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Nomenclature 
A   acceleration (m/s2) 

AC   Alternating Current (Hz) 

A(k)   Fourier Transform of acceleration signal 
 
�̅�   mean value of data set 

a(n)    acceleration discrete FFT 
 
a(t)   acceleration signal 

apeak   amplitude of peak value 

arms    amplitude of rms value 

a2(tk)   waveform function a(t) when squared  

𝑎𝑇𝑟𝑚𝑠𝐷𝑚         Root Mean Square of acceleration-based time domain data  

𝑎 𝑇𝐶𝐹𝐷𝑚     Crest Factor of acceleration-based time domain data 

𝑎𝑇𝐾𝑢𝐷𝑚     Kurtosis of acceleration-based time domain data 

B Img   Bispectrum Imaginary components matrix 

B R   Bispectrum real components matrix 

𝐵𝐶𝑘𝑆𝑝
 Data matrix of bispectrum components for machine 

conditions   observed at all running speed 

𝐵𝑝𝑞     Bispectrum components 

Ck   Machine conditions 

cX   mean of conditions at PC1 

cY   mean of conditions at PC2 

cZ   mean of conditions at PC3 

D   Original value in normalisation 

Df   Frequency resolution (Hz) 

𝐷𝑚  Number of data set recorded for each condition during 

machine operation  

dt   change in time of measuring acceleration signal (s) 
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𝑬𝒂[𝒕]        Envelope of a filtered signal 
 
𝑬𝑺𝒂       Envelope spectrum 
𝐹𝐶𝑘𝑆𝑝

  Data matrix of fused acceleration-based time and velocity-

based      frequency domain for machine conditions 

observed at all running speed 

Fs   Sampling frequency (Hz) 

𝑓𝑠

2
    fNyquist (Hz) 

1

𝑓𝑠
   Sampling time (s) 

𝑓𝑑     lower cut of frequency range 

𝑓𝑢    upper cut of frequency range 

H(k)   frequency characteristics of the band pass filter  

J   imaginary unit 

𝐾𝐶𝑘𝑆𝑝
  Data matrix for rotor related faults conditions observed at 

all running speeds 

rpm   revolution per minute 

M2, M4   Second and fourth order moment 

N   number of data point 

nc   number of datasets for quantification 

𝑛𝑠  number of equal segments used for Fourier Transform 

computation 

Sp   Machine running speed 

𝑆𝑋1𝛾12
2 𝑋2

𝑟 (𝑓𝑘)  coherent cross-power spectrum between bearing 1 & 2,  

𝑆𝑋2𝛾23
2 𝑋3

𝑟 (𝑓𝑘)   coherent cross-power spectrum between bearing 2 & 3,  

 𝑆
𝑋(𝑏−1)𝛾(𝑏−1)𝑏

2 𝑋𝑏

𝑟 (𝑓𝑘)  coherent cross-power spectrum between bearing (b-1) & b, 

T   Period (second/cycle) 

V   Velocity (mm/s) 

V(k)    Fourier Transform of velocity signal 
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�̅�(𝒕)    dynamic velocity component after integration 
 
𝒗𝟎    Static velocity component after integration 
𝑣𝐹𝑆𝐸𝐷𝑚    Spectrum energy features of velocity-based frequency 

domain data 

𝑣𝐹1𝑥𝐷𝑚     1x component of velocity-based frequency domain data 
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𝑣𝐹4𝑥𝐷𝑚     4x component of velocity-based frequency domain data 
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v(n)   Velocity discrete FFT 
 
𝑋𝐶𝐶𝑆

𝑟 (𝑓𝑘)   Coherent Composite Fourier Transform  

𝑋𝐶𝐶𝑆
𝑟∗ (𝑓𝑘)  Complex conjugate of Coherent Composite Fourier 

Transform 
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𝑋pCCS
𝑟     poly-coherent composite Fourier Transform  

Yi   sum of Y dataset in quantification 

Zi    sum of X dataset in quantification 

∞   Infinite data 

μ     mean data in normalisation 

σ    Standard Deviation 

∆𝑡   Time step (s) 

𝛾12
2     coherence between bearing 1 & 2  

 𝛾23
2    coherence between bearing 2 & 3 

𝛾(𝑏−1)𝑏
2    coherence between bearing (b - 1) & b 

2𝜋𝑘∆𝑓   Omega arithmetic 
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Abbreviations 
ANN    Artificial Neural Network 

AT-pCCB      Acceleration-based Time domain and poly-Coherent 
Composite Bispectrum 

AT-ApCCB Acceleration-based Time-domain with amplitude of poly-
Coherent Composite Bispectrum 

AT-RIpCCB  Acceleration-based Time-domain with real and imaginary 
poly Coherent Composite Bispectrum 

Bg1   Bearing 1 

Bg2   Bearing 2 

Bg3   Bearing 3 

Bg4   Bearing 4 

CBg   Crack close to bearing location 

CF   Crest Factor 

CS   Composite Spectrum 

CSD   Cross-power Spectrum Density 

CCS   Coherent Composite Spectrum 

CM   Condition Monitoring 

D   Balance Disc 

DAQ   Data Acquisition Card 

DFT   Discrete Fourier Transform 

DWT   Discrete Wavelet Transform 

dFAVF   Data Fusion of Acceleration and Velocity Features 

EDM   Electric Discharge Machining 

EEMD   Ensemble Empirical Mode Decomposition 

EMD   Empirical Mode Decomposition 

FD   Fault diagnosis 

FEA   Finite Element Analysis 

FFTR   Flange-based flexible test rig 

FFT   Fast Fourier Transform 
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HHT   Hilbert-Huang Transform 

HOS   Higher Order Spectra 

pCCSHOS  Poly-Coherent Composite Spectrum Higher Order 

ISO   International Standard Organization    

IFFT   Inverse Fast Fourier Transform                 

IMFs   Intrinsic Mode Functions 

Ku   Kurtosis 

LCT   Linear Carnonical Transform 

M   Misalignment 

M-Loose  Mechanical looseness 

PC   Personal Computer 

PCs   Principal Components 

PCA   Principal Component Analysis 

pCCB   Poly-Coherent Composite Bispectrum 

PSD   Power Spectrum Density  

RMRU   Residual Misalignment Residual Unbalance   

RMS   Root Mean Square 

RubD   Rub close to balance disc location 

S-Bow   Shaft Bow 

SE   Spectrum Energy 

SFTR   Spring-based flexible test rig 

STFT   Short Time Fourier Transform 

TG   Turbogenerator 

Unb   Unbalance 

VCM   Vibration-based Condition Monitoring 
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WT   Wavelet Transform 
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Abstract 
Vibration-Based Fault Identification for Rotor and Ball Bearing in Rotating Machines 
Kenisuomo Churchill Luwei – PhD in Mechanical Engineering  
The University of Manchester – August 2022 
 
The study uses an experimental approach in contributing to advance vibration-based fault 
identification (VFI) techniques for rotor and ball bearing in rotating machines using data fusion 
of time and frequency domain features. Consequently, it proposes novel VFI approaches which 
can effectively detect a wide range of rotor and bearing faults in a single analysis.   
Vibration signals are collected from three test rigs; the flanged-based flexible test rig (FFTR) 
designed in earlier research, and the spring-based flexible test rig 1 and 2 (SFTR-1 & 2) are 
improved versions of FFTR. Dynamic characterisation provided the first few natural 
frequencies of the rigs, which helped in the selection of machines running speed. The FFTR ran 
below its first critical speed, while the STFR ran below and above its first critical speed. 
Simulated rotor-related faults included unbalance, misalignment, crack shaft, looseness, and 
shaft rub, while the simulated bearing fault were cage defects.   
The preliminary investigation considered only rotor-related faults using acceleration features 
from vibration signals from FFTR, a build-up from an earlier unified multispeed approach 
(UMA). Data trending was carried out using selected acceleration features from the time 
domain; root mean square (RMS), crest factor (CF) and kurtosis (Ku), and frequency domain; 
1x – 5x and spectrum energy (SE), and the classification result reaffirms the UMA. 
Furthermore, acceleration was converted to velocity and similar features were obtained for 
improved classification. Afterwards, acceleration-based time and velocity-based frequency 
domain features were fused for improved classification.   
A proposed novel data fusion of acceleration and velocity features (dFAVF) model helped 
strengthen the improved approach using signals from STFR-1 with rotor and bearing faults 
classified in a single analysis. Although spectrum analysis amplitude is helpful in the proposed 
method, a drawback is the loss of phase during computation due to its complex conjugate. 
However, the poly-Coherent Composite Bispectrum (pCCB) for rotor fault diagnosis proposed 
in an earlier study combined different frequency components, which retained their phase 
during analysis. It also combined multiple sensor data. Therefore, rotor conditions from the 
SFTR-1 were analysed, and the faults were classified using the first few pCCB components 
extracted. Additional pCCB components and complex number representations of the 
components were classified separately and compared.  
Another proposed novel approach is the fused acceleration-based time domain features with 
poly-coherent composite bispectrum components (AT-pCCB) model. The valuable result from 
the pCCB classification of rotor faults led to incorporating bearing features. Thus, developing 
the AT-pCCB showed improved classification for rotor and bearing faults in a single analysis. 
Observation of more rotor and bearing conditions and comparing similar machines with 
varying foundation flexibility, i.e., the SFTR-1 and SFTR-2, using the proposed dFAVF and AT-
pCCB models, proved the insensitivity of the proposed model in fault identification in such a 
scenario. Comparing faulty to baseline conditions for all scenarios showed the quantified 
classification for effective diagnosis. The distinct separation between the rotor and bearing 
faults could be from their low and high-frequency ranges. Consequently, these fault 
identification models have viable prospects for industrial application. 
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CHAPTER 1 

INTRODUCTION 
 

In this chapter, an overview of the thesis is presented. The rationale for the research, 

aim and objectives, and outline of report is presented. 
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1.1 Overview 

The most used classes of mechanical equipment are rotary in their operation and have 

vital industrial applications [1] some of which are electrical and mechanical power 

conversion, fluid pumping, ventilation and cooling, and propulsion [2]. They are 

referred to as rotating machinery and cover various industrial mechanisms such as 

turbogenerator (TG) sets, centrifugal pumps, aircraft engines, reciprocating gasoline, 

diesel engines, compressors, gases, and steam turbines [2,3]. Rotating machines are 

vital equipment in the production processes of major industries such as oil and gas, 

power generation, aerospace, chemical and mining. Failure, especially of non-

redundant components, negatively impact industries in terms of production and cost-

effectiveness [4]. However, vibration-based condition monitoring (VCM) approaches 

help to provide early detection of faults where maintenance is carried out to prevent 

such failures. Thus, Industries look for machines with high durability and reliability that 

can effectively undergo production long enough [5].  

 

Figure 1. 1 Photograph of rotating machineries (a) with a motor connected to a pump 

accessed from [6] (b) with multiple shafts accessed from [7] 

 

Rotating machines have three major components, i.e., the rotor, Bearing and 

foundation [3]. Rotating machines are structured so that the rotor is the heart and 

connects to the foundation by the Bearing [8,9]. The rotor is an essential part of a 
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rotating machine which rotates around a central point. The Bearing is another 

essential element that restraints the relative movement of the rotor to the desired 

motion and reduces friction between moving parts. Bearings support rotors and 

transfer axial and radial load from the source to the foundation. However, the machine 

foundation is the installation platform provided below the superstructure. Its primary 

function is to provide support for the rotating machine. 

 

Figure 1. 2 Abstract representation of rotating machinery with its critical parts. 

 

Rotor and bearing systems are crucial in rotating equipment and directly influence a 

machine's operation and condition [10]. Understanding the behaviour of the rotor and 

Bearing of a system is very useful in rotor dynamics as it helps to determine its 

operational requirements and health status [10].  

Most machine faults are either rotor-related or bearing defects. The rotor faults show 

up as unbalance, misalignment, looseness, shaft bow, and shaft crack [11], while 

bearing defects can be detected from the fundamental frequencies based on their 

geometry. The fundamental frequency of the Bearing includes ball pass frequency 

inner race (BPFI), ball pass frequency outer race (BPFO), fundamental train frequency 

(FTF) and ball spin frequency (BSF) [12].  

According to Nakhaeinejad and Ganeriwala [13], 70% of machine faults are rotor-

related. In contrast, bearings' design retains a lengthy and useful life during operation 

[14], based on assumptions of adequately handling and usage. However, most 

Bearings undergo premature failure for different reasons [14], as up to 80% of bearing 
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failure stems from improper lubrication. Other sources that affect bearing durability 

include improper installation, contaminations, production errors during 

manufacturing of connecting parts, and bearings handled by unskilled personnel [14]. 

1.2 Rationale’ for the research 
Vibration-based condition monitoring (VCM) techniques investigate the state of a 

machine, detect faults, and predict their severity [15, 16]. However, operation in the 

industry is currently more complex, and this development is due to improvements in 

automation and the mechanization of machines. Therefore, continuous improvement 

to achieve a simplified and robust method is the pursuit of researchers and sometimes 

in conjunction with the industries for decades [16-18]. To effectively carry out VCM, 

popular non-destructive techniques are used in collecting vibration measurements 

with transducers such as displacement probes, velocity pickups and accelerometers. 

An extensive range of machine conditions can be diagnosed efficiently from the signals 

obtained, including misalignment, shaft bow, looseness, shaft rub, bearing defect, and 

structural resonance [18]. Thus, getting factual information about a machine's 

condition helps detect faults early and gives adequate time for maintenance planning 

to prevent fatal breakdown [5,9,18-19]. 

 Earlier studies on rotor-related faults inspired this research and incorporated bearing 

fault diagnosis [20-25]. Given continuous improvement for developing improved fault 

diagnosis techniques, an earlier study [20] proposed using the unified multispeed 

approach (UMA) for classifying machine conditions. The UMA considered time and 

frequency domain parameters from the conventional fault identification techniques. 

However, only acceleration signals were used in all classifications, and vibration data 

was obtained only below the machine's critical speed. Further studies [23] developed 

the individual speed individual foundation (ISIF) and multispeed individual foundation 

(MSIF) fault diagnosis methods, all of which uses a single vibration sensor per Bearing. 

However, the fast Fourier transformation approach used in these studies does not 

retain the signal's phase information, which has its uniqueness in fault diagnosis.  

As faults develop in a system, the frequency structure of a vibration signal is altered 

by either change in magnitude or phase of its periodic components. The power 

spectrum density (PSD) helps to determine these harmonic components of a signal. 
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The PSD is computed as an average of the magnitude of a signal's discrete Fourier 

transform (DFT). However, there are some limitations to the PSD. Firstly, peaks at a 

particular harmonic frequency occur because of random excitation of a component 

which resonates at or close to the particular frequency. Secondly, phase information 

is not detected due to its combination with the conjugate of the Fourier transform. 

Thus, PSD limitation can be mitigated by the higher order spectrum (HOS) analysis 

which incorporates both the amplitude and phase. Using the higher order spectrum 

(HOS) fault diagnosis techniques, earlier studies [21] developed the poly-Coherent 

Composite Higher Order Spectrum (pCCHOS), which is an improvement of a previously 

developed composite spectrum (CS) [24]. This earlier CS, like the PSD, lacks the phase 

information considered in the improved pCCHOS. The pCCHOS is made up of the poly-

Coherent Composite Bispectrum (pCCB) and poly-Coherent Composite 

Trispectrum (pCCT). In this study, fault diagnosis and machine condition classification 

were carried out using data collected with the machine operating below its first critical 

speed.  

Further studies addressed the issue of using similar rotating machines for 

transferability of developed fault identification methods and for similar machines 

installed in different locations, thus having different foundation flexibilities. In this 

study, Nembhard et al. [23] developed methods on another test rig to check for 

transferability and developed a new multispeed and multi-foundation (MSMF) 

method. Yunusa-Kaltungo et al. [25] also developed a sensitive fault identification 

method using the pCCHOS techniques. The current research is a follow-up to these 

earlier studies [20-25,28,29]. Investigation in this research work will be to 

1. Observe parameters from both time domain and simple spectrum that will be 

useful for identifying rotor and bearing faults, especially if there is a 

consolidation of all the sensitive features.  

2. Observe vibration signals obtained with the machine operating below and 

above its first critical speed. This observation helps with machines that operate 

at multiple speeds and even run over their critical speed during operation.  
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3. Observe both rotor and bearing faults in a single analysis. This observation 

helps to simplify diagnosis by providing both rotor and bearing fault 

identification at an instance.  

4. Try out the higher order spectrum (HOS) for fault identification due to its 

advantage of retaining both amplitude and phase information.  

5. Understand fault identification using a similar machine with different 

foundation flexibilities. This investigation builds from an earlier study which 

helps to indicate the indifference in fault identification for a similar machine. 

Since the machine can run over its critical speed, an approach for fault 

identification around the critical speed is tested, notwithstanding the 

foundation's flexibility. 

1.3 Aim of research  

This research aims to develop a vibration-based fault identification (VFI) approach 

capable of diagnosing an extensive range of 'rotating machine critical parts faults' in a 

single analysis. 

1.4 Objectives of research  

Below are the research objectives; 

Objective 1: To carry out data trending of time and frequency (spectrum) domain 

parameters using existing data from an earlier built flange-based flexible test rig (FFTR) 

which ran only below its first critical speed. The data trending will help to determine 

parameter sensitivity for fault identification. 

Objective 2: To improve an earlier unified multispeed analysis (UMA) fault 

identification method developed using acceleration data to an approach that 

considered acceleration and velocity features in its analysis. The data is from a flange-

based flexible test rig (FFTR) which ran below its first critical speed. 

Objective 3: To improve the existing FFTR to a spring-based flexible test rig (SFTR) to 

operate below and above its first critical speed. Afterwards, both rotor and bearing 

faults will be simulated on the SFTR.  

Objective 4: To develop a novel fault identification approach for diagnosing a rotating 

machine consolidated critical parts (i.e., rotor and bearing) faults in a single analysis.  
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Objective 5: To improve an existing method, "the poly-coherent composite 

bispectrum (pCCB)," for rotor-related fault identification by updating the number of 

pCCB in the model. Furthermore, to analyse the complex number of the pCCB 

components, which combines the real and imaginary parts of the pCCB components 

for fault identification.   

Objective 6: To develop a novel fault identification approach using a blend of time 

domain and pCCB components for a single analysis of an extensive range of rotating 

machine critical part faults.  

Objective 7: To understand fault identification and dynamic behaviour of similar 

rotating machines having different foundation flexibility using the proposed method. 

So, vibration signals from more than one test rig are investigated and analysis observed 

while combining data from these rigs.  

1.6 Outline of the report 

The focus of this research is to provide a single analysis for an extensive range of 

rotating machine faults while understanding their dynamic behaviour exhibited with 

changes in speed during machine operation. The research is structured thus. 

Chapter 1 presents an introduction, rationale for this research and the research aim 

and objectives. 

Chapter 2 gives a literature review of relevant peer-reviewed articles, journals and 

published works that help to create a background for this research.  

Chapter 3 describes the existing flange-based flexible test rig (FFTR) and the improved 

spring-based flexible test rig (SFTR). Also discussed are instrumentation and modal 

analysis. Simulated rotor-related and bearing faults with the data acquisition for this 

research purpose are also covered here.  

Chapter 4 covers the methodology of the research. It discussed the selected methods 

and theories guiding them.  

Chapter 5 looks at the improved acceleration and velocity features analysis using 

existing vibration data with rotor-related fault only from the flanged-based flexible 

test rig (FFTR), which operated only below the machine's first critical speed.   

Chapter 6 covers the proposed data fusion of acceleration and velocity features 

(dFAVF) approach for the consolidated rotor and bearing faults identification. This 
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analysis uses the improved spring-based flexible test rig 1 (SFTR-1), which can be 

operated below and above the machines' first critical speed.  

Chapter 7 looks at poly-coherent composite bispectrum (pCCB) for identifying and 

classifying rotor-related faults. The pCCB is a subset of higher order spectrum (HOS) 

analysis, a growing area of research for fault diagnosis in rotating machines. 

Chapter 8 proposes a feature reduction approach for fault identification in the 

consolidated rotor and bearing analysis in rotating machines. The feature reduction 

approach involves acceleration-based time domain (AT) and poly-coherent composite 

bispectrum components (pCCB) parameters.  

Chapter 9 looks at understanding the dynamic behaviour for effective fault 

identification of similar rotating machines operating under different foundation 

flexibility. This study is built up from earlier studies where some machines may not 

have baseline data for comparison and where the machine's installation may vary due 

to locations and foundation type. Here the improved spring-based flexible test rig 1 

(SFTR1) and spring-based test rig 2 (SFTR2) are considered.  

Chapter 10 is devoted to the conclusion of this research, contribution to knowledge 

and future work. It discusses the main outputs of the study, and additions to the 

relevant body of knowledge and shows how successfully the objectives of this research 

have been achieved. Recommendations to be considered for further research work 

were made. 
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Figure 1. 3 Structural outline showing the progression in chapters for the thesis.
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CHAPTER 2 

REVIEW OF RELEVANT LITERATURE 
 

This chapter covers a literature review of relevant peer reviewed articles, journals and 

published works that helps to create a background for this research. The aim of this 

review is to understand some basic approaches in vibration-based condition 

monitoring and discuss relevant methods proposed in various research and critically 

assess the current state of various techniques. The review builds from data 

management approach for VCM and focuses on techniques such as time and frequency 

domain analysis, envelope analysis, bispectrum analysis, modal testing, data fusion, 

clustering, and pattern recognition. It covers an extensive review of existing rotor and 

bearing fault identification approaches and critical pointing out gaps in fault 

identification especially in relation to industrial expectations.  
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2.1 Overview 

Many studies have developed vibration-based fault identification (VFI) methods. 

However, more demand for improved and robust VFI methods is being made. The 

improvement is due to industry 4.0 (internet of things), computerisation and 

mechanisation of production processes [28]. On the other hand, the desire for 

increased output to meet customers' requests may stretch production processes. 

Thus, the machine needs to have high availability and reliability so that VFI methods 

that can detect faults efficiently and promptly are helpful in industrial applications 

[29].  

This chapter presented background literature and research papers relevant to the 

review of VFI methods. This review helps to explore some existing VFI methods, their 

robustness, and their limitations. It provided abstraction for considerations of 

developments of new methods and potential future research work. However, the 

focus was on critical areas, including time domain and spectrum analysis, bispectrum 

analysis, envelope analysis, modal analysis, data fusion, pattern recognition, 

clustering, and classification of machine faults, as seen in Figure 2.1. 

 

Figure2. 1 Vibration-based fault identification recent methods. 
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The model-based method used in fault diagnosis shows the possibilities provided by 

modern computers and software developments [30]. It can be broken down into 

mathematical modelling and finite element analysis (FEA) [31]. The mathematical 

model often provides a theoretical basis upon which data-driven FEA studies can be 

built and validated [31]. Even though the mathematical methods are traditional in 

rotordynamic problems, they are still being used to tackle advanced problems.  

The FEA approach gives a continuously expanding simulation area to explore systems 

behaviour. Many studies have shown the power of FEA techniques with highly 

accurate simulations performed [32-35]. However, there are limitations to computer 

power. Applying FEA methods to a complete machine model could be too expensive 

computationally. As a result, alternative approaches such as model reduction and 

system level modelling are employed in an industrial scenario [34]. Notwithstanding 

accurate validation of experimental approaches using FEA, a complete understanding 

of the vibrational phenomena of rotating machines is not viable [27].  

There are various fault identification methods, as can be seen from Figure 2.1 above. 

These methods have proven successful in the diagnosis of faults in rotating machines. 

Each of these methods showcases its uniqueness. However, this study has only 

selected several of these approaches to form a unique hybrid fault identification 

approach. This study's analytical review of vibration-based fault identification 

approaches on critical machine parts emphasises the demand for simplified, 

innovative and potent fault identification methods. 

2.2 Vibration-based condition monitoring 

Vibration-based condition monitoring (VCM) of the industrial system is vital for the 

early detection of faults or failures that may show up during machine operation. In this 

overview, VCM is classified into data management and fault diagnosis approach. These 

two concepts are discussed briefly in sections 2.3 and 2.4, respectively. 
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Figure2. 2 Vibration-based condition monitoring process for rotating machines. 

 

Over the past decades, the increased interest and demand for a reliable machine 

cannot be overemphasised. Extensive research using vibration-based condition 

monitoring (VCM) techniques for diagnosing a wide range of machine failures has been 

on for decades [35]. The vibration-based condition monitoring (VCM) techniques are 

a popular tool that helps obtain machine conditions. As defined by Barron [36], "it is 

the ability to record and identify vibration signatures". These VCM approaches 

investigate faults that can be identified and various methods for their identification 

and detection.  

Much information is present in measured vibration signals about the machine's 

condition. Therefore, advanced signal processing techniques are employed to 

investigate vibration signals to obtain fault peculiarity. This strategy is presented as 

the vibration-based condition monitoring (VCM) analysis [37]. It is presented in the 

time and frequency domain form [36]. VCM examines the interaction of distinct 

signatures with a particular fault in detail.  

Recently, signal processing techniques have been applied in research work in the form 

of Fast Fourier Transform (FFT), Wavelet Transform (WT), Hilbert-Huang Transform 

(HHT) and Wigner-Ville Distribution (WVD) [38] and Higher Order Spectra (HOS)[39]. 

This help identifies and quantify faults, express their severity, and predict machine 

conditions [40]. 

Sinusoidal waves represent vibration signals, and it helps describe how vibration 

measurement can be obtained, i.e., the amplitudes of acceleration, velocity, or 

displacement. These have a mathematical relationship by a function of frequency and 
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time. In this light, variables describing vibrational behaviours have less focus, and 

however much is from a scale of time and phase [41].  

Most fault diagnostic considers the traditional approach, i.e., power spectrum density 

(PSD) represented in time, frequency and time-frequency. They have been helpful in 

signal analysis for understanding machines' behaviour as regards early fault detection. 

However, challenges from industrialisation, computerisation, intelligent production 

processes and remotely-controlled factories have led many researchers to develop 

methods that accurately and reliably predict machines' dynamic behaviour. Some of 

these research works look at developing and improving various models and techniques 

for diagnosing and understanding the characteristic behaviour of different faults that 

may show up during the active life of rotating machinery.  

 

Figure2. 3 Frequency values range with the associated likely faults [46]. 

 

The recent industry 4.0 bring to the fore the consideration of intelligent models for 

machine faults diagnosis and prognosis using the condition monitoring (CM) approach 

[37,38]. Also, faults that show up in rotating machines are extensive, which may 

include rotor-related faults [35], bearing faults [44] and foundation-related issues [45]. 

Observation of these faults from vibration signals may appear around the low or high-

frequency faults ranges. The low-frequency faults are rotor-related (unbalance, 
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misalignment, crack, and their likes.), while the high-frequency faults may appear as 

bearing or gear related (pitting in inner-race, cage, or gear tooth).  

This chapter explains the characteristics of these 'low-frequency' (rotor-related) and 

'high-frequency' (Bearing-related) frequency machine faults in rotating machines. It 

also considers appropriate diagnostic methods for identifying and classifying these 

rotating machine faults. 

 

Figure2. 4 Transformation from time to frequency domain [47]. 

 

Features for VCM analysis are extracted when vibration data are obtained at a certain 

speed. Comparison is then made with a healthy reference state generated at the same 

speed. Machines have dynamic behaviours, so the features tend to be sensitive to 

changes such as speed [21]. This reference healthy helps to determine the presence of 

a fault or speed variation, thus acting as a check. However, in complex machines where 

there is always a change in machine speed, executing VCM poses some challenges.  

Tumer and Bajwa [48] noted that the VCM diagnosis tool for such machines is 

presently lacking, with examples in aircraft, helicopters and their likes. In addressing 

this challenge, Huo et al. [49] developed a multi-speed fault diagnosis approach in 

which wavelet components were extracted from the vibration signal. The result was 

helpful as it identified four rolling bearing conditions. This work only dealt with bearing 

failure.  
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In the same vein, these researchers [20-25] developed classification approaches for 

effective VCM, which address the dynamics in machine behaviour relating to speed. A 

unified multi-speed tool [20] was proposed using acceleration features extracted from 

time and frequency domain parameters. The tool gave a helpful diagnosis of faults. 

Even though these studies cover some rotor-related and bearing faults, there is no 

consolidated fault identification tool for rotor and bearing in a single analysis. Overall, 

continuous improvement is crucial in achieving the demand for preferred VCM 

techniques in identifying machine faults [49] especially with industrial machines' 

recent complexities and intelligent behaviour. 

2.3 Vibration data management 

The VCM process is a data management approach which involves handling the data to 

get valuable information for assessing the machine behaviours and detecting faults or 

failures. The first step in VCM is data collection, which depends on the measurement 

location and type of transducers [45]. Data collection also depends on the type of 

signal to be measured (displacement, velocity, and acceleration). In the signal input, 

the transducers may be displacement, velocity pick-ups or accelerometer sensors.  

The next stage is the data acquisition of vibration signals from the sensor. The recorded 

data may be analogue; thus, converted to digital. The data analysed is in terms of signal 

processing, development of algorithms for analyses and extractions of sensitive 

features.  

The health assessment is the final stage of VCM. This assessment covers the estimation 

of the machine's current health grade, diagnosis and classification of machine 

condition, identification of faults and recommendations on the way forward for 

improved and efficient machine operation. Some signal processing and health 

assessment approaches are discussed in section 2.4. The selected assessment 

approaches for discussion are used in this research work. 
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Figure2. 5 Data management for vibration signal. 

2.4 Vibration-based fault identification techniques 

2.4.1 Time domain analysis 

Time domain analysis is a waveform representation of the measured vibration data 

[46]. Observation of the waveform, if not clear sinusoidal, may be challenging to carry 

out any proper analysis. Thus, some parameters help understand analysis in its 

representation, such as root mean square (RMS), crest factor (C.F.) and kurtosis (Ku).  

A waveform's root mean square (RMS) measures energy [26-41]. It can be described 

as the square root of the mean value of squared values collected over an interval. It is 

simply obtained by squaring the waveform value. The result is averaged, and the 

square root is obtained. The crest factor (C.F.) is the ratio of the peak value to the RMS 

value of a waveform. It is a non-dimensional value. Kurtosis (Ku) measures the extent 

of peaks or flats a waveform has in relation to normal distribution. The higher the 

kurtosis, the more prominent peaks around the mean with a heavy base, while the low 

kurtosis gives a flat top around the mean. Kurtosis is a non-dimensional value, and it 

is defined as 'the normalised fourth order moment of a time domain signal [11,41].  

Nembhard et al. [21,26,45] used these time domain parameters as part of features for 

fault classification in their studies. Time domain analysis has been useful, especially in 

electronics, vibration analysis, acoustics, communication, and construction. However, 

the main drawback in time domain analysis is that noise and disturbance 
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characteristics are less understood in the time domain than in frequency domain 

analysis. Time domain may not be a robust approach in VFI as computation is laborious 

and time-demanding when it involves a lengthy signal. Another cumbersome 

experience using time domain analysis is when the order of a system becomes large 

enough. However, the benefit of time domain analysis is its good indication of 

transient response.  

2.4.2 Spectrum density analysis 

Spectrum density analysis is a frequency domain signal representation [45]. This 

analysis is achieved by converting time domain signals to frequency to determine the 

different harmonic components contents found in the signal for a better 

understanding of the dynamic behaviour of the machine. This conversion is achieved 

using the fast Fourier transformation (FFT) and is represented in the amplitude and 

frequency plot. The spectra density is a build-up from the FFT where an issue may arise 

from a random start-up point for a segment, assumptions of selected segment size 

where time-period may be wrong. These may lead to amplitude and phase variation 

from segment to segment [45]. Also, some spurious peaks at the frequency may show 

up with the original peaks. So, large averaging numbers are recommended to reduce 

these random peaks in the signal. Spectrum density is an approach used when 

averaging is considered during FFT [45].  

Harmonic components from the spectral density can be used to identify some faults 

that may show up in the rotating machines. These components are the 1x and its 

harmonics which help to show the appearance of faults such as unbalance, 

misalignments, shaft rub, bent shaft, etc. In various studies, Nembhard et al. [21,26,45] 

employed simple spectrum fault identification in a laboratory-size experimental rig. 

The study focused mainly on rotor-related faults diagnosis. You et al. [52] conducted 

an experimental diagnosis of typical rotating machine faults. The proposed fault 

diagnosis approach used spectrum analysis of vibration acceleration and velocity signal 

to determine fault severity and frequency division amplitude. Leob [53] presented an 

overview study of spectrum analysis with rotor and bearing fault diagnosis. The study 

covered basic information to carry out successful spectrum analysis, such as 
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components identification, machine running speed, the operational environment, and 

the measurement type.  

In frequency domain analysis, several signal characteristics become visible, which were 

not easily seen when viewed in the time domain. For instance, frequency domain 

analysis is observed when considering the cyclic behaviour of a signal. In frequency 

domain analysis, signals are not changing over time, so transient information is lost. 

However, this factor can be addressed in several ways, but it depends on the 

time/frequency approach. Noise and disturbances are best understood using various 

parameters such as response peak, resonant frequency, gain and phase across 

frequency etc. The Bode plot and Nyquist plot are some established useful frequency 

domain analysis tools; however, interpretation may be indirect. Even though analysis 

can be robust in the frequency domain, it gives less accurate mathematical models 

than in the time domain. 

2.4.3 Envelope analysis 

Envelope analysis has been a helpful technique in studying amplitude modulation of 

machine vibration signals. The tool is powerful as it helps signals stand out from the 

noise. Regularly spaced signal components can be observed, such as defects found in 

the raceway or cage. Envelope analysis is an established method of determining faults 

in rolling element bearings. [54]. According to Leob [53], envelope in bearing fault 

diagnosis considers the frequency range at which the bearing defects impact occurs 

repetitively. Enveloping can also be referred to as "Envelope Detection" or "Amplitude 

Demodulation"[55], and it is a technique used in extracting modulated signals. The 

extractions can be investigated in both time and frequency analysis.  

Envelope analysis represents the fast Fourier transform (FFT) frequency spectrum of 

the modulated signal [55]. Analysis of envelope (demodulated) signal brings out the 

modulated frequencies, which are the bearing fundamental defect frequencies 

[45][56]. Group [57] compared signal analysis techniques and observed envelope 

analysis were best in detecting machine conditions which generate shock pulse. The 

work successfully diagnosed anti-friction bearing running with low speed using 
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envelop analysis. The study considered various rotating machines with valid envelope 

analysis diagnoses, i.e., diesel engine and gearbox diagnoses.   

 

Figure2. 6   Envelope analysis (a) Time domain (b) Frequency domain accessed from 

[58]. 

 

In envelope analysis, both input and output signals are analysed simultaneously, which 

is relatively effective. However, the effect of exogenous variables on the operations is 

ignored. In signal envelope analysis, the stress comes with choosing the central 

frequency filter in which experience is needed. Also, the spectral line of fundamental 

frequencies may be difficult to locate in the envelope spectrum. 

2.4.4 Bispectrum analysis  

Wang, Wu and Chen [62] classified rotating machine faults with the combination of correlation 

dimension and bispectral analysis. Sinha and Elbhbah [15] proposed reducing the number of 

transducers at bearing pedestal measurement locations using a composite spectrum and 

bispectrum to understand the signals from a rotor-related fault on a rigid test rig. Elbhbah et 

al. in various studies, [15,60 - 68] employed bispectrum in rotor-related fault identification. 

Yunusa-Kaltungo et al. also in various studies [22,24,25], used composite coherent bispectrum 

in rotor-related fault diagnosis. The study improved [21] the composite coherent spectrum 

analysis and later proposed the poly-coherent composite bispectrum (pCCB) [70] analysis.  

The bispectrum analysis has shown usefulness in many fields such as seismology, signal 

analysis, music, wave pattern and earth tides. However, its usefulness in fault identification in 

rotating machines is still expanding. Most studies have used bispectrum diagnosing rotor-

related faults only as few have applied it for bearing fault diagnosis, however, in combination 
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with other approaches. Since it helps investigate non-linear signals, much functional analysis 

is expected in further research using bispectrum analysis in bearing and gear fault diagnosis 

and further improvements in rotor diagnosis.   

2.5 Modal analysis approach 

The idea behind modal testing is to create the resonate conditions at the natural 

frequencies of a machine by applying external force so that the resonance peaks can 

be acquired by the accelerometer response [40, 66]. According to Sinha [45], "In 

experimental modal analysis, an external dynamic force (excitation) to the structure is 

applied in a controlled frequency band, and simultaneously the vibration response at 

several locations were picked up and then the collected vibration data are analysed to 

extract the modal parameters, namely, natural frequencies, mode shape and modal 

damping". The step-by-step procedure for modal analysis is detailed in Sinha's book 

[45]. 

 

Figure2. 7 Modal testing for a cantilever beam, its natural frequencies and mode 

shape accessed from  [56]. 

 

Figure 2.7 shows typical modal testing on a cantilever beam, the natural frequencies 

and mode shape. These studies identified critical speed in rotating machines using 
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modal analysis [72] [79-66,80]. The use of modal analysis for fault identification can be 

found in this literature [67-68,78,81]. 

A significant benefit of modal analysis is the identification of natural frequencies, i.e., 

the frequencies at which the system vibrates freely and mode shapes, i.e., the 

deformation of the structure. The analysis helps to keep the system safe as the 

excitation frequency is set so that it is different from the natural frequency to avoid 

resonance.  

Many studies have used experimental and modelling approaches in developing modal 

analysis, especially for rotating systems; however, the industries still have not 

considered fault identification approaches using modal analysis. Most industrial 

operations only look at the nameplate to get the value of the natural frequency. 

However, the natural frequency may shift with constant operations and fault 

development. If care is not taken, it may coincide with the excitation frequency causing 

much vibration, which can lead to severe bearing faults, unbalance, and misalignment 

around the coupling, and if not checked in time, the machine breaks down. Industries 

should be encouraged to perform modal testing before other forms of maintenance 

are done. 

2.6 Data fusion approach 

Data fusion involves integrating, combining, and consolidating various data sources to 

achieve clear, useful, and correct information. The information provided by data fusion 

is more robust than any of the individual sources [82-83]. The data sources may vary 

in size, events, sources, and components. However, once they are in a data block set, 

they complement each other [79].  

Some selected literature that achieved distinct machine fault identification through 

data fusion was included [84-87]. Yunusa-Kultango et al. [21] used data fusion of 

composite spectrum and poly-coherent composite spectrum to diagnose rotor-related 

faults in a rotating machine. The approach gave outstanding fault identification. In 

various studies [28,45,88], Nembhard applied data fusion of time and frequency 

analysis and temperature parameters to identify machine faults. Further 
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considerations included data fusion of multiple speeds and multiple foundation 

parameters [20,28,88]. Most of the studies by Yunusa-Kaltungo and Nembhard fused 

data from multiple sensors and bearings. Jiang et al. [83] performed fault diagnosis in 

a rotating machine based on multi-sensor data fusion using support vector machine 

(SVM) and Time-Domain Features. In these studies, the fusion of sound signals [5], and 

dual sensor fusion [84], helped diagnose the fault in a rotating machine. 

Recent studies in VFI that considered multiple fault investigation tends to fuse data 

from multiple sensors. The data fusion can give an overall behaviour of the machine's 

condition in one analysis. Also, using various sensitive parameters can show an 

indication of a particular fault and another for a different fault, but overall fault 

identification is achieved. However, too much data could make diagnosis 

cumbersome, so parameter reduction is helpful to filter out some non-essential 

features that may not contribute so much to fault identification. 

2.7 Clustering approach 

Clustering analysis is a statistical approach to grouping related data into a given set. In 

clustering analysis, algorithms are written to discover patterns and group datasets for 

investigative purposes [85]. Groupings of various data are achieved in such a way that 

similar data form clusters. Similarity measures used in clustering analysis include 

Euclidean, probabilistic, cosine distance and correlation. Many of the unsupervised 

learning approaches are, one way or the other, a form of clustering analysis.  

A clustering algorithm is broadly classified into two main groups, i.e., hard and soft 

clustering [85]. Hard clustering is such that in a particular data, each data point belongs 

to just one cluster, like in the k-means approach, while in soft clustering, each data 

point can belong to more than one cluster, like in Gaussian mixture models. The use 

of cluster analysis covers exploratory data analysis, fault detection, segmentation and 

pre-processing in supervised learning. It also helps in discovering groups in 

dimensionality reduction and feature ranking. 
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Figure2. 8 Clustering analysis (a) k-means clustering (b) Gaussian mixture model 

which assign cluster membership probabilities both accessed from [85]. 

 

As helpful as cluster analysis may be, its application has some limitations. Amongst 

which are the availability of enough relevant data, so that in fault identification, the 

first few data from a machine may not provide sufficient diagnosis using the clustering 

approach, but as machine data increases, then there is an improvement in diagnosis 

[86]. Note that the analysis is a simple statistical tool with no prior evaluation of the 

trends existing in similar datasets. Using clustering analysis is less skilful but 

interpreting the results obtained to understand machine behaviour and using it to 

determine the trend for determining machine health is of much higher skill. 

2.8 Pattern recognition and classification approach 

Pattern recognition is a data analysis method that uses a programmed approach to 

recognise patterns with regularities in data. Familiar patterns can be recognised 

promptly and accurately. It is applied in data analysis, image analysis, computer 

graphics, and machine learning. It is a vast technology behind data analytics, and 

pattern recognition has recently helped investigate big data.   

Principal component analysis (PCA) is a pattern recognition method used to visualise 

patterns and understand potential relationships in systems. PCA is possibly one of the 

best-known and simple classification techniques [93-94]. It is a widely used technique. 

Some recent works with good diagnosing results in VCM using PCA can be found in 

[24-26,95-101]. Figure 2.9 show a PCA pattern recognition where the original data 

space undergoes dimensionality reduction and is represented in the component space. 
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Figure2. 9 PCA pattern recognition from original data space to component space [91]. 

 

In most practice, extensive data sets are obtained for VCM analysis where a 

considerable part contains unnecessary data. These parts of the data may hinder 

effective condition monitoring and fault diagnosis. A solution is for such machine data 

to undergo dimensionality reduction where helpful information can be collected from 

the data for analysis [92]. Thus, a dimensionality reduction technique for fault 

diagnosis is proposed by Haung et al. [92]. PCA was a vital tool in the development 

where the result tends to be better than existing methods.  

Song et al. [8] employed PCA in both simulated and experimentally extracted residual 

fault shaft bow features on a rotor longitudinal response. The result from both 

analyses consistently proved helpful. Sun et al. [93] investigated data mining 

technology and applied PCA for fault diagnosis. The aim was to validate a proposed 

method with six rotor conditions simulated on a Bently Rotor kit R.K. 4. Results showed 

higher accuracy with data needing less training. Serviere and Fabry [94] tried to 

address data collection from rotating machines with highly corrupted signals. PCA was 

used as a first step filter for noise and whitening of the observation. The result showed 

the efficiency of PCA.  

Features that make up machine conditions are very sensitive as they change under 

different conditions. Hence the demand for a good feature selection tool cannot be 

compromised. Malhi and Gao [95] presented a feature selection scheme based on PCA 

tool analysis. Supervised and unsupervised fault classification approaches were 

employed experimentally on data from a bearing test rig. An important aspect is the 

detection of fault severity with no prior knowledge of machine conditions. Analysis 
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proved accurate classification concluding the proposed tool is helpful in machine 

health monitoring.  

Widodo et al. [96] investigated low-speed bearing fault diagnosis using relevance 

vector machine (RVM) and support vector machine (SVM). Different bearing faults 

classification were conducted using PCA. The result showed RVM as a promising tool. 

Nembhard et al. [97] express the need for an experienced condition monitoring analyst 

to diagnose faults using conventional diagnostics methods efficiently. However, 

developing a simplified technique where analysis is done using a single vibration and 

temperature sensor on each bearing of a rotating machine was the focus of their work 

[97]. Measured vibration data from a laboratory scale experimental rig was obtained. 

PCA is then employed to classify machine conditions, firstly without temperature and 

then with a combination of vibration and temperature. In dealing with the dynamic 

behaviour of a machine where a change in speed during operation is the norm, such 

as the aircraft, Nembhard and Sinha [22] developed the unified multi-speed diagnostic 

approach. PCA was employed under four scenarios 'single speed at single bearing, 

integrated feature from multiple speed at single bearing, single speed for integrated 

features from multiple bearings and the proposed unified multi-speed analysis' [22]. 

2.9 Machine critical components’ faults identification techniques  

Failure is the inability of a system or component to function according to specified 

standards of operation [28,106-107]. Various faults may appear or continue during the 

rotating machines' operation [11]. Investigation of faults in rotating machinery has a 

broad scope [35] as an extensive range of faults may show up during the operation of 

the machine over time. These investigations focus on parts such as rotating shafts, 

bearings, gears, and pumps, [100] which may be seen as the machine's critical parts. 

The works of Sinha [45], Bently [101], Muszynska [102] and Walker et al. [35] discussed 

basic details of rotor-related faults while [39-40, 111-114] focused on bearing failure.  

However, to achieve a definite outcome in this research, some popular machine critical 

parts faults (rotor-related or bearing faults) are considered, including unbalance, 

misalignment, shaft bow, mechanical looseness, shaft rub, crack shaft and bearing 

cage defects. These faults' occurrences vary; some are more prevalent than others 
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[35]. Also, some of these faults do not exist separately; for instance, the presence of 

misalignment may lead to other faults [11]. Some studies in fault differentiation with 

helpful diagnosis also have limitations, such as the faults may be more complex in real 

life than in the lab. The systems for research in fault differentiation are simple and 

cannot be exactly compared to a more complex real-life machine. Descriptions of their 

occurrence and identification are discussed to create the basis for understanding the 

faults considered in this research. 

2.9.1 Condition monitoring tools for fault identification  

Fault identification in a rotating machine can mainly be achieved through condition 

monitoring (CM) which is a tool relevant to the improvement of condition-based 

maintenance (CBM) [45]. CBM is carried out in the plant to reduce maintenance costs 

while improving plant availability to avert failure [46].  

Some CBM approaches for effective fault identification are acoustics, lubricant 

analysis, infrared thermography, oil condition sensors and most importantly, vibration 

analysis.  

Acoustics is a non-invasive, non-intrusive CBM tool. It is used in complex machines 

where temperature or humidity is involved. It mainly covers the use of recorded sound 

emissions in diagnosing machine conditions. It should be noted that installation should 

be in proximity to the section of the machine to be monitored as this will provide valid 

data, not corrupted by external noise [100, 115].  

Lubricant/oil analysis is a routine test to observe and determine the oil contamination 

and wear from machines. It deals with tracking the health of a machine over the years 

to establish trends, identify machine faults and detect failure parts. Lubricants help to 

reduce maintenance costs [41, 116].  

Infrared thermography analysis is a non-contact and non-destructive approach to 

measuring the radiation from the surface of heated rotating machine parts [41, 117]. 

Thermal images from infrared have been helpful in condition monitoring to detect 

causes of heat, friction, and excess vibration on a machine. Thermal signatures 
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obtained from rotating machines have provided information for fault identification 

and diagnosis [105, 117].  

Notwithstanding the usefulness of these CBM techniques, vibration-based condition 

monitoring (VCM) is the basis of any condition monitoring strategy. Page [109] quoted 

Art Crawford (founder of IRD) to say, "No single measurement can provide as much 

information about a machine as the vibration signature." Thus, it is the most accepted 

and preferred approach in CBM for fault identification in the industry and for many 

research purposes. [41-50].  

In vibration analysis, signals are recorded, and analysis is carried out either in the time 

or frequency domain. Parameters from time domain analysis give useful fault 

identification information for rotor-related and bearing faults. Such as information 

obtained from peak-to-peak and root mean square (RMS) parameters for rotor 

diagnosis and the crest factor (C.F.) and kurtosis (Ku) parameter due to their 

impulsiveness for bearing fault diagnosis [40-41]. The frequency domain analysis, 

however, uses harmonic components of the machine running speed to provide 

diagnostic information, especially for rotor-related faults.  

However, bearing diagnosis depends on its defect frequency calculated based on the 

configuration of the bearing [40-41,50]. Also, time and frequency analysis features can 

be used to develop data fusion and classification tools for a better understanding of 

machine dynamics and fault identification [25-26,119]. Some vibration-based fault 

identification (VFI) approach relevant to this study is discussed briefly in the 

subsections below. 

2.9.2 Rotor-related faults identification  

The rotor is one of the three critical components of a rotating machine. Fault 

identification methods that may appear in the rotor during machine operation are 

discussed here. 

2.9.2.1 Unbalance 

Unbalance is one of the most common rotodynamic faults [101]. There is an inherent 

degree of unbalance in every rotating machine. A machine's imbalance occurs when 



58 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

the centre of mass of a rotating disc does not coincide with its centre of rotation [30]. 

The shaft of a rotating machine is not perfectly balanced in practical terms, which may 

be due to errors from manufacturing and loss or gain of material during operation [11]. 

Unbalance leads to a high amplitude of vibration in a shaft because of the centrifugal 

force generated by the rotating shaft. An indicator of unbalance is the overwhelming 

presence of 1x component of the shaft speed. Figure 2.10 shows a representation of 

and dynamic unbalance. 

 

Figure2. 10 Diagram showing the static and dynamic unbalance [111]. 

 

Extensive studies [112] on unbalancing in rotating machines have been done and are 

ongoing using various approaches. Some of which may include, but are not limited to, 

unbalance as a result of misalignment and other faults [123-124], diagnostic 

identification of unbalance [125-126], and prediction of unbalance fault using 

simulation techniques [126-127]. Also, experimental-based investigation from labs 

[128-130]and artificial intelligence (A.I.) and artificial neural network (ANN) [120,131-

136] approaches.  

He et al. [122] proposed the novel tensor classifier method called the "dynamic penalty 

factor support tensor machines" (DC-STM) for the diagnosis of rotating machinery with 

unbalanced data. This model can diagnose machine conditions using tensor data 

instead of traditional vector data. So that the relevance of the study is seen as the DC-

STM carries out diagnoses in tensor space.  
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Morais et al. [123] developed a new approach for identifying rotating machinery and 

the unbalance distribution in linear and non-linear conditions using pseudorandom 

improvement methods and a finite element approach for modelling the system. 

Experimental validation was achieved using a test rig. Xu et al. [120] proposed a 

renewable fusion fault diagnosis network (RFFDN) for variable speed conditions 

monitoring using an unbalanced sample. This approach is a branch of the convolution 

neural network (CNN). Results show high diagnostic accuracy and useful invariant 

feature at variable speed under unbalance samples with the accurate classification of 

new faults.  

Zhao et al. [124] observed that the deep learning (DL) diagnostic approach suffers 

some adverse effects with unbalance data, thus giving limited accuracy improvement. 

In order to improve diagnosis, the variational auto-encoder (VAE) is introduced to 

enhance data amplification; after that, an improved fault detection technique which 

combines convolution neural network (CNN) is introduced.  

Yan, Hu and Guo, [28] proposed a rotor unbalance fault diagnosis method using a deep 

belief network (DBN) to learn the representative features automatically and accurately 

identify faults. The study used multi-source heterogeneous information made up of 

vibration signals and shaft orbits plots generated by displacement signals from multi-

sensor. With the aid of a multi-DBM model, information fusion was achieved, which 

adaptively learns useful features through multiple non-linear transformations, which 

was better than the traditional approaches where feature extraction was time-

consuming and labour-intensive. Rotor unbalanced faults were accurately classified.   

Moravian et al. [125] aimed to develop a proper intelligent technique for detecting an 

unbalanced fault in rotating machines using KNN and SVM classifiers in this study. 

Vibration data was obtained from an experimental approach with three machine 

conditions, i.e., no load, balanced load, and unbalanced load. A transformation of the 

vibration signals from the time to frequency domain was achieved using the FFT 

method. Some feature parameters were extracted from the FFT amplitude. After that, 

SVM and KNN were used in classifying the three conditions. KNN had a quicker training 
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test time. However, the performance of SVM was better than KNN in fault 

identification and classification. 

2.9.2.2 Misalignment 

Misalignment is a prevalent fault that exposes rotating machines to increased 

potential failure [35]. It is one of the most frequently occurring faults in rotating 

systems after unbalance [126]. Misalignment shows up when the shaft of the driving 

and driven machines are eccentric because of improper assembly [30]. Diagnosis of 

misalignment faults can be achieved by having a good knowledge of dynamics [127]. 

Excessive vibration is generated from misalignment, making the fault diagnosis 

difficult. Machine misalignment increases due to temperature increase, uneven load, 

and inappropriate foundation set-up [127]. Misalignment occurs as either parallel or 

angular as seen in figure 2.11. 

 

Figure2. 11 Showing the representation of angular and parallel misalignment [128]. 

 

A theoretical model that can detect the vibratory response of misalignment in a shaft 

with flexible coupling was developed in [129]. The work presented a new finite 

stiffness matrix tested on coupling stiffness. Using finite element analysis (FEA), an 

investigation of a mechanical signal obtained by a mixture of angular and parallel 

misalignment features with residual unbalance was presented. The result showed that 

the vibration produced depends on the difference in coupling stiffness in the rotation. 

It was also observed that the amplitude of the measured vibratory component directly 



61 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

depends on the frequency response function related to coupling and measured point. 

Experimental validation of the developed model was done using the response from a 

test rig [130]. Waveform, frequency spectrum and phase shift were observed from 

various magnitudes of misalignment and coupling types. Investigation showed 

successful validation of the proposed theoretical model. However, further work 

considering the dynamics of the machine experiencing a change in speed during 

operation would be helpful. 

Also, angular and parallel misalignment dynamics in rotating machines were 

investigated [102]. Spectra Quest Machinery Fault simulator (MFS) generated data for 

the experiment. The result showed that misalignment leads to Bearing fault and 

excessive vibration. However, more work on a giant rotating machine, especially with 

changing speed during operation, would enhance this work. 

According to Ahmed [131], misalignment is a prevalent fault in rotating machines. 

However, no comprehensive research has been performed to resolve this failure. Few 

pieces of research have some impact in this area. Most research in the lab makes use 

of single coupling while investigating misalignment faults. However, real machines 

have multiple couplings, thus many locations of misalignment. 

2.9.2.3 Shaft bow 

This fault is a primary source of unwanted vibrations in rotating machinery. A 

significant cause of shaft bow is thermal deformation in a running system [35]. It also 

shows up when a machine is stationary over a long period [98], as the weight of the 

rotor makes the shaft deflect and is set permanently in a bow shape. A picture 

representing the shaft bow is shown in figure 2.12. 
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Figure2. 12 Shaft Bow Sourced from [75]. 

 

Meagher et al. [132] developed a mathematical modelling technique to diagnose 

residual shaft bows differentiated from other faults. The model was developed based 

on established techniques and showed a distinctive approach as responses were 

extracted at the Bearing point. This application would favour industrial analysis due to 

easy access to the bearing point. In addressing the inconsistencies and variations that 

occur in the life of a machine over a period, Gaka and Tabaszewski [133] used statistical 

symptoms on established data in the diagnosis and prognosis of various faults with a 

focus on shaft bow and unbalanced. 

Also, the modelling of shaft bow systems having a permanent bow with a view of 

understanding the impact of dependent faults like rub was investigated by Shen et al. 

[134]. An essential aspect of this work is the combination of faults to provide a 

functional classification approach for fault differentiation. However, this work did not 

consider fault severity and the process vibration as faults are developed [35]. 

Song et al. [34] use simulation and experiment to investigate the impact of residual 

shaft bow on the rotor longitudinal responses. Different simulated cases were 

considered, with the result showing the severe effect on rotor vibration with the 

presence of residual shaft bow. Wavelet and non-linear learning methods were used 

to extract features from the experimental signal. Using PCA, faults were identified 

whilst obtaining the residual shaft bow faults. The simulation and experiment 

presented valuable results. However, further work on diagnosing shaft rub and other 

faults can be considered on a machine having to change speed during operation. 
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2.9.2.5 Mechanical looseness 

Mechanical looseness is one of the common rotor faults that a rotating machine 

encounters during its life cycle [135]. It leads to other faults, such as rub, eventually 

leading to machine breakdown. The cause of mechanical looseness is an outcome of 

improper fitting of components, which is observed in the internal assembly, based and 

the structure of the machinery. Early detection of looseness saves maintenance costs, 

keeps operators safe and makes the machine last longer [135]. Figure 2.13 shows 

mechanical looseness at an assembly point. 

 

 

Figure2. 13 Showing looseness fault in a component.[136]. 

 

In the work of Ngolah et al. [137], a three-layer artificial neural network (ANN) was 

employed in monitoring and diagnosing some machine faults in which looseness was 

included. A few key performance indicators were determined and adopted for 

training. Investigation showed it to help study looseness and rub fault [35]. This work 

was on a laboratory scale; however, the industrial application is suggested. 

 In developing a model to identify looseness fault that shows up in various components 

of rotating machines, Wu et al. [135] used the post-processing Ensemble Empirical 

Mode Decomposition (EEMD) and Autoregressive (A.R.) model. This work was 

validated on a test rig, and the results showed the detection of looseness faults on 

various mechanical components. Nonetheless, a combination of faults in dynamic 

systems should also be considered. 
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2.9.2.6 Shaft rub 

Shaft rub is always observed as a dependent fault, i.e., it occurs due to other faults 

such as looseness [35], which leads to wear and fatigue. Rub fault frequently happens 

in areas with little clearance in the rotating machine. This fault tends to become severe 

as it worsens, leading to failure during production and economic loss [138]. Rub leads 

to a system rise in temperature as well as metallic particles drops in oil. Figure 2.14 

shows a picture of a turbine with blade rub leading to bending. 

 

Figure2. 14 Blade rub fault [139]. 

 

Limin et al. [2] observed that pedestal looseness leads to shaft rub fault. Once this 

occurs, the system becomes non-linear and unstable. The analysis focused on 

presenting a turbulent system that could operate normally adaptively, 

notwithstanding agitation from external systems. The numerical analysis gave valuable 

results. However, further investigations can precisely manage the rotor-bearing 

system. 

In the work of Peng et al. [140], detail of shaft rub fault was examined with a focus on 

causes and severity. Investigation into effective monitoring of rub-caused impact was 

carried out by comparing conventional scalogram and reassigned scalogram methods. 

Analysis shows a beneficial result for determining rub fault and its severity. The signal 

for analysis was obtained from a test rig. The reassigned scalogram was seen as more 

effective in figuring out rub-caused impact as it also helps recognise the exact time and 

frequency of impact. Whilst this study achieved success, the reality of most machines 

is that the faults exist together. Therefore, a combined analysis of faults would present 

a better application for industrial purposes. 
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A study by [137] ANN method was used to diagnose rub and looseness faults. 

Notwithstanding the developed approach's usefulness, the research used apparent 

features of each fault, which are much easier to identify in a lab environment than in 

a noisy industrial application. 

2.9.2.7 Crack shaft 

A crack shaft is a potentially severe fault in rotating machines, so early detection of 

such a fault is critical. A crack shaft causes the shaft stiffness to change from high to 

low to high in a complete revolution caused by breathing (opening and closing) of the 

crack [11]; this is due to the self-weight of the rotor. A 2x component observed in the 

shaft results from the open and close movement; however, the amplitude and phase 

of 1x and 2x components change with time [11]. Figure 2.15 is a pictorial 

representation of a crack on a shaft. The simulation of the crack shaft can have a great 

advantage over data-driven methods. 

 

Figure2. 15 Crack Fault [80]. 

 

Stoisser and Audebert [141] broadly discussed the theoretical, numerical and 

experimental method for crack identification in a rotating machine in a power plant. 

The study used the approaches adopted by EDF for crack detection. The theoretical 

beam model developed by S. Andrieux and C. Vare and their associates were employed 

in the numerical and experimental approaches for crack detection. The theoretical 

aspect of the study considered a deviation of lumped cracked beam model of a three-

dimensional formulation with general issues of elasticity and unilateral contact 

condition on the crack lips. Experimental validation was performed using various 
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cracked samples from static and dynamic configurations. Observation of torsional 

behaviour using the cracked beam model was proposed to obtain a more accurate 

estimation of when external forces act on the shaft.  

Ren et al. [142] combined the 3-D waterfall and the reassigned wavelet scalogram 

approach to analyse a crack fault's temporal frequency characteristics. Experimentally 

simulated crack faults at three different crack depths, and analysis showed effective 

results using the proposed approach. This observation showed especially the twofold 

frequency component with the measurement at half the critical speed.  

Oppenheimer and Loparo [143] presented a physics-based fault identification 

approach using integrated observers and life models. The observers used are filters on 

physical models of a combination of machine faults and measured signals in the 

identification and characterisation of the machine's health, while the life model is 

based on the "Forman crack growth law of linear elastic fracture mechanics" to 

ascertain the useful remaining life before machine breakdown. The study observed 

shaft crack and imbalance.  

Other studies on crack fault identification approaches included a diagnosis of shaft 

crack in gearbox [144], novel transverse crack detection on rotation shaft [145], and 

active magnetic bearing actuators for shaft crack identification [146]. Also, were 

detection and diagnosis of the crack shaft [147], a survey on crack rotor dynamics state 

of the art [148], detection and monitoring of crack using Hilbert-Huang transform 

[149], diagnostics of transverse open crack on a stationary shaft [150], review of 

modelling and analysis of crack rotor [33], review on dynamics of the crack rotor [151], 

higher-order spectra for crack identification [39]. 

2.9.3 Bearing defect identification  

In rotating machines, the bearings are part of the most critical components with 

demand on their carrying capacity and reliability [152]. Thus, much research has been 

done over the years on rolling elements bearing, with many benefits. One is the 

calculation of its life with reasonable accuracy [153]. However, in real life, a bearing 

may not operate up to its calculated life rating, which may be due to handling 
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carelessly, heavy loading, and inadequate lubrication. Each of the factors causes 

peculiar damage to the bearing [153]. Figure 2.16 shows micropitting and flaking in the 

ball and cage of a rolling element bearing.  

In diagnosing the rolling element bearings defects, some frequencies are generated 

based on the bearing geometry and the relative speed between the inner and outer 

race [12]. The frequencies result from local faults in the rolling element bearing, giving 

a sequence of repeated periodic impacts [54]. These repetition rates are called the 

fundamental fault frequencies. Knowledge of the bearing geometry helps to 

determine the fundamental fault frequencies, which are ball pass frequency inner race 

(BPFI), ball pass frequency outer race (BPFO), fundamental train frequency (FTF) and 

ball spin frequency (BSF) [12].   

McFaddam and Smith [154] noted several VCM techniques for bearing fault diagnosis, 

including crest factor analysis, shock pulse monitoring, kurtosis, spectrum analysis and 

demodulated resonance analysis or envelope power spectral density analysis. 

 

Figure2. 16 Micropitting and flaking in ball and cage defect of a rolling element 

bearing accessed from [155]. 

 

Zhang and Randall [103] expressed that the envelope analysis (resonant demodulation 

technique) is widely accepted for bearing fault diagnosis. However, the sensitivity of 

the diagnosis parameters using envelop analysis for different working conditions, such 

as changes in speed, may not reflect reality, especially for a wide frequency range with 

weak strength. Nevertheless, the kurtosis of the vibration signals of a bearing is 
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different from average to bad conditions, with a robust sensitivity in varying 

conditions. The study considered the fast kurtogram and genetic algorithms 

diagnostics approach. Therefore, it proposed a model and algorithm design for 

improving resonance demodulation by combining a fast kurtogram and a genetic 

algorithm. Experimental studies were used to check for the feasibility and 

effectiveness of the proposed method. A better result was achieved compared to the 

traditional method.   

Randall, Antoni, and Chobsaard [39, 112] carried out studies on comparing 

cyclostationary and envelope analysis in the diagnostics of rolling element bearings 

[44] and other cyclostationary signals [156]. In the studies, it was observed that some 

machines' signals might not be precisely periodic and so not phase-locked to shaft 

speed. The occurrence may be in impulsive signals from faulty rolling element bearing, 

and the slip makes them cyclostationary of second order. Observation of spectral 

correlation diagram shows discrete cyclic frequencies. Thus, integrating the spectral 

correlation diagram along the frequency axis produces a discrete frequency spectrum 

[39, 112]. The process may be complex, as expressed in the study [156]. However, the 

studies used the Fourier transform of the average squared envelope of a signal and 

compared it with spectral correlation [39, 112]. Although both have similar results, the 

Fourier transform of the average squared envelope is much easier to obtain directly.  

The study [44] compares optimum results from the squared envelope signal over the 

spectral correlation. However, the wide acceptance and usage of envelope analysis in 

the diagnostics of rolling element bearing can be used in the spectral correlation. They 

may give some benefit in diagnosing the modulation effect in gear rotation and bearing 

inner race [156]. 

Attoui et al. [157] proposed a bearing fault diagnosis approach based on predictive 

features using wrapper model analysis on vibration signals. The study considered the 

Most Impulsive Frequency Bands (MIFBs), where several features parameter were 

selected. Afterwards, the wrapper model is applied while the features are reduced 

until the set with the most efficient diagnostic sensitivity is obtained. Experimental 

results using the proposed wrapper model gave a 99.83% accuracy.   
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Misra et al. [104] considered bearing fault detection of induction motors using 

vibration-based analysis. The study focused on diagnosing inner-race and outer-race 

faults, and the vibration-based analysis was used due to its simplicity and early 

detection of any fault that may appear in the bearing. The study proposed 

mathematical formulae that could determine the fundamental frequencies of the 

inner and outer races even without prior knowledge of the manufacturer's bearing 

geometry and technical specifications. Validation was obtained using the proposed 

formulae and experiments from an industry with helpful diagnosis.  

Morhain and Mba [106] used non-destructive testing (NDT) acoustic emission (AE) in 

the diagnosis of bearing defects. In the study, an extensive review of current AE 

methods used in bearing diagnosis. The acoustic emission (AE) is seen to provide better 

early fault detection than vibration analysis. However, bearing monitoring using AE 

techniques has drawbacks due to difficulty in processing, interpreting, and classifying 

collected data. In order to show proper diagnosis, the study focused on an 

experimental test rig with a radially loaded bearing having defects in the inner and 

outer race. Results showed the validation of the use of r.m.s., amplitude, energy, and 

AE count values as a robust approach for detecting damaged bearing.  

Some studies that addressed various approaches to identifying and diagnosing bearing 

defects are considered. Bearing defect diagnoses a comparative study between 

Empirical Wavelet Transform and Empirical Decomposition method [158], multi-scale 

enveloping spectrogram (MuSEnS) for bearing defect diagnosis [159], and envelope 

analysis based on resonance mode of the mechanical system for bearing defect 

diagnosis [160]. Others are bearing defect identification and estimation of defect size 

using acoustic emission and vibration analysis in a comparative study [161] which 

proposed vibration signal demodulation in bearing defect diagnosis using a complex 

filter for Hilbert transform [175-176]. A review of rolling element bearing fault 

detection analysis [177- 179], time encoded signal processing and pattern recognition 

approach for detection and diagnosis of bearing defect [166],. Experimental evaluation 

for bearing defect feature extracted with unified time-scale-frequency techniques 

[167], wavelet transform based on deep convolution neural network (DCNN) for 
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bearing defect size assessment [168], spectral kurtosis for vibratory surveillance and 

diagnosis of rotating machines [169], and combination of minimum entropy 

deconvolution and spectral kurtosis for enhancement of fault detection and diagnosis 

in rolling element bearing [184-185]. 

All types of bearing used in rotating machines are the subject of ongoing research, all 

of which have the potential to produce relevant research papers. Many studies have 

calculated and observed bearing failure frequencies from a lab-based analysis. 

However, detecting which bearing is failing across a complex system has received 

fewer research activities. 

2.9.4 Foundation for machine fault identification 

The foundation is also a critical part of rotating machines, and understanding its 

dynamics and how it helps in fault identification, which may appear in the rotor and 

bearing, is also essential [3,9]. 

  

Figure2. 17 Structure of a rotating machine with installed foundation [172]. 

 

Also, due to standardisation which helps to provide cost-effective spares, most 

machines are built to have similar configurations and components which are installed 

at different industrial plants. Although these machines may have identical set up, their 

dynamic behaviour may differ due to the foundation flexibility [25]. 
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Figure2. 18 Diagram of various types of foundation for installation of rotating 

machines accessed from [173]. 

 

The difference may arise from the foundation type and installation location [24-45]. 

Also, some machines may not have baseline data for comparing their vibration 

response during CBM. Similar machines may provide this data if VFI methods can show 

indifference in their diagnosis approach when combining data from newly installed 

with existing ones, even though there are differences in their foundation flexibilities 

[45,188].  

Sinha et al. [9] study gave an abstract representation of a turbogenerator set with 

connections between the rotor and flexible foundation through oil-film journal bearing 

using the equation of motion of a system. Foundation model estimation was used to 

obtain the foundation parameters using the linear least-square and non-linear 

estimations [9]. Models for linear and non-linear improvement were applied to the 

simulation of a flexible rotor fluid bearing-foundation model to fit a sample machine 

in the laboratory. The setup, which had four bearings, also included various unbalance 

configurations on the rotor. Foundation model identification was carried out using 

different regularisation methods. Iterations based on linear and non-linear estimations 

and fault prediction proved useful in foundation model estimation [9].  

Less and Friswell [175] also considered the estimation method for developing 

foundation models that will accurately represent machines that will effectively identify 
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faults. Various fault models were considered, and the integrity of the models was 

discussed based on the outcome of the investigation.  

Yunusa-Kaltungo, Sinha and Nembhard [25] developed a novel fault diagnosis 

approach considering rotating machines having different foundation flexibilities. The 

study presented the demands of fault diagnosis of a single machine with varying 

operation conditions, such as operating speeds. It considered the usefulness of having 

a diagnostic approach that provides value for early fault detection, notwithstanding 

the foundation flexibilities and operating speeds. The study is based on earlier work 

[69], where rotor faults were identified using a novel poly-coherent composite higher-

order spectrum (pCCHOS) with a subset of bispectrum and trispectrum. The approach 

considered the combination of pCCB and pCCT to classify rotor faults. However, in the 

study [25], a data set from two flexible flange-built experimental rigs was observed, 

and combined pCCB and PCCT were classified. This investigation was done to observe 

the dynamics of the rotor faults in the two machines with different foundation 

flexibilities. Results showed good classification of rotor faults, hence useful fault 

detection method.   

  In a similar approach, Nembhard, Sinha and Yunusa-Kaltungo [51] and Nembhard and 

Sinha [174] tried to transfer a novel unified multispeed approach (UMA) [22] where 

valuable results were obtained from the classification of selected rotor faults from 

multiple speed, single foundation [22], to multiple speed multiple foundation analysis 

[45,188]. Results showed better classification of rotor faults. 

Lee [176] carried out a survey study where smart mechatronic devices have been used 

in addressing rigid and flexible foundations of rotating machines and understanding 

vibration measurement. The study was done with the prospect of opening up more 

research on mechatronics as it relates to rotodynamic. 

The area of foundation flexibility has received research attention but with less 

outcome concerning vibration-based fault identification methods. Studies on 

foundations are popular in model-based approaches, but little is seen in experimental 

approaches. Most industrial fault identification approaches suffered set back until 
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attention was moved to their foundations. The focus is either in terms of re-examining 

its natural frequency (as a machine may have over time adjusted this close to the 

excitation frequency) or in terms of its set up for production (which, if not aligned 

correctly, can lead to unbalance, misalignment, rub and bearing failure). Moreover, if 

not correctly fitted can lead to looseness, fault and its likes. 

2.10 Critical assessment of vibration-based fault identification 

methods  
A critical assessment of VFI methods based on various studies from this review is 

presented in this section. The assessment presents discussions on related VFI 

approaches showing their limitations and, in some cases, proposing how they can be 

addressed. The review considered three broad VFI methods: signal-based, hybrid, and 

model-based. The signal and hybrid methods share similar features. This study focuses 

on these methods, and a critical assessment is presented. The model-based method is 

a theoretical or mathematical approach. A unique approach in the model-based 

method is the finite element analysis (FEA) which has helped to advance VFI in rotating 

machines. However, applying FEA may be too expensive computationally. A model 

reduction approach helps to mitigate this limitation. However, understanding 

vibration phenomena in rotating machines is not viable in this situation. A critical 

review of the signal and hybrid method used in this thesis is addressed. 

Time and spectrum analysis: In time domain and spectrum analysis, the features 

helpful in detecting faults are well established; however, most of these features are 

present in more than one fault so an expert view may be helpful in this investigation. 

Time domain analysis is laborious and demanding, especially when the signal is 

lengthy. Time domain analysis is sometimes cumbersome when there is an extensive 

system order. This drawback does not take away its benefit, where it indicates a 

transient response significantly. On the other hand, the frequency domain has shown 

robust analysis in signal processing. Noise and disturbances in the signal are best 

understood in the frequency domain. However, its mathematical models may be less 

accurate when compared to the time domain.  
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Envelope analysis: This helps to distinguish signal from sound during analysis 

efficiently. It helps observe regularly spaced signals. It is an established method in 

rolling element-bearing fault identification. However, the demand in selecting a 

central frequency filter comes with experience. Also, spectral lines of the fundamental 

frequencies may not be easy to identify in the envelope spectrum. 

Bispectrum analysis: This is a developing area in rotating machine fault identification. 

It combines various frequency components from a signal and produces a unique 

feature for fault identification. Most studies of bispectrum cover rotor-related fault 

diagnosis, and just a few have covered bearing fault diagnosis but with a combination 

of other methods. Its usefulness in investigating non-linear signals should encourage 

more research on bearing and gear faults and improvements in rotor faults.  

Modal analysis: This helps to identify the natural frequencies of a machine by creating 

resonant conditions. With the natural frequency of a machine identified, its excitation 

frequency can be set to support safe operation. Constant operation of the machine 

can shift the natural frequency due to ‘reduced mass or increased stiffness. Thus, it is 

advisable to carry out a regular modal test.  

Data fusion: Data fusion combines, integrates, and consolidates different data sources 

for a valuable interpretation of machine information. Lots of researchers have 

achieved sound output in their studies using data fusion. However, too much data 

makes fault diagnosis inconvenient; thus, parameter reduction approach would be 

helpful to take out non-essential parameters.  

Clustering: Clustering analysis aims to detect patterns and groupings in data for 

effective diagnosis. Some drawbacks in cluster analysis are the unavailability of enough 

data, especially for newly installed machines, and the skills required in clustering 

analysis may be basic. However, interpretation and trending to determine machine 

health demands a good understanding of machine behaviour.  

Pattern recognition: This may be similar to clustering; however, in pattern recognition, 

a programmed approach helps to recognise patterns with regularities in data (i.e. 

familiar patterns can be identified correctly). Principal component analysis (PCA) is one 
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of the best-known and simple pattern recognition classification tools. It has been 

widely used in VFI analysis.  

Rotor-related and bearing faults: Rotor and bearing faults have received very high 

volumes of investigations, research, and publications. These faults show up mostly 

during machine operation; some occur because of improper installation, while a few 

are because of production errors of machine parts. In earlier sections, details have 

been given on the rotor and bearing faults, which are the focus of the research. Various 

works of literature critically reviewed considered VFI methods in identifying rotor and 

bearing faults. However, the author cannot cover a detailed critical assessment of each 

article due to the extensive studies on rotor-related and bearing faults. It is worth 

noting that there is a constant demand for improved methods for identifying rotor and 

bearing faults using a simple, robust, and timely approach.  

Foundation flexibility: Understanding the dynamic behaviour of the machine 

foundation helps determine the dynamics of the rotor and bearing faults in that 

machine. Also, standardisation makes similar machine configurations available but 

with different foundation flexibility. However, most research in VFI relates to the 

foundation of a machine being model-based, while little has been achieved in the 

experimental approach. Industrial plants sometimes underperform due to constant 

failures until focus is placed on the foundation to determine its natural frequency, 

which may have adjusted close to the excitation frequency. Also, improper set-up may 

lead to the rotor and bearing faults.  

Several industrial plants run through multiple natural frequencies (critical speeds) 

during their operation, especially during run-up operations. The effect of resonance 

may affect this operation. Thus, observing such machines would help plant operators 

understand their dynamics, which contributes to VFI approaches.  

Other critical assessment of vibration-based fault identification includes the following.  

Maintenance time reduction: There is much demand for increased vibration-based 

fault identification (VFI) methods in the quickest possible time, especially in the airline 

industry [35]. A review by Anderson [184] summarises the maintenance time 
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breakdown for several military aircraft. The outcome shows as much as 44% of an 

aircraft maintenance time (this takes over 90% of total maintenance operations) is 

consumed with inspection alone. Maintenance could be more informed and targeted, 

with inventory available when needed, reducing maintenance time. 

Broad subject area: The subject area of rotodynamic faults identification is an 

extensive research area. It is challenging to quantify faults with regard to the rate of 

occurrence as there is a lack of commercially available data. Also, rotating machines 

are the most important and most applicable classes of industrial machinery, so for 

decades, a considerable body of information has been published around it, ranging 

from articles, books, patents, reports, and various texts. Invariably, gathering every 

significant contribution in the field would be much more demanding. So, a general 

description of various outputs and contributions made by research is presented in the 

review.  

Occurrences of faults: Fault occurrences are not mutually exclusive, notwithstanding 

individual investigation, as dependencies exist between many faults. Fault chains could 

become very complex; for example, misalignment can lead to unbalance, which can 

cause rub. Most research contains single fault analysis, and a few focus on two or more 

faults. Such fault dependencies are limiting factors when moving VFI from the lab to 

the industry. A case scenario is when a method can effectively diagnose an unbalanced 

fault without consideration for misalignment, which can be a root cause that would 

render such a method ineffective when applied in real-life cases.  

Acceptance of new diagnosis methods in the industry: The research into the diagnosis 

and prognosis of machine critical parts faults in rotating machines is a developing area. 

The use of new methods in industries has not yet reached a level where standard 

solutions or procedures to follow are generally accepted.  

Research output variation: Due to variation in research output on proposed VFI 

models, separating which research has the potential for moving beyond the lab 

environment into the industry can be challenging to identify from initial observation. 
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The complexity of research work: Many studies look at single or dual rotor systems 

where fault identification is less complex. In an industrial setting, complex systems 

comprise several rotors with compressor and turbine stages, which significantly 

complicate diagnoses of such faults.  

Effect of noise on data – lab/industrial perspective: Vibration signals from the lab may 

not have as much noise as in the industry, which may prove difficult to apply these 

labs-based developed VFI techniques in industrial situations.  

Scaling up Model-based methods: Most useful finite element analysis models’ fault 

identification techniques are challenging to scale up to complete industrial-size 

applications.  

Diagnosis output based on heavy instrumentation in the lab: Many data-driven 

techniques for diagnosis and prognosis claim good results by heavily instrumenting 

specific test system components. Heavy instrumentation is not possible, practical, or 

cost-effective in many industrial cases. For instance, a key phasor transducer can be 

particularly useful in diagnosing faults such as rotor bow; however, this equipment 

requires the ability to cut a keyway for measurement to be performed.  

Less corresponding research into localised faults: With continuously developed for 

new fault identification, diagnosis and prognosis methods in rotating machines, there 

is a lack of corresponding studies into the localisation of these faults, which is a 

limitation in promoting most research into live industrial application. 

More diagnosis and less prognosis for combined faults: Several studies have carried 

out a combination of faults for diagnosis. However, only a few have a combination of 

faults for prognosis. Nevertheless, according to Jaw and Meril [185], prognosis and 

diagnosis techniques can be combined into a sound CBM system. 

 

 



78 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

2.11 Research gap in consolidated rotor and bearing fault diagnosis 

Most of the literature covered in these studies have either used one or more methods 

to identify rotor-related and bearing faults. Some focused on just one fault either 

rotor-related [122,145,154,155,191] or bearing faults [39,111,112,115,173,192] as it 

may seem important to the study. Many researchers have moved from studying 

individual faults to a combination of faults, i.e., multiple rotor faults [20,22,45,65, 180] 

or multiple bearing faults [194-196]. Some considered rotor and bearing faults 

[5,30,197], but each is investigated independently, and maybe comparisons are made. 

However, most faults that appear as rotor-related or bearing defects may appear 

around the same period and are interdependent. There is a lack of research that 

develops a VFI approach where the diagnosis of a consolidated rotor and bearing faults 

is achieved in a single analysis. This study area is complex, as seen from various reports. 

In the industry, simple rectifying an unbalance fault does not provide a satisfactory 

solution if the root cause is misalignment. This subject is complex as several faults 

exhibit similar vibration characteristics rendering the traditional fault identification 

methods inaccurate in some scenarios.  

A vibration-based fault diagnosis approach that can identify rotor and bearing faults in 

a single investigation would help to reduce not just maintenance costs but helps 

maintenance planning and plant availability. Such a single diagnosis approach would 

also provide an overall understanding of the machine's behaviour concerning 

identifying a consolidated rotor and bearing fault in a rotating machine [81]. 

2.12  Summary of literature review 
Investigation into these critical parts of a rotating machine, i.e., rotor and bearing, to 

understand their dynamic behaviour and the faults that appear in them is essential in 

improving VFI methods. This thesis has critically reviewed some relevant literature on 

VFI techniques that have been developed for improved fault diagnosis. Various studies 

have attempted to improve VFI methods using the traditional approach; however, 

interpreting its results is often ambiguous. The signal-based method takes its root from 

the traditional approach and has been improved by combining various techniques, 

which gives credence to the hybrid methods. The model-based methods are primarily 
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theoretical but have contributed immensely to advancing VFI. This review considered 

various VFI approaches relevant to this study, including time and frequency domain 

analysis, spectrum analysis, envelope analysis, bispectrum analysis, modal analysis, 

data fusion, clustering, and pattern recognition approaches. Various studies explained 

and showed the application of these techniques in fault analysis and diagnosis. 

However, there may be drawbacks to some of these methods, especially where the 

aim is to develop a simple and robust approach. Some significant limitations as 

observed and would be addressed in this study are presented below.  

1. The review has presented gaps and limitations in many VFI techniques for rotor and 

bearing fault diagnosis. This thesis discussed these gaps; a significant gap is the 

consolidated diagnosis of the rotor and bearing faults in a single analysis. One which 

this research address with valuable outcome.  

2. Most machines operate above their natural frequencies. However, an earlier 

study focused on signals below the machine's first natural frequency. Understanding 

the dynamic behaviour when a machine operates below and above the natural 

frequency helps investigate the dynamics of the faults that show up for easy 

identification. This study improved the existing test rig to operate below and above its 

first critical speed.  

3. Earlier studies focused on time domain and spectrum analysis as their 

parameters help detect most faults. However, they are laborious, and analysis 

sometimes shows similar features for different faults making diagnosis cumbersome. 

Thus, data trending would help determine the effectiveness of features selected for 

diagnosis, especially for rotor faults.  

4. Earlier studies used acceleration features in their investigation and focused 

only on rotor faults. However, acceleration and velocity signals have shown usefulness 

in diagnosing bearing and rotor faults, respectively. Although most studies focus on 

acceleration signals, it is easy to obtain using accelerometers. This study converts 

acceleration to velocity and combines features in its investigation into the rotor and 

bearing faults in a single analysis.  
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5. In spectrum analysis, the amplitude is used in fault diagnosis. However, the 

phase information is lost due to the complex conjugates of the Fourier transformation. 

The earlier study proposed a pCCB, an improved bispectrum where both amplitude 

and phase are retained in the computation. This research builds on the results from 

pCCB and then uses its complex number of components to investigate rotor faults. 

Bearing features are incorporated and observed in a single analysis.  

6. The necessity of diagnosing similar machines with different foundation 

flexibility is now widespread as standardization of machine parts. Diagnosing similar 

machines demands a VFI approach that allows data sharing between several identical 

rotating machines. This approach takes out the storage of individual machine data 

history. 

Further research in rotordynamics would provide valuable outcomes that bridges the 

gap between these research studies and real-life systems by combining simulations 

with data-driven techniques and validating experimental data. Although quantifying 

the overall success of the research studied is laborious; however, it is possible to define 

the critical areas in which a technique must excel to be considered viable; the research 

outcome provided such as presented in the methodology chapter. 
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CHAPTER 3 

RESEARCH METHODOLOGY  
 

This chapter covers the entire methodology for this research work. It presents the 

framework of the research, the methods used and their theoretical representation. 

Also, the benefits and limitations of some of the methods used in this study is discussed.  
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3.1 Overview 

The demand for continuous improvement of vibration-based fault identification (VFI) 

in a rotating machine is a drive for this study. The experiment-based research aims to 

develop a fault identification approach that diagnoses a wide range of the machine’s 

critical components (rotor and bearing) faults in a single analysis.  

This study looks at conducting a preliminary investigation using existing data from a 

flange-based flexible test rig (FFTR) developed by two former PhD students, Dr Akilu 

Yunusa-Kaltungo and Dr Adrian Nembhard, during their research studies. This FFTR 

data is acceleration-based and was collected when the test rig operated below its first 

critical speed because it is above the nameplate rpm of the motor. The current study 

modified the FFTR to a spring-based flexible test rig (SFTR). This rig was to create an 

industry base scenario where machines can run over critical speeds, such as in aircraft 

and other complex turbines. The modification of the SFTR was achieved by using spring 

connectors in place of the flange connectors at the bearing pedestal, which reduced 

the stiffness, thus a reduction of the natural frequency. This adjustment made the test 

rig operate below the nameplate rpm of the motor. Therefore, it could run below and 

above the first critical speed. 

 An earlier study [20] proposed a unified multispeed analysis (UMA) for diagnosing an 

extensive range of rotor faults using acceleration-based vibration data obtained from 

the FFTR when the machine ran below its first critical speed. Building from this earlier 

study, the current study intends to use similar rotor faults acceleration signals from 

the FFTR in a preliminary investigation. Signal processing and data trending of selected 

features from the acceleration data led to a classification approach, which further 

validates the UMA.  

The further investigation involves velocity data converted from the acceleration 

signals. A diagnosis was improved by combining features of acceleration and velocity 

data.  

On the SFTR, modal analysis is carried out to present the natural frequencies of the rig. 

The collected data from SFTR were investigated in the study, and novel data fusion 
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approaches were proposed. Considering an earlier proposed poly-coherent composite 

bispectrum (pCCB) on the SFTR and further investigation of its components, including 

the complex number representation for analysis, helped improve diagnosis. A 

combination of acceleration features and pCCB components proposed a novel fault 

identification approach. Figure 3.1 shows the flow diagram of the research 

methodology. Section 4.2 gives a brief of the experimental approach; other sections 

discuss methods applied in this research and, where necessary, the theoretical 

approach in detail. 

 

Figure 3. 1 Methodology for the research study. 

3.2 Test rigs and experiments and analysis 

This section covers the description of the test rigs used in the analysis. It presents the 

data collected, obtained, and conducted experiments, showing the various machine 

conditions simulated on the test rigs. It also discusses the analysis of the data obtained 
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from the test rigs. It should be noted that more details on selected features and the 

build-up of the data matrix are found in [20], as this study was developed from them. 

3.2.1 Test rigs 

This study proposed the usage of data from three test rigs. Data from the flange-based 

flexible test rig (FFTR) was built in earlier research, as described in section 3.1. The 

researcher carried out the modal analysis, and the natural frequencies obtained were 

56.76 Hz (1st mode), 59.20 Hz (2nd mode) and 127 Hz (3rd mode). This informed the 

decision to obtain vibration data below the machines’ first critical speed (1st mode) as 

the nameplate speed is below the first natural frequency. On the other hand, the 

spring-based flexible test rig one and two (SFTR-1 & 2) modified to fit the current 

research is also described in section 3.1. The framework for the FFTR showing its data 

and modal analysis is in Figure 3.2. 

 

 

Figure 3. 2 Framework for the FFTR with modal analysis simulated machine conditions. 
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The SFTR-1 was built using a spring with stiffness of 4.69N/mm per spring. The spring 

connects the bearings to the pedestal at the four-bearing location. This connection 

helps adjust the system's entire stiffness, thus reducing the natural frequency. This 

reduction of the natural frequency creates a machine that operates over its critical 

speeds, a representation of real-life machines such as turbogenerators and aircraft, 

which operate with changing speeds across their critical speeds. Afterwards, the modal 

analysis showed the first few natural frequencies of the SFTR, which included 11.52 

Hz, 18.62 Hz, 30.73 Hz, 49.13 Hz and 85.83 Hz. These modes were below the nameplate 

rpm of the motor that will operate the test rig, which is 3000 rpm (50 Hz). Thus, three-

speed were selected, which are 450 rpm (7.5 Hz) below the first critical speed (11.52 

Hz), 900 rpm (15 Hz) below the first critical speed and 1350 rpm (22.5 Hz) above the 

first critical speed.  

The SFTR-2 was adjusted using a spring with higher stiffness, i.e., 14.4N/mm. A higher 

stiffness increases the natural frequency of a system. The reason for increasing the 

natural frequency is to observe a similar machine with different foundation flexibility, 

compare analysis and investigate the transference of diagnostic approaches between 

similar machines. Modal testing on SFTR-2 showed the first few natural frequencies, 

including 17.78 Hz, 23.88 Hz, 32.65 Hz, 51.19 Hz and 86.36 Hz. The three speeds 

selected for running SFTR-2 are also 450 rpm (7.5 Hz) below the first critical speed 

(17.78 Hz), 900 rpm (15 Hz) and 1350 rpm (22.5 Hz) above the first critical speed. 

Observation of data at 1350rpm would help to understand machine operation close to 

a critical speed. Figure 3.3 shows the framework for the SFTR, modal analysis and 

simulated conditions. 
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Figure 3. 3 Framework for the SFTR with modal analysis simulated machine conditions. 

 

3.2.2 Experiments conducted 

For preliminary investigation, data from the FFTR was used for data trending for 

selected acceleration-based time domain and frequency domain parameter features. 

These selections were based on results from an earlier study [20]. As seen in Figure 

3.2, the signal for this investigation included baseline residual misalignment and 

residual unbalance (RMRU), Misalignment (M), shaft bow (S-Bow), mechanical 

looseness at bearing three (M-LooseBg3), and shaft rub near disc two (RubD2), all of 

which are rotor related conditions.  

Acceleration-based vibration data was collected at 10kHz using accelerometers placed 

on the four-bearing location at an angle of 450. This placement takes responsibility for 

the vertical and horizontal effect of the vibration in the signals [20]. As shown in Figure 

3.3, eleven simulated machine conditions simulated in SFTR include rotor-related 
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RMRU, M, Unbalance (Unb), Crack near bearings one and two (CBg1 and CBg2), rub 

near disc (RubD1) and bearing-related bearing cage defect at bearing one to four 

(Bg1Cg – Bg4Cg). The simulated conditions are the same for SFTR-1 and 2. Whereas 

bearing defect and Bearing locations 3 and 4 were excluded from the initial analysis 

with SFTR-1, it was included in the final analyses for comparison with SFTR-2. 

3.2.3 Data analysis 

Figure 3.4 shows the framework in the data analysis for developing the proposed 

approaches using the data from the different test rigs. A description of what the entire 

analysis entails is presented in this subsection. Data analysis from FFTR, SFTR-1 and 

SFTR-2, a comparison between SFTR-1 and SFTR-2 and the combination of parameters 

for diagnosis using the proposed approaches were discussed. After that, a comparison 

of the results from the proposed approaches was presented.  

FFTR data analysis 

Data from the FFTR was split into 11 samples in order to achieve an average analysis 

for understanding the dynamic behaviour of the signals. Time and frequency domain 

analysis for each machine condition (RMRU, M, S-Bow, M-LooseBg3 and RubD2) at the 

three machine speeds, i.e., 1200 rpm (20 Hz), 1800 rpm (30 Hz and 2400 rpm (40 Hz). 

Time and frequency domain parameters were extracted for data trending. The 

parameters are time domain RMS, CF and Ku and frequency domain 1x -5x harmonic 

components and SE. This data trend was done to reaffirm the sensitivity of features 

selected in an earlier study [20] in a proposed UMA approach. The outcome showed 

the sensitivity of the individual parameters; however, there was no consistency in the 

result for a comprehensive diagnosis for the entire system.  

Thus, data fusion and PCA-based classification of the acceleration features for the 

rotor conditions reaffirm earlier UMA [20]. However, an extensive range of rotating 

machine faults could be diagnosed effectively if the approach is improved. Thus, 

velocity analysis was considered. The acceleration data was converted into velocity 

using the integration method. Velocity-based time and frequency analysis gave a good 

diagnosis. Similar time and frequency domain parameters were extracted and 

classified using PCA-based pattern recognition. The outcome showed improved 
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diagnosis compared to acceleration feature classification. However, acceleration 

signals cover a high range frequency useful for bearing fault diagnosis, while velocity 

covers a lower frequency range valuable for rotor fault diagnosis.  

Since the aim is to diagnose an extensive range of rotating machines’ critical parts 

faults, including rotor and bearings, in a single analysis, a combination of features that 

are sensitive to the behaviour of these faults would be helpful. Also, since bearing 

faults are mostly impulsive, time domain features like kurtosis would be helpful, while 

the frequency domain is great in projecting rotor faults mainly due to the harmonic 

components. Thus, a combination of acceleration-based time and velocity-based 

frequency domain features would help diagnose a wide range of machine faults. The 

selected acceleration-based time domain features (RMS, CF and Ku) and velocity-

based frequency features (1x – 5x harmonic components and SE) were combined to 

build a data matrix and input into the PCA-based pattern recognition model. The 

outcome showed a much more improved diagnosis compared to only acceleration or 

velocity classification. 
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Figure 3. 4 Framework for the analysis in developing the fault classification approaches. 

SFTR-1 data analysis 

The further investigation considered signals from the SFTR-1. 20 sets of data were 

collected for all machine conditions. The machine conditions simulated are the rotor 

and bearing faults, as stated in section 3.2.2 and Figure 3.3. The data were recorded 
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at three running machine speeds, i.e., 450 rpm (7.5 Hz), 900 rpm (15 Hz) below the 

machine's first critical speed and 1350crpm (22.5 Hz) above the machine's critical 

speed.  

Time and frequency domain analysis was repeated for the rotor conditions and feature 

extraction as in the FFTR diagnosis. The acceleration-based PCA classification also 

reaffirms the UMA. However, since the velocity-based time domain feature was not 

considered in the improved diagnosis for FFTR, the same is considered here. So, the 

omega arithmetic approach converted acceleration-based frequency domain spectra 

to velocity-based frequency domain spectra. Thereafter, data fusion of the 

acceleration-based time domain and velocity-based frequency domain were classified 

using the PCA-based pattern recognition model. The outcome reaffirmed the 

improved approach and showed outstanding clustering and classification of the rotor 

conditions.  

Furthermore, the signals from bearing defects obtained from bearing pedestals one 

and two were analysed. The signal was filtered at 500 Hz to remove rotor-related 

features, and envelope analysis of the time and frequency domain was done. The 

spectra indicated the presence of bearing cage defect at the three speeds. However, 

data fusion of bearing acceleration-based time domain features and rotor velocity-

based frequency domain features (dFAVF) were computed into a data matrix and input 

into the PCA-based pattern recognition for clustering and classification. The outcome 

showed good clustering of each rotor and bearing conditions. However, it was 

observed that the rotor conditions were positioned at a section of the plot while 

bearing conditions were further away. This could indicate the faults show clustering 

close to their frequency range of occurrence.  

However, the PCA-based classification was done using the first two principal 

components (PCs). This approach was done because research has shown that the first 

few PCs carry the essential variance information of the data. However, other PCs apart 

from the first two may also have important diagnostics information. Thus, an 

investigation using more PCs was done. Here, additional PC3 was input in the 
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classification model, and the result showed improved classification compared to 

analysis using the first two PCs.  

Also, to validate the result from the PCA classification plots, data quantification was 

carried out. The data quantification calculated the mean of each condition and did a 

separation between the baseline RMRU and all faulty conditions. The value showed 

good classification for the dFAVF model compared to acceleration alone. Also, in the 

comparison between the PC1vsPC2 and PC1vsPC2vsPC3, the latter showed values of 

increased separation, which could indicate better classification.  

Since the earlier UMA has been improved and bearing defect features has also been 

incorporated for extensive faults diagnosis, further investigation to achieve a single 

analysis could provide a more robust approach. Thus, consideration was given to an 

earlier proposed poly-coherent composite bispectrum (pCCB) analysis [27]. The pCCB 

analysis provides a robust diagnosis as its analysis contains both amplitude and phase 

information from the signal, which is lost in the traditional spectrum analysis used in 

earlier dFAVF studies. It also fuses the signals from all four bearings in its analysis. This 

fusion provides reduced but robust data.  

In this study, 10 sets of vibration data for rotor faults considered from SFTR-1 were 

RMRU, CBg1, CBg2 and RubD1. Signals were analysed and observed in the pCCB plots 

with components of pCCB, such as B11, B12, and B13, up to B33. In the earlier study 

[27], the components B11, B12 and B13 were extracted and input into the PCA-based 

data matrix with good clustering and classification. Thus, this study repeated a similar 

investigation using data from a different test rig and achieved good classification. 

However, the presence of some components in the spectrum analysis provides useful 

analysis in the form of a combination in pCCB analysis, such as crack and rub faults that 

hows the 2x and 4x components in spectrum analysis which could be observed in B22 

components. Thus, further investigation considered analysis of the various pCCB 

components to check for their sensitivity in diagnosing machine conditions. The 

outcome showed that B22 carried sensitive information to diagnose crack and rub 

conditions. So, it is included for an improved diagnosis where PCA-based classification 

was achieved. Also, the complex number of  
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pCCB component was observed as it may also carry some sensitive information in fault 

diagnosis. A PCA-based classification was achieved using features from the real and 

imaginary pCCB components.  

Comparison of the initial, improved, and real and imaginary pCCB components showed 

better classification for the real and imaginary pCCB components. On the other hand, 

observation of the comparison between PC1vsPC2 and PC1vsPC2vsPC3 showed very 

little difference in the analysis. Thus, additional PCs may not contribute much to pCCB 

analysis for fault diagnosis. Similarly, the data quantification approach presented the 

real and imaginary pCCB classification showing better separation than the initial and 

improved classification.  

Since good classification was achieved using the pCCB components, acceleration-

based features from bearing defects were incorporated into the data matrix with pCCB 

components. PCA-based pattern recognition and comparison of AT-ApCCB and AT-

RIpCCB were done. The result showed good clustering for individual conditions. 

However, there was a separation between the rotor and bearing conditions, indicating 

their frequency ranges of occurrence. On the other hand, the classification at AT-

RIpCCB showed better separation than that of AT-ApCCB. Observation of PC1vsPC2 

and PC1vsPC2vsPC3 also indicated better separation in the bearing cases than the 

rotor ones. Data quantification comparing the plots for the two scenarios proved that 

the separation was more evident in the bearing cases than in the rotor. 

SFTR-2 data analysis and comparison with SFTR-1 

The setup of SFTR-2 was to create a similar machine with different foundation 

flexibility. Rotor and bearing conditions were simulated on SFTR-2. Twenty datasets 

were collected at similar speeds as in SFTR-1. As seen in Figure 3.4, time and frequency 

domain analysis for rotor and bearing defects was carried out for each set of data, and 

extracted features were populated into the data matrix with a PCA-based pattern 

recognition model used in clustering and classification for the dFAVF approach.  

A similar classification was carried out using the AT-pCCB (AT-ApCCB and AT-RIpCCB) 

approach. Comparison of diagnosis between SFTR-1 and SFTR-2 helped to understand 

the dynamic behaviour of similar rotating machines with different foundation 
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flexibility. The outcome showed a similar trend in diagnosis. After that, a combination 

of features from SFTR-1 and 2 helped to understand the transference of diagnostic 

features. This approach also compared the analysis outcome using dFAVF and AT-pCCB 

approaches in fault identification. The outcome provided insensitive features for fault 

identification in similar machines with different foundation flexibilities. It also showed 

that the AT-pCCB gave better rotor fault diagnosis than dFAVF because of the vital 

information from both amplitude and phase presence. Overall, rotor conditions 

appeared separate from bearing conditions in. a single analysis, indicating their 

frequencies of occurrence where rotor faults occur around low frequencies and 

bearing at high frequencies.  

Note: Since the research is experimentally based, chapter four is dedicated to an in-

depth discussion of the test rigs and experiments. It covered a description of the test 

rigs, instrumentation, modal testing, simulated faults and data acquisition and storage. 

In order to provide an understanding of the analysis, relevant methods mentioned as 

applied in the investigation are discussed in subsequent sections. 

3.3 Time domain analysis 

Time domain analysis is a general method is investigating vibration signals. Its 

parameters are sensitive in showing the behaviour of a system. This study's selected 

time domain parameters include root mean square (RMS), crest factor (C.F.) and 

Kurtosis. The theoretical expressions of these parameters are described as follows: 

Time domain analysis is a waveform representation of the measured vibration data 

[11]. Observation of the waveform, if not clear sinusoidal, may be challenging to carry 

out any proper analysis. Thus, some parameters help understand analysis in its 

representation, such as root mean square (RMS), crest factor (C.F.) and Kurtosis (Ku). 

The theoretical expressions of these parameters are described as follows:  

3.3.1 Root mean square 

Root mean square (RMS) of a waveform is the measure of the energy contained in it 

[45]. It can be described as the square root of the mean value of squared values 

collected over an interval. It is simply obtained by squaring the waveform value. The 
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result is averaged, and the square root is obtained. Sinha [11] computed the RMS value 

as in equation (3.1); 

arms= √
∫ 𝑎2(𝑡)𝑑𝑡

𝑇
0

𝑇
                                              (3.1)        

where T is the time period of the signal a(t). Thus, for a small segment of the time 

domain signal, a(t), we can assume that the selected segment contains p data points, 

which is represented as 𝑎𝑘(𝑡𝑘) at time 𝑡𝑘 where 𝑡𝑘 = (𝑘 − 1)𝑑𝑡, and k = 1, 2, …, p. So 

that the 𝑎𝑟𝑚𝑠 was represented in equation (3.2) as; 

                           𝑎𝑟𝑚𝑠 = √
∑ 𝑎𝑘

2𝑝
𝑘=1

𝑝
                                                (3.2) 

3.3.2 Crest Factor 

Crest factor (CF) is the ratio of the peak value to the rms value of a waveform. It is a 

non-dimensional value. Mathematically, it is represented in equation (3.3) as; 

                                          𝐶𝐹 =
|𝑎𝑝𝑒𝑎𝑘|

𝑎𝑟𝑚𝑠
                                               (3.3) 

where 𝑎𝑝𝑒𝑎𝑘= Amplitude of peak value and 𝑎𝑟𝑚𝑠  = the amplitude of rms value. The 

crest factor helps to give a quick idea of the amount of impact occurring in a waveform 

and is closely associated with roller bearing, etc.  

3.3.3 Kurtosis 

Kurtosis (Ku) is a measure of the extent of peaks or flats a waveform has in relation to 

normal distribution. The higher the kurtosis the clearer peaks around the mean with 

heavy base while the low kurtosis gives flat top around the mean. Kurtosis is a non-

dimensional value and it is defined as ‘the normalised fourth order moment of a time 

domain signal [45]. In defining the kth order central moment for any acceleration data 

for instance a(t), it is represented in equation (3.4) as;  

𝑀𝑘 = 
1

𝑝
∑ (𝑎𝑖 − 𝑎)̅̅ ̅𝑘𝑝

𝑘=1                                                  (3.4) 

where 𝑎𝑖 = 𝑎(𝑡𝑖),  �̅� is the mean value of the data set, a(t), and i = 1, 2, 3, …, p. 

The normalized fourth order moment, i. e. kurtosis Ku, is calculated using 
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                                    𝐾𝑢 =
𝑀4

(𝑀2)2
                                          (3.5) 

Having M4 as the fourth order moment and M2 the second order of moment  

3.4 Frequency domain analysis 

The Fast Fourier Transform is a principle employed to convert the time domain 

waveform to the frequency domain. Also, the spectrum energy (SE) gives the energy 

content of the spectrum amplitude. These are essential parameters in carrying out 

spectrum analysis. In this section theoretical representation of the FFT and SE is done. 

3.4.1 Fast Fourier Transform 

Spectrum analysis is a frequency domain representation of measured vibration data. 

Once data is collected and expressed in the time domain, it must be converted to the 

frequency domain for further analysis. Fast Fourier Transform (FFT) is applied in this 

conversion. A mathematical representation, as stated by Sinha [11], is represented in 

equation 3.6;  

X(f)=∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
                                                   (3.6) 

Applying (3.6) on the vibration acceleration signal a(t), it is 

X(f)= ∫ 𝑎(𝑡)𝑒−𝑗2𝜋𝑓𝑡∞

−∞
𝑑𝑡                                                (3.7) 

For computational analysis using discrete data according to Sinha  [11] , it is 

represented in equation (3.8) 

X(𝑘𝑑𝑓) =
2

𝑁
∑ 𝑎(𝑡𝑝)𝑒−𝑗

2𝜋(𝑝−1)𝑘

𝑁𝑛=1
𝑛=0                                             (3.8) 

Where;  

N=0,1,2,…N-1,  k=0,1,2…N/2 -1 and p = 1,2, …, N; Time step=𝑑𝑡 and T is the pseudo 

time period selected for the signal for FT = 𝑁𝑑𝑡; Sampling frequency, fs=
1

∆𝑡 
; 

Frequency Resoution, 𝑑𝑓 =  
1

𝑇
=

1

𝑁𝑑𝑡
=

𝑓𝑠

𝑁
; Frequency, f = K𝑑𝑓 ; fmax = fNyquist =

𝑓𝑠

2
 

a(t) is the accelerometer signal inputed into the analyser which gives the spectra 

coefficient of these signals [187]. 
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3.4.2 Spectrum Energy 

Spectrum energy (SE) gives the energy content of signals in a spectrum with respect to 

its amplitude. It is a globally accepted indicator that covers all forms of spectrum 

dynamics. It is obtained from the computation FFT when the selected frequency range 

within the number of data points is considered. The work of Nembhard and Sinha [22] 

gave a mathematical representation so that the SE between two frequencies, 

say f1 to fn, is given as in equation (3.9);          

𝑆𝐸𝑎(𝑡)  = ∑  𝐴(𝑓𝑘) ∗ 𝑑𝑓
𝑓𝑛

𝑘=𝑓1
                                     (3.9) 

where A(fk) is the FFT of the signal a(t) at fk  and 𝑓𝑘 = ((
𝑁

2
) − 1),N is the number of 

data points for computing FFT, and, df is the frequency resolution. 

3.5 Data trending 

Data was trended on the acceleration-based vibration signals based on time and 

frequency parameters. The data trend showed how various parameters could 

contribute to indicating the presence of different faults in a signal. This work and 

previous studies [16, 19] carried out similar data trending, which showed that 

individual parameters provide a sensitive indication of a particular fault based on 

benchmarks and standards but may not give an exact indication of faults, as different 

faults could show similar indications. In data trending for this research, the time 

(RMS, CF and Ku) and frequency domain (1x – 5x and SE) features discussed in 

sections 3. 3 and 3.4 were extracted from the acceleration signal. The data trending is 

represented on bar charts. 

3.6 Envelope analysis 

Envelope detection is widely accepted in the diagnosis of bearing faults. It is also called 

amplitude demodulation, where the modulated signal is extracted from an amplitude-

modulated signal; this gives the time history of the modulating signal. Parameters of 

this signal in the time domain can be investigated and subsequently transformed to 

the frequency domain for further analysis. Envelope analysis can be used in diagnosing 

machine faults with amplitude-modulating effects on the characteristic frequency of 

the machine. The representation of envelope detection is such that a given filtered 
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signal is transformed through the Hilbert transform and obtained the envelope by 

equation 3.10 [18] 

𝐸𝑎[𝑡] = |𝑎𝑓[𝑡] + 𝑗 ∙ 𝐻𝑖𝑙𝑏𝑒𝑟𝑡{𝑎𝑓[𝑡]}|
2
    (3.10) 

Where 𝑎𝑓 is the filtered signal and j the imaginary unit. The envelope spectrum 𝐸𝑆𝑎 is 

obtained as the squared absolute value of the discrete Fourier transform (DFT) of the 

envelope as in equation (3.11) [188].  

𝐸𝑆𝑎[𝑡] = |𝐷𝐹𝑇{𝐸𝑎[𝑡]}|2                                         (3.11) 

This study employs envelope analysis in both time and frequency domain analysis. The 

envelope spectrum is used to observe the fault's presence, whereas the envelope 

analysis's time domain features were extracted for fault classification. 

3.7 Conversion of vibration acceleration to velocity signal  
Vibration data can be measured either as acceleration, velocity, or displacement. 

These signals can be measured using an accelerometer, velocity sensor or proximity 

probes. However, since this study does not cover displacement signals, the proximity 

probes will not be discussed.  

Accelerometers are the most popular and commonly used transducers and are seen 

to be the best for vibration measurements covering a wide range of frequencies 

between 3 Hz to 20 kHz. The accelerometers are small and firmly constructed to 

withstand harsh environments.  

A benefit of the measured acceleration signal is that the integrated approach can easily 

obtain both velocity and displacement signals from them. It also has an extensive 

dynamic range which can be used to obtain significant resonance of the systems being 

investigated. A drawback of using an accelerometer is the mass added to the system. 

However, velocity sensors help measure mid-range frequencies, but it is less effective 

for frequencies below 10 Hz and above 2 kHz. Another limitation of the velocity sensor 

is that it is expensive, bulky and a very sensitive instrument that does not fit into 

routine vibration monitoring [56]. It is advisable to use the accelerometer to measure 

both low and high frequencies, which is a focus of this study [189].  
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A simple description of vibration motion can be represented in simple harmonic 

motion (SHM). Here there is a repetition of motion at equal intervals of time (periodic 

motion), so the SHM is a reciprocating motion. Assuming y(t) is the displacement of a 

vibratory system of mass, the mathematical representation of the vibration 

displacement is represented in equation 3.12 [190], 

Displacement, y = 𝐴 cos𝜔𝑡 = 𝐴 cos 2𝜋
𝑡

𝑇
                  (3.12) 

where A is the amplitude of vibration, T is the period of vibration (3.13) with its 

reciprocal f being the frequency (3.14). Such that [190]; 

                              𝑃𝑒𝑟𝑖𝑜𝑑,       𝑇 =
2𝜋

𝜔
 𝑠𝑒𝑐/𝑐𝑦𝑐𝑙𝑒        (3.13)

      

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑓 =
1

𝑇
=

𝜔

2𝜋 
𝑐𝑦𝑐𝑙𝑒 𝑠𝑒𝑐⁄  𝑜𝑟 𝐻𝑧   (3.14) 

With ω as the angular frequency in rad/sec. 

Velocity and acceleration of the harmonic motion can be achieved by differentiation 

of equation (3.15) so that [190]; 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛,   𝑎 =  −𝜔2𝐴 cos𝜔𝑡 =  𝜔2 𝐴 cos  (𝜔𝑡 + 𝜋)  (3.15) 

However, most vibration data are collected using accelerometers, making the signal 

easily processed as acceleration. These acceleration data are converted to velocity 

signals to investigate signals that may be effectively observed in machine conditions. 

Acceleration data is therefore integrated to obtain a velocity signal and a double 

integration to obtain displacement. The vibration acceleration signal can be integrated 

using either the hardware integration circuit or software integration. Even though 

many instruments can implement the integral circuit using recent versions, the 

performance parameters of the electronic components have large discreteness. Thus, 

there would be a reduction in the preciseness of the result. In order to ensure accuracy 

with the hardware circuit, calibration and correction would be needed for the signal 

with varying frequency and amplitude.  

However, the software integration method is most suitable with recent advancements 

in computerisation and data processing. The software integration approach has two 
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basic principles, i.e., a time-domain integral principle, achieved by the Simpson 

summation approach and the frequency-domain integral principle. 

3.7.1  Time domain integral principle 

Direct integration of time domain vibration signal with zero drift and noise in the signal 

amplifier will cause a trend trim, producing some error in the result [110][191]. 

Consequently, it is expedient to remove direct current components as well as noise 

before integrating. Also, the trend trim that shows up after integration can be removed 

by polynomial fitting. The time domain integral principle is represented such that the 

acceleration time domain signal is defined as and the integration is expressed as 

velocity   as seen in equation 3.16 [191] 

𝑣 = ∫ 𝑎(𝑡)𝑑𝑡 = �̅�(𝑡) + 𝑣0 
𝑡

0
                                                 (3.16) 

Where �̅�(𝑡), is the dynamic velocity component after integration, 𝑣0 is the static 

velocity component after integration, 𝑡 is the time and 𝑑𝑡 is differential about 𝑡.  

𝑣(𝑁) = 𝑣(𝑘 − 1) +
[𝑎(𝑘−1)+4𝑎(𝑘)+𝑎(𝑘+1)]𝑇𝑠

6
                                  (3.17)   

where 𝑘 is signal sampling points and 𝑇𝑠 is sampling period, and N is the number of 

data point.  

3.7.2 Frequency domain integral principle 

Here, the Fourier transform converts the signal from the time domain into the 

frequency domain. After that, the integral operation carried out in the time domain is 

changed into an algebraic operation of the spectrum in the frequency domain 

[119,203]. This can be converted back to the time domain using the inverse fast Fourier 

transform (IFFT). This approach also helps to remove the trend trim. The acceleration 

and velocity FFT in discrete forms are represented as, and respectively, as can be seen 

in Equations 3.18 and 3.19 [110]. 

𝑎(𝑛) = ∑ 𝐴(𝑘)𝑒𝑗2𝜋𝑛𝑘 𝑁⁄𝑁−1
𝑘=0                                              (3.18)  

  

𝑣(𝑛) = ∑
1

𝑗𝜔𝑘
𝐻(𝑘) 𝐴(𝑘)𝑒𝑗2𝜋𝑛𝑘 𝑁⁄𝑁−1

𝑘=0                                          (3.19)   
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𝐻(𝑘) = {
1, 𝑓𝑑 ≤ 𝑘∆𝑓 ≤ 𝑓𝑢,

0, 𝑜𝑡ℎ𝑒𝑟𝑠
                                           (3.20)   

The algebraic operation relationship in frequency domain is computed as follows; 

 

𝑉(𝑘) =
𝐴(𝑘)

𝑗𝜔𝑘
                                                          (3.21)   

Where 𝐴(𝑘) and 𝑉(𝑘)  are the Fourier transforms of acceleration and velocity signal 

(3.21); the omega arithmetic, 𝜔𝑘 = 2𝜋𝑘∆𝑓, and k=0,1,2…N/2 -1; ∆𝑓 is the frequency 

resolution; 𝑗 is the imaginary unit; 𝐻(𝑘) being the frequency characteristics of the 

band-pass filter (3.20); 𝑓𝑑 and 𝑓𝑢 are the lower and upper cut off frequency range; 𝑁 

is the number of data points [110].  

3.8 Combining acceleration and velocity for fault diagnosis 

According to [192], displacement signal tends towards low-frequency components, 

while that acceleration tends toward high-frequency components. The velocity signal 

covers a frequency range of 10 Hz to 1000 Hz, which is most suitable for vibration 

severity indication. It can be seen that the acceleration range covers bearings and gear 

faults which occurs at high frequencies, and velocity covers a frequency range at which 

rotor-related fault occur [193]. Thus, a combination of acceleration and velocity 

features could significantly distinguish rotor-related and bearing faults in a single 

analysis. 

3.9 Theory of poly-coherent composite bispectrum (pCCB) 

In defining bispectrum, the second-order moment's power spectrum is considered the 

basis of its computation. For this chapter, the computation for the poly-coherent 

composite bispectrum (pCCB) was expressed, which is a build-up of both composite 

spectrum and bispectrum analysis. 

3.9.1 Spectrum Analysis 

Bispectrum analysis takes its root from the power spectral, which is a second-order moment 

[194]. A discrete time series x(n) of a power spectrum is represented mathematically by the 

signal’s discrete Fourier Transform (DFT) as [11,207] as in (3.22); 
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                                     𝑺𝑥𝑥(𝑓𝑘) = 𝐸[𝑿(𝑓𝑘)𝑿
∗(𝑓𝑘)]                                                        (3.22) 

where k is the discrete frequency variable i.e., k = 1, 2, 3, …., N and E[] is the 

expectation operator. 

3.9.2 Composite spectrum Analysis 

Like the power spectrum density (PSD), the cross-power spectral density (CSD) 

between two signals was computed with the DFT of these signals as shown in equation 

(3.23) [24]; 

𝐶𝑆𝐷, 𝑺𝑥1𝑥2 (𝑓𝑘) =  𝐸[𝑿1(𝑓𝑘)𝑿𝟐
∗(𝑓𝑘)]                                  (3.23) 

Where 𝑆𝑥1𝑥2 (𝑓𝑘) denotes the CSD and k = 1, 2, 3, …, N. The computation of the CSD is 

such that there is correlation of features between two signals in the frequency domain 

analysis. However, the signals may contains some noises as can be observed in 

vibration analysis, thus a modification of the CSD produced the coherent composite 

spectrum (CCS)[196]. The CCS is computed as [25,24,208] in equation (3.24); 

𝑆𝐶𝐶𝑆(𝑓𝑘) = ∑
𝑋𝐶𝐶𝑆

𝑟 (𝑓𝑘)𝑋𝐶𝐶𝑆
𝑟∗ (𝑓𝑘)

𝑛𝑠

𝑛𝑠
𝑟=1                                                 (3.24) 

Where 𝑋𝐶𝐶𝑆
𝑟 (𝑓𝑘) and 𝑋𝐶𝐶𝑆

𝑟∗ (𝑓𝑘)the coherent composite Fourier transform and its 

complex conjugate respectively for the rth segment of the measured vibration data 

from ‘b’ bearing locations at frequency 𝑓𝑘. The 𝑛𝑠 represents the number of equal 

segments used for Fourier transform computation. So that 𝑋𝐶𝐶𝑆
𝑟 (𝑓𝑘) is computed as 

[21],[25]; 

𝑋𝐶𝐶𝑆
𝑟 (𝑓𝑘) = √(𝑆

𝑋1𝛾12
2 𝑋2

𝑟 (𝑓𝑘)𝑆𝑋2𝛾23
2 𝑋3

𝑟 (𝑓𝑘)… 𝑆
𝑋𝑏−1𝛾(𝑏−1)𝑏

2 𝑋𝑏

𝑟 (𝑓𝑘))
1

(𝑏−1)                    (3.25) 

Here, 𝛾12
2 , 𝛾23

2 ,…. 𝛾(𝑏−1)𝑏
2  are the respective coherence between bearing 1 - 2, 2 - 3,…. 

(b - 1)b where b=1, 2, ….b. Also, 𝑆𝑋1𝛾12
2 𝑋2

𝑟 (𝑓𝑘), 𝑆𝑋2𝛾23
2 𝑋3

𝑟 (𝑓𝑘), … 𝑆
𝑋(𝑏−1)𝛾(𝑏−1)𝑏

2 𝑋𝑏

𝑟 (𝑓𝑘) are 

the respective coherent cross-power spectrum between bearing 1 - 2, 2 - 3, …, (b-1)b, 

which was computed thus [25,24]; 

𝑆
𝑋𝑞𝛾𝑞(𝑞+1)

2 𝑋𝑞+1

𝑟 (𝑓𝑘) = [𝑋𝑞
𝑟𝛾𝑞(𝑞+1)

2 𝑋(𝑞+1)𝑋𝑞
𝑟∗𝛾𝑞(𝑞+1)

2 𝑋(𝑞+1)]                       (3.26) 
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Where q = 1, 2, …., (b-1). 

As seen in the computation of equations (3.22), (3.23), (3.24), (3.25) and (3.26), the 

phase information was not retained from the signals from intermediate bearing 

location. This is due to both the combination of the Fourier transform and its complex 

conjugate [11], and the cross-power spectrum density (CSD). 

3.9.3 Bispectrum Analysis 

The bispectrum of the discrete Fourier transform (DFT) can be represented as [194]: 

𝐵𝑥𝑥𝑥(𝑓𝑙, 𝑓𝑚) = 𝐸[𝑋(𝑓𝑙)𝑋(𝑓𝑚)𝑋∗(𝑓𝑙 + 𝑓𝑚)],      𝑙 + 𝑚 ≤ 𝑁                        (3.27) 

The computation of bispectrum (3.27) was done in such a way that there is coupling 

between two frequencies 𝑓𝑙  and 𝑓𝑚 with a third frequency 𝑓𝑙 + 𝑓𝑚 that is equal to the 

sum of the two frequencies, considering the given time domain signal. Also, given 

bispectrum component 𝐵𝑥𝑥𝑥(𝑓𝑙, 𝑓𝑚) may be represented as 𝐵𝑝𝑞 if the frequencies 𝑓𝑙  

and 𝑓𝑚 are the pth and qth harmonics of the machines rotating speed frequency, 

respectively. The bispectrum is a complex quantity, so that both amplitude and phase 

were calculated for the 𝐵𝑝𝑞 components. Therefore, this ability of the bispectrum to 

combine harmonics component of several frequencies with the retention of their 

phases, make it useful for a robust and effective fault diagnosis.  

3.9.4 Poly-coherent composite bispectrum (pCCB) analysis 

The poly-coherent composite bispectrum B (3.28) is represented mathematically as 

[21][25] as; 

                      𝐁(𝑓𝑙𝑓𝑚 ) =
∑𝑟=1

𝑛𝑠  (XpCCS
r (𝑓𝑙)XpCCS

r (𝑓𝑚)XpCCS
r∗ (𝑓𝑙+𝑓𝑚))

𝑛𝑠
                                   (3.28)  

where 𝑋pCCS
𝑟  in equation (6.7) is the poly-coherent composite Fourier Transform (FT) 

for the rth segment of the measured vibration data from ‘b’ bearing location at 

frequency 𝑓𝑘 and 𝑛𝑠 is the number of equal segments used for the FT computation. 

Hence 𝑋pCCS
𝑟  is computed as in equation (3.29) [22,24]; 
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X𝑝𝐶𝐶𝑆
𝑟 (𝑓𝑘) =

( ∑𝑟=1
𝑛𝑠 X1

𝑟(𝑓𝑘)𝛾12
2  X2

𝑟(𝑓𝑘)𝛾23
2 X3

𝑟(𝑓𝑘)𝛾34
2 X4

𝑟(𝑓𝑘)… X(𝑏−1)
𝑟 (𝑓𝑘)𝛾(𝑏−1)𝑏

2 X𝑏
𝑟(𝑓𝑘))

1

𝑏             

(3.29) 

where X1
𝑟(𝑓𝑘), X2

𝑟(𝑓𝑘), X3
𝑟(𝑓𝑘), X4

𝑟(𝑓𝑘), … , X𝑏−1
𝑟 (𝑓𝑘) 𝑎𝑛𝑑 X𝑏

𝑟(𝑓𝑘) respectively 

represents the FT of the rth segment at frequency 𝑓𝑘 of the vibration responses at 

bearings 1, 2, 3, 4, …, (b-1) and b [8]. Also, 𝛾12
2 , 𝛾23

2 , … 𝛾(𝑏−1)𝑏,
2  respectively represents 

the coherence between bearing 1-2, 2-3…, (b-1)b (where b = 1, 2, …, b), and the 

SpCCS(𝑓𝑘) is the pCCS at frequency 𝑓𝑘 [22,24] 

The measure of the combination of the frequencies at 𝑓𝑙 , 𝑓𝑚, and 𝑓𝑙+𝑓𝑚 explains the 

characteristics of the bispectrum. The correlation of various harmonic components in 

bispectrum is found to be useful for robust and effective diagnosis especially in 

rotating machines [22,24]. 

3.10 Data matrix for condition classification  

The data matrix in this study is a build-up of selected features which are sensitive to 

fault diagnosis from both time (T) domain, frequency (F) domain and bispectrum 

components (Bxx), obtained from signals of all machine conditions (C), collected at 

various machine running speeds (S), from of all sensors or bearing location (Bg1 to 

Bg4). Assuming the simulated conditions (Ck) 

are  𝐶𝑅𝑀𝑅𝑈,    𝐶𝑈𝑛𝑏,    𝐶𝑀,    𝐶𝐶𝐵𝑔1,    𝐶𝑅𝑢𝑏𝐷2,    𝐶𝐵𝑔1𝐶𝑔,    𝐶𝐵𝑔2𝐶𝑔, the running speeds (Sp) are 

𝑆450 𝑅𝑃𝑀, 𝑆900 𝑅𝑃𝑀, 𝑎𝑛𝑑 𝑆900 𝑅𝑃𝑀, and the selected features are 

 𝑇𝑟𝑚𝑠, 𝑇𝐶𝐹,  𝑇𝐾𝑢, 𝐹1𝑥, 𝐹2𝑥, 𝐹3𝑥, 𝐹4𝑥, 𝐹5𝑥, 𝐹𝑆𝐸.The measured data per bearing has data set 

from D1, D2, D3 to Dm for the particular simulated machine condition Ck, and at the 

particular rotating speed Sp, where k is 1, 2, 3, …, k (representing the different 

simulated conditions) and p 1, 2, 3, …, p (representing the number of speeds), and m 

= 1, 2, 3, …, m (representing the number of data set collected). The data matrix is 

presented in equation (3.30) to (3.50).  
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Data matrix build up for dFAVF model  

The build-up matrix for proposed dFAVF approach is presented from equation 3.30 - 

3.41. Here, data matrix for rotor conditions was computed based on time domain and 

frequency domain of acceleration and velocity features (3.30). So that, 

𝐷𝑚 = [𝑇𝑟𝑚𝑠 𝑇𝐶𝐹  𝑇𝐾𝑢 𝐹1𝑥 𝐹2𝑥 𝐹3𝑥 𝐹4𝑥 𝐹5𝑥 𝐹𝑆𝐸]𝐵𝑔1−𝐵𝑔4                           (3.30) 

Equation 3.30 shows the features build-up for each dataset from the four Bearing 

locations. However, equations (3.31) to (3.36) represents rotor related conditions 

feature matrix.  

𝐹𝐶1𝑆1
=

[
 
 
 
 

𝑎𝑇𝑟𝑚𝑠𝐷1      𝑎 𝑇𝐶𝐹𝐷1   𝑎𝑇𝐾𝑢𝐷1   𝑣𝐹1𝑥𝐷1  𝑣𝐹2𝑥𝐷1  𝑣𝐹3𝑥𝐷1  𝑣𝐹4𝑥𝐷1  𝑣𝐹5𝑥𝐷1  𝑣𝐹𝑆𝐸𝐷1  

𝑎𝑇𝑟𝑚𝑠𝐷2     𝑎𝑇𝐶𝐹𝐷2   𝑎𝑇𝐾𝑢𝐷2     𝑣𝐹1𝑥𝐷2    𝑣𝐹2𝑥𝐷2   𝑣𝐹3𝑥𝐷2  𝑣𝐹4𝑥𝐷2  𝑣𝐹5𝑥𝐷2  𝑣𝐹𝑆𝐸𝐷2  

⋮             ⋮            ⋮           ⋮          ⋮          ⋮         ⋮           ⋮           ⋮ 
𝑎𝑇𝑟𝑚𝑠𝐷𝑚   𝑎𝑇𝐶𝐹𝐷𝑚   𝑎𝑇𝐾𝑢𝐷𝑚  𝑣𝐹1𝑥𝐷𝑚  𝑣𝐹2𝑥𝐷𝑚  𝑣𝐹3𝑥𝐷𝑚  𝑣𝐹4𝑥𝐷𝑚  𝑣𝐹5𝑥𝐷𝑚  𝑣𝐹𝑆𝐸𝐷𝑚  ]

 
 
 
 

   𝐶𝑅𝑀𝑅𝑈𝑆450 𝑅𝑃𝑀

  

.                                                                                                                                                            (3.31) 

𝐹𝐶1𝑆2
=

[
 
 
 
 

𝑎𝑇𝑟𝑚𝑠𝐷1      𝑎 𝑇𝐶𝐹𝐷1   𝑎𝑇𝐾𝑢𝐷1   𝑣𝐹1𝑥𝐷1  𝑣𝐹2𝑥𝐷1  𝑣𝐹3𝑥𝐷1  𝑣𝐹4𝑥𝐷1  𝑣𝐹5𝑥𝐷1  𝑣𝐹𝑆𝐸𝐷1  

𝑎𝑇𝑟𝑚𝑠𝐷2     𝑎𝑇𝐶𝐹𝐷2   𝑎𝑇𝐾𝑢𝐷2     𝑣𝐹1𝑥𝐷2    𝑣𝐹2𝑥𝐷2   𝑣𝐹3𝑥𝐷2  𝑣𝐹4𝑥𝐷2  𝑣𝐹5𝑥𝐷2  𝑣𝐹𝑆𝐸𝐷2  

⋮             ⋮            ⋮           ⋮          ⋮          ⋮         ⋮           ⋮           ⋮ 
𝑎𝑇𝑟𝑚𝑠𝐷𝑚   𝑎𝑇𝐶𝐹𝐷𝑚   𝑎𝑇𝐾𝑢𝐷𝑚  𝑣𝐹1𝑥𝐷𝑚  𝑣𝐹2𝑥𝐷𝑚  𝑣𝐹3𝑥𝐷𝑚  𝑣𝐹4𝑥𝐷𝑚  𝑣𝐹5𝑥𝐷𝑚  𝑣𝐹𝑆𝐸𝐷𝑚  ]

 
 
 
 

   𝐶𝑅𝑀𝑅𝑈𝑆900 𝑅𝑃𝑀

 

.                                                                                                                                               (3.32)   

𝐹𝐶1𝑆3
=

[
 
 
 
 

𝑎𝑇𝑟𝑚𝑠𝐷1      𝑎 𝑇𝐶𝐹𝐷1   𝑎𝑇𝐾𝑢𝐷1   𝑣𝐹1𝑥𝐷1  𝑣𝐹2𝑥𝐷1  𝑣𝐹3𝑥𝐷1  𝑣𝐹4𝑥𝐷1  𝑣𝐹5𝑥𝐷1  𝑣𝐹𝑆𝐸𝐷1  

𝑎𝑇𝑟𝑚𝑠𝐷2     𝑎𝑇𝐶𝐹𝐷2   𝑎𝑇𝐾𝑢𝐷2     𝑣𝐹1𝑥𝐷2    𝑣𝐹2𝑥𝐷2   𝑣𝐹3𝑥𝐷2  𝑣𝐹4𝑥𝐷2  𝑣𝐹5𝑥𝐷2  𝑣𝐹𝑆𝐸𝐷2  

⋮             ⋮            ⋮           ⋮          ⋮          ⋮         ⋮           ⋮           ⋮ 
𝑎𝑇𝑟𝑚𝑠𝐷𝑚   𝑎𝑇𝐶𝐹𝐷𝑚   𝑎𝑇𝐾𝑢𝐷𝑚  𝑣𝐹1𝑥𝐷𝑚  𝑣𝐹2𝑥𝐷𝑚  𝑣𝐹3𝑥𝐷𝑚  𝑣𝐹4𝑥𝐷𝑚  𝑣𝐹5𝑥𝐷𝑚  𝑣𝐹𝑆𝐸𝐷𝑚  ]

 
 
 
 

   𝐶𝑅𝑀𝑅𝑈𝑆1350 𝑅𝑃𝑀

  

.                                                                                                                                                           (3.33) 

𝐹𝐶2𝑆1
=

[
 
 
 
 

𝑎𝑇𝑟𝑚𝑠𝐷1      𝑎 𝑇𝐶𝐹𝐷1   𝑎𝑇𝐾𝑢𝐷1   𝑣𝐹1𝑥𝐷1  𝑣𝐹2𝑥𝐷1  𝑣𝐹3𝑥𝐷1  𝑣𝐹4𝑥𝐷1  𝑣𝐹5𝑥𝐷1  𝑣𝐹𝑆𝐸𝐷1  

𝑎𝑇𝑟𝑚𝑠𝐷2     𝑎𝑇𝐶𝐹𝐷2   𝑎𝑇𝐾𝑢𝐷2     𝑣𝐹1𝑥𝐷2    𝑣𝐹2𝑥𝐷2   𝑣𝐹3𝑥𝐷2  𝑣𝐹4𝑥𝐷2  𝑣𝐹5𝑥𝐷2  𝑣𝐹𝑆𝐸𝐷2  

⋮             ⋮            ⋮           ⋮          ⋮          ⋮         ⋮           ⋮           ⋮ 
𝑎𝑇𝑟𝑚𝑠𝐷𝑚   𝑎𝑇𝐶𝐹𝐷𝑚   𝑎𝑇𝐾𝑢𝐷𝑚  𝑣𝐹1𝑥𝐷𝑚  𝑣𝐹2𝑥𝐷𝑚  𝑣𝐹3𝑥𝐷𝑚  𝑣𝐹4𝑥𝐷𝑚  𝑣𝐹5𝑥𝐷𝑚  𝑣𝐹𝑆𝐸𝐷𝑚  ]

 
 
 
 

   𝐶𝑈𝑛𝑏𝑆450 𝑅𝑃𝑀

  

.                                                                                                                                              (3.34)                       
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𝐹𝐶2𝑆2
=

[
 
 
 
 

𝑎𝑇𝑟𝑚𝑠𝐷1      𝑎 𝑇𝐶𝐹𝐷1   𝑎𝑇𝐾𝑢𝐷1   𝑣𝐹1𝑥𝐷1  𝑣𝐹2𝑥𝐷1  𝑣𝐹3𝑥𝐷1  𝑣𝐹4𝑥𝐷1  𝑣𝐹5𝑥𝐷1  𝑣𝐹𝑆𝐸𝐷1  

𝑎𝑇𝑟𝑚𝑠𝐷2     𝑎𝑇𝐶𝐹𝐷2   𝑎𝑇𝐾𝑢𝐷2     𝑣𝐹1𝑥𝐷2    𝑣𝐹2𝑥𝐷2   𝑣𝐹3𝑥𝐷2  𝑣𝐹4𝑥𝐷2  𝑣𝐹5𝑥𝐷2  𝑣𝐹𝑆𝐸𝐷2  

⋮             ⋮            ⋮           ⋮          ⋮          ⋮         ⋮           ⋮           ⋮ 
𝑎𝑇𝑟𝑚𝑠𝐷𝑚   𝑎𝑇𝐶𝐹𝐷𝑚   𝑎𝑇𝐾𝑢𝐷𝑚  𝑣𝐹1𝑥𝐷𝑚  𝑣𝐹2𝑥𝐷𝑚  𝑣𝐹3𝑥𝐷𝑚  𝑣𝐹4𝑥𝐷𝑚  𝑣𝐹5𝑥𝐷𝑚  𝑣𝐹𝑆𝐸𝐷𝑚  ]

 
 
 
 

   𝐶𝑈𝑛𝑏𝑆900 𝑅𝑃𝑀

  

.                                                                                                                                            (3.35) 

𝐹𝐶2𝑆3
=

[
 
 
 
 

𝑎𝑇𝑟𝑚𝑠𝐷1      𝑎 𝑇𝐶𝐹𝐷1   𝑎𝑇𝐾𝑢𝐷1   𝑣𝐹1𝑥𝐷1  𝑣𝐹2𝑥𝐷1  𝑣𝐹3𝑥𝐷1  𝑣𝐹4𝑥𝐷1  𝑣𝐹5𝑥𝐷1  𝑣𝐹𝑆𝐸𝐷1  

𝑎𝑇𝑟𝑚𝑠𝐷2     𝑎𝑇𝐶𝐹𝐷2   𝑎𝑇𝐾𝑢𝐷2     𝑣𝐹1𝑥𝐷2    𝑣𝐹2𝑥𝐷2   𝑣𝐹3𝑥𝐷2  𝑣𝐹4𝑥𝐷2  𝑣𝐹5𝑥𝐷2  𝑣𝐹𝑆𝐸𝐷2  

⋮             ⋮            ⋮           ⋮          ⋮          ⋮         ⋮           ⋮           ⋮ 
𝑎𝑇𝑟𝑚𝑠𝐷𝑚   𝑎𝑇𝐶𝐹𝐷𝑚   𝑎𝑇𝐾𝑢𝐷𝑚  𝑣𝐹1𝑥𝐷𝑚  𝑣𝐹2𝑥𝐷𝑚  𝑣𝐹3𝑥𝐷𝑚  𝑣𝐹4𝑥𝐷𝑚  𝑣𝐹5𝑥𝐷𝑚  𝑣𝐹𝑆𝐸𝐷𝑚  ]

 
 
 
 

   𝐶𝑈𝑛𝑏𝑆1350 𝑅𝑃𝑀

  

.                                                                                                                                              (3.36) 

 

Considering a scenario where two machine conditions, i.e., baseline RMRU and 

Unbalance (Unb), with three machine running speeds, i.e., 450 rpm, 900 rpm and 1350 

rpm, are being used to build the data matrix, equation (3.31) to (3.36) represents the 

computation of the matrix. Equation (3.31) represents the matrix C1S1 with condition 

one (RMRU) and speed one (450 rpm). Equation (3.32) represents the 

matrix C1S2 with condition one (RMRU) and speed two (900 rpm), and equation (3.33) 

represents the matrix C1S3 with condition one (RMRU) and speed three (1350 rpm). 

Similarly, equation (3.34) represents the matrix C2S1 with condition two (Unb) and 

speed one (450 rpm). Equation (3.35) represents the matrix C2S2 with condition two 

(Unb), and speed two (900 rpm) and equation (3.36) represents the matrix C2S3 with 

condition two (Unb) and speed three (1350 rpm). His computation was done for all 

rotor-related conditions. A concise representation for single condition single speed is 

represented in equation (3.37), while equation (3.38) represents the data matrix for 

the improved acceleration-based time domain and velocity-based frequency domain 

classification for rotor faults. 

  𝐹𝐶𝑘𝑆𝑝
= [

𝐹𝑎𝑇1𝐷1
⋯ 𝐹𝑎𝑇𝑛𝐷1

⋮ ⋱ ⋮
𝐹𝑎𝑇1𝐷𝑚

⋯ 𝐹𝑎𝑇𝑛𝐷𝑚

  

⋯
⋱
⋯

    

𝐹𝑣𝐹1𝐷1
⋯ 𝐹𝑣𝐹𝑛𝐷1

⋮ ⋱ ⋮
𝐹𝑣𝐹1𝐷𝑚

⋯ 𝐹𝑣𝐹𝑛𝐷𝑚

]

   𝐶1𝑆1

                   (3.37) 
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𝐅 =

[
 
 
 
 
𝐹𝐶1𝑆1

 𝐹𝐶1𝑆2       ⋯         𝐹𝐶1𝑆𝑝

𝐹𝐶2𝑆1
 𝐹𝐶2𝑆2       ⋯     𝐹𝐶2𝑆𝑝

⋮             ⋮             ⋱        ⋮
𝐹𝑘𝑆1

 𝐹𝐶𝑘𝑆2    ⋯       𝐹𝐶𝑘𝑆𝑝 ]
 
 
 
 

                                                                (3.38) 

 

Given a data matrix K, features kaT1, kaT2, kaT3 …kaTn represents acceleration-based 

time domain parameter for bearing defects. The data matrix in equation (3.39) 

represents the single speed for a particular condition for bearing defects. However, 

equation 3.40 represents the data matrix computed using acceleration-based time 

domain bearing features and velocity-based frequency domain rotor features at a 

single condition and speed. After that, incorporation of all speeds and all conditions 

was represented in equation (3.41)which was for the proposed data fusion of the 

acceleration and velocity feature (dFAVF) model. 

 

  𝐊 = [

𝑘𝑎𝑇1𝐷1
⋯ 𝑘𝑎𝑇2𝐷1

⋮ ⋱ ⋮
𝑘𝑎𝑇1𝐷𝑚

⋯ 𝑘𝑎𝑇2𝐷𝑚

  

⋯
⋱
⋯

    

𝑘𝑎𝑇3𝐷1
⋯ 𝑘𝑎𝑇𝑛𝐷1

⋮ ⋱ ⋮
𝑘𝑎𝑇3𝐷𝑚

⋯ 𝑘𝑎𝑇𝑛𝐷𝑚

]

   𝐶1𝑆1

               (3.39)  

 

  𝑀𝐶𝑘𝑆𝑝
= [

𝑘𝑎𝑇1𝐷1
⋯ 𝑘𝑎𝑇𝑛𝐷1

⋮ ⋱ ⋮
𝑘𝑎𝑇1𝐷𝑚

⋯ 𝑘𝑎𝑇𝑛𝐷𝑚

  

⋯
⋱
⋯

    

𝐹𝑣𝐹1𝐷1
⋯ 𝐹𝑣𝐹𝑛𝐷1

⋮ ⋱ ⋮
𝐹𝑣𝐹1𝐷𝑚

⋯ 𝐹𝑣𝐹𝑛𝐷𝑚

]

   𝐶1𝑆1

               (3.40)  

 

𝐂 =

[
 
 
 
 
𝐾𝐶1𝑆1

 𝐾𝐶1𝑆2       ⋯         𝐾𝐶1𝑆𝑝

𝐹𝐶2𝑆1
 𝐹𝐶2𝑆2       ⋯     𝐹𝐶2𝑆𝑝

⋮             ⋮             ⋱        ⋮
𝐹𝑘𝑆1

 𝐹𝐶𝑘𝑆2    ⋯       𝐹𝐶𝑘𝑆𝑝 ]
 
 
 
 

                                                          (3.41) 

 

Data matrix build up for ATpCCB 

The build-up matrix for the proposed AT-pCCB approach is presented from equations 

3.42 - 3.50. Furthermore, the data matrix for rotor-related faults using pCCB 

components is developed, such that the pCCB components B11, 
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B12, B13 and B22 represent the rotor-related pCCB components. In equation (3.42), 

the matrix comprises the selected pCCB amplitude components at a single condition 

and speed. Bpq is the number of pCCB components, Dn is the number of data sets, C  

is the machine condition, S is the operating speed and equation (3.43) shows the 

combination of all conditions and all speeds. However, equation (3.44) represented 

the initial pCCB computation at a single speed and single condition, while equation 

(3.45) represented the combined computation of all conditions and all speeds for the 

initial pCCB classification. Similarly, equation (3.46) represents the data matrix for the 

improved pCCB classification and equation (3.47) represents the data matrix for the 

combination of all conditions and all speeds.  

           𝐵𝐶1𝑆1
= [

𝑏11𝐷1
 𝑏12𝐷1

⋯ 𝑏𝑝𝑞𝐷1

⋮           ⋮ ⋱ ⋮
𝑏11𝐷𝑛

 𝑏12𝐷𝑛
⋯ 𝑏𝑝𝑞𝐷𝑛

]

   𝐶1𝑆1

                                     (3.42) 

𝐁 = [

𝐵𝐶1𝑆1
 𝐵𝐶1𝑆2

⋯ 𝐵𝐶1𝑆𝑝

⋮          ⋮ ⋱ ⋮
𝐵𝐶𝑘𝑆1

 𝐵𝐶𝑘𝑆1
⋯ 𝐵𝐶𝑘𝑆𝑝

]                                               (3.43) 

 

𝐵𝐶1𝑆1
= [

𝑏11𝐷1
⋯ 𝑏13𝐷1

⋮ ⋱ ⋮
𝑏11𝐷10

⋯ 𝑏13𝐷10

]

   𝐶1𝑆1

                                         (3.44) 

𝐁𝑖𝑛𝑖 = [

𝐵𝐶1𝑆1
⋯ 𝐵𝐶1𝑆3

⋮ ⋱ ⋮
𝐵𝐶4𝑆1

⋯ 𝐵𝐶4𝑆3

]                                                   (3.45) 

 

          𝐵𝐶1𝑆1
= [

𝑏11𝐷1
⋯ 𝑏13𝐷1

  𝑏22𝐷1

⋮ ⋱ ⋮           ⋮
𝑏11𝐷10

⋯ 𝑏13𝐷10
 𝑏22𝐷10

 ]

   𝐶1𝑆1

                         (3.46)                               

                                        𝐁𝑖𝑚𝑝 = [

𝐵𝐶1𝑆1
⋯ 𝐵𝐶1𝑆3

⋮ ⋱ ⋮
𝐵𝐶4𝑆1

⋯ 𝐵𝐶4𝑆3

]                                                  (3.47)
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By extending B in equation (3.43), the complex number (a + jb) of each pCCB 

component is used to create a data matrix  𝐁𝑹𝑰 as seen in equation 3.48.for real and 

imaginary, such that Real (B) = B R and Imaginary (B) = B Img, thus; 

𝐁𝑹𝑰 = [
(𝐁 𝑅)

(𝐁 𝐼𝑚𝑔)
]                                                      (3.48) 

The matrix build-up for the proposed AT-pCCB approach was represented in equations 

(3.49) and (3.50). Data matrix D in equation (3.49) represents the sub-model AT-

ApCCB. It was computed by fusing the matrix B as in equation (3.43) and K as in 

equation (3.39) which are those of amplitude of pCCB rotor components and 

acceleration-based time domain bearing features. Similarly,   

 

𝐃 = [
(𝐁 )
(𝐊)

]                                                        (3.49) 

 

The fusion of matrix and K is represented by the computation of the real and imaginary 

pCCB rotor components and the acceleration-based time domain bearing features. 

This combination represented in data matrix E is equation (3.50) which provides the 

classification of machine conditions for the AT-RIpCCB model.  

𝐄 = [

(𝐁 𝑅)
(𝐁 𝐼𝑚𝑔)

(𝐊)
]                                                        (3.50) 

3.11 Normalisation approach  

Normalisation makes all elements in the matrix dimensionless quantities. It helps to 

make all data appear similar across the field, leading to cohesion and higher-quality 

data. Normalisation is achieved by computing each row's standard deviation and mean 

and subtracting the mean from each element within a row. After that, divide the 

standard deviation of the row. Equation 3.51 gives the formula to perform 

normalisation on every value in a dataset: 

Normalised value = (D − μ)/σ                                                (3.51) 

Where D is the original value, μ is the mean data and σ is the standard deviation.  
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3.12  Principal Component Analysis (PCA-based) Approach 

Principal component analysis (PCA) can be defined as “an orthogonal linear 

transformation that converts a data set to a new coordinate system where the greatest 

variance by any projection of the data comes to lie on the first coordinate and the 

second greatest variance on the second coordinate” [20,96,93]. PCA is a multivariate 

statistical tool that reduces large interrelated datasets to a small number of variables 

while retaining the variability in the original data [20,24].  

PCA has been used in this study because it uses simple matrix operations obtained 

from linear algebra and statistics in computing the projection of an original data set 

but into the same number with fewer dimensions. PCA focuses on the dimensionality 

reduction of a data set. Here, large and complex variables are transformed into a new 

set of uncorrelated variables where significant variations in the data set are retained 

in the first few variables called principal components (PCs) [20,45,93]. The first few PCs 

retain the variability of the original data [20,87,198]. PCA reveals the existing variance 

in the original data, which is identified by observations (e.g., the quantity of measured 

vibration signal) and variables (e.g., CF, Ku, 1x-5x). According to Brownlee [199] 

operation of PCA as applied to a data set may be represented by a n x m matrix 

called A, and the projection of A is called B so that, 

𝑨 = (
𝑎11, 𝑎12
𝑎21, 𝑎22
𝑎31, 𝑎32

)                                                    (3.52) 

𝑩 = 𝑃𝐶𝐴(𝐴)                                                      (3.53) 

Consider a number of samples (observation) p, and random variables (features) m, 

represented by a data matrix  G =  [m x p], the principal components of G can be 

computed as the reduced solution of an eigenvalue-eigenvector problem [87]. 

Comprehensive  studies of the steps as well as application of PCA can be found in the 

work of Jolliffe [87], Vidal et al. [200], Bishop [88], Brownlee [199], Jaadi [201], 

Nembhard and Sinha [20], Yunusa-Kaltungo and Cao [202] Nembhard et al. [51] and 

so on. PCA has been used in this study to investigate the relationship of an extensive 

range of experimentally simulated rotating machine faults in a single analysis 

[16,213,86,87]. 
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3.12.1 Observation of increased principal components for improved fault diagnosis 

As stated earlier, Principal Component Analysis (PCA) reduces the number of variables 

in a data set by dimensionality reduction. This approach helps to simplify analysis as 

smaller sets of data can be easily explored and visualised. The principal components 

(PCs) are the new variables constructed linearly or mixed with the initial variable in the 

data set. The combination is such that the PCs are uncorrelated, with most information 

retained within the first few variables (PCs).  

Jaadi [201] tried to simplify the process of PCA and gave an example of how the PCs 

are formed so that, given 10-dimensional data, there are 10 principal components 

(PCs). However, PCA transfers as much information as possible to the first component; 

the remaining maximum information is transferred to the second component. This is 

represented in Figure 4.2, where the percentage of the variance of each PC is shown. 

This approach for computing the PCs helps to reduce dimensionality while retaining 

most of the information from the data set. Thus, PCs with low information are ignored, 

while the first few PCs with the most information are considered for further 

investigation.   

 

Figure 3. 5 Bar chart showing percentage of variance for each Principal Component accessed 

from [201]        
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The eigenvector and eigenvalue form the significant computation aspect of PCA. 

According to Jaadi [201], “the eigenvectors of the covariance matrix are actually the 

directions of the axes where there is most variance, and that is called Principal 

Component. Moreover, the eigenvalues are simply the coefficient attached to 

eigenvectors, giving the amount of variance carried in each Principal Component”. 

Thus, principal components are gotten in their order of importance by rearranging the 

eigenvector in order of their eigenvalues, i.e., from highest to lowest. Once the PCs are 

obtained, the percentage of information (variance) present in each component is done 

by dividing the eigenvalue of each component by the sum of eigenvalues.  

However, various studies [212-217] used multiple PCs to investigate and analyse 

machine identification. Yunusa-Kaltungo and Cao [202] observed various PCs in 

pattern recognition and classification of gear faults. Prieto-Moreno, Llanes-Santiago 

and Garcia-Moreno [205] proposed a new approach to developing the principal 

components and compared it with the traditional method; observation showed 

further PCs also retained more information than the first few PCs in the new method. 

Cao and Yunusa-Kaltungo [206] computed the percentage of variance for various 

principal components to investigate machine faults. Manassas, El Adel and Ouladsine 

[207] proposed two new machine fault identification methods using various PCs.  

Wang and Xiao [204] used the optimal number of PCs in machine fault detection. These 

studies show that other principal components may contain important information that 

may be useful in classifying various machine conditions. It should be noted that when 

plotting the principal components (PCs), each PC has a single direction with a midpoint 

at zero. A positive or negative PC gives the direction of the variable in that PC with 

reference to a single-dimension vector [87]. 

3.13 Clustering, and pattern recognition  
Clustering and pattern recognition are achieved using the principal components (PCs). 

[87] A plot of the first few PCs against each other would produce either a 2D or 3D 

view cluster, and the patterns could be used for investigating machine conditions. In 

this study, plots of PC1vsPC2 and PC1vsPC2vsPC3 were used to showcase clustering 

and the patterns observed were used to classify various machine conditions [206]. This 
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approach is advantageous in observing results as the separation between clusters 

would help predict machine dynamic behaviour. 

3.14 Quantification method using differentiation between baseline 

and faulty condition  

A mean of each condition is obtained from the various scenarios to achieve a definite 

value for the separation between the baseline RMRU and faulty conditions. This is 

achieved by plotting the mean of PC1 against PC2 and PC3 to generate the specific 

mean in x, y and z coordinates, respectively. Mathematically, the mean is calculated 

as in equation 3.54 for the PC1vsPC2 classification and PC1vsPC2vsPC3 as in equation 

(3.55).     

       𝑐𝑋 = ∑
𝑐(𝑋𝑖)

𝑛𝑐

𝑛𝑐
𝑖=1      and          𝑐𝑌 = ∑

𝑐(𝑌𝑖)

𝑛𝑐

𝑛𝑐
𝑖=1                            (3.54)        

𝑐𝑋 = ∑
𝑐(𝑋𝑖)

𝑛𝑐

𝑛𝑐
𝑖=1      and          𝑐𝑌 = ∑

𝑐(𝑌𝑖)

𝑛𝑐

𝑛𝑐
𝑖=1               𝑐𝑍 = ∑

𝑐(𝑍𝑖)

𝑛𝑐

𝑛𝑐
𝑖=1                        (3.55) 

             

Where c represents the conditions (RMRU and faulty), cX is the mean of condition 

at PC1, cY is the mean of condition at PC2, cZ is the mean condition at PC3 nc is the 

number of data set at condition c. Xi and Yi are the sum of X and Y datasets, 

respectively. Applying Pythagorean’s theorem, the distance between each faulty and 

RMRU condition is obtained and recorded.  

3.15  Summary of research methodology 

This chapter discusses the methodology for this research. It presented a background 

for this study inspired by work from earlier PhD students, Dr Akilu Yunusa-Kaltungo 

and Dr Adrian Nembhard. The study of Dr Nembhard proposed the unified multispeed 

analysis (UMA), which considered only acceleration data and rotor faults with the test 

rig operated below its first critical speed. This study improved the UMA by fusing 

acceleration-based time and velocity-based frequency domain parameters and thus 

proposed the dFAVF model. The model could classify rotor and bearing faults in a 

single analysis when the test rig operated below and above its first critical speed. Also, 

the study of Dr Yunusa-Kaltungo proposed the poly-coherent composite bispectrum 

(pCCB) for rotor fault classification using rotor faults when the rig operated below its 
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first critical speed. This study also affirmed and improved the pCCB classification 

approach and went further to observe the complex number representation of the 

pCCB component in the real and imaginary representations. It then proposes the AT-

pCCB classification model, which is made up of AT-ApCCB and AT-RIpCCB sub-models. 

Both sub-models classified a consolidated rotor and bearing faults in a single analysis. 

A description of the research process and the various method employed was 

presented. Reference was made to chapter three, which extensively covered this 

study's experimental approach. The methods were discussed in detail and included the 

time domain analysis (root mean square, crest factor and kurtosis), frequency domain 

analysis (Fast Fourier transform and spectrum energy), envelope analysis, conversion 

of acceleration to velocity signals, poly-coherent composite bispectrum (pCCB) theory, 

data matrix, principal component analysis, clustering, and patterning recognition and 

finally data quantification approach. This chapter presented tools for this research and 

discussed the reason for selecting most of the tools, the limitations of the selected 

method, and the work in general. The framework of the methodology, the analysis and 

the results from the research are discussed in chapters 5 to chapter 9. Since the study 

is hugely experimental based, a detailed description of the test rig and experiment was 

presented in chapter 4. 
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CHAPTER 4 
 

EXPERIMENTAL MODEL APPROACH 
 

This chapter considers an aspect of the methodology of this research work. Since this 

is experimental research, much focus is given to the description of the experimental 

approach. This covers the existing flange-based test rig (FFTR) the improved spring-

based test rig one and two (SFTR-1&2) which were built in the dynamic laboratory of 

the University of Manchester. Instrumentation and modal test of the test rig is 

presented to help determine the natural frequencies and thus select the machine 

running speed to avoid resonance. The mode shape is observed to understand the 

dynamic behaviours of the test rig. Thereafter, description of the simulated fault, data 

collection and storage are presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 



118 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

4.1 Overview 

This research observes vibration signals from various test rigs based on the foundation 

flexibility. Here, the flexibility relates to the natural frequency of the entire system, not 

‘rotor flexibility’. The observation is to understand the dynamic behaviour of the 

different rotating machines while investigating the proposed fault identification 

approaches for the various health conditions that may appear during their operation 

in a single analysis. Thus, three rotating test rigs are considered, with their details 

presented in this chapter. These are the flange-based flexible test rig (FFTR) and the 

spring-based flexible test rig 1 & 2 (SFTR-1 & 2).  

Furthermore, discussions on the instrumentation, modal testing, fault simulation, data 

acquisition and signal processing for storage as applied in this research are presented. 

Usage of these tools followed suggestions in Sinha’s book [45], where a detailed 

explanation of the general approach to carrying out vibration-based condition 

monitoring is presented. 

4.2 Test Rig Setup 

Three experimental rigs, i.e., the flange-based flexible test rig (FFTR) and the spring-

based flexible test rig 1 and 2 (SFTR-1&2), were used to measure vibration data for this 

study. The FFTR is from earlier research work built by two former PhD students, i.e., 

Dr Akilu Yunusa-Kaltungo and Dr Adrian Nembhard. This study improved their rig 

design from flange-base to spring-base in order to reduce the natural frequency of the 

rig. Data collected for their study was used in the preliminary phase of this research. 

However, the SFTR-1 and SFTR-2 are improved versions of the FFTR, all with similar 

structures but a variation of their bearing pedestal, supporting their various 

foundation flexibilities. Although, the SFTR may be used in this chapter to represent 

SFTR-1 and SFTR-2 unless otherwise stated.  

These three test rigs are very relevant in achieving the objectives set out in this 

research and providing data for investigations to address some of the gaps already 

identified in the literature. The data from FFTR will help to develop an initial approach 

for observing an extensive range of rotating machine faults. After that, data from the 

SFTR will be considered to understand the machine's behaviour while it runs over its 
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critical speed and to investigate multiple consolidated machine critical part faults in a 

single analysis. These test rigs give a good representation of industrial-scale rotating 

machines having multiple shafts and multiple bearings. However, the bearing used in 

this study was the available component at the time, which brought limitations to the 

bearing defect simulation.  

 Pictures of the FFTR and SFTR are shown in Figures 4.1 - 4.2 and 4.3 - 4.4, respectively. 

FFTR and SFTR are similar in their configuration except for the foundation flexibility 

and bearing pedestal. The setup of both rigs comprises two rigidly coupled 20 mm 

diameter shafts (S1 and S2) with lengths of 1000 mm and 500 mm. They are connected 

by a rigid coupler (C2). The coupled shaft is supported by four ball bearings (Bg1 – Bg4) 

with a 20 mm internal diameter installed at the four bearing pedestals. Three 

machined steels with 125 mm diameter and 14 mm thickness used as balancing discs 

were mounted on the shaft, with two discs placed on the long shaft (S1) and one on 

the short shaft (S2). A flexible coupler (C1) connects the long shaft with a three-phase 

0.75 kW 3000 rev/min electric motor. A detailed description of these components is in 

section 4.2.3, where a comparison between components of the FFTR and SFTR is 

carried out. The whole system is mounted on a lathe bed, which rests on vibration 

dampers.  

For emphasis, the difference between the three test rigs is the foundation flexibility 

related to the machine stiffness and its natural frequencies, which are influenced by 

the bearing pedestal. Each bearing has four holes flange unit and is connected to the 

bearing pedestal using this hole. The FFTR makes this connection using a 10 mm 

diameter flange rod for each of the four holes. However, the improved SFTR-1&2 have 

spring connections at these holes with spring stiffness of 4.69 N/mm and 14.4 N/mm, 

respectively, for each spring. Figure 3.7 gives a pictorial representation of this 

description. The adjustments in the foundation flexibilities come from the 

understanding that a change in either stiffness or mass affects the machine's natural 

frequency, which in turn alters its overall dynamics behaviour [11]. Thus, the test rigs' 

dynamic characterisation (modal analysis) and mode shape were presented in 

subsections 3.4.2 and 3.4.3. The experiment is the same as explained in section 3.5. 
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4.2.1 Flange-based flexible test Rig (FFTR) 

Figure 4.1 and Figure 4.2 shows a pictorial and schematic representation of the flange-

based flexible test rig (FFTR). These figures are based on a photograph from the lab 

and schematics from an earlier study [26]. 

 

Figure 4. 1Experimental set up for flanged-based flexible test rig (FFTR). 

 

Figure 4. 2 Schematic of flange-based flexible test rig (FFTR) [26]. 
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4.2.2 Spring-based Flexible Test Rig (SFTR) 

The pictorial and schematic representation of the spring-based flexible test rig (SFTR) 

is seen in Figure 4.3 and Figure 4.4, respectively. These figures are photographed from 

the dynamic lab of the University of Manchester and the schematics developed for the 

thesis report. 

 

Figure 4. 3 Experimental set up for Spring-based flexible test rig (SFTR). 

 

 

Figure 4. 4 Schematic of Spring-based flexible test rig (SFTR). 
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4.2.3 Some fundamental elements of the test rig 

Some of the fundamental elements of the test rigs used in this study are discussed in 

this section. Given the modification of the FFTR to SFTR, major part of the test rig 

remains the same while a few were adjusted. Thus, similar and adjusted elements for 

the FFTR and SFTR are presented in the subsections below. While Table 4.1 shows 

similar components in the test rigs, Table 4.2 shows the difference in the components 

that make up FFTR and SFTR. 

4.2.3.1 Rotating shaft 

The shaft or rotor is one of the critical components in a rotating machine. In this study, 

two shafts (rotors) are used to build up the test rigs. These are the long shaft, which is 

1000 mm and the short shaft, which is 500 mm, with a diameter of 20 mm. Another 

shaft in this study is the one from the motor. This shaft connects the motor to the long 

shaft using the flexible coupler (C1), and the long shaft is connected to the short shaft 

by the rigid coupler (C2). The shaft is made of mild steel, which is a mix of iron and 

carbon. Its benefit is the low price and suitability for most engineering applications. 

Views of the shafts are in the pictures in Figure 4.1 and Figure 4.3. 

4.2.3.2 Electric motor 

The manufacturer of the electric motor drives the test rig is Crompton Greaves Ltd, 

India. It is a 3-phase, 0.75kW, 3000 rpm induction motor, with model number GF 

79654. Figures 4.5 shows a picture of the electric motor. The motor can run at various 

speeds as programmed and controlled by a speed controller. 
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Figure 4. 5 Picture of electric motor. 

4.2.3.3 Couplers 

The test rig is connected by two couplers, i.e., flexible coupler (C1) Ruland/ FCMR 38-

16-16-A and rigid coupler (C2). The flexible coupler (C1), as seen in Figure 4.6 (a) and 

(b), holds the long shafts (1000 mm) and the motor together, while the rigid coupler 

(C2), as seen in Figure 4.6 (c) and (d), connects the long shaft and short shaft (500 mm).  

 

Figure 4. 6 Pictures showing similar configuration of various sections of couplers 

(a) soft coupler FFTR [26] (b) soft coupler SFTR (c)rigid coupler FFTR [26] (d) rigid 

coupler SFTR. 
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4.2.3.4 Bearing and bearing pedestal 

The bearing and bearing pedestals are significant components in this test rig and 

central industrial rotating machinery. The bearing pedestal in this study uses flange 

rods for the FFTR and springs for the SFTR. The bearings have a model number of SKF 

FY 20 TF with eight (8) rolling elements or balls, each with a diameter of 7.938 mm. 

The internal diameter of the bearing is 20 mm, which fits into the shaft's internal 

diameter. The bearing's width, external, and pitch circle diameter are 31 mm, 47 mm, 

and 33.5 mm, respectively. The bearing pedestal for the FFTR is made up of a 10 mm 

threaded rod connected by a flange approach. In contrast, the SFTR bearing pedestal 

is built up of springs of length 5.5 mm connected to the pedestal, as seen in Figure 4.7, 

(a) and (b), respectively, and Figure 3.7 (c) is a schematic of the bearing pedestal. A 

detail of this design diagram is shown in the appendix section. 

  

 

Figure 4. 7 Bearing pedestal of experimental rig set at (a)picture of FFTR [26] 

(b)picture of SFTR (c) schematics of SFTR. 

 

4.2.3.5 Balance disc 

Balance discs are essential in the test rig as they help to correct unbalance. Three 

machined mild steel with 125 mm diameter and 14 mm thickness are used as balance 

discs. Two balance discs were mounted on the long shaft (S1) and one on the short 

shaft (S2). Each of the discs contained 12 tapered holes (M5) with a pitch diameter of 

125 mm with an angle of 300 degrees between any two adjacent holes. These holes 

help to simulate the unbalance fault by inserting a mass unbalance in them. Figure 4.8 

shows a picture of one balance disc close to Bg1. 
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Figure 4. 8 Picture of balance disc. 

 

4.2.3.6 Rig cover/safety guard 

The test rig cover for the FFTR and SFTR serves the same purpose: protecting the 

machine from external interference during operation and keeping the operator safe. 

A sensing device is set between the test rig and cover so that an attempt to open the 

cover during operation triggers the operation to stop. This device is a safety initiative 

that keeps the operator and test rig safe. On the other hand, due to the design of the 

bearing pedestal, the covers of FFTR and SFTR are different. Figures 4.1 and 4.3 show 

views of the different test rigs, including their covers. 

Table 4. 1 showing detail of similar components that made up the FFTR and SFTR. 

NAME  ID MODEL DESCRIPTION 

Motor Motor Crompton Greaves/ GF7965 3 phase, 0.75kW, 3000 rpm. 

Shaft 1 S1 Nil 20 mm diameter X 1000 mm 
length mild steel rod. 

Shaft 2 S2 Nil 20 mm diameter X 500 mm 
length mild steel rod. 

Coupler 1 C1 Ruland/ FCMR 38-16-16-A 20 mm bore flexible coupling 16 
mm x 20 mm.  

Coupler 2 C2 Nil Rigid Coupling.  

Balance 
Disc  

D1, D2, 
D3 

Nil 125 mm outer diameter X 14 mm 
thickness section machined steel 
with 20 mm inner diameter. 

Bearing  Bg1, 
Bg2, 
Bg3, Bg4 

SKF FY 20 TF  
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Table 4. 2 showing detail of different components that made up the FFTR and SFTR. 

NAME ID MODEL DESCRIPTION   

   FFTR SFTR-1 SFTR-2 

Bearing 
Pedestal 

Bg1, 
Bg2, 
Bg3, 
Bg4 

SKF FY 
20 TF 

Flange mounted 
grease lubricated 
bearings with 10 
mm diameter per 
flange 

Spring mounted 
grease lubricated 
bearings with a 
4.69 N/mm 
stiffness per spring. 

Spring mounted 
grease lubricated 
bearings with a 
14.4 N/mm 
stiffness per spring. 

Test rig 
covers 

Nil Nil Curved metallic 
sheet 

Rectangular 
metallic sheet 

Rectangular 
metallic sheet 

 

4.3 Instrumentation 

Instrumentation is vital in recording vibration signals as it determines the quality of 

signals acquired [11]. The selection of an instrument is dependent on various factors 

such as the output required, the accuracy level of output, signal resolution, 

measurement range, managing excess measurement parameters and mounting 

arrangement. In order to achieve any of these, some technical considerations would 

have to be considered [11]. Instrumentation in this research include accelerometers, 

impact hammer, signal conditioner, data acquisition system (DAQ), and speed 

controller. The various instruments' descriptions and functions are presented in 

subsections 4.3.1 to 4.3.5. 

4.3.1 Accelerometers 

Vibration responses can be obtained in acceleration, velocity and displacement using 

an accelerometer, velocity pick-ups and displacement probes [11]. In this study, 

accelerometers have been used to obtain vibration signals. The accelerometers are 

also called transducers and can measure a vibrating system's dynamic acceleration. 
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Figure 4. 9 Position of Accelerometer in (a) FFTR [26] and (b) SFTR. 

 

In this research, four accelerometers have been used, each with a sensitivity of 100 

mV/g. Their model number is 352C33, ECN number is 28610, the frequency range is 

(+/-5%) 0.5 – 10000 Hz and resonant frequency ≥ 50 kHz, temperature range of -65 to 

+200 oF, excitation voltage is 18 to 32 VDC, mounting torque 10 to 20 in-lb with a 10-

32 coaxial jack connector. The four accelerometers, with one on each bearing pedestal, 

are installed on the various test rigs in this study. Each accelerometer was mounted 

on the bearing housing at 450 radially using stud mounting. This mounting angle gives 

measurements that account for the accelerometer's horizontal and vertical responses. 

Figure 4.9 (a) and (b) show the accelerometer mounted on the bearing pedestal of 

FFTR and SFTR, respectively. 

4.3.2 Impact hammer 

An ICP-PCB 086C03 impact hammer was used for this research, as shown in Figure 

4.10. This hammer is to identify the test rig's natural frequencies and mode shapes. 

Experimentally, the natural frequencies of rotating machines or other structures are 

obtained using impact hammer testing by hitting the machine with a hammer and 

collecting the response with an accelerometer. 
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Figure 4. 10 Impact hammer for modal testing. 

 

The impulse from the hammer contains an almost steady force over a broad frequency 

range, which is why it can excite all resonant frequencies within that range. The 

hammer senses the force applied through an integrated ICP quartz element mounted 

on the striking head. The impact force is transferred to the analogue-to-digital 

converter (ADC) through the signal conditional. Also, the impact hammer is designed 

so that the frequency range to be excited varies based on the impact tip of the 

hammer, i.e., the soft tip excites a lower frequency range, and the hard tip excites 

frequency ranges that are higher than those for soft tip.   

 The impact hammer has a sensitivity of 10 mV/N, and the sensing element is quartz, 

measurement range of ±224 npk resonant frequency of ≥22 kHz. The excitation voltage 

is 20-30 VDC, and the current excitation is 2 to 20 mA and a BNC jack connector. The 

impact hammer has a mass of 0,16 kg, a head diameter of 157 mm, and a tip diameter 

of 63 mm, the length of the hammer is 216 mm, and the mass is 75g. 

4.3.3 Speed controller 

The speed controller helps operate the test rig and is used to vary the speed of the 

motor. It is manufactured by Newton Tesla, model CL 750 and has a 0.75kW with an 

input frequency of 50/60 Hz and output frequency of 5-60 Hz. The output voltage is 0-

200 Volts, and the AC output current is 4.1 A. The power rating is 0.75 kW. 
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Figure 4. 11 Figure 4. 11 Picture showing speed controller. 

 

The speed controller can be operated manually using the nubs, as seen in Figure 4.11. 

It is also connected to the personal computer and operated by manually inputting the 

required speed. 

4.3.4 Signal conditioner 

The PCB 482C signal conditioner, as pictured in Figure 4.12, was used in this study. Its 

function supplies electrical power to the accelerometer and impact hammer. Also, the 

output signals typically have very low magnitudes and may carry various forms of 

contamination. Thus, these signals need amplification and filtration before digitising 

them [11,29]. Some of these signal conditioners have low pass filters, which can stop 

frequencies higher than the desired frequency range to be measured to increase the 

accuracy of measured signals [11,200]. 
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Figure 4. 12 Photograph of PCB 482C signal conditioner. 

 

The signal conditioner also provides this function of signal amplification, linearisation, 

isolation, multiplexing and filtration. It should be noted that almost all signals from the 

transducers carry a certain amount of noise. Thus, signal conditioning is needed to get 

the vital signal. This signal conditioner is a four-channel device with a BNC input 

connector from the sensor and BNC output connectors carrying signals to the data 

acquisition system. 

4.3.5 Data acquisition (DAQ) system  

The data acquisition (DAQ) system comprises the device and software, as seen in 

Figures 4.13 and 4.14, respectively. In this study, vibration outputs from the 

transducers go through the signal conditioner but are analogue signals. These 

analogue signals must be converted to digital signals to be stored and/or processed. 

Thus, an analogue to a digital converter (ADC) is used for this purpose. The ADC is the 

data acquisition device (DAQ) hardware, which makes the data readable on the 

personal computer. The ADC converts continuous time signatures into discrete forms 

[11, 29,200].  

The DAQ used in this study for recording modal test and vibration data is shown in 

Figure 4.14. It was manufactured by National instruments Company, having model 

number NI USB-6229 BNC with a 16 bits ADC resolution, 16 channels and a sampling 

rate of 250 kS/s for a single channel; 250 kS/s for multiple channels. The input range is 
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±10 V, ±5 V; ±1 V, ±0.2 V.  A data acquisition (DAQ) software is used to enable 

communication of the DAQ device with the personal computer. 

 

 

Figure 4. 13 Photograph of NI USB-6229/16-bit/16-channel ADC (DAQ hardware). 

 

 

Figure 4. 14 Picture showing DAQ driver software. 

 

The DAQ software used in this study is a customised LABVIEW data acquisition 

software developed by Austin Consultant for the University of Manchester dynamic 

lab. Figure 4.14 shows a picture of the DAQ software capturing vibration data. The 

software usage is straightforward, but care must be taken when inputting things like 

the sampling frequency, accelerometer channels and voltage ranges with the file 

name. 
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4.4 Modal Testing 

Modal testing helps understand the structural dynamics of a system, as also as rotating 

machines. Dynamic characterisation through a modal test was achieved with 

accelerometers placed along the test rig shaft at nine different locations. The impact 

hammer was used on the test rig at two locations (impact locations 1 and 2), as shown 

in Figure 4.15. At each impact location, ten responses were collected in the vertical 

radial direction (x-plane) at all nine accelerometer locations. The rig shaft is rotated 90 

degrees afterwards to align the accelerometers in the horizontal radial direction (y-

plane). Accelerometers at the bearing pedestal location at P2, P6, P7, and P9 were all 

repositioned in the horizontal radial direction, and another ten-impact data was 

collected. This procedure was repeated for impact location 2, and the modal testing 

was done on the SFTR-1 and SFTR-2. The impact was carried out at an evenly spaced 

time interval with much caution to allow the free response on the test rig to decay 

fully before making another impact. The force response from the impact hammer and 

the signal response from the accelerometer are recorded.  

Note that data acquisition for the modal test was started before the first impact and 

was stopped after the decay of the tenth impact. Moreover, care was taken to ensure 

the exact impact location was stuck for all ten impacts, and a double hit was avoided 

at all costs.  

The data acquired were processed and used to compute the Frequency Response 

Function (FRF) and construct the mode shape from the detected modes with a 

MATLAB-based algorithm. The computation of the FRF was achieved by applying a 

rectangular window, averaging the ten responses acquired and applying a 0.16 Hz 

frequency resolution from the signal with a 5000 Hz sampling frequency. The vertical 

and horizontal radial direction for obtaining the natural frequencies is to observe the 

direction in which the natural frequency is dominant, which helps to understand the 

machine's behaviour. FRF amplitude and phase representation of the modal test at 

accelerometer location two in the vertical direction is observed to obtain the correct 

natural frequencies free of biases from the mass of other accelerometers. Section 

4.4.1 presents the FRF, natural frequency and mode shape for FFTR, while Section 4.4.2 
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presents the FRF, natural frequency and mode shape for SFTR-1, and that of SFTR-2 is 

presented in section 4.4.3. Table 4.3 shows the accelerometer location along the test 

rig for modal test and mode shape.  

Note that nine locations were used for the modal test to observe the mode shape, 

while four sensor locations at the four bearing pedestals were used for vibration data 

collection for analysis. 

Table 4. 3 Accelerometer location for modal test and mode shape. 

Location on the rig P1 P2 P3 P4 P5 P6 P7 P8 P9 
Dist. From mid of 
coupler 1(in mm) 

0  100 190 515 740  930 1070  1260  1450  

 

 

Figure 4. 15 SFTR for modal testing with impact and accelerometer locations. 

 

4.4.1 Modal Testing for FFTR 

The FRF from the modal analysis of the FFTR is represented in Figure 4.16. Also, Table 

4.4 shows the first four natural frequencies in the vertical and horizontal directions. 

These figures were obtained from the study of Nembhard and Yunusa-Kaltungo [26-

27]. Nembhard and Yunusa-Kaltungo [26-27] stated that natural frequencies in the 

vertical direction were dominant. Thus, they used it in their study. The mode shape is 

presented in Figure 4.17. It helps to understand the machine's dynamic behaviour and 

faults that may show up during its operation. 
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Figure 4. 16 Typical Frequency Response Function (FRF) plot of the measured 

acceleration response to the applied force in the modal tests for FFTR at location 2 

accessed from [27,26]. 

 

Table 4. 4 Showing the first four natural frequency of FFTR [25]. 

1st Nat Freq 2nd Nat Freq 3rd Nat Freq 4th Nat Freq 

50.66 Hz 56.76 Hz 59.20 Hz 127 Hz 

 

 

Figure 4. 17 The mode shape of FFTR for the first two natural frequencies accessed 

from [27,26]in (a) 50.66 Hz dominant in vertical direction (b) 56.76 Hz dominant in 

horizontal direction. 
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The natural frequencies of the FFTR are all above the nameplate running speed of the 

motor, which is 3600 rpm (50 Hz). Thus, the three machine running speeds selected 

are below the machine's first critical speed, i.e., at 1200 RPM (20 Hz), 1800 RPM (30 

Hz) and 2400 RPM (40 Hz), all below the machine's first critical speed. Note that the 

speed was selected in the study by Yunusa-Kaltungo [27]. 

4.4.2 Modal Testing for SFTR-1 

Similarly, the FRF of specific impact location and accelerometer position in both 

vertical and horizontal directions is presented in Figure 4.18. For better understanding, 

Figure 4.18 (a) shows both the FRF amplitude and phase plot at the vertical axis, while 

Figure 4.18(b) shows both the FRF amplitude and phase plot at the horizontal axis, 

respectively. Each of the plots has a legend that shows what they represent. The plots 

on each figure show the presence of the natural frequencies and their validations. 

Details are found in [11]. The first five natural frequency obtained in both direction is 

recorded in Table 4.5. The first three mode shapes are presented in Figure 4.19 and 

4.20. However, Figure 4.19 is a combination of vertical and horizontal modes and 

impact location one, while that of impact location two is presented in Figure 4.20.  

represented the first three modes. 
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Figure 4. 18 A typical Frequency Response Function (FRF) plot of the measured 

acceleration response to the applied force in the modal tests for SFTR-1 at location 2 

accelerometer position 1 in (a) Vertical (b) Horizontal. 

Table 4. 5 Showing the first five natural frequency of SFTR-1. 

Natural 
frequency 

1st  2nd  3rd  4th  5th  

Vertical 11.52 Hz 18.62 Hz 30.75 Hz 49.13 Hz 85.83 Hz 

Horizontal 11.52 Hz 18.62 Hz 30.75 Hz 49.13 Hz 85.83 Hz 
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Figure 4. 19 The mode shape of SFTR-1 for the first five natural frequencies at vertical 

and horizontal impact location 1 in (a) mode 1 (b) mode 2 (c) mode 3. 
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Figure 4. 20 The mode shape of SFTR-1 for the first five natural frequencies at vertical 

and horizontal impact location 2 in (a) mode 1 (b) mode 2 (c) mode 3. 
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Based on the natural frequencies, three running machine speeds were selected (one 

below and two above its first critical speed), i.e., 450 RPM (7.5 Hz) below the first 

critical speed, 900 RPM (15 Hz) above the first critical speed and 1350 RPM (22.5 Hz) 

above second critical speed. The selections were made to avoid resonance. 

4.4.3 Modal Testing for SFTR-2 

THE SFTR-2 was built to compare experimental result outcomes, transfer fault 

identification methods on similar machines with variation in their foundation 

flexibilities and strengthen earlier studies [45,22] where vibration data can be used on 

fault identification without any historical data. Here, the Frequency Response Function 

(FRF) is presented in Figure 4.21. Like Figure 3.18, plots are observed in Figure 4.21 (a) 

vertical amplitude and phase, while in Figure 3.21 (b) are horizontal amplitude and 

phase. Table 4.6 shows the first five natural frequencies of the SFTR-2 in the vertical 

and horizontal directions. However, in Figure 4.22 and Figure 4.23, only the vertical 

mode shape at impact locations one and two are presented. Horizontal mode shapes 

were not added as the experiment was not completed on both impact locations. 

 

 

 



140 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

 

 

Figure 4. 21 A typical Frequency Response Function (FRF) plot of the measured 

acceleration response to the applied force in the modal tests for SFTR-2 at location 2 

at accelerometer position 3 in (a) Vertical (b) Horizontal. 

Table 4. 6 Showing the first five natural frequency of SFTR-2. 

Natural 
frequency 

1st. 2nd  3rd  4th  5th  

Vertical 17.78 Hz 23.88 Hz 32.65 Hz 51.19 Hz 86.36 Hz 

Horizontal 18.39 Hz 24.49 Hz 36.24 Hz 47.84 Hz 83.77 Hz 
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Figure 4. 22 The mode shape of SFTR-2 for the first five natural frequencies at vertical 

impact location 1 in (a) mode 1 (b) mode 2 (c) mode 3. 
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Figure 4. 23 The mode shape of SFTR-1 for the first five natural frequencies at vertical 

impact location 2 in (a) mode 1 (b) mode 2 (c) mode 3. 
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Similarly, the same machine condition is maintained except for a change in its 

foundation flexibility to compare vibration data effectively. The three machine running 

speeds selected in the SFTR-2 are two below and one above its first critical speed, i.e., 

at 450 RPM (7.5 Hz) below the first critical speed, 900 RPM (15 Hz) below the first 

critical speed and 1350 RPM (22.5 Hz) above first critical speed. However, the third 

machine's running speed is close to the second natural frequency. Investigation into 

such conditions would be helpful in fault identification. 

4.5 Experiments conducted  

This section looks at the experimentally simulated conditions with vibration data from 

the different test rigs recorded, i.e., for FFTR (below the machine’s critical speed) and 

SFTR-1 & 2 (below and above the machine’s first critical speed). The reason for such 

measurement is provided in the modal testing section. Various faults were simulated 

for the different experimental rigs based on the investigation this research is focused 

on. The FFTR had only rotor-related faults simulated as per earlier research work, i.e., 

misalignment, shaft bow, mechanical looseness and shaft rub, as seen in Figure 4.24. 

The SFTR-1 & 2 had both rotor and bearing faults simulated, with the rotor faults being 

unbalanced, misalignment, crack, looseness and rub, while that of the bearing was a 

cage defect, as shown in Figure 4.25.  

It should be noted that each simulated condition was done one after the other. The 

healthy or baseline simulation was carried out first, with the test rig in good condition. 

However, there may be some residual misalignment, and residual unbalance (RMRU) 

[21-20]. Table 4.7 shows the various simulated machine condition for each test rig. 

Detail of each simulated condition is presented in subsections 4.5.1 to 4.5.8, and Table 

4.8 gives a description of the all the faults simulated on the relatively flexible test rigs 

and figure 4.26 shows the faults simulated and their locations. 
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Figure 4. 24 FFTR Simulated Fault (a) Misalignment (b) Looseness (c) Rub all accessed from 

[51] 

           

 

Figure 4. 25 SFTR Simulated Faults (a)Unbalance (b)Misalignment (c Crack (d)Rub 

(e)Bearing cage defect. 

Table 4. 7 Various simulated conditions for the three-test rigs. 

 FFTR SFTR-1 SFTR-2 

1. RMRU RMRU RMRU 

2. Misalignment Unbalance Unbalance 

3. Shaft bow Misalignment Misalignment 

4. Mechanical 
looseness 

Crack shaft Crack shaft 

5. Shaft rub Shaft rub Shaft rub 

6.  Bearing cage 
defect 

Bearing cage 
defect 
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4.5.1 Residual Misalignment Residual Unbalance (RMRU) 

The residual misalignment residual unbalance (RMRU) is the baseline or healthy state 

of the test rig. At this point, the assumption is that no fault is present in the machine. 

However, since the test rigs are not aligned perfectly due to multiple shafts and 

multiple bearing pedestals, some misalignment and unbalance may appear during 

their operation. This trend can be seen from the spectrum plots having 1x component 

operational speed and multiple harmonics. Three different speeds for all machine 

configurations in the baseline RMRU were operated, and vibration data was collected. 

4.5.2 Unbalance 

Unbalance occurs when there is an unequal distribution of mass in the shaft. 

Unbalance is one of the common rotor faults encountered by rotating machines. This 

study introduced the unbalance faults by creating 1.5 x 10-3 kgm unbalance using a 

2.0g M5 x 25 mm screw, which is 55 mm in radius at D1. Having seeded, the unbalance 

fault measurement of vibration data was carried out. 

4.5.3 Misalignment 

Misalignment fault was simulated in this study by the displacement of the bearing 

(Bg1) pedestal using two 0.8mm shims from its original position in the vertical 

direction. The shim is placed between the bearing pedestal and the lathe bed. This 

arrangement causes a parallel misalignment along coupler 1 between the long shaft 

and the motor. Once the misalignment fault was seeded, recorded vibration signals 

were obtained. 

4.5.4 Shaft bow 

Shaft bow fault was introduced in this study by replacing the 1000 mm shaft with a 

long-bowed shaft which has a 3.2 mm displacement from the rotational axis (run out). 

Like in earlier studies [28,29], the shaft fault is intended to create a framework 

resembling a deflected rotor. Unbalance will be created in the rig, and there may be 

an increase or no increase in the vibration from the rotor. The collection of the 

vibration signal was done immediately after the shaft bow fault was set up. 
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4.5.5 Crack shaft 

The crack shaft is simulated in this study at two locations, i.e., crack near bearing one 

(CBg1) and crack near bearing two (CBg2). The simulation was done on the long shaft 

with a 0.34 mm wide and 4 mm deep notch and a 0.33mm shim glued, thus creating a 

breathing crack with a width of 0.01 mm. An electro-discharge machining (EDM) device 

was used to cut the notch. CBg1 was created at 165 mm from bearing 1 (Bg1) and 655 

mm from bearing 2 (Bg2). While CBg2 was created at 655 mm from bearing 1(Bg1) and 

165 mm from bearing 2 (Bg2). Vibration data was collected after each configuration 

was set. 

4.5.6 Shaft rub 

Shaft rub fault was simulated using a gadget which houses a Perspex disc. The effect 

of the rub is felt when the upper part of the Perspex material rubs on the shaft creating 

a minor interference between the shaft and Perspex disc due to unbalance. This 

interference is achieved by setting a 0.1 mm gap between the Perspex disc and the 

shaft. The rub shaft on FFTR was simulated near bearing 2. Two rub shaft faults were 

simulated in SFTR, i.e., rub near disc one (RubD1) and rub near disc two (RubD2). 

RubD1 is 77 mm from D1, 119 mm from Bg1, 365 mm from D2, and 556 mm from Bg2. 

RubD2 is simulated at 77 mm from D2, 265 mm from Bg2, 365 mm from D1, and 556 

mm from Bg2. Once each configuration was set up, vibration data were obtained at 

different speeds. 

4.5.7 Mechanical looseness 

Mechanical looseness fault was simulated in FFTR for this study. Nuts connecting the 

flange at the bearing pedestal were loosened. The nuts moved along the flange, and 

the bearing movement was about the axis of the shaft. However, the bearing pedestal 

was secured firmly to the lathe bed. Once this was set, vibration signals were collected 

when the machine operated at different speeds. 

4.5.8 Bearing cage defect 

A bearing cage defect was carried out on one anti-friction rolling element bearing. 

Initially, the intention was to seed a ball fault in the bearing using a Dremel grinder. 

However, due to the ball material's hardness and the greasing's slippery nature, the 

intended scratches from the Dremel affected the bearing cage. So, from analysis, a 
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cage defect was diagnosed. Once the defect was established, the same bearing was 

used but interchanged in all four locations, while three other bearings were healthy. 

For emphasis, while the defective bearing was at bearing pedestal 1 (Bg1), Bg2 to Bg4 

were healthy. Also, while the defective bearing was at the Bg3 pedestal, Bg1, Bg2, and 

Bg4 were healthy. Vibration data at different speeds were collected during each 

configuration. It was challenging to simulate other bearing faults, such as inner race 

and outer race defects, as any effort in this line will destroy the bearing total due to its 

type. The grease on the balls made it extremely difficult to scratch any defect. So, 

measurement of the exact size of the bearing defect was not done but could be 

pursued in future work. 

Table 4. 8 Showing description of fault in relative flexible foundation. 

No Condition Code Description 

1 Baseline RMRU Residual Misalignment Residual Unbalance. 

2 Unbalance Unb 2.0 g of M5 screw to create 1.5 x 10-3 kgm unbalance 
at 300. 

3 Misalignment M Parallel Misalignment with Bg1 displaced 0.8mm in 
vertical direction. 

4 Shaft bow S-Bow 3.2 mm displacement of the long shaft from the axis 
of rotational  

5 Crack near 
Bearing1 

CBg1 0.34mm wide x 4mm deep notch with 0.33mm shim 
glued (on rotor near Bg1). 

 Crack near 
Bearing2 

CBg2 0.34mm wide x 4mm deep notch with 0.33mm shim 
glued (on rotor near Bg2). 

6 Rub near Disc1  RubD1 Perspex blade on rotor near Disc1. 

6 Rub near Disc2  RubD2 Perspex blade on rotor near Disc2. 

7 Mechanical  
looseness 

M-Loose 
Bg3 

Unfastening of the four nuts that secures that 
secures bearing 3 to the pedestal. 

8 Bearing cage 
defect (Bg1-4) 

Bg1Cg -
Bg4Cg 

Bearing cage defect at bearing 1-4, scratched using a 
Dremel grinder. 
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Figure 4. 26 Schematics of experimental test rig showing some of the simulated faults and 

their locations. 

 

4.6 Data acquisition and processing 
The test rig is controlled by the speed controller, which is operated from the personal 

computer and speed. The speed can be varied by manually inputting the intended 

speed into the speed controller. Vibration dynamic responses were measured and 

received by the signal conditioner from the accelerometer placed on the bearing.  

The data acquisition system helps to convert the data from analogue to digital. The 

signal conditioner helps to amplify the filtering of the signal received from the 

accelerometer. It also supplies power to the accelerometer. Amplified signals in the 

conditioner are transferred to the data acquisition system (DAQ). This DAQ contains 

16 bits, 16 channels with 16 outputs data-card. Analogue data collected and amplified 

are converted to digital in this system. The accelerometer is pk-pk which is 2 to -2 at 

point [0-3], as seen in the channels of the data acquisition system.  

The digital signal is stored in data logging software on a personal computer. Figure 4.27 

shows the set-up of the signal conditioner, DAQ and personal computer, while Figure 

4.28 show a schematic of the data acquisition process. It should be noted that the data 

acquisition for both the FFTR and SFTR in this research employed the same approach. 
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Figure 4. 27 Data acquisition, personal computer, and other processing equipment. 

 

 

Figure 4. 28 Schematics of data acquisition from the test rig to personal computer. 

4.7 Summary of experimental approach model 

An extensive description of the three different test rigs used in this research study has 

been presented in this chapter, i.e., the flanged-based flexible test rig (FFTR) and the 

spring-based flexible test rig 1 and 2 (SFTR-1&2). The FFTR was built by two former 

PhD students (Dr Akilu Yunusa-Kaltungo and Dr Adrian Nembhard) in the dynamic lab 

of the University of Manchester. These PhD students built the FFTR with a flange-based 

bearing pedestal to accommodate the excitation speeds below the machine's first 

critical speed. The set-up was due to the foundation flexibility of the rig based on the 

natural frequency. The improved SFTR has a spring-based bearing pedestal and 

represents a typical industrial system in which the excitation speeds are below and 
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above its first critical speeds. Another area of interest is the modal testing for each test 

rig to determine their natural frequencies, and the mode shape for selected natural 

frequencies is discussed. Modal testing for FFTR is obtained from earlier studies of the 

PhD students. However, SFTR-1 and SFTR-2 are represented and discussed as original 

versions of this study. The modal test and mode shape help to understand the rotating 

machine's dynamics and to investigate the dynamic behaviour of the various faults 

simulated in the test rig. The simulated faults were also discussed in detail. After that, 

data acquisition, storage and signal processing approach were presented. With a clear 

presentation of the experimental approach, this study considered investigations and 

results in subsequent chapters. 
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CHAPTER 5 

IMPROVED FAULT IDENTIFICATION APPROACH USING 

ACCELERATION-BASED TIME AND VELOCITY-BASED 

FREQUENCY DOMAIN FEATURES FOR ROTOR FAULTS 

DIAGNOSIS  
 

Acceleration and velocity signals have provided useful diagnosis in rotating machine 

critical part. Rotor faults exist around the low frequency range (0 – 500 Hz) while 

bearing defect can be detected around the high frequency range (over 1000 Hz). Rotor 

fault can be effectively identified using velocity-based analysis while bearing fault 

identification is well achieved with acceleration-based analysis. The aim of the chapter 

is to understand rotor-related fault behaviour using acceleration and velocity features 

and thus using a combination of acceleration-based time and velocity-based frequency 

domain to create a fault identification model for classification of an extensive range of 

rotating machine faults. Principal component analysis (PCA) pattern recognition-based 

approach was useful in classifying machine conditions on the flange-based flexible test 

rig (FFTR). To quantify the observed fault classification, a mean representation of each 

condition was done and the observation of each fault with respect to the baseline 

RMRU condition were carried out.  
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5.1 Overview 

This chapter presents the use of features of acceleration and velocity from vibration 

signals for improved fault diagnosis. Preliminary studies employed vibration data from 

the existing flanged-based flexible test rig (FFTR) that a former PhD student measured 

during his research. The improved approach is developed from an earlier study which 

proposed the unified multi-speed analysis (UMA) from the work of Nembhard and 

Sinha [20].   

For clarity, a discussion of the earlier unified multi-speed approach is in section 5.2. 

After that, section 5.3 in the current study investigates time domain parameter 

analysis. Furthermore, observation of spectrum plots and data trending, all of which 

are from acceleration-based vibration signals. The time and frequency domain 

features from the acceleration signal were selected, and the classification of each 

condition was observed. The same analysis was repeated for the velocity-based 

vibration signal, obtained by conversion of acceleration signals, and the result was 

discussed. The improved acceleration and velocity features approach was observed 

and discussed. In order to show the novelty, a statistical approach used to distinguish 

each faulty condition from the baseline RMRU help quantifies the faulty condition.  

The various simulated conditions are shown in chapter 4, Figure 4.24 and a brief 

description of the selected faults obtained from FFTR is seen in Table 5.1. 

Table 5. 1 Description of fault obtained in FFTR data. 

No Condition Description 

1 RMRU Residual Misalignment Residual Unbalance. 

3 Misalignment Parallel Misalignment with Bg1 displaced 0.8 mm in 
vertical direction. 

5 Shaft bow 3.2 mm bow on the 1000 mm shaft 

6 Mechanical 
looseness 

Loosening of the bolts on the flange in bearing 
pedestal three (Bg3). 

7 Shaft rub Perspex blade on rotor near Disc2. 
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5.2 Earlier Unified Multi-Speed Approach 

The unified multi-speed analysis (UMA) tool was developed to address challenges 

posed by machines with continuous changes in speed and dynamics in overall machine 

behaviour [20]. This tool presents a single analysis of features obtained from a 

machine at different speeds, all below the machine’s first critical speed using 

acceleration signal only. Feature selection employed both time and frequency 

parameters from the acceleration signal. Complete detail of the selected features is in 

[20].  

The selection aimed to produce diagnostic features representing a complex machine 

that can provide a simplified and robust tool. Principal component analysis was used 

to classify the conditions. Observation showed four separate analyses, i.e., “single 

speed and single bearing, an integrated feature from multiple speed at a single 

Bearing, single speed for integrated feature from multiple Bearing and the unified 

multi-speed analysis” [20]. The unified multi-speed analysis showed clear 

identification and separation of all conditions tested. In order to gain a clearer 

understanding of this work, more details can be accessed in [20]. 

5.3 Preliminary investigation for current study 

This study used existing vibration data from a flanged-based flexible test rig (FFTR) for 

preliminary analysis. Data was trended on the acceleration-based vibration signals 

based on time and frequency domain parameters. The data trend showed how various 

parameters could contribute to indicating the presence of different faults in a signal. 

This work and previous studies [16, 19] carried out similar data trending, which 

showed that individual parameters provide a sensitive indication of a particular fault 

based on benchmarks and standards but may not give an exact indication of faults, as 

different faults could show similar indications. Also, the indications may not be 

consistent in various parameters. For instance, the kurtosis's indication of a bearing 

defect may not be observed in the RMS. Therefore, the data trending helps show how 

different parameters show sensitivity in the machine dynamics. Section 5.4.1 and 5.4.3 

gives details of the analysis showing the data trending. Thus, this study proposed a 
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data fusion approach using various sensitive features from analysing vibration signals' 

time and frequency domain parameters.  

Three speeds were considered for analysis, i.e., 1200 rpm (20 Hz), 1800 rpm (30 Hz) 

and 2400 rpm (40 Hz), all of which were obtained below the machine's first critical 

speed. Single and multi-speed analysis using acceleration features is carried out to 

validate the existing unified multi-speed approach (UMA) [20]. After that, further 

analysis using velocity features was presented to observe existing UMA. In order to 

improve the approach, a combination of acceleration and velocity features for single 

and multiple speeds was done. This improved approach was investigated to develop a 

diagnostic tool that can cover various faults associated with rotating machines' critical 

parts. 

5.4 Acceleration Signal for fault Diagnosis 

This section employs the measured acceleration signal for fault diagnosis and test rig 

condition classification to understand the machine's health. Time domain and 

frequency domain analyses were carried out. The measured data were obtained from 

an earlier research study from the flanged-based flexible test rig (FFTR) at a 10 kHz 

sampling rate with 11 samples (observations) collected at three different speeds, i.e., 

1200 rpm (20 Hz), 1800 rpm (30 Hz) and 2400 rpm (40 Hz) below the machines' first 

critical speed as stated in section 5.3.  

Time and frequency domain parameters presented useful features for further analysis. 

However, for detailed investigation, only figures from the 1200 rpm (20 Hz) speed are 

presented in both time and frequency domain analysis. This consideration was 

because representation at other bearings may not vary so much from what was 

observed from the 1200 rpm (20 Hz) analysis. Feature selection and data trending 

provided an understanding of the need for further signal analysis. Features extracted 

from the time domain include RMS, CF, and Ku, while that from the frequency domain 

had SE and harmonics of 1x, 2x, 3x, 4x, and 5x. The selected feature has various 

significance in machine fault diagnosis. For instance, RMS and SE reveal the energy 

state of the entire machine condition, while harmonics, CF and Ku indicate the signals' 

impulsiveness and transient nature. More details on the selected signal can be 
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accessed in [20]. Clustering analysis was achieved using a principal component analysis 

(PCA) based pattern recognition approach. Results, observations, and discussions are 

also presented. 

5.4.1 Data trending using acceleration-based time domain parameter analysis 

In order to achieve an efficient trend analysis, the bar chart plot considered the time 

domain parameter for RMRU and faulty conditions, which includes misalignment, 

shaft bow, mechanical looseness, and shaft rub. Figure 5.1 (a) – (c) shows the bar chart 

comparing the RMRU to the simulated faulty condition for all bearings at 20Hz. The 

comparison is to check for variation and consistency in different conditions to observe 

any helpful information.     
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Figure 5. 1 Bar chart showing comparison of all faults with respect to healthy at all 

Bearings with machine speed 20Hz for (a) Root mean square (b) Crest Factor (c) Kurtosis. 
 

Figure 5.1 shows the bar chart representation for all conditions for the four bearings 

at 20Hz. Observation shows that RMRU conditions tend to be reasonably low overall; 

however, the higher amplitude of shaft bow and shaft rub indicate their presence, as 

seen in Figure 5.1 (a) – (c). In figure 5.1 (c), the amplitude at bearing 3 is reasonably 

high, indicating the presence of mechanical looseness.  

The time domain parameter analysis using RMS, CF and Ku has been attempted to 

detect the rotor-related fault in a rotating machine. The result showed the presence 

of some of these faults. RMS was able to detect shaft bow and rub. CF and Ku, which 

gives transient responses, could not clearly distinguish the RMRU from faulty. This 

observation leads to the conclusion that though time domain analysis retains useful 

analysis features, however, it cannot effectively detect all faults easily. Therefore, the 

frequency domain technique is employed for further investigation. 

5.4.2 Observation of spectrum plot of measured acceleration signal 

In this section, the frequency domain analysis is employed for more analysis as the 

time domain analysis could not effectively identify all conditions. Here, the Fast Fourier 

Transform (FFT) has been applied to convert signals from the time to frequency 

domain. A 16-bit data acquisition card was used to obtain signals, and the FFT could 

convert signals from a time domain to a frequency domain. The spectrum plot 

represents the conversion by FFT in the frequency domain and is used for analysis. The 
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representation shows that the data obtained is fine. Details of basic signal processing 

parameters are presented below. 

The data were obtained at a sampling frequency (fs) of 10000 Hz or 10 kHz. Frequency 

resolution df = fs/N =10,000/2 16 = 0.15258 Hz, where N is the number of spectral 

lines, which is 16384 used to compute the Fourier transform. Sampling time = 1/fs = 

1/10,000 = 0.0001 s. An average of 147. Filtering = high pass at 2 Hz and low pass at 1 

kHz, and the reason for selecting this filter is to remove frequency content such as 

direct current (d.c.) components and low-frequency noise at the high pass and 

frequencies that a related to high-frequency range such as bearing are cut off at the 

low pass. Note that the Nyquist frequency is 5 kHz. 

 

Figure 5. 2 Typical acceleration spectrum plots at 20Hz Bg3 for (a) RMRU (b) M (c) S-Bow 

(d) M-looseBg3 (e) RubD2. 
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In figure 5.2 (a), the baseline case appeared to show some residual misalignment due 

to the presence of other harmonics components. Introducing other simulated faults 

led to an increase in shaft unbalance, which can be seen from the increase in 1x in 

most cases. In the RMRU and misalignment cases, 1x and 3x were prevalent but with 

a very low 2x. The shaft bow in figure 5.2 (c) showed the presence of 1x to 5x harmonic 

components. However, there is a dominant peak at 3x with a frequency of 60 Hz. The 

peak could either be from a bow in the shaft or mode 3, indicated in the FRF plot with 

a natural frequency of 59.2 Hz. In figure 5.2 (d), mechanical looseness showed an 

increased 1x, 3x, 4x, and 5x with some sub-harmonics, which may be due to vibrations 

due to the loosed nuts in the flanged connection at bearing 3. Figure 5.2 (e) is a typical 

shaft rub spectrum with the presence of all harmonics at a low amplitude.  

Observation of figure 5.2 (a) – (e) shows the presence of all harmonics in all four 

bearings. 1x harmonic seems to be prevalent at all bearings. However, the peaks of 2x, 

3x, 4x, and 5x, which were also observed, were not consistent in their trend for the 

different bearings. The presence of an increased 3x harmonic in all cases may be due 

to the second mode at 59.2 Hz. Observations show a 1x amplitude of misalignment 

lower than that of RMRU, and this could be because of the complexity of fault 

simulation.  

According to Nembhard and Sinha [20], fault diagnosis using the amplitude of a 

spectrum from steady-state vibration data is somewhat challenging. It was observed 

that different faults showed the same harmonic components. Also, the spectral 

features for the same faults at the same speed may differ at the exact bearing 

locations. It was also observed that some spectra plots could generate features like a 

baseline case even with the physical presence of a fault, thus, making fault 

identification difficult, as shown in Figure 5.1 (a) and (b). In order to validate some of 

these observations, data trending of the various spectra at 1200 rpm (20 Hz) speed for 

the first five harmonic components (1x – 5x) and the spectrum energy is presented in 

sub section 5.4.3 below.    
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5.4.3 Data trending using acceleration-based frequency domain features 

Figure 5.3 (a) – (d) shows the data trending plot from analysis for RMRU and faulty 

conditions. It shows the relative changes between all conditions at various harmonics. 

This change is good for the precise detection of fault when compared to healthy. Figure 

5.3 (a) – (d), representing 20 Hz, had Bg1 indicate shaft bow condition at 1x, 3x and SE. 

Bg2 showed the shaft bow at 1x, 3x and SE with mechanical looseness and rubbed at 

4x. At Bg3, mechanical looseness was observed at 1x, 3x, 4x, and 5x with the shaft bow 

at SE. Bg4 showed the presence of bow at 1x, 3x, and SE with mechanical looseness at 

2x, 4x and 5x. In as much as some faults were prevalent, the machine's overall 

condition could not be distinguished, making diagnosis cumbersome. Further work will 

need to show clarity of overall machine condition, feature selection and classification 

considered as proposed by Nembhard and Sinha [20]. 
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Figure 5. 3 Data trending for simulated conditions with 20 Hz at (a) Bg1 (b) Bg2 (c) Bg3 

(d) Bg4. 

 

5.4.4 Acceleration data model 

Following the observation from data trending with time and frequency domain 

features, where conclusive diagnosis could not be achieved, further investigation was 

carried out using clustering analysis. The selected features are used to build a data 

matrix that is eventually fed into PCA for condition identification and classification. The 

Data matrix, analysis, observation, and result are discussed. 

The matrix is built up in a structure such that the 1200 rpm (20Hz) feature from the 

RMRU condition at Bg1 gives a 9 x 11 matrix. Still computing the RMRU condition, a 

matrix of 36 x 11 is built with the combination of Bg1 to Bg4. After that, a 36 x 55 data 
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matrix is computed, comprising all five simulated conditions. This computation is 

repeated for 1800 rpm (30Hz) and 1800 rpm (40Hz) signals. Features from multiple 

speeds are combined and give a 108 x 55 data matrix inputted to PCA for classification. 

However, before the data matrix is inputted into the PCA-based classification tool, 

normalisation is done by computing each row's standard deviation and mean. The 

mean is subtracted from each element within a row and divided by the row's standard 

deviation. The normalisation is done to make all elements in the matrix dimensionless 

quantities [20]. 

5.4.5 Condition classification using Acceleration features 

Analysis of machine condition using acceleration features extracted from time and frequency 

domain parameters of the measured vibration data is presented in Figure 5.4 (a) – (d). This 

scenario represents both single and multi-speed analysis using acceleration features. Figure 

5.4 (a) – (c) are all single-speed analyses, while Figure 5.4 (d) is a multi-speed analysis. 

Observation showed some overlap between the baseline RMRU, misalignment and 

mechanical looseness in Figure 4.5 (a). Figure 4.5 (b) and (c) showed separation for all 

conditions except for minimal overlap between RMRU and misalignment. The overlap suggests 

a faulty condition, possibly because of residual misalignment in the measured vibration data. 

Figure 5.4 (d), the multi-speed analysis, presents a good separation between all conditions. 

This representation gives a similar result to the earlier unified multi-speed diagnosis except for 

the variation in some faulty conditions.  
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Figure 5. 4 Acceleration feature analysis at (a) 20Hz (b) 30Hz (c) 40Hz (d) multiple speed. 
 

5.4.6 Observation and discussion 

The time and frequency domain analysis gave beneficial results in its investigation. It 

detected some faults; however, obtaining helpful analysis during data trending was 

challenging as observation did not show consistency between the faulty and baseline 

RMRU condition. In applying the previously existing work [20] method, various plots 

were generated for all individual speeds and multi-speed. Observation showed a 

significant overlap between RMRU and some faulty conditions at 20Hz. This improved 

with increased speed as only little overlap between RMRU and misalignment was 

observed. Observation from the multi-speed plot showed distinct separation for all 

conditions. However, there seem to be dispersed clustering in some faulty condition, 

i.e., shaft rub and mechanical looseness, especially at 40Hz and multi-speed plots. This 

data spread was adjudged because the severity of these two cases could have 

progressed between the instances of acquiring different data sets. As stated earlier, 

some faults in this work vary significantly from those of earlier studies. 
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5.5 Velocity signal for rotor fault diagnosis 

In section 5.4, a beneficial result was achieved in identifying faulty and baseline RMRU 

conditions when the unified multi-speed analysis tool was employed. However, further 

research to enhance the application of this tool for practical analysis is looked at in the 

section. Acceleration features were employed for analysis yielding valid results in 

previous work [20]. However, the improved tool focuses on employing velocity 

features for further analysis. The improved tool came from observation in [193] and 

[208], where the velocity gives a good representation of most parameters. In order to 

obtain velocity signals, measured vibration acceleration data obtained at 10 kHz with 

11 samples (observations) used in the previous section are integrated [45].  

This section briefly looks at time and frequency domain analysis, where similar 

features selected for acceleration analysis are then extracted for velocity analysis. 

Observation and discussion of analysis are expressed in the subsequent sub-sections. 

Note that data trending for velocity features is not presented in this study as 

observation shows similar trends with those of acceleration. 

5.5.1 Time and frequency domain parameter analysis for velocity 

Observation from the time and spectrum plot of velocity data is seen to have a similar 

trend with those of acceleration. Much discussion on its comparison, as well as data 

trending, is not presented in this section. The acceleration data is represented in m/s2, 

while that of velocity is in mm/s. Figure 5.5 (a) – (e) shows velocity spectrum plots for 

both baseline RMRU and faulty conditions as simulated in the flanged-based flexible 

test rig (FFTR). The presence of 1x up to 5x can be seen in the velocity spectra plot. 

However, velocity spectra amplitudes are much higher than acceleration spectra for 

all conditions due to the representation in mm/s.  
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Figure 5. 5 Typical velocity spectrum plot at 20Hz Bg3 for (a) RMRU (b) M (c) S-Bow        

(d) M-looseBg3 (e) RubD2. 

 

5.5.2 Velocity features arrangement 

Velocity features are good indicators of rotor faults, mainly RMS and CF features 

expressed in [193] and [11]. Features obtained are the same as that from acceleration 

analysis, including RMS and CF for the time domain, while the harmonics of 1x, 2x, 3x, 

4x, 5x, and SE were extracted from the frequency domain. A similar data matrix was 

built using the velocity features such that for 1200 rpm (20Hz), features from the 

RMRU condition at Bg1 produces a matrix of 9 x 11. Further computation includes Bg1 

to Bg4, which presents a 36 x 11 matrix. Adding all five conditions gives a 108 x 55 data 

matrix set up for input into PCA for machine conditions identification. Normalisation 

which makes all elements in the matrix dimensionless quantities, is carried out. 
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5.5.3 Condition classification using velocity features 

Investigation into velocity features where time and frequency parameters are selected 

from the analysed vibration data with velocity signal is shown in figure 5.6 (a) – (d). 

This analysis is based on improving the existing diagnosis tool in the earlier section. 

Figure 5.6 (a) – (c) represents single-speed analysis, while Figure 5.6 (d) shows the 

analysis for multi-speed. Figure 5.6 (a) showed an overlap between baseline RMRU, 

misalignment and mechanical looseness. Figure 5.6 (b) and (c) showed separation for 

all conditions except for the little overlap between RMRU and misalignment 

conditions. However, the multi-speed analysis in Figure 5.6 (d) showed separation for 

all conditions. Mere observation of the PCA plots showed a more distinct separation 

of conditions in velocity analysis, as seen in Figure 5.6 (d), even when compared with 

acceleration classification in figure 5.4 (d). 

 

Figure 5. 6 Velocity feature analysis at (a) 20Hz (b) 30Hz (c) 40Hz (d) multiple speed. 
 



166 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

5.5.4 Observation and discussion 

Measured vibration signals in time waveform and spectrum plot were presented, and 

observation showed close similarity with that of acceleration plots except for higher 

amplitude, about three times that of acceleration. The plots cannot be compared 

directly, as the amplitudes of acceleration were in m/s2 while those of velocity were 

in mm/s. The single and multi-speed analysis using velocity features gave valuable 

results. The 20Hz speed analysis showed a significant overlap between RMRU and 

some faulty conditions. The 30Hz and 40Hz speed analysis showed separation for most 

conditions except for the little overlap between RMRU and misalignment conditions. 

The multi-speed analysis showed much separation for all conditions without any 

overlap. Even in comparison to acceleration classification, the velocity classification 

appeared to have a more apparent separation of each condition. It should be noted 

that mechanical looseness and shaft rub exhibited some dispersed clustering, 

especially in the 40Hz and multi-speed plots. 

5.6 Improved approach using acceleration and velocity features for 

rotor faults diagnosis 

Acceleration parameters are valid for diagnoses of bearing faults, while velocity 

parameter has helped diagnose rotor faults [53]. With these findings from the 

literature [28-29,46,219-220], the combination of different acceleration and velocity 

features is proposed in this work to develop a robust fault diagnosis tool that can 

effectively and efficiently classify machine health conditions for a broader range of 

rotating machine faults. This section selected features from time domain acceleration 

features (RMS, CF, KU) and frequency domain velocity features (1x – 5x and SE). These 

were used to build the data matrix of 108 x 55 for input into PCA. Normalisation is 

carried out to make all elements in the data matrix dimensionless quantities. 

5.6.1 Classification of machine condition using combine acceleration and velocity 

features  

Figure 5.7 (a) – (d) presents the combined acceleration and velocity features analysis 

for single and multi-speed. This analysis further pursues to achieve an improved and 

robust diagnostic tool for a broader range of machine conditions. In Figure 5.7 (a), a 

significant overlap was observed between RMRU and some faulty conditions, such as 
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misalignment and mechanical looseness. Figure 5.7 (b) and (c) presented separation in 

all conditions with a slight overlap between RMRU and misalignment. The multi-speed 

analysis in Figure 5.7 (d) gave much separation of all conditions, indicating a better 

diagnosis and identification of machine conditions when compared to the single speed 

and the individual acceleration and velocity multiple speed analysis.   

 

Figure 5. 7 Combine acceleration and velocity feature analysis at (a) 20Hz (b) 30Hz (c) 

40Hz (d) multiple speed. 

 

5.6.2 Observation and discussion 

Investigation into improving the existing techniques has shown reasonable 

advancement in this work. Observation showed that all conditions were classified in 

the analysis, and the various faults were identified. Some scenarios, like 20Hz analysis, 

showed much overlap between RMRU and faulty conditions, such as misalignment and 

mechanical looseness. However, as the speed increases, results were observed to 

show classifications with much separation for individual conditions. Also, some 

conditions had dispersed clustering, especially at 40Hz and multi-speed analysis plots, 
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i.e., mechanical looseness and shaft rub conditions, which may indicate the machine 

state when collecting data. The multi-speed analysis for the combined acceleration 

and velocity classification indicated clear separation for all conditions; compared to 

those of acceleration and velocity, the separation was even much more, indicating 

better diagnosis and individual fault identification. Overall, an impressive result is 

shown in the multi-speed analysis for combined acceleration and velocity features 

analysis, which indicates an overall improved analytical tool for machine health 

condition identification. Note that this presumption where the combined acceleration 

and velocity features for multi-speed analysis provide an improved diagnosis is based 

on observation from the PCA plots. A quantitative approach to determine the 

efficiency of the improved method is considered in section 5.7. 

5.7 Distinguishing faulty conditions from baseline RMRU for data 

quantification of machine conditions 

In order to determine the efficiency and robustness of the improved acceleration and 

velocity features for fault diagnosis, a quantitative comparison for acceleration, 

velocity and combined acceleration and velocity feature classification is presented. 

The quantitative comparison is achieved by getting the mean of individual conditions 

and distinguishing each faulty condition from the baseline RMRU condition. A more 

explicit description and theory have been presented in chapter 4, section 4.13. A 

comprehensive presentation showing all conditions and the various scenarios is 

presented in Figure 5.8. Four scenarios are represented, i.e., 20Hz, 30Hz, 40Hz and 

multi-speed analysis, with each having all conditions for the acceleration, velocity and 

the combined acceleration and velocity features analysis. 

In Figure 5.8 at 20 Hz, Misalignment and rub at Disc 2 showed increased separation in 

velocity analysis compared to acceleration. However, it decreased in the combined 

acceleration and velocity feature analysis. The shaft bow and mechanical looseness at 

Bg3 increased separation as it progressed from acceleration to velocity and the 

combined acceleration and velocity features analysis. Figure 5.8 at 30 Hz showed 

increased separation for misalignment and RubD2 as it went from acceleration to 

velocity to combined analysis. S-Bow increased separation in velocity but decreased 
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even more than acceleration at the combined analysis. At the same time, M-LooseBg3 

showed a decreased separation at velocity but a much more increased separation at 

the combined analysis. Figure 5.8 at 40 Hz showed increasing separation in M, S-Bow 

and RubD2 as it moved from acceleration to velocity to combined analysis, while M-

LooseBg3 showed a decreased velocity from acceleration. However, the combined 

analysis showed a higher separation when compared to acceleration and velocity. In 

Figure 5.8, the multiple speeds increase in separation for all conditions as it goes from 

acceleration to velocity except for M-LooseBg3, showing a higher separation for all 

conditions in the combined analysis. Overall, the multiple showed better separation 

than the individual speed when the faulty conditions were distinguished with respect 

to the RMRU. However, the multi-speed combined acceleration and velocity features 

analysis deduces a much higher separation. This quantification approach helps to 

establish that the combined acceleration and velocity features analysis gives an 

improved diagnosis compared to just acceleration (the existing UMA) and velocity 

features analysis. 

 

Figure 5. 8 Comprehensive plot showing separation of faulty conditions with respect to 

RMRU for all scenarios. 
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The first two scenarios, i.e., at 20 Hz and 30 Hz, tend to be random, and the last two, 

i.e., 40 Hz and multi-speed, had a better sequence. However, for the last two, the 

combined acceleration and velocity features showed a higher separation for each 

condition, with the last scenario having the highest. The last scenario, which 

represents the multi-speed, gave a higher separation, and the combined acceleration 

and velocity feature analysis gave the highest. The multi-speed scenarios suggest that 

the proposed improved approach in fault detection is adequate and robust and could 

be helpful in the diagnosis of a broader range of rotating machines’ critical parts faults. 

5.9 Chapter summary 

The improved fault identification approach explored in this chapter is built from an 

earlier study that proposed the unified multi-speed analysis (UMA). The UMA used 

sensitive features from acceleration signals in fault classification, whereas the 

improved approach fused acceleration and velocity features in its analysis. Fusion 

acceleration and velocity features were explored to create a fault identification 

method to diagnose an extensive range of faults in a single analysis.  

 Data used in this study were collected from a previous research study by a former PhD 

student who constructed the FFTR that ran below the machines' first critical speed. 

The signal was acceleration based with rotor-related conditions only (RMRU, M, S-

bow, M-Loose and RubD2). Data trending and condition classification using the 

acceleration features were carried out. The results obtained further validated the 

UMA. Since fault identification using time and spectra analysis may be helpful for 

individual conditions. However, with some extensive data set limitations, this thesis's 

analysis considered the data fusion approach. 

Further work observed the velocity signals obtained by integrating the acceleration 

signals. Considering velocity signals came from studies that affirmed they presented 

better diagnoses of rotor faults, while the acceleration parameters are good in bearing 

fault diagnosis. However, velocity features classification showed more explicit 

clustering and separation of individual rotor conditions diagnosis than the acceleration 

features classification. This observation was evident, especially at the multiple speed 

analysis in a single analysis, thus satisfying the submission that the velocity signal gives 

a good diagnosis of rotor faults. Afterwards, the combined acceleration and velocity 
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features analysis were observed. The multi-speed analysis showed good clustering and 

more apparent separation of the machine conditions in a single analysis compared to 

individual speed.  

A comparison of classification from acceleration, velocity and the fused acceleration 

and velocity features carried out through data quantification presented evidence that 

suggested a combination of acceleration and velocity features could improve fault 

diagnosis compared to only acceleration or velocity features. Data quantification was 

achieved by using the baseline RMRU as a reference to determine the separation of 

the faulty rotor cases. Observation showed that the combined acceleration and 

velocity features gave much more separation than velocity classification, and the 

velocity showed more separation than the acceleration for the single and multiple 

speeds. This result proves that the combined acceleration and velocity classification 

approach improved the analysis compared to the earlier UMA approach, which 

classified only acceleration features. 

This preliminary investigation focused on rotor-related faults only, while the vibration 

data were measured below the machine's first critical speed. However, most industrial 

machines run at multiple speeds over their critical speeds during operation. In such 

situations, observing the machine's behaviour toward fault identification would help 

improve machine diagnosis. Thus, further work to understand diagnosis when a 

machine runs below and above its critical speed intending to classify an extensive 

range of rotating machines' critical parts faults, such as rotor and bearing faults, in a 

single analysis is investigated in the next chapter. 
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CHAPTER 6 

DATA FUSION OF ACCELERATION AND VELOCITY 

FEATURES (dFAVF) FOR ROTOR-RELATED AND BEARING 

FAULTS INDENTIFICATION 
 

This chapter presents the novel data fusion of acceleration and velocity features 

(dFAVF) for rotor and bearing fault identification using data from the improved spring-

based flexible test rig one (SFTR-1). This is a build up from the improved approach using 

data from FFTR in chapter 5. The aim of this chapter is to observe the SFTR-1 which 

operates both below and above its first critical speed and the incorporation of bearing 

faults into the proposed classification model. Principal component analysis (PCA) 

pattern recognition approach has been able to provide useful classification of the fault 

using the first and second principal components (PCs). Incorporating the third PCs into 

the classification model provided a different observation platform for improved 

analysis. Further work looked at quantification of the faulty conditions with respect to 

the baseline RMRU, as this can help to understand the location and severity of the fault, 

although this is not validated yet.   
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6.1 Overview 

This chapter proposes the data fusion of acceleration and velocity features (dFAVF) for 

rotor-related and bearing faults diagnosis in rotating machines. It is a build-up from 

chapter 5, where only rotor-related fault and acceleration vibration data below the 

first critical speed were considered during analysis. This chapter considers a broader 

range of machine faults, including several rotor-related and bearing defects, with 

acceleration signals obtained below and above the machines' first critical speed. As 

the introduction has established, 70 % of machine failure originates from rotor faults. 

Bearings are one of the most critical components in a rotating machine, with demand 

on their carrying capacity and reliability [152]. Much research has been done over the 

years on rolling elements bearing many benefits, one of which is calculating its life with 

reasonable accuracy [153]. In real life, Bearing may not operate up to its calculated life 

rating, which may be due to handling carelessly, heavy loading, and inadequate 

lubrication. Each of the factors causes peculiar damages to the Bearing [153]. In the 

previous chapter, the preliminary study presented an improved rotor fault 

identification approach using different acceleration and velocity features for machine 

diagnosis. 

This chapter tends to validate the improved approach applied to the flanged-based 

flexible test rig (FFTR) by exploring results on the spring-based flexible test rig (SFTR) 

using the proposed dFAVF. The spring-based flexible test rig (SFTR) is a modification of 

earlier FFTR, i.e., modification of the bearing pedestal from flange connection to 

spring. The flexibility is focused on the test rig's foundation, enabling it to run below 

and above critical machine speeds. The foundation's flexibility was considered since 

several rotating machines in the industries run above their critical speed during 

operation [193,221]. Consideration of such machines brought about an understanding 

of their dynamic characterisation at various critical speed as well as challenges 

encountered when such type of machines undergoes condition monitoring. The design 

of most machines operating at high speeds is such that they pass through several 

critical speeds at which a high vibration level is encountered [212]. Assuming we have 

the same machine on the same foundation, the machine may be observed to either 

run below or above or through its critical speeds. Based on this, some recent studies 
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were examined with dynamic characterisation to identify critical speeds and mode 

shapes at various critical speeds and challenges in fault diagnosis for such scenarios 

[36,40, 202,222-224].  

Data from the SFTR-1 were obtained and signal processing presented time and 

frequency analysis for acceleration and velocity signals. After that, selected feature 

extraction was carried out. Single and multiple speeds for acceleration and fused 

acceleration and velocity features classification were done with observation and 

discussions presented. 

Table 6. 1 Fault simulated in SFTR-1 for current study. 

N
o 

Condition Code Description 

1 Healthy RMRU Residual Misalignment Residual Unbalance. 

2 Unbalance Unb 1.5 x 10-3 kgm. 

3 Misalignmen

t 
M Parallel Misalignment with Bg1 displaced 0.8mm 

in vertical direction. 

4 Crack near 
Bearing1 

CBg1 0.34mm wide x 4mm deep notch with 0.33mm 
shim glued (on rotor near Bg1). 

5 Crack near 
Bearing2 

CBg2 0.34mm wide x 4mm deep notch with 0.33mm 
shim glued (on rotor near Bg2). 

6 Rub near 
Disc1 

RubD1 Perspex blade on rotor near Disc1. 

7 Bearing 1 
cage defect 

Bg1Cg Bearing cage at bearing 1 scratched using a 
Dremel grinder. 

8 Bearing 2 
cage defect 

Bg2Cg Bearing cage at bearing 2 scratched using a 
Dremel grinder. 

6.2 Acceleration to velocity computation 

Acceleration signal processing in the time and frequency domain was carried out in 

this study; a similar approach from chapter 5 was repeated here. However, this 

chapter's computation of the velocity frequency domain was carried out using the 

omega arithmetic approach. Time domain analysis for velocity signal was omitted as 

the focus was on the combination of acceleration-based features. These are helpful in 

high-frequency ranges such as bearing conditions and the velocity-based features, 

which are helpful for the frequency range between 10 Hz and 1000 Hz rotor conditions. 
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Much reference is made to the computation using some of the equations in chapter 

four.   

Chapter 4 used the integration method to convert the acceleration signal to velocity 

before other parameters are computed both in acceleration and velocity. However, 

this chapter takes it further to use only the velocity frequency harmonic components 

and spectrum energy in its calculation. The spectra density of the Fourier transform of 

acceleration signal was transformed into its corresponding velocity spectra without 

going through the integration in time by applying the Omega Arithmetic (OA) approach 

[209]. This study uses the omega arithmetic method to convert the acceleration 

spectra to a velocity. In this correlative method, the frequency (Hz) significantly 

converts acceleration spectra density to velocity. Mathematically, omega (ω) is a 

Greek character used to represent frequency measured in radians/second. Therefore, 

the velocity spectra density is evaluated by dividing the acceleration spectra density 

with omega (ω). 

6.3 Time and frequency domain parameter analysis (acceleration and 

velocity) 

Signal processing for the current work presented time and frequency domain analysis 

using acceleration-based vibration data. After that, the omega arithmetic method 

achieved computation for velocity-based vibration data [219,225]. The computational 

parameter in this study was considered so that helpful comparison for rotor-related 

faults and bearing defect conditions can be achieved with the collection of equal data, 

similar time length and sampling frequencies. These computation parameters included 

data collected at a sampling frequency (fs) of 10 kHz; the number of data points N= 

16384 used to compute the Fourier transform, frequency resolution (df) of 0.6104 Hz; 

and the number of averages was 287. Vibration signals were obtained at three speeds 

for all conditions, i.e., RMRU and faulty (rotor-related faults and bearing defect). 

Frequency domain analysis of various rotor faults with an observation of the machine 

running speed and its harmonics, as can be seen in the spectra plots where Figures 6.1 

- 6.3 are acceleration plots and, Figures 6.4 – 6.6 are those for velocity. 
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6.3.1 Acceleration spectra analysis 

Figure 6.1 to 6.3 shows typical acceleration spectra plots from the Bg2 bearing 

pedestal with the baseline-residual misalignment and residual unbalance (RMRU) and 

rotor faults, i.e., misalignment (M), unbalance (Unb), crack near bearing 1 (CBg1), 

crack near bearing 2 (CBg2) and rub near disc 1 (RubD1) conditions, when the machine 

ran at 450 rpm (7.5 Hz), below its first critical speed and 900 rpm (15 Hz), 1350 rpm 

(22.5 Hz), above its first critical speed. A high amplitude at 2x for all cases and all 

speeds may be due to residual misalignment, and residual unbalance [51][25]. The 

appearance of peaks and increase in amplitudes in these spectra plots is observed 

based on the position of the harmonic frequencies in the FRF and mode shape[11].  

In Figures 5.4 to 5.6, there is the presence of 1x – 5x harmonic components for all cases 

at all speeds. Looking at Figure 5.4, which is a typical spectra plot at 450 rpm (7.5 Hz), 

Figure 5.4 (a) – (d) shows a small peak between 1x (7.5 Hz) and 2x (15 Hz), which may 

represent mode 1 (11.52 Hz). A small peak is also observed between 4x (30 Hz) and 5x 

(37.5 Hz) for all cases, and this peak may represent mode 3 (30.75 Hz). Other peaks 

that may be observed are not discussed as the focus of this study only considered up 

to 5x. In Figure 5.5, a typical spectra plot for vibration signal at 900 rpm (15 Hz), peaks 

which may be due to mode 4 (49.13 Hz), were observed just after 3x (45 Hz) harmonic 

for all cases but with increased amplitude in CBg2 case. Figure 5.5 (d) – (e) showed 

small peaks just before the 1x (15 Hz) component, and it is most likely because of mode 

1 (11.52 Hz). Figure 5.6 (a) – (f), a typical spectra plot at 1350 rpm (22.5 Hz), showed 

small peaks in front of 1x (22.5 Hz) in all cases and may be due to mode two (18.62 

Hz). Figure 5.6 (a), which is RMRU has another peak in front of 1x, which may be due 

to mode 1 (11.52 Hz). This peak is also evident in Figure 5.6 (b), (c) and (f). Figures 5.6 

(b) and (c) M and Unb, respectively, showed sub-harmonics components and 

sidebands around the various harmonic components observed. The sub-harmonics 

could have been from vibration that may show up due to inconsistency with the 

connection of the shaft and flexible coupler. The connection may not have been bolted 

firmly. Note that the adjustment in the bearing pedestal and shaft connector on some 

occasions when different faults are to be seeded in the test rig. Any peak observed 

after 1x in the spectra plot may be due to mode 3 (30.75 Hz). The peaks observed after 
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2x component (45 Hz) in Figure 5.6 (a) – (c) and (f) may be due to mode 4 (49.13 Hz). 

The 2x amplitude is seen to be very high in almost all the cases, 

with Unb and RubD1 showing a more increased amplitude while CBg1 and CBg2, even 

though they are high, showed amplitude lower than the other cases. Also, a small peak 

observed before 4x (90 Hz) in all the cases may be due to mode 5 (85.83 Hz). The 

spectra plots in Figure 5.6 showed sub-harmonics or sidebands around almost all the 

harmonic components. This effect could also be due to vibrations from the improper 

connection between the shaft and the soft coupler.  

Observation shows that the amplitudes of the harmonics of particular faults vary at 

different speeds. It is also observed that in some cases, different faults may show 

similar harmonics with slightly different amplitudes.  
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Figure 6. 1 Typical acceleration spectra plots at Bearing 3 450 rpm (7.5 Hz) for (a) RMRU 

(b) M (c) Unb (d) CBg1 (e) CBg2 (f) RubD1. 
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Figure 6. 2 Typical acceleration spectra plots at Bearing 3 900 rpm (15 Hz) for (a) RMRU 

(b) M (c) Unb (d) CBg1 (e) CBg2 (f) RubD1. 
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Figure 6. 3 Typical acceleration spectra plots at Bearing 3 1350 rpm (22.5 Hz) for              

(a) RMRU (b) M (c) Unb (d) CBg1 (e) CBg2 (f) RubD1. 
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6.3.2 Velocity spectra analysis 

Various typical velocity spectra plots at bearing 2 locations are presented in Figure 6.4 

– 6.6. All cases and speeds observed here are same with those observed in the 

acceleration spectra plots shown in Figure 5.4 to 5.6. An initial glance showed a higher 

1x component in all cases and speeds as compared to their acceleration plots. 

However, the harmonic components seem to be lower and disappearing as the 

frequency increases. The velocity spectrum gives a nominal peak in its harmonics 

compared to the acceleration spectrum which highlights very high frequency range. 

Note the mathematical defining of velocity and acceleration is that “velocity is the rate 

of change of displacement with time” and “acceleration is the rate of change of 

velocity with time. However, all observation with respect to presence of harmonic 

components and appearance of peaks due to the mode in the FRF as discussed in the 

acceleration section, is also observed in the velocity spectra respectively.  
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Figure 6. 4 Typical velocity spectra plot at Bearing 3 (a) RMRU (b) M (c) Unb (d) CBg1 

(e)CBg2 (f) RubD1. 
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Figure 6. 5 Typical velocity spectra plot at Bearing 3 (a) RMRU (b) M (c) Unb (d) CBg1 

(e)CBg2 (f) RubD1. 
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Figure 6. 6 Typical velocity spectra plot at Bearing 3 (a) RMRU (b) M (c) Unb (d) CBg1 

(e)CBg2 (f) RubD1. 
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6.4 Discussion 

Looking at fault identification using VCM approaches, typical time domain and 

frequency domain analysis typically gives valuable insight into the machine’s 

behaviour [11]. However, data is continuously recorded as changes occur over a long 

period of machine operation with changing speeds. This situation makes large sets of 

VCM data available [15]. Analysis may become cumbersome for the vibration signal 

analyst, creating poor human judgment and incompetent fault diagnosis. Chapter 4 

investigated time and frequency domain analysis (including bar chart and data 

trending), which pointed out specific faults due to their prominence. However, the 

overall machine condition could not be determined with total reliance on these 

analyses. So also, for the current study, much would not be said on observation from 

these analyses (time and frequency domain). In Figures 6.1 – 6.6, typical spectrum 

plots in acceleration and velocity, respectively, are presented. As can be seen, there 

are some differences between each plot, but based on the spectrum analysis only, it is 

generally difficult to make a diagnosis. Besides these inadequacies, there is also the 

challenge of generating several spectra for fault diagnosis. In order to improve fault 

diagnosis (FD), a data fusion-based approach has been considered in various studies 

[23,34,95,174,215] where functional fault diagnoses have been achieved with 

improved outcomes. Hence the earlier improved approach, based on data fusion of 

acceleration and velocity features for fault identification, is applied again to the 

current SFTR experimental data. 

6.5 Feature arrangement for rotor faults 

In this analysis, the feature arrangement is based on equation 3.30 to 3.38. 

Features F per bearing was 9, using four bearings (Bg1 – Bg4), the total number of 

features becomes 4 x 9 = 36. Similarly, the number of data sets m is 20 per machine 

condition k, and there are 7 machine conditions (i.e., k=7), so the total number of data 

sets for all cases equals 20 x 7 = 140. Thus, a fusion of acceleration and velocity features 

at all speeds and all experimentally simulated test conditions gave a 108 x 140 data 

matrix. PCA-based classification of machine conditions was employed in analysing the 

computed features. (PCs). [20]. Normalisation is carried out before inputting the data 

matrix into the PCA-based dFAVF model.  
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6.6 Data fusion analysis approach for fault diagnosis 

Considerations of the improved approach from the earlier study in chapter five led to 

the proposed novel data fusion of acceleration and velocity features (dFAVF) model 

for fault identification in rotating machines. This model was based on single and 

multiple speed analysis from acceleration and then the proposed model. Exclusive 

analysis of each observation had three basic scenarios of single speed at 450 rpm (7.5 

Hz), which is below the first critical speed, 900 rpm (15 Hz) and 1350 rpm (22.5 Hz), 

which is above the first critical speed and the fourth scenario multiple speeds. Note 

that all observations and scenarios were made up of multiple bearings (i.e., combining 

Bg1- Bg4). Plots of PC1 versus PC2 were done since they contained a more significant 

variance in the data matrix [20]. 

As presented in chapter five, considerations for principal component analysis were 

based solely on observations from principal component 1 and principal component 2 

(PC1 vs PC2).  

In order to expand understanding of the availability of relevant information on other 

PCs, the computation of the percentage variance for each PC should be carried out. 

However, variance computation is omitted in this study, whereas the PC3 was included 

for analysis. Thus, a plot of PC1vsPC2vsPC3 is generated, which shows a three-

dimensional view of all cases and indicates additional PCs. The incorporation of PC3 in 

this analysis is to help retain any good variance in the analysis as well as to present a 

three-dimensional view of the clusters in the PCA for observation. 

6.6.1 Acceleration features analysis at single and multiple speeds for rotor fault 

identification 

Figure 6.7 (a) – (d) and Figure 6.8 (a) – (d) show the PCA classification of the simulated 

rotor condition for fault diagnosis in a rotating machine. The data fusion of 

acceleration-based time and frequency domain analysis is presented, where Figure 6.7 

showed PC1vsPC2 PCA plots and Figure 6.8 showed PC1vsPC2vsPC3 PCA plots. These 

figures are a representation of single and multiple-speed analysis. Figure 6.7 and 6.8 

(a) – (c) represent the single speeds at 450 rpm (7.5 Hz), 900 rpm (15 Hz) and 1350 rpm 

(22.5 Hz), respectively, for each scenario, Figures 6.7 and 6.8 (d) represents the 
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multiple speed analysis for each scenario. Observation of both figures shows 

similarities, except that Figure 6.8 gives a different angle of view due to its three-

dimensional view. 



189 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

 

Figure 6. 7 Classification of SFTR rotor-related conditions acceleration-based features at 

(a) 450 rpm (b) 900 rpm (c) 1350 rpm (d) Multiple speeds. 

 

 

Figure 6. 8 Classification of SFTR rotor-related conditions for acceleration-based features 

at PC1vsPC2vsPC3 (a) 450 rpm (b) 900 rpm (c) 1350 rpm (d) Multiple speeds. 

 



190 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

 

Figure 6.7 (a) shows an overlap between all the overall machine FD conditions. Some 

clustering was observed with the rotor faults. However, proper fault diagnosis was not 

achieved. Since 450 rpm (7.5 Hz) is a relatively low speed, an effective analysis may 

not be achieved for a robust fault diagnosis. Furthermore, in Figure 6.7 (b) – (c), 

individual conditions were clustered with overlap between unbalance and 

misalignment. In Figure 6.7 (b), reasonable separation was observed even though the 

RMRU was close to Unbalance and misalignment. For Figure 6.7 (c), RMRU is very close 

to overlapped unbalance and misalignment. Figure 6.7 (d) showed much separation 

between all conditions except for the overlap between unbalance and misalignment. 

Figure 6.8 (a) – (d) showed similar clustering and separation of the simulated 

conditions as in Figure 6.7 (a) – (d). However, the three-dimensional view provided a 

unique diagnosis approach which can help the vibration analyst make more explicit 

decisions on the identified faults. Note that the conditions in this investigation are all 

rotor-related faults. The investigation was done as a transference of diagnostic 

approach from the FFTR to the SFTR-1 to check for the insensitivity of the proposed 

method since earlier studies considered only rotor faults.  

6.6.2 Data fusion of acceleration and velocity features (dFAVF) analysis at single 

and multiple speeds for rotor faults 

Analysis of acceleration-based vibration features has been presented in subsection 

6.6.1. in order to provide a comprehensive and robust fault diagnosis approach which 

is also effective and reliable, the single and multiple speed for fused acceleration and 

velocity features analysis was considered, as shown in Figure 6.9 (a) – (d) and Figure 

6.10 (a) –(d). All conditions in Figure 6.9 (a), (b), (c) and (d) tend to cluster individually 

with good separation except for the overlap between unbalance and misalignment. 

However, Figure 6.9 (d) gave a much separation between all conditions compared to 

Figure 6.9 (a) – (c). Note, Figure 6.9 (d) is the multi-speed classification which 

represents to proposed dFAVF model for a single analysis of various machine faults. 

Similarly, Figure 6.10 (a) – (d) shows the representation as observed in Figure 6.9 (a) – 

(d); however, in a three-dimensional view for a more apparent diagnosis. 
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Figure 6. 9 Classification of SFTR rotor-related conditions acceleration-based time and 

velocity-based frequency domain features at (a) 450 rpm (b) 900 rpm (c) 1350 rpm (d) 

Multiple speeds. 

 

Figure 6. 10 Classification of SFTR rotor-related conditions for acceleration-based time and 

velocity-based frequency domain features at PC1vsPC2vsPC3 (a) 450 rpm (b) 900 rpm (c) 

1350 rpm (d) Multiple speeds. 
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6.5.4 Observation and Discussion 

There was a separation between all rotor faults with respect to the baseline RMRU. 

Notwithstanding the overlap between unbalance and misalignment in almost all cases, 

there was still a useful separation between them. Also, the overlap between the 

unbalance and misalignment could be from the residual unbalance and misalignment 

in the machine. Thus, the machine may show similar features around both conditions. 

Observation alone does not clearly indicate a better clustering or separation between 

individual conditions, so computation showing the separation between faulty with 

respect to the baseline RMRU conditions would be a helpful quantification approach. 

However, the bearing defect was analysed and seen in sections 6.6 and 6.7, and its 

diagnostic features were incorporated into the dFAVF model for observation of an 

extensive range of faults in a single analysis, as seen in sections 6.8 and 6.9. 

6.6 Bearing fault diagnosis approach 

During operation, the natural frequency of the bearing housing is excited due to 

impact loading per rotation [56]. It ranges from 1 to 5 kHz. However, this study's 

bearing housing natural frequency is around 2.4 kHz. Power spectrum density (PSD) 

analysis in bearing fault diagnosis may not show the related fundamental frequency, 

especially when the minor defect. The envelope analysis is used to mitigate such a 

situation by extracting impacts with low energy [56]. In this study, envelope analysis is 

employed on bearing signals to examine the behaviour of a damaged bearing cage.  

The bearing cage defect was simulated at Bg1 to create a cage defect at bearing 1 

(Bg1Cg), and data were collected at the three different machine running speeds. 

Thereafter, the faulty bearing was moved to Bg2, replacing Bg1 with a healthy bearing. 

Thus, creating a bearing cage defect at Bg2 (Bg2cg), data were collected at three 

machine's running speeds (450 rpm, 900 rpm and 1350 rpm). Observation of bearing 

defect signal before and after envelope analysis at Bg1 and Bg2 is presented in Figures 

6.11 – 6.13.  

 

6.7 Bearing faults time and frequency domain analysis  

Figure 6.11 – 6.13 showed typical plots for bearing cage defect analysis at two bearing 

pedestal locations, i.e., Bg1 and Bg2, at the three machine running speeds (450 rpm, 
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900 rpm and 1350 rpm), respectively. Focusing on the spectra plots after envelope 

analysis showed some useful diagnosis features. Firstly, we observe the FTF 1x 

frequency, and its harmonic with the amplitude showing the effect of the damaged 

cage. Also, smaller peaks are seen around some harmonic components, which may be 

due to the natural frequency of the FRF. Figures 6.11 – 6.13 (a) and (d) give a typical 

spectrum plot of bearing defect after a high filter at 500 Hz. The filtering helps to 

remove the low frequencies, which may be rotor related. After that, envelope analysis 

is carried out on the signal with a time domain representation in Figure 6.11 – 6.13 (b) 

and (e). Here, a represents the original signal, while up and lo represent the upper and 

lower envelope signals. Figure 6.11 – 6.13 (c) and (f) shows the spectrum plot for the 

envelope signal.  

The observation of Figure 6.11 – 6.13 provides a valuable understanding of the 

dynamics of the machine with respect to the appearance of cage defects during 

machine operation at different speeds. Investigation of the spectra after filtering 

before envelope analysis and the time domain analysis after envelope analysis could 

be helpful for fault diagnosis where relevant parameters are considered. However, 

observations of the typical plots may not give useful diagnosis features immediately.  
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Figure 6. 11 Typical Bearing defect at 450 rpm for (a) Bg1Cg filtered Spectrum (b) Bg1Cg 

envelope time domain (c) Bg1Cg envelope spectrum (d) Bg2Cg filtered spectrum (e) Bg2Cg 

envelope time domain (f) Bg2Cg envelope spectrum. 
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Figure 6. 12 Typical Bearing defect at 900 rpm for (a) Bg1Cg filtered Spectrum (b) Bg1Cg 

envelope time domain (c) Bg1Cg envelope spectrum (d) Bg2Cg filtered spectrum (e) Bg2Cg 

envelope time domain (f) Bg2Cg envelope spectrum. 
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Figure 6. 13 Typical Bearing defect at 3550 rpm for (a) Bg1Cg filtered Spectrum (b) Bg1Cg 

envelope time domain (c) Bg1Cg envelope spectrum (d) Bg2Cg filtered spectrum (e) Bg2Cg 

envelope time domain (f) Bg2Cg envelope spectrum. 
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The values for the fundamental fault frequencies as calculated using the various 

machine running speeds are shown in Table 6.2 below.  

Table 6. 2 Various fundamental frequencies at the three machine running speeds. 

Machine running speed 7.5 Hz 15 Hz 22.5 Hz 

BSF 14.65 Hz 29.26 Hz 44.36 Hz 

BPFI 37.11 Hz 74.21 Hz 111.32 Hz 

BPFO 22.89 Hz 45.78 Hz 68.67 Hz 

FTF 2.86 Hz 5.72 Hz 8.58 Hz 

 

It should be noted that calculations of the fundamental train frequencies (FTF) gave 

2.86 Hz, 5.72 Hz and 8.58 Hz for each machine running speeds at 7.5 Hz, 15 Hz and 

22.5 Hz, respectively. However, the experimentally generated envelope analysis 

spectrum plots showed the FTF to be 2.79 Hz, 5.58 Hz and 8.38 Hz, with the machine 

running speeds at 7.5 Hz, 15 Hz and 22.5 Hz, respectively. Table 6.3 shows the values 

of the calculated and experimentally obtained fundamental train frequency (FTF). 

Table 6. 3 Table showing the calculated and experimental fundamental train frequency 

(FTF) at the three machine running speeds. 

Machine running speed 7.5 Hz 15 Hz 22.5 Hz 

Calculated FTF 2.86 Hz 5.72 Hz 8.58 Hz 

Experimentally obtained FTF 2.79 Hz 5.58 Hz 8.38 Hz 

 

Overall observation shows that significant fault-bearing cage defect identification may 

not be achieved with only the harmonic components. Therefore, this study tries to 

improve FD by developing a data combination model of acceleration-based time 

domain and velocity-based frequency domain features from the rotor and bearing 

parameters for a single analysis. This model incorporated bearing features into the 

already proposed dFAVF in section 6.6, where only rotor faults have been considered. 

The model was expected to effectively identify various machine faults in a single 

analysis. 
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6.8 dFAVF features arrangement for rotor and bearing fault                               

Equation (3.39) represents the initial data matrix build-up for only acceleration-based 

time domain features of bearing data, while equation (3.40) is the data matrix for 

fusion of acceleration-based time domain bearing defects and velocity-based 

frequency domain rotor-related faults is represented in equation (3.41). The test rig 

had 4 bearing pedestals (Bg1 – Bg4) with measurements done at 3 machines' running 

speeds. A total of 9 x 4 x 3 = 108 features was computed. Similarly, 20 datasets per 

machine condition were collected, forming the observation. Since 8 machine 

conditions were simulated, the total observation for all cases became 20 x 8 = 160. 

Thus, data fusion of acceleration and velocity features (dFAVF) at all speeds and all 

experimentally tested conditions gave a 108 by 160 data matrix. These data were 

normalised to create a common scale for easy interpretation of the data. Data 

normalisation is achieved here by converting each element in the matrix from 

equation (3.41) to zero mean and unit variance. [15]. After that, PCA-based pattern 

recognition was carried out to analyse the computed data matrix [198]. And thereby 

classify the machine conditions. 

6.9 Pattern recognition using proposed dFAVF approach for a 

consolidated rotor and bearing fault diagnosis 

In this analysis, only the multiple-speed approach is considered for analysis. Since it 

has been proven that the dFAVF is a valuable model for fault diagnosis, the aim is to 

have a single analysis where all machine conditions can be observed and diagnosis 

carried out efficiently. Figure 6.14 represents the PCA-based pattern recognition using 

the dFAVF model. A plot of PC1 versus PC2 was done as it contained a more significant 

variance in the data matrix [198]. The simulated conditions represented in Figure 6.14 

(a) are the baseline residual misalignment and residual unbalance (baseline-RMRU), 

misalignment (M), Unbalance (Unb), crack close to Bg1 (CBg1), crack close to Bg2 

(CBg2), shaft rub near disc 1 (RubD1), bearing cage defect at Bg1 (Bg1Cg) and bearing 

cage defect at B2 (Bg2Cg). Observation showed clustering and separation of baseline-

RMRU, M, Unb, CBg1, CBg2, RubD1, Bg1Cg and Bg2Cg. However, while the baseline-

RMRU, M, Unb, CBg1, CBg2 and RubD1, which are rotor conditions, stayed close to 

each other while Bg1Cg and Bg2Cg which are bearing defects, are separated from 
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other conditions while showing some spread in their cluster. This separation of the 

bearing case from other conditions may be due to differences in the frequency range 

[192], i.e., ‘low’ frequency faults cluster around the same region, which is further from 

the ‘high’ frequency faults. On the other hand, the spread seen in Bg1Cg, and 

Bg2Cg may be due to variations in the impact load during machine operation.   

 

Figure 6. 14 Typical PC1 vs PC2 for single classification of a lab rotating rig for (a) rotor-

related and bearing fault (b) zoomed view showing only rotor faults. 

 

Figure 6. 15 Typical PC1 vs PC2 vs PC3 for single classification of a lab rotating rig for (a) 

rotor-related and bearing fault (b) zoomed view showing only rotor faults. 

 

The data fusion of acceleration and velocity features (dFAVF) model using up to 3 PCs 

in the PCA-based pattern recognition approach is presented in Figure 6.15. A very 

outstanding clustering was observed for all conditions, and separation between each 

can be seen. It also gives another cluster view, which could help identify fault severity. 
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These outcomes give credence to the improved approach and present a 

comprehensive diagnostic approach for fault identification in rotating machines' 

critical parts. However, mere observation is not enough to determine the efficiency of 

the proposed dFAVF method both in the PC1vsPC2 and that PC1vsPC2vsPC3. Thus, a 

data quantification approach which distinguishes the baseline RMRU from faulty 

conditions is carried out to validate the proposed method, as shown in section 6.10. 

6.10 Data quantification for discriminating faulty conditions from 

baseline RMRU with respect to dFAVF method on rotor and 

bearing faults diagnosis 
This section discusses the separation of faulty conditions with respect to baseline 

RMRU for the dFAVF method. A comparison of PC1vsPC2 and PC1vsPC2vsPC3 for 

combining acceleration-based time and velocity-based frequency domains was 

achieved. The bar chart represents the result visually, as seen in Figure 6.16. This 

investigation tried to validate that computing more PCs in the fault classification is 

beneficial and improves fault identification in rotating machines.  

An overall observation of the analysis showed the PC1vsPC2vsPC3 slightly higher than 

PC1vsPC2. This observation indicates that the incorporation of PC3 has provided useful 

variance for improved analysis. Thus, the PC1vsPC2vsPC3 classification approach will 

be helpful to vibration analysts for a prompt diagnosis and understanding of machine 

behaviour with respect to fault identification. 
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Figure 6. 16 Bar chart representing a comparison of the data from PC1vsPC2 and 

PC1vsPC2vsPC3. 

 

A comparison of PCA-based pattern recognition plots using PC1vsPC2 and 

PC1vsPC2vsPC3 was achieved. The overall observation from Figure 6.16 shows much 

separation between RMRU and the faulty conditions using the PC1vsPC2vsPC3 

compared to PC1vsPC2. The result supports that the increase in PCs shows improved 

analysis in clustering and separation of the investigated machine conditions. 

6.11 Chapter summary 

The proposed data fusion of acceleration and velocity features (dFAVF) method 

extends the improved unified multi-speed approach. It has been used to diagnose a 

broader range of rotating machine faults, i.e., several rotor faults (M, Unb, CBg1, 

CBg2, and RubD) and bearing defects (Bg1Cg and Bg2Cg). This model was investigated 

using vibration data from the spring-based flexible test rig 1 (SFTR-1).  

Acceleration and velocity spectra analysis was carried out, and the velocity spectra 

were achieved by converting acceleration data using the omega arithmetic approach. 

The PCA-based pattern recognition approach was used in classifying acceleration data 

for rotor-related faults. The results showed the clustering and separation of the 
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different machine conditions at individual and multiple-speed analyses. This 

investigation again reaffirmed the proposed UMA from an earlier study, using data 

from a modified test rig. After that, the proposed novel data fusion of acceleration and 

velocity features (dFAVF) approach was used to classify rotor faults. This model 

comprises acceleration-based time domain features and velocity-based frequency 

domain features. The result showed better clustering and separation of each machine 

condition observed for the dFAVF model compared to the earlier UMA. It also 

confirmed the effectiveness of the improved model from chapter 5. 

The further investigation incorporated bearing fault into the dFAVF approach. The 

simulated bearing cage defects were analysed with an initial high pass filter at 500 Hz, 

which removed all rotor-related faults on the bearing fault signal. Acceleration-based 

time domain features were extracted to populate the dFAVF model for classification. 

This consolidated rotor and bearing faults classification showed good clustering and 

separation of the experimental machine condition in the individual and multiple speed 

analysis. Also, the rotor conditions were seen to be around a particular plot section, 

separated from the bearing conditions. This observation was because of the frequency 

range of occurrence, as the rotor tends to occur in low-frequency ranges while bearing 

faults happen in the high-frequency range. However, further investigation is needed 

to validate this observation.  

The data quantification section compared PC1vsPC2 and PC1vsPC2vsPC3 to show that 

important diagnosis information may be present in other PCs besides the first two. The 

result showed that the PC1vsPC2vsPC3 gave more separation compared to PC1vsPC2. 

The result indicates that better fault diagnosis could be achieved with additional 

information from more PCs.   

The contribution herewith is that even in a complex machine with varying speeds, the 

dFAVF approach could distinguish both rotor and bearing fault in a single analysis. The 

frequency range of the various machine faults could contribute to their location in the 

analysis. Data quantification validated the improvement in the classification approach 

with more PCs giving useful diagnosis information.   
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CHAPTER 7 

POLY-COHERENT COMPOSITE BISPECTRUM (pCCB) 

APPROACH FOR DIAGNOSIS OF ROTOR FAULTS  
 

This chapter looks at an earlier data fusion approach i.e., the poly-coherent composite 

bispectrum (pCCB) which is higher order spectrum (HOS) analysis. The pCCB has been 

applied in classification of rotor-related fault. However, the aim of this chapter is to use 

data from the SFTR-1 to investigate the pCCB fault identification method, improve the 

analysis using a combination of various pCCB components and the combination of 

various real and imaginary (complex number) pCCB components. Observation of the 

first few principal components is carried out to investigate the dynamics of the faults 

in the system. Thereafter, quantification of the faults is presented by comparing the 

faulty conditions to the baseline RMRU.  
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7.1 Overview 

In chapter six, data fusion of acceleration and velocity features was considered for 

fault diagnosis in rotating machines. In as much as the fused approach gave good 

clustering, the novelty is that the approach could present a good diagnosis of the rotor 

and bearing fault in a single analysis. Notwithstanding the valuable diagnosis achieved 

in earlier chapters, it is worthy of note that the Fast Fourier Transform (FFT) employed 

in the analysis uses only amplitude in its diagnosis. Thus, much is not done with the 

signal phase [25,206]. However, the higher-order spectra (HOS) consider both 

amplitude and phase in their signal analysis. Therefore, this chapter focuses on a 

recent area of research for fault diagnosis (FD) in rotating machines: the higher-order 

bispectrum analysis. Bispectrum analysis has the potential to combine various 

frequency components in measured vibration signals. An earlier study [21,25,69] 

developed the poly-coherent composite bispectrum (pCCB) approach, which retains 

both amplitude and phase information and also reduces the rigour of analysing large 

vibration data due to data fusion of the individual bearings (sensor data fusion). These 

studies [22,24,25] focused on vibration data measured below the first critical speed. 

However, this work aims at classifying machine conditions using an earlier approach in 

diagnosing complex rotating machines (multiple bearings, multiple shaft couplings and 

running at multiple speeds) operating below and above the machine’s first critical 

speed.  

The experiment for this work was based on the same spring-based flexible test rig one 

(SFTR-1) from chapter six. Four conditions were considered for analysis in this 

preliminary study using some simulated faults investigated in chapter 6. These faults 

are a baseline state where no fault is simulated in the test rig, i.e. residual 

misalignment and residual unbalance (RMRU) [21], crack near bearing one (CBg1), 

crack near bearing two (CBg2) and rub near disc one (RubD1). Three speeds were 

considered based on the machine’s natural frequencies observed from the FRF of the 

modal testing in chapter 3 subsection 3.4.2, Figure 3.15 and Table 5.3. i.e., 450 rpm 

(7.5 Hz), 900 rpm (15 Hz), and 1350 rpm (22.5 Hz).  

Ten data sets were collected for each condition at three different speeds. The poly-

coherent composite bispectrum (pCCB) plots at the three selected speeds and four 
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machine conditions, i.e., residual misalignment residual unbalance (RMRU), crack near 

bearing one (CBg1), crack near bearing two (CBg2), rub near disc one (RubD1) was 

investigated. The description of the theory of the poly-coherent composite bispectrum 

(pCCB) is presented in the methodology chapter in section 4.8. 

7.2 Signal analysis and feature selection  

This study collects the signals from four bearing pedestals (multiple bearing) using four 

accelerometers (multiple sensors). The poly-coherent composite bispectrum (pCCB) 

approach has been developed so that signals multiple sensors are fused during signal 

analysis [62,25]. The results of these analyses are the pCCB plots in figure 7.1 (a) – (d) 

to figure 7.3 (a) – (d), which are representations of the three selected speeds 

respectively, with each showing the four machine conditions that have been 

investigated (RMRU, CBg1, CBg2, RubD1).   

Figure 7.1 – 7.3 shows very clear presence of pCCB components at B11, B12 = B21, B13 = 

B31, others include B22, B23 = B32 and B33. The pCCB component is a function of two 

frequency components from the pCCS, plotted in the x, y, and z orthogonal axes 

where x and y represent the frequencies and z is the amplitude of the pCCB 

components. The presence of B11 component shows the relationship between and as 

seen in equation (6.7), with both equal to the machine running speed, i.e., 1x 

harmonic. So the B11 component shows the relationship between 𝑓𝑙  (1x), 𝑓𝑚 (1x) and 

𝑓𝑙+𝑓𝑚 (2x). Similarly, the presence of B12 = B21 pCCB component shows the relationship 

between 1x, 2x and 3x frequency components, while that of B13 = B31 shows a 

relationship between 1x, 3x and 4x frequency component[25]. 

 In figure 7.1 (a), the RMRU case at 450 rpm, there is the presence of B11, B12 = B21, B13 

= B31 and a small presence of B23 = B32 and B33. Figure 7.1 (b) and (c) shows higher of 

the first few pCCB components, including B22 but minimal or no B33. However, figure 

7.1 (d) had a high presence of all pCCB components. Figure 7.2 shows the pCCB plots 

at 900 rpm (15 Hz) for the tested machine conditions. The first few pCCB components 

i.e., B11, B12 = B21 and B13 = B31 were conspicuous. However, figure 7.2 (a) showed very 

little or no presence of other components. Figure. 7.2 (b), (c) and (d) showed a good 

presence of B22, B23 = B32 and B33 with the first few components. While figure 7.2 (b) 
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appeared slightly like figure 7.2 (c), there is a higher amplitude in figure 7.2 (c). On the 

other hand, Figure 7.2 (d) has B11 and other components, but the B33 is low. Looking at 

Figure 7.3, the pCCB plot at 1350 rpm (22.5 Hz), most pCCB components seem to be 

present. However, figure 7.3 (a) showed higher B11, B12= B21 and B23 with a low B31 and 

no obvious B33. Figure 7.3 (b) and (c) had the presence of B22 without B33. Figure 7.3 

(d), however, had the presence of all components with no visible B33.  

 

Figure 7. 1 Typical acceleration-based pCCB analysis plots at 450 rpm (7.5 Hz) for (a) 

RMRU (b) CBg1 (c) CBg2 (d) RubD1. 
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Figure 7. 2 Typical acceleration-based pCCB analysis plots at 900 rpm (15 Hz) for (a) RMRU 

(b) CBg1 (c) CBg2 (d) RubD1. 

 

 

Figure 7. 3 Typical acceleration-based pCCB analysis plots at 1350 rpm (22.5 Hz) for (a) 

RMRU (b) CBg1 (c) CBg2 (d) RubD1. 
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The poly-coherent composite bispectrum (pCCB) plots showed the presence of B11, 

B12= B21, and B13 = B31 at all speeds and all conditions. The RMRU at 450 rpm (7.5 Hz) 

and 900 rpm (15 Hz) had very little B12, while that of 1350 rpm (22.5 Hz) had a 

higher B12 but a very small B13. All other faults had the presence of B22, 

B23 = B32, and B33.  

The pCCB components gave helpful information about the presence of a particular 

fault; however, it did not represent the overall state of the machine. Also, with a large 

set of vibration data, observation of individual plots would be cumbersome, so the 

classification of the different conditions may give better diagnostic information on the 

overall machine's health. 

7.3 Rotor fault classification using pCCB Components 

In this initial study, three pCCB components were extracted for analysis i.e B11, B12 

= B21, B13 = B31. A PCA-based feature classification and fault identification model was 

developed using the extracted pCCB components. Data matrix developed in the 

investigation is generally represented in equation (3.42) and (3.43). However, the data 

matrix for the initial investigation which tried to reaffirm the earlier proposed 

approach is represented in equation (3.44) and (3.45). Since the 10 sets of vibration 

signals were measured for different simulated machine conditions, each at 3 speeds, 

the model contained components from individual conditions, with individual speeds, 

extracted for input into the matrix. So, with the individual condition and speed using 

3 selected pCCB components, a data matrix is created. This model was extended to 

contain more conditions so that for four conditions, the matrix became 3 x 40, and 

with the three speeds all fused, a data matrix of 9 x 40 was developed. The built PCA-

based model is used to classify the individual health condition of the machine where 

data were collected below and above the machines’ first critical speed. 

The classification of the PCA-based pattern recognition model of the various 

conditions using the data fusion approach at a single speed and multiple speeds is 

observed. A plot of PC1 versus PC2 helps observe the classification pattern. In the 

feature arrangement for the data model, no normalization was done since the pCCB 

components have similar dimensions.  
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Figure 7.4 shows the result for classifying simulated machine conditions using the 

developed data combination PCA-model. Figure 7.4 (a) shows the total overlap for all 

rotor conditions at 450 rpm. However, a zoomed view in Figure 7.5 (a) showed clear 

separation for all conditions except for overlap between RMRU and CBg2. As stated in 

chapter six, the data obtained at 450 rpm may not be the best in fault identification 

due to low speed.  

Also, figure 7.4 (b) showed good clustering and separation for all conditions with little 

overlap between RMRU and CBg1. The RubD1 condition was also observed to have 

some spread creating a partial overlap in other cases. 

 

Figure 7. 4 Classification of test rig conditions using pCCB components at (a) 450 rpm (b) 

900 rpm (c) 1350 rpm (d) Multiple speeds. 

 

Figure 6.5 (b) is a zoom representation of Figure 6.5 (a). All cases are separated from 

each other with good clustering and a better view of the spread on RubD1. This spread 

may be because of the touch and run between the Perspex and the shaft during 

machine operation. Furthermore, Figure 6.4 (c) showed significant clustering and 

separation for all cases except for the overlap between CBg1 and CBg2. RMRU had 

good clustering, but one data set singles itself to the middle of the plot. The reason for 
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this is not apparent, as such may be an exception. However, more observations would 

aid in better understanding such behaviour. 

Similarly, Figure 6.4 (d) showed a cluster for all conditions and a better separation than 

others observed in the UMA and improved approach. The CBg1 and CBg2 are still close 

to each other and around the same region of the plot. The outcome may be due to the 

similarity in their condition. RMRU at the lower part toward the right of the plot has 

particular data still seen separated. RubD1 is on the right topmost part of the plot. 

Thus, the multiple-speed approach for fault diagnosis in rotating machines gave a good 

and robust classification and fault identification. Normalisation is carried out on the 

data matrix for the pCCB components, and a plot of the normalised PC1 vs PC2 is 

presented in Figure 7.6. 

 

Figure 7. 5 Zoomed view of classified test rig conditions using pCCB components at (a) 450 

rpm (b) 900 rpm. 
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Figure 7. 6 Classification of test rig conditions using normalised pCCB component at 

multiple speed in a single analysis. 

9.6.1 Investigation to improve diagnosis of rotor faults observing the 

amplitude of pCCB components  
Initial investigation extracted only the first 3 pCCB components for its analysis. 

However, observation from the pCCB plots showed the presence of up to six 

components. In order to improve the fault identification model, an investigation was 

carried out on individual pCCB components, checking for their sensitivity to particular 

machine conditions for effective fault identification. This was done by extracting the 

various components, as seen on the plots where observation of the most sensitive 

component helped select features to be used in building up the data matrix for a better 

diagnosis approach. 

7.4.1 Analysis of magnitude of individual pCCB components  

Due to pCCB components B11 up to B33 in the pCCB plots, as shown in Figure 7.1 – 7.3, 

six pCCB components are selected and investigated to get the most valuable 

components that present a better understanding of machine dynamic behaviour for 

fault diagnosis. The pCCB components being investigated are B11, B12, B13, B22, 

B23, and B33. 

The bar charts in figure 7.7 show the plots of the amplitude of the six pCCB 

components for the selected machine conditions at the three machine running speeds. 

The bar charts have representations in both 2D and 3D, presenting clear observation, 
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especially in figures where the component’s amplitudes did not appear in the 2D 

representation. Figure 7.7 (a) showed the 2D representation of pCCB amplitude at 450 

rpm (7.5 Hz), Figure 7.7 (b) showed the 3D representation of pCCB components at 450 

rpm (7.5 Hz), and Figure 7.7 (c) showed the 2D representation of pCCB components at 

900 rpm (15 Hz), Figure 7.7 (d) showed the 3D representation of pCCB components at 

900 rpm (15 Hz), Figure 7.7 (e) showed the 2D representation of pCCB components at 

1350 rpm (22.5 Hz) and Figure 7.7 (f) showed the 3D representation of pCCB 

components at 1350 rpm (15 Hz). Observation of Figure 7.7 showed useful amplitude 

at B11 and B12 at all running speeds. Overall, some components showed reasonable 

amplitudes that indicate particular faults, and others showed no useful components 

for indicating other faults due to their almost insignificant amplitude. Therefore, the 

amplitude of the components may not be enough to make a judgement on 

components that is sensitive enough to distinguish machine condition.  
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Figure 7. 7 Amplitude of pCCB at (a) 2D representation of 450 rpm (b) 3D representation of 

450 rpm (c) 2D representation of 900 rpm (d) 3D representation of 900 rpm (e) 2D 

representation of 1350 rpm (f) 3D representation of 1350 rp 

 

In order to create a better understanding of the selection of the pCCB components 

that provide helpful information for fault identification, a PCA-based classification of 

each pCCB component from the 10 data sets at the multiple speed with PC1 vs PC2 is 

done. This classification is presented in Figure 7.8 (a) – (f). Observation of Figure 7.8 

(a) – (c) showed good separation of the faulty conditions from the healthy ones. Figure 

7.8 (b) had some overlap between CBg1 and RMRU, Figure 7.8 (c) showed overlap of 

all faulty conditions with good separation from RMRU, Figure 7.8 (d) showed 
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separation of all conditions except for the overlap between CBg2 and RubD1. Figures 

7.8 (e) and (f) showed an overlap of all conditions. From the observation, B11, B12, 

B13, and B22 showed reasonable separation that makes them useful for further 

investigation in fault diagnosis. However, quantifying these analyses by distinguishing 

the faulty condition from RMRU will help establish particular components that show 

useful sensitivity in machine condition indication. It is presented in subsection 7.42. 

 

Figure 7. 8 Classification of individual pCCB components at multiple speed for (a) B11 (b) 

B12 (c) B13 (d) B22 (e) B23 (f) B33. 

 

7.4.2 Data quantification for discriminating faulty conditions from baseline RMRU 

for the observed pCCB components 

Table 7.2 is populated with the values from This has been used to create bar charts in 

Figure 7.9 presents the results of the separation observed between the faulty and the 
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baseline RMRU condition. Figure 7.9 (a) showed the bar chart plot for all pCCB 

components when the faulty separation with respect to RMRU was done. B11 gave a 

very good indication for retaining helpful information. Since the other values are small, 

a zoomed view with the exemption of B11 is presented in Figure 7.9 (b). Observation 

showed higher values at B12, B13 and B22, which makes them useful for fault diagnosis. 

The separation at B23 and B33 is very low, so its amplitude would be insignificant in 

indicating any fault.  

 

 

Figure 7. 9 Bar chart showing the comparison of faulty to RMRU for individual pCCB 

components at multiple speed for (a) All pCCB components selected (b) zoomed view of 

pCCB components without B11. 
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Therefore, the investigation thus far has selected the B11, B12, B13 and B22 for improved 

rotor fault identification. On the other hand, most rotor faults, such as crack and rub, 

exhibit 1x and 2x harmonics components. With the combination of two frequencies in 

the computation of the bispectrum, the 2x harmonic frequency will combine to 

produce useful diagnosis information in the bispectrum analysis. Thus, adding B22, a 

combination of 2x, 2x and 4x, is expedient.  

7.4.3 Improved fault diagnosis approach using the amplitude of pCCB components 

A data matrix was built up for the improved pCCB analysis as represented in equation 

(3.46), so that with the individual condition and individual speed using 4 selected pCCB 

components, a data matrix say is created. This model was extended to contain more 

conditions so that for four conditions, the matrix became 4 x 40, and with the three 

speeds all fused, a data matrix of 12 x 40 was developed as represented in equation 

(3.47).  

The data matrix was normalised and inputted into PCA-based pattern recognition and 

a plot of PC1 vs PC2 carried out. Figure 7.10 shows the improved classification of pCCB 

components for rotor fault identification in rotating machines. This classification was 

also normalised, and observation showed improved analysis compared to the initial 

investigation using three pCCB components. This improvement is seen by comparing 

the earlier pCCB classification in Figure 7.6 with the increased pCCB component 

classification in Figure 7.10. The latter showed increased separation between the 

investigated conditions. Quantification of the various condition would help establish 

this observation. Since the pCCB components have been used to improve fault 

classification, the complex number (real and imaginary) components which retain the 

phase information are also considered to improve fault identification.  
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Figure 7. 10 Improved classification of machine condition using increased pCCB 

components. 

7.5 Comparison of magnitude to real and imaginary improved pCCB 

components analysis 

The improved classification of machine conditions with an increased number of pCCB 

components for rotor fault identification has been achieved in section 7.4. However, 

pCCB is a complex number which retains both amplitude and phase in its computation 

and has a real and imaginary component. Therefore, an investigation into the 

classification pCCB real and imaginary components was carried out. Afterwards, a 

comparison of the amplitude of pCCB components with this complex number 

component is observed. 

7.5.1 Feature arrangement for real and imaginary pCCB component for rotor faults 

In this study, selected features are based on the frequency coupling corresponding to 

the machine rotating frequency components and higher components that show 

sensitivity in rotor fault detection. The selected features are B11, B12, B13 and B22.  

Equation. (3.46) and (3.47) represents the pCCB amplitude components having a data 

matrix of 12 x 40 and equation. (3.48) represents the real and imaginary pCCB 

components with a matrix of 12 x 80 at integrated multiple speeds for all 

conditions. The computed data matrix was normalised and inputted into a PCA-based 
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algorithm where a plot of PC1 vs PC2 gives a representation for rotor fault 

identification and classification.  

7.5.2 Rotor fault classification and observation 

Figures 7.11 (a) and (b) show the PCA-based pattern recognition and classification 

approach, comparing the amplitude with the real and imaginary pCCB components. 

The plots show a clear separation between individual components for both the 

amplitude and the real and imaginary plots observed for each rotor condition. 

However, the real and imaginary pCCB component plots showed further separation 

from individual conditions than the amplitude pCCB components. 

 

Figure 7. 11 Improved classification of test rig conditions in a single analysis for (a) 

Amplitude of pCCB components (b) Real and Imaginary of pCCB components. 

 

7.6 Overall comparison of PCA-based rotor faults diagnosis using pCCB 

components for improved classification 

This section compares the initial, the improved and the real and imaginary pCCB 

component analysis with a comparison of the PCA-based classifications, i.e., PC1vsPC2 

and PC1vsPC2vsPC3 plots. Figures 7.12 (a), (c) and (e) showed the PC1vsPC2 plots for 

the initial, the improved and the real and imaginary pCCB component analysis, and 

Figures 7.12 (b), (d) and (f) showed the PC1vsPC2vsPC3 plots for the three pCCB 

components configuration. Overall observation showed that the real and imaginary 

pCCB component plots had further separation for the individual rotor conditions than 

the initial and improved analysis. However, it is not clear from the plots between 

PC1vsPC2 and PC1vsPC2vsPC3, which gives better separation. Therefore subsection 
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7.6.1. discussed the quantification approach, where the differentiation between the 

faulty case and the baseline RMRU condition was observed. 

 

 

 

 

Figure 7. 12 Comparison of test rig conditions using classification of selected pCCB 

components at multiple speed for single analysis at (a) Initial amplitude of pCCB component 

for PC1vsPC2 (b) Initial amplitude of pCCB component for PC1vsPC2vsPC3 (c) Improved 

amplitude of pCCB components for PC1vsPC2 (d) Improved amplitude of pCCB component 

for PC1vsPC2vsPC3 (e) Real and imaginary pCCB components for PC1vsPC2 (f) Real and 

imaginary pCCB component for PC1vsPC2vsPC3  
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7.6.1 Differentiating faulty conditions from baseline RMRU for data quantification 

The differentiation between the faulty and RMRU conditions is presented in this 

section. Figure 7.13 shows the differentiation of the faulty from baseline RMRU 

condition for PC1vsPC2 and PC1vsPC2vsPC3. The figure represents the quantification 

of the simulated fault by comparing the separation between RMRU and each fault in 

the single analysis. In Figure 7.13, the classification for PC1vsPC2 showed increased 

separation at real and imaginary pCCB components compared to the improved and 

initial approach. Similarly, the classification for PC1vsPC2vsPC3 showed increased 

separation at the real and imaginary pCCB than those of the improved and initial pCCB 

classification. Also, the PC1vsPC2vsPC3 classification showed more separation in all 

cases than in PC1vsPC2. Thus, the real and imaginary pCCB classification at 

PC1vsPC2vsPC3 gave a better indication for fault identification in diagnosing rotating 

machines. 

 

Figure 7. 13 A comprehensive bar chart representing a differentiation of faulty from RMRU 

condition at PC1vsPC2 and PC1vsPC2vsPC3. 
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7.7 Chapter summary 

This Initial investigation considered an earlier proposed poly-coherent composite 

bispectrum (pCCB) analysis in diagnosing rotor-related faults in rotating machines. 

Vibration data used in this study were obtained from the spring-based flexible test rig 

1 (SFTR-1) focusing on four conditions, i.e., RMRU, CBg1, CBg2 and RubD1.  

Poly-coherent composite bispectrum (pCCB) plots were generated using measured 

vibration acceleration data when the test rig ran below and above its first critical speed 

for all four conditions. There were visible peaks at B11, B12, and B13. These were 

considered to build a matrix for input to PCA. Investigation shows reasonable 

separation and clustering between each condition. The classification showed the 

usefulness of this diagnosis approach, as indicated in an earlier study. 

Further investigation improved the classification approach using more pCCB 

components, which now had B11, B12, B13 and B22. The improved pCCB components 

classification showed further separation than the initial pCCB components 

classification. Since the pCCB is a complex number, its real and imaginary aspect was 

considered for analysis to improve its diagnosis capability further. The result showed 

that the real and imaginary PCCB component analysis gave much more separation of 

all conditions. Thus, producing a better diagnosis of rotor faults than the other pCCB 

classification methods. A comparison of varying PCA plots, i.e., PC1vsPC2 to 

PC1vsPC2vsPC3, was observed to check for diagnosing information with more PCs, but 

the outcome did not expressly show distinct separation. However, the real and 

imaginary pCCB classification showed more separation of the simulated conditions 

than the initial and improved approach. Hence, more diagnostics information could be 

present in the real and imaginary pCCB classification features. In order to establish this 

observation, a data quantification approach was made to represent the value of each 

fault by differentiating them with respect to the baseline RMRU. However, their values 

showed that the PC1vsPC2vsPC3 had a slightly high value for the real and imaginary 

pCCB component classification than the others.  

Thus, the efficiency of the pCCB approach from an earlier study has been validated in 

this study. The improved pCCB approach also indicated the likelihood that additional 

pCCB components improve the diagnosis model. Such as the harmonic components on 
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the faults being investigated. For instance, the presence of 2x and 4x components in 

rub faults can be easily indicated in the B22 pCCB component. The real and imaginary 

pCCB classification approach shows some novelty as it retained useful indication for 

the diagnosis of rotor faults in rotating machines from the comparison with the earlier 

and improved pCCB approach.  

These classification approaches can be transferred to the industry for validation. 

However, since this study aims to cover an extensive range of rotating machines’ 

critical parts faults in a single analysis, the incorporation of bearing faults into these 

approaches is considered in the next chapter.  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



225 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



226 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

CHAPTER 8 

ACCELERATION-BASED TIME DOMAIN AND POLY-

COHERENT COMPOSITE BISPECTRUM (AT-pCCB) 

APPROACH FOR ROTOR AND BEARING FAULT 

IDENTIFICATION  
 

This chapter proposes a novel acceleration-based time domain and poly-coherent 

composite bispectrum (AT-pCCB) in the identification of rotating machines’ critical 

parts (rotor and bearing) faults. This is a build-up from chapter 7 where only rotor faults 

were investigated using poly-coherent composite bispectrum (pCCB) approach. This 

chapter incorporates bearing acceleration time domain features into the model. 

Acceleration features from time domain analysis and pCCB components are fused to 

carry out diagnosis of an extensive range of faults. In the proposed dFAVF method, 

features of acceleration and velocity were combined for classification, however, a 

robust but simple fault identification approach is in continuous demand. This chapter 

therefore advances investigation with the aims of applying feature reduction approach 

to the fusion of hybrid data in classification of extensive range of faults in rotating 

machine critical parts. The fusion of acceleration features and pCCB components was 

observed in two sub-scenarios i.e., the acceleration-based time domain and amplitude 

of the pCCB (AT-ApCCB) and the acceleration-based time domain with real and 

imaginary pCCB components (AT-RIpCCB). Observation of the first few principal 

components (PCs) and quantification of machine conditions by comparing faulty to 

baseline RMRU was investigated.   
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8.1 Overview  

Studies in chapter seven presented a new approach to the analysis of poly-coherent 

composite bispectrum (pCCB), which developed from composite spectrum [25,63] and 

bispectrum [29,34,53,64-65] analysis in earlier research. This chapter considers a new 

feature reduction hybrid model where data fusion is done using acceleration-based 

time domain features and pCCB components from vibration signals for a consolidated 

rotor and bearing fault identification. Section 8.2 gives an overview of the novel 

approach, i.e., data fusion of acceleration and velocity features (dFAVF) and poly-

coherent composite bispectrum (pCCB) approach, both improved and combined real 

and imaginary components. A proposed novel acceleration-based time-domain and 

poly-coherent composite bispectrum (AT-pCCB) component are discussed and 

investigated in section 8.3. The novel approach was from studies in chapter six, where 

the fusion of the time domain and frequency domain parameters was carried out. 

Pattern recognition and fault classification is presented with results and observations 

in section 8.4. After that, the differentiation of faulty conditions with respect to 

baseline RMRU condition is presented in section 8.5. 

8.1.1 Previous studies with analysis using dFAVF and pCCB components 

In the current research, initial work proposed the novel data fusion of acceleration and 

velocity features (dFAVF) model for consolidated rotor and bearing fault identification 

in analysing a single with outstanding classification using signals from the spring-based 

flexible test rig 1 (SFTR-1). This model consisted of an acceleration-based time domain, 

i.e., RMS, CF, Ku, and velocity-based frequency domain parameters 1x – 5x harmonic 

components and the SE. These parameters were seen to possess sensitive features for 

various machine condition classifications, even though they may not give the best 

diagnosis on an individual basis. The acceleration features are useful for bearing fault 

diagnosis, and the velocity features gave good rotor-related fault diagnosis. 

Observation of results showed good clustering of individual conditions and separation 

between not just rotor and bearing but amongst most of the faults. The dynamics of 

these faults may be better understood from their frequency range. The distinct 

separation between the rotor-related and bearing fault may be because of their 
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frequency ranges which are a low-frequency range for the rotor and a high-frequency 

range for bearing faults. 

The further investigation focused on higher order poly-coherent composite 

bispectrum (HOpCCB) analysis of the signal from the spring-based flexible test rig 1 

(SFTR-1). The pCCB plots for three selected speeds were observed. Amplitude from 

selected pCCB components was used to classify rotor faults with helpful diagnosis. 

Further investigation improved the classification of pCCB components where 

additional components provided useful diagnostic features, especially for crack shaft 

and shaft rub faults. Since pCCB retains both amplitude and phase, it thus has a 

complex number representation. Consideration of the complex number of the pCCB 

component led to a proposed real and imaginary pCCB components classification. 

Comparing the amplitude to real and imaginary features showed that the latter had 

further separation of the tested faulty condition compared to the improved or initial 

approach. Worthy of note is that only rotor faults, i.e., crack and rub faults, were 

considered in this diagnosis. Also, the pCCB analysis involves the fusion of signals from 

multiple sensors (multiple bearing pedestal) and the combination of two frequency 

components. It makes available more diagnostics information than the simple 

spectrum. Also, bearing diagnosis is effective using time domain kurtosis (Ku) and crest 

factor (CF) due to their ability to indicate impulsiveness, which is the characteristic of 

bearing defects.  

8.1.2 Current study and newly proposed approach 

Considering the usefulness of the acceleration time domain parameter for bearing 

diagnosis and the improved pCCB components for rotor diagnosis, a combination of 

acceleration-based time-domain features and pCCB frequency domain components 

could provide improved diagnostic information for identifying both rotor and bearing 

faults in a single analysis. This combination is used to propose a novel fault 

identification approach. Data preparation and model setup for principal component 

analysis (PCA) classification for the proposed fault identification approach is presented 

in section 8.3. The result from the observation of PCA plots is further quantified in 

section 8.4. The quantification is done to establish the usefulness of the proposed 

method. 
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8.2 Feature selection and organisation for combine acceleration-

based time domain and frequency-based pCCB for fault diagnosis  

As discussed in section 8.1, the proposed novel acceleration-based time domain and 

poly-coherent composite bispectrum (AT-pCCB) model would provide a consolidated 

machine critical part (rotor and bearing) fault identification in a single analysis. The 

data matrix in this section was represented in chapter three, section 3.10. In this study, 

the following features are considered, i.e., acceleration-based time domain kurtosis 

(Ku), crest factor (CF) and root mean square (RMS) and poly-coherent composite 

bispectrum (pCCB) frequency domain features, i.e., B11, B12, B13 and B22. The model is 

developed so that acceleration-based time domain bearing defect features and poly-

coherent composite bispectrum components (AT-ApCCB) are fused for classification 

as represented in equation (3.49). On the other hand, the bearing defect features are 

fused with the real and imaginary poly-coherent composite bispectrum component 

(AT-RIpCCB) as represented in equation (3.50). This fusion is done to observe the most 

suitable approach for a consolidated rotor and bearing fault identification. It should be 

noted that only 10 sets of vibration data and six machine conditions were considered 

in this chapter. The six conditions are RMRU, CBg1, CBg2, RubD1, Bg1Cg, Bg2Cg.   

These matrices are individually normalised and inputted into a PCA-based algorithm 

where a plot of PC2vsPC1 and PC2vsPC1vsPC3 gave a representation for a consolidated 

rotor and bearing fault identification and classification using the acceleration-based 

time domain with pCCB component (AT-pCCB) model.  

8.3 Pattern recognition using proposed AT-pCCB approach for a 

consolidated rotor and bearing fault diagnosis  
The PCA-based pattern recognition approach is used in classifying machine conditions 

using the acceleration-based time domain with a poly-coherent composite bispectrum 

(AT-pCCB) model. This model was developed to have alternatives called sub-models 

for this study. The sub-model comprises the combined acceleration-based time-

domain features with amplitude of poly-coherent composite bispectrum components 

(AT-ApCCB) and the combined acceleration-based time-domain features with real and 

imaginary poly-coherent composite bispectrum components (AT-RIpCCB). These two 

sub-models are developed to compare both approaches for the consolidated rotor and 
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bearing fault identification. The user can determine which is suitable for their diagnosis 

based on the available parameters. Subsection 8.3.1 and 8.3.2 presents the diagnostics 

approach for AT-ApCCB and AT-RIpCCB models, respectively. Data matrix B which is 

made up of rotor pCCB components is 9 x 40 while that of K which is made up of bearing time 

domain features is 9 x 20. The integration of B and K gives a data matrix D which is 18 x 60. 

This matrix D provides classification of machine condition for the AT-ApCCB model. Therefore, 

equation (3.50) which is data matrix E, is made up of 27 x 100. The computed data matrix D 

represents the acceleration-based time-domain with amplitude of pCCB components (AT-

ApCCB) while E represents the acceleration-based time-domain with real and imaginary pCCB 

components (AT-RIpCCB).  

  8.3.1 Machine condition classification using AT-ApCCB  

This section investigated machine conditions such as 

baseline RMRU, CBg1, CBg2, RubD1, Bg1Cg and Bg2Cg using the proposed AT-ApCCB 

sub-model. Here, signal processing has been carried out based on analysis from 

chapters six and seven. Figure 8.2 and Figure 8.3 shows the PCA-based pattern 

recognition of the combined acceleration-based time-domain with amplitude of the 

pCCB (AT-ApCCB) model for the selected rotor and bearing faults classification in a 

single analysis. Figure 8.1 shows clustering for all conditions with overlap 

between RMRU and RubD1 and, CBg1 and CBg2, all of which are rotor conditions. 

Also, clusters of Bg1Cg and Bg2Cg, the bearing faults, appeared towards the right of 

the plot, separated from the rotor faults. However, the overlap 

between CBg1 and CBg2 may show good separation when the cases are viewed 

closely.  
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Figure 8. 1 Classification of acceleration-based time domain with amplitude of pCCB (AT-

ApCCB) for rotor-related and bearing faults (PC1sPC2). 

 

 

Figure 8. 2 Classification of acceleration-based time domain with amplitude of pCCB (AT-

ApCCB) for rotor-related and bearing faults (PC1sPC2vsPC3). 

 

Figure 8.2 represents the pattern recognition PCA-based approach with the inclusion 

of more PCs in its classification. Observation gives the 3D view PC1vsPC2vsPC3 of the 

classified condition. The two bearing cases are behind towards the back of the plots, 

and the rotor faults are in front. As can be observed, the plot in Figure 8.2 gave a 

different perspective from the plot in Figure 8.1. They both contributed to 

understanding the behaviour of the fault even with the use of hybrid features from 
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time and frequency domain parameters. In order to clarify which plots gave a better 

indication of a machine fault condition, differentiation of faulty with respect to RMRU 

condition is investigated in section 8.4. 

  8.3.2 Machine condition classification using AT-RIpCCB  

This sub-section is an extension of the study in sub-section 8.3.1. However, it shows 

the analysis of PCA-based pattern recognition with the incorporation of the real and 

imaginary components of the pCCB into the model. This incorporation, seen as a sub-

model for this study, is the combined acceleration-based time-domain with real and 

imaginary poly-coherent composite bispectrum (AT-RIpCCB) model. Figure 8.3 and 

Figure 8.4 showed the PCA-based pattern recognition for the AT-RIpCCB model. 

Observation of Figure 8.3 showed some difference from that of 8.1. The clustering was 

observed in all cases, like in Figure 8.2, and the overlap of the rotor cases is similar. 

However, the Bg1Cg case seems to spread out more and tends towards the bottom of 

the right side of the plot. Overall, observation showed a separation between individual 

cases. 
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Figure 8. 3 Classification of consolidated rotor-related and bearing faults for acceleration-

based time domain to real and imaginary pCCB (AT-RIpCCB) (PC1sPC2). 

 

 

Figure 8. 4 Classification of consolidated rotor-related and bearing faults for acceleration-

based time domain to real and imaginary pCCB (AT-RIpCCB) (PC1sPC2vsPC3). 

 

The observation of Figure 8.4 is like that of Figure 8.3. However, in comparison with 

Figure 8.3, there seemed to be a further separation between the bearing conditions 

with more spread in Bg1Cg. As stated above, the 3D view in Figure 8.4 helps to give a 

different view of the PCA plot, which also provides some improved diagnostic features 

as the plots with more PCs tend to give better separation between some cases. 

Observation of the separation of faulty with respect to RMRU conditions while 



234 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

comparing the separation for PC1vsPC2 and PC1vsPC2vsPC3 is carried out in section 

8.4 for both sub-models. 

8.4 Data quantification for differentiation of faulty conditions with 

from baseline RMRU for AT-pCCB fault identification approach  

The comparison of the separation of faulty to RMRU conditions has proven to show 

the usefulness of various approaches in this study. It has also helped to imply how 

severe a fault may be considering its distance from the baseline state. The bar chart in 

Figure 8.5 is a graphical representation of the differentiation of faulty from baseline 

RMRU condition for the proposed AT-ApCCB and AT-RIpCCB when classified using 

PC1vsPC2 and PC1vsPC2vsPC3. 

 

Figure 8. 5 Comprehensive bar chart plot comparing the separation between RMRU 

and faulty condition for a hybrid acceleration-based time domain and pCCB (AT-pCCB) 

components and a hybrid acceleration-based time domain with real and imaginary 

pCCB (AT-RIpCCB) components at PC1vsPC2 and PC1vsPC2vsPC3 

 

This figure compared the AT-ApCCB and AT-RIpCCB approach for the PC1vsPC2 and 

PC1vsPC2vsPC3 with the differentiation of faulty conditions considered with respect 

to the RMRU case. A glance at the plot showed that for both approaches, the 
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PC1vsPC2vsPC3 has a slightly higher magnitude than those of PC1vsPC2 for individual 

cases, indicating better separation. This separation indicates that adding more PCs 

may help to distinguish the faults further, even if most of the data information is 

retained in PC1 and PC2. Thus, more PCs also signify useful diagnosis. 

8.5 Chapter summary 

This chapter investigated a proposed novel approach for a consolidated rotor-related 

and bearing fault diagnosis in a single analysis. The approach combined acceleration-

based time-domain with poly-coherent composite bispectrum (AT-pCCB) components. 

It is a hybrid feature reduction approach having less frequency domain features fused 

with time domain parameters. 

The proposed approach stems from the earlier novel data fusion of acceleration and 

velocity features (dFAVF) and the improved poly-coherent composite bispectrum 

(pCCB) fault diagnosis methods. Acceleration-based bearing data in the dFAVF model 

included RMS, CF, and Ku, and the pCCB components input in the improved models 

included B11, B12, B13 and B22. This hybrid fault diagnosis approach contained 

acceleration-based time-domain features and poly-coherent composite bispectrum 

components (AT-pCCB). The AT-pCCB is the umbrella model for the acceleration-based 

time domain with amplitude of pCCB (AT-ApCCB) and acceleration-based time domain 

with real and imaginary pCCB (AT-RIpCCB). These sub-methods helped to present a 

diagnostic approach based on finding from the initial investigation, where a 

comparison of amplitude to real and imaginary pCCB components for rotor fault 

diagnosis was made in chapter 7. Since the bearing parameters were incorporated in 

improved pCCB models, observing both models' results would help vibration analysts 

better judge based on the parameters used. With a PCA-based pattern recognition 

approach with an observation from PC1vsPC2 and PC1vsPC2vsPC3, both models were 

clustered and separated conditions. However, the AT-RIpCCB showed better 

representation than the AT-ApCCB.  

A quantification approach which helps to establish this observation further involves 

the differentiation of faulty with respect to the RMRU condition. The AT-RIpCCB 

showed a slightly higher magnitude than the AT-ApCCB, thus better separating 

individual cases in a single analysis. Also, the comparison of the PC1vsPC2 and 
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PC1vsPC2vsPC3 in this analysis showed the latter had a slightly higher magnitude than 

the former, indicating the PC1vsPC2vsPC3 have more diagnostics information.  

The improved pCCB has shown exceptional rotor faults classification due to amplitude 

and phase information. The time domain feature, especially from acceleration data, is 

excellent in indicating bearing defect primarily due to their indication of impulsiveness 

(CF) and peakedness (Ku). This data fusion model also showed the rotor-related faults 

clustering around the same region while the bearing defect clusters are separated 

from the rotor conditions. The proposed model again shows occurrence around their 

fault frequency ranges where the rotor is low-frequency range faults, and the bearing 

is high-frequency range faults. Therefore, the results present an improved vibration-

based fault identification approach in rotating machines' critical parts where an 

extensive consideration of rotor and bearing faults can be diagnosed in a single 

analysis.  
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CHAPTER 9 

ENHANCED “ROTATING MACHINES’ CRITICAL PARTS” 

FAULT IDENTIFICATION APPROACH FOR SIMILAR 

MACHINES WITH DIFFERENT FOUNDATION FLEXIBILITY 
 

Various rotating machines are similar in structures, dimensions, and models due to 

standardisation; however, they may exhibit difference in dynamics due to installation 

foundation or/and location. Others may be old and lack baseline data for classification 

of the machine condition. These dynamics when properly investigated is useful in 

understanding machine condition diagnosis, such that fault identification parameters 

may be insensitive for the different machine. Thus, machine dynamics and fault 

identification approach can be successfully carried out so that data from one machine 

can support fault identification in another.  The aim of this chapter is to enhance fault 

identification of an extensive range of faults in rotating machines’ critical parts (rotor 

and bearing) for different foundation flexibilities using the propose dFAVF and AT-

pCCB. Observation and comparison of the first three principal components and 

quantification of machine condition was carried out.  
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9.1 Overview 

Vibration-based fault identification (VFI) techniques are popular for detecting rotor-

related and bearing faults in rotating machines. Time and spectrum analysis tools are 

helpful in signal diagnoses of many rotating machine conditions. However, this 

individual parameter from time and frequency analysis may not be enough in fault 

identification. Thus, the data fusion approach is considered where various parameters 

with sensitive information that indicates the state of a machine are used in fault 

identification. This chapter considered more rotor-related and bearing faults from the 

spring-based flexible test rig one (SFTR-1) and Spring-based flexible test rig two (SFTR-

2) in presenting further investigation into the proposed novel data fusion of 

acceleration and velocity features (dFAVF) and acceleration-based time-domain and 

poly-coherent composite bispectrum (AT-pCCB) components. Vibration data were 

collected when both test rigs ran below and above their first critical speed, i.e., 450 

rpm (7.5 Hz), 900 rpm (15 Hz) and 1350 rpm (22.5 Hz). However, for the SFTR-2, its 3rd 

running speed is close to the 2nd natural frequency, i.e., the 1350 rpm (22.5 Hz) 

machine running speed and 23.88 Hz natural frequency. So, analysis from spectrum 

plots and pCCB plots from signals recorded from the SFTR-2 was observed to 

understand the dynamics of the proximity of the 3rd running speed and the 2nd 

natural frequency in fault identification. Also, the mode shape was useful in 

understanding the dynamic behaviour of the faults simulated with the machine 

operating around the such frequency. After that, a combination of features from both 

test rigs is studied to strengthen the proposed novel dFAVF and AT-pCCB approach and 

determine how insensitive the proposed approaches would be when transferred to 

different machines.  

The vibration data collected here is the same as the earlier study. The dFAVF had 20 

sets of data for each condition, while AT-pCCB had 10 sets of data for each condition 

in their diagnostics models. All data were collected with a sampling frequency of 10 

kHz. The faults simulated in this study 

are RMRU, M, Unb, CBg1, CBg2, RubD1, RubD2, Bg1Cg, Bg2Cg, Bg3Cg, and Bg4Cg. 

Results from the investigation of SFTR-1 data are presented in section 9.2. Section 9.3 

covers the investigation of STFR-2 data in time and frequency domain analysis for 
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rotor-related faults, envelope analysis for bearing defects and the poly-coherent 

composite bispectrum (pCCB). After that, the proposed models were observed. In 

section 9.4, the investigation of combined analysis for SFTR-1 and SFTR-2 was 

presented. Section 9.5 presents observations and a discussion of the results. Section 

9.6 presented a comprehensive comparison of results from SFTR-1, SFTR-2 and 

combined analysis.   

9.2 Individual foundation analysis for spring-based flexible test rig 1 

(SFTR-1)  

Time and frequency domain analysis from tested conditions from SFTR-1 has been 

presented in chapter six. The analysis covered the main rotor and bearing faults 

simulated for this research. The bearing faults analysed in chapter six were those at 

locations one and two. This chapter included an analysis of bearing three and four. 

Since the envelope spectrum analysis helped to identify the fundamental train 

frequency indicative of bearing faults, with only time domain features included in 

building the data matrix, observation of the envelope analysis at bearing three and 

bearing four was not presented. The data matrix was based on representation from 

equation (3.41) for dFAVF model and equation (3.49) and (3.50) for AT-pCCB model. 

This section considered the classification of machine conditions using the proposed 

dFAVF and AT-pCCB methods with a PCA pattern recognition plot at PC1vsPC2 and 

PC1vsPC2vsPC3. Also, in the investigation of the AT-pCCB method, a comparison of the 

improved amplitude and the real and imaginary components of the pCCB with 

integrated classification involving bearing defect. 

9.2.1 Application of novel dFAVF and AT-pCCB fault identification method on 

spring-based flexible test rig (SFTR-1)  

The classification of machine conditions with the proposed dFAVF and AT-pCCB for 

SFTR-1 is presented in Figure 9.1 and Figure 9.2. Figure 9.1 (a) is the PC1vsPC2 

classification for dFAVF and Figure 9.1 (b) is the PC1vsPC2vsPC3 classification for 

dFAVF. Figure 9.2 (a) is the PC1vsPC2 classification of AT-pCCB amplitude components 

only (AT-ApCCB) and Figure 9.2 (c) is the PC1vsPC2 classification of AT-pCCB real and 

imaginary components (AT-RIpCCB). Figure 9.2 (b) is the PC1vsPC2vsPC3 classification 

of AT-pCCB amplitude components (AT-ApCCB) and Figure 9.2 (d) is the 
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PC1vsPC2vsPC3 classification of AT-pCCB real and imaginary components (AT-RIpCCB). 

All plots are multiple-speed single analyses of the consolidated rotor and bearing faults 

classification.  

In Figure 9.1 (a), the dFAVF method for multiple speed classification in a single analysis 

showed clustering and separation for all conditions. Overlap amongst the rotor faults 

was conspicuous while those of bearing were further apart. However, the rotor 

conditions seem convergent, close to the zero-point. In contrast, the bearing 

conditions are shown to be further away from the rotor but in strategic areas around 

the rotor conditions. Figure 9.1 (b) is a 3D PCA-based plot for the same conditions in 

Figure 9.1 (a). A better view of the clustering and separation for the conditions was 

observed. In Figure 9.1 (b), the rotor conditions overlap ahead of the bearing 

conditions. All bearing conditions though separated clearly, were behind the rotor 

conditions. This observation indicates the low and high-frequency regions in the rotor 

and bearing faults analysis, respectively. 

 Figure 9.2 (a) and (b) present the AT-ApCCB method for a multiple-speed classification 

in a single analysis which also showed clustering and separation of each condition. The 

rotor conditions show separations, especially M; CBg1 and CBg2 appeared in the same 

region in the plot and seemed to overlap. RMRU, Unb and RubD1 tend to overlap each 

other. The bearing conditions showed separations except for the spread at Bg4Cg, 

which overlapped Bg3Cg. The spread in Bg4Cg could be due to the machine's state 

during data collection. Another important observation is the separation of the bearing 

from the rotor conditions. All rotor conditions were seen towards the left part of the 

plot, while the bearing conditions had a good space around the plot. Figure 9.2(b), a 

3D representation of Figure 9.2(a) having additional PCs in its analysis, presented a 

different view from observation. Notwithstanding the overlap and separation of the 

various conditions as observed in Figure 9.2 (a), the rotor faults in the plots are 

somewhat in front of the bearing faults, which were seen behind the rotor faults 

indicating low and high-frequency range for rotor and bearing faults, respectively.  

Figure 9.2 (c) and (d) present the AT-RIpCCB method for a multiple-speed classification 

in a single analysis which also showed clustering and separation of each condition. The 
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AT-RIpCCB is another sub-approach for the classification of machine conditions. The 

investigation here is similar to Figure 9.2 (a) and (b), except that the former considered 

the magnitude of the pCCB components and the latter incorporated the real and 

imaginary components of pCCB. Figure 9.2 (c) Observation showed similar clustering 

and separation between machine conditions, as seen in Figure 9.2 (a). However, the 

separation in Figure 9.2 (c) is further apart from the observation. Similarly, Figure 9.2 

(d) observation showed the further separation of conditions. 

 

 

Figure 9. 1 dFAVF Classification of SFTR-1 conditions at(a) PC1vsPC2 (b) PC1vsPC2vsPC3. 
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Figure 9. 2 Classification of combined SFTR-1 conditions for multiple speed single analysis 

with (a) AT-ApCCB (PC1vsPC2) (b) AT-ApCCB (PC1vsPC2vsPC3) (c) AT-RIpCCB (PC1vsPC2) 

(d) AT-RIpCCB (PC1vsPC2vsPC3). 
 

9.2.2 Observation/ Discussion 

Results from fault identification and diagnosis using the proposed methods, dFAVF, 

and sub-methods AT-ApCCB and AT-RIpCCB, have been presented in sub-section 9.2.1. 

Fault classification was achieved in all scenarios; however, the classification at dFAVF 

showed much overlap between the rotor conditions, except when viewed closely, the 

separation is seen. The AT-pCCB, on the other hand, showed a more apparent 

separation in the rotor conditions. The uniqueness of all the methods is how the rotor 

faults separate from the bearing conditions. This observation could indicate the faults' 

frequency range, i.e., low and high-frequency ranges for rotor and bearing faults, 
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respectively. The applicability of these methods in industrial scenarios where an 

extensive range of rotating machine faults can be diagnosed in a single analysis is 

highly recommended. However, the transference of the diagnostics approach from 

one machine to another with similar foundation flexibility is tested in this study to 

show the insensitivity of the methods and usefulness of fault diagnosis for machines 

without prior baseline data. 

9.3 Individual foundation analysis for spring-based flexible test rig 2 

(SFTR-2)  

The analysis of the novel dFAVF and AT-pCCB methods using data from SFTR-1 gave 

useful diagnostic information for a consolidated rotor and bearing fault detection. To 

check for transferability and validate the approaches, data from a second test rig is 

investigated, i.e., the SFTR-2 using the proposed approaches (dFAVF and AT-pCCB). 

The spring-based flexible test rig 2 (SFTR-2) is built to modify the foundation flexibility 

of a similar test rig (SFTR-1), where the natural frequencies of the test rig are increased 

by increasing the stiffness of the rig [45]. Thus, the SFTR-2 had four bearing pedestals 

Bg1 – Bg4, with each bearing pedestal having four springs connected to a bearing and 

stiffness of 14.4 N/mm per spring. The first few natural frequencies obtained from 

modal testing of SFTR-2 are 17.78 Hz, 23.88 Hz, 32.65 Hz, 51.19 Hz and 86.36 Hz. Thus, 

the first natural frequency for SFTR-2 is higher than that of SFTR-1 by a difference of 

about 6.26 Hz. Vibration data was collected using the same parameters as was done 

in SFTR-1. Signals from rotor-related and bearing defects were collected one after the 

other. Time and frequency analysis of the vibration signal collected from the SFTR-2 

was carried out. Time domain RMS, Ku and CF and frequency domain 1x – 5x harmonic 

components and SE was useful in observing the dynamic behaviour of the SFTR-2. 

Nevertheless, the discussion of the time domain features is minutely considered in this 

chapter as the focus is already on the validation and improvement of the developed 

methods. Subsection 9.3.1 gave a detailed observation of the acceleration spectra, 
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velocity spectra, pCCB spectra and bearing analysis (with and without envelope 

analysis).   

9.3.1 Vibration signal analysis from SFTR-2 

Figure 9.3 to Figure 9.8 showed both acceleration and velocity spectrum analysis for 

the various rotor faults selected for this study. Typical bearing diagnosis plots are 

represented in Figure 9.9 to Figure 9.11. Poly-coherent composite bispectrum (pCCB) 

plots are seen in Figure 9.12 to Figure 9.14. The observation and discussions of these 

plots and their usefulness in rotating machine fault identification and detection are 

presented. 

9.3.1.1 Acceleration signal analysis 

Time and frequency domain analysis is carried out using acceleration signals. However, 

the time domain parameter in this study is discussed extensively in chapter 4, so 

nothing is discussed in this section on the time domain analysis. On the other hand, 

the frequency domain analysis for acceleration data is presented in Figures 9.3 to 9.5. 

As stated earlier in chapter five, the presence of an increased 2x component in a 

spectrum plot could be due to the presence of misalignment and unbalance, which is 

already in existence in the test rig, so that the baseline case is referred to as residual 

misalignment and residual unbalance |(RMRU). The frequency location of a particular 

harmonic component is dependent on its position on the FRF, and the amplitude of 

the harmonic component will be based on one or a combination of two of the mode 

shapes of the rig [20].  

In the acceleration spectrum plot in Figure 9.3 – 9.5, there is the presence of 1x to 5x 

harmonic components for all cases and all measurement speeds. The zoomed version 

of the spectrum plot was done to capture each plot's first five harmonic components. 

Figure 9.3 shows the spectrum for rotor conditions at 450 rpm (7.5 Hz). Small peak is 

observed between 2x (15 Hz) and 3x (22.5 Hz) in all the cases, which may be due to 1st 

mode (17.78 Hz). The amplitude in Figure 9.2 (f), which is the RubD1 case, was seen to 

be very high compared to others which may be due to effects from the rubbing 

apparatus adjusting the machine's natural frequency. Also, peaks seen before 5x (37.5 

Hz) for all conditions may be due to 3rd mode (36.24 Hz). In the case of rub, the peak 
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also showed a higher amplitude. Observation of Figure 9.3 (a) – (e) showed all cases 

had the 1x aligned with the machine running speed at 7.5 Hz. However, Figure 9.3 (f), 

the RubD1, has a 1x machine running speed of around 7.34 Hz. This condition can be 

due to the manual setting of the speed during operation, as the exact running speed 

may not be obtained.  

In Figure 9.4 (a), (b), (d), (e), small peaks were observed just after 1x (15 Hz), which 

may be due to the 1st mode (17. 78 Hz). Peaks observed between 2x (30 Hz) and 3x 

(45 Hz) at RMRU, Unb, CBg1, CBg2 and RubD1 may be due to the 3rd mode (32.65 Hz). 

Also, peaks between 3x (45 Hz) and 4x (60 Hz) for all conditions may be due to the 4th 

mode (47.84 Hz) and the peaks just after 5x (75 Hz) for all conditions may be due to 

the 5th mode (86.36 Hz).  

Figure 9.5 (a) –(f) has 1x – 5x harmonic components in the spectra. Peaks observed 

before 1x (22.5 Hz) component for all conditions except RubD1 may be due to 1st 

mode (17.78 Hz). An increased 1x (22.5 Hz) component in all conditions except RubD1 

may be because of an operation close to the critical speed at 2nd mode (23.88 Hz). The 

second peak in CBg1 may be due to its proximity to the 2nd mode (23.88 Hz). The 

peaks observed between 1x (22.5 Hz) and 2x (45 Hz) at RMRU, CBg1, and CBg2 may 

be due to the 3rd mode (32.88 Hz). The peak observed between 3x and 4x (60 Hz) at 

RMRU, M, CBg1, and CBg2 may be due to the 4th mode (47.84 Hz). Peaks observed 
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for RMRU, Unb, CBg1, and CBg2 may be due to a combination of the 4th mode vertical 

(51.19 Hz) and 5th mode.   

s 

Figure 9. 3 SFTR-2 measured acceleration spectra plot at 7.5 Hz Bearing 2 (a) RMRU (b) M 

(c) Unb (d) CBg1 (e) CBg2 (f) RubD1. 
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Figure 9. 4 SFTR-2 measured acceleration spectra plot at 15 Hz Bearing 2  (a) RMRU (b) M 

(c) Unb (d) CBg1 (e) CBg2 (f) RubD1. 
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Figure 9. 5 SFTR-2 measured acceleration spectra plot at 22.5 Hz Bearing 2 (a) RMRU (b) 

M (c) Unb (d) CBg1 (e) CBg2 (f) RubD1. 
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9.3.1.2 Velocity signal analysis 

The spectra plots shown in Figure 9.6 – 9.8 are those of velocity obtained from 

acceleration signals using the omega arithmetic method [209]. Observations of the 

Figures showed an increased 1x amplitude in all cases, as seen for the acceleration 

spectra (Note there cannot be a direct comparison between the amplitude of 

acceleration and velocity as their units are different). Similar to observations from 

chapter six, the velocity spectra showed a reduction or disappearance of harmonic 

components as the frequency increased for each spectrum [209]. The appearance of 

harmonic components in the velocity spectra is like the respective acceleration 

spectra; the difference is the increased peak. 
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Figure 9. 6 SFTR-2 measured velocity spectra plot at 7.5 Hz Bearing 2 (a) RMRU (b) M (c) 

Unb (d) CBg1 (e) CBg2 (f) RubD1. 
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Figure 9. 7 SFTR-2 measured velocity spectra plot at 15 Hz Bearing 2 (a) RMRU (b) M (c) 

Unb (d) CBg1 (e) CBg2 (f) RubD1. 



253 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

 

Figure 9. 8 SFTR-2 measured velocity spectra plot at 22.5 Hz Bearing 2 (a) RMRU (b) M (c) 

Unb (d) CBg1 (e) CBg2 (f) RubD1. 
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9.3.1.3 Bearing analysis 

Figure 9.9 – 9.11 shows typical plots for bearing cage defect analysis at all four bearing 

pedestal locations, i.e., Bg1 – Bg4, at the three machine running speeds (450 rpm, 900 

rpm and 1350 rpm). The bearing cage defect was simulated at Bg1 to create a cage 

defect at bearing 1 (Bg1Cg), and data were collected at the three different machine 

running speeds. After that, the faulty bearing was moved to Bg2, replacing Bg1 with a 

healthy bearing. Thus, data were collected at three running machine speeds, creating 

a bearing cage defect at Bg2 (Bg2cg). This was repeated at Bg3 and Bg4, creating 

bearing cage defects at Bg3 (Bg3cg) and (Bg4cg), respectively, while placing a healthy 

bearing at other locations at each experiment. Figure 9.9 – 9.11 (a) - (d) gives a typical 

spectrum plot of bearing defect after a high pass filter at 500 Hz. The filtering helps to 

remove the low frequencies, which may be rotor related. After that, envelope analysis 

is carried out on the signal with a time domain representation as in Figure 9.9 – 9.11 

(e) - (h). Here, a represents the original signal, while up and lo represent the upper and 

lower envelope signals. Figure 9.9 – 9.11 (i) - (l) shows the spectrum plot for the 

envelope signal.  

It should be noted that the fundamental train frequencies for the bearing cage in SFTR-

2 are the same as those for SFTR-1. Thus, reference should be made to chapter six for 

clarity. However, the calculated fundamental train frequencies (FTF) gave 2.86 Hz, 5.72 

Hz, and 8.58 Hz for each machine running speeds at 7.5 Hz, 15 Hz and 22.5 Hz, 

respectively and the experimentally generated envelope analysis spectrum plots 

showed the FTF to be 2.79 Hz, 5.58 Hz and 8.38 Hz with the machine running speeds 

at 7.5 Hz, 15 Hz and 22.5 Hz respectively.  

Observation from Figure 9.9 – 9.11 provided a useful understanding of the dynamic 

behaviour of the machine to the appearance of cage defects during the machine 

operating at different speeds. Investigation of the spectra after filtering before 

envelope analysis and the time domain analysis after envelope analysis may be helpful 

for fault diagnosis where particular parameters are considered. However, 

observations of the typical plots may not give useful diagnosis features instantly. 

Focusing on the spectra plots after envelope analysis showed some useful diagnosis 

features. Firstly, we observe the FTF 1x frequency and its harmonic with the amplitude 
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showing the effect of the damaged cage. Also, smaller peaks are seen around some 

harmonic components, which may be due to the natural frequency of the FRF. On 

overall observation, significant detection of bearing cage defect is not achieved using 

only the harmonic components.  
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Figure 9. 9 Typical Bearing defect at 450 rpm for (a) Bg1Cg filtered Spectrum (b) Bg2Cg filtered spectrum (c) Bg2Cg filtered spectrum (d) Bg4Cg filtered 

spectrum (e) Bg1Cg envelope time domain (f) Bg2Cg envelope time domain (g) Bg3Cg envelope time domain (h) Bg4Cg envelope time domain (i) Bg1Cg 

envelope spectrum (j) Bg2Cg envelope spectrum (k) Bg3Cg envelope spectrum (l) Bg4Cg envelope spectrum.  
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Figure 9. 10 Typical Bearing defect at 900 rpm for (a) Bg1Cg filtered Spectrum (b) Bg2Cg filtered spectrum (c) Bg2Cg filtered spectrum (d) Bg4Cg filtered 

spectrum (e) Bg1Cg envelope time domain (f) Bg2Cg envelope time domain (g) Bg3Cg envelope time domain (h) Bg4Cg envelope time domain (i) Bg1Cg 

envelope spectrum (j) Bg2Cg envelope spectrum (k) Bg3Cg envelope spectrum (l) Bg4Cg envelope spectrum. 
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Figure 9. 11 Typical Bearing defect at 1350 rpm for (a) Bg1Cg filtered Spectrum (b) Bg2Cg filtered spectrum (c) Bg2Cg filtered spectrum (d) Bg4Cg filtered 

spectrum (e) Bg1Cg envelope time domain (f) Bg2Cg envelope time domain (g) Bg3Cg envelope time domain (h) Bg4Cg envelope time domain (i) Bg1Cg 

envelope spectrum (j) Bg2Cg envelope spectrum (k) Bg3Cg envelope spectrum (l) Bg4Cg envelope spectrum.  
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9.3.1.4 Poly-coherent composite bispectrum (pCCB) analysis 

This study presents a poly-coherent composite bispectrum (pCCB) analysis for the 

SFTR-2. The pCCB bispectra plots, as shown in Figure 9.12 (a) – (g) to Figure 9.14 (a) – 

(g), are representation at the three selected speeds respectively, with each plot 

showing the machine conditions that has been investigated 

(RMRU, M, Unb, CBg1, CBg2, and RubD1). Figure 9.12 – 9.14 shows very clear 

presence of pCCB components at B11, B12 = B21, B13 = B31, others include B22, B23 = 

B32 and B33. In Figure 9.12 (a), the RMRU case at 450 rpm, there is the presence of B11, 

B12 = B21, B13 = B31 and a small presence of B22. Figure 9.12 (b), (c) and (e), which 

are M, Unb, and CBg2, shows the higher amplitude of the first few pCCB components, 

including B22, but minimal B23 = B32. Also, Figure 9.12 (d), which is CBg1, show very 

little of the first few pCCB components. The amplitude of the pCCB components here 

is minimal compared to others in the figures. However, Figure 9.12 (f), which is RubD1, 

had a high presence of all pCCB components. 

Figure 9.13 shows the pCCB plots at 900 rpm (15 Hz) for the tested machine conditions. 

The first few pCCB components i.e., B11, B12 = B21 and B13 = B31 were seen. However, 

figure 9.13 (a) showed high B11 and very little or no presence of other components. 

Figure. 9.13 (b) - (g) showed good presence of B11, B12 = B21 and B13 = B31 and B22, B23 = 

B32 with only Figure 9.13 (g) showing B33. While figure 9.13 (b) appeared slightly similar 

to Figure 9.13 (c) and (e), there is a higher amplitude in Figure 9.13 (b).  

In Figure 9.14, which is the pCCB plots at 1350 rpm (22.5 Hz), there seems to be the 

presence of all components but mostly very low amplitude. However, figure 9.14 (a) 

showed the presence of B11, B12= B21 and B23, with low B31 and no obvious B33, and 

Figure 9.14 (d) - (e) had the presence of B22 without B33. Figure 9.14 (e) showed some 

forms of subharmonics which could be due to the crack faults. The low amplitude of 

some pCCB components was adjudged to be a result of a high B11   component, which 

is due to the operational speed close to the 2nd critical speed, i.e., B11 is at 22.5 Hz, 

and the 2nd mode is at 23.88 Hz. 

Observation of the machine condition using data from SFTR-2 showed the presence of 

pCCB components, which may be suitable for understanding machine faults. However, 
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comparing SFTR-1 to SFTR-2 using pCCB plots at similar speeds, the presence of a 

particular component may be similar. Overall, the pCCB plot showed variation in the 

appearance of components and their amplitude for a particular fault at a particular 

speed.   

In as much as the pCCB components gave useful information about the presence of a 

particular fault, the overall state of the machine is not clearly represented by it. Also, 

with a large set of vibration data, observation of individual plots would be 

cumbersome, so the classification of the different conditions may give better 

diagnostic information on the overall machine's health. 

As stated in chapters seven, the spectrum harmonic components or pCCB components 

alone may not provide exceptional information for fault identification, so a 

combination of various sensitive features may be useful. Thus, further investigation 

using the dFAVF and AT-pCCB model was carried out and presented in section 9.3.2. 
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Figure 9. 12 Typical pCCB analysis plots at 450 rpm (7.5 Hz) for (a) RMRU (b) M (c) Unb (d) CBg1 (e) CBg2 (f) RubD1 (g) RubD2. 
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Figure 9. 13 Typical pCCB analysis plots at 900 rpm (7.5 Hz) for (a) RMRU (b) M (c) Unb (d) CBg1 (e) CBg2 (f) RubD1 (g) RubD2. 
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Figure 9. 14 Typical pCCB analysis plots at 1350 rpm (7.5 Hz) for (a) RMRU (b) M (c) Unb (d) CBg1 (e) CBg2 (f) RubD1 (g) RubD2. 
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9.3.2 Application of novel dFAVF and AT-pCCB fault identification method for 

 SFTR-2  

Data matrix was developed for the dFAVF model based on equation (3.41) and that of 

AT-pCCB based on equation (3.49) and (3.50). The normalisation and PCA-based 

classificatio of the matrix is shown in Figure 9.15 and Figure 9.16 which are 

representations of the proposed dFAVF and T-pCCB methods. Figure 9.15 (a) is the 

PC1vsPC2 classification for dFAVF and Figure 9.15 (b) is the PC1vsPC2vsPC3 

classification for dFAVF. Figure 9.16 (a) is the PC1vsPC2 classification of AT-pCCB 

amplitude components only (AT-ApCCB) and figure 9.16 (b) is the PC1vsPC2 

classification of AT-pCCB real and imaginary components (AT-RIpCCB). Figure 9.16 (c) 

is the PC1vsPC2vsPC3 classification of AT-pCCB amplitude components (AT-ApCCB) 

and figure 9.16 (d) is the PC1vsPC2vsPC3 classification of AT-pCCB real and imaginary 

components (AT-RIpCCB). 

Figure 9.15 (a) and (b) showed the classification of the rotor and bearing faults using 

the novel dFAVF multiple speed in a single analysis. Figure 9.15 (a) gives a PCA-based 

pattern recognition classification using PC1vsPC2. It showed the clustering and 

separation of conditions. However, the rotor conditions tend to overlap while bearing 

conditions, especially Bg1Cg and Bg2Cg, are far from the rotor conditions. Bg3Cg and 

Bg4Cg conditions are seen closer to the rotor condition, with Bg4Cg overlapping the 

rotor conditions. Figure 9.15 (b) gives the PCA-based pattern recognition classification 

using the PC1vsPC2vsPC3.  

In Figure 9.15 (a), all conditions retain appearance, but CBg1 has some spread. Also, 

Bg4Cg appeared in front of the rotor conditions. This observation shows that the 

Bg4Cg case may not have overlapped with the rotor conditions but is further separated 

in front of them.  

Figure 9.16 (a) and (b) shows the PCA-based pattern recognition using PC1vsPC2 and 

PC1vsPC2vsPC3 respectively in classification for the proposed AT-ApCCB fault 

identification approach. Figure 9.16 (a) shows the clustering and separation of all 

conditions. The rotor faults were seen to be well separated except for the overlap 

between RMRU, Unb and M, with part of RubD1. The bearing conditions are seen 
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around the left upper part of the plot, with Bg2Cg showing some spread, thus having 

overlap with Bg1Cg and Bg2Cg, while Bg4Cg is positioned ahead in line with other 

bearing conditions. The CBg1 case showed a split in its observation as some parts of 

the data are close to other rotor faults while the others are far apart towards the right 

of the plot. Figure 9.16 (b), a plot of PC1vsPC2vsPC3, a 3D view is obtained, and 

observation shows the bearing conditions clustering and overlapping themselves 

around the left part of the plot with Bg4Cg case further apart. The rotor conditions are 

observed in the middle section of the plot. However, CBg1 has split data, where one is 

close to other rotor conditions, and the other is further separated towards the far right 

of the plot. 

Figure 9.16 (c) and (d) shows the PCA-based pattern recognition using PC1vsPC2 and 

PC1vsPC2vsPC3 in classification for the proposed AT-RIpCCB fault identification 

approach. Figure 9.16 (c), a 2D representation of the PCA-based classification, showed 

clustering and separation of all conditions. The rotor conditions in the plot are seen 

around the bottom with RMRU, M, Unb and RubD1 overlapping. The CBg1 and CBg2 

conditions occupied the bottom right of the plot, with some spread from both 

conditions observed. However, CBg1 split its data, a part is between the overlapped 

rotor conditions, and the other is towards the far right of the plot after the CBg2 

condition. This split observed in CBg1 could result from the machine state during data 

collection, which is made obvious during the pCCB analysis. On the other hand, the 

bearing condition is observed at the top left part of the plot. A distinct observation is 

that the separation of conditions for the AT-RIpCCB is further than that of AT-ApCCB, 

indicating a clearer machine condition diagnosis in a single analysis. 
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Figure 9. 15 dFAVF classification of SFTR-2 conditions at(a) PC1vsPC2 (b) PC1vsPC2vsPC3. 

 

 

Figure 9. 16 Classification of combined SFTR-2 conditions for multiple speed single analysis 

with (a) AT-ApCCB (PC1vsPC2) (b) AT-ApCCB (PC1vsPC2vsPC3) (c) AT-RIpCCB (PC1vsPC2) 

(d) AT-RIpCCB (PC1vsPC2vsPC3). 
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9.3.3 Observation/ Discussion 

The result from the application of the proposed dFAVF and AT-pCCB methods on 

improved SFTR-2 has been presented in subsection 9.3.2. It could be seen that the 

dFAVF method had distinct clustering and separation for individual conditions and 

mainly for the rotor and bearing conditions. This distinct separation of these faults 

could be because of their frequency range of occurrence, i.e., low (rotor faults) and 

high (bearing faults) frequency ranges. Furthermore, the observation from the AT-

pCCB method, which is observed in two sub-methods, AT-ApCCB and AT-RIpCCB, gave 

some valuable classification of machine conditions. Observation showed good 

separation between rotor and bearing conditions and individual clustering of all 

conditions. A unique feature of this method is that individual rotor and bearing 

conditions are observed clearly. However, in the dFAVF approach, rotor conditions 

overlap, except when zoomed in, their clustering is seen. Also, the main difference 

between the AT-ApCCB and AT-RIpCCB is that the latter showed better separation of 

individual conditions. However, these are mere observations based on visibility on the 

PCA plots. The data quantification approach would be useful to determine the 

certainty and verify the claims of these indications on the plots.     

9.4 Combined analysis with extended rotor and bearing faults 

A combination of features from the SFTR-1 and SFTR-2 is carried out in this section. 

The aim was to strengthen the proposed fault identification models and investigate 

systems where machines with similar configurations enjoy useful fault diagnoses 

without the need for trending historical data. 

9.4.1 Application of novel dFAVF and AT-pCCB fault identification method for 

combine SFTR-1 & 2  

Equation (3.41), (3.49) and (3.50) are representation of the data matrix for computing 

the proposed dFAVF and AT-pCCB models. Normalisation was carried out afterward. 

Figure 9.17 presents the classification of PCA-based pattern recognition using the 

dFAVF method for combining features from SFTR-1 and SFTR-2 at single and multiple 

speeds. Figure 9.17 (a), a multiple-speed, single analysis for the consolidated rotor and 

bearing fault using the dFAVF method, gave a distinct separation of the bearing defect 

from the rotor faults. The rotor conditions are seen to overlap each other close to the 
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zero-point. The bearing conditions are well separated from each other and the rotor 

conditions. However, Bg4Cg was observed very close to the rotor conditions. Figure 

9.17 (b) shows the 3D representation of the PCA-based pattern recognition approach 

for combined features from the SFTR-1 and SFTR-2 using the novel dFAVF. The 3D 

representation is a plot of PC1vsPC2vsPC3. The observation showed a distinct 

separation of the bearing conditions from the rotor. The rotor faults were seen to 

overlap each other, and the bearing conditions were separated in various directions 

from the rotor condition. The Bg4Cg case is very close to the rotor condition in Figure 

9.17 (a) is observed to be some distance from the rotor condition in the 3D view in 

Figure 9.17 (b). 

Figure 9.18 shows the features from the combined SFTR-1 and SFTR-2 using the 

proposed novel AT-pCCB fault identification model to classify consolidated rotor and 

bearing faults in a single analysis. Figure 9.18 (a) is a representation of the2D, 

PC1vsPC2 plot AT-pCCB amplitude component classification (AT-ApCCB). As can be 

seen, clustering and separation of the rotor from bearing faults overlap on all bearing 

conditions and few rotor conditions. Also, figure 9.18 (b) shows the classification from 

a 3D view with a PC1vPC2vsPC3 plot. Here, the separation between the rotor and 

bearing condition was conspicuous, with a huge overlap between the bearing 

conditions and a small separation of the Bg4Cg condition. Figure 9.18 (c) showed the 

same classification as Figure 9.18 (a) but with better separation between conditions. 

Likewise, Figure 9.18 (d) showed the same classification but better separation of 

machine conditions than Figure 9.18 (b).  
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Figure 9. 17 dFAVF classification of combined SFTR-1&2 conditions at(a) PC1vsPC2 (b) 

PC1vsPC2vsPC3. 

 

 

Figure 9. 18 Classification of combined SFTR-1&2 conditions for multiple speed single 

analysis with (a) AT-ApCCB (PC1vsPC2) (b) AT-ApCCB (PC1vsPC2vsPC3) (c) AT-RIpCCB 

(PC1vsPC2) (d) AT-RIpCCB (PC1vsPC2vsPC3). 
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9.4.2 Observation/ Discussion 

Continued research into similar machines with different foundation flexibilities has 

been investigated in this study using data from the improved SFTR-1and SFTR-2 in a 

single analysis. The data from the SFTR-1 and SFTR-2 were useful in classifying an 

extensive range of machine faults, i.e., rotor and bearing faults, in a single analysis. 

The aim is to advance studies that explore understanding rotating machines' behaviour 

to fault identification and diagnosis, with similar machines installed in different 

locations having varying foundation flexibilities. Standardisation in recent times means 

similar machines with the same features are produced and supplied worldwide. Their 

installation type or foundation setup influences the flexibilities of this machine in 

terms of their natural frequencies (critical speeds). The development of a fault 

identification approach that can effectively diagnose machine conditions 

notwithstanding its foundation will be accepted, especially in industries with similar 

production plants across the globe. Also, the transference of these fault identification 

methods to older, similar machines with no baseline data that will be insensitive to 

diagnosis is investigated. So, by combining parameters from both test rigs, 

understanding various machine behaviour with respect to fault identification can be 

investigated.  

Overall, the proposed dFAVF method classified the rotor and bearing faults in the 

combined test rig. The clustering of each condition and the separation between each 

are distinct. However, the rotor conditions seem to overlap. The AT-pCCB method, i.e., 

AT-ApCCB and AT-RIpCCB methods, gave each method a distinct classification, with 

the rotor faults separated from the bearing fault for each. A unique comparison of the 

dFAVF and AT-pCCB showed that the former gives a more explicit and distinct cluster 

of the rotor conditions while the latter showed overlap. However, a zoomed view of 

the dFAVF method showed distinct separation of all rotor conditions except for 

overlap between misalignment and unbalance. 
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9.5  Discussion 

Investigations have been carried out using the proposed novel dFAVF and AT-pCCB 

methods for fault identification of signals from the SFTR-1, SFTR-2 and combined SFTR-

1 & 2. A useful classification of machine conditions has been achieved overall. The 

dFAVF method classified a consolidated rotor and bearing faults and showed good 

clustering of individual conditions and separation for the rotor and bearing conditions. 

However, there seems to be an overlap in the rotor conditions except for the zoomed 

view, which showed useful separation for the rotor faults.  

The classification using the AT-pCCB method showed good clustering for individual 

conditions and separated the rotor from bearing conditions. However, this model's 

separation shows a conspicuous rotor fault with the bearing, unlike in the dFAVF, 

where the rotors seem to overlap and are close to each other when a single 

consolidated analysis is done. Understanding of the result was observed from the 

quantification section of this thesis (section 9.6), which showed the values for the 

differentiation of baseline RMRU from the faulty conditions. Here, rotor faults are 

closer to each other, and that of AT-pCCB is separated except for the case of RubD1. 

However, the bearing cases for dFAVF showed better separation than AT-pCCB. The 

sensitivity of the diagnostics features is a contributory factor to why the AT-pCCB 

showed better classification than dFAVF for the rotor faults. Due to its complex 

conjugate computation, the spectrum analysis used in the dFAVF model only 

contained amplitude and no phase information. On the other hand, the AT-pCCB 

model had the bispectrum analysis, where both the amplitude and phase information 

are present in the computation.   

Overall, this observation is seen in the SFTR-1, SFTR-2 and a combination of SFTR-1 & 

2. The behaviour of the rotor and bearing faults from this novel approach is said to be 

from their frequency range, where the rotor-related faults have a low-frequency 

range, and the bearing faults have a high-frequency range. The usefulness of this study 

can be extended to include the mid-frequency range faults, i.e., the gear faults.   
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9.6 A comprehensive comparison between results from SFTR-1 and 

SFTR-2  

The studies in earlier sections provided useful diagnosis approaches with the proposed 

novel dFAVF and AT-pCCB methods. However, these were from mere observation of 

the PCA plots. Notwithstanding the result, quantifying the outcome would help 

support and verify the usefulness of the proposed methods. Therefore, a comparison 

of the test rigs using results from the proposed fault classification methods is 

investigated and discussed in subsection 9.6.1. 

9.6.1 Data quantification for discrimination of faulty conditions with respect to 

baseline RMRU for individual SFTR-1 & 2  

Figure 9.19 comprehensively compares all proposed methods at the different PCA 

classification tools with the differentiation of RMRU to faulty conditions at multiple 

speeds for the SFTR1 and SFTR-2. This presents a single overview of the comparison. 

Comparing the various methods showed variation in the separation with respect to 

RMRU for the proposed methods. In SFTR-1, while misalignment, CBg1 and Bg1Cg tend 

to have higher separation in the AT-RIpCCB method, dFAVF gave higher separation at 

Unb, RubD1, Bg2Cg, Bg3Cg, and Bg4Cg. Also, as observed in the PCA plot where AT-

RIpCCB showed further separation than AT-ApCCB, there was a consistent increase for 

all conditions comparing AT-ApCCB to AT-RIpCCB. In SFTR-2, RubD1, Bg1Cg, Bg2Cg, 

Bg3Cg and Bg4Cg were higher in dFAVF than in AT-pCCB. However, the separation at 

M, Unb, CBg1, and CBg2 were higher in AT-pCCB than in dFAVF. A similar observation 

was seen in the PC1vsPC2 and PC1vsPC2vsPC3, respectively. However, the values 

increased in most cases due to incorporating an additional principal component (PC). 

This classification aims to help the vibration analyst investigate a single analysis as they 

can select the method that provides a better understanding of fault identification of 

their investigated machines. 
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Figure 9. 19 Classification of SFTR-1 conditions multiple speed single analysis. 

 

9.6.2 Data quantification for discrimination of faulty conditions with respect to 

baseline RMRU for combined SFTR-1 & 2  

Figure 9.20 presents a comprehensive bar chart plot for the combined SFTR-1 and 

SFTR-2 data quantification for the proposed methods at the various PCA classification 

when RMRU was differentiated from the faulty conditions. However, for PC1vsPC2, M, 

Unb, Bg1Cg, Bg2Cg, Bg3Cg and Bg4Cg was observed to have a higher separation value 

at the dFAVF method than in the AT-pCCB method, while CBg1 and CBg2 had a higher 

separation value in AT-pCCB than in dFAVF method. Also observed was the consistent 

increase in separation value from the AT-ApCCB to the AT-RIpCCB method, which is 

consistent with observations from the PCA plots. A similar observation was also made 

in PC1vsPC2vsPC3. However, most conditions had higher separation values for 

PC1vsPC2vsPC3 compared to PC1vsPC2. Also, observation showed good separation for 

bearing conditions which are in the high-frequency range, while the rotor showed 
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reasonable separation, as they are in the low-frequency range. However, as stated 

earlier, the decision on which method fits the fault diagnosis of a particular machine 

should be made by the vibration analyst, who understands the machine's behaviour 

over time of application.   

 

 

Figure 9. 20 Bar chart representing a differentiation of faulty from RMRU condition. 
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9.7 Chapter summary  

A comprehensive study using the proposed novel dFAVF and AT-pCCB fault 

identification approaches has been carried out using signals from the SFTR-1 and SFTR-

2 with more rotor and bearing faults simulated. Useful fault classification for the 

consolidated rotor and bearing fault analysis was achieved. Further investigation will 

strengthen the method and analyse features from multiple foundations with similar 

machine configurations, combining the two test rig's features for a consolidated rotor 

and bearing fault classification. The results showed clustering of individual conditions 

and separation between the rotor and bearing faults. However, the AT-pCCB proved 

better in classifying the rotor faults as better views of the rotor condition were 

observed compared to the dFAVF, which had overlapping rotor faults unless it was 

zoomed. The quantified approach helped verify observation from the PCA-based 

classification as the separation values were able to show the evidence of the faults and 

the separation of rotor form bearing, which indicates their frequency range of 

occurrence. The presence of amplitude and phase information in the pCCB 

components makes the AT-pCCB model better at classifying rotor faults. Overall, these 

proposed approaches have proven to classify rotor and bearing fault conditions in a 

single analysis. However, the knowledge of the machine's dynamic behaviour would 

determine the best approach to be applied in the fault diagnosis by the vibration 

analyst. 
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CHAPTER 10 

CONCLUSION AND FUTURE WORK 
 

This chapter present the conclusion of this research study, contribution to knowledge 

and future work.  
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10.1 Overall summary 

Vibration-based condition monitoring (VCM) for fault identification is popular in the 

early detection of faults in rotating machines. The importance of rotating machine in 

the industry cannot be overstated. In recent times industrial machinery tend to be 

complex in operation due to computerisation and industry 4.0.  Asset management 

holds views that continuous improvement of machine integrity in an industrial 

environment ensures availability and reliability. Hence, the need to keep improving 

vibration-based condition monitoring techniques. Critical part of rotating machines 

such as rotor and bearing encounter faults during their operation. The dynamic 

behaviours of these faults can be better understood from their frequency range, i.e., 

rotor-related faults show up in the low-frequency range and bearing faults are seen 

high-frequency range. Traditional time and spectrum analysis has been useful in 

diagnoses of the rotor and bearing faults. However, fundamental defect frequencies 

obtained from the bearing characteristics are useful for bearing fault diagnosis.  

Envelope analysis provides good monitor for bearing frequency ranges where the 

defect's repetitive impacts occur and cut out non repetitive impact signal. Several 

research, have proposed novel fault identification approach of both rotor and bearing 

faults individually. This research presents a novel consolidated fault identification and 

detection approach for rotating machines running at different steady state speed. 

Experimental rig with different foundation flexibilities were employed to generate 

data with single sensor per bearing pedestal. Initial investigation used data collected 

by a previous PhD student who is currently in the supervisory team of this research, 

from a flanged-based flexible test rig (FFTR) which he built. Preliminary investigation 

used the existing data from the FFTR, collected below the rig’s first critical speed. Time 

domain parameter i.e., root mean square (RMS), crest factor (CF), kurtosis (Ku) and 

frequency domain parameter i.e., 1x – 5x harmonics of the machine running speed and 

spectrum energy, all of which are useful condition indicators extracted from the 

measured vibration data which where obtain when the rig was running at different 

speed. A baseline residual misalignment residual unbalance (assumed to be the 

healthy state) and faulty (rotor-related) conditions which include misalignment, shaft 

bow, mechanical looseness and shaft rub were selected for the FFTR. The time and 
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frequency domain analysis were first presented to explain the challenge faced in 

analysing data obtained at different speeds. Once this is done, the selected features 

with useful condition indicator were employed to carry out analysis. These features 

where extracted from acceleration signals. Investigation was done at 1200 rpm (20 

Hz), 1800 rpm (30 Hz) and 2400 rpm (40 Hz) with useful information at steady state 

speed for the FFTR. However, the multi-speed analysis which had a combination of the 

3 speeds in a single analysis yielded successful results where all conditions separated 

distinctly. Achieving this result further validated earlier study which proposed the 

unified multispeed analysis (UMA) as different sets of faults where employed. This 

study and the UMA were both carried out with vibration acceleration signals for rotor 

faults only when test rig operated below its first critical speed. Improving this approach 

became the focus, therefore the velocity signal was considered for analysis. This is in 

line with recommendation where velocity parameters that are good condition 

indicators such as CF and RMS are useful especially in detecting rotor-related fault. The 

time and frequency domain analysis were also presented for the velocity signal 

obtained by integrating the measured acceleration signal. Waveforms and spectrums 

indicated similar features as those of acceleration. Similarly, features where extracted 

from time and frequency domain parameters of the velocity signal. Analysis of these 

features was done on three steady state speed. The classification of velocity features 

gave better result than acceleration. Further investigation led to the improvement of 

acceleration-based time and velocity-based frequency domain analysis. This was done 

to create a background for classification of an extensive range of rotating machine 

faults. The improved approach gave a more outstanding classification than both 

acceleration and velocity individually. 

Many industrial machines are built with multiple shaft and multiple bearing operating 

at multiple speeds over several critical speeds. Understanding of such machine 

dynamics and characteristics of faults that show up is helpful in early detection of 

faults. In line with this, current research improved the earlier flanged-based flexible 

test rig (FFTR) to become spring-based flexible test rig (SFTR). This was achieved by 

redesigning the bearing pedestal and replacing the flange with springs. The aim is to 

alter the foundation flexibility so that the test rig can run above and below various 
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critical speeds. Based on modal analysis the first few natural frequency allowed for the 

test rig to operate below and above its first critical speed. Vibration signals from the 

STFR-1 was collected when machine ran at 450 rpm (7.5 Hz) below first critical speed, 

900 rpm (15 Hz) and 1350 rpm (22.5 Hz) above first critical speed for baseline residual 

misalignment residual unbalance (assumed to be the healthy state) and faulty (rotor 

and bearing defect) conditions which include unbalance, misalignment, and shaft rub, 

shaft crack and bearing cage defect for the STFR. Investigation was done using 

acceleration features with useful classification. The acceleration signal for the SFTR-1 

was converted to velocity using omega arithmetic method. Validating the improved 

approach, led to a proposed novel data fusion of acceleration and velocity features 

(dFAVF) model for identification of a wide range of rotating machine faults (rotor-

related and bearing). The dFAVF model gave better separation at the multi-speed 

analysis. This separation was clearer and further than that of acceleration features 

classification. The novelty of this work is that rotor and bearing faults was detected 

and distinguished in a single analysis. 

As faults develop on a system, a vibration signal's frequency structure is altered by 

either change in magnitude or phase of its periodic components. The spectrum density 

helps to determine these harmonic components of a signal. These components were 

used in classification of consolidated rotor and bearing faults. However, during 

computation, phase information is lost due to its combination with the conjugate of 

the Fourier transform. This limitation is resolved in the higher order spectrum (HOS) 

analysis which retains both amplitude and phase. Earlier studies proposed the poly-

Coherent Composite Bispectrum (pCCB). However, current study considered only the 

pCCB components in its analysis. In this study, the first few pCCB components from the 

spring-based flexible test rig (SFTR-1) were used to further identify and classify rotor 

faults with machine operating both below and above its first critical speed. The 

outcome showed useful classification of various machine conditions. A further 

investigation covered the improvement of the pCCB components where a range of 

pCCB components were investigated to understand their sensitivity in determining 

overall machine behaviour as well as behaviour of certain rotating machine faults. 

Results showed that some additional pCCB components tend to give better sensitivity 
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under crack shaft and shaft rub, which makes them choice parameter in diagnosing 

these conditions. Since the pCCB is a complex number with real and imaginary parts, 

further investigation to improve its classification features was achieve by combining 

the real and imaginary pCCB components features when the machine ran both below 

and above its first critical speed. Investigation showed better clustering of each 

condition as compared to amplitude of pCCB components. Since acceleration-based 

time-domain features such as kurtosis (Ku) and crest factor (CF) help in investigation 

of impulsive signal which are found in bearing defect, useful results from the pCCB 

diagnosis ushered the inclusion of bearing features for a simple yet robust diagnosis.  

Thus, a proposed novel acceleration-based time domain features and poly-coherent 

composite bispectrum components (AT-pCCB) model for a consolidated rotor and 

bearing fault diagnosis is presented. Fault classification using the novel AT-pCCB gave 

clearer separation of rotor and bearing. To strengthen the result in this study, more 

rotor and bearing faults from similar machines installed with different foundation 

flexibility that is the improved spring-based flexible test rig 1 (SFTR1) and spring-based 

test rig 2 (SFTR2) were investigated. On the overall, optimal fault identification was 

achieved for a consolidated diagnosis of machines' critical part. The separation 

between the rotor-related and bearing faults may be because of their frequency range. 

Thorough observations shows that the aims of this research have been achieved.  

10.2 Achieved objectives and contributions to knowledge 

A description showing how each of the objectives given in chapter one (section 1.4) of 

this thesis were clearly achieved is presented here.     

1. To carryout data trending of time and frequency (spectrum) domain 

parameters using an existing data from an earlier built flange-based flexible 

test rig (FFTR) which ran only below its first critical speed. This will help to 

determine parameter sensitivity for fault identification. 

Data trending is very important in fault identification and diagnosis. It involves 

strategic representation of signal trends, extraction of features from signals, 

representation of these trends, comparison to infer their state in the process. The 
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data trend showed how various parameters can contribute to indicating the 

presence of different faults in a signal.  

An earlier study extracted some time and frequency domain features in developing 

models for the proposed unified multispeed analysis (UMA) and multiple speed 

multiple foundation (MSMF) approaches, yielding a robust fault classification and 

identification methods. To build on this study, data trending of some of the 

parameters selected in the studies were carried out in this study to check for their 

sensitivity in diagnosing machines’ fault especially for the consolidated rotor and 

bearing faults. The selected features included time domain, root mean square 

(rms), crest factor (CF), and kurtosis (Ku), and frequency domain, 1x,2x,3x,4x,5x 

and spectrum energy (SE). The result of the data trend on the acceleration-based 

vibration signals obtained when the test rig operated at 400 rpm (20 Hz) showed 

the presence of the faults simulated in the test rig due to the sensitivity of the 

amplitude. However, the individual features used in this trending were considered 

at the four different bearing location. It was observed that some features showed 

high magnitude close to the bearing where they were simulated.   

Though the results were indication of the sensitivity of the features at individual 

analysis, this approach will be cumbersome for a vibration analyst as large data 

would be analysed to identify faults. Thus, these sensitive features were 

considered for data fusion in the current study. Thus, this study proposed data 

fusion approach using various sensitive features obtained from the analysis of time 

and frequency domain parameters in vibration signal.  

2. To improve fault identification using acceleration and velocity features an 

approach developed from existing unified multispeed analysis (UMA) where 

only acceleration data from an earlier built flange-based flexible test rig 

(FFTR) which ran only below its first critical speed was used.  

An improved fault identification using acceleration and velocity features was 

accomplished. The aim was to improve an earlier unified multispeed analysis 

(UMA) which considered only acceleration features of rotor-related faults while 
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the flanged-based flexible test rig (FFTR) operated below its first critical speed. 

Acceleration signals are very useful in fault diagnosis especially in the identification 

of bearing defects. On the other hand, velocity signals are useful in detecting rotor 

faults. However, rotor faults using acceleration data was carried out in the earlier 

UMA.  

Acceleration-based vibration signals from earlier FFTR were collected at a sampling 

frequency of 10kHz at 400 rpm (20 Hz), 800 rpm (30 Hz) and 1200 rpm (40 Hz) all 

below the machine’s first critical speed which was 50.66 Hz. The machine 

conditions from the available data included residual misalignment residual 

unbalance (RMRU), misalignment (M), shaft bow, mechanical looseness, and shaft 

rub. A preliminary investigation tried to replicate the earlier proposed UMA by 

classifying the machine conditions by using PCA pattern recognition approach in 

fault classification where selected principal components (PCs) are plotted against 

each other. In this study, a plot of PC1vsPC2 was carried out. This classification 

helped to validate the UMA. Further investigation led to the conversion of 

acceleration data into velocity. Similar classification was carried out using velocity 

features. The results showed more separation between each machine condition 

which indicated better fault identification analysis. Since the aim is to observe a 

wide range of machine faults, sensitive features from acceleration and velocity 

data were used in classifying machine conditions. The results showed improved 

classification when compared with that of only acceleration and velocity features 

classification of rotor faults. The study proposed the simple data quantification 

approach for comparing the acceleration features analysis (UMA), velocity features 

analysis and combined acceleration and velocity features analysis by 

differentiating the baseline-RMRU from faulty rotor conditions. Comparison across 

the three scenarios showed the improved acceleration and velocity features 

analysis gave better separation which is indicated a clearer fault diagnosis for the 

rotor faults.  

 

 



284 
Kenisuomo C. Luwei 
PhD Mechanical Engineering 2022 
University of Manchester 

3. To improve the existing FFTR to a spring-based flexible test rig (SFTR) so that 

it operates below and above its first critical speed.  Afterwards, both rotor 

and bearing faults will be simulated on the SFTR.  

The research improved the existing flange-based flexible test rig (FFTR) to the 

current spring-based test rig (SFTR). This was to allow machine to run over its first 

critical speed a representation of most industrial system.  

Most industrial rotating machines are complex, having multiple shafts connected 

to multiple bearings and operates at multiple speed running over the machine 

critical speeds (natural frequencies). This operation can be observed especially in 

aircraft and some turbomachines. To investigate such complex system, the FFTR 

which already has multiple rotor and multiple bearing and a which has a flange-

based bearing pedestal was modified to lower its first critical speed to 11.52 Hz 

using spring bearing pedestals, thus a spring-based flexible test rig was built. On 

the other hand, the machine conditions simulated in the FFTR were only rotor 

related, however, the research aims to investigate and extensive range of rotating 

machines’ critical parts faults which includes rotor and bearings. Thus, the 

simulated faults in the SFTR-1 were rotor-related RMRU, misalignment, unbalance, 

crack, rub, and bearing cage defects.  

4. To develop a novel fault identification approach for diagnosis of a rotating 

machines consolidated critical parts (i.e., rotor and bearing) faults in a single 

analysis.  

The study proposed the novel data fusion of acceleration and velocity features 

(dFAVF) for rotor and bearing faults classification and identification in. a single 

analysis. Preliminary investigation improved the UMA approach by classifying 

acceleration and velocity features for rotor faults diagnosis, where machine data 

from the FFTR were collected below machines’ first critical speed. However, to 

obtain a robust fault identification approach, both rotor and bearing faults have 

been simulated using the SFTR-1.  
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Acceleration-based vibration signals were collected at 10kHz sampling frequency, 

for rotor faults (RMRU, M, Unb, CBg1, CBg2 and RubD1) and, bearing cage defects 

(Bg1Cg and Bg2Cg). The signals were collected at 450 rpm (7.5 Hz) below machines’ 

first critical speed, 900 rpm (15 Hz) and 1350 rpm (22.5 Hz) both above machines’ 

first critical speed. Initial investigation used acceleration data for analysis where 

both time and frequency domain analysis were carried out and the sensitive 

parameters extracted i.e., time domain, rms, CF and Ku, and frequency domain 1x-

5x and SE. PCA pattern recognition approach was employed in data classification 

where PC1 is plotted against PC2. However, the current classification lend extra 

credence to the UMA approach as all conditions were classified and separated 

showing good diagnosis and fault identification. Thereafter, acceleration signal is 

converted to velocity using the omega arithmetic approach. At this point, the 

acceleration-based time domain for the bearing defects and velocity-based 

frequency domain for rotor faults were fused to develop a model for classification. 

The result showed better clustering and separation for the dFAVF than 

acceleration analysis which was achieved in. a single analysis. Another observation 

is that the rotor faults tend to overlap for most of it but separated when zoomed 

in, and they tend to cluster together at same location in the plot which is further 

away from the bearing faults. This happened based their frequency range of 

occurrence. As the rotor faults are low frequency range and bearing faults are high 

frequency range.  

To understand the diagnostic information present in the PCs, the research 

observed the PCA-based fault classification approach with increased number of 

principal components (PCs) and compared PC1vsPC2 and PC1vsPC2vsPC3. 

Observation showed that PC1vsPC2vsPC3 showed better classification than 

PC1vsPC2. However, a simple data quantification approach for that differentiates 

the baseline RMRU from faulty conditions for rotor and bearing was carried out 

while comparing the increased PCs classification, the PC1vsPC2vsPC3 gave higher 

magnitude than PC1vsPC2 indicating more diagnostic information is present.  
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5. To improve an existing poly-coherent composite bispectrum (pCCB) method 

for rotor related fault identification while analysing the complex number 

components which combines the real and imaginary part of the pCCB 

components for fault identification.   

The research improved an existing poly-coherent composite bispectrum (pCCB) 

fault detection approach, by investigating the pCCB components which can detect 

rotor faults effectively mainly shaft crack and rub faults. Note that the spectrum 

analysis loses its phase information due to the complex conjugate of the Fourier 

transform (FT) computation. However, the pCCB analysis optimises the spectrum 

analysis where the amplitude and phase information are retained in its 

computation and signals from multiple sensors are integrated in its analysis.  

In this thesis, vibration signals investigated under the pCCB analysis were from the 

SFTR-1, collected at 3 different speed 450 rpm (7.5 Hz), 900 rpm (15 Hz) and 1350 

rpm (22.5 Hz) for rotor faults (RMRU, CBg1, CBg2, RubD1).  The pCCB components; 

B11, B12, B13 are extracted for classification just like it was done in earlier study. The 

classification was PCA-based where plots of PC1vsPC2 was observed. The results 

reaffirm earlier proposed fault diagnosis using pCCB components. Further 

investigation led to additional pCCB components in the analysis which included B11, 

B12, B13 and B22. PCA-based pattern recognition approach carried out, showed good 

clustering and separation of all conditions especially the CBg1, CBg2 and RubD1. 

This improvement indicates that the information in B22 is useful in diagnosing these 

faults as there is the 2x and 4x components in their spectrum plots. To expand the 

analysis using pCCB components, a comparison of the amplitude to the real and 

imaginary (complex number) components of the pCCB were investigated for 

classifying rotor faults. The parameters extracted where used in PCA-based pattern 

recognition approach for classification. The outcome showed the real and 

imaginary pCCB classification gave better separation of the machine conditions 

than the amplitude of pCCB classification.  

Also, comparison of PC1vsPC2 and PC1vsPC2vsPC3 plot was carried out, however, 

the PCs plot comparison did not indicate much difference. Thus, additional PCs 
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may not provide useful information in the PCCB classification. A simple data 

quantification approach that differentiates baseline RMRU from faulty conditions 

for rotor faults for the pCCB analysis scenarios were carried out and comparison of 

PC1vsPC2 and PC1vsPC2vsPC3 done. The value reaffirms that the real and 

imaginary pCCB classification of rotor faults had more separation than the 

Amplitude of pCCB, however, the difference for the PC plots did give much 

difference.  

6. To develop a novel fault identification approach using a blend of time domain 

and pCCB components for a single analysis of extensive range of rotating 

machine critical part faults.  

The research proposed a novel hybrid feature reduction method using the 

acceleration-based time domain and pCCB (AT-pCCB) components for rotor and 

bearing fault classification in. a single analysis. This method comprised of 

acceleration features from bearing faults and pCCB components from rotor faults 

for classification. The proposed AT-pCCB is subdivided into the AT-ApCCB and AT-

RIpCCB which are the acceleration-based time-domain and amplitude of pCCB and 

the acceleration-based time-domain with real and imaginary pCCB respectively. 

Classification showed good separation of individual conditions, however, the rotor 

faults were seen to cluster together around a location far from the bearing 

conditions. This again indicates the frequency range of their occurrence where 

rotor faults occur around the low frequency range and bearing faults around the 

high frequency range. However, the AT-RIpCCB tends to show better separation 

for individual classification than the AT-ApCCB. Notwithstanding both sub 

approaches provided good indication for both rotor and bearing faults in. a single 

analysis.  

A simple data quantification approach differentiates RMRU from faulty conditions 

for rotor and bearing diagnosis for the AT-ApCCB and AT-RIpCCB models was 

carried out. The research observed and compared the PCA-based fault 

classification approach with increased number of principal components (PCs) 

(PC1vsPC2 and PC1vsPC2vsPC3). 
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7. To understand fault identification and dynamic behaviour of similar rotating    

machines with different foundation flexibility using the methods to be 

proposed. So that vibration signals from more than one test rig are 

investigated and analysis observed while combining data from these rigs.  

Industrial rotating machines are sometimes similar in structures, dimensions, and 

models due to standardisation; but their dynamics behaviour may be different due 

to installation foundation or/and location. Also, some old machines lack baseline 

data that could be useful for comparison in fault diagnosis. Understanding the 

dynamic behaviour of these machines would improve fault diagnosis, such that the 

fault identification parameters may be insensitive for the different machine. Thus, 

fault identification approach can be successfully implemented so that data from 

one machine can support fault identification in another.  

The research carried out an enhance fault identification approach by observing the 

dFAVF and AT-pCCB (AT-ApCCB and AT-RIpCCB) with extensive rotor and bearing 

faults classification multiple foundation (SFTR-1 and SFTR-2) and multiple speed. 

Thereafter, combining features for classification of machine conditions, to 

understand both machine and fault behaviour for similar but different machines 

using the proposed methods. The research observed and compared the PCA-based 

fault classification approach with increased number of principal components (PCs) 

(PC1vsPC2 and PC1vsPC2vsPC3). A simple data quantification approach that 

differentiates RMRU from faulty conditions for rotor and bearing diagnosis was 

carried out and the outcome shows the AT-pCCB gave better classification of rotor 

faults than dFAVF, while the rotor and bearing faults classification supported the 

low and high frequency range occurrence.  

10.3 Future Work and recommendations 
This thesis has presented findings in relation to the aims and objectives set out that is 

the development of consolidated rotor and bearing fault identification approach in 

rotating machines with a single analysis. However, all the intentions are still yet to be 

met. These will be considered in future research projects. They include. 
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1. Simulate other types of bearing faults for consolidation with rotor faults.  

The study has carried out preliminary consolidated rotor and bearing faults 

diagnosis in a single analysis, where only one bearing fault (cage defect) have been 

simulated experimentally at multiple locations. Thus, further work to observe the 

various bearing failure (inner race, outer race, ball, and cage) in a consolidated fault 

single analysis should be carried out. This helps to extend fault identification and 

improve the fault identification approach. 

2. Incorporate ‘mid’ (gear) frequency range faults into the proposed model that 

considered only ‘low’ (rotor) and high (bearing) frequency range faults. 

This study considered the ’low’ (rotor related) and ‘high’ (bearing related) in a 

single analysis. However, the ‘mid’ frequency range faults (gear related) would also 

contribute to improve fault identification and gain better understanding of 

machine behaviour with respect to the various fault conditions especially for 

machines with all three critical components.  

3. Use anti-friction (Split bearings) bearing which can simulated the various 

bearing faults conveniently than the rolling element bearing.  

The rolling element bearings were used to simulate bearing faults. Simulation of 

fault on this component is very demanding such on the inner race and outer race 

destroys the component beyond use while only the ball and cage fault simulation 

is possible, the hardness of the ball containing the lubricated grease makes it 

difficult to simulate a ball fault. However, the anti-friction bearing is built in such a 

way that allows each fundamental frequency faults simulation done with precision 

of depth and thickness without affecting machine operation. Thus, further studies 

should consider the anti-friction bearing such as the fluid bearing which is popular 

in many industrial systems. 
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4. Apply industrial data to further validate the proposed dFAVF and AT-pCCB 

which were developed using lab-based data. 

Data from a lab-based test rig has been used by the proposed approaches i.e., 

dFAVF and AT-pCCB to successfully classified a consolidated rotor and bearing fault 

in a singles analysis. Extending the approaches to industrial data would help 

validate and also improve the proposed methods.  

5. Investigate consolidated fault identification and classification using artificial 

intelligence where data are trained. 

Recent industrialisation and mechanisation demand a quick, robust but simple 

fault identification approach that will aid prompt maintenance response for 

effective and efficient production and operation of the machine. The recent 

artificial intelligence fault classification approach such as ANN, KNN, Kernel and so 

on would be useful in observing fault classification for a consolidated rotor and 

bearing fault conditions in a single analysis as the training of data can efficiently 

produce useful classification information with data being incorporated into the 

classification model. 

6. Use of finite element analysis to further validate the proposed fault 

identification method as well as foundation flexibilities investigations. 

Theoretical approach such as finite element analysis (FEA), is a useful tool in 

validating experimental results. In as much as there are some drawbacks in 

application of FEA models, it can simulate various machine systems such as 

foundation flexibilities and, also various rotor and bearing faults which can be 

classified using the proposed methods.  

7. Using other bearing fault diagnosis approaches. for investigating a 

consolidated rotor and bearing fault diagnosis in a single analysis.  

This study focused on time domain features (RMS, crest factor and kurtosis) for 

bearing fault features classification. However, there are several developed 

methods for bearing faults detection such as shock pulse monitoring, wavelet 
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transform, permutation entropy, fuzzy entropy etc. Bearing diagnostics features 

from any of these methods fused with features for rotor diagnosis would provide 

an alternate consolidated rotor and bearing fault diagnosis in a single analysis.  

 

8. Apply feature reduction approach to manage huge vibration data collected 

for analysis.  

In vibration analysis, there is always huge data collected and the analyst may find 

it cumbersome managing these data for classification. This study proposed a 

reduced features for classification method (AT-pCCB). However, further studies 

should be carried out to improve the approach to obtain useful and sensitive 

features that retains the faults behaviours while those features with less sensitivity 

can be taken out.  

9. Carry out velocity-based bispectrum analysis and comparing with 

acceleration for investigating both rotor and bearing fault since it is mostly 

useful in analyses of non-linear signals. 

This study focused on acceleration-based poly-coherent composite bispectrum 

(pCCB) analysis with useful fault identification and improvement of diagnosis 

method. Further work should consider bispectrum analysis using velocity signal as 

this may give useful parameters for improved fault identification in comparison of 

acceleration parameters for both rotor and bearing analysis.  

10. Fault simulation would consider two or more faults at a time as against 

individual faults simulation done in this study, most industrial cases have 

more than one fault at a time.  

In this study, all faults were simulated individually and independent of each other. 

However, in industrial scenarios multiple faults exist at a time on the same 

machine, for example, a machine may have misalignment which would have led to 

looseness and thus crack in the inner race. Therefore, further work would be to 
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simulate multiple faults existing simultaneously on the test rig and investigate 

individual classification of the faults.  
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APPENDIX A 

A1 Acceleration and velocity spectrum amplitudes for observation 

The amplitude of the acceleration and velocity spectrum have been presented in Table 

A1 to A8. Table A1.1 and A1.2 are those for bearing one acceleration and velocity data 

respectively. Table A1.3 and A1.4 are Bearing 2 acceleration and velocity data 

respectively. Table A1.5 and A1.6 are Bearing 3 acceleration and velocity data 

respectively, and Table A1.7 and A1.8 are for Bearing 4 acceleration and velocity data 

respectively.   

 

 

Table A. 1 Acceleration spectrum data for all conditions with harmonics and SE for Bg1. 

  RMRU M S-Bow M-looseBg3 RubD2 

1x 0.1873 0.1309 0.4573 0.1804 0.0867 

2x 0.0936 0.0645 0.0698 0.1073 0.0457 

3x 0.0401 0.0187 0.3459 0.1258 0.0439 

4x 0.0238 0.0129 0.0289 0.0083 0.0137 

5x 0.0096 0.0095 0.0378 0.0408 0.0109 

SE 0.0186 0.0605 0.1477 0.0305 0.0567 

Table A. 2 Velocity spectrum data for all conditions with harmonics and SE for Bg1. 

  RMRU M S-Bow M-looseBg3 RubD2 

1x 1.491078 1.042012 3.638943 1.435251 0.690281 

2x 0.744537 0.513312 0.555541 0.85381 0.363663 

3x 0.318928 0.148932 2.752536 1.000748 0.349095 

4x 0.18908 0.102413 0.230746 0.06595 0.109366 

5x 0.076165 0.075426 0.301005 0.32518 0.087507 

SE 1.491078 1.042012 3.638943 1.435251 0.690281 

Table A. 3 Acceleration spectrum data for all conditions with harmonics and SE for Bg2. 

  RMRU M S-Bow M-looseBg3 RubD2 

1x 0.4298 0.3746 0.6299 0.2923 0.2877 

2x 0.0556 0.0378 0.0999 0.0155 0.0405 

3x 0.0857 0.0237 0.7891 0.0868 0.0809 

4x 0.0223 0.0103 0.0329 0.1359 0.0264 

5x 0.0199 0.0196 0.0663 0.1295 0.1406 

SE 0.0235 0.0763 0.1869 0.0389 0.0716 
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Table A. 4 Velocity spectrum data for all conditions with harmonics and SE for Bg2. 

  RMRU M S-Bow M-looseBg3 RubD2 

1x 3.420053 2.980954 5.013072 2.326098 2.289367 

2x 0.442244 0.3011 0.794774 0.123209 0.321904 

3x 0.681775 0.188546 6.279342 0.691005 0.643949 

4x 0.17722 0.081667 0.262373 1.08162 0.210229 

5x 0.158992 0.156209 0.52729 1.030913 1.118632 

SE 3.420053 2.980954 5.013072 2.326098 2.289367 

Table A. 5 Acceleration spectrum data for all conditions with harmonics and SE for Bg3.  
RMRU M S-Bow M-looseBg3 RubD2 

1x 0.3549 0.2626 0.5681 1.6410 0.1559 

2x 0.0467 0.0472 0.0592 0.1467 0.0291 

3x 0.0866 0.0339 0.4966 0.5097 0.0328 

4x 0.0336 0.0229 0.0268 1.1245 0.0240 

5x 0.0157 0.0282 0.0236 1.6057 0.0573 

SE 0.0277 0.0879 0.1990 0.0394 0.0822 

Table A. 6 Velocity spectrum data for all conditions with harmonics and SE for Bg3.  
RMRU M S-Bow M-looseBg3 RubD2 

1x 2.824068 2.089438 4.520794 13.05905 1.240264 

2x 0.37101 0.375655 0.471172 1.167574 0.231669 

3x 0.689145 0.270044 3.951796 4.056407 0.260881 

4x 0.267653 0.181912 0.213344 8.948533 0.191249 

5x 0.125288 0.223996 0.18819 12.7781 0.456042 

SE 2.824068 2.089438 4.520794 13.05905 1.240264 

Table A. 7 Acceleration spectrum data for all conditions with harmonics and SE for Bg4. 

  RMRU M S-Bow M-looseBg3 RubD2 

1x 0.2519 0.2158 0.3169 0.2455 0.1351 

2x 0.0102 0.0165 0.0222 0.0379 0.0122 

3x 0.0746 0.0189 0.1813 0.0611 0.0135 

4x 0.0084 0.0138 0.0154 0.0496 0.0110 

5x 0.0104 0.0143 0.0124 0.0981 0.0202 

SE 0.0186 0.0568 0.1201 0.0248 0.0509 

Table A. 8 Velocity spectrum data for all conditions with harmonics and SE for Bg4. 

  RMRU M S-Bow M-looseBg3 RubD2 

1x 2.00467 1.717048 2.521763 1.953562 1.074987 

2x 0.081691 0.131501 0.176724 0.301394 0.097107 

3x 0.593367 0.150561 1.44248 0.485839 0.107561 

4x 0.066785 0.109642 0.12217 0.395483 0.087572 

5x 0.082581 0.113634 0.098685 0.780412 0.160561 

SE 2.00467 1.717048 2.521763 1.953562 1.074987 
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A2 Rolling element bearing characteristic frequencies 

Figure 5.2 show a diagram representing the internal structure of a typical ball bearing, 

the inner race, outer race, balls, and cage are represented clearly. The fundamental 

frequencies can be calculated based on the geometry of the bearing [56]. 

 

Figure A 1 Schematic of a rolling element bearing. 

 

According to Jyoti [56], rolling bearing consist of the inner race, which is mounted 

directly on the shaft, the outer race which is connected to the bearing housing or 

machine pedestal and a number of balls. In diagnosis of the rolling element bearings 

defects, some frequencies are generated based on the bearing geometry and the 

relative speed between the inner and outer race [12]. These frequencies are called the 

fundamental fault frequencies or the bearing characteristics frequencies.  Knowledge 

of the bearing geometry helps to determine the fundamental fault frequencies which 

are ball pass frequency inner race (BPFI), ball pass frequency outer race (BPFO), 

fundamental train frequency (FTF) and ball spin frequency (BSF) [56] [12].  They are 

mathematically represented as: 
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2
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Here ball diameter and pitch circle diameter are represented by db and dp respectively.  

The fr represents relative speed between the inner race and outer race i.e., shaft 

speed, and 𝛽 is the ball contact angle [56]. 
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A3 Engineering drawing for the design of the SFTR bearing pedestal 

The modification from the flanged-based flexible test rig (FFTR) to the spring-based 

flexible test rig (SFTR) was a major objective in this research. The design was carried 

out using SolidWorks 3D CAD tool for engineering drawing. The outcome of the design 

is presented in Figure A.2 and A.3. The engineering drawing sheet showing the 

projections is presented in Figure A.2 while the 3D view of the completed design is 

presented in Figure A.3. The design was done in such a way to allow the springs to 

connect the bearing and the shaft to the system, while having the shaft centralised at 

every of the four-bearing pedestal. This was achieved with some clearance, although 

it wasn’t calculated.  

 

Figure A 2 Engineering drawing showing the projections for the designed SFTR bearing 

pedestal. 
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Figure A 3 A 3D engineering drawing showing the designed SFTR bearing pedestal 
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A4 Matlab codes used in both rotor and bearing analysis 
 

Acceleration/ Velocity time and Frequency domain analysis 
clc 
clear all 
%acc_vel_spectra 
%Inputs 
load Healthy_Res_Mis_Res_Unb_40Hz_Data.txt;  
 ch=4; 
 f1=40;   %1st harmonic frequencies; 
 nh=5; % number of harmonics needed 
a= zeros(ch); 
aa= 120000; 

  
%Residual Misalignment Residual Unbalance data%  
a=Healthy_Res_Mis_Res_Unb_40Hz_Data(1:aa,:); 

 
a=a(:,[1:4]); 
fs=10000; 
N=2^14; 
shift=floor(N/4); 

  
%filter----------------- 
[B,A]=butter(4,1/(fs/2),'high'); 
[h,fe]=freqz(B,A,N,fs); 

  
figure(1000); 
clf 
plot(fe,abs(h)); 

  
for i=1:ch; 
    a(:,i)=filtfilt(B,A,a(:,i)); 
end  

  
dt=1/fs;  
t=[0:1:length(a)-1]'*dt; 

  
a= a*9.81*10; %m/s^2 

 
for i=1:ch;  
    figure(i) 
    clf 
    plot(t,a(:,i)); 
    grid on 
    xlabel('Time,  s') 
    ylabel('Acceleration, m/s^2') 
end 

  
% Time Domain Analysis 
pp=zeros(ch,1); %peak to peak 
rms=zeros(ch,1); %rms 
CF=zeros(ch,1); %crest factor 
ku=zeros(ch,1); %kurtosis 

  
for k=1:ch;  
   pp(k,1)=max(a(:,k))-min(a(:,k)); 
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   rms(k,1)=sqrt(mean(a(:,k).^2)); 
   CF(k,1)=max(a(:,k))/rms(k,1); 
   ku(k,1)=kurtosis(a(:,k)); 
end 

  
% Acceleration Spectrum Analysis 
av=floor((length(a)-N)/shift)-1; 
df=fs/N; 
freq=[0:1:N/2-1]'*df;  
S_A=zeros(N/2,ch); 

  
for i=1:ch; 
    for k=1:av; 
        ks=(k-1)*shift+1; ke=ks+N-1; 
        aa=a(ks:ke,i); 
        af=fft(aa)/(N/2); 
        aff=af(1:N/2,1); 
        S_A(:,i)=S_A(:,i)+aff.*conj(aff); 
    end 
end 

 
S_A=S_A/av; 

  
for i=1:ch; 
    S_A(:,i)=sqrt(S_A(:,i)); 
end 

  
SE = zeros(ch,1); 
for i= 1:ch 
    SE(i,1)= mean(S_A(i,:)).*df; 
end 

  
%Velocity spectra Analysis 
S_V=zeros(N/2,ch); 

 
for i=1:ch; 
   for k=2:N/2; 
        w=(2*pi*freq(k));  
        S_V(k,i)=1000*S_A(k,i)/w;  %mm/s 
    end 
end 
 

% plots only 

  
nn1=floor(1/df); 
nn2=floor(240/df); 

 
for i=1:ch; 
    figure(i+100) 
    clf 
    plot(freq(nn1:nn2),S_A(nn1:nn2,i); 
    hold  
    grid on 
    xlabel('Frequency, Hz') 
    ylabel('Acceleration, m/s^2')       
end 

  
 for i=1:ch; 
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    figure(i+200) 
    clf 
     plot(freq(nn1:nn2),S_V(nn1:nn2,i); 
     hold  
    grid on 
    xlabel('Frequency, Hz') 
    ylabel('Velocity, mm/s')     
end        

  

 

Bearing Fault Analysis 
clc 
clear all 

  
%Inputs 
load Sprg1111_Brg2_Ball_Fault_22_5_Hz_Data.txt; 
a =Sprg1111_Brg2_Ball_Fault_22_5_Hz_Data; 
clear Sprg1111_Brg2_Ball_Fault_22_5_Hz_Data.txt; 
 ch=4; 
 f1=8.54;   %1st harmonic frequencies; 
fc = 2400; 
fs=10000; 
a= zeros(ch); 
%aaa= 120000; 

  
 a =Sprg1111_Brg2_Ball_Fault_22_5_Hz_Data; 

  
% a=Sprg1111_Brg1_Ball_Fault_22_5_Hz_Data(1:aaa,:); 
 %a=a(:,[1:4]); 

 

  

  
fs=10000; 
N=2^14; 
shift=floor(N/4); 

  

  
%filter----------------- 
[B,A]=butter(10,500/(fs/2),'high'); 

 
[h,fe]=freqz(B,A,N,fs); 
dt=1/fs; 
t=[0:1:length(a)-1]'*dt; 

  

  
df=fs/N; 
freq=[0:1:N/2-1]'*df; 

  
a= a*9.81*10; %m/s^2 

  
figure(1000); 
clf 
plot(freq,abs(h(1:N/2)));%filter plot 
grid on 

  
for i=1:ch; 
    a(:,i)=filtfilt(B,A,a(:,i)); 
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end 
  

% Time domain with filter only 
figure(1)  
for i=1:ch; 

     
    figure(i) 
    clf 
    plot(t,a(:,i)); 
    hold  
    xlabel('Time.s') 
    ylabel('Acceleration, m/s^2') 
end 

  
% Time domain analysis  
pp=zeros(ch,1); %peak to peak 
rms=zeros(ch,1); %rms 
CF=zeros(ch,1); %crest factor 
ku=zeros(ch,1); %kurtosis 

  
for k=1:ch; 
   pp(k,1)=max(a(:,k))- min(a(:,k)); 
   rms(k,1)=sqrt(mean(a(:,k).^2)); 
   CF(k,1)=max(a(:,k))/rms(k,1); 
   ku(k,1)=kurtosis(a(:,k)); 
end 

  
av=floor((length(a)-N)/shift)-1; 

 
S_A=zeros(N/2,ch); 

  

for i=1:ch; 
    for k=1:av; 
        ks=(k-1)*shift+1; ke=ks+N-1; 
        x=a(ks:ke,i); 
        af=fft(x)/(N/2); 
        aff=af(1:N/2,1); 
        S_A(:,i)=S_A(:,i)+aff.*conj(aff); 
    end 
end 
S_A=S_A/av; 

 
for i=1:ch; 
    S_A(:,i)=sqrt(S_A(:,i)); 
end 

  
SE = zeros(ch,1); 
for i= 1:ch 
    SE(i,1)= mean(S_A(i,:)).*df; 
end 

  
h1=floor(f1/df)+1; 
[v,loc]=max(S_A(h1-2:h1+2,3)); 
h1=h1-3+loc; 

  
for ih=1:nh; 

     
   h(ih)=ih*h1-(ih-1); 
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fh(ih)=freq(h(ih)); 
S_Ah(ih,:)=S_A(h(ih),:);  
end 

  
% plots only 

  
nn1=floor(1/df); 
 %nn2=floor(240/df); 
nn2=floor(5000/df); 

  
for i=1:ch; 

     
    figure(i+100) 
    clf 
    plot(freq(nn1:nn2),S_A(nn1:nn2,i)); 
    hold  
    grid on 

     
    xlabel('Frequency, Hz') 
    ylabel('Acceleration, m/s^2') 
end 

 
%Hilbert (Envelope Analysis) 
for i=1:ch 
 aa(:,i)=abs(hilbert(a(:,i))); 

  
 aa(:,i)=aa(:,i)-mean(aa(:,i)); 
end 

  
% Time domain with filter and Envelope 

  
figure(2) 
%  
for i=1:ch; 
    figure(i+200) 
    clf 
    plot(t,a(:,i)); 
    hold 
    plot(t,aa(:,i),'r'); 
    grid on 
    xlabel('Time.s') 
    ylabel('Acceleration, m/s^2') 
end 
  

 

  
%Acc Spectrum with filter and Envelope 

  
avv=floor((length(aa)-N)/shift)-1; 
S_Ae=zeros(N/2,ch); 

 
for i=1:ch; 

     
    for k=1:avv; 
        ks=(k-1)*shift+1; ke=ks+N-1; 
         x=aa(ks:ke,i); 
        af=fft(x)/(N/2); 
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        aff=af(1:N/2,1); 
        S_Ae(:,i)=S_Ae(:,i)+aff.*conj(aff); 
    end 
end 

 
S_Ae=S_Ae/avv;  
SEe = zeros(ch,1); 

 
for i= 1:ch 
    SEe(i,1)= mean(S_Ae(i,:)).*df; 
end 

  

  
 %harmonics; 
%1st harmmonics 

  
h1=floor(f1/df)+1; 
[v,loc]=max(S_Ae(h1-2:h1+2,3)); 
h1=h1-3+loc; 

  
for ih=1:nh; 

     
   h(ih)=ih*h1-(ih-1); 
fh(ih)=freq(h(ih)); 
S_Aeh(ih,:)=S_Ae(h(ih),:); 
% S_Vh(ih,:)=S_V(h(ih),:); 

  
end 

  
% plots only 

  
nn1=floor(1/df); 
 nn2=floor(500/df); 
%nn2=floor(100/df); 

  
for i=1:ch; 

     
    figure(i+300) 
    clf 
    plot(freq(nn1:nn2),S_Ae(nn1:nn2,i)); 
    hold  
    plot(fh,S_Aeh(:,i),'*r'); 
    grid on 

     
    xlabel('Frequency, Hz') 
    ylabel('Acceleration, m/s^2') 

     
end 

 

 

Poly-Coherent Composite Bispectrum     

  
clear all; 
clc; 
load Sprg1111_Brg1_Ball_Fault_7_5_Hz_Data.txt; 
Data=Sprg1111_Brg1_Ball_Fault_7_5_Hz_Data; 
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clear Sprg1111_Brg1_Ball_Fault_7_5_Hz_Data; 
a=Data(1:1400000,1:4); 
a(1:1400000,1:4)=10*9.81*(a(1:1400000,1:4)); 

  
arraykcl = []; 
for cc = 1:20; 
    disp 'cc'; 
aa=a(1+(cc-1)*33300:cc*33300,1:4); 

 
FF=2.79; 
FS=10000; 
dt=1/FS; 
%n=length(ay); 
n=length(aa); 
T=(0:1:n-1)*dt; 
N=2^14; 
df=FS/N; 
F=(0:1:N/2-1)*df; 
n_cf=floor(FF*4/df); 
% [Bi,Ai]=butter(4,3/(FS/2),'high'); 
[Bi,Ai]=butter(10,500/(FS/2),'high'); %for bearing data filter 
H=freqz(Bi,Ai,N); 

  
ch1=1; 
ch2=2; 
ch3=3; 
ch4=4; 

  
for i=1:4; 
    aa(:,i)=filtfilt(Bi,Ai,aa(:,i)); 
end 

  
nlap=floor(0.95*N); 
nav=floor((n-N)/(N-nlap)); 
d=N-nlap; 

  
PSD1=zeros(N/2,1); 
PSD2=zeros(N/2,1); 
PSD3=zeros(N/2,1); 
PSD4=zeros(N/2,1); 

  
CSD1=zeros(N/2,1); 
CSD2=zeros(N/2,1); 
CSD3=zeros(N/2,1); 

  
NN=N/4; 
B=zeros(NN,NN); 

  
%FT Calculation 
for s=1:nav; 

     
    L1=(s-1)*d+1; 
    L2=L1+N-1; 

   
    A1=aa(L1:L2,ch1);     
    X1=fft(A1)/(N/2); 
    X1=X1(1:N/2); 
    Y1=conj(X1);     
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    PSD1=PSD1+X1.*Y1; 

     
    A2=aa(L1:L2,ch2); 
    X2=fft(A2)/(N/2); 
    X2=X2(1:N/2); 
    Y2=conj(X2); 
    PSD2=PSD2+X2.*Y2; 

     
    A3=aa(L1:L2,ch3); 
    X3=fft(A3)/(N/2); 
    X3=X3(1:N/2); 
    Y3=conj(X3); 
    PSD3=PSD3+X3.*Y3; 

     
    A4=aa(L1:L2,ch4); 
    X4=fft(A4)/(N/2); 
    X4=X4(1:N/2); 
    Y4=conj(X4); 
    PSD4=PSD4+X4.*Y4; 

     

     
    CSD1=CSD1+X1.*Y2; % CSD1 plus the PSD of 1st channel multiply by 

PSD complex conj of the 2nd channel  
    CSD2=CSD2+X2.*Y3; % CSD2 plus the PSD of 2st channel multiply by 

PSD complex conj of the 3nd channel 
    CSD3=CSD3+X3.*Y4; % CSD3 plus the PSD of 3st channel multiply by 

PSD complex conj of the 4nd channel 

     
end 

  
PSD1=(PSD1/nav); 
PSD2=(PSD2/nav); 
PSD3=(PSD3/nav); 
PSD4=(PSD4/nav); 

  
CSD1=(CSD1/nav); 
CSD2=(CSD2/nav); 
CSD3=(CSD3/nav); 

  
%Coherence Calculation 
Coh12=(abs (CSD1).^2./(PSD1.*PSD2)); 
Coh23=(abs (CSD2).^2./(PSD2.*PSD3)); 
Coh34=(abs (CSD3).^2./(PSD3.*PSD4)); 

  

  
%Composite Spectrum Calculation 
Xpoly=zeros(N/2,1); 
Cpoly=zeros(N/2,1);%coherent poly cross power spectral density, 

because it contains signals from all 4 bearings 

  
    for s=1:nav; 

     
    L1=(s-1)*d+1; 
    L2=L1+N-1; 

     
    A1=aa(L1:L2,ch1);     
    X1=fft(A1)/(N/2); 
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    X1=X1(1:N/2); 
    Y1=conj(X1);     

     
    A2=aa(L1:L2,ch2); 
    X2=fft(A2)/(N/2); 
    X2=X2(1:N/2); 
    Y2=conj(X2); 

     
    A3=aa(L1:L2,ch3); 
    X3=fft(A3)/(N/2); 
    X3=X3(1:N/2); 
    Y3=conj(X3); 

     
    A4=aa(L1:L2,ch4); 
    X4=fft(A4)/(N/2); 
    X4=X4(1:N/2); 
    Y4=conj(X4); 

         

       
    Xpoly=(X1.*Coh12.*X2.*Coh23.*X3.*Coh34.*X4); 

         
    Xinstant=((Xpoly).^(1/4)); 

        
    Yinstant=conj(Xinstant); 

         
    Cpoly=Cpoly+Xpoly;         

       
        %-------------Composite Spectrum Magnitude-------- 

         
        h=floor(FF/df)+1;      

       
for i=1:4; 
    hh=i*h-(i-1); 
    [mag,loc]=max(abs(Xinstant(hh-2:hh+2))); 
    harM(i)=mag; 
    harL=(hh-3)+loc; 
    Fh(i)=F(harL); 
end 

  
%-------------------Composite Spectrum Phase Calculation------------ 
for ia=1:4; 
    hha=ia*h-(ia-1); 
    [magc,locc]=max(Xinstant(hha-2:hha+2)); 
    harMc(ia)=magc; 
    harLc=(hha-3)+locc; 
    Fhc(ia)=F(harLc); 
end 

  
F1=harMc(1); FF1(cc,s)=abs(F1); 
F2=harMc(2); FF2(cc,s)=abs(F2); 
F3=harMc(3); FF3(cc,s)=abs(F3); 

 

  
PhF1(cc,s)=(atan(imag(F1)/real(F1)))*(180/pi); 
PhF2(cc,s)=(atan(imag(F2)/real(F2)))*(180/pi); 
PhF3(cc,s)=(atan(imag(F3)/real(F3)))*(180/pi); 
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        %-------------Composite Bispectrum------------------- 
        for p=1:NN; 

             
            for q=1:NN; 

                 
                BB=Xinstant(p)*Xinstant(q)*Yinstant(p+q-1); 
                B(p,q)=B(p,q)+BB; 

                 
            end 
        end 

     
    end 

     
 Cpoly=Cpoly/nav;%when plotting the coherence poly cross power 

spectral density, you have to use 4th root of the averaged Cpoly bcos 

it contains 4 signals.   

     
 CCpoly=(sqrt(Cpoly).^(1/4));%CCpoly (which is the 4th root of 

Cpoly)should be used for the plot, so that there will only be one 

power of amplitude. 

     
  B=B/nav; 

     
    %-----------Composite Bispectrum Magnitudes Calculation---------- 

     
    for i=1:3; 
    for k=1:3; 

         
        hi=i*h-(i-1); 
        hk=k*h-(k-1); 

         
        Bo=abs(B(hi-2:hi+2,hk-2:hk+2)); 
        BH(i,k)=max(Bo(:)); 
    end 
end 

  
BiB1=BH(1,1); 
BiB2=BH(1,2); 
BiB3=BH(1,3); 

 
%--Composite Bispectrum Phase Calculations---------------------------

---- 

  
for ii=1:3; 
    for kk=1:3; 
        hii=ii*h-(ii-1); 
        hkk=kk*h-(kk-1); 
        Bpo=(B(hii-2:hii+2,hkk-2:hkk+2)); 
        BHp(ii,kk)=max(Bpo(:)); 
    end 
end 

  
BiiB1=BHp(1,1);% complex numbers 
BiiB2=BHp(1,2); 
BiiB3=BHp(1,3); 
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PhB11=(atan(imag(BiiB1)/real(BiiB1)))*(180/pi); 
PhB12=(atan(imag(BiiB2)/real(BiiB2)))*(180/pi); 
PhB13=(atan(imag(BiiB3)/real(BiiB3)))*(180/pi); 

 
PhB22=(atan(imag(BiiB4)/real(BiiB4)))*(180/pi); 
PhB23=(atan(imag(BiiB5)/real(BiiB5)))*(180/pi); 
PhB33=(atan(imag(BiiB6)/real(BiiB6)))*(180/pi); 
  

 
kcl(cc,:)=[harM(1) harM(2) BiB1 BiB2]; 

 
end 

  
    %-----------------------Filter plot---------------------- 
    figure(1) 
    clf 

     
    plot(F,abs(H(1:N/2))) 

   
     %-----------------------Plotting the Composite Spectrum---------

-------- 
    figure(2); 
    clf 
    plot(F,abs(CCpoly)); 
    grid on 
    xlabel('Frequency, Hz'); 
    ylabel('Amplitude, (m/s^2)'); 

     
 

 

     
     %--------------Plotting Composite Bispectrum--------------------

------- 
    ns=round(3/df)+1; 
    nn=round(FF*4/df); 

     
    figure(3); 
    clf 

     
    mesh(F(ns:nn),F(ns:nn),abs(B(ns:nn,ns:nn))); 
    grid on 
    xlabel('Frequency, Hz'); 
    ylabel('Frequency, Hz'); 
    zlabel('Accel, (m/s^2)^3)');    
return 
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