 

signature score 

109 PFS (-) 2012 47 

 
Gene 

expression 

signature score 

239 Disease 

progression (+) 

2016 48 

     

18F-FAZA 

(NCT00388687) 

Visual uptake 

score† 

15 DFS (-) 2010 49 

 (NCT01549730) TBR; HF 27 DFS (na) 2018 50 

18F-FETNIM TMR 16 PFS and OS (-) 2012 51 

60Cu-ATSM 

(NCT00794339) 

TMR 38 PFS and OS (-) 2008 52 
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BOLD MRI R2* 30 Tumour response 

after therapy (-) 

2014 53 

 
R2* 65 Tumour response 

after therapy (-) 

2015 54 

 
R2* 92 PFS and CSS (-) 2019 55 

 

* TBR = tumour to blood ratio, TMR = tumour to muscle ratio, HF = hypoxic fraction 

** OS = overall survival, PFS = progression free survival, MFS = metastasis free survival, 

DFS = disease free survival, CSS = cancer specific survival, (+) = positive association, (-) = 

negative association, (na) = no association 

†semiqualitative marker 

 

 

 

Any potential hypoxia biomarker must contend with the challenge that tumour oxygen 

distribution is highly variable (Figure 1.3). Tumour-to-tumour (inter-tumour) heterogeneity of 

oxygenation is greater than within a single tumour (intra-tumour)56. Hypoxic status is a 

dynamic entity influenced by other physiological factors such as tumour blood flow rate, 

haemoglobin concentration and arterial partial pressure of oxygen (pO2)57. These factors 

mean that a snapshot measurement will be unrepresentative and serial measurements are 

required if the biomarker is to guide clinical decision making. 
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Figure 1.3: Why measuring hypoxia is a challenge. Figure reproduced with permission from 

publisher3. 

 

 

Tissue biopsy and imaging are two ways of acquiring biomarkers embedded into the clinical 

workflow. Tissue-derived biomarkers can be diagnostic, prognostic, or predictive. Imaging-

derived biomarkers are more useful in assessing susceptibility/risk, monitoring, response, and 

safety. It is important to note that as more of the diagnostic pathways become automated, the 

sensitivity and specificity of the tests will improve58,59. This automation does have the potential 

drawback of being initially resource intensive to set-up before a return is seen.  

 

Polarographic oxygen electrodes provided the foundation for measuring hypoxia in cancer 

research and are cited as the “gold standard”. In the 1980s, they provided the first repeatable 

and reproducible evidence that hypoxia existed in solid tumours with reports of median pO2 

values of 9 mmHg in uterine cervix tumours and  48 mmHg in normal cervix tissue60,61 Values 

between 5 to 10 mmHg are considered to define ‘hypoxic cervical tumours’. The role of 

hypoxia in cervical cancers was then established as the lower pO2 values were strongly 

associated with increased risk of nodal and distant metastases, and poorer treatment 

outcomes62. Use of oxygen electrodes is limited due to their invasive nature and manufacturer 

availability. 
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1.4.1 Tissue biomarkers 

1.4.1.1 Protein expression 

 

Routine diagnostic biopsy tissue can be used to assess hypoxia by measuring the expression 

of hypoxia-inducible genes at the protein or RNA level. Two of the key molecules underlying 

oxygen homeostasis are hypoxia-inducible factor HIF-1α and HIF-2α. The HIF-163,64 mediated 

response, along with several of its downstream targets such as Glut-165,66, CA-IX44,45,67 and 

VEGF68,69 have been thoroughly investigated as endogenous markers in cervical cancer. A 

meta-analysis of 147 studies in multiple cancers showed high CA-IX protein expression was 

an adverse prognostic factor70, but no conclusions could be drawn from the sub-group analysis 

of studies on cervix tumours. Individual studies on cervix cancer reported mixed results. For 

example, a study of 130 cervix cancer patients showed a correlation between CA-IX 

expression and oxygen electrode data, and that high tumour CA-IX expression was a 

significant independent adverse prognostic factor44. However, a study in 77 patients showed 

no association with pO2 or survival outcomes71. Similar conflicting findings were reported for 

other endogenous markers of hypoxia in carcinoma of the cervix72,73. Nevertheless, a meta-

analysis of high tumour HIF-1α expression was associated with a poor prognosis in cervical 

cancer74.   

 

A major disadvantage of using immunohistochemical detection of the expression of individual 

genes is that the proteins can be regulated by factors other than hypoxia. HIF-1α may be 

influenced by non-hypoxic stimuli such as trophic stimuli (insulin-like-growth factors), 

oncogenes (p53, v-Src, PTEN) and cytokines (interleukin-β and tumour necrosis factor-α). 

Other drawbacks include lack of immunohistochemistry (IHC) standardization protocols (such 

as tissue fixation times) and varied result interpretation (quantitative image analysis vs visual 

estimation) between different laboratories.  

 

Exogenous markers for hypoxia have also been researched. Various 2-nitroimidazole 

compounds such as misonidazole75, pimonidazole76 and EF577 have been studied within 

cervical cancer. The compounds bind with intra-cellular macromolecules forming stable 

adducts – a reaction that is prohibited at higher oxygen levels. Chronic hypoxia areas in viable 

cells, at pO2 levels below 10mmHg, are detected when monoclonal antibodies bind to these 

adducts. The degree of IHC or immunofluorescence staining is relative to cellular oxygenation 

and levels of the bioreductives78,79. The compounds differ in pharmacokinetics and tissue 

distribution, e.g. pimonidazole accumulation rate is more dependent on pH resulting in more 

vessel wall binding in transient hypoxia, and this is an important factor in compound choice78. 

Pimonidazole is able to reflect intra- and inter- cervical tumour heterogeneity and endogenous 
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hypoxia markers (CA IX and HIF-1α) moderately correlate, in extent and location, with 

pimonidazole80. However, there is no correlation with oxygen electrode measurements of 

hypoxia81,82. This may be explained as the non-viable necrotic areas with no blood flow do not 

take up pimonidazole. Furthermore, a prospective multicentre international study of 127 

cervical cancer patients did not find pimonidazole to be a statistically significant prognostic 

factor for loco-regional tumour control or overall survival46.  

 

Secreted proteins or circulating free DNA as hypoxia biomarkers are being studied as they 

can be rapidly measured in blood and/or urine. Liquid biopsies are not as invasive as tumour 

tissue biopsies and allow for serial measurements through therapy. Serum VEGF69,83 has been 

reported to be significantly elevated in patients with cervical cancer and influences 

progression-free survival. Serum VEGF-C84 also correlated significantly with disease 

recurrence. Importantly, VEGF is primarily a marker for angiogenesis rather than hypoxia, and 

concentrations may be affected by other regulatory factors such as inflammation. This is a 

major barrier preventing regular clinical use. Besides, spatial information as a response to 

therapy is lost and combination with imaging strategies would be a necessity.  

 

1.4.1.2 Gene expression  

 

To circumvent the problems faced by measuring hypoxia-inducible genes at the protein level, 

RNA-based markers have been developed to improve biomarker reliability. Advances in high-

throughput expression profiling technologies and bioinformatics have enabled gene 

expression analysis to generate hypoxia-associated gene signatures. When cancer cells 

adapt to their hypoxic environment, they alter transcription by activating biological processes 

required to adapt to low oxygen levels85. By identifying a set of ‘signature genes’ most likely 

to associate with hypoxia in tumours, the expression levels of these genes can be summarized 

into a single score. A ‘gene expression signature’ refers to multiple genes which collectively 

express a particular phenotype, in this case hypoxia. When developing gene expression 

signatures, it is typical to start with a list of candidate genes. These are genes with a bona fide 

relationship with the disease process and biological phenotype being investigated86.  

 

Four hypoxia-associated gene signatures for cervical cancer have been developed and the 

methods are summarised in Table 1.3 47,48,87,88. The Halle 31-gene signature47 was developed 

by first associating a threshold for ABrix, a magnetic resonance imaging (MRI) parameter 

derived using dynamic contrast enhanced-MRI, with poor outcome. Though ABrix is not a strict 

measure of hypoxia, it informs about tumour perfusion which is closely related to hypoxia and 

vascular parameters have been shown to be associated with a negative prognostic outcome 
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in women with uterine cervical cancer 89. MRI-derived vascular parameters, as surrogate 

markers of hypoxia, form a large body of evidence which is explored in greater detail in section 

1.4.2.2 of this thesis. In the Halle signature, candidate genes curated from four cohorts 

(including cervical cancer cell line experimental data) were ranked by their association 

(Spearman’s rank correlation) to the revised ABrix parameter so that upregulated genes in 

tumours with low ABrix values were selected. The median centred expression levels for the 31-

genes were used to calculate a hypoxia score. For the Fjeldbo 6-gene classifier48, the Halle 

signature was further enriched with genes showing a 2-fold upregulation by hypoxia in at least 

one of eight cervical cancer cell lines. This new list of 17 candidate genes were modelled 

based on how well each gene discriminated a low ABrix group from a high ABrix group. The ratio 

of between group variations (B) to within group variations (W) in expression were calculated 

such that a high B/W-ratio will best discriminate between the low vs high ABrix groups. A similar 

formula has also been used to develop the Toustrup head and neck signature90. The mean 

expression of a classifier gene in the training cohort was tabulated and used to classify new 

tumours. The advantage of a classifier is that it produces a binary outcome. Mean or median 

expression scores result in a continuous variable that usually requires defining a threshold, 

above or below which a clinical intervention is justified. However, the mechanics of the Fjeldbo 

classifier make it platform specific requiring classifier gene expression to be assessed on the 

target platform and tabulated for future classification.  

 

Table 1.3: Summary of published hypoxia gene signatures for patients with cervical cancer.  

General  Candidate genes Model Clinical cohorts 

Halle47 

in vitro cell line 

experiments and in 

silico hypoxia gene 

sets 

Upregulated genes 

associated with 

low ABrix (ρ) 

 
 

Train/test: 46 

patients (GSE36562/ 

Illumina WG-6) 

31 genes   

External validation: 

109 patients 

(GSE36562/ Illumina 

WG-6) 

Mean expression as 

a continuous score 

 
  

  

Fjeldbo48 (SCC) 

Halle signature 

enriched using in vitro 

cell line experiments  

B/W ratio 

Train/test: 42 

patients (subset of 

Halle; GSE 72723) 
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6 genes   External validation:  

Binary classifier   

1 - 108 patients 

(subset of Halle; 

GSE 72723) 
 

   

2 – 131 patients 

(GSE 72723/Illumina 

HT-12) 

 
 

Yang87 

in silico curated 

hypoxia related 

genes (MSigDB) with 

high expression and 

poor prognosis in 

training cohort 

(HR>1, p<0.05) 

LASSO cox 

regression 

Train/test: 257 

patients (TCGA-

CESC/ RNA-seq) 

 
 

5 genes  

External validation: 

300 patients (GSE 

44001/ Illumina HT-

12) 

Σ (coefficient x 

median expression) 

as a continuous 

score 

 
 

  

Nie88 

in silico curated 

hypoxia related 

genes (MSigDB) with 

poor prognosis in 

training cohort 

(HR>1, p<0.01) 

LASSO cox 

regression 

Train/test: 289 

patients (TCGA-

CESC/ RNA-seq) 

9 genes  

 

External validation: 

117 patients (CGCI-

HTMCP-CC/ RNA-

seq) 

Σ (coefficient x 

median expression) 

as a continuous 

score 
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Yang87 and Nie88 have used very similar strategies in developing their gene expression 

signatures, however have little overlap in signature genes (Table 1.4). In both papers, 

approximately 200 hypoxia related genes were curated from The Molecular Signatures 

Database (MSigDB) and the median expression was used to form two subgroups within The 

Cancer Genome Atlas cervical squamous cell carcinoma and endocervical adenocarcinoma 

(TCGA-CESC) cohort. Genes associated with poor overall survival were selected as 

candidate genes. A risk model was generated using least absolute shrinkage and selection 

operator (LASSO) regression analysis. The risk score is derived by multiplying median gene 

expression by a coefficient and summating the scores. The differences in selected signature 

genes may be reflective of known variations in the RNA-seq data analysis pipeline91 and model 

input parameters. In fact, only one gene, Prolyl 4-hydroxylase, alpha polypeptide II (P4HA2), 

is common across all gene signatures. This reflects the heterogeneity in hypoxia response 

and tumour microenvironment diversity between patients92. 

 

 

Table 1.4: Summary of published hypoxia associated cervical cancer signature genes. 

Publication (s) Gene 

symbol 

Gene name 

Halle AK2  Adenylate kinase 2  

Halle, Yang AK4 Adenylate kinase 4  

Halle ALDOA  Aldolase A, fructose-bisphosphate  

Halle B3GNT4  UDP-GlcNAc:betaGal beta-1,3-N-

acetylglucosaminyltransferase 4  

Halle C14ORF2  Chromosome 14 open reading frame 2  

Halle C19ORF5

3  

Chromosome 19 open reading frame 53  

Halle C4ORF3  Chromosome 4 open reading frame 3  

Halle CLK3  CDC-like kinase 3  

Halle, Fjeldbo DDIT3  DNA-damage–inducible transcript 3  

Halle ECE2  Endothelin converting enzyme 2  

Nie EFNA1 Ephrin A1 

Halle, Fjeldbo ERO1A Endoplasmic reticulum oxidoreductase α  

Halle FGF11  Fibroblast growth factor 11  

Halle GAPDH  Glyceraldehydes-3-phosphate dehydrogenase  

Halle HMOX1  Heme oxygenase (decycling) 1  
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Nie IER3 Immediate Early Response 3 

Halle ISG15  ISG15 ubiquitin-like modifier  

Nie ISG20 Interferon stimulated exonuclease gene 20 

Halle, Fjeldbo KCTD11  Potassium channel tetramerisation domain containing 

11  

Nie KLF7 Kruppel like transcription factor 7 

Nie LDHC Lactate dehydrogenase C 

Halle MRGBP Mortality factor on chromosome 4-related gene binding 

protein 

Halle, Fjeldbo, 

Yang, Nie 

P4HA2  Prolyl 4-hydroxylase, alpha polypeptide II  

Halle PFKFB4  6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 

4  

Nie PGM1 Phosphoglucomutase 1 

Halle PVR  Poliovirus receptor  

Halle PYGL  Phosphorylase, glycogen, liver  

Nie RBPJ Recombination signal binding protein for 

immunoglobulin kappa J region 

Halle RHOC  Ras homolog gene family, member C  

Halle RPL36A  Ribosomal protein L36a  

Halle S100A2  S100 calcium binding protein A2  

Halle SCARB1  Scavenger receptor class B, member 1  

Halle SH3GL3  SH3-domain GRB2-like 3  

Halle SNTA1  Syntrophin Alpha 1 

Halle SPAG7  Sperm associated antigen 7  

Nie STC1 Stanniocalcin 1 

Halle, Fjeldbo STC2  Stanniocalcin 2  

Yang TGFBI Transforming growth factor beta induced 

Halle TRAPPC1

  

Trafficking protein particle complex 1  

Halle, Fjeldbo UPK1A  Uroplakin 1A  

Yang VEGFA Vascular endothelial growth factor A 
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All the listed signatures47,48,87,88 have been trained on prognosis which reflects the notion that 

a hypoxic tumour is an aggressive phenotype with poor clinical outcome. However, there are 

other independent reasons for an adverse clinical outcome and therefore such an assumption 

may not reflect the hypoxic ground truth as measured by the biomarker. This can be achieved 

by associating gene signature expression to another hypoxia biomarker however an 

association with pO2 measurements acquired using needle electrodes is yet to be proven and 

has only been reported for a head and neck signature90.   

 

Gene expression platforms measuring relative mRNA abundance are influenced by several 

external factors such as preservation technique, technical batch effect and age of samples. 

Despite this, gene signatures have shown the best evidence for biomarker utility in predicting 

treatment outcome benefit from hypoxia modification in other solid tumours93. A limitation of a 

gene signature approach for measuring tumour hypoxia is the use of diagnostic biopsy 

samples that assess a very small section of a tumour, is prone to sampling bias and may not 

accurately reflect tumour heterogeneity. However, it has been shown that using a single 

cervical cancer biopsy to measure hypoxia gene signature expression may result in an 

adequate estimate of whole tumour hypoxia with the capability to differentiate tumours of 

varying scores94.  Perhaps the greatest drawback of the gene signature approach is that they 

appear to be tissue type and site specific85, and are unsuitable for longitudinal studies. 

 

1.4.2 Hypoxia imaging biomarkers 

1.4.2.1 Positron emission tomography (PET) imaging 

 

PET imaging is the most commonly investigated indirect method for imaging tumour 

hypoxia95,96. It reports on intracellular hypoxia and is highly sensitive and specific. Following 

hypoxia radioisotope administration, PET imaging is acquired after an interval of 

approximately 90-120 minutes to enable optimal image contrast, but protocols vary between 

centres and no one standard approach is used worldwide. Hypoxia radiotracers can be 

grouped into two classes: nitroimidazole and dithiosemicarbazone derivatives. Nitroimidazole 

pharmacodynamics are outlined earlier in this chapter and PET imaging detection in this group 

is via the radiolabelled 18F. Copper isotopes, with varying half-lives, used to radiolabel diacetyl-

bis(N4-methylthiosemicarbazone) analogues (Cu-ATSM) are seldom used nowadays as the 

variety and flexibility of 18F agents has blossomed. However, their mechanism of accumulation 

in hypoxic cells is not entirely known97. 
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18F-fluoromisonidazole (18F-FMISO) is the most frequently used hypoxia PET tracer in cancer 

imaging, however there are only a few clinical studies investigating feasibility in cervical 

cancer98,99. Studies associated with clinical outcome have used the other fluorine labelled 

nitroimidazoles, 18F-fluoroazomycin arabinoside (18F-FAZA) and 18F-

fluoroerythronitroimidazole (18F-FETNIM). These are small, exploratory studies that show no 

clear association with outcome or other hypoxia biomarkers49–51. The seldom used category, 

60Cu-ATSM, forms the basis of the largest multicentre hypoxia PET study in 38 patients with 

cervical cancer treated with chemoradiotherapy52. The tumour to muscle ratio (TMR) 

biomarker was significantly associated with worse survival and a sub-group analysis within 

this study demonstrated that the more hypoxic tumours had significantly higher CA IX 

expression 100. However validation of hypoxia PET tracers with established invasive methods, 

such as oxygen electrodes or IHC staining, has proven to be problematic95. Specifically in 

cervical cancer, there is a noticeable lack of hypoxia PET imaging studies. This is discrepant 

from other tumour sites such as primary head and neck, and lung cancers101,102. Cervical 

cancer studies have used fewer, and less homogeneous tracers, and this limits generalizability 

when compared to the other tumour types.  

 

1.4.2.2 Magnetic resonance imaging (MRI) 

 

MRI is another imaging modality that has been used to measure hypoxia non-invasively. 

Significant potential advantages of MRI over PET are the lack of radiation and therefore the 

potential for multiple safe repeatable studies, and its superior spatial resolution103. PET 

requires complimentary anatomical imaging for interpretation.  Since the 1990s, an MRI 

technique used to measure hypoxia is blood oxygenation level dependent (BOLD) imaging. 

This quantifies the transverse relaxation rate, R2*, which is sensitive to the concentration of 

paramagnetic deoxyhaemoglobin molecules in an imaging voxel, where more 

deoxyhaemoglobin results in a faster native R2* 104. The technique can also be performed with 

inhalation of hyperoxic gas (either 100% oxygen or carbogen), to distinguish tumour sub-

regions that do not alter their R2* (are already well oxygen saturated in their haemoglobin = 

normoxic) from those that have a reduction in R2* (as excess oxygen binds to 

deoxyhaemoglobin molecules and the absolute amount of these molecules is reduced = 

hypoxic). Thus, both native R2* and the oxygen-induced ΔR2* have been used as imaging 

biomarkers of hypoxia105.  

 

A pilot study in 9 men with prostate cancer observed a significant negative correlation between 

R2* and pO2 measured using an oxygen electrode (r = -0.66, p = 0.07)106. The majority of 

published human studies focus on feasibility however a handful assessed clinical outcome 
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associated with BOLD imaging biomarkers in cervical cancer53–55. These isolated studies have 

identified an inverse association between the native R2* biomarker, measured at pre-

treatment, and either anatomical response or a survival outcome measure.  However R2* 

measurements are affected by blood flow, changes in vessel geometry, artefacts from 

haemorrhage and field inhomogeneity due to tissue-gas interface which makes repeatability 

and reproducibility problematic105,107.  

 

 

 

Figure 1.4: (adapted from O’Connor et al 107). OE-MRI distinguishes between normoxic (A and 

B) and hypoxic (C and D) tissue environments. In normoxic tissue: (a) and (b) inhalation of a 

hyperoxic gas increases the amount of dissolved plasma O2, but oxygenated haemoglobin 

(HbO2) concentration is essentially unaltered. It is the increased pO2 in interstitial fluid and 

plasma that increases tissue R1. In hypoxic tissue: (c) and (d) inhalation of a hyperoxic gas 

increases the oxy-haemoglobin to deoxy-haemoglobin ratio as there is a paucity of 

haemoglobin that is fully saturated. This has a negligible effect on dissolved plasma O2. This 

has a negligible change in pO2 and the R1 remains nearly constant (straight black line).  
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Techniques such as oxygen enhanced MRI (OE-MRI; Figure 1.4) that measure changes in 

longitudinal relaxation (ΔR1) offer an alternative to R2* methods108. During the dynamic T1 

sequence, participants inhale a hyperoxic gas which results in different R1 measurements 

being acquired from regions which are normoxic or hypoxic107. This is equivalent to the oxygen 

challenge seen in BOLD, but the contrast mechanism is different as it reflects change in proton 

longitudinal relaxation rate due to the presence of paramagnetic O2 molecules. To date, only 

a small feasibility study has assessed OE-MRI in two patients with uterine cervical 

carcinoma109. OE-MRI has been now studied in around 70 patients with other solid tumour 

types and shown initial promised as a response biomarker of hypoxia modification108,110–112. 

 

A key criterion of any perfect hypoxia biomarker is that it should be hypoxia specific rather 

than measure a hypoxia surrogate process. Despite this, there are several studies 

investigating associations between hypoxia related biomarkers as derived from MRI not 

specific to hypoxia with some of the hypoxia specific biomarkers mentioned above. These 

studies are primarily investigating other tumour characteristics that relate to poor outcome 

(Table 1.5). 

 

 

Table 1.5: Selected studies investigating hypoxia-surrogate imaging biomarkers acquired at 

baseline in cervical cancer. Patients in these studies received either surgery or 

(chemo)radiotherapy or a combination of the two. Table reproduced permission from 

publisher3. 

 

Biomarker* Number of 

patients 

Biological 

comparator 

Clinical outcome**  Year 

DCE-MRI     

RSI 37 Microvessel 

density 
 

OS (-) 1998 113 

 
81 

 
LRC (+) 

 
2012 114 

 
98 

 
LRC, CSS and OS (+) 

 
2010 115 

 
52 

 
PFS (+) 

 
2017 116 

LETV 85 
 

DFS and OS (-) 
 

2015 117 

ABrix 50 Eppendorf pO2 

histography 
 

CSS (+) 2002 118 
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57 Microvessel 

density 
 

Survival (na) 1998 119 

 
78 

 
LRC and PFS (+) 

 
2013 120 

Ktrans 78 
 

LRC and PFS (+) 
 

2013 120 
     

DWI-MRI     

ADC 52 
 

PFS (+) 
 

2017 116 
 

47 No correlation 

with pO2 

histography 
 

Early response after 

therapy (-) 

2008 121 

 
42 

 
Time to recurrence (-) 

 
2013 122 

 
66 

 
DFS (-) 

 
2016 123 

 
85 

 
DFS (-) 

 
2016124 

 
44 

 
Recurrence, OS, and 

DFS (+) 
 

2016 125 

ΔADC (serial 

measurements) 
 

124 
 

PFS, CSS and OS (+) 2019 126 

D 30  Survival (na) 2017 127 

D 45  Early response (na) 2021 128 

f 30  Survival (na) 2017 127 

f 45  Early response after 

therapy (+) 

2021 128 

 

* RSI = relative signal increase, LETV = low enhancing tumor volume 

** OS = overall survival, PFS = progression free survival, DFS = disease free survival, CSS 

= cancer specific survival, LRC = locoregional control, (+) = positive association, (-) = 

negative association, (na) = no association 

†semiqualitative marker 

 

 

Dynamic contrast enhanced (DCE) MRI is a technique that enables biomarkers of perfusion, 

permeability, and other vascular features to be quantified and mapped spatially. This 

technique with quantitative analysis has been investigated extensively since the 1990s. The 

signal within each tumour voxel is monitored prior to and following intravenous contrast 

administration. These relative signal increases are reported to correlate with polarographic 

pO2 histography118,129. The data suggests that DCE-MRI biomarkers, such as contrast 
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enhancement114,117,130 or related pharmacokinetic parameter113,118,120, have a pre-treatment 

relationship with improved outcome. There is conflicting data on the value of enhancement 

during radiotherapy, with some suggestion that persistently low signal in DCE-MR images 

reflects poor re-oxygenation and therefore a higher risk of treatment failure115,131. Critically, it 

is unknown as to what DCE-MRI biomarker(s), if any, relate closely with tumour hypoxia. 

Despite this, the above-mentioned cervical cancer hypoxia gene signature47 was derived using 

a DCE-MRI parameter, ABrix, which is a seldom quantified parameter but it is similar to the 

more widely known parameter Ktrans, a measure of perfusion and vascular permeability. 

 

A technique popularised in the last decade is diffusion weighted (DW) MRI. It is sensitive to 

the random Brownian motion of intra-cellular water molecules. Lower apparent diffusion 

coefficients (ADCs) are exhibited in highly cellular tissues or those with cellular swelling132, 

due to the restricted movement of the free water molecules. Conversely, necrotic tissue has a 

higher ADC value and as necrosis and hypoxia are linked, it is suggested that ADC may be a 

useful surrogate biomarker of hypoxia. Similarly, intravoxel incoherent motion (IVIM; a type of 

DWI), can inform on microstructure (D) and microcirculation (f), and has been applied to 

hypoxia127,128. However, ADC, D and f fail to correlate with tumour pO2
121 and the prognostic 

utility of pre-, during or post treatment values is unclear122,123,125,127,128,133.  

 

DCE-MRI and DWI-MRI sequences can be easily acquired on hospital scanners and added 

on to the existing clinical workflow with minimal set up or disruption (in distinction, both BOLD 

and T1-weighted OE-MRI require a gas challenge). This might explain why these studies are 

relatively abundant. Recent research strategies have attempted to validate the imaging 

biomarkers derived from these techniques in a ‘consumption-and-supply’ hypoxia imaging 

model (Figure 1.5) 127,134,135. For example, ve (a measure of the extracellular extravascular 

space) can be combined with Ktrans so that a high ve/Ktrans ratio may inform on hypoxic 

subgregions135. Hompland et al.136 proposed that the D/f relationship can be used to define 

the hypoxic fraction biomarker (HFDWI). However, the studies try and derive meaningful 

associations between the MRI parameters and the underlying biology using complex 

mathematical models, and the assumptions made may not be valid in necrotic or fibrotic 

tissues137. The utility of these hypoxia surrogate biomarkers is being assessed in a multicentre 

interventional cervix cancer study launched by the Groupe Européen de Curiethérapie - 

European SocieTy for Radiotherapy & Oncology network. The EMBRACE II ‘Functional 

Imaging’ sub-study (NCT03210428) specifically defines the trial sequences in detail to achieve 

uniformity between the participating centres138. If substantiated, these imaging biomarkers can 

be rapidly translated into the clinical setting. 
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Figure 1.5: (adapted from Hompland et al136). The consumption and supply-based hypoxia 

model has been used to integrate IVIM DWI derived biomarkers related to oxygen supply and 

consumption. 

 

1.5 The MR Linac and its role in evaluating hypoxia in patients with LACC 

 

The magnetic resonance imaging (MRI)–linear accelerator combination (termed the MR Linac) 

is a new technique for delivering radiotherapy to patients as it enables real-time adaptation of 

treatment. Although the essential element of radiotherapy planning in the MRI environment is 

anatomical imaging, there is also the possibility to perform functional imaging during the 

therapy planning window, with the ultimate aim of augmenting the available tumour and organ 

information to inform clinical decision-making139. For example, 3D spatial maps of a hypoxia 

biomarker may be used to identify hypoxic zones within the tumour. These sub-volumes 

potentially highlight regions which may benefit from higher doses or altered fractionation using 

a technique called dose painting140. Given the potential for Biological Image-Guided Adaptive 

Radiotherapy (BIGART) to help target functionally distinct subregions within the tumour 

microenvironment, the MR Linac consortium has been formed to facilitate collaborative 

research and evidence-based clinical translation141. 

 

MR-guided radiotherapy machines are still in their infancy and will no doubt undergo major 

technological developments in the years to come. Nevertheless, the current technological 

limitations must be considered when designing the first studies employing functional MR 

biomarkers. These challenges can be either generic to all MRI methods, or can be sequence-

specific.  



 48 

1.5.1 Generic challenges for all anatomical and functional sequences  

1.5.1.1 Workflow and time to acquire data 

 

Many cancer patients are frail and their ability to lie immobile in the radiotherapy (RT) fixation 

devices for an extended period is limited. The proximity of the MR receive coil to the patient, 

as well as the noise produced by the machine itself, will cause anxiety or claustrophobia in 

some individuals and might limit their compliance to the extent that MR Linac may be contra-

indicated. Studies suggest that around 3% of the adult population have a diagnosis of 

claustrophobia. However, the percentage of patients who find MRI claustrophobic varies 

depending on the length of examination and the type of magnet system (open systems are 

better tolerated than closed)142,143. Recent study of several thousand patients suggests that 

the incidence of MRI claustrophobia may be nearer to 9%144.  

 

Clearly, anatomical MRI sequences acquired for positioning and the treatment itself must be 

prioritised, so functional imaging – initially acquired for research purposes – will be acquired 

either during the treatment itself (if no intra-fraction monitoring imaging is required) or after the 

treatment fraction has been completed. Hence, functional imaging acquired on the MR Linac 

needs to be optimised for time efficiency to an even greater extent than in diagnostic imaging 

conditions. One alternative is to import functional MRI data acquired on a diagnostic machine 

in a separate scan episode to inform treatment planning, but this requires accurate registration 

of the imported data to the MR Linac images.  

 

1.5.1.2 Respiratory, cardiac, and other motion 

 

Physiological motion from the lungs adds a challenge for anatomical and functional sequences 

acquired in the thorax and abdomen. One strategy is to employ respiratory gating, but this 

elongates acquisition time, typically by up to 2-4 times longer than non-gated acquisitions145. 

While respiratory gating can minimise motion artefact, the gated images may not be 

representative of the tumour position during treatment, unless this treatment is also delivered 

during respiratory gating: in this case the gate will need to be monitored during treatment146 

and the treatment delivery time is likely to increase further by a factor of 2-3147. In thoracic 

imaging, cardiac gating may also be employed with fast sequences and cause variable 

additional elongation of acquisition times148.  

 

 



 49 

1.5.1.3 Field strength and optimising signal 

 

MR Linac machines are available currently at several magnetic field strengths ranging from 

0.35 T to 1.5 T (Table 1.6). In general, higher field strengths allow greater a signal-to-noise 

ratio (SNR) for any sequence, although in the lung lower field strengths may be preferable due 

to magnetic susceptibility-related signal loss. MR imaging at higher field strengths also leads 

to a greater separation between water, fat and other metabolites (choline, creatine etc), such 

that spectral fat suppression techniques and spectroscopy become more effective149. 

Chemical shift artefacts in images are increased but can be compensated by increasing 

bandwidth at the cost of reduced SNR.  

 

Table 1.6: Comparison of combined MR Linac systems. Table reproduced permission from 

publisher150. 

System B0 (T) B0 orientation Beam Energy (MV) 

Viewray MRIdian 0.35 Split Co60   

Canadian linac-MR 0.5 Split  6 or 10 MV 

Australian MR Linac 1.0 Split 6 or 10 MV 

Elekta Unity 1.5 Closed  7 MV 

 

All MRI sequences (anatomical and functional) must be optimised for use on a given machine, 

and this optimisation centres on establishing the optimal trade-off between SNR, 

measurement accuracy and precision, spatial (and, where relevant temporal) resolution, and 

acquisition time149. For anatomical imaging, optimisation aims to provide high enough spatial 

resolution images to guide a visual assessment for delineation of both the tumour to be 

irradiated and the organs at risk without leading to unacceptably high levels of noise. In 

distinction, for functional imaging, voxel resolution needs to be optimised to visualise the 

structures of interest but also to provide sufficient data in the time available to enable 

sufficiently accurate and precise parameter quantification; for example, adequate b-value 

images (for DWI) or adequate images to calculate tissue longitudinal relaxation (for DCE-MRI 

or OE-MRI). Further, for some functional sequences (e.g. DCE-MRI) temporal resolution may 

be the driving factor in optimization151.  

 

In some cases, additional equipment is required to carry out functional MRI studies to a high 

standard on an MR Linac system, such as power injector for DCE-MRI studies or gas supplies 

for oxygen-enhanced MRI or BOLD studies. This may require access and scanner room 

modifications.  
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1.5.2 Implementation challenges 

1.5.2.1 Establishment of research agreements 

 

Different vendors offer different sequences on their MR-Linac machines. Many functional 

imaging biomarkers require specialist MR sequences that are not available on the machine as 

purchased and require a specific research agreement before they can be added. This requires 

liaison between vendor, academic institution and healthcare provider and requires project 

management.  

 

1.5.2.2 Diffusion-weighted imaging 

 

Echo-planar imaging (EPI) based sequences, which are commonly used for DWI (and also for 

sequences such as BOLD imaging) are particularly susceptible to geometric distortion. 

Methods to reduce distortions for functional imaging exist and include the use of multi-shot 

sequences, increased bandwidth, additional image acquisitions152, and radial k-space based 

acquisitions153. Parallel imaging permits reductions in acquisition time and image distortion; 

however the degree of parallel imaging which can be applied is limited by the number of RF 

coil channels available154 and the number of channels on MR-Linac receive coils does not yet 

match the high numbers available on current diagnostic MR systems. 

 

The development of geometrically accurate DWI sequences on an MR-Linac system is on-

going. DWI imaging with minimal distortion and reproducible ADC measurements (b-values = 

0, 200 and 500) has been performed in vivo on the 0.35 T Viewray system using a turbo spin 

echo (TSE)-based readout, albeit with longer acquisition times than the EPI based 

sequence155. SNR increases with field strength, which means it is generally possible to obtain 

higher b-value images on the higher field strength systems, although distortions also increase. 

Diagnostically, DWI tends to utilise b-values across a wide range and can include higher b-

values up to 1000 s/mm2 or 1500 s/mm2 due to their higher sensitivity156. 

 

At the moment, functional imaging is not easily incorporated in the treatment adaptation 

workflow. Should it become easier in the future, then the challenges related to gradients and 

distortion in diffusion weighted images need to be addressed before a DWI-based “boost 

volume of the day” can be safely targeted.  
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1.5.2.3 Geometric Distortion 

 

Imperfections in the static magnetic field (B0) and the magnetic field gradients lead to errors 

in positional encoding, resulting in geometric distortions in anatomical and functional images. 

These imperfections can be due to system hardware or patient induced susceptibilities and 

may appear as signal voids, signal intensification (signal pile up) or as shifts in the image 

signal157.   

 

System-related field inhomogeneity and gradient non-linearities tend to result in distortions 

which increase when moving away from the magnet isocentre157. The use of on-board 

distortion correction or post-processing corrections, following characterisation of system 

distortions, is required.  Verification of the hardware-induced distortions can be carried out 

using large field of view distortion phantoms158 and are available from many manufacturers or 

can be made in-house. 

 

Functional imaging sequences need to be made available by manufacturers or otherwise 

implemented via research agreements (see above) and must be carefully optimised to ensure 

they are geometrically robust and offer sufficient SNR and resolution for the task at hand. The 

sensitivity to field inhomogeneity is sequence-dependent; gradient echo based techniques are 

more susceptible than spin echo based sequences and fast EPI techniques can be especially 

poor when it comes to geometric fidelity157. Single-shot EPI sequences are often used for DWI 

and several techniques have been proposed to reduce gradient induced distortion for such 

techniques including: the use of parallel imaging to shorten echo trains159; the use of 

segmented EPI160 and TSE based readouts161. Furthermore, the application of B0 field map 

corrections using additional image acquisitions152 and image registration techniques have 

shown promising results for correcting distortions at the post-processing stage162,163. 

 

Those wishing to carry out functional imaging during treatment must also be aware of the 

effect of the patient and organ size and shape on field homogeneity and the need for shimming 

between and during acquisitions164. In addition, the signal stability and effect of induced eddy-

currents when using fast imaging sequences also needs to be determined165. The distortion in 

functional MR images will need to be characterised and minimised and a dedicated method 

qualification and QA programme established before techniques such as dose painting can be 

performed.  
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1.5.2.4 Quantitative T1 mapping 

 

The T1-shortening effect of gadolinium-based contrast agents and molecular oxygen on 

surrounding tissues can be assessed by performing an initial T1 measurement followed by 

continuous dynamic measurement of signal intensity while the contrast agent is injected 

(gadolinium) or inhaled (oxygen). In order to gain quantitative information from such studies 

one requires sufficient temporal resolution to adequately sample contrast agent dynamics and 

sufficient spatial resolution, to identify heterogeneity across the tissue of interest166. Both 

temporal and spatial resolution require a trade off with SNR and so sequences need to be 

made available and optimised for this task on MR-Linac systems.   

 

The accuracy and precision of quantitative T1 measurements can also be affected by RF field 

(B1) inhomogeneity. These can be caused by the inherent amplitude profile of the coils used 

for RF transmission but also by the geometry of the patient, which can lead to the presence of 

RF standing waves and skin depth effects, particularly at higher static magnetic field 

strengths167. It is necessary to correct for such effects or employ methods that are insensitive 

to RF variation, in addition to carrying out qualification and quality control of such techniques 

on MR-Linac systems to assess their suitability to such quantitative imaging tasks.  

 

1.5.3 Application of functional biomarkers developed on the MR-Linac to large 

multicentre studies 

 

Most biomarker translation begins with studies from a single academic centre. For example, 

one research group might test the ability of DWI biomarkers measured on the MR-Linac to 

detect change within the gross tumour volume for a particular patient group during adaptive 

planning. However, any biomarker intended for widespread use in healthcare must be 

translated to multicentre studies to test this key translational step56. The proof that a biomarker 

or imaging test is clinically useful requires large powered studies that recruit patients from 

multiple sites around the world.  

 

Multicentre studies involve different research institutions that often utilise devices supplied by 

different vendors. These devices are broadly equivalent for clinical radiology purposes – and 

in the case of the MR-Linac for delivery of therapy – but they often have important hidden 

differences that affect biomarker acquisition and analysis. The nuclear medicine community 

have relatively tight defined guidelines and phantom tests to ensure the equivalence of 

biomarkers, such as SUVmax, between different acquisition sites168. However, such guidelines 
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are not as well developed for MRI in general, partly due to the high level of flexibility of 

implementation that MRI affords, and are required for the MR Linac in particular.  

 

Factors such as those above do not preclude multicentre technical assessment of the 

precision of an MRI biomarker, but are important as they are likely to indicate how reproducible 

a biomarker is compared to precision of data acquired in few-centre or single-centre studies169. 

The variability in centre-specific devices and software must be accounted for when considering 

multicentre reproducibility and minimised by a process of protocol harmonisation, site 

qualification, and the use of phantoms relevant to the quantification task at hand (see Waterton 

et al.170 for a recent non-oncology example). Mixed-effects modelling methods may provide 

statistically robust approaches to account for residual differences in biomarkers acquired at 

geographical separate sites to maximise data inclusion, while acknowledging inevitable slight 

inconsistencies in the data171.  

Data-analysis strategies must be also developed for multicentre studies. Analysis led by one 

central site can reduce data variation for studies with a moderate number of participating 

sites172, as may be seen with the initial studies involving adaptive planning on MR-Linac 

systems. However, if a functional imaging biomarker is to be used in healthcare applications, 

it must be readily analysed to Good Clinical Practice (GCP) standards at all clinical sites. To 

facilitate this transition, sites should compare their own technical performance against a 

central analysis, similarly to the assessment of objective responses in oncology trials56. 

Alternatively, common analysis tools may be developed, either via collaboration between 

academic sites or by engagement of commercial software providers. 

 

A wealth of biomarkers can be derived using MRI to measure different aspects of the tumour 

microenvironment. To use these optimally requires careful selection of an appropriate 

validated biomarker from the literature and then this biomarker must be tested on the MR 

Linac hardware that is a related but distinct machine compared to diagnostic scanners. While 

these processes have numerous challenges, the potential benefits mean that considerable 

research effort should be employed to enable deployment of functional MRI on the MR Linac. 

 

1.6 Summary 

 

Chasing a single perfect hypoxia measurement may be an unrealistic aim. The literature tends 

to focus on discovery, isolated development, and technical validation rather than appraisal or 

consolidation of information. The reviewed biomarkers are measuring different things in their 

attempt to accurately assess the extent of tumour hypoxia (Table 1.7). Depending on the 
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strategy used to derive or measure a hypoxia biomarker, there are procedure related and 

biomarker specific pitfalls. Therefore, a more useful way to trial biomarkers maybe in 

complementary groups. Studies comparing multiple hypoxia biomarkers for a specific tumour 

type are less common, and certainly the lack of matched tissue-imaging cohorts needs to be 

addressed. It is important to note that any study investigating multiple approaches needs to 

involve biomarkers that are derived independently. Early work in this area suggests a synergy 

between imaging-derived and biopsy-derived biomarkers173. Undoubtedly, in medical practice, 

clinicians use composite biomarkers to inform their decision making. 

 

 

 

 

 

 

 

 

 

 



 55 

Table 1.7: Summary of potential biomarkers used to investigate hypoxia. Table reproduced permission from publisher3. 

Biomarker What is being 

measured? 
 

Strengths Limitations 

pO2 (using 

histography

) 

Rate of arrival of O2 

molecules at electrode 

Direct and real-time measurement representing the 

gold standard, validated in human tumours 

Highly invasive, tumour accessibility, limited 

availability, no spatial information, affected by 

other factors (e.g., pressure, necrosis). 
 

Tissue derived KEY: Assessed on diagnostic biopsy (or archived 

material). Do not need additional invasive 

procedure, or injection of a foreign material. 
 

KEY: Limited ability for repeat assessments 

as this requires acquisition of new tumour 

material each time. 
 

CA-IX 

expression 

Downstream product of 

HIF 1α transactivation 

(biologic hypoxia) 

Spatial resolution closer to that of cellular hypoxia 

distribution (µm scale) 

Requires tissue, not hypoxia specific, 

variability in staining, scoring and 

interpretation, sampling bias 
 

Pimonidazo

le staining 

Retained 

nitroimidazole in 

environment with 

insufficient O2 

Measures chronic hypoxia, Spatial resolution closer 

to that of cellular hypoxia distribution (µm scale) 

Oral or i.v. administration, additional 

biopsy/specimen acquired after, variability in 

staining and interpretation, sampling bias 
 

Gene 

expression 

signature 

score 

Gene expression (RNA 

abundance) associated 

with hypoxia 

Predictive in other tumour sites, provides cross-

validation for other hypoxia biomarkers 

Sampling bias (less than other endogenous 

markers), no spatial information, repeat 

measurements difficult 
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Imaging derived KEY: entire tumour hypoxia visualization, prior to 

and during treatment, allows treatment 

adaptation based on biomarker change 
 

KEY: poor spatial resolution (mm scale), 

altered perfusion limits tracer/contrast 

agent delivery 

SUVmax 

(PET) 

Maximum tumour 

uptake of hypoxia 

tracer 
 

Chronic hypoxia measurement, tumour delineation 

does not affect result  

Wide variability, sensitive to image noise, 

radiation exposure, i.v. injection 

Tumour to 

blood ratio 

(PET) 

Ratio of tumour uptake 

of hypoxia tracer to 

blood radioactivity  
 

Chronic hypoxia measurement  Depends on accurate tumour delineation, 

blood sampling may be required, radiation 

exposure, i.v. injection 

R2* (MRI) Deoxyhaemoglobin Cyclic hypoxia measurement, endogenous contrast 

medium  

Requires gas inhalation (for ΔR2*), requires 

further validation, sensitive to variations in 

implementation 
 

ΔR1 (MRI) Oxygen dissolved in 

plasma or interstitial 

tissue fluid 

Chronic hypoxia measurement, potential highly 

specificity for tumoral oxygenation 

 

Requires gas inhalation (for ΔR1), requires 

further validation, sensitive to variations in 

implementation 

 

Ktrans
 (MRI) Permeability and 

perfusion 

Vasculature-specific measure, good repeatability 
 

Requires i.v. agent, sensitive to variations in 

implementation 

ADC (MRI) Necrosis, apoptosis, 

cellular density 

High sensitivity, good repeatability, no i.v. contrast 

requirement 

Low pathological specificity, sensitive to 

variations in implementation 
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1.7 Aims 

 

Given the gaps in our knowledge on hypoxia assessment in patients with uterine cervical 

cancer, the central hypothesis of the PhD is that multi-disciplinary diagnostic approach can 

select patients that would stand to benefit from hypoxia-modifying treatment.  

 

The specific objectives of the thesis were to:  

1. Develop and validate a hypoxia gene signature for cervical cancer  

2. Explore the impact of (chemo)radiotherapy on the de novo gene signature  

3. Develop OE-MRI for female pelvis imaging and translate it to the MR Linac 

4. Investigate the role of functional MRI techniques in monitoring response to radiotherapy  

5. To evaluate the association of OE-MR imaging during treatment with tissue biomarkers  
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2 Materials and methods 

 

This chapter provides a general description of the various methods implemented in the thesis. 

Detailed explanation of methodology is provided in the relevant results sections (chapters 3, 

4 and 5). 

 

2.1 Clinical cohorts 

 

The ‘Biomarkers for Clinical Hypoxia Evaluation in Cervical Cancer’ (BioCHECC) study 

investigates tumour oxygenation as measured using a) a gene signature derived from patient 

tumour biopsies and b) functional imaging parameters acquired via serial magnetic resonance 

imaging (MRI) scans. Four different clinical cohorts were curated to develop the hypoxia 

biomarkers evaluated in this study: The Cancer Genome Atlas (TCGA), retrospective patient, 

prospective healthy volunteer, and prospective patient.  

 

The BioCHECC study was set up to recruit the latter three cohorts. Ethical approval was 

obtained from the Northwest - Preston Research Ethics Committee (REC Ref: 20/NW/0377) 

and is registered with ClinicalTrials.gov (Identifier: NCT05029258). I wrote and submitted the 

REC application and addressed committee comments, along with input from my PhD 

supervisors. I liaised with the local R&D at The Christie to open this single centre study. 

 

The study started recruiting in January 2021 and recruitment is ongoing until October 2024. 

The biomarker analysis presented in the thesis was performed on tissue samples or imaging 

data collected by 01/08/2022. Clinical data for patients in the BioCHECC study was collected 

from baseline presentation to the last available clinical follow up for all patients (database last 

accessed November 2022). Patients in the retrospective cohort were staged per the 2009174 

International Federation of Gynaecology and Obstetrics (FIGO) staging system and the 

prospective patient cohort per the revised 2019175 FIGO system. The guidelines have been 

revised to permit more accurate clinical-pathological-radiological staging, with the last two 

domains to assign stage where available. The salient changes in the new guidance mean 

stages IA and IB are diagnosed on microscopic examination of a surgical specimen; stage IB 

is sub-divided based on maximum tumour size; and the presence of pathological lymph nodes 

upstages the patient to stage IIIC regardless of tumour size. The revised 2019 FIGO system 

aims to be more closely aligned with the TNM classification and was implemented on 1 

January 2020. Re-staging historical datasets (pre-2019) included in this thesis would require 



 59 

a considerable effort between consultant histopathologists and radiologists, and is beyond the 

scope of this thesis. 

 

In the prospective cohorts, all participants were registered and given sequential ID numbers 

following eligibility assessment and consent. A pseudonymised key linked the study ID to the 

participant’s name. A letter was also sent to a participant’s GP informing them of the study. 

Due to the high mortality associated with the disease, it was thought to be inappropriate and 

insensitive to contact the retrospective cohort patients, or their families, for consent. As a 

result, patient identifiers were not disclosed to any of the research team unless they were also 

part of the direct healthcare team at The Christie. 

 

2.1.1 TCGA cohort (gene expression only) 

 

Paired whole transcriptome and clinical data for 307 patients from the Cervical Squamous Cell 

Carcinoma and Endocervical Adenocarcinoma (TCGA-CESC; upload date 28/01/2016) cohort 

were downloaded via the Broad institute Firehose portal (https://gdac.broadinstitute.org/). 

 

Patients with locally advanced (stages 1B2 to IVA) squamous cell cervical cancer and whole 

transcriptome data (n=141) were selected. The mean age was 50 ± 15 years (μ ± SD) and 

patients were treated with chemoradiation delivered with curative intent. This cohort was split 

into two sub-groups: a) train (n=71) and b) test (n=70). Both sub-groups were used to construct 

the model from the candidate genes, however only the latter was used to internally validate it. 

 

2.1.2 Retrospective patient cohort (gene expression only) 

 

The retrospective patient cohort was curated as part of the BioCHECC study and used to 

externally validate the gene expression signature. The consort flow diagram shows how the 

patient study population was recruited and handled (Figure 2.1). Patients with carcinoma of 

the uterine cervix treated between 2013 and 2018 at The Christie were identified through the 

gynae-oncology database. Inclusion criteria were women >18 years with no upper age limit 

and biopsy confirmed uterine cervix cancer. Patients were identified by the clinical team and 

block recruitment was undertaken by the research team. 

 

 

 

https://gdac.broadinstitute.org/
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Clinicopathological summary statistics for the 168 analysed patients are presented in Table 

2.1. The mean age of women in the retrospective cohort was 53 ± 17 years and treatment 

received was surgery (n=25), (chemo)radiotherapy (n=124) and palliation (n=19).  

 

All patients in the (chemo)radiotherapy sub-group (n=124) were treated with curative intent, 

though the treatment delivered varied between patients (Figure 2.2). Everyone received 25# 

of external beam radiotherapy (EBRT) given to a total dose of 45 Gy (1.8 Gy per fraction) and 

in keeping with protocol, clinical target volume (CTV) was defined to include gross tumour 

volume (GTV), entire cervix, entire uterus, parametria, ovaries and vagina depending on 

involvement176. Nodal CTV included the pelvic nodes. A subset of patients received two 

fractions of pulsed dose rate brachytherapy delivered with an intracavitary or a combined 

intracavitary/interstitial implant (n=76). MRI guided adaptive brachytherapy (IGABT) was 

prescribed to deliver a dose of 40 to 45 Gy (EQD2) to reach a total chemoradiotherapy + 

IGABT dose of 85 to 90 Gy EQD2 to the high-risk CTV, and ≥60 Gy to the intermediate-risk 

CTV. Patients unsuitable for brachytherapy were prescribed additional EBRT fractions 

(external beam boost). Single-agent concomitant cisplatin chemotherapy was given weekly at 

40 mg/m2. Patients receiving at least one chemotherapy dose were logged as having had 

chemotherapy.  
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Figure 2.1: Consort flow diagram for retrospective tissue collection. 

 

 

 

Table 2.1: Summary statistics for all women (n=168) in the retrospective patient cohort. 

 

Clinicopathological parameter Level  All (n=168) 

Age <40 years 43 

≥40 years 125 

PS^ 0 94 

1 48 

2 14 

3 11 

4 1 
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Clinical stage IA 3 

IB 38 

IIA 8 

IIB 75 

IIIA 4 

IIIB 13 

IVA 14 

IVB 13 

Histology squamous cell carcinoma 124 

adenocarcinoma 34 

adenosquamous carcinoma 5 

neuroendocrine carcinoma 1 

clear cell carcinoma 2 

undifferentiated carcinoma 2 

Grade 1 - Well differentiated 16 

2 - Moderately differentiated 64 

3 - Poorly differentiated 86 

4 - Undifferentiated 2 

LVSI† Absent 66 

Present 39 

Tumour size <4cm 45 

≥4cm 123 

Pelvic nodes no 85 

yes 83 

Para-aortic nodes no 154 

yes 14 

Hydro-nephrosis no 140 

yes 28 

 

^PS = performance status 

†LVSI = lymphovascular space invasion 
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Figure 2.2 : All the patients treated with primary radiotherapy received 5 weeks of external 

beam radiotherapy (n=124). The Venn diagram shows the breakdown of additional treatments 

given to this cohort (brachytherapy, external beam boost and chemotherapy). *Seventy 

patients received 5 weeks of external beam radiotherapy and 2 courses of brachytherapy, with 

at least 1 session of chemotherapy. 

 

 

2.1.3 Prospective healthy volunteer cohort (imaging only) 

 

A prospective healthy volunteer cohort consented to develop a novel imaging technique called 

oxygen-enhanced MRI (OE-MRI). The consort diagram shows how the volunteer population 

was recruited and managed (Figure 2.3). Volunteers were identified by the lead radiographers 

and contacted via email. Interested participants were screened and eligible participants 

provided written informed consent before being registered to the study. Due to COVID-19 

restricting access to the clinical MRI scanners, healthy volunteer recruitment was limited to 

staff working within the radiotherapy department at The Christie. Inclusion criteria were women 

>18 years with no upper age limit. Exclusion criteria were prior cancer diagnosis; previous 

surgery or chemoradiation; pregnancy or lactation; and contraindication to MRI examinations.  
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Eighteen healthy volunteers were recruited and imaged at two time points aimed at being 1 

week apart. Data from twelve volunteers were analysed for MRI parameter repeatability. The 

mean age of women in this cohort was 28 ± 5 years. 

 

Healthy volunteer imaging was double reported by two board certified radiologists. In cases of 

incidental findings, the participant was informed by the clinical research fellow. The scan report 

and a letter were sent to the GP for further investigations and/or follow up. 

 

 

Figure 2.3: Consort flow diagram for healthy volunteers recruited to the BioCHECC study. 
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2.1.4 Prospective patient cohort (gene expression and imaging) 

 

The gene expression and imaging biomarkers were evaluated in the prospective patient 

cohort. The consort flow diagram shows how the patient study population was recruited and 

handled (Figure 2.4). Patients were identified by the gynae-oncology clinical team at The 

Christie Hospital. Willing participants were approached with information about the study. 

Patients were given 72 hours to decide whether they wanted to participate, after which 

interested patients were screened. Eligible patients provided written informed consent and 

were registered to the study. Inclusion criteria were women >18 years with no upper age limit; 

biopsy confirmed cancer of the uterine cervix; locally advanced cervical cancer (stages IB2 to 

IVA) staged by an experienced clinical oncologist using the FIGO classification; and planned 

chemoradiotherapy with curative intent. Exclusion criteria were prior hysterectomy, pelvic 

radiotherapy, or systemic chemotherapy; pregnancy or lactation; unsuitable for concurrent 

chemotherapy; and contraindication to MRI examinations or hyoscine-N-butylbromide.  

 

Eleven patients (age: 47 years ± 18) with locally advanced cervical cancer completed the 

study. Clinicopathological data are presented in Table 2.2. All patients received standard of 

care. The treatment plan and doses prescribed followed the treatment regime outlined in the 

retrospective patient cohort, with the extension of nodal CTV to include the para-aortic nodes. 

Patient 11 had a left sided hydronephrosis requiring a percutaneous nephrostomy, however 

preserved renal function permitted 5 cycles of chemotherapy. No patients had para-aortic 

node involvement. Follow up is from time of diagnosis to the last time the patient was seen in 

the clinic. 
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Figure 2.4 : Consort flow diagram for patients recruited to the BioCHECC study. 

 

Table 2.2 : Clinicopathological data of prospective study patients. 

ID Age 

(years) 

Follow 

up 

(months) 

PS* Stage Histology Grade^ LVSI† Pelvic 

nodes 

1 51 15 0 IIB squamous 2 absent no 

2 73 16 0 IVA squamous 3 absent yes 

3 77 11 1 IB2 adenocarcinoma 1 not known no 

4 67 15 0 IIB squamous 2 not known no 

5 30 12 0 IIIC1 squamous 3 present yes 

6 37 13 1 IIB squamous 3 not known no 

7 37 12 0 IIIC1 squamous 2 not known yes 

8 46 10 0 IIB squamous 3 absent no 

9 36 10 0 IIB squamous 2 absent no 

10 34 9 0 IIA squamous 3 present no 

11 28 7 0 IVA squamous 2 present no 
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*PS = Eastern Cooperative Oncology Group performance status scale177  

^Grade 1: Well differentiated (low grade); Grade 2: Moderately differentiated (intermediate 

grade); Grade 3: Poorly differentiated (high grade) 

†LVSI = lymphovascular space invasion 

 

2.2 Study interventions (patients only) 

 

For a 6-week period in December 2021 to January 2022, all clinical research activities were 

suspended at The Christie due to COVID-19. This resulted in two missed patient interventions 

(MRI scans) and delays in healthy volunteer imaging. 

 

2.2.1 Diagnostic tumour biopsy retrieval (retrospective and prospective) 

 

Archived formalin fixed paraffin embedded (FFPE) blocks containing biopsy material taken at 

time of diagnosis were requested for all patients in the study. Blocks were collected by The 

Christie gynae-oncology research team based at the Manchester Cancer Research Centre. 

Anonymised blocks were made available to the researchers for analysis. Detailed descriptions 

of ribonucleic acid (RNA) extraction, profiling and analysis are presented in sections 1.4, 1.5 

and 1.6 of this chapter respectively.  

 

2.2.2 On-treatment tumour biopsy (prospective only) 

 

Up to six biopsies per patient were acquired just prior to brachytherapy insertion for all 

prospective study patients. The second timepoint biopsies were acquired in theatre and under 

direct vision by an experienced clinical oncologist using a Max-Core Disposable Core Biopsy 

Instrument 14G x 10cm (C. R. Bard, Inc. Covington, Georgia, USA). Biopsy samples were 

taken from four regions representing the 12, 3, 6 and 9 o’clock positions on a clock face (Figure 

2.5). The anatomical axial T2 weighted image acquired for brachytherapy planning was used 

to estimate residual tumour burden and guide the on-treatment biopsies.  

 

Samples were immediately preserved in 10% neutral buffered formalin (Cellpath, Newtown, 

Wales, UK) or RNAlater Stabilization Solution (Invitrogen, Thermo Fisher Scientific, 

Massachusetts, USA) or Allprotect Tissue Reagent (Qiagen, Hilden, Germany) as per the 

manufacturers’ protocols. Two samples were taken for formalin preservation from opposite 

sides of the clock face (either 12 and 6, or 3 and 9). Each sample was stored in a separate 
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labelled formalin pot. Four samples were taken for fresh frozen preservation from the 

remaining two sides. Each sample was stored in a separate labelled sample tube so that 

paired samples from the same region were placed in RNAlater and Allprotect tubes. 

 

Samples in formalin pots were sent for fixation to Histology Services, CRUK Manchester 

Institute, Alderley Park, UK. Fresh frozen tissue was stored at -20°C in 7mL Polystyrene Bijou 

Containers (Thermo Fisher Scientific, Massachusetts, USA). Fresh frozen tissue samples 

have not been analysed in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Axial T2 weighted image acquired towards the end of external beam radiotherapy 

for clinical use (brachytherapy planning). (a) The cervix is outlined by the dashed white lines. 

‘t’ highlights the tumour returning heterogenous T2 signal as opposed to the low signal usually 

seen from normal cervical tissue. The tumour predominantly involves the anterior and right 

side of the uterine cervical ring. ‘*’ highlights the high T2 signal (fluid signal) within the endo 

cervical canal. (b) The uterine cervical ring can be imagined as having 4 regions represented 

by a clock face: 12 (blue), 3 (orange), 6 (grey) and 9 (green) o’clock positions. Biopsies from 

each region were acquired under direct vision. 

 

 

2.2.3 MRI scans (prospective only) 

 

Imaging was acquired around the external beam radiotherapy (EBRT) treatment schedule. 

Patients underwent imaging at baseline (pre-treatment), in the 3rd week (mid-EBRT), and in 

the 5th week (end-EBRT) of treatment using a multiparametric protocol including three 

(a) 
(b) 
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functional imaging techniques which were oxygen-enhanced MRI (OE-MRI), dynamic contrast 

enhanced MRI (DCE-MRI) and intravoxel incoherent motion MRI (IVIM-MRI). Greater details 

on imaging acquisition, data transfer and analysis are provided in sections 1.7, 1.8 and 1.9 of 

this chapter respectively. 

 

2.2.4 Timeline in the prospective patient cohort  

 

Figure 2.6 outlines the study interventions in relation to each other and to patient treatment. 

There are two paired biopsy-imaging timepoints: the first is prior to treatment commencing and 

the second is at the end of EBRT. The first paired timepoint reflects hypoxia measurements 

at baseline, whereas the latter shows therapy induced change. Due to the study design, the 

imaging and biopsy acquisitions at the end of EBRT have a known spatial and temporal 

association. 

Figure 2.6: Study interventions in the patient cohort. 

 

2.3 Cell line experiments 

 

Cell lines used in the experiments were sent for authentication and mycoplasma testing to the 

Molecular Biology Core Facility, CRUK Manchester Institute, Alderley Park, UK. Cell line 

experiments were used to generate RNA for differential gene expression analysis. 

 
 

Figure 2.7 summarises the methods. 
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Figure 2.7: Flow diagram of oxygen exposure and RNA extraction for a cell line experiment 

(Sn = sample number). Cells cultured in one 75 cm2 flask were seeded across three petri 

dishes at a pre-determined density, exposed to different oxygen conditions and the RNA was 

extracted. Experiments were repeated for three different passages for a cell line, and 6 cell 

lines were included in the experiment. 

 

2.3.1 Cell culture 

 

Six cervical cancer cell lines were chosen to represent the disease as observed within the 

population (Table 2.3). All cell lines were purchased from American Type Culture Collection 

(ATCC, LCG Standards, Teddington, UK). 

 

The cell lines were cultured according to established lab protocols178.  Cells were grown in 

Dulbecco's Modified Eagle Medium (Sigma-Aldrich, Poole, UK) with 10% foetal bovine serum 

(FBS; Gibco, Thermo Fisher Scientific, US) and 10 mM L-Glutamine solution (Sigma-Aldrich, 

Poole, UK). Cells were passaged three times per week at sub-cultivation ratios of 1:4 to 1:10. 

Each line was bulked, split into vials containing 90% FBS (Sigma Aldrich, UK) and 10% 

dimethyl sulfoxide (Sigma Aldrich, UK) and stored in a -80°C freezer.  
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Table 2.3 Uterine cervical cancer cell lines used in study experiments. 

Name Histology Tumour source HPV 

Boku Squamous cell carcinoma Primary 16 

CaSki Squamous cell carcinoma Small bowel mesentery 

(recurrence) 

16 

HeLa Adenocarcinoma Primary 18 

MS-751 Squamous cell carcinoma Lymph node 18, 45 (partial) 

SiHa Squamous cell carcinoma Primary 16 

SW-756 Squamous cell carcinoma Primary 18 

 

 

2.3.2 Hypoxia exposure 

 

Cells were grown in 75 cm2 flasks for 48 h. They were then seeded at a pre-determined density 

onto 6 cm petri dishes. The seeding density was calculated as the number of cells required to 

achieve 75% confluence following a 48-hour culture in the incubator under normoxic 

conditions (range 6,000 – 30,000 cells/cm2).  

 

Initially cells plated in the petri dishes were cultured under normoxia in the incubator for 24 

hours. Following this, the media was replaced, and the cells were exposed to three different 

oxygen environments for a further 24 hours – 21% O2 (normoxia), and 1% and 0.1% (Ruskin 

Invivo2 400 hypoxia workstation, Ruskinn Technology Ltd, Bridgend, UK). Media was placed 

in the respective hypoxia stations 24 hours prior to use, thus allowing equalisation of the 

dissolved oxygen concentration and the hypoxic environment. Experiments were repeated for 

three different passages for each cell line. Cells exposed to hypoxia were harvested in the 

workstation under hypoxic conditions. 
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2.4 RNA extraction 

2.4.1 Cell line samples 

 

Media was removed from the petri dish and the cells washed with 5 ml x 2 of PBS matching 

the oxygenation of the sample. RNA was extracted using the RNeasy Plus Mini Kit (Qiagen, 

Hilden, Germany) as per the manufacturer’s protocol.  

 

600 µl of RLT buffer with 1% β-mercaptoethanol was added directly to the petri dish to disrupt 

the cells. The lysate was extracted using a cell scraper and pipetted into RNAase-free 

Eppendorf tubes after which it was vortexed for 30 s. The centrifuge was run at 10,000 G 

during the extraction. The homogenised lysate was placed in a gDNA Eliminator spin column 

and centrifuged. 70% ethanol was added to the sample in a 1:1 ratio. The sample was placed 

in a RNeasy spin column, centrifuged for 15 s and flow-through discarded (x2). 700 µl Buffer 

RW1 was added to the spin column, centrifuged for 15 s and flow-through discarded. 500 µl 

Buffer RPE was added to the spin column, centrifuged for 15 s and flow-through discarded. 

Further 500 µl Buffer RPE was added to the spin column, centrifuged for 2 min and flow-

through discarded. The RNeasy spin column was centrifuged for 1 min to further dry the 

membrane. 40 µl RNase-free water was directly applied to the spin column membrane and 

centrifuged for 1 min to elute the RNA into a 1.5 ml collection tube.  

 

RNA quantity was assessed using the Qubit RNA broad range assay kit (Invitrogen, Thermo 

Fisher Scientific, Massachusetts, USA) to ensure a minimum concentration of 1 µg total RNA 

in 20 µl of RNase-free water. Samples were stored in a -80°C freezer. 

 

Despite multiple attempts, the Boku cell line could not be grown under hypoxic conditions to 

yield enough RNA. 

 

2.4.2 Patient samples 

 

RNA was extracted from retrospective and prospective patient samples and used to validate 

the gene expression signature. RNA extraction was performed in collaboration with Histology 

Services, CRUK Manchester Institute, Alderley Park, UK. The Roche High Pure FFPET RNA 

Isolation Kit (06650775001; Basel, Switzerland), which is a column-based extraction kit, was 

used for extraction of RNA from FFPE tumour tissue. The starting sample comprised of 2 x 10 

µm sections. The steps are described in Table 2.4. 
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RNA quantity was assessed using the Qubit RNA broad range assay kit (Invitrogen, Thermo 

Fisher Scientific, Massachusetts, USA) to ensure a minimum concentration of 72 ng total RNA 

in 9 µl of RNase-free water. Quality was assessed using a 2200 TapeStation (Agilent 

Technologies, Santa Clara, USA). Samples were stored in a -80°C freezer. 

 

 

Table 2.4 RNA extraction steps from FFPE samples. 

De-waxing 

• add 800 µl xylene (vortex), add 400 µl ethanol (vortex), centrifuge 

16000 G 2 min 

• remove supernatant 

• add 1000 µl 100% ethanol (vortex), centrifuge 16000 G 2 min 

• air dry 55°C 10-20 min 
 

Lysate preparation 

• prepare 156 µl lysis buffer using 100 µl RNA lysis buffer, 16µl 

SDS and 40µl Proteinase K (vortex) 

• incubate 85°C 30 min 600 G (shaking hot block), cool <55°C 

• add 80 µl Proteinase K, incubate 55°C 30 min 600 rpm (shaking 

hot block) 

• add 650 µl column binding solution mastermix (325 µl RNA 

binding buffer and 325 µl 100% ethanol; then vortex) 
 

Column loading 
• add lysate to column (up to 900 µl, centrifuge 12,000 G 30 s, 

discard flow through, centrifuge 16000G 2 min to dry filter 
 

DNA removal 

• add 100 µl of DNase working solution (90 µl DNase incubation 

buffer +10 µl DNase) directly to the filter fleece 

• incubate room temperature 15 min 
 

Column washing 

• add 500 µl Wash Buffer 1, centrifuge 12,000 G 20 s, discard 

flow through, add 500 µl Wash Buffer 2, centrifuge 12,000 G 20 

s, discard flow through, add 500 µl Wash Buffer 3, centrifuge 

12,000 G 20 s 

• centrifuge 16,000 G 2 min to dry filter fleece 
 

RNA elution 
• add 30 µl RNA elution buffer, incubate room temperature 1 min 

centrifuge 12,000 G 2 min 
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2.5 Gene expression profiling 

2.5.1 RNA-sequencing (cell line samples) 

 

Extracted total RNA was managed by the Genomic Technologies Core Facility at the 

University of Manchester (Manchester, UK). The RNA samples were processed in a single 

batch of 45 samples (5 cells lines and 3 oxygen conditions run as triplicates). Figure 2.8 

summarises the steps involved in processing the extracted RNA. mRNA libraries were 

prepared using the TruSeq Stranded mRNA assay (Illumina, San Diego, USA) according to 

the manufacturer’s protocol. The final cDNA library was loaded onto a flow-cell and sequenced 

using the Illumina HiSeq 4000 platform (Illumina, San Diego, USA). The paired end 

sequencing – 76 base pair cycles in directions R1 and R2 – was quality tested by FastQC. 

FastQC is a quality control tool for high throughput sequence data, written by Simon Andrews 

at the Babraham Institute in Cambridge. Adapter trimming was performed using Trimmomatic 

v0.39179. Spliced Transcripts Alignment to a Reference (STAR) software v2.7.7a180 mapped 

the reads to the human reference genome (assembly GRCh38.p13/hg38) with GENCODE 

(release 37)181.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Flow diagram of the RNA-sequencing pathway. 
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2.5.2 Clariom S microarray analysis (patient samples) 

 

RNA extracted from FFPE cervical tumour tissue is fragmented and cross-linked making it 

unsuitable for whole transcriptome next generation sequencing. Therefore, transcriptome 

profiling using Clariom S Arrays for Humans was performed (Applied Biosystems, Thermo 

Fisher Scientific, Santa Clara, California, USA). Clariom S Arrays detect only the constitutive 

exons present in known transcript isoforms expressed from a single gene locus which makes 

it well suited for amplification of partially degraded RNA samples.  

 

Seventy-two ng of extracted RNA from each sample was suspended in 9 µl of RNase-free 

water and plated on a Clariom S plate (96-wells; 92 tumour samples and 4 controls). The 

plates were processed by YourGene Health (Manchester, UK). YourGene Health use 4 µl of 

plated sample to achieve the recommended input range of 2 – 50 ng total RNA. High quality 

RNA is recommended as it affects how efficiently the samples are amplified. The manual 

suggests an A260/A280 ratio of 1.8 to 2.0 (absence of contaminating proteins) and an A260/A230 

ratio of >2.0 (absence of other organic compounds). The presence of contaminants might 

interfere with total RNA quantitation. The GeneChip 3’ IVT Pico Kit assay prepares the RNA 

for Clariom S array gene expression profiling. The assay protocol is detailed in the 

“GeneChip™ 3’ in vitro transcription (IVT) Pico Kit Manual Workflow for use with: GeneChip™ 

Expression Arrays GeneChip™ 3’ IVT Pico Kit” (Catalog Numbers 902789 and 902790) and 

Figure 2.9. In brief, reverse transcription initiated at the poly-A tail is used to synthesise single-

stranded complimentary deoxyribonucleic acid (ss- cDNA) and then a 3’ adaptor is added. ss-

cDNA is converted to double stranded-cDNA (ds-DNA) using Taq DNA polymerase and 

adaptor-specific primers amplify ds-cDNA. Complimentary RNA (cRNA) is synthesised and 

amplified by IVT using T7 RNA polymerase182. The cRNA is then converted to biotinylated ds-

cDNA for hybridisation. The samples were analysed on a GeneTitan Multi-Channel Instrument 

(Applied Biosystems). 

 

Clariom S hybridisation quality check is performed using the Transcriptome Analysis Console 

software (version 4.0.1, Applied Biosystems). This is a sample consistency metric which 

compares the intron (false positives) and exon controls (true negatives), and a score of 1 

reflects perfect separation. The recommended sample consistency threshold is 0.7. 
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Figure 2.9: Pico amplification and labelling process (adapted from 

https://assets.thermofisher.com/TFS-

Assets/LSG/manuals/703308_GeneChip_3prime_IVT_Pico_UG.pdf – last accessed 

November 2022) 

Extracted RNA 
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2.6 Bioinformatics  

 

The bioinformatics analysis for gene signature development and validation was carried out in 

collaboration with Dr Leo Zeef in Bioinformatics Core Facility at the University of Manchester 

(cell line data analysis) and Dr Mark Reardon in the Translational Radiobiology (TRB) group 

at the University of Manchester (cell line and patient biopsy data analysis).  

 

2.6.1 Data normalisation and batch correction 

 

Whole transcriptome data from RNA-sequencing for the 45 cell line samples was analysed 

using DESeq2 (v 1.28.1)183. First the raw counts were normalised by dividing the count of an 

individual gene in every sample by the geometric mean of this gene across all samples. 

Importantly, in experiments with six or fewer replicates, any gene flagged as an outlier was 

excluded from downstream analysis183. 

 

Whole transcriptome data from Clariom S microarrays were imported as raw image data 

(*.CEL files) and processed using the apt-probeset-summarize programme (version 1.20.0, 

Applied Biosystems) to yield within-plate-normalised log2 expression levels. Normalisation 

methods do not address all of the batch effects, or variations in data due to technical rather 

than biological factors184. ComBat, an empirical Bayes method, estimates and adjusts the 

location and/or scale for each gene in each batch185. In other words, ComBat standardises 

gene-wise means and variances across batches. The ComBat function is available in 

R/surrogate variable analysis (sva)186.  

 

2.6.2 Differentially expressed gene (DEG) analysis 

 

DEG analysis was performed on cell line data to identify a list of candidate genes. Differentially 

expressed protein coding genes were calculated using Empirical Analysis of Digital Gene 

Expression Data package in R (edgeR, v 2.26.0)187. Differential expression was defined as 

genes which displayed ≥2-fold change on pre-log2 transformed expression. 

 

2.6.3 Labelling the TCGA data 

 

The TCGA data is unlabeled for hypoxia status. Unsupervised k-means clustering (k=2) was 

used to partition a subset of the data (TCGA train) based on the expression of the candidate 

genes. The k-means class label was then used to perform a differential expression analysis 
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using edgeR. The Molecular Signatures Database (MSigDB) was used to perform an 

enrichment analysis in the upregulated genes. 

 

2.6.4 Refinement to a gene expression signature 

 

The candidate genes were refined using the prediction analysis for microarrays (PAM) 

method188. The method utilises the “nearest shrunken centroid” to identify the smallest number 

of genes that are required for the classification. First it identifies the average expression of 

each gene (centroid) within each of the two classes (high hypoxia vs low hypoxia). Then the 

gene expression profile of a tumour (the distance from each centroid) is calculated and the 

value squared. This occurs across both classes. Only those candidate genes that contribute 

towards the classification are selected. Several iterations using models of varying size were 

examined to set a gene classifier threshold through cross-validation i.e., the amount of 

shrinkage is determined by cross-validation.  

 

2.6.5 Hypoxia classification of patient samples 

 

Class centroids for each signature gene were generated by PAM. A sample is assigned a 

class (high hypoxia vs low hypoxia) according to which centroid it is closest to in distance2. 

 

 

2.7 MRI data acquisition 

2.7.1 MR scanners 

 

Imaging was acquired on either a diagnostic 1.5T Philips Ingenia MR-RT (Philips Healthcare, 

Best, Netherlands), or a MR-Linac system (Elekta AB, Stockholm, Sweden) equipped with a 

Philips Marlin 1.5T MRI scanner (Philips Healthcare, Best, Netherlands). These are referred 

to as the Diagnostic MRI and MR Linac systems respectively in the thesis. 

 

2.7.2 MRI sequences 

 

The locked down protocol for healthy volunteers is summarised in Figure 2.10 and Table 2.5. 

T2-weighted (T2w) spin-echo was for anatomy, and 3D T1 inversion-recovery turbo field echo 

(IRTFE) for T1 mapping and dynamic oxygen-enhanced (OE-MRI) measurements. In addition 

to these, patient participants also had intravoxel incoherent motion diffusion weighted imaging 

(IVIM-DWI), and variable flip angle T1 gradient echo (GRE) for T1 mapping and dynamic 
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contrast enhanced (DCE-MRI) measurements. The locked down protocol for patients is 

summarised in Figure 2.11 and the additional patient only sequences are detailed in Table 

2.6. The first patient had a slightly different protocol: medical air (21% O2; timepoints 0 – 25); 

100% O2 (26 – 65); 21% O2 (66 – 80), so had 5 less images on 100% O2 and 6 less images 

on the second phase of medical air breathing.  

 

All imaging was in the sagittal plane. Mean set up/participant preparation time was 15 minutes 

and 30-45 minutes of on-table scan time. Participants were positioned so that the uterine 

cervix was in the isocentre of the magnet. A ‘shim’ box was placed over the uterine cervix to 

homogenise the main magnetic field. All sequences had a spatial resolution of 3.0 x 3.0 x 6.0 

mm3 and a 128 x 128 pixels matrix across 40 slices. 

 

 

 

Figure 2.10: Imaging protocol for healthy volunteers in the study. 
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Table 2.5: Summary of MRI acquisition parameters for T1 mapping and oxygen-enhanced 

(OE-MRI) in healthy volunteers. 

 
Diagnostic MRI MR Linac 

   

Sequence 3D IR-TFE (T1 mapping) 3D IR-TFE (T1 mapping) 

TR 2.2 ms 2.3 ms 

TE 0.66 ms 0.75 ms 

TI 100, 500, 1100, 2000, 4300 ms 100, 500, 1100, 2000, 4300 ms 

⍺ 4° 6° 
   

Sequence 3D IR-TFE (OE-MRI) 3D IR-TFE (OE-MRI) 

TR 2.2 ms 2.3 ms 

TE 0.66 ms 0.75 ms 

TI 1100 ms 1100 ms 

⍺ 4° 6° 

Number of 

measurements 

91 91 

Temporal 

resolution 

12 s 13.5 s 

 

 

Figure 2.11: Imaging protocol for the patient study. *IVIM was performed on the Diagnostic 

MRI scanner only. †Patient 1 had a slightly different protocol: 21% O2 (timepoints 0 – 25); 

100% O2 (26 – 65); 21% O2 (66 – 81). 
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Table 2.6: Summary of MRI acquisition parameters used in the patient study. Additional 

imaging included IVIM, a T1 map and DCE-MRI. 
 

Diagnostic MRI MR Linac 

   

Sequence 3D IR-TFE (T1 mapping) 3D IR-TFE (T1 mapping) 

TR 2.2 ms 2.3 ms 

TE 0.66 ms 0.75 ms 

TI 100, 500, 1100, 2000, 4300 ms 100, 500, 1100, 2000, 4300 ms 

⍺ 4° 6° 

   

Sequence 3D IR-TFE (OE-MRI) 3D IR-TFE (OE-MRI) 

TR 2.2 ms 2.3 ms 

TE 0.66 ms 0.75 ms 

TI 1100 ms 1100 ms 

⍺ 4° 6° 

Number of 

measurements 

91 91 

Temporal 

resolution 

12 s 13.5 s 

   

Sequence IVIM 
 

TR 2800 ms 
 

TE 61 ms 
 

Echo train 

length 

39 
 

b values 0, 20, 40, 60, 80, 100, 150, 300, 

500, 800 

 

Number of 

averages 

4 
 

   

Sequence 3D mDIXON FFE (T1 mapping) 3D mDIXON FFE (T1 mapping) 

TR 3.2 ms 3.8 ms 

TE1/TE2 1.7/2.2 ms 1.6/2.6 ms 

⍺ 2°, 8°, 12° 2°, 8°, 12° 
   

Sequence 3D mDIXON FFE (DCE-MRI) 3D mDIXON FFE (DCE-MRI) 
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TR 3.2 ms 3.8 ms 

TE1/TE2 1.7/2.2 ms 1.6/2.6 ms 

⍺ 8° 8° 

Number of 

Measurements 

51 56 

Temporal 

Resolution 

3.1 s 3.3 s 

 

 

2.7.3 Participant preparation 

 

Prior to image acquisition, all participants were asked to remove any metal items of clothing 

or jewellery, and to empty their urinary bladder using a ‘double-void’ regime.  

 

2.7.4 Hyperoxic gases and gas delivery (all participants) 

 

Medical air (21%) and 100% Oxygen were delivered via the main hospital supply. Carbogen 

(CO4; 98% oxygen and 2% carbon dioxide) was stored and transported in a cylinder type AV 

(Material number 294964-AV-PC; BOC gases, Woking, UK). Gas pressure for delivery was 

normalised using an O2 two-stage bullnose regulator (Catalogue ID 6070SH, Hitchen, UK). 

 

Gases were delivered to the participant using a tight-sealed, non-rebreathing Intersurgical 

EcoLite™ adult facemask (Intersurgical Ltd, UK). Switching between the gases – from medical 

air to either 100% O2 or carbogen gas – was controlled via the Low Flow Air-Oxygen Blender 

(Inspiration Healthcare, UK). An O2 hose assembled with British Standard (BS) and National 

Institute of Standards & Technology (NIST) probes was used to connect the gas 

outlet/regulator to the blender. 

 

2.7.5 Gadolinium contrast agents (patients only) 

 

Patients were injected with a bolus of 0.1 mmol/kg gadoterate meglumine (Dotarem®, 

Guerbet, France) at 3 ml/s at the 8th time point during the dynamic GRE sequence. 
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2.7.6 Buscopan (patients only) 

 

Patients were given Hyoscine-N-butylbromide (Buscopan®) unless they withdrew consent on 

the day of the scan. Patients were evaluated by the direct healthcare team for any health 

conditions which would contradict Buscopan usage. Examples of such conditions included 

heart failure or uncontrolled high blood pressure, coronary artery disease, problems emptying 

the urinary bladder or urinary incontinence, glaucoma, myasthenia gravis and a 

gastrointestinal tract obstruction. All participants were counselled on the common side effects 

such as blurred vision, a dry mouth, dizziness, increased heart rate and constipation. 

 

Hyoscine butylbromide is licensed for use to combat spasm in diagnostic procedures and was 

used to improve image quality. 20 mg was administered via a slow intra-venous injection within 

the guidelines of the British National Formulary. 

 

2.8 Image storage and transfer 

 

DICOM images were anonymised and downloaded from the scanner at time of acquisition 

onto an encrypted portable storage device. Images were assigned an alphanumeric ID in 

keeping with the participant’s study ID. Images were transferred to the Quantitative Biomedical 

Imaging (QBI) Lab server where they were converted to a Neuroimaging Informatics 

Technology Initiative (NifTI) file format (https://nifti.nimh.nih.gov/dfwg). This allows data 

analysis within the QBI Lab to be performed on a standardised data format which better 

supports analysis and visualisation, and is widely used throughout imaging research. 

 

2.9 Image analysis 

 

All regions of interest (ROIs) were defined by a board-certified radiologist (AD, 7 years’ 

experience) and image analysis was performed using MATLAB Release 2022a (Mathworks, 

Massachusetts, USA). For OE-MRI healthy tissue assessments (both healthy volunteers and 

patient participants), a ROI measuring 7 x 7 voxels was placed on a single sagittal slice. The 

signal across five consecutive slices, two either side of the selected image, were averaged for 

analysis (n = 245 voxels). This ensured a consistent signal-to-noise ratio between participants. 

For OE-MRI and DCE-MRI tumour assessments (the latter in patients only), tumour ROIs were 

marked on all T2w images containing tumour using the Jim 6 software (Xinapse Systems, 

Essex, UK). Due to spatial distortion between IVIM DWI-MRI analysis required separate 

https://nifti.nimh.nih.gov/dfwg
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tumour cervix ROIs drawn on the b800 acquisitions using Jim 6. In all instances, voxel-wise 

model fitting was applied.  

 

MRI parameters within a defined region are presented in the thesis. 

 

2.9.1  OE-MRI  

 

Signal data acquired at 5 inversion times (TI) using the IRTFE T1 mapping sequence were 

converted to native T1 measurements using the equation189: 

 

S(TI) =  S0 |1 − 2. exp (
−TI

𝑇1
)|  [1] 

 

where S(TI) and S0 represent the signal intensity with inversion times TI and TI = 0 ms, 

respectively. R1 is the tissue longitudinal relaxation rate and is defined as the inverse of T1 

(1/T1). OE-MRI measures the ΔR1 biomarker given by105: 

 

Δ𝑅1  =  𝑅1(t) −  𝑅1(0) [2] 

 

where R1(t) is R1 while breathing hyperoxic gas (mean of time points 61 – 70 for healthy 

volunteers and mean of time points 56 – 65 for patients) and R1(0) is R1 on breathing air at 

the start (mean of all initial 25 time points).  

 

2.9.2 IVIM MRI  

 

For IVIM DWI imaging, the proposed biexponential model by Le Bihan et. al190 was applied 

which better describes the signal decay when acquiring a range of low (0 < ~150 s/mm2) and 

high (~150 < 1000 s/mm2) b-values: 

 

Sb = S0 | f ⋅ e−b⋅D∗  +  (1 − f) ⋅ e−b⋅D| [3]  

 

where Sb and S0 represent the signal intensity with diffusion-weighting b and b = 0 s/mm2, 

respectively. Two quantitative perfusion parameters were derived: f — the fraction of total 

signal coming from the microvasculature, and D – the diffusion coefficient of water molecules 

in tissue (outside the microvasculature). 

 



 85 

2.9.3 DCE MRI  

 

Established methods using the Madym toolkit191 were used to analyse the DCE-MRI sequence 

using the extended-Tofts model192: 

 

C(t) = vpCa(t) +  Ktranse−tkep ∗ Ca(t)  [4]  

 

where C(t) and Ca(t) are gadolinium concentration-time curves in the tissue of interest and in 

the supplying artery respectively. Ca(t) was substituted for a population-based arterial input 

function (AIF)193 in this study. The main disadvantage of using a population-based AIF is that 

any individual variation is ignored. 

 

The model assumes two-compartments: the vasculature (vp; the plasma volume) and the 

extravascular extracellular space (EES; the interstitial space). These are modelled by the first 

and second parts of the equation respectively.  

 

The MRI parameters used in this study are (a) Ktrans which characterises the diffusive transport 

of gadolinium across the capillary endothelium, and (b) ve which is the fractional volume of the 

EES. The two parameters are related to the rate constant, kep, so that: 

 

kep =
Ktrans

ve
 [5]  

 

The model also assumes that the gadolinium-based contrast agent is evenly distributed within 

each compartment. 

 

2.9.4 Motion assessments 

 

The dynamic OE, IVIM and DCE sequences have scan times of approximately 20, 7, and 3 

minutes respectively, with both bulk patient movement and physiological motion potentially 

affecting inter- and intra-sequence image alignment. 

 

To ensure technical precision, a ‘motion tracking’ model was applied when deriving the ΔR1 

parameter for the uterine body region in healthy volunteers (Figure 2.12). Large movements 

of the uterine body in the superior-inferior and anterior-posterior directions secondary to 

urinary bladder filling are well documented194. Multiple ROIs were placed in a defined location 
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at specified image timepoints in the dynamic series (timepoints 1, 31, 61 and 91), and ROIs 

were interpolated for the intervening timepoints. A ‘static’ ROI model was also derived from 

the first timepoint ROI for uterine body assessments.  

 

As cervical displacement is typically less marked and rectal filling predominantly affects 

cervical position194, no motion correction strategy was applied when analysing this region in 

healthy volunteers. No motion correction was applied to the patient uterine body assessments. 

 

Figure 2.12: Five ROIs were drawn for each visit to develop the ‘motion tracking’ model. 

 

 

2.10 Statistical analysis 

2.10.1 Gene expression data 

 

All data analysis for gene expression related work was performed in R version 4.2.2195. Null 

hypothesis testing in gene expression data involves large numbers of simultaneous 

comparisons and there is an increased possibility that a p value is deemed significant purely 

by chance. This would lead to type I errors (incorrect rejections of the null hypothesis) and 

must be accounted for. False discovery rate correction was done using the Benjamini-

Hochberg method196 which lists the p values in ascending order and derives a critical value for 

each p-value. This is done using the formula (i/m)* α where: i = index rank of p-value, m = total 



 87 

number of tests, and α = chosen false discovery rate (usually 0.05). Any p value that is equal 

to or below the critical value is considered significant and rejects the null hypothesis. 

 

Study group proportions were compared using the Chi-squared test for categorical variables 

and the Mann-Whitney U test compared discrete variables. Overall survival and progression 

free interval were defined as time from diagnosis to last follow up or event occurrence 

(locoregional recurrence, metastasis, or death). All follow up data was censored at 5 years. 

Time to event analyses were performed using the Kaplan–Meier method and differences 

compared using the log-rank test. Univariate and multivariate regression analyses were 

conducted using hypoxia status as defined by the gene signature, age, performance status, 

histology, stage, differentiation, size of tumour, lymph node involvement and hydronephrosis. 

Hazard ratios (HR) and 95% confidence intervals (CI) were reported in keeping with the Cox 

proportional hazard model.  

 

2.10.2 Imaging data  

 

Once derived, the imaging parameters were analysed as per Quantitative Imaging Biomarker 

Alliance (QIBA) recommendations197. The within-subject coefficient of variation (wCV), 

repeatability coefficient (RC) and limits of agreement (LOA), and Bland-Altman analyses were 

used to assess biomarker repeatability on a particular MR system. The Student’s t test was 

used to compare the means between two groups. 
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3 Hypoxia associated gene signature for patients with carcinoma 

of the uterine cervix 

 

I performed the initial cervical cancer cell line experiments under the supervision of the TRB 

lab (Catherine West, Ananya Choudhury and Sapna Lunj). I performed the RNA extraction for 

all cell lines. RNA-seq was performed by the University of Manchester core facilities (Andrew 

Hayes) and analysis was performed alongside Leo Zeef. Suitable blocks were identified with 

the help of the gynae-oncology clinical team (Peter Hoskin, Lisa Barraclough and Kate 

Haslett). Pre-treatment diagnostic biopsy samples were requested and initially processed by 

the gynae-oncology research team (Emma Buckley, Giorgio Arnetoli, Chelsey Wheeler, and 

Melanie Oddy). I was helped in RNA extraction and storage by CRUK AP core facilities (Garry 

Ashton, David Millard and Caron Behan) and the TRB lab (Sapna Lunj, Kamilla Bigos and 

Rachel Reed). RNA microarray analysis was performed by Your Gene Health (Manchester, 

UK). Bioinformatics analysis was performed alongside Mark Reardon (TRB lab). 

 

 

3.1 Introduction 

 

The molecular characterisation of tumour tissue is a key component of precision oncology and 

has the potential to optimise use of targeted therapy. Hypoxic environments alter the 

abundance of coding or messenger ribonucleic acid (mRNA) for many genes, and 

transcriptome-wide gene expression can be measured using micro-array or RNA sequencing 

platforms85,86. The collective expression of a group of genes can be evaluated using a 

‘signature’ and when measured in a patient tumour sample, it can designate a hypoxic tumour 

phenotype198. 

 

Since the first hypoxia-associated gene expression signature was published in 2007199, 

subsequently several research groups have derived hypoxia signatures using bulk 

transcriptomics. Perhaps the strongest indication to the potential clinical usefulness of gene 

expression signatures comes from the retrospective analysis of the BCON (Bladder Carbogen 

Nicotinamide) Phase 3 Randomized Trial (ISRCTN45938399) samples200.  A high hypoxia 

score derived using a 24-gene expression signature93 predicted a 10-year survival benefit 

when hypoxia modification was used.  

 

In this body of work, I sought to a) derive a hypoxia gene expression signature de novo and 

b) validate the signature in an independent cohort. 
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3.2 Study design 

 

Figure 3.1 provides a roadmap to gene expression signature discovery and highlights key 

steps in generating this hypoxia biomarker. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Flow diagram of study design. 
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3.3 Candidate gene identification 

3.3.1 RNA-sequencing (RNA-seq) quality check 

 

Prior to analysis, RNA-seq data quality was assessed using FastQC for a) per base position 

sequence quality and b) adapter content. The mean quality value (Phred score) across each 

base position in the read was satisfactory (Figure 3.2) and no samples found with any adapter 

contamination >0.1%. All experimental data was used for further analysis. 

 

 

 

Figure 3.2: The mean quality value (Phred score) across each base position in the read. 

 

3.3.2 Selection of oxygen concentration level 

 

Experimental data consisted of gene expression measurements from 21%, 1% and 0.1% 

oxygen environments, with cell lines being exposed to hypoxia for 24 hours (Appendix 1). For 

gene signature derivation, a lower oxygen threshold needed to be selected. The top 

differentially expressed genes (DEGs) between all groups (n=7041; p <0.05) were analysed 

using k-means clustering and visually represented with a silhouette plot (Figure 3.3). The 
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optimal number of clusters (Cj) with similar average silhouette width (aveiECj) and total within 

sum of square (nj) is k=5. 

 

Figure 3.4a showed clusters 2, 3 and 4 had similar differential gene expression profiles 

between normoxia and hypoxia, and the clearest separation between the oxygen 

concentrations was exhibited by cluster 2. Cluster 2 was also the only gene set that enriched 

for hypoxia-related biological processes using The Gene Ontology resource201,202. The 1% 

oxygen environment data were selected based on Cluster 2 expression profile (n=1897 

genes), which was highest at 1% oxygenation and lowest at 21% (Figure 3.4b). 

 

 

 

 

Figure 3.3: Silhouette analysis of the top differentially expressed genes resulted in 5 optimal 

clusters. Cluster 3 is the smallest whereas the other clusters are of similar sizes. 
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Figure 3.4: (a) Heatmap of the top differentially expressed genes within each cluster at varying 

oxygen concentrations. High expression is in red and low expression in blue. (b) The mean 

expression profile of the hypoxia associated ‘Cluster 2’ gene set.  

 

3.3.3 Selection of candidate genes 

 

Differential expression was performed on pre-log2 transformed data and was defined as genes 

which displayed ≥2-fold change in expression between 21% and 1% oxygen. False discovery 

rate (FDR) corrected p<0.1 identified 402 genes that were differentially expressed in all 5 cell 

lines. A strategy implemented in published signatures by our lab group is to select a sub-group 

of genes, the ‘candidate’ gene list which represents a bona fide relationship to tumour 

phenotype, and take it forward for modelling203,204.   

 

Numbers of differentially expressed genes are shown in Table 3.1. A matrix discovery of FDR 

corrected p value (rows) and numbers of cell lines included (columns) was used to identify a 

61 ‘candidate’ gene list (p<0.000001 and differentially expressed in ≥4 cell lines). When 

enriched in the Gene Ontology (GO) knowledge base, the gene set shows a significant 

association to the ‘cellular response to hypoxia’ biological process (Fold enrichment = 31.04, 

p = 4.70 x10-10). All the candidate genes are upregulated in hypoxia. 
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Table 3.1: Numbers of differentially expressed genes (DEGs) varies with false discovery rate 

(FDR) corrected p-value and number of selected cell lines. Highlighted* gene set was 

selected as the candidate gene list. 

FDR corrected 

p-value 

DEGs found in at least #/5 Cell Lines 

 
1 2 3 4 5 

0.0000001 1170 348 113 53 25 

0.000001 1459 460 149 61* 34 

0.00001 1850 625 198 75 39 

0.0001 2405 874 285 108 49 

 

 

3.4 Gene signature development  

3.4.1 Mapping candidate genes to The Cancer Genome Atlas (TCGA) data 

 

Mapping the candidate genes was done using the Ensembl IDs and Ensembl genome 

database (European Bioinformatics Institute project). Six of the 61 candidate genes could not 

be directly mapped onto the older TCGA data due to differences in the human genome 

reference assemblies used to curate the two datasets (GRCh37 vs GRCh38).  

 

The six genes were: DARS1 Antisense RNA 1 (DARS1-AS1), MIR210 Host Gene 

(MIR210hg), SAP30 Divergent Transcript (SAP30-DT), Mitochondrially Encoded 16S RRNA 

(MT-RNR2), SDA1 Domain Containing 1 Pseudogene 1 (SDAD1P1), Triosephosphate 

Isomerase 1 Pseudogene 1 (TPL1P1). DARS1-AS1, MIR210hg and SAP30-DT are 

associated with long non-coding RNA. MT-RNR2 is a ribosomal RNA encoding gene. 

SDAD1P1 and TPL1P1 are pseudogenes and their role in cervical cancer is not clear. 

 

3.4.2 Labelling TCGA cohort 

 

The TCGA dataset was unlabelled for hypoxia status. The cohort was split into two sub-

groups: TCGA train (n=71) and TCGA test (n=70). 

 

Unsupervised k-means clustering (k=2) was used to partition the TCGA train sub-group into 

two classes (Figure 3.5). Clear differential expression of the 55 candidate genes was seen 

between the two classes. The high expression cluster (Class 2) was associated with the up-
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regulated candidate genes. Subsequently the upregulated genes were associated with 

hypoxia related processes. This makes class1=Low Hypoxia and class2=High Hypoxia. 

 

 

Figure 3.5: Heatmap showing expression of candidate genes in the TCGA train cohort (n=70). 

Green indicates lower expression and red indicates higher expression. ‘Class 1’ and ‘Class 2’ 

are represented by the pale blue and pale red horizontal bars respectively. ‘Class 2’ was 

enriched for hypoxia associated pathways using The Molecular Signatures Database 

(MSigDB). 

 

3.4.3 Candidate gene set refinement 

 

The labelled ‘TCGA train’ dataset was used to train the Prediction Analysis for Micro-arrays 

(PAM) method. The chosen model size had the lowest classification errors following 10-fold 

cross validation and was associated with a poor prognosis (log-rank test) in all TCGA patients. 

The predicted misclassification error of the signature genes following 10-fold cross validation 

is estimated at 5% (Figure 3.6a) and when assessed in the cell line experimental data resulted 

in an accuracy of 93% (Figure 3.6b). 
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Time to event analyses in the TCGA cohort are shown in Figure 3.7, and the signature was 

significant for poor prognosis (overall survival, OS; progression free interval, PFI) in a subset 

of the TCGA patients with available clinical outcome data (p log-rank test; OStrain = 0.0029, 

PFItrain = 0.0033, OStest = 0.019, PFItest = 0.011). 

 

 

 

Figure 3.6: (a) Estimated model error (misclassification error) for a given model size. The black 

dashed lines indicate the range of model sizes investigated. The model with the lowest error 

(n=43 genes; green line) had an estimated 1% error rate. The selected model (n=31; red line) 

has an estimated 5% misclassification rate. (b) Confusion matrix of actual and predicted 

conditions within the cell line experiments. The chosen 31 gene signature model has a 93% 

accuracy.  
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Figure 3.7: Kaplan-Meier analysis for (a) overall survival (OS) train, (b) progression free 

interval (PFI) train, (c) OS test and (d) PFI test cohorts. The model was trained for prognostic 

significance in the TCGA cohort. 
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3.5 Gene signature bioinformatics analysis 

 

A 31 gene signature was selected, and enrichment analysis is summarised Table 3.2. All 

signature genes were categorised as protein coding and 7/31 were amongst the top 20 most 

frequently included in published hypoxia signatures86: BCL2 Interacting Protein 3 (BNIP3), 

BCL2 Interacting Protein 3 Like (BNIP3L), DNA Damage Inducible Transcript 4 (DDIT4), N-

Myc Downstream Regulated 1 (NDRG1), Prolyl 4-Hydroxylase Subunit Alpha 1 (P4HA1), 

Phosphoglycerate Kinase 1 (PGK1) and Solute Carrier Family 2 Member 1/Glucose 

transporter 1 (SLC2A1). 

 

Table 3.2: Selected 31 gene model for the hypoxia associated transcriptomic signature. The 

table columns have been populated using standards set by the Human Genome Organisation 

Gene Nomenclature Committee (HGNC)205. Genes were compared to published hypoxia 

signatures and enriched for cellular response to hypoxia. 

Symbol Name Top 

genes* 

Top 

pathway^ 

AK4 Adenylate Kinase 4  ✓ 

ANKRD37 Ankyrin Repeat Domain 37    

ARID3A AT-Rich Interaction Domain 3A   

ARL10 ADP Ribosylation Factor Like GTPase 10   

BNIP3 BCL2 Interacting Protein 3 ✓ ✓ 

BNIP3L BCL2 Interacting Protein 3 Like  ✓ ✓ 

CA9 Carbonic Anhydrase 9  ✓ 

DDIT4 DNA Damage Inducible Transcript 4 ✓  

DNAH11 Dynein Axonemal Heavy Chain 11   

EGLN1 Egl-9 Family Hypoxia Inducible Factor 1  ✓ 

EGLN3 Egl-9 Family Hypoxia Inducible Factor 3  ✓ 

ENO2 Enolase 2   

HK2 Hexokinase 2   

KDM3A Lysine Demethylase 3A   

LDHA Lactate Dehydrogenase A   

NDRG1 N-Myc Downstream Regulated 1 ✓ ✓ 

P4HA1 Prolyl 4-Hydroxylase Subunit Alpha 1 ✓  



 98 

PFKFB3 6-Phosphofructo-2-Kinase/Fructose-2,6-

Biphosphatase 3 
  

PFKFB4 6-Phosphofructo-2-Kinase/Fructose-2,6-

Biphosphatase 4 
  

PGK1 Phosphoglycerate Kinase 1 ✓ ✓ 

PGM1 Phosphoglucomutase 1   

PPP1R3B Protein Phosphatase 1 Regulatory Subunit 3B   

PPP1R3G Protein Phosphatase 1 Regulatory Subunit 3G   

RIMKLA Ribosomal Modification Protein RimK Like Family 

Member A 
  

SLC16A3 Solute Carrier Family 16 Member 3   

SLC2A1 Solute Carrier Family 2 Member 1/Glucose transporter 

1 
✓  

STC2 Stanniocalcin 2  ✓ 

TPI1 Triosephosphate Isomerase 1   

VEGFA Vascular Endothelial Growth Factor A  ✓ 

VLDLR Very Low-Density Lipoprotein Receptor   

ZNF395 Zinc Finger Protein 395   

 

*Genes most frequently included in published hypoxia signatures86. 

^Genes enriched for cellular response to hypoxia in Gene Ontology biological process or 

Reactome pathway206. 

 

 

3.5.1 Enrichment analysis 

 

Gene ontology201,202 biological processes enriched using PANTHER v17.0206 with the 

signature genes are shown in Table 3.3. Results were filtered by hierarchy which 

encompasses over-represented functional classes and sorted by significance. Significance 

was assessed using FDR corrected Fisher’s Exact test. Cellular response to hypoxia was the 

most enriched term (p=1.87 x10-9). 
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Gene signature data were also analysed with the use of QIAGEN IPA (QIAGEN Inc., 

https://digitalinsights.qiagen.com/IPA)207 to identify top canonical pathways associated with 

the signature genes and their sub-cellular compartments ( 

Figure 3.8). Nine genes contributed to the top hypoxia pathways: hypoxia-inducible factor 1-

alpha (HIF1α) and cyclic AMP-activated protein kinase (AMPK) signalling pathways. Signature 

genes involved included Lactate Dehydrogenase A (LDHA), SLC2A1, Vascular Endothelial 

Growth Factor A (VEGFA) and 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3 

(PFKFB3). 

 

 

Table 3.3: The Gene Ontology knowledgebase terms enriched by with signature genes. 

GO biological process GO term Fold enrichment FDR 

corrected p 

cellular response to hypoxia GO:0071456 45.24 1.87E-09 

canonical glycolysis GO:0061621  > 100 1.27E-05 

gluconeogenesis  GO:0006094 61.28 3.07E-04 

peptidyl-proline hydroxylation to 

4-hydroxy-L-proline 

GO:0018401  > 100 3.77E-04 

regulation of generation of 

precursor metabolites and energy  

GO:0043467 24.37 7.15E-04 

carbohydrate phosphorylation  GO:0046835 71.49 3.68E-03 

fructose 2,6-bisphosphate 

metabolic process  

GO:0006003  > 100 1.19E-02 

mitochondrial protein catabolic 

process  

GO:0035694  > 100 1.57E-02 

aldehyde biosynthetic process  GO:0046184  > 100 2.40E-02 

mitochondrial outer membrane 

permeabilization  

GO:0097345  > 100 4.57E-02 
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Figure 3.8: Signature genes in respective subcellular compartments, and associations 

between selected genes and top canonical pathways. 

 

 

3.5.2 Co-expression analysis 

 

The top 5 co-expressed genes in the TCGA cohort were 6-phosphofructo-2-kinase/fructose-

2,6-bisphosphatase 2 (PFKFB4), P4HA1, VEGFA, Egl-9 Family Hypoxia Inducible Factor 3 

(EGLN3) and ankyrin repeat domain 37 (ANKRD37; Figure 3.9). 
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Figure 3.9: Plot showing Spearman’s rank correlation (Benjamini-Hochberg corrected) matrix 

for the 31-signature genes as expressed in all TCGA cohort patients. 

 

 

3.6 Curating the retrospective cohort 

3.6.1 Diagnostic biopsy sample recruitment 

 

The recruitment for patient samples started on 01/02/2021 and is set to finish at 31/10/2024. 

Formalin fixed paraffin embedded (FFPE) tumour blocks collected by 01/08/2022 have been 

analysed in this thesis. All patient clinicopathological parameters are accurate as of 

01/11/2022. 
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3.6.2 RNA quantity and quality assessments 

 

Optimal ranges and thresholds for RNA quantity and quality (QC) are recommended for 

Clariom S array input as they may affect technical performance. An optimised RNA extraction 

developed by the TRB Lab and used in several previous gene expression studies was 

implemented in the study93,203,208. RNA quantity was assessed using a Qubit assay kit and 

quality was assessed using a 2200 TapeStation.  

 

Block age is a known factor affecting RNA QC following extraction from uterine cervical 

tumours preserved in FFPE209. The mean ± SD block age in our sample group was 72 ± 25 

months and showed no association with RNA concentration (r = -0.11, p = 0.94) or with RNA 

integrity number (r = -0.12, p = 0.95).  

 

The sample acquisition method was investigated as a potential source of RNA QC parameter 

variability. Twenty-five of the 184 samples were acquired following hysterectomy, and the 

remaining were from different types of tumour biopsies such as wedge/cone, endocervical 

curettage, large loop excision of the transformation zone (LLETZ), punch and TruCut. 

Haematoxylin and eosin (H&E) stained sections of the FFPE tumour blocks were double 

reported by two consultant histopathologists for histology, grade, and tumour surface area 

(TSA; given as a percentage either <50% or >50%). The minimum TSA reported was 25%. 

Differences between groups were determined using the unpaired Student’s t test and results 

are summarised in Table 3.4. There were significant differences in RNA concentration quantity 

and quality. The best samples in this study were acquired following hysterectomy (RNA 

concentration = 362 ± 199 ng/ul, 260/280 = 1.98 ± 0.06, and 260/230 = 1.96 ± 0.24). When 

comparing samples acquired using biopsies, those with a >50% TSA yielded better QC results 

compared to those with a <50% TSA: RNA concentration = 275 ± 270 ng/ul vs 127 ± 88 ng/ul, 

p = 3.88 x 10-4; 260/280 = 1.94 ± 0.07 vs 1.90 ± 0.07, p = 0.0012; 260/230 = 1.83 ± 0.28 vs 

1.63 ± 0.33, p = 2.49 x 10-4; respectively). 

 

Two biopsy samples from the less than 50% tumour surface area failed QC and were not 

assessed any further. Of the 182 successful extractions, 5 samples were not plated. Figure 

3.10 highlights the failed 3/177 plated samples (sample IDs 02-096, 02-097 and 02-149) 

following Clariom S output analysis using the Transcriptome Analysis Console software (TAC 

version 4.0.1, Applied Biosystems). Failure threshold was set to 0.7 as per the software 

instructions. The samples 02-096 and 02-097 were surgical samples and 02-149 was acquired 

following biopsy. The RNA QC and TAC positive vs negative area under the curve (pos vs neg 

AUC) scores for these samples are summarised in Table 3.5. There was no clear association 
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between the RNA QC parameters and sample failure designated by the pos vs neg AUC 

score. Six further samples were removed from the final analysis due to not meeting the 

eligibility criteria for the study when paired with the clinical data. 

 

Table 3.4 RNA QC assessments in n = 182 samples (mean ± 1 SD) 

Acquisition RNA 

concentration 

(ng/μl) 

p RNA 

quality 

(260/280) 

p RNA quality 

(260/230) 

p 

Hysterectomy 

(n=25) 

362 ± 199 
0.01

1 

1.98 ± 0.06 0.0036 1.96 ± 0.24 

0.0028 

Biopsy (n=157) 232 ± 241 1.93 ± 0.08 1.76 ± 0.32 

       

>50% surface 

area (n=111) 

275 ± 270 

3.88

E-04 

1.94 ± 0.07 0.0012 1.83 ± 0.28 

2.49E-

04 <50% surface 

area (n=46) 

127 ± 88  1.90 ± 0.07 1.63 ± 0.33 

 

Figure 3.10: Clariom S analysis was performed on 177 tumours and sample consistency 

assessed using the Transcriptome Analysis Console. The score is calculated by comparing 

the intron (false positives) and exon controls (true negatives), and a score of 1 reflects perfect 

separation. The recommended threshold is set at 0.7. Passed (green) and failed (red) samples 

are shown. 
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Table 3.5: RNA QC assessments in n=3 samples that failed following Clariom S gene 

expression profiling. 

ID % tumour 

surface 

area 

extractio

n date 

Clariom 

batch 

 block age 

(months) 

RNA 

conc.* 

(ng/ul) 

260/ 

280 

260/2

30 

pos 

vs 

neg 

AUC 

02-

096† 

 
07/10/21 2  71 466.80 1.996 2.118 0.676 

02-

097† 

 
07/10/21 2  211 420.00 2.002 1.997 0.661 

02-

149^ 

<50% 06/04/22 2  98 106.80 1.886 1.565 0.656 

 

†surgery 

^biopsy 

*RNA conc. = RNA concentration 

AUC = area under the curve 

 

 

3.6.3 Batch effect assessment 

 

Normalisation and batch effect correction are two complementary strategies aimed at 

minimising technical noise or bias in gene expression profiling experiments. A principal 

component analysis (PCA) plot showed no significant batch effects following correction with 

the ComBat method185 (Figure 3.11).  
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Figure 3.11: Principal component analysis for (a) Plate-normalised and (b) ComBat-corrected 

gene expression data (n=168 samples) showed no significant difference between batches 

following ComBat correction. 

 

 

3.7 External validation of the gene expression signature 

3.7.1 Signature expression profile 

 

The top 5 co-expressed genes in the retrospective cohort were VEGFA, PGK1, LDHA, 

PFKFB4 and hexokinase-2 (HK2; Figure 3.12). VEGFA and PFKFB4 were also significantly 

co-expressed in the TCGA group. All the genes were recognised hypoxia-induced regulators 

of the glycolysis and pyruvate/lactate pathways as demonstrated earlier in the chapter. 
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Figure 3.12. Plot showing Spearman’s rank correlation (Benjamini-Hochberg corrected) matrix 

for the 31-signature genes as expressed in all retrospective cohort patients. 

 

3.7.2 Baseline characteristic correlation  

 

The mean age of women in the retrospective cohort was 53 ± 17 years and treatment received 

was surgery (n=25), (chemo)radiotherapy (n=124) and palliation (n=19). Clinicopathological 

summary statistics for the ‘normoxia’ and ‘hypoxia’ groups are presented in Table 3.6. 

 

A significant association was found between hypoxia status and a patient’s performance status 

(p=0.006) but not with age. Further associations were noted with clinical stage (p<0.0001), 

histology type (p=0.028), tumour size (p<0.0001), pelvic node involvement (p=0.0002) and 

hydronephrosis (p=0.004). Of these, only clinical stage (p=0.008) and pelvic node presence 

(p=0.03) remained significantly associated in the (chemo)radiotherapy subgroup. A higher 

proportion of patients with a clinical stage ≥III were classified as hypoxic vs normoxic (42% vs 

14% in ‘all patients’ group, and 33% vs 14% in subgroup). Pelvic lymph node involvement was 

higher in hypoxic vs normoxic patients in main group (66% vs 37%) and subgroup (64% vs 

44%).   
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Table 3.6 Summary statistics for all (n=168) and (chemo)radiotherapy (n=124) patients in the 

retrospective Christie validation cohort. Significance values were calculated using either the 

Chi-squared test or the Mann-Whitney U test. 

 

Clinico-

pathological 

parameter 

Level All (n=168) (chemo)radiotherapy (n=124) 

Normoxia 

(n=95) 

Hypoxia 

(n=73) 

p Normoxia 

(n=66) 

Hypoxia 

(n=58) 

p 

Age <40 years 29 14 0.095

* 

21 13 
0.24* 

≥40 years 66 59 45 45 

PS^ 0 61 33 

6.16E

-03** 

41 32 

0.51** 

1 25 23 19 21 

2 5 9 5 5 

3 3 8 1 0 

4 1 0 0 0 

Clinical stage IA 3 0 

1.18E

-07** 

0 0 

7.84E-

03** 

IB 33 5 11 5 

IIA 6 2 6 2 

IIB 40 35 40 32 

IIIA 0 4 0 2 

IIIB 4 9 4 7 

IVA 3 11 2 9 

IVB 6 7 3 1 

Histology squamous cell 

carcinoma 

66 58 

0.028

* 

49 47 

0.33* 

adenocarcinoma 26 8 15 7 

adenosquamous 

carcinoma 

3 2 2 1 

neuroendocrine 

carcinoma 

0 1 0 1 

clear cell 

carcinoma 

0 2 0 1 

undifferentiated 

carcinoma 

0 2 0 1 

Grade 1 - Well 

differentiated 

9 7 0.088

** 

5 6 
0.25** 



 108 

2 - Moderately 

differentiated 

42 22 33 20 

3 - Poorly 

differentiated 

44 42 28 31 

4 - 

Undifferentiated 

0 2 0 1 

LVSI† Absent 42 24 
0.39* 

27 22 
0.39* 

Present 28 11 17 9 

Tumour size <4cm 38 7 1.024

E-05* 

16 7 
0.082* 

≥4cm 57 66 50 51 

Pelvic nodes no 60 25 2.03E

-04* 

37 21 
0.027* 

yes 35 48 29 37 

Para-aortic 

nodes 

no 89 65 
0.28* 

62 56 
0.50* 

yes 6 8 4 2 

Hydro-

nephrosis 

no 86 54 4.32E

-03* 

60 46 
0.067* 

yes 9 19 6 12 

 

^PS = performance status 

†LVSI = lymphovascular space invasion 

* Chi-squared test 

** Mann-Whitney U test 

 

3.7.3 Survival analyses  

 

Five-year censored event rates for all patients are presented in Table 3.7. In the external 

validation cohort (Figure 3.13a and b), 73 tumours were classified as ‘hypoxic’ and had 

significantly worse OS (log-rank test p=0.00031) and PFI (p=0.0016). Survival analyses in the 

radiotherapy treated sub-group were also performed but did not show any significant survival 

differences for OS or PFI between the hypoxic and normoxic groups, p=0.11 and p=0.18 

respectively (Figure 3.14a and b).  

 

In univariate Cox regression analysis, the hypoxia classifier, histology, performance status, 

tumour size and pelvic nodes showed prognostic significance (Table 3.8). However, the gene 

expression signature did not retain significance in the multivariate analysis with a hazard ratio 

of 1.48 (0.90 - 2.41), p=0.12.  
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Table 3.7  Christie cohort censored 5-year event rates. 

Event N = 168  

Local recurrence 28 (17%)  

Regional recurrence 23 (14%)  

Metastatic recurrence 27 (16%)  

Any recurrence 49 (29%)  

Death 61 (36%)  

 

 

 

 

Figure 3.13: Kaplan-Meier (a) overall survival and (b) progression free interval analyses in all 

Christie patients (n=168). 
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Figure 3.14: Kaplan-Meier (a) overall survival and (b) progression free interval analyses in 

external beam radiotherapy treated Christie patients (n=124). 

 

 

Table 3.8: Cox regression analyses based on all patients (n=168). 

  
Univariate analysis Multivariate analysis 

Factor Level P HR (95% CI) P HR (95% CI) 

Hypoxia 

classifier 

Hypoxic 4.41894E-05 2.76  

(1.70 - 4.50) 

0.12 1.48  

(0.90 - 2.41) 

PS^ 1 0.0154 1.87  

(1.13 - 3.09) 

1.95E-03 2.19  

(1.33 - 3.58) 
 

2 0.0016 3.13  

(1.54 - 6.34) 

0.05 1.92  

(1.00 - 3.69) 
 

3 1.17432E-09 9.46  

(4.59 - 19.50) 

7.32E-14 15.96  

(7.72 - 32.97) 
 

4 0.954 0.029  

(6.41E-54 - 

1.34E50) 

2.51E-04 89.51  

(8.07 - 992.37) 

Histology adenocarcinoma 0.255 0.69  

(0.36 - 1.3) 

0.01 2.40  

(1.25 - 4.61) 
 

neuroendocrine 

carcinoma 

0.019 11.55  

(1.50 - 88.62) 

9.88E-07 163.92  

(21.27 - 1263.42) 
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undifferentiated 

carcinoma 

0.286 2.20  

(0.52 - 9.40) 

3.67E-03 8.87  

(2.03 - 38.67) 

Tumour size >4cm 2.03E-09 1.41  

(1.26 - 1.58) 

1.04E-03 1.20  

(1.08 - 1.35) 

Pelvic nodes Yes 2.41E-05 2.99  

(1.80 - 4.98) 

8.68E-04 2.40  

(1.43 - 4.01) 

^PS = performance status 

 

3.8 Discussion 

 

The first objective of the thesis was to develop a gene expression signature that measured 

tumour hypoxia from diagnostic biopsies of patients with uterine cervical cancer. The main 

findings were (a) the de novo 31-gene expression signature was significantly associated with 

known hypoxia pathways, and (b) it was associated with known clinicopathological factors of 

poor prognosis and with adverse survival in an independent patient dataset. The findings 

suggest that the gene signature may classify women with uterine cervical cancer as having a 

clinically significant hypoxia status.  

 

The work presented in this chapter builds on the considerable contribution to research in 

hypoxia gene expression signatures published by the TRB Lab. The signatures offer insight 

into (a) hypoxia-induced gene biology (processes and pathways), and (b) hypoxia related 

clinical manifestation (clinicopathological correlates and patient prognosis characterisation)86. 

Key decisions in deriving the cervical cancer 31-gene signature were based on methodology 

from these previous studies93,199,203,204,208,210,211. 

 

Gene set analysis enriched the HIF1α signalling pathway and three signature genes are key 

components of this pathway: VEGFA, SLC2A/GLUT-1 and LDHA. It is well established that 

the HIF transcription factor also induces CA-IX transcription and protein synthesis.  All four 

signature genes code downstream proteins which have been thoroughly investigated as 

prognostic biomarkers of hypoxia over the past two decades 65,68,71,212. Hypoxia is also a potent 

inducer of the 5′-AMP-activated protein kinase (AMPK) pathway which is independent of HIF-

1 activity213. AMPK has a role in regulating normal glycolytic and oxidative metabolism214. Two 

key genes in this glucose metabolism pathway are PFKB3 and PFKB4. Recent research 

suggests an association between PFK-2 isozymes and CA-IX215. Hsin et al. found that PFKB4 
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acted downstream of CA-IX, and was upregulated with CA-IX overexpression and 

downregulated with CA-IX knockdown. Furthermore, knocking down CA-IX or PFKB4 

increased E-cadherin protein expression and reduced vimentin protein expression. The in vitro 

data suggests reduced CA-IX/PFKB4 expression may inhibit the epithelial-to-mesenchymal 

transition (EMT) of cervical cancer cells via the MAPK-ERK pathway. EMT signifies local 

tumour invasion as cells pass through the basement membrane before being disseminated 

via the blood or lymphatic system. Finally, the authors found that uterine cervical cancer 

patients with high CAIX and high PFKB4 expression had worse survival outcomes in three 

publicly available datasets. 

 

Four of the signature genes (BNIP3, BNIP3L, NDRG1 and PGK1) are amongst the most 

widely reported in published hypoxia gene signatures and enrich for cellular response to 

hypoxia in the Gene Ontology database. BNIP3 and BNIP3L code for the BCL-2 family 

proteins which possess the BCL-2 Homology domain 3 only (BH3-only). Hypoxia increases 

the expression of these proteins via the HIF-1 transcription factor216. The BH-3 only proteins 

are effectors that integrate and transmit cell death signal, either transcriptionally or post-

transcriptionally, and induce cell death, autophagy and mitophagy217. NDRG1 regulates an 

intracellular protein and is governed by HIF-1alpha and p53-dependent pathways218. It has a 

complex role in suppression of tumour growth and metastasis, and high expression was 

associated with a worse progression free interval and overall survival in cervical 

adenocarcinomas219. The PGK1 gene codes for an enzyme essential to the aerobic glycolysis 

pathway and is involved in multiple biological activities. It mediates glycolysis and generates 

ATP for tumour cells under hypoxia220. High PGK1 expression is associated with poor survival 

in multiple tumours, including cervical cancer221.  

 

Comparison with 3 other published cervical cancer signatures: Fjeldbo48 (6-gene), Yang87 (5-

gene) and Nie88 (9-gene), show some similarities. The 2012 Halle47 signature was refined and 

replaced by the 2016 Fjeldbo classifier, and therefore only the latter is included in this 

discussion. Common genes/gene families in at least two of the signatures include AK4, 

DDIT3/DDIT4, HK2, LDHA/LDHC, P4HA1/P4HA2, PGM1, STC1/STC2 and VEGFA. The 

similarities suggest a conserved hypoxia-related pathway in cervical cancer (e.g. procollagen 

prolyl 4-hydroxylase domain222) that maybe a target for treatment223. Differences in the 

signatures may arise due to differences in the model input parameters. In this study, I chose 

to analyse extracted RNA from cell lines grown in controlled environments with varying levels 

of oxygen. The in vitro approach is widely used however there is no set oxygen concentration 

for cell line experiments best reflective of clinically significant hypoxia. Pathological hypoxia is 

reported as being 1% oxygen (8 mmHg) however it is important to note that radiobiological 
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hypoxia is much lower at 0.4% (3mm Hg)224. Recently it has been suggested that the level 

with the strongest association to treatment outcome in cervical cancer patients is 0.7%135. In 

contrast, Yang et al. and Nie et al. developed their respective signatures entirely in silico using 

a list of 200 hypoxia related genes from MSigDB. The Fjeldbo classifier was derived by 

associating gene expression with a magnetic resonance imaging (MRI) parameter, ABrix. 

 

Initial attempts by our lab group were aimed at developing a common hypoxia signature, or 

metagene, which could be generalised to different cancer types199,210. However, it has been 

demonstrated that whilst some signatures may apply to other cancer types, most remain single 

cancer type specific85. A type-specific approach has resulted in hypoxia gene signatures for 

urinary bladder93, prostate208 and soft tissue sarcoma203. Whilst bladder and prostate are 

clearly represented by one histological subtype, the soft tissue sarcoma paper notes that 

cancer type specific approaches may not generalise to the different histological subtypes. 

Indeed, two signatures from our group are histology subtype specific: a squamous cell 

carcinoma (SCC) head and neck signature211 and one for adenocarcinoma lung tumours204. 

The Fjeldbo48 classifier was trained on squamous cell carcinomas (SCC) whereas the Yang87 

and Nie88 signatures include all histology types within the TCGA-CESC dataset. I chose to 

model the candidate genes in a SCC cervical cancer cohort. Histological subtype incidence in 

cervical cancer is ~70-80%  for SCCs and  20% for adeno/adenosquamous carcinomas 

(AC/ASCs), with the latter having a worse clinical prognosis225. Other histological subtypes do 

exist but are rare and consistently associated with worse survival226.  An AC/ASC model was 

not investigated as part of this work. 

 

Other sources of variation in the final gene signature may arise from the decisions made during 

the modelling process. Gene signature modelling typically involves assessment of gene 

expression in clinical samples however no hypoxia-level labelled clinical dataset could be 

identified. The TCGA data was forced into k=2 clusters and labelled using the differential 

expression of the candidate genes. This is in contrast with other signatures that associate in 

vitro gene expression with pO2 Eppendorf histography90 or with pimonidazole staining136. 

None of the published hypoxia associated gene signatures in cervical cancer48,87,88 used a 

hypoxia biomarker in the development process. I have trained the final signature genes on 

hypoxia classification and prognosis, which is consistent with the published signatures in 

cervical cancer48,87,88, though it is unclear on how best to describe the aggressive phenotype 

for optimal clinical translation of the gene signature. The bladder signature was trained on both 

prognosis and hypoxia association93, whereas the sarcoma signature203 is hypoxia associated 

and is combined with a prognostic marker (e.g. CINSARC signature227) at a later stage.  
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In the retrospective clinical cohort, the 31-gene signature shows a significant association with 

performance status which is often used to indicate tolerance to chemotherapy, and is a strong 

predictor of prognosis228.  Other correlates included clinical stage, pelvic nodal involvement 

and tumour size which are also well recognised poor negative prognostic factors229. 

Lymphovascular space invasion which is a known adverse pathological finding did not show 

any association with hypoxia status in our dataset, though this may be due to a significant 

number of ‘unknown’ reports. The gene signature was also significantly associated with poor 

5-year overall survival and progression free interval, though did not show significance in the 

multivariate analysis. This is likely due to the hypoxia variable being highly correlated with the 

other variables included in the multivariate analysis. Locally advanced cancers are treated 

with chemoradiotherapy which is the intended patient group application of this biomarker. 

Unfortunately, the de novo signature was not significantly prognostic in the external beam 

radiotherapy sub-group which may be due to treatment variability as shown in the Venn 

diagram in Chapter 2 (Figure 2.2). Treatment regimens which include cisplatin 

chemotherapy230 and brachytherapy231 have been consistently shown to be associated with 

significantly higher patient survival.  

 

In summary, I have derived a hypoxia gene expression signature using cell line experimental 

data modelled in TCGA and validated in a retrospective clinical cohort of patients treated at 

The Christie between 2013 and 2018.  
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4 Developing novel magnetic resonance imaging sequences in 

healthy volunteers 

 

I consented healthy volunteers for the study. Sequences were developed alongside the 

Christie Medical Physics team (David Buckley, Michael Dubec, Damien McHugh). Image 

acquisition was performed at The Christie Hospital by on site radiographers. The image 

analysis work was carried out in collaboration with the QBI Lab at the University of Manchester 

(Michael Berks, Sue Cheung, Michael Dubec, Ross Little, led by James O’Connor) and 

Christie Medical Physics at The Christie Hospital (David Buckley, Michael Dubec, Damien 

McHugh). Statistical evaluation was discussed with James O’Connor, along with Nuria Porta 

at the Clinical Trials and Statistics Unit of The Institute of Cancer Research. 

 

4.1 Introduction 

 

In this chapter I provide an overview of a study which designs, implements, and validates a 

multi-parametric quantitative magnetic resonance imaging (qMRI) protocol in female healthy 

volunteers.  

 

Anatomical MRI is firmly embedded in routine healthcare as a clinical diagnostic tool in 

patients with locally advanced cervical cancer (LACC). In addition, clinicians typically use 

diffusion-weighted imaging (DWI) both in the form of b value images and as derived parameter 

maps of ADC. Some institutions use gadolinium contrast-enhanced imaging MRI as well232. 

These functional sequences are used as an adjunct to improve uterine tumour detection. More 

recently, DWI has established its role in the clinical assessment of treatment response, again 

by using qualitative images to aid assessment of change in appearances233.  

 

These ‘standard’ sequences are ‘weighted’ to provide an optimal contrast for visual descriptive 

discrimination rather than quantitative characterisation. qMRI is conceptually different in that 

image acquisition and analysis are inherently designed to enable mapping of a parameter that 

has some relationship to tumour pathophysiology234. As radiotherapy is delivered in multiple 

fractions over the course of weeks, quantitative imaging biomarkers (QIBs) allow for serial 

non-invasive tumour assessments. Clinical scientists and clinicians can utilise QIBs to 

personalise treatment: better prognostication, predicting outcome of different treatments, 

treatment planning and on-treatment adaptation, toxicity prediction and response assessment. 

Given these potential benefits, integrated MRI and radiotherapy systems are a highly 

compelling research avenue235.  
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QIBs derived from OE-MRI have shown potential in quantifying oxygenation within a tumour 

in mouse models and in patients with hepatocellular236, lung110, rectal111 and head and neck 

cancers112. This is detailed more thoroughly in chapter 1, but it is important to state here that 

to date OE-MRI has only been reported in two patients with cervical cancer in a descriptive 

analysis only109. QIBs require technical and biological/clinical validation then assessment of 

clinical utility prior to clinical implementation56. Biological/clinical validation is discussed in 

chapter 5 of this thesis. Two fundamental metrology areas that most directly address technical 

performance are ‘repeatability’ and ‘reproducibility’. Repeatability measures the same feature 

under identical or near identical conditions, whereas reproducibility measures the reliability of 

the QIB measuring system in different conditions237.  

 

Along with colleagues, I followed the ‘The Quantitative Imaging Biomarker Alliance (QIBA) 

Technology Performance Working Group’ framework when developing the novel sequences 

in this chapter197. This body of work a) assesses the repeatability of OE-MRI in healthy tissues, 

b) identifies a reference region for technical gas delivery assessment, and c) evaluates 

translation of OE-MRI onto the MR-Linac system in patients with LACC.  
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4.2 Study design 

 

Figure 4.1 provides an outline of the stages in sequence development and technical 

validation by highlighting key steps. 

 

 

Figure 4.1: An outline of the steps taken in this chapter. 
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4.3 Feasibility and sequence optimisation 

 

Initial work developed an imaging protocol in a group of healthy volunteers. OE-MRI 

sequences were developed in six healthy volunteers, scanned at two time-timepoints. Images 

were assessed for artefact, distortion, and signal-to-noise ratio after each examination (Figure 

4.2). Relevant changes to the acquisition parameters aimed to improve these criteria were 

implemented, and the next healthy volunteer was scanned using the updated protocol. The 

protocols were finalised once a volunteer had two acceptable imaging sessions. The data 

generated from the initial experiments is not presented in the thesis, but the locked down 

protocol and acquisition parameters are presented here. 

Figure 4.2: Early examples of healthy volunteer pelvic imaging using OE-MRI sequences in 

development. Artefact (*) from areas of signal drop out in (a) and oxygen tubing interposed 

between participant and the anterior body coil in (b). Initial assessment of the uterine body (c) 

in a higher quality OE-MRI scan resulted in (d) an arbitrary signal time-series which shows a 

change in signal following 100% oxygen delivery. 
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4.4 Main study data acquisition 

4.4.1 Healthy volunteer recruitment 

 

Twelve volunteers (age: 28 ± 5.9 years; µ ± SD) were recruited and allocated to the Diagnostic 

MRI only = 3, MR-Linac only = 4, or both = 5. Eleven volunteers were scanned twice, 14 ± 19 

days apart. For a 6-week period in December 2021 to January 2022, all clinical research 

activities were suspended at The Christie Hospital. This along with volunteer illness and a 

busy work rota resulted in missed scheduled appointments aimed at imaging volunteers 7 

days apart. 

 

4.4.2 MRI assessments overview 

 

T1 mapping and OE-MRI acquisitions were performed by radiographers at The Christie 

Hospital. Analysis was performed with help from Michael Berks (motion tracking model) and 

Michael Dubec (T1 and OE MRI analysis) from the QBI Lab. All native T1 values acquired on 

a particular MR system are presented together as these are unaffected by the hyperoxic gas 

challenge. 

 

OE-MRI was performed using 100% oxygen and carbogen (98% oxygen, 2% carbon dioxide) 

enhanced- sequences and was well tolerated by all participants. Acquisition time for the 

dynamic OE-MRI sequence was 18 minutes on the Diagnostic MRI and 19.5 minutes on the 

MR Linac. Previous work assessing the effects of carbogen (95% oxygen/5% CO2) and 100% 

oxygen on T1 shortening of healthy tissues found no consistent differences between the 

hyperoxic gases in small numbers of participants238,239, but we evaluated both gases in the 

healthy volunteers.  

 

As OE-MRI has a low signal-to-noise ratio (SNR), a quality control (QC) region can act as a 

positive control within the subject and is useful to exclude technical failures of gas inhalation. 

Initial measurements in the subcutaneous fat overlying the gluteal region were too ‘noisy’ and 

were not investigated any further (Figure 4.3). A motion tracking model was applied when 

investigating uterine body measurements due to known issues with organ motion194. Reported 

healthy tissue regions in this chapter include the uterine body (UB), right psoas muscle and 

L5 vertebral body, and these were compared with healthy uterine cervix (UC) measurements. 

Representative ΔR1 parameter maps from two participant visits and repeatability measures 

are provided for the UC and UB regions. 
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Figure 4.3: An example of ‘noisy’ signal from subcutaneous fat (left panel) which failed to show 

a meaningful ΔR1 trace following signal conversion (right panel). 

 

 

4.5 Diagnostic MR assessments 

4.5.1 Measurement and repeatability of native T1 

 

UC and UB T1 measures for all healthy volunteer (HV) visits are summarised in Table 4.1. The 

mean ± SD of all UC and UB measurements are similar, 1305 ± 234 ms vs 1338 ± 74 ms 

respectively. The uterine subregions also have similar repeatability measures: wCV = 7% and 

RC = 266 for UC, and wCV = 5% and RC = 200 for UB. The repeatability statistics are plotted 

in Figure 4.4 and all values lay within the 95% intervals of agreement on Bland-Altman 

analysis. 
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Table 4.1 Healthy tissue uterine cervix (UC) and uterine body (UB) T1 values (ms) for all 

participants scanned on the Diagnostic MR. Repeatability measures wCV (within subject co-

efficient of variation) and repeatability co-efficient (RC) along with upper and lower limits of 

confidence are also given. UC and UB mean and 1 standard deviation measures for the sub-

group are given in the last two rows. 

 

Tissue Study ID Visit 1 Visit 2 wCV (%) RC (95% CI) 

Uterine cervix HV 6 1857† 1887† 7 266 (180 - 510) 
 

HV 7 1161 1252 
 

HV 8 1221 1225 
 

HV 9 1393 1160 
 

HV 10 1269 1235 
 

HV 12 1302 1128 
 

HV 13 1178 1180 
 

HV 14 1334 1104 

Uterine body HV 6 1192 1340 5 200 (135 - 384) 
 

HV 7 1363 1203 
 

HV 8 1383 1406 
 

HV 9 1325 1337 
 

HV 10 1395 1443 
 

HV 12 1254 1431 
 

HV 13 1300 1300 
 

HV 14 1385 1342 

UC µ ± SD 
 

1339 ± 223 1272 ± 254 
  

UB µ ± SD 
 

1325 ± 72 1350 ± 78 
  

 

†Outlier results due to fluid distending the endocervical canal  
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Figure 4.4: Native T1 repeatability measurements for uterine cervix in (a) and (b), and uterine 

body in (c) and (d) as acquired on the Diagnostic MR. wCV = within subject co-efficient of 

variation and RC = repeatability co-efficient. HV = healthy volunteer. 

 

 

4.5.2 Uterine body (UB) motion tracking 

 

The UB is susceptible to motion and deformation secondary to urinary bladder filling. A ‘motion 

tracking’ model was applied to the 16 healthy volunteer visits (Figure 4.5). UB ‘motion tracked’ 

R1 timeseries (red line) compared to ‘static’ R1 (blue line) showed a) little variation in baseline 

calculation compared to peak enhancement calculation, and b) a more consistent decrease in 

R1 when participants were switched from hyperoxic gas to medical air breathing at the 71st 

timepoint. The model failed to correct motion from sources other than the urinary bladder e.g., 

in HV 7 visit 2 rectal distension caused an oscillatory motion of the uterine body resulting in 

periodic peaks and troughs (Figure 4.5). 
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Figure 4.5. R1 time series in the UB for participants imaged on the Diagnostic MR derived 

using two methods: motion tracked (red) and static (blue) regions of interest (ROIs). Note that 

the y axis is scaled to fit each healthy volunteer (HV) visit and varies between cases. 
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Figure 4.6: All healthy tissue assessments on Diagnostic MR for (a) Uterine cervix, (b) Uterine body, (c) Psoas muscle, and (d) L5 vertebral body. 

Cohort level changes for all participant visits are shown in the top row, with error bars representing the standard error of the mean. Individual ΔR1 

time series are shown for visit 1 (middle row) and visit 2 (bottom row). Note the difference in y axis scale for cohort and individual time series.  

HV = healthy volunteer. 
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4.5.3 Healthy tissue assessment of oxygen-induced ΔR1 

 

MRI parameter assessments in the four healthy tissues showed significant oxygen-

enhancement in traces in the UC and UB regions ( 

Figure 4.6), and UB was selected as a QC region for OE-MRI performed on the Diagnostic 

MR. The UB and UC R1 timeseries had five stages; (a) baseline1: on the 0-25 timepoints 

(medical air breathing, (b) ascent: rise in signal between the 26-40 timepoints (hyperoxic gas 

breathing), (c) plateau: minimal change between the 41-70 timepoints (100% oxygen 

breathing), (d) descent: drop in signal between the 71-80 timepoints (medical air breathing), 

and (e) baseline2: minimal change at baseline between 81-91 timepoints (medical air 

breathing). No significant change in R1 was seen in the psoas (skeletal muscle) or the L5 

vertebral body (bone) when participants breathed a hyperoxic gas. 

 

 

4.5.4 Repeatability measurements of oxygen-induced ΔR1 

 

All 8 participants were evaluated for repeatability. Example healthy tissue UC and UB ΔR1 

parameter maps (Figure 4.7) show MRI parameter spatial heterogeneity when compared 

between different tissues on the same visit, and between similar tissue regions across the two 

visits. Biomarker repeatability statistics are shown in Figure 4.8 and Table 4.2 summarises the 

healthy tissue UC and UB ΔR1 values for all participants scanned on the Diagnostic MRI. An 

unpaired Student’s t-test was used to assess for significant change from baseline (p < 0.05).  

All UC and UB ΔR1 values were significant. UC ΔR1 within subject coefficient of variability 

(wCV) was better than UB (49% vs 55%). In an estimate of agreement analysis shown by 

Bland-Altman plot, all 8 participant measurements were within the 95% intervals of agreement 

for both tissue types. 
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Figure 4.7: Example images acquired over two visits for participant (HV 7) imaged on the 

Diagnostic MR are shown: T2-w anatomy (top row) and ΔR1 parameter maps (UC = middle 

row; UB = bottom row) overlaid on the inversion recovery T1 mapping sequence. HV = healthy 

volunteer; UB = uterine body; UC = uterine cervix. 
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Figure 4.8: ΔR1 repeatability measurements for uterine cervix in (a) and (b), and uterine body 

in (c) and (d) as acquired on the Diagnostic MR. wCV = within subject co-efficient of variation 

and RC = repeatability co-efficient. HV = healthy volunteer. 

 

 

Table 4.2: Healthy tissue UC and UB ΔR1 values (s-1) for all participants scanned on the 

Diagnostic MR. Significant parameter changes from baseline are highlighted (*). Repeatability 

measures wCV and RC along with upper and lower limits of confidence are also given. UC 

and UB mean and 1 standard deviation measures for the sub-group are given in the last two 

rows. 

 

Tissue Study 

ID 

visit 1 visit 2 wCV 

(%) 

RC (95% CI) 

Uterine cervix HV6 0.0237* 0.0179* 49 0.0367 (0.0248 - 

0.0704) 
 

HV7 0.0615* 0.0411* 
 

HV8 0.0328* 0.0120* 
 

HV9 0.0569* 0.0142* 
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HV10 0.0278* 0.0293* 

 
HV12 0.0130* 0.0114* 

 
HV13 0.0209* 0.0310* 

 
HV14 0.0194* 0.0195* 

Uterine body HV6 0.0139* 0.0342* 55 0.0366 (0.0247 - 

0.0701) 
 

HV7 0.0200* 0.0560* 
 

HV8 0.0261* 0.0288* 
 

HV9 0.0284* 0.0264* 
 

HV10 0.0331* 0.0103* 
 

HV12 0.0102* 0.0327* 
 

HV13 0.0196* 0.0133* 
 

HV14 0.0159* 0.0142* 

UC µ ± SD 
 

0.032 ± 

0.018 

0.022 ± 0.011 
  

UB µ ± SD  0.021 ± 

0.008 

0.027 ± 0.015   

 

 

 

4.6 MR Linac assessments 

4.6.1 Measurement and repeatability of native T1 

 

UC and UB T1 measures for all healthy volunteer visits are summarised in Table 4.3. The 

mean of all UC and UB visits are similar, 1256 ± 99 ms vs 1295 ± 95 ms respectively. The 

uterine subregions once again have very similar repeatability measures: wCV = 6% and RC = 

204 for UC, and wCV = 6% and RC = 227 for UB. The repeatability statistics are plotted in 

Figure 4.9 and showed a single UB measurement lay outside the 95% intervals of agreement 

on Bland-Altman analysis. 
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Table 4.3: Healthy tissue UC and UB native T1 values (ms) for all participants scanned on the 

MR Linac. Repeatability measures wCV and RC along with upper and lower limits of 

confidence are also given. UC and UB mean and 1 standard deviation measures for the sub-

group are given in the last two rows. UC = uterine cervix, UB = uterine body, HV = healthy 

volunteer, wCV = within subject co-efficient of variation and RC = repeatability co-efficient.  

 

Tissue Study ID Visit 1 Visit 2 wCV (%) RC (95% CI) 

Uterine cervix HV 6 1291 1290 6 204 (138 – 392) 
 

HV 7 1314 1178 
 

HV 8 1097 1312 
 

HV 9 1138 
 

 
HV 10 1305 1265 

 
HV 15 1436 1413 

 
HV 16 1262 1341 

 
HV 17 1151 1266 

 
HV 18 1159 1133 

Uterine body HV 6 1303 1298 6  227 (154 – 436) 
 

HV 7 1276 1248 
 

HV 8 1231 1309 
 

HV 9 1268 
 

 
HV 10 1394 1418 

 
HV 15 1291 1569 

 
HV 16 1242 1296 

 
HV 17 1171 1311 

 
HV 18 1187 1207 

UC µ ± SD 
 

1239 ± 110 1275 ± 89 
  

UB µ ± SD 
 

1262 ± 67 1332 ± 113 
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Figure 4.9: Native T1 repeatability measurements for uterine cervix in (a) and (b), and uterine 

body in (c) and (d) as acquired on the MR Linac. wCV = within subject co-efficient of variation 

and RC = repeatability co-efficient. HV = healthy volunteer. 

 

 

4.6.2 Uterine body (UB) motion tracking 

 

The same ‘motion tracking’ model was applied to scans acquired on the MR Linac (Figure 

4.10). UB ‘motion tracked’ R1 timeseries (red line) was unable to correct motion induced signal 

corruption in three visits: HV 15 visit 1, HV visit 2 and HV 18 visit 2. Review of the images 

showed the motion corruption in these participants was largely due to colonic and rectal wall 

peristalsis. These participant visits were not assessed any further. 
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Figure 4.10: R1 time series in the UB for participants imaged on the MR Linac derived using 

two methods: motion tracked (red) and static (blue) ROIs. Note that the y axis is scaled to fit 

each HV visit and varies between cases. HV = healthy volunteer.
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4.6.3 Healthy tissue assessment of oxygen-induced ΔR1  

 

Colorectal bowel wall motion also corrupted the signal from two UC regions in this dataset as 

evident by the ΔR1 time series plots (Figure 4.11). These are the same participant visits 

identified in the previous section (HV 15 visit 1 and HV 18 visit 2). These measurements were 

not included in any further analysis.  

 

MRI parameter assessments in the four healthy tissues showed meaningful traces in the UC 

and UB regions (Figure 4.12), and UB was selected as a QC region for OE-MRI performed on 

the MR Linac. Like the Diagnostic MR results, the psoas muscle and L5 vertebral body tissues 

did not have a significant change in R1 following hyperoxic gas challenge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: UC ΔR1 time series from two selected participants. Analysis of the images shows 

significant colorectal wall motion corrupting the dynamic OE signal, and the measurements 

are not analysed any further. HV = healthy volunteer. 
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Figure 4.12: All healthy tissue assessments on MR Linac for (a) Uterine cervix, (b) Uterine body, (c) Psoas muscle, and (d) L5 vertebral body. 

Cohort level changes for all participant visits are shown in the top row, with error bars the standard error of the mean. Individual ΔR1 time series 

are shown for visit 1 (middle row) and visit 2 (bottom row). Note the difference in y axis scale for cohort and individual time series. HV = healthy 

volunteer.
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4.6.4 Repeatability measurement of oxygen-induced ΔR1 

 

UC and UB ΔR1 repeatability statistics were assessed in 6 out of the 9 volunteers imaged on 

the MR Linac. Example healthy tissue UC and UB ΔR1 parameter maps (Figure 4.13) 

demonstrate biomarker heterogeneity when participants are scanned on the MR Linac system. 

Repeatability statistics were plotted in Figure 4.14 and summarised in Table 4.4. All non-

motion corrupted results showed significant changes in R1 measurements from baseline. UC 

ΔR1 wCV was better than UB (23% vs 47%). All measurements were within the Bland-Altman 

95% intervals of agreement for both tissue types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Example images acquired over two visits for participant (HV 10) imaged on the 

MR Linac are shown: T2w anatomy (top row) and ΔR1 parameter maps (UC = middle row; 

UB = bottom row) overlaid on the inversion recovery T1 mapping sequence. UC = uterine 

cervix, UB = uterine body and HV = healthy volunteer. 
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Figure 4.14:  ΔR1 repeatability measurements for uterine cervix in (a) and (b), and uterine 

body in (c) and (d) as acquired on the Diagnostic MR. wCV = within subject co-efficient of 

variation and RC = repeatability co-efficient. HV = healthy volunteer. 
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Table 4.4: Healthy tissue UC and UB ΔR1 values (s-1) for all participants scanned on the MR 

Linac. Significant parameter changes from baseline are highlighted (*). Repeatability 

measures wCV and RC along with upper and lower limits of confidence are also given. UC 

and UB mean and 1 standard deviation measures for the sub-group are given in the last two 

rows. UC = uterine cervix, UB = uterine body, HV = healthy volunteer, wCV = within subject 

co-efficient of variation and RC = repeatability co-efficient. 

 

Tissue Study 

ID 

visit 1 visit 2 wCV 

(%) 

RC (95% CI) 

Uterine 

cervix 

HV6 0.0394* 0.0399* 23 0.0206 (0.0133 - 

0.0453) 
 

HV7 0.0126* 0.0306* 
 

HV8 0.0344* 0.0212* 
 

HV9 0.0135* 
 

 
HV10 0.0247* 0.0217* 

 
HV15 

 
0.0313* 

 
HV16 0.0333* 0.0456* 

 
HV17 0.0423* 0.0437* 

 
HV18 0.0232* 

 

Uterine body HV6 0.0274* 0.0245* 47 0.0492 (0.0317 - 

0.1083) 
 

HV7 0.0353* 0.0615* 
 

HV8 0.0540* 0.0298* 
 

HV9 0.0612* 
 

 
HV10 0.0228* 0.0436* 

 
HV15 

  

 
HV16 0.0491* 0.0230* 

 
HV17 0.0578* 0.0206* 

 
HV18 0.0257* 

 

UC µ ± SD  0.028 ± 

0.011 

0.033 ± 

0.010 

  

UB µ ± SD  0.042 ± 

0.016 

0.034 ± 

0.016 

  

 

 

 

 



 139 

4.7 Discussion 

 

The data presented in this chapter report the first healthy volunteer repeatability study of OE-

MRI in the female pelvis. This is also the first study to successfully translate OE-MRI in the 

female pelvis on to the MR Linac system. The results show that the locked down protocol was 

well tolerated in both sets of healthy volunteers. No adverse events were reported. A motion 

tracking analysis was incorporated and used to provide a QC step. The repeatability of both 

native T1 and ΔR1 were measured. 

 

Diagnostic MR vs MR Linac native T1 measurements were similar for both UC and UB regions. 

The native T1 values were within the expected range compared to a very limited published 

literature that recognises variations secondary to the implemented MRI protocol (magnetic 

field strength and technique)240. The UB and UC ROIs included fluid within the endocervical 

or endometrial cavities which attenuated the signal returned from the target tissues. This may 

explain the T1 variation in the data which is higher than other published literature241,242.  

 

Quantitative imaging parameters must be comparable over time, between subjects and across 

scanners. Subtle variations in scanner hardware and software may influence the MR signal. 

Discrepancies in T1 mapping are well documented in the literature and believed to be 

secondary to an inhomogeneous static magnetic field (B0) or RF field (B1)243. Despite the 

relatively small effects, there may be a significant impact on image quality and MR parameter 

technical validation (accuracy and precision)244. Furthermore, it is necessary that any 

observed differences across MR systems and in longitudinal studies are due to the underlying 

biological phenomena. To further the clinical use of quantitative imaging, the Quantitative 

Imaging Biomarkers Alliance (QIBA)197 and the Quantitative Imaging Network (QIN)245 have 

issued guidance on the use of standard protocols and phantoms. The use of MR phantoms 

enables multi-site multi-scanner comparison and MR signal validation for a specified protocol. 

A T1 mapping phantom which is sensitive to variations in the partial pressures of dissolved O2 

does not exist (Appendix 2). It is recognised that even highly optimised techniques which have 

been carefully validated in phantoms may result in T1 discrepancies when imaging in vivo243. 

 

Significant increases in R1 measurements followed hyperoxic gas challenge in UB and UC 

healthy tissues in all non-motion corrupted measurements. No meaningful change was 

observed in psoas skeletal muscle, L5 vertebral body or subcutaneous fat overlying the gluteal 

muscles. This suggests that the UB region can be selected as a reference for QC in the patient 

study, as it is anatomically distinct from the site of tumour in patients with LACC. A sagittal 

scan orientation may explain why tissues (subcutaneous fat and psoas muscle) located at the 
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edge of the scan and far from the isocentre, did not return significant changes in signal 

following gas challenge. 

 

We used an IR TFE technique which requires a relative short time to acquire at the expense 

of spatial resolution, and because inversion recovery prepared turbo spin echo (IR TSE) is the 

gold standard for T1 mapping. We converted the signal intensity into R1 measurements, since 

change in R1 is proportional to change in pO2, and measuring ΔR1 may allow for more 

meaningful comparison between different tissues and different scanners105. It should be noted, 

however that there is no current consensus on how OE-MRI data should be analysed and 

other groups report signal intensity change246 (Appendix 3). 

 

It is also important to assess measurement precision both for a potential biomarker and for a 

QC reference region. UC ΔR1 measures were more repeatable than UB measures. When 

compared to other studies that have looked at OE-MRI repeatability in healthy tissues such 

as the liver236 and the nasal conchae112, our results show worse repeatability statistics. Table 

4.2 and Table 4.4 highlight the relatively large repeatability coefficient (RC) values as 

measured on the Diagnostic MR and MR Linac systems respectively. The RC values are 

higher than the ΔR1 measurements except for UC measurements on the MR Linac. In other 

words, if the smallest real difference between two measurements is larger than the magnitude 

of the measurement, then there is poor absolute reliability247. Differences in both the 

magnitude and repeatability of the ΔR1 may reflect two factors: a) inherent tissue 

characteristics, and b) signal corruption from motion. The uterine cervix is primarily composed 

of fibromuscular tissue (stroma) and a mucosal lining, whereas the uterine body is a 

combination of smooth muscle (myometrium) and epithelial lining (endometrium). Both regions 

are under systemic hormonal regulation with cyclic variations in blood perfusion, blood volume 

and tissue metabolism. These physiological fluctuations have a complex relationship which 

underlies the observed R1 changes in all OE-MRI experiments238. A potential solution may be 

to image healthy volunteers at the same timepoint in their menstrual cycle to minimise the 

impact of hormonal variation in ΔR1 measurements.  

 

The literature reports vasoconstriction and reduced blood flow following 100% oxygen 

inhalation248,249, which is the main reason why carbogen gas inhalation is preferred in the 

radiotherapy setting17,200. Carbogen is said to counteract the oxygen-induced 

vasoconstriction250, though the optimal gas mixture (oxygen to carbon-dioxide ratio) for 

treatment is not defined251. In small participant numbers, there was no clear difference in the 

absolute measurements obtained using 100% oxygen or carbogen gas (98% oxygen/2% 

carbon dioxide), or shape in the time series enhancement, in keeping with previous 
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studies238,239. Furthermore, the repeatability appeared to be similar in subjects breathing the 

two gases. Given the small numbers, there is no meaningful statistic I can apply to formally 

assesses this. The disagreement between the therapeutic and imaging studies reported above 

may be due to the differences in the imaged cohorts. The imaging studies were performed in 

healthy volunteers whereas the therapeutic effects were noted in patients with tumours. The 

disorganised neo-vasculature within tumours is thought to be more sensitive to the 

vasoconstrictive effects of 100% oxygen inhalation, whereas these effects are negligible in 

healthy tissues. This explains why imaging using carbogen-enhanced T2* based techniques 

(blood oxygen dependent MR) show a change in signal between the air-carbogen-air 

breathing phases252.  Carbogen based hypoxia modification therapies have shown some early 

promise in cervical cancer treatment20, and combined carbogen based imaging and treatment 

on the MR Linac is worth exploring.   

 

In this current study we used a motion tracker model, however this had limited success in 

correcting for motion from sources other than urinary bladder filling. An alternative approach 

is to perform a robust motion corrective strategy (Appendix 4). Motion corrective strategies are 

not typically applied to diagnostic MR imaging and are more common in RT delivery where 

precise application of the RT field is important.  

 

In the upcoming chapter, I will discuss the patient data from the BioCHECC study. Poor test-

retest reliability is arguably more impactful within the patient data. Not only because precise 

tumour measurements are of utmost importance, but the magnitude of ΔR1 measurements are 

smaller in hypoxic tumours which directly effects reliability. If qualitative assessments are 

clinically acceptable, binary hypoxic vs normoxic tumour classification, then this potential error 

can be mitigated. For example, patients undergo two OE-MR imaging sessions prior to 

treatment to assess repeatability and if both sessions classify the tumour as hypoxic, then the 

patient is prescribed a hypoxia modifying therapy. Subsequent on-treatment imaging can be 

performed pre- and post- radiotherapy to monitor treatment efficacy.  

 

Another consideration prior to implementation in a patient workflow is the complex image 

analysis. When defining ROIs, intra- and inter- reader variability is well documented and 

automated segmentation strategies are likely to be helpful in the future. 

  

In summary, work in this chapter demonstrates successful implementation and 

characterisation of an OE-MRI protocol for use in the female pelvis, both on a diagnostic 1.5T 

MR system and on an MR Linac. 
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5 Investigating biomarkers of hypoxia in patients with locally 

advanced uterine cervical cancer 

 

The work in this chapter was performed as part of a large collaborative. I recruited and 

consented patient participants with the help of the gynae-oncology clinical team (Peter Hoskin, 

Lisa Barraclough and Kate Haslett). Pre-treatment diagnostic biopsy samples were requested 

and initially processed by the gynae-oncology research team (Emma Buckley, Giorgio 

Arnetoli, Chelsey Wheeler, and Melanie Oddy). On-treatment biopsy samples were acquired 

in brachytherapy theatres by the gynae-oncology clinical team (Peter Hoskin and Lisa 

Barraclough). I was helped in RNA extraction and storage by CRUK AP core facilities (Garry 

Ashton, David Millard and Caron Behan) and the TRB lab (Sapna Lunj, Kamilla Bigos and 

Rachel Reed). RNA microarray analysis was performed by Your Gene Health (Manchester, 

UK). Bioinformatics analysis was performed alongside Mark Reardon (TRB lab). 

 

Sequences were developed alongside the Christie Medical Physics team (David Buckley, 

Michael Dubec, Damien McHugh). Image acquisition was performed at The Christie Hospital 

by on site radiographers. The image analysis work was carried out in collaboration with the 

QBI Lab at the University of Manchester (Michael Berks, Sue Cheung, Michael Dubec, Ross 

Little, led by James O’Connor) and Christie Medical Physics at The Christie Hospital (David 

Buckley, Michael Dubec, Damien McHugh). Statistical evaluation was discussed with James 

O’Connor, along with Nuria Porta at the Clinical Trials and Statistics Unit of The Institute of 

Cancer Research. 

 

 

5.1 Introduction 

 

In this chapter I apply the OE-MRI protocols developed in Chapter 4 to patients with LACC 

undergoing treatment. The aims were to assess technique feasibility in this clinical population, 

to evaluate response to therapy, and to compare how OE-MRI changes related to those 

derived from other MRI techniques. 

 

DCE-MRI has been thoroughly investigated over several decades as a surrogate 

measurement technique for hypoxia in cervical cancer due to the strong association between 

tumour perfusion and oxygenation253. Most of the research published on this topic is from one 

research group led by Prof H. Lyng and they have suggested several different clinical and pre-

clinical mouse models135,254–257 associating hypoxia with DCE-MRI derived quantitative 
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biomarkers. This body of work includes deriving and validating a 31-gene signature47 and 6-

gene classifier48 from a DCE-MRI parameter termed ABrix.  

 

IVIM has gained considerable momentum in oncology imaging recently, and is especially 

attractive for daily imaging, largely due to the lack of exogenous contrast agents258. It can 

provide information about tumour microstructure and microvasculature, which may be used to 

infer hypoxia status using the consumption-supply imaging hypothesis136. 

 

However, both DCE-MRI and IVIM have at best an indirect relationship with tumour hypoxia. 

OE-MRI is sensitive to changes in the spin-lattice relaxation rate (ΔR1) following delivery of 

100% oxygen259 delivery in tissues238. Previous pre-clinical evaluation validated ΔR1 as a 

measurement of tumour hypoxia and subsequent translation in patients with non-small cell 

lung cancer showed that the biomarker identified and mapped hypoxia in human tumours, and 

detected hypoxia modification following chemoradiotherapy107,108,110. We sought to extend the 

OE-MRI work developed in Manchester in lung cancer imaging to patients with LACC. 

 

This chapter a) evaluates parameter differences between healthy cervix tissue and cervical 

tumours, b) assesses the sensitivity of the imaging biomarkers derived from each of the three 

techniques to chemoradiotherapy-induced changes in uterine cervical tumours, and c) 

explores possible associations between the imaging and gene signature classification. 
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5.2 Study design 

 

Figure 5.1 provides an outline of the stages in patient recruitment, data acquisition and 

analysis in this study. 

 

 

 

Figure 5.1: An outline of the steps taken in this chapter. 
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5.3 Data acquisition 

5.3.1 Patient recruitment 

 

The patient study was open for recruitment on 01/04/2021 and will run until 31/10/2024 (the 

study timeline is presented in greater detail in Chapter 2). Patients recruited until 01/08/2022 

are included in the thesis. All patient clinicopathological parameters are accurate as of 

01/11/2022. 

 

5.3.2 Study interventions 

 

Diagnostic biopsy material preserved in FFPE blocks and surplus to clinical use, were 

requested from the hospitals where they were acquired and stored. Tissue taken at time of 

first brachytherapy was preserved in formalin and sent to CRUK-AP for fixation. Samples were 

processed within 48 hours and returned to the TRB Lab for analysis. Imaging was acquired 

on a diagnostic 1.5T Philips Ingenia MR-RT (Philips Healthcare, Best, Netherlands), or a MR-

Linac system (Elekta AB, Stockholm, Sweden) equipped with a Philips Marlin 1.5T MRI 

scanner (Philips Healthcare, Best, Netherlands). All OE-MRI imaging was obtained with 100% 

oxygen gas (OE-MRI), since no clear advantage was seen with carbogen inhalation in healthy 

volunteers evaluated in chapter 4. Next, 20 mg Buscopan® was administered via a slow intra-

venous injection just prior to imaging, when the patient was on the table. Imaging data were 

anonymised and transferred to the QBI servers for analysis. There were no study intervention 

related complications and all patients completed EBRT within the allotted time. Diagnostic MRI 

and MR Linac patient datasets were pooled for analysis. 

 

As hypoxia is a dynamic entity224, knowledge of measurement timing is useful for meaningful 

biomarker interpretation. The temporal relationships of study interventions to start of treatment 

are shown in Table 5.1. Diagnostic biopsy and pre- external beam radiotherapy (EBRT) scan 

values are the number of days prior to the start of EBRT. Mid-EBRT scan, on-treatment biopsy 

and end-EBRT scan values are the number of days from the start of EBRT. Number of EBRT 

fractions delivered by the time of intervention is provided in brackets. Diagnostic biopsies were 

acquired 50 ± 13 (µ ± SD) days prior to the start of treatment, and baseline imaging acquired 

8.4 ± 7.5 days prior. There was better temporal overlap between the end-EBRT scan and on-

treatment biopsy (32 ± 1.7 vs 38 ± 2.3 days respectively).  
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Table 5.1: Temporal relationships of study interventions for each patient. Numbers are either 

days to (-) or days from (+) start of treatment. 

ID diagnostic 

biopsy 

pre-EBRT 

scan 

mid-EBRT 

scan 

end-EBRT 

scan 

on-treatment 

biopsy 

1 -49 -12 +16 (13#) +30 (23#) +36 (25#) 

2 -39 -4 +17 (14#) +32 (25#) +37 (25#) 

3 not analysed^ -4 +18 (14#) +31 (23#) +37 (25#) 

4MRL -69 not acquired not acquired not analysed† +43 (25#) 

5 -40 -6 +16 (13#) +31 (24#) +36 (25#) 

6MRL -46 -5 +18 (15#) +32 (25#) +37 (25#) 

7 -27 -3 not acquired* +35 (25#) +37 (25#) 

8 -61 -27 +16 (13#) +31 (24#) +36 (25#) 

9 -54 -14 not acquired* +33 (24#) +41 (25#) 

10MRL -53 -4 +15 (12#) +32 (25#) +37 (25#) 

11 -71 -5 +16 (13#) +30 (23#) +36 (25#) 

 

^Sample not arrived with research team 

*Study interventions not performed due to COVID-19 restrictions 

MRL = Imaging on MR-Linac system 

†Imaging used for setting up on the MR-Linac system  

 

 

5.4 Patient imaging analysis 

5.4.1 Qualitative assessments 

 

Initial qualitative analysis of the imaging highlighted altered anatomy within the patient 

population compared to the healthy volunteers (Figure 5.2). The uterine body (UB) region 

contained benign pathology such as leiomyomas (uterine fibroids) or hematometra (uterine 

distension with blood), which altered the signal characteristics of the uterine body tissue region 

of interest. 
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Figure 5.2 : Two patients with hematometra (white asterisk, left and middle panel), and a 

patient with multiple large leiomyomas (white star, right panel) almost replacing the entire 

normal uterine body tissue. 

 

 

5.4.2 Measurement of native T1 

 

Figure 5.3 shows a range of T1 measurements for participants in this study (healthy uterine 

tissues and cervical tumour) and those reported in literature. All quantitative T1 values 

acquired in this study were within published measurement ranges for healthy UB (1045-1991 

ms)242, healthy uterine cervix (UC; 1060 – 1695 ms)241, and cervical cancers (1016 – 1749 

ms)130,241. There was variation depending on uterine tissue subregion, scanner type and T1 

mapping sequence. No clear separation between tumour and healthy tissue T1 values was 

seen in any of the studies. 

 

 

 

 

* 
* 
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Figure 5.3: Healthy tissues (uterine body and uterine cervix) and cervical tumour T1 values 

measured in the BioCHECC study were compared to those in published literature. Healthy 

tissue values are the mean of the two visits. 

Grey = healthy volunteer; and black = patient 

+ = Diagnostic MR patients; and X = MR Linac system 
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5.4.3 OE-MRI quality check for motion corruption 

 

Due to the relatively long acquisition time, OE-MRI was susceptible to motion-induced image 
artefacts. A visual analysis of the ΔR1 time series showed significant motion corruption in 
tumour regions for patients 3 and 9 ( 

 
 

 

Figure 5.4). These patient data have not been analysed any further. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: ΔR1 time series of the tumour regions for patients 3 and 9 show significant motion 

corruption. 

 

5.4.4 OE-MRI analysis of UB reference region (QA/QC) 
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OE-MRI was assessed in 8 patients. The first patient had a slightly different imaging protocol 

to the rest: 0-25 timepoints medial air breathing; 26-65 100% oxygen breathing; 66-80 medical 

air breathing. For this reason, ΔR1 is defined from baseline to mean of timepoints 56-65. 

 

Summary of patient UB ΔR1 parameters are shown in Table 5.2. Significant changes in ΔR1 

were not seen in 2 patient baseline visits. These results were due to the UB ROI assessing 

hematometra rather than uterine body tissue (patients 2 and 7). Pre-treatment baseline mean 

calculation did not include these two patient visits. The mean ± SD parameter values increased 

with treatment: pre = 0.0197 ± 0.0174 s-1; mid = 0.0270 ± 0.0169 s-1; end = 0.0340 ± 0.0123 

s-1. ΔR1 timeseries and boxplots showed cohort level changes in Figure 5.5. Patient 1 has 

been omitted from the timeseries due to the different acquisition protocol. Paired t-test 

between pre to mid results showed a significant change (p = 0.019) and a trend towards 

significance from pre to end (p = 0.087). 

Table 5.2: MRI parameter values (s-1) for uterine body assessments. Significant change from 

baseline calculated using an unpaired t-test and denoted by *. 

 

ID Pre Mid End 

1 0.0497* 0.0545* 0.0447* 

2 -0.0016 0.0172* 0.0164* 

5 0.0059* 0.0102* 0.0344* 

6 0.0102* 0.0286* 0.0491* 

7 0.0020 
 

0.0342* 

8 0.0030* 0.0084* 0.0312* 

10 0.0230* 0.0277* 0.0449* 

11 0.0267* 0.0423* 0.0170* 

UB µ ± SD 0.0197 ± 0.0174 0.0270 ± 0.0169 0.0340 ± 0.0123 
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Figure 5.5: ΔR1 parameter timeseries and boxplots show cohort level changes in the uterine 

body. Patient 1 has been omitted from the timeseries due to the different acquisition protocol. 

Significance from baseline marked above mid and end boxplots so that * = significant result 

and ns = non-significant result.  

 

 

 

5.4.5 OE-MRI analysis of cervical tumour 

 

Individual tumour ΔR1 parameter timeseries paired with representative parameter maps are 

shown in Figure 5.6. Tumour parameter maps at the mid-tumour level have been selected. 

Uterine cervical tumours are large and show heterogenous spatial distribution of the 

biomarker. Areas of hypoxia and/or necrosis (black voxels) tended to be centrally located at 

the start of treatment. During treatment, all tumours reduced in size though there was 

variability in ΔR1 response with some tumours showing minimal change in the timeseries trace 

(e.g., patient 2).  

 

Table 5.3 summarises the ΔR1 tumour values across visits. All tumours showed a significant 

increase in the ΔR1 parameter from baseline to peak oxygen enhancement. The tumour mean 

parameter values ± SD increased with treatment at a cohort level: pre = 0.0116 ± 0.0089 s-1; 

mid = 0.0260 ± 0.0168 s-1; end = 0.0269 ± 0.0196 s-1. Six out of the eight individuals 

demonstrated a consistent increase in ΔR1. Patient 5 was the only participant to show 
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consistent decreases in ΔR1 with treatment. ΔR1 timeseries and boxplots showed cohort level 

changes in Figure 5.7. Patient 1 has been omitted from the time series. Paired t-test between 

pre to mid results showed a significant change (p = 0.046) and a trend towards significant 

change from pre to end (p = 0.079). 
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Figure 5.6: ΔR1 parameter maps overlaid on the T1 mapping sequence paired with the ΔR1 

timeseries for each patient visit. *Patient 10 end- ΔR1 timeseries y-axis limits are consistent 

with the rest of the data though this has resulted in 3 datapoints not being displayed.  
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Table 5.3: MRI parameter values (s-1) for tumour assessments. Significant change from 

baseline calculated using an unpaired t-test and denoted by *. 

Participant pre mid end pre to 

mid 

pre to 

end 

1 0.0174* 0.0289* 0.0427* ↑ ↑ 

2 0.0065* 0.0109* 0.0087* ↑ ↑ 

5 0.0093* 0.0047* 0.0026* ↓ ↓ 

6 0.0033* 0.0469* 0.0250* ↑ ↑ 

7 0.0120* 
 

0.0224*  ↑ 

8 0.0081* 0.0164* 0.0212* ↑ ↑ 

10 0.0052* 0.0263* 0.0650* ↑ ↑ 

11 0.0307* 0.0479* 0.0277* ↑ ↓ 

Tumour µ ± SD 0.0116 ± 0.0089 0.0260 ± 0.0168 0.0269 ± 0.0196   

 

↑ = increase in parameter 

↓ = decrease in parameter 

 

Figure 5.7: ΔR1 parameter timeseries and boxplots showing cohort level changes. Patient 1 

has been omitted from the timeseries due to the different acquisition protocol. Significance 

from baseline marked above mid and end boxplots so that * = significant result and ns = non-

significant result. 
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5.4.6 Association with other MRI parameters 

 

Exploratory assessment of the 6 MRI parameters acquired at baseline using a Pearson’s rank 

correlation matrix are presented in (Figure 5.8). Strong positive associations were seen in 

‘cluster 1’ between ve and f (r = 0.86, p = 0.03), ve and Ktrans (r = 0.79, p=0.05) and f and Ktrans 

(r = 0.77, p = 0.07). The D parameter had a negative association with f which is not significant 

(r = -0.72, p = 0.10).  ΔR1 and tumour volume showed no meaningful associations with any of 

the parameters. The change from baseline to mid, or from baseline to end, was calculated for 

all MRI parameters (Δparameter). Patient visits were ranked by ascending ΔΔR1 values and 

compared to the other Δparameters (Figure 5.9). No clear associations in trend are seen 

between the Δparameters. Given the small numbers of measurements, it is not possible to 

interpret these associations in greater detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Pearson’s rank correlation matrix of the MRI parameters at baseline.  

Pearson’s r 
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Figure 5.9: ΔMRI parameters (pre to mid or pre to end) ranked by increasing ΔR1.  
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5.5 Patient gene expression analysis 

 

Pre-treatment biopsies and on-treatment biopsies were analysed with the de novo hypoxia 
associated 31-gene expression signature. Unfortunately, there were multiple samples that 
failed Clariom S TAC quality check ( 

Figure 5.10). Table 5.4 summarises the RNA quality checks (QC) for the samples. It is not 

clear why the samples failed. Samples that failed QC had a higher quantity and quality of 

RNA compared to samples that passed which suggests a plate processing error.  

 

 

 

Figure 5.10: Pass/fail results from Clariom S TAC QC, green and red bars respectively. 00* 

denotes pre-treatment biopsies and 01* denotes on treatment biopsies. Eight of the twelve 

pre-treatment biopsies failed. 

 
Table 5.4: RNA QC of prospective samples. 

TAC QC 

Outcome 

RNA 

concentration 

(ng/μl) 

p 
RNA quality 

(260/280) 
p 

RNA quality 

(260/230) 
p 

Fail 386 ± 307 0.000

414 

1.98 ± 0.09 0.000

526 

1.82 ± 0.37 0.000

565 Pass 79 ± 134 1.79 ± 0.16 1.23 ± 0.46 
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5.6 Imaging and gene expression correlation  

 

All samples that passed RNA QC and had ΔR1 values were compared. Patients were ranked 

by ΔR1. The results were compared with gene expression classifier status and other MRI 

parameters (Table 5.5). One patient (patient 7) had paired imaging-biopsy results at baseline 

and after 5 weeks of EBRT. No change in gene signature classification was seen, normoxia 

at both timepoints, however the change in the pre-end ΔΔR1 was 0.01037 s-1 (1.86 x baseline). 

Only one sample was classified as hypoxic by the gene signature (patient 5, on treatment 

biopsy from 9 o’clock). Though this sample has the lowest ΔR1 measurement, it is difficult to 

confidently interpret this result given the solitary result. The paired biopsy from this patient (on 

treatment biopsy from 3 o’clock) was classified as normoxic. Analysis of the OE-MRI images 

from this patient visit show no convincing differences in the ΔR1 parameter maps from the 3pm 

or 9pm positions (Figure 5.11). Review of the anatomical imaging showed that the 9 o’clock 

tumour site was invading the left parametrium and appeared to be the more aggressive tumour 

subregion. 

 

Table 5.5: Patient hypoxia assessments ranked by ΔR1 (s-1) measurements and compared to 

classifier (gene expression status), Ktrans (min-1), f, D (µm2/s) and tumour volume (cm3). MRI 

parameters presented are whole tumour values. 00* denotes pre-treatment biopsy and 01* 

denotes on treatment biopsies.  

ID Study timepoint Classifier ΔR1 Ktrans f D Volume 

01-005_3pm End-EBRT Normoxia 
0.00261 0.168 0.245 

 
0.876 109.35 

01-005_9pm End-EBRT Hypoxia 

00-002_3pm Pre-treatment Normoxia 
0.00647 0.163 0.103 0.903 77.49 

00-002_9pm Pre-treatment Normoxia 

01-002_9pm End-EBRT Normoxia 0.00871 0.180 0.170 1.190 17.06 

00-007 Pre-treatment Normoxia 0.01201 0.123 0.083 0.929 536.81 

01-007_12pm End-EBRT Normoxia 
0.02237 0.157 0.104 1.056 74.90 

01-007_6pm End-EBRT Normoxia 

01-006_3pm End-EBRT Normoxia 
0.02500 0.266   7.56 

01-006_9pm End-EBRT Normoxia 

01-011_6pm End-EBRT Normoxia 0.02771 0.209 0.173 1.113 23.54 

01-001_12pm End-EBRT Normoxia 0.04267 0.166 0.119 0.964 5.51 

01-010_12pm End-EBRT Normoxia 
0.06499 0.285  6.37 

01-010_6pm End-EBRT Normoxia 
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Figure 5.11: Paired T2w and OE-MRI images from two opposite sides of the tumour – 3 

o’clock (top row) and 9 o’clock (bottom row). 
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5.7 Discussion 

 

To the best of my knowledge, the data presented in this chapter report three first-in-human 

findings in patients with locally advanced cervical cancer: a) the first substantial application of 

the OE-MRI technique, b) the first molecular profiling of tumours following 5 weeks of 

treatment using a hypoxia gene expression signature, and c) the first correlation of hypoxia 

MRI and gene expression using two independently derived hypoxia biomarkers. The results 

show that the study interventions were well tolerated, and we assessed changes in tumour 

physiology using a multiparametric MRI protocol.  Due to an unknown technical error, I was 

unable to complete the gene expression analysis for many patient biopsies. 

 

Diagnostic MR and MR Linac native T1 measurements for cervical tumours at baseline were 

within the expected range derived from published literature130,241. These showed no significant 

difference when compared to UC healthy tissue values.  

 

The UB reference region showed significant changes in ΔR1 from baseline in all but two patient 

visits. The reference region measurements were affected by benign pathology not seen in the 

healthy volunteer cohort; however, this had a limited impact on the assessments. Interestingly 

the UB ΔR1 values increased with treatment. The cause for this is unclear, though the UB is in 

the radiation field and maybe susceptible to treatment related changes in blood flow. The UB 

measurements are primarily a tool to assess technical gas delivery and caution must be taken 

when interpreting these results. 

 

In the past, a small study (n=2) had demonstrated feasibility of OE-MRI as applied to cervical 

tumours at baseline109. The cervical tumours in our study demonstrated a cohort level increase 

in ΔR1 during treatment though individual responses varied. Furthermore, significant changes 

from baseline were seen approximately 16 days into treatment. These findings were consistent 

with other human OE-MRI studies in lung110, rectal111, and head and neck cancers112. An 

important consideration in OE-MRI studies is the impact of reducing tumour size secondary to 

treatment. Smaller tumour volumes have a reduced signal-to-noise ratio (fewer voxels being 

sampled), and therefore confidence in tumour ΔR1 measurement is also reduced. With 

decreasing tumour size, the measurements are more susceptible to motion corruption as 

evident by the ΔR1 parameter timeseries not returning to baseline following the switch from 

100% oxygen breathing to medical air breathing.  

 

Exploratory analysis of whole tumour ΔR1 or Δ.ΔR1 revealed no meaningful correlation with 

the other MRI parameters acquired in the study. Although the study was not formally powered, 
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the results suggested a mixed association between MRI parameters of microvascular blood 

volume, blood vessel permeability, the interstitial space volume and cellular microstructure. 

The lack of significant associations between ΔR1 and these MRI parameters may be because 

whole tumour ΔR1 is a complex measure of tumour oxygen delivery, tumour cellularity and 

necrosis107. This is the basis of the consumption-supply hypoxia imaging hypothesis and I 

explore integrating OE-MRI with the other functional imaging techniques in Chapter 6.  

 

Typically, the hypoxia associated gene signatures developed in the TRB Lab have been 

assessed on pre-treatment samples only93,199,203,204,208,210,211. Of the QC passed samples, only 

one was labelled hypoxic. Tumour reoxygenation following chemoradiotherapy is an 

established radiobiological principle260 and it is expected that post treatment samples are more 

likely to be normoxic. The exploratory results presented in this chapter support further 

investigation of the gene signature in the post treatment setting, though ideally measured at 

pre- and post- treatment timepoints and alongside another hypoxia biomarker. Furthermore, 

a differential expression analysis between pre- vs on- treatment patient matched samples will 

help understand whether the signature can be applied to the on-treatment setting. 

 

Paired samples taken from different regions of the same patient tumour were classified as 

normoxic and hypoxic. This finding is consistent with variability and relatively high 

standardised error in hypoxia gene expression signature scores/classification (sampling bias) 

when multiple biopsies are acquired94. This suggests intra-tumoral transcriptional 

heterogeneity and spatial variation in the signature genes. However it is important to note that 

studies have suggested multiple biopsies maybe required for genes that have a within-tumour 

variance to the total-tumour variance ratio >0.15 (W/T ratio)261. Whether the result reflects true 

intratumoural transcriptomic heterogeneity or signature misclassification can be evaluated by 

reviewing the median expression and W/T ratio of the signature genes.  

 

Interestingly, the solitary tumour sample classified as hypoxic corresponded with the lowest 

ΔR1 value, providing some evidence of an imaging-genomic relationship. A previous study has 

investigated combining imaging and genomic hypoxia biomarkers173, however our study differs 

from theirs in at least two ways. In our study, the hypoxia biomarkers have been derived 

independent of each other and the MRI parameter is hypoxia specific. Review of the patient 

biopsy with contrasting gene signature classification showed no difference in the functional 

imaging parameter maps acquired from the two subregions, however the ‘hypoxic’ subregion 

appeared more aggressive on anatomical imaging (demonstrating parametrial invasion). This 

suggests the need for complementary imaging-genomic strategies which are discussed in 

greater detail in chapter 6 of this thesis. 
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Unfortunately, an unknown technical error in the gene expression analysis resulted in a batch 

failure of multiple tumour biopsy samples and this work will be revisited in the future. Initially, 

a review of the steps involved in RNA extraction, RNA plating and running the Clariom S assay 

will help identify at what level the samples failed. Due to the complex nature of microarray 

analysis, accurate event and data recording helps identify whether the error was human (e.g., 

inaccurate preparation) or technical (e.g., poor RNA QC) in nature262. 

 

In summary, I have demonstrated hypoxia quantification, mapping and tracking in patients 

with locally advanced cervical cancer using OE-MRI at baseline and two on-treatment 

timepoints. Furthermore, exploratory analysis suggests correlation with a gene expression 

signature. 
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6 Conclusions and future work 

 

The most significant findings of the thesis were: a) development and validation of a hypoxia 

associated gene expression signature; b) development of female pelvis OE-MRI and ΔR1 

biomarker technical validation; c) translation of OE-MRI onto the MR-Linac; and d) evaluation 

of hypoxia modification secondary to chemoradiation using imaging-genomics in a prospective 

pilot study. 

 

6.1 Gene signature improvement 

 

The de novo gene expression signature was successfully developed and validated in a 

retrospective cohort of patients treated at The Christie. Established TRB lab protocols were 

used to develop the signature over two stages: generating whole transcriptome data from in 

vitro experiments (data acquisition) and bioinformatics data handling (data analysis). Given 

the study resources and accessibility to necessary equipment, I am certain I could not have 

generated the data in any other way. Gene signature development is a problem of 

dimensionality reduction, such that ~20,000 protein-coding genes are transformed into a 

select number of genes (a gene signature) that are highly targeted at identifying the clinical 

problem. This is typically done via a stepwise reduction as the data transforms to ‘seed genes’, 

then ‘candidate genes’ and finally the ‘gene signature’. The bioinformatic strategies aim to 

improve the signal-to-noise ratio, which directly impacts diagnostic accuracy of the final 

signature. The ideal signature is one that is strongly biologically relevant and contains a non-

redundant gene set. At each step, there remain several unexplored methods which may have 

influenced the final biomarker and are discussed below. A key underused resource in this 

study were in silico data. As our understanding of hypoxia associated transcripts has 

expanded, an increasing number of hypoxia datasets have been curated, such as the MSigDB 

hallmark gene set collection263. Resources such as TCGA and GEO provide multiple curated 

clinical cohorts which is the immediate next step for gene signature validation. 

 

There is no consensus on the best way to generate the seed gene list. Highly controlled in 

vitro data have the advantage of being cancer type and experimental condition specific, though 

it is debated how reflective the experimental conditions are of tumour hypoxia in vivo. 

Modelling cycling hypoxia using in vitro experiments is challenging, however advances in 

mathematical modelling and cellular imaging may help better predict physiologically relevant 

thresholds264. The inclusion of in silico datasets may identify transcripts otherwise not selected 

by the in vitro experiments and combining datasets from all sources could be the best strategy. 
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Filtering the seed gene list and selecting candidate genes increases the confidence in their 

diagnostic potential. I assessed technical and biological performance using FDR-adjusted p 

values and differentially expressed genes respectively. The resulting matrix provided a good 

overview of potential gene sets; however, it is a poor way of identifying the most useful gene 

list. A major problem of differential expression analysis is the generation of a large gene list, 

even after multiple testing adjustment265. Supervised learning strategies, such as random 

forests-based gene selection methods, may provide a more useful way of ranking genes265. 

Additional considerations when selecting candidate genes must have biomarker delivery in 

mind, such as selecting genes with a W/T ratio < 0.15 and genes which can be reliably 

measured cross-platform.  

 

The greatest impact on the final gene set is probably due to the feature selection method used 

to derive the gene signature list. A hybrid strategy that employs multiple feature selection 

models to identify common signature genes may be more robust266, though the lack of 

phenotype labelled data makes applying a supervised learning model challenging. The 

Toustrup signature90 provided labelled data for training using Eppendorf pO2 histography and 

the Ragnum signature267 used pimonidazole staining. These appear to be the best available 

strategies at assessing intra- and inter- tumour hypoxia and are directly applicable to the 

research presented in this thesis. For example, a subset of pre-treatment tumour biopsies 

from The Christie validation cohort could be analysed using a multiplex immunohistochemistry 

hypoxia panel, ranked using a hypoxia score and assessed against the whole transcriptome 

data. It is possible to use the OE-MRI data, similar to the Halle47/Fjeldbo48 approach, and 

develop a gene expression signature influenced by measurements of the ΔR1 parameter. As 

there is no single proven method of measuring hypoxia, a composite biomarker strategy to 

label a classifier training dataset may provide the greatest accuracy to the biological ground 

truth. Furthermore, it is unclear whether the de novo signature modelling should include clinical 

outcome data though a clear disadvantage is that prognostic labelling is influenced by current 

medical practice which may change in the future.  

 

I deliberately chose a classification model which resulted in a clinically useful binary outcome; 

however, this leads to a ‘black box phenomenon’ as the user is blind to the classification 

process. It would be useful to deconstruct the PAM classifier and identify which genes 

influenced the classification process in individual cases. This would help identify the genes 

that contribute the most to the classifier. Hompland et al.268 argue for the use of levels, instead 

of a binary classifier, suggesting variations in levels indicate severity and help personalise 

treatment. Finally, the patient cohort used to model the signature may be biased towards a 

particular biological phenotype such as histological subtype or ethnicity, and it is unclear what 
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impact this had on the de novo signature. If researchers used the same cohorts to validate 

their signatures, then it would be easier to understand the impact of the applied bioinformatics 

methodology on the final gene list. A head-to-head comparison with other published signatures 

is something I would like to have achieved during my dedicated research time. 

 

When I started my PhD, there were two published cervical cancer signatures: Halle47 (31-

gene) and Fjeldbo48 (6-gene). These were not strict measures of hypoxia and instead 

associated hypoxia to ABrix (a vascularity parameter), which only applies in conditions where 

ischaemia leads to hypoxia and doesn’t consider the fact that hypoxia can occur without 

ischaemia. Importantly, the Fjeldbo48 signature was not cross-platform compatible. One to two 

classifier genes failed in 25% of the samples when a technical transfer to the RT-qPCR 

platform was attempted.  Since then, two other signatures have been published: Yang87 (5-

gene) and Nie88 (9-gene). The published cervical cancer signatures showed little overlap with 

each other; however, each set has a greater overlap with our signature gene list. It may be 

possible to develop a signature based on overlapping genes across the multiple models. 

Common genes/gene families in at least two of the signatures include AK4, DDIT3/DDIT4, 

HK2, LDHA/LDHC, P4HA1/P4HA2, PGM1, STC1/STC2 and VEGFA. The similarities suggest 

a highly conserved hypoxia-related pathway in cervical cancer, the procollagen prolyl 4-

hydroxylase domain222, which is a key enzyme in collagen synthesis. Hypoxia is a common 

tumour microenvironment feature in tumours with a collagen rich extra-cellular matrix269. 

Collagen fibres are remodelled and reduced by HIF-1, which plays a key role in tumour 

fibrosis, progression and metastasis269. It is associated with diseases such as osteogenesis 

imperfecta and Ehlers-Danlos syndrome, and the protein maybe a target for treatment223. 

Differences between the signatures are most likely due to variations in the methodology used 

to select the candidate genes (e.g., only including genes from a single source and applied 

statistics), though may also reflect the biological diversity in the patient dataset selected (e.g., 

age, ethnicity, and tumour histology). 

 

The cellular response to hypoxia pathway is evolutionarily conserved and it was believed the 

transcriptomic response would be largely similar in individuals with different tumours. 

However, after initial attempts to create a unified hypoxia signature210, the prevailing scientific 

opinion is that hypoxia gene signatures are tumour type specific85,86. It would be interesting to 

compare the performance of the de novo signature with other squamous cell cancer specific 

signatures or in patient cohorts with squamous cell cancer (e.g., head and neck, and lung 

cancer). Assessing the transcriptional response to hypoxia using the gene signatures in 

patients with HPV infection associated tumours is of particular interest to understand if the 

signatures can be generalised. 
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6.2 OE-MRI improvement 

 

OE-MRI has the potential to provide a tumour type agnostic biomarker of hypoxia. OE-MRI 

was developed for imaging the female pelvis and subsequently a multi-parametric MRI 

protocol was evaluated in a prospective patient cohort. Once again given the resources 

available to me, I don’t think I could have acquired the data in another way. Analysing MRI 

data pose similar technical challenges as gene expression data analysis. Both are high 

dimensional datasets which required me to train in complex mathematical modelling and 

analysis software. The main difference is that it is easier to associate the transcriptional data 

to the underlying biology, and therefore have greater confidence in the accuracy of the 

resulting biomarker. I analysed the change in R1 signal following oxygen delivery which is the 

most commonly applied method, however other strategies include a principal component 

analysis270,271, independent component analysis272 or combining it with other MRI 

techniques110,246. Moreover, the analysis of oxygen kinetics using OE-MRI (like DCE-MRI 

tracer kinetics) has been patented (US8255036B2) though little is published on its utility. The 

past decade has also seen the application of radiomics analysis in oncology imaging, and 

mathematical modelling of the spatial distribution of OE-MRI signal intensities could be applied 

to the study dataset. The large numbers of extracted features could be filtered to select a 

radiomics signature, like the gene signature development pathway. Though radiomics studies 

have demonstrated potential, many fail to provide reproducible biomarkers, meaningful 

biological correlation or clinical utility273. Unlike transcriptomic data analysis, radiomics 

analysis pipelines are still in their infancy with a concerted research effort towards 

measurement and reporting standardisation led by the imaging biomarkers standardisation 

initiative274. 

 

A major consideration is the need for robust motion correction of the dynamic oxygen 

enhanced series. Any variations on the MRI parameter map (symbolising movement of 

oxygen) need to highlight the underlying physiology and not technical inconsistencies. Though 

this is less of a consideration in whole tumour values, it probably explains the poorer 

repeatability coefficients in this study compared to others112. Furthermore, we know that OE-

MRI is a low SNR technique. SNR is influenced by motion, along with ROI size and inherent 

scanner noise. In the healthy volunteer data analysis, I always used a fixed ROI for this reason. 

However, tumour size decreased with chemoradiation in the patient data, and this introduced 

an uncertainty in measurement precision and accuracy. In the future, it may be useful to 

evaluate and suggest a volume threshold for measurement confidence. Combined OE-MRI 

and DCE-MRI biomarker (the volume of tissue that is perfused and refractory to oxygen gas 

challenge; termed pOxy-R) has also been validated110, however deriving it for the LACC 
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patients in this study required advanced motion correction and registration techniques beyond 

the scope of this thesis.  

 

With regards to multiparametric MRI comparisons, each biomarker measures a different 

aspect of the tumour microenvironment with different associated risks, as the measurement 

precision, accuracy, biological validation, clinical validation and clinical utility are known to 

variable extents56. This is comparable to results from other imaging biomarker studies. For 

example, in a PET-CT based study investigators showed that the abnormal sub-regions in a 

tumour varied when the biomarker chosen was a hypoxia tracer (HX-4), a perfusion tracer 

(from dynamic contrast-enhanced CT) or an indicator of abnormal energetics (FDG)275.The 

consumption-supply hypoxia imaging hypothesis is a compelling one, and is directly applicable 

to multi-parametric MRI271. Preliminary analysis suggested a negative association between 

supply-based MRI parameters (cluster 1 included Ktrans, ve and f) and consumption-based MRI 

parameters (cluster 2 included tumour volume and D). The OE-MRI parameter, ΔR1, showed 

a mixed association to the two groups which is expected of a hypoxia biomarker. Tumours 

labelled as hypoxic by OE-MRI may be classified as perfusion-limited or diffusion-limited using 

the multiparametric approach. This approach differs from the ones proposed by Professor 

Lyng’s group – they do not attempt to measure hypoxia and instead rely on complex 

mathematical modelling to derive a hypoxia score. The IVIM-MRI technique is uniquely placed 

to provide information on micro-structure (cellular consumption) and micro-vascularity (oxygen 

supply) in a single acquisition. Importantly it does so without the need for contrast delivery – 

gadolinium use is a hotly debated topic with recognised adverse effects in humans276 and on 

the environment277.  

 

6.3 Multi-omics data 

 

The comprehensive assessment of molecules that link genotype to phenotype have greatly 

improved our understanding of the tumour and its microenvironment. For example, tumours 

classified as high hypoxia by gene expression signatures exhibit genomic mutations and 

instability203,278. Genomics, the most mature field, has had a significant impact on cancer 

diagnosis, management, and prognosis. This is evidenced by the National Health Service 

(NHS) in England committing to offer genomic testing routinely to all people with cancer in the 

‘NHS Long Term Plan’. However, a catalogue of genome-wide association studies279 have 

identified a complex relationship between genetic variants, the environment and the genetic 

background280. Whilst some inherited cancers are the result of changes in the coding region 

of gene, most are the result of altered gene expression. Therefore a holistic approach to 

understanding cancer biology must involve a multi-omic approach, and integrating datasets 
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from different molecular profiling technologies is a key area of research281. Active and 

promising research in the molecular subtyping of cancers necessitates that any -omics 

signature is conserved across the various molecular subtypes. 

 

A particularly interesting application is the association between hypoxia gene signatures and 

the immune system. Fjeldbo et al.282 have demonstrated lower CD8+ tumour infiltrating 

lymphocytes in tumours classified as high hypoxia and immune score independently 

associated with a poor progression free survival. The ESTIMATE method calculates an 

immune infiltration score based on the whole transcriptome data and is worth investigating in 

The Christie cohort in the first instance283. Novel immunotherapy agents, such as 

Pembrolizumab, have been introduced into the treatment paradigm for PD-L1 protein positive 

uterine cervical tumours failing to respond to therapy284. However, hypoxia is associated with 

therapy failure (regardless of therapy type) and impacts the success of immunotherapy285. 

Given the increasing clinical use of immunotherapy agents, a dedicated immune and 

inflammatory panel exploring the association between hypoxia and immunomics data in 

cervical cancer would be valuable. 

 

The data generated in this study provide insight into a future radiogenomic signature, which 

aims to associate imaging features generated via radiomics with molecules in a specific 

biological pathway286. It offers a key dimensionality reduction step (biological association) in 

the radiomics signature generation pipeline, and has the potential to identify key radiomics 

feature which are influenced by hypoxia287. Extracting radiomics features would be straight 

forward from The Christie retrospective cohort, with established pathways in the radiotherapy 

related research group. Given the association between hypoxia and the vascularity parameter, 

ABrix
47, there are likely to be significant associations between DCE-MRI derived radiomics 

features and the de novo hypoxia gene signature. It is also possible to combine MR images 

acquired using different techniques in the same protocol and generate a multi-parametric MRI 

radiomics signature, e.g., in the prospective patient cohort. Often authors and reviewers use 

radiogenomics to encompass any study which associates a quantitative imaging feature with 

a molecular -omics study in cancer288. Strictly speaking, this is incorrect, and I prefer to label 

these as ‘imaging-genomic’ studies. In either instance, the possible correlation between 

molecular abnormalities or aberrant pathways in tumour biology with imaging features 

(semantic or agnostic) is extremely enticing as it provides a non-invasive alternative to study 

the genotype to phenotype pathway. This is particularly useful in difficult to biopsy tumours. 

Furthermore, large amounts of medical imaging data are stored in hospital servers and are a 

perfect repository for data mining and big data validation289. 
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6.4 Translational gaps 

 

Fuelled by our increasing knowledge about oncogenic pathways, development of many -omics 

based technologies and high throughput screening of various pharmacological agents, 

biomarker discovery is at an all-time high. The ideal hypoxia biomarker should reflect the 

oxygenation level within non-necrotic tumour cells and be able to distinguish cells of varying 

oxygen concentrations. However, the difficulty in measuring a biomarker that is 

heterogeneously positioned in a tumour is well known. If there is variability in measurement, it 

is possible to conclude different levels of association with an outcome and this potentially 

explains why many of the hypoxia biomarker studies are contradictory. OE-MRI and gene 

expression are diagnostic tests which require an acceptable level of accuracy (relation to the 

ground truth), precision (technical repeatability and reproducibility) and clinical utility. When 

assessing clinical utility, we are interested in measures that are derived independent of each 

other – radiology and histopathology are the perfect match for this as seen in day-to-day 

clinical practice. We can combine these measures together to increase clinical certainty, which 

itself is a function of biological and technical factors56.  

 

The first translational gap for these biomarkers would be assessment in further clinical 

research, and I envision two types. First, the biomarkers will be tested in basic sciences 

studies which aim to develop the technical performance of the biomarkers. Cross-platform 

validation of the de novo gene signature and multi-system multi-centre OE-MRI studies will 

establish biomarker reproducibility. This is particularly challenging in MRI research where 

vendors tend not to focus on compatibility between systems and the imaging biomarkers 

(signal characteristics) are highly dependent on inherent technical factors. This is a major 

reason why the National Cancer Imaging Translational Accelerator (NCITA) initiative was 

launched and facilitates translation of imaging biomarkers in research and clinical practice290. 

Second, the hypoxia biomarkers will be used to select patients, optimise treatment, and 

monitor response. Indeed the litmus test for any hypoxia biomarker is independent validation 

as a predictive therapeutic biomarker within clinical trials targeting hypoxia291. Treatment of 

cervical tumour hypoxia with carbogen and nicotinamide (CON) has shown early promise20, 

and the biomarkers could be used to select those patients with a high hypoxia score on both 

tests for treatment with CON. MR guided RT systems, such as the MR Linac, have the 

potential for daily hypoxia imaging which can be used to generate 3D spatial maps of the 

tumour. Intra-tumoural heterogeneity captured by ΔR1 heat maps can be used to identify 

hypoxic tumour sub-volumes and these sub-volumes may benefit from higher doses or altered 

fractionation140. As with any biomarker, when deploying biomarker assays, measurement 

timings are critical to detecting responses and can reflect different underlying biology at 
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different times292. The results of my PhD suggest that mid-treatment measurements (at 

approximately 16 days) may be sufficient to demonstrate significant changes from baseline, 

and ΔR1 may be useful as a biomarker of early response. To what extent either biomarker 

(gene expression or imaging parameter) is significantly associated to clinical outcome is yet 

to be demonstrated in the prospective study. As seen in the study results, often performance 

status of the patient can be the most influential prognostic indicator.  

 

The second translational gap would be integrating the biomarkers into routine clinical practice. 

This will be particularly challenging given the significant work-force shortages needed to 

deliver cancer care in the U.K by 2029 as highlighted by a recent CRUK report293. That said, I 

think there are four key considerations. First, how these biomarkers are measured and, what 

is the end-platform. This was straight forward when developing the imaging as it was done in 

a clinical setting and is therefore rapidly translatable. The NHS has invested in next generation 

sequencing and any future work on developing the de novo signature must aim to establish it 

on this platform. Second, how are these biomarkers reported. The biomarkers will need to be 

integrated into the current reporting framework such as TNM staging or the Reporting and 

Data Systems (RADS). It is easier to integrate the gene expression signature in histopathology 

as genomic markers are now routinely reported for several tumour sites. Quantifying 

aggressive tumour physiology is not current standard practice in radiology outside of select 

tumour sites (e.g., glioblastoma multiforme), and will pose a significant change to clinical 

radiology practice when it is eventually implemented. Third, how the biomarkers are used by 

clinicians to deliver therapy. Modern medicine utilises algorithms and nomograms to 

standardise treatment delivery, and given the increasing numbers of biomarkers, clinical 

decision making will need to leverage machine learning algorithms to deliver personalised 

care294. In the real world setting, it is increasingly important for biomarkers to be resource (time 

and money) efficient56. Simply put, for molecular imaging and pathology to have the greatest 

impact on patient care, the complex acquisition and analysis pipelines need to be simplified 

and deliver quicker results. In the case of OE-MRI, this means acquiring scans which take less 

than 20 minutes. It is possible to test the clinical significance of shorter periods of oxygen 

breathing (e.g., 5 minutes) using clinical follow up data from the BIO-CHECC study i.e., 

calculate ΔR1 at 5 minutes and associate with clinical outcome. 

 

The overall aim for any single hypoxia biomarker or composite panel must be to reduce cancer 

mortality by identifying patients who will benefit from hypoxia-modifying treatment. 
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6.5 Conclusion 

 

Cervical cancer remains a major global health burden especially in low-income countries. 

Refining treatment alongside introducing preventative measures is a must to ensure benefit to 

all social groups. Hypoxia negatively influences response regardless of the chosen therapy 

and is a major determining factor in extent of local growth and metastatic spread. Hypoxia 

targeted therapies are able improve outcome and to support decision making, clinicians 

require hypoxia biomarkers to identify and stratify patients appropriately.  

 

This thesis highlighted a need for more imaging studies and collection of well-annotated 

cohorts of cervical cancer where patients underwent potentially curative chemoradiotherapy.  

It addresses problems surrounding tissue and imaging biomarker discovery, validation, and 

ultimately clinical utility.   In conclusion, more work is needed to identify and validate hypoxia 

biomarkers that are fit for clinical use for cervical cancer patients. 
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7 Appendix 

 

7.1 Appendix 1 

 

The decision to use the 21%, 1% and 0.1% oxygen levels was largely due to the availability 

of hypoxia stations at the Manchester Cancer Research Centre. There are three communal 

hypoxia stations which have been calibrated to 1%, 0.2% and 0.1%. The literature defines the 

transition from physiological hypoxia to pathological hypoxia at around 1% oxygen (~8 – 10 

mmHg) as this is when hypoxia inducible factor (HIF1) is significantly upregulated (>half 

maximal expression)11,224. Below 0.4% oxygen, the radiobiologic effects of hypoxia are 

observed224. I wanted to explore a range of low oxygen environments and selected 1% and 

0.1% as these values lie neatly on a logarithmic scale for analysis. 

 

The next section details the preliminary experiments conducted to determine the optimum 

duration of hypoxia exposure. Three cell lines (HeLa, SiHa and CaSki) were used. Cells were 

grown in 75 cm2 flasks for 48 h. They were then seeded at a pre-determined density onto 6 

cm petri dishes. The seeding density was calculated as the number of cells required to achieve 

75% confluence following a 48-hour culture in the incubator under normoxic conditions (range 

6,000 – 30,000 cells/cm2).  

 

Initially cells plated in the petri dishes were cultured under normoxia in the incubator for 24 

hours. Following this, the media was replaced, and the cells were exposed to 0.1% hypoxia 

(Ruskin Invivo2 400 hypoxia workstation, Ruskinn Technology Ltd, Bridgend, UK) for 

durations of 24, 48 and 72 hours. Media was placed in the respective hypoxia stations 24 

hours prior to use, thus allowing equalisation of the dissolved oxygen concentration and the 

hypoxic environment. Media was refreshed at every 24-hour checkpoint to limit any potential 

impact of a depleted cell culture medium. The percentage confluence following the fixed 

exposure periods was evaluated and the data is shown in Table 7.1.  

 

A minimum 24-hour time period was selected to ensure a measurable hypoxia-induced 

transcriptional response in the cell lines and maintain consistency with other similar in vitro 

hypoxia experiments 47,48,203,204. The HeLa and SiHa cell lines were able to withstand 0.1% 

hypoxia exposure for greater than 24 hours, however the CaSki cell line experienced a large 

amount of cell death at 48 hours which may significantly impact the quantity of RNA at 

extraction. As a result, 24 hours of hypoxia exposure was used in the study. 
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Table 7.1: Preliminary experimental data to determine the optimum duration of hypoxia 

exposure. Cell lines were exposed to 0.1% hypoxia for durations of 24, 48 and 72 hours. 

Percentage confluence was estimated using a microscope. 

 
Cell line Time span (hours) 

 0 24 48 72 

HeLa 40% 33% 25% 10% 

SiHa 60% 33% 20% 1% 

CaSki 60% 33% 10% 0% 

 

 
7.2 Appendix 2 

 

This section presents preliminary work done on identifying a suitable phantom for the oxygen-

enhanced MRI technique. 

 

7.2.1 Water and sponge phantom 

 

A standard kitchen sponge was placed inside a water bath and a non-rebreathe mask was 

attached to replicate the human experimental design (Figure 7.1). An anterior pelvic coil was 

positioned on top of the sponge. The locked down imaging protocol outlined in Chapter 2 was 

used to acquire a series of dynamic images. A region of interest was drawn around the body 

of the sponge which showed the characteristic oxygen enhancement curve seen when 

imaging using different percentages of oxygen gas mixtures Figure 7.2. The figure shows 

arbitrary signal intensity which can be used to calculate the ΔR1 parameter.   
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Figure 7.1: Annotated photograph of water and sponge phantom in the MR-Linac. 

 

 

 

 

 

Figure 7.2: Oxygen enhancement curve of sponge phantom 
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7.2.2 Falcon tubes phantom 

 

Three 50 mL Falcon tubes (Corning, New York, USA) were filled with 45 mL of sterile water 

and placed in three different oxygen environments: 21% O2, 1% O2 and 0.1% O2 (Figure 7.3). 

After 7 days of incubation, the tubes were placed in a holder and imaged. Unfortunately, there 

wasn’t enough signal generated from the water within the tubes. The experiment will need to 

be repeated with much larger quantities of water. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Photograph of Falcon tubes phantom. This is a similar set up to a conventional 

T1 MR phantom and aims to quantify T1 measurements at different oxygenation levels. 

 

 
7.3 Appendix 3 

 

This section details three important considerations when computing the ΔR1 parameter.  

 

7.3.1 VFA or IR-TFE baseline T1 map 

 

Baseline quantitative T1 mapping was acquired using the variable flip angle (VFA) and 

inversion recovery turbo field echo (IR-TFE) sequences. During my analysis, I noticed different 

results depending on which T1 map I used and the example in Figure 7.4 (patient 11, visit 1) 

highlights the visit with the largest difference. Large variations in T1 values for the same 

tissues and field strengths are reported in literature, even with the gold standard IR protocol243. 

The authors suggest that incomplete spoiling and inaccurate RF field (B1) estimation account 

for majority of the differences. It would be useful to test these findings in Bloch simulations of 

the BioCHECC study data. I decided to use the IR-TFE sequence as the baseline T1 map as 

it was thought to be more reliable.  
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Figure 7.4: Converting the arbitrary signal into ΔR1 requires knowledge of the baseline T1 

map. A significant difference was noted when analysing the data for patient 11 visit 1, using 

the A) VFA T1 map or B) IR T1 map. 

 

7.3.2 Averaged over the region of interest vs voxel-by-voxel analysis 

 

When analysing the imaging data, I had a choice between two main approaches for deriving 

the baseline T1 map. In the first instance, the baseline T1 can be averaged (using medians) 

over the region of interest (ROI) and then the dynamic R1 timeseries is computed from this 

average (using medians). A voxel-by-voxel analysis approach requires calculating the 

baseline T1 for every voxel and subsequently the dynamic R1 timeseries for every voxel. The 

dynamic R1 timeseries are then averaged (using medians) across the ROI.  

 

I decided to use the ‘averaged over the ROI’ approach due to a) uncertainty in T1 

measurement, and b) uncertainty due to motion within and in between sequences. It would be 

useful to test this assumption by analysing the data using the voxel-by-voxel approach 

following motion management strategies. 

 

7.3.3 Mean vs median 

 

When averaging datapoints, e.g. Tumour T1 or Tumour ΔR1, I used the median as I believed 

it to be more robust compared to the mean which may be distorted by outliers. 

 

A) Arbitrary signal converted to ΔR1 

timeseries using VFA T1 mapping 
B) Arbitrary signal converted to ΔR1 

timeseries using IR T1 mapping 
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7.3.4 Inversion efficiency parameter 

 

The equation I used to derive the inversion time assumes a perfect 180° inversion pulse, which 

is seldom true. An inversion efficiency parameter can correct for the imperfect inversion and 

the subsequent error in estimated T1 from using IR based T1-mapping. I decided to use the 

simpler approach as it was computationally easier for me to perform. T1 discrepancies are well 

documented but the advantage to having a consistent T1 mapping methodology is excellent 

precision (high scan-rescan repeatability/reproducibility)295. If I had additional time, it would be 

useful to run the gold-standard IR protocol and explore the impact of including an inversion 

efficiency parameter. 

 

 

7.4 Appendix 4 

 
Motion corrective strategies are seldom utilised in diagnostic magnetic resonance imaging. 

The temporal resolution of the dynamic oxygen-enhanced MR technique is approximately 19 

minutes and bulk patient motion (voluntary or involuntary) may significantly alter parameter 

measurements. Motion induced variations have the greatest impact on the accuracy of a single 

voxel parameter rather than a whole lesion parameter, which makes them necessary if voxel-

by-voxel analysis or spatial parameter maps are needed. 

 

As the size and shape of the tumour is critical information, it is sensible to use a rigid 

transformation strategy when correcting for intrasession motion (Figure 7.5). Workflow 1 

registers the individual dynamic OE-MR images (n=91) to a single T2w image. A ROI is drawn 

on the anatomical image and the parameters are computed. In workflow 2, the dynamic OE-

MR images are initially registered to a single OE-MR image such as the middle dynamic 

image. A second registration step transforms the dynamic OE images onto an anatomical 

image. The additional step may be necessary given the different spatial and contrast 

resolutions of the two sequences. 
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Figure 7.5: Two suggested workflows to rigidly transform the dynamic OE-MR images onto 

the anatomical T2w image. This is necessary because the region of interest is drawn on the 

anatomical image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Workflow 1

Workflow 2

n = 91 dynamic OE-MRI n = 91 dynamic OE-MRI

unregistered registered to single OE-MRI

n = 1 anatomical T2w

registered to T2w

n = 91 dynamic OE-MRI

unregistered

n = 1 anatomical T2w

registered to T2w
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