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Abstract 
Background 
Emergency Department (ED) clinicians use clinical prediction models (CPMs) to assist with the 

diagnosis of acute myocardial infarction (AMI). CPMs are also used in primary care to predict future 

cardiovascular disease (CVD). Patient care in the ED could be improved by updating existing CPMs 

for AMI diagnosis or developing new care pathways to predict future CVD. 

Aims 
To update a CPM for AMI diagnosis (the Troponin-only Manchester Acute Coronary Syndromes CPM) 

and co-develop a novel care pathway for the prediction of CVD in acute care. 

Methods 
I used real-world data from three centres, linked to a national dataset, to evaluate TMACS. I used 

three methods to update the CPM: recalibration, model extension and dynamic Bayesian updating. 

The novel care pathway for CVD prediction was co-developed with a mixed methods approach. This 

was informed by a systematic review and meta-analysis of potential prognostic factors. I then 

studied the prognostic value of factors of interest using a retrospective cohort linked to a national 

dataset.  Finally I conducted 41 semi-structured interviews using a co-production framework to 

construct a novel care pathway. 

Results 
TMACS demonstrated good discrimination with an area under the curve (AUC) of 0.88 (95% CI 0.86 

to 0.89), but calibration had deteriorated with a calibration in the large (CITL) of -3.93 (95% CI -4.12 

to -3.74). Dynamic updating demonstrated favourable model characteristics with an AUC of 0.87 

(95% CI 0.85 to 0.89) and CITL of -1.45 (95%CI -1.63 to -1.27). 

Several routinely collected variables were found to be predictive of future CVD. Framingham CPM 

demonstrated favourable prognostic model characteristics in external validation. The qualitative 

research led to a co-produced care pathway based on five themes including loci of clinical 

responsibility, poor communication, avoidance of pandemic hospitals, focused EM care, and 

automation of preventative EM care. 

Conclusion 
Calibration drift affected TMACS, and this should be a cautionary tale for other deployed CPMs. 

However dynamic updating did successfully counter this and could provide a sustainable solution if 

the digital infrastructure is available. Routinely collected data in the ED is predictive of long term 

CVD, and a care pathway appears possible. A feasibility randomised control trial should be 

conducted to further assess this intervention.  
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Chapter 1 Introduction 

1.1 Preface 

Patients attending the Emergency Department (ED) with chest pain account for around 6% of all 

visits (1). However even with recent advances in care pathways and national guidelines prior to the 

pandemic it was the most common indication for emergency admission to hospital in England and 

Wales (1–3). Research has demonstrated that less than 15% of patients with suspected acute 

myocardial infarction (AMI) transpire to have it (4). This highlights the need for better diagnostics, 

and clinical prediction models (CPM) have great potential to address this need by optimising the use 

of diagnostic information from different modalities. CPMs can improve the care of patients and the 

use of finite resources in the United Kingdom’s (UK) National Health Service (NHS). Several CPMs for 

AMI already exist including the Troponin Only Manchester Acute Coronary Syndrome algorithm 

(TMACS), and the HEART and Emergency Department Assessment of Chest Pain Score (EDACS) (5–7). 

While they are widely used in practice, there is a risk that their diagnostic performance may not be 

maintained as time passes. Calibration drift can impact model performance over time due to 

changing patient demographics, and clinical care pathways (8). There is a need to understand 

whether there is calibration drift, and whether machine learning approaches could be used to 

counter it by refining and improving the existing CPMs as more data becomes available. This can 

help ensure the resources used to derive, validate and deploy CPMs are not squandered and 

allowing patients to continue benefiting from them.  

Not only can CPMs be updated, but as new clinical needs develop their use cases can be expanded, 

such as for long term cardiovascular disease (CVD) outcomes. In a pilot randomised controlled trial 

of the original version of the TMACS decision aid, participants who received care guided by the 

decision aid were asked to complete patient satisfaction questionnaires. The findings identified that 

patients felt our current approach was suboptimal with regard to advising on “ways to avoid illness 
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and stay healthy” (9). This suggests that patients want their physicians to not just identify their 

current diagnosis, but also mitigate risk of ongoing health issues after leaving the ED. 

ED attendees tend to engage less frequently with primary care (10,11). Therefore, they may be 

missing opportunities for primary and secondary prevention, meaning that their ED attendance is a 

valuable opportunity to identify those at high risk of incident CVD and intervene. There is scope for 

acute care to leverage it’s high footfall and predict long term CVD outcomes. 

In this PhD I aimed to improve CVD risk prediction in the acute care setting. I sought to do this by 

building an acute care pathway for long term CVD. I also aimed to evaluate the TMACS model 

performance and improve it by updating the algorithm. 

In this chapter I provide background information on cardiovascular disease, evolving cardiovascular 

disease diagnostics (including troponin and clinical prediction models), and novel research 

methodologies 

1.2 Cardiovascular disease 

CVD can present to acute care in a multitude of diverse ways, including a facial droop or dysarthria 

(distorted articulation of speech) indicative of a stroke, a severe headache from a hypertensive crisis, 

acute tearing abdominal pain indicative of a dissecting aortic aneurysm, or central crushing chest 

pain radiating to the arms demonstrating an AMI (noting that radiation to either or both arms can 

occur in AMI) (12). 

CVD encompasses many pathologies, ranging from coronary artery disease to ischaemic cerebral 

vascular accidents (Table 1.1). The underlying pathophysiology involves either the heart or body-wide 

vasculature. This process can be driven by atherosclerosis, where arteries undergo subendothelial 

remodelling (atherogenesis). Subsequent inflammation leads to plaque formation consisting of lipids, 

elastin and collagen. The net effect is narrowing of the vessels lumen (stenosis), this reduces the blood 

supply to the end organ and creates turbulent flow increasing the likelihood of clot formation. 
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Atherogenesis takes place over several years however acute events can occur. Atherosclerotic plaques 

can rapidly rupture and form a thrombus causing complete occlusion or a critical stenosis, such as is 

seen in the coronary arteries in an AMI. 

There are known risk factors for cardiovascular disease (Table 1.2), some of which can be mitigated 

by an intervention. Screening for these factors has been historically conducted by primary care in high-

risk individuals (e.g., over forty health check). If a risk factor is positively identified then an intervention 

is recommended, either by lifestyle modification or medication. It is estimated that primary 

prevention to reduce blood pressure can reduce CVD by 16% (target <140/90 mmHg or <130/80 

mmHg with diabetes), or treatment of dyslipidaemia reduces CVD by 37% (13–15). When treated in 

combination the risk reduction can rise to greater than 50% (13). However, because important risk 

factors for CVD such as hypertension and dyslipidaemia are usually asymptomatic, identification of at-

risk individuals can be challenging unless they regularly attend primary care appointments.  

There is an enormous human and economic cost associated with cardiovascular disease. In terms of 

mortality, CVD accounts for more than one quarter of all deaths in the UK (16). In monetary terms, 

CVD has a total cost to the economy of £19 billion a year (17). In terms of morbidity, there are 

approximately 7 million people living with CVD in the UK (16). Locally the problem is amplified, 

national data from 2018-2020 show that Greater Manchester had the highest age standardised death 

rate from coronary heart disease (CHD) at 161.8 per 100,000 population, significantly higher than the 

national average of 64.1 per 100,000 (18). 
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Site Pathology

Central Nervous System Vascular Dementia

Ischaemic Stroke

Haemorrhagic Stroke

Cerebral Aneurysm

Subarachnoid haemorrhage

Heart Coronary Artery Disease

Dysrhythmia

Ischaemic Heart Disease

Heart Failure

Valvular Disease

Acute Myocardial Infarction

Vascular System Peripheral artery disease 

Peripheral venous insufficiency

Aortic aneurysm

Hypertension

Table 1.1- Summary of the composite pathologies of cardiovascular disease (CVD).
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Non-modifiable Increasing age (19)

Male (19)

1st degree relative with first CVD event <60 (19)

Polygenic risk (20)

Chronic Kidney Disease (21)

Low socio-economic group (19)

Previous CVD (22)

Ethnicity (23) 

Modifiable Obesity (19)

Hypertension (24)

Diabetes Mellitus (24)

Dyslipidaemia (19)

Physical inactivity (25)

Smoker (19)

Table 1.2 Risk factors for cardiovascular disease 
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1.2.1 Acute Myocardial Infarction 
Ischaemic heart disease incorporates both acute coronary syndromes (ACS), including AMI and 

stable angina. It is defined as a mismatch between oxygen supply and demand to the myocardium, 

the majority of which is a result of atherosclerotic stenosis of the coronary arteries. Stable angina (or 

stable coronary artery disease) is defined by the European Society of Cardiology (ESC) as “reversible 

myocardial demand/supply mismatch, related to ischaemia or hypoxia, which are usually inducible by 

exercise” and is associated with stable plaques and stable symptoms (26). In contrast ACS are 

inherently associated with unstable plaques and unstable symptoms and the demand/supply 

mismatch often causes irreversible injury to the myocardium. 

ACS incorporates unstable angina, non-ST elevation myocardial infarction and ST elevation 

myocardial infarction (STEMI). Cardiac troponin, a biomarker of myocardial injury, is a cornerstone 

of this diagnosis. The fourth universal definition for type one myocardial infarction requires a rise or 

fall of cardiac troponin values with at least one above the 99th percentile upper reference limit and 

another finding (27). The other finding can include either: symptoms in keeping with AMI, a newly 

ischaemic electrocardiogram (ECG), imaging evidence consistent with new cardiac ischaemia, and 

evidence of a coronary thrombus via angiography (27). The diagnosis of STEMI is made using the 

electrocardiogram (ECG). Diagnostic ST elevation on the ECG is defined by the European Society of 

Cardiology (ESC) as elevation in two contiguous leads ≥to 2.5mm in men under 40 years old, ≥2mm 

in men over 40 years old and ≥1.5mm in women (28). Either ST or non-ST myocardial infarction can 

be further specified into five types of myocardial infarction. Differentiating between type 1 and 2 MI 

is important and these again have been defined by ESC (27); type 1 is an acute occlusion of the 

coronary artery due to an atherosclerotic plaque rupture with thrombus. Type 2 is delineated as an 

acute non-cardiac stressor (e.g., massive haemorrhage) that results in a reduced oxygen supply and/ 

or increased demand resulting in myocardial infarction. Type 3 MI is defined as a sudden unexpected 
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cardiac death often with symptoms suggestive of myocardial infarction. Type 4 is a MI associated 

with percutaneous coronary intervention and type 5 is an MI associated with cardiac surgery. 

1.3 Evolving diagnostics

In recent years there have been tremendous advances in diagnostic technology that can allow the 

diagnosis of AMI to be ‘ruled out’ for many patients within a few hours of arriving in the ED. While 

many of the diagnostic algorithms that have been developed have excellent sensitivity and negative 

predictive value, none have perfect accuracy (5,7,29–31). There is therefore always a small risk that 

patients who are discharged from the ED will develop a major adverse cardiac event (MACE) in the 

near future.  

In an international survey, only 40% of emergency physicians would accept a 1% probability that a 

patient they discharge will develop a MACE within 30 days (9). This may reduce adherence to validated 

‘rule out’ algorithms. Indeed, in a recent large cluster randomized controlled trial, patients who were 

randomized to receive care guided by the HEART score were no more likely to be discharged early 

than patients who received standard care (29). 

1.3.1 High sensitivity cardiac troponin assay (hs-cTn) 
Troponin is 52 kilo-dalton protein complex that is composed of troponin C, I and T protein sub-units 

(32). Troponin I was  identified as a useful marker for cardiac necrosis and myocardial infarction in 

1987 (33). Later this was extended to troponin T leading to their successfully incorporation into clinical 

care pathways with contemporary cardiac troponin assays (34).  

To describe these assays several analytical metrics are used. The limit of blank (LoB) is the highest 

apparent reading from an assay when a blank sample containing no target analyte is present (35). The 

limit of detection (LoD) is the lowest concentration of the target analyte detectable when it can be 

consistently differentiated from the LoB (35). The 99th centile or upper reference limit (URL) is the 99th

centile cTn result in a healthy population, recently this has been amended to include sex specific URLs 

(36). 
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From the initial assays a new generation of assay was developed. The International Federation of 

Clinical Chemistry and Laboratory Medicine (IFCC) defines a hs-cTn assay as one that can detect cTn 

below the 99th centile and above the LoD in at least 50% of healthy subjects (i.e. detect a normal cTn 

level) (37). It must also be sufficiently precise to have a co-efficient of variation of less than 10% 

meaning that two samples tested twice should have two results within 10% of each other (37).  

Hs-cTn  is currently an integral part of the diagnosis of AMI, however alternate strategies have been 

proposed that can enable an early rule out from the hs-cTn alone (27,38). The UK’s National Institute 

for Health and Care Excellence recommends two early rule out strategies for NSTEMI using only hs-

cTn. NICE proposes using a sample taken at presentation with a hs-cTn threshold at or near the LoD 

(38). Alternatively they recommend a serial sampling strategy with a sample taken at presentation 

and the  second sample taken up to 3 hours later with a threshold of the URL or around the LoD (38).  

The LoD strategy has been investigated previously and demonstrated to have a sensitivity of 97.4% 

(95% CI 94.9 – 98.7) and a specificity of 42.4% (95% CI 31.2 – 54.5) allowing the rapid rule out of 33.9% 

of patients (39). When this strategy was examined in a randomised control trial the length of stay was 

not found to be statistically significantly different from pre-existing care pathways (30).  

Another trial examining the LoD strategy was the High-Sensitivity Troponin in the Evaluation of 

Patients With Acute Coronary Syndrome algorithm trial (High-STEACs) (31,40). High-STEACs used a 

threshold of <5ng/l on a 0hr sample and the demonstrated a high sensitivity of 97.7% (95% CI 97.3 – 

98.1%) with a specificity of 64.0% (95% CI 63.6 -64.5) (31,40). This allowed for a proportion ruled out 

of 58.4% and demonstrated a modest reduction in length of stay of  3.3 hours) (31,40). The ESC have 

also put forward thresholds near the LoD which are specific to each manufacturer, their strategy was 

found to have a sensitivity of 98.4% (95% CI 95.1 - 99.5), specificity of 91.2% (95% CI 86.0 – 94.6) and 

a proportion ruled out of 50-55% (41).
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High-STEACs, like ESC and the LoD strategy (LoD), do not provide a risk prediction that is continuous 

(0-100%) which can limit their clinical utility (39–41).   

1.3.2 Clinical Prediction Models 
CPMs are used in a wide variety of healthcare settings from hospital admissions (42), long term CVD 

outcomes (19) to risk of acute kidney injury (43). They are considered diagnostic if the disease status 

of the patient at the time the predictors are measured is of interest. An example of a diagnostic 

model would be a CPM used to detect subarachnoid haemorrhages in patients with undifferentiated 

headaches. This would be considered a diagnostic CPM as the target condition exists when the 

predictors would be measured. In contrast a prognostic model attempts to predict an outcome 

which is not present at the time of predictor measurement, an example here is long term CVD 

models. Such models measure the predictors long before the outcome of interest is a possibility. 

Diagnostic and prognostic models are prone to biases, diagnostic models can suffer from partial 

verification where the outcome is not fully verified (44). Whereas prognostic models must be wary 

of censoring where an outcome is yet to occur by the end of time horizon window for measurement 

(44).  

To improve the quality of CPMs reporting guidelines have been developed called the “Transparent 

reporting of a multivariable prediction model for individual prognosis or diagnosis” (TRIPOD) (45). In 

it they describe what parameters should be reported in order to allow the reader to make an 

informed judgement on the CPM presented. This includes reporting measures of model performance 

for both discrimination and calibration. Discrimination is the ability of a model to differentiate a 

positive outcome from a negative outcome, this can be commonly measured using the c-statistic 

(also called area under the receiver operator curve) (46). The calibration of a CPM is how close the 

predicted risk is to the actual or observed risk (46). If they are similar the model is considered well 

calibrated. 

The TRIPOD guidelines also comment on the importance of model validation, this is where the 

performance of the model is assessed separately from the derivation. Internal validation uses the 
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same data as the model was derived in, but external validation uses new external data to that of the 

derivation. The latter is considered more robust and can reveal overly optimistic derivation or 

internal validation performance estimates (47). As such it is an important step CPMs prior to clinical 

use.  

1.3.3 Troponin Only Manchester Acute Coronary Syndrome algorithm (TMACS) 
The Troponin-only Manchester Acute Coronary Syndromes (TMACS) CPM is in active clinical use to 

risk stratify patients presenting to the ED with suspected ACS (5). The CPM was derived by logistic 

regression and uses seven variables including details of a patient’s history, physical examination, 

initial ECG and the hs-cTn concentration measured at the time of arrival in the ED. These variables 

are inputted into the CPM which predicts the probability that a patient has ACS. Of note, none of the 

five ‘Framingham’ risk factors for CVD (diabetes, hypertension, hyperlipidaemia, tobacco smoking 

and a family history of premature cardiovascular disease) are included as predictors in the TMACS 

model because they were not found to be independent predictors of ACS. Their poor predictive 

value for ACS in acute settings has been previously shown (48). This may be because patients and 

clinicians have a heightened awareness of the cardiovascular risk associated with these risk factors 

and therefore have a lower threshold for attending the ED or undertaking investigations. Further, 

the most dangerous modifiable risk factors are arguably those that were previously unrecognised 

and therefore untreated.  

Based on the calculated probability of ACS, the TMACS algorithm stratifies patients into four risk 

groups. ‘Very low risk’ patients (40% of the total) are considered to have ACS ‘ruled out’ and are 

eligible for immediate discharge. ‘Low risk’ patients require a second hc-cTn test but could be 

managed in an ambulatory care unit. ‘Moderate risk’ patients are likely to require further 

investigation (including serial hs-cTn testing and cardiac imaging). ‘High risk’ patients can be 

considered to have ACS ‘ruled in’ and can be immediately referred to a cardiologist for specialist 

treatment. 
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TMACS has been extensively externally validated including 1,459 patients in the UK (5), 1,244 

patients from Australasia (49), Thailand (50) and Norway (51). Each validation demonstrated 

clinically desirable model performance. A pilot randomized controlled trial of an early version of 

TMACS demonstrated that a greater number of patients were discharged within four hours of arrival 

compared to normal care (52). TMACS was implemented into clinical practice at Manchester Royal 

Infirmary in June 2016 and was subsequently chosen as an exemplar project by Health Innovation 

Manchester to be rolled out regionally at 12 hospitals. 

Several other CPMs have been derived and validated to aid in the early diagnosis of ACS in ED 

patients with suspected cardiac chest pain (5,7,29–31). These CPMs all include hs-cTn as either a 

categorised or continuous variable, however the other predictor variables vary (Figure 1.1). The 

common goal of these CPM’s is to rule out ACS in the ED rapidly and safely with one hs-Tn result. 

Each has been synthesised with different methods leading to heterogenous clinical input variables 

and differing statistical strengths (Figure 1.1). Three CPMs were compared in the same cohort by 

Body et al allowing for direct comparison of performance (Table 1.3) (53).  TMACS had a sensitivity 

of 99.2% (95% CI 95.7-100.0) and a specificity of 53.3 (95% CI 49.9 56.7) ruling out 46.5% of patients 

(53). Whilst EDACS  ruled out 48.3% of patients it had a lower sensitivity of  96.2% (95% CI 92.2 - 

99.4) (53). HEART had a lower sensitivity and proportion ruled out of 91.8% (95% CI 85.0 -96.2) and 

34.9% respectively (53).  
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Figure 1.1 Variables included in clinical prediction models for acute coronary syndromes. EDACS – Emergency Department 
Assessment of Chest Pain Score, TMACS – Troponin-only Manchester Acute Coronary Syndrome rule out strategy, ESC – 
European society of cardiology -algorithm, LoD – limit of detection algorithm, High-STEACs - High-Sensitivity Troponin in 
the Evaluation of Patients With Acute Coronary Syndrome algorithm (5,7,29–31). ESC, LoDED and High STEACS included 
ECG and symptomatic criteria for entry into their care pathway but did not include it within the algorithm itself.  

CPM Sensitivity (95% 
CI) 

Specificity (95% 
CI) 

Proportion ruled 
out 

EDACS 96.2 (92.2 -99.4) 55.1 (51.4 -58.7) 48.3%  

HEART 91.8 (85.0 -96.2) 38.6 (35.1 -42.2) 34.9% 

TMACS 99.2 (95.7 -100) 53.3 (49.9 -56.7) 46.5% 

Table 1.3 Characteristics of clinical prediction models for acute myocardial infarction when compared in the same cohort 
from Body et al (53). CPM – clinical prediction model, EDACS – Emergency Department Assessment of Chest Pain Score, 
TMACS – Troponin-only Manchester Acute Coronary Syndrome rule out strategy. 
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1.3.4 Predicting Long term Cardiovascular Disease  
There is a lineage of successfully implemented CVD risk prediction models for primary care. An early 

achievement was the Framingham score based on a longitudinal cohort study of 5,127 patients from 

the United States of America with data collection starting in 1948 (54). In 1961, Kannel et al 

identified that the incidence of CHD was higher in patients with certain characteristics (55). In the 

subgroup who were male, 40-59 years of age, and had a total serum cholesterol of greater than 245 

mg/100ml the incidence rate of CHD was 120.3 per 1,000 population versus the expected rate of 

71.8 per 1,000 (55). Similarly for definite hypertension in men between 40-59 years of age the 

incidence of CHD was 123.7 per 1,000 of the population when it was expected to be 77.8 per 1,000 

(55). In participants who were male between 40-59 and had two or more risk factors (high total 

serum cholesterol, definite hypertension and evidence of left ventricular hypertrophy on the ECG) 

the incidence was 226.4 per 1,000 of the population when the expected incidence was only 83.0 per 

1,000 (55). This started the journey for long term cardiovascular risk prediction and the importance 

of multiple predictors. The Framingham project published several risk scores including one for 

coronary heart disease which gained widespread adoption, and was used within clinical care (56). 

The risk factors within the Framingham score were age, sex, smoking status, total cholesterol, high 

density lipoprotein, systolic blood pressure and diabetes mellitus (56). The resultant model had 

favourable performance with a c statistic of 0.73-0.77 for predicting the outcome coronary artery 

disease (comprised of angina pectoris, AMI, coronary insufficiency and cardiovascular related death) 

(56).  

Most recently a series of CPMs called ‘QRisk’ for predicting the development of CVD have been 

derived using the electronic records of 1.28 million patients in the UK. The original QRisk model was 

derived in 2007, QRISK-2® in 2008 and QRISK-3® in 2017 (57–59). Each iteration brought 

improvements in model characteristics, with respective c-statistics of 0.788, 0.817/0.792 

(male/female), and 0.880/0.858 (male/female) (58,59). With these improvements came new 

complexity in the form of variables that included severe mental illness, atrial fibrillation, chronic 
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kidney disease, family history of AMI, migraines and more. This lineage of CPMs were adopted into 

NICE guidelines for the assessment of CVD risk, they formed part of a protocol that included 

pharmaceutical interventions (60). If the 10-year predicted risk of CVD exceeds 10%, the National 

Institute for Health and Care Excellence (NICE) recommends that statin therapy should be 

considered (61). A range of other measures (advice on smoking cessation, weight loss, diet, exercise 

and review of comorbidities) are also recommended.  

This tool could also be used in the ED because most of the data required to calculate the risk of 

incident CVD are already routinely collected (59). Applying a prognostic tool such as QRISK-3 in the 

ED may help to identify patients who are at high risk of CVD who may otherwise have been 

unidentified. By identifying these patients in the ED, we may not only enable patients to be better 

informed, but we could prevent more incident CVD by detecting at-risk patients who may not have 

been seen in primary care.  

This may present an excellent opportunity for emergency physicians to identify a large population of 

patients at high risk of future CVD, at a time when they are likely to be particularly receptive.  

1.3.5 Calibration Drift  
Calibration drift is a reported phenomenon where a model’s performance in the domain of 

calibration diminishes over time (8). It is important in CPMs deployed in clinical practice as a mis-

calibrated model leads to inaccurate risk prediction and can enable wrong decisions to be made. This 

effect could be exaggerated  in a clinical pathway with risk thresholds where the incorrect 

intervention is selected as the patient is incorrectly designated to a risk group.

Calibration drift has been observed by Hickey et al when analysing a CPM predicting mortality after 

cardiothoracic surgery (EUROSCORE) (62). They demonstrated a divergence between predicted and 

observed risk over time, a drift in calibration. The earliest observed mortality was 4.1% and the 

EUROSCORE predicted mortality was 5.6%, this gave an observed/expected mortality ratio of 0.73 

(O/E ratio) (62). In a perfectly calibrated model, the O/E ratio would be 1, in a CPM that was 
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overestimating risk the O/E ratio would be less than 1 and if underestimating greater than 1. When a 

decade had passed in the data the analysis was repeated, and the observed mortality was observed 

to have dropped to 2.8% however the predicted mortality had risen to 7.6% causing the O/E ratio to 

drift to 0.37 (62). The main driver of this drift was thought to be an improvement in surgical 

techniques and a more elderly population.  

An analysis of CPMs for the outcome acute kidney injury identified a drift with the O/E ratio moving 

from 1.0 to 0.8. (63). Similar again for CPMs predicting hospital mortality drifted as well from 1.0 to 

0.75. (64). These drifts were in part driven by decreasing incidence for the CPM’s outcome, and they 

demonstrate the breadth of conditions.  

The causes of calibration drift are specific to each CPM and the population it is deployed within. The 

key drivers that can effect most CPMs are the older but healthier populations and new diagnostic 

and therapeutic interventions (62–64). The common cause of these drivers is the static nature of 

CPMs. Whilst the CPM, its variables, their coefficients and intercepts remain static the population it 

is deployed in changes (65). This is exacerbated by the time-lag between model derivation and 

implementation with models requiring observation cohort studies, derivation and validation all prior 

to implementation.  

1.4 Novel research methodologies

1.4.1 Updating Clinical Prediction Models 
Statistical and machine learning methods have previously been proposed to update models. Some 

methods can overcome the time delay by enabling automation where rederivation and validation 

can take place without active input. This dynamic process can allow the CPM to adapt to changes in 

the population’s demographics and updates to clinical practice. This offers improvements over 

historic methods of updating algorithms; it can be done quickly, continually and more accurately. 

Several different methods for updating clinical prediction models have been suggested (66); 

regression coefficient updating, meta-modelling and Bayesian dynamic updating. Regression 
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coefficient updating is a targeted method where only the individual coefficients previously in the 

CPM are adjusted from a static analysis. Meta-modelling is the amalgamation of several clinical 

prediction models into one again using one static singular further re-derivation (67–69). Bayesian 

dynamic enables updating and derivation after every patient encounter, once the correct 

implementation has been achieved it can theoretically continuously re-derive with new data (70,71). 

Siregar et al reviewed different updating methods and they found regression coefficient updating 

and dynamic updating to have a similar improvement on CPMs (72). Their analysis of dynamic 

updating suggested for smaller subgroups a Bayesian approach may yield greater improvements in 

accuracy (72). Strobl et al updated a prostate cancer CPM, and they again found that different 

updating methods had similar benefits for model performance (73). The only exception was random 

forest regression which was significantly worse. 

1.4.2 Co-production with patients 
Batalden comments in his essay that the patient health care relationship is not a simple consumer 

provider relationship (74,75). It is a dynamic interaction where the consumer can exert an influence 

upon the provider. This approach has been championed by service improvement initiatives, where 

the identification of the area for improvement (the idea genesis) is conducted by researchers and 

patients in partnership. Batalden proposes that through co-production this relationship can continue 

beyond idea genesis and into improvement and success measurement. Various different 

methodologies for this process have been proposed; most widely adopted is the experience-based 

co-design (EBCD). 

EBCD is a design used by several different initiatives, it encompasses four stages; Capture, 

Understand, Improve and Measure (76). The capture phase is where ideas are generated and 

prominent issues for resolution are condensed, then in understand the selected issues are 

extensively mapped. In the improve phase solutions are conceived to the issues in the first phases 

then in the measure phase the implementation of the proposed solution is checked for 

improvement. This process is synergistic with national guidance for developing complex 
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interventions from the Medical Research Council and the National Institute for Health Research (77). 

This framework describes four activities that are conducted to successfully develop and deploy an 

intervention, these include: develop the intervention, assess feasibility, implement and evaluate 

(77). They are clustered around core elements or principles which include: context, develop/refine 

programme theory, engage stakeholders, refine intervention and more (77). The development of 

any new care pathway could adopt the principles of both EBCD and complex intervention guidance. 

1.5 The Emergency Department Population 

There were 23.4 million patients presentations to the UK’s emergency departments (ED) in 2016, and 

this has been increasing by 10% each year (1). When these patient interactions represent the majority 

of a patients contact with the NHS, we cannot ignore their long-term health any longer.  

The increase in ED attendance represents a paradigm shift in the way patients are accessing health 

care, this has caused many previously noted problems however it also presents opportunity. Patients 

who attend EDs have often tried and failed to access primary care (78,79), therefore those that do 

attend EDs may be a portion of society underserved by primary care. Furthermore, in the drive for 

NHS system wide efficiency, we must maximise the use of each patient interaction with the health 

service. Considering the large amount of data already collected and stored routinely by EDs around 

the UK, this presents a fantastic opportunity to predict and intervene on cardiovascular risk. 

Preventative medicine is not a new concept to emergency medicine, and it has been researched and 

implemented successfully before (80). Patients demand and expect clinical staff in the acute care 

setting to have tools to inform them of their long term cardiovascular risk (9). 

While in the ED, all patients with suspected ACS will have vital signs recorded. However, these data 

are not currently used to identify patients at risk of CVD, which represents an important missed 

opportunity. Previous research has demonstrated that 76.4% of patients with hypertension in the ED 

had persistently elevated blood pressure in the community setting (81). Contrary to widespread belief, 
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hypertension in the ED cannot be wholly attributed to pain or anxiety. Recent studies have shown that 

hypertension measured in the emergency department is predictive of 10-year major adverse 

cardiovascular outcomes (82). Not only does predictive data exist in the ED but patients are also 

potentially more receptive to long-term CVD advice during an ED attendance (83). This interest in long 

term CVD health has been demonstrated in a survey and also a qualitative study (52,84). Ferry et al 

interviewed 50 patients with suspected ACS and discovered an emergent theme of “Approaches to 

future health”, where patients were considering their long term CVD risk and were more open to 

advice about disease prevention (84).   

In an ED setting, CVD risk prediction and modification has been trialled in the UK and the USA and has 

mainly been conducted in observational units. Katz et al used health belief model constructs during 

and after a presentation to ED with cardiac chest pain (85). They measured readiness to change and 

behaviours around modifiable cardiovascular risk factors and demonstrated improved behaviour.  

Katz et al also conducted a randomised control trial of a lifestyle counselling intervention (one hour 

face to face and two thirty minute telephone follow ups), which also demonstrated an improvement 

in all lifestyle risk factors (86). Despite this, challenges remain. Collins et al conducted an RCT of 

hypertension follow up in the UK ED setting. The patient population included ambulatory patients over 

the age of 35 years old who had their blood pressure taken as part of their routine care (87). The 

intervention group were given a counselling session, information booklet and a letter sent to their GP, 

whilst the control group were not (87). The study demonstrated no difference in follow up via  primary 

care, with no difference in lifestyle advice and no new anti-hypertensives prescribed across 

intervention or control group. This result was replicated in the United States where Julliard et al 

conducted a retrospective database review (88); they found that 32% of hypertensive patients in the 

ED were referred to primary care but worse still only 8.6% of hypertensive patients attended an 

appointment. Perhaps the most concerning aspect is that none of the referrals were primarily for 

hypertension follow up, they were all for other concurrent medical conditions. Schwalm et al 



36 

examined strategies to prevent CVD and highlighted the role of non-physicians in the identification 

and treatment of patients. It is feasible that in the United Kingdom this could involve health-care 

assistants, specialist nurses, or pharmacists. 

In the literature the pragmatic system factors have been explored; these are summarised in Table 1.4. 

These range from concerns over resources to opportunities of the teachable moment (82,83).  
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Concerns Reference

Rapid lowering of BP may be harmful, and 
therefore the initiation of treatment in the ED 
may not be advisable 

Julliard (88)

There is a fundamental question as to whether 
it is the ED’s role to conduct preventative 
medicine. 

Lee et al (89)

There is concern that the ED does not have the 
resources to conduct any additional activities. 

Lee et al (89)

Any CVD risk prediction would incorporate a 
blood pressure reading, and there is a belief 
that ED hypertension is related to anxiety 

Tanabe et al (83)

For any ED CVD risk modification, the long term 
follow-up of patients would be essential. A 
barrier to this continuity is that patients would 
have to independently research a GP and 
book/register 

Collins et al (87)

There is evidence that patients who consulted 
in the ED for CVD risk medication unfortunately 
have poor compliance with follow-up 
instructions. 

Collins et al (87)

Opportunities

There is a subset of the population who receive 
most of their care from the ED 

Tanabe et al (83)

When a patient presents to the ED with chest 
pain, it is thought they are then more receptive 
to CVD advice  

Tanabe et al (83)

As a patient becomes older their compliance 
with CVD risk advice increases. 

Murray et al (90)

The opportunity for non-clinical advisors has 
been explored successfully, making CVD advice 
more cost-effective. 

Schwalm et al (91)

Table 1.4 Pragmatic system factors for a long-term cardiovascular disease (CVD) prevention pathway in the emergency 
department (ED).
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1.6 Objectives of the thesis 

The two primary objectives of this thesis are listed below with secondary objectives listed in bullet 

points underneath. 

1. To develop a care pathway for the prediction of long-term CVD in the acute care setting. 

- To identify the feasibility of measuring and using common risk factors for CVD in the 

Emergency Department setting. 

- External validation of prognostic models for long term CVD outcomes. 

- To create a co-produced care pathway for long term CVD. 

2. To validate, assess and update the TMACS CPM.  

- To evaluate the diagnostic accuracy of the TMACS CPM for acute myocardial infarction in a 

real-world cohort of patients. 

- To assess the variation in performance of TMACS over time.  

- Identify the optimal ML methods for ongoing updating of TMACS. 
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1.7 Thesis Structure  

This thesis is divided into seven chapters (including this introduction chapter). Chapters two through 

four describe work to develop a care pathway for the prediction of long-term CVD in the acute care 

setting. Chapter two is a systematic review and meta-analysis of prognostic factors measured in the 

ED and their feasibility for use in long term CVD prediction. Chapter three is a retrospective cohort 

study where real-world evidence from the ED is linked with NHS Digital data to assess the prognostic 

characteristics of routinely measured emergency department data. Chapter four describes a 

qualitative study using co-production methods to produce a long-term CVD care pathway for the acute 

care setting.  Chapter five and six include research to achieve the second objective of the thesis 

validating, assessing and updating TMACS. Chapter five is a validation of TMACS in a large real world 

evidence cohort, where it is assessed for calibration drift. Chapter six then seeks to update and 

improve TMACS with a different method and identify the optimal approach. Chapter seven is the final 

chapter where the thesis is summarised and overall findings are concluded.  
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Chapter 2 A systematic review of risk factors for long term 
cardiovascular disease in the acute care setting 

2.1 Background 

It is well-established that a number of factors significantly increase the risk of future cardiovascular 

disease (CVD). That risk can be mitigated through medical intervention (14). The 23.4 million 

patients who attend Emergency Departments (EDs) each year in England and Wales are those who 

attend ED are likely to have tried and failed to access primary care, reducing important opportunities 

for primary prevention (1,78,79). Prognostic factors and CPMs have been extensively studied for 

primary care populations predicting the outcome of long term cardiovascular disease but there is a 

paucity of research for the acute care setting (54,92). 

I conducted four systematic reviews and meta-analyses,  exploring the predictive value of four 

established prognostic factors in the ED population and the feasibility of their use for primary 

prevention in this setting. These included hypertension (HTN), chronic kidney disease (CKD), type 

two diabetes mellitus (T2DM), and dyslipidaemia (19). If I found them to be of prognostic value in 

the ED setting, I then planned to carry them forward in my analysis of long-term CVD prognostic risk 

factors from EPR data. 

2.2 Published work  

I led the work on these systematic reviews however other researchers acted as second reviewers for 

abstracts, full texts and data extraction. Dr Patricia van den Berg (PB) was a second reviewer for the 

hypertension review, Dr Govind Oliver (GO) was a second reviewer for type two diabetes mellitus 

and dyslipidaemia, and Dr Mina Naguib (MN) was the second reviewer for chronic kidney disease. 

Professor Richard Body was the third adjudicator if there was disagreement. Despite my leadership 

of these systematic reviews, I have adopted the first-person plural in this text to reflect the wider 

team.  
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The hypertension systematic review and meta-analysis described in this chapter has been published 
(93).  

Reynard, C., van den Berg, P., Oliver, G., Naguib, M.P., Sammut-Powell, C., McMillan, B., Heagerty, A. 
and Body, R., 2022. The prognostic value of emergency department measured hypertension: a 
systematic review and meta-analysis. Academic Emergency Medicine, 29(3), pp.344-353.

2.3 Objectives 

(a) To identify the prevalence, confirmation and follow up rate for common prognostic factors for 

CVD in the Emergency Department setting. 

(b) To determine whether those risk factors retain their prognostic value for long term CVD 

outcomes over time periods greater than or equal to one year in the ED setting. 

This systematic review and meta-analysis was conducted in accordance with Preferred reporting items 

for systematic reviews and meta-analysis guidelines and was also registered on PROSPERO 

[CRD42018110517] (94,95). The systematic review looks back twenty years rather than the ten 

originally specified. This decision was taken as there has been little change in the technology 

measuring ED blood pressure and as such we felt that the longer time period would continue to be 

relevant to the present day. 

2.4 Methods 

We targeted two populations for investigation: firstly the general ED population (‘regardless of 

presenting complaint), who could be screened for long-term CVD risk; secondly, patients attending 

the ED with suspected cardiac chest pain, where there may be opportunities to exploit a ‘teachable 

moment’ in a patient group that may be particularly receptive to a screening programme (85).  
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2.4.1 Search question 
We used the population, factor, outcome framework (PFO), to build the research questions for four 

systematic reviews around different factors (96). 

Population –general ED population or ED patients with chest pain of suspected cardiac aetiology. 

Factor- hypertension (HTN), and dyslipidaemia, chronic kidney disease (CKD), and type 2 diabetes 

mellitus (T2DM). 

Outcome – long term cardiovascular outcomes (CVD)  

Timing -outcome occurring beyond or equal 12 months 

Setting – Emergency Departments 

2.4.2 Criteria for considering studies for this review 

Study inclusion criteria: 

- studies that match the PFO framework or may be applicable  

- that have been conducted in the last 20 years 

- randomised control trials 

- prospective observational trials 

- retrospective studies 

- conference abstracts 

- published and in press studies 

- English language 
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2.4.2.1 Targeted Population 

Two patient groups were of interest for this review: (a) undifferentiated patients attending the ED; 

and (b) patients presenting with chest pain suspicious of cardiac aetiology. These populations were 

selected are they were felt to be the ideal targets for future screening programmes. 

Undifferentiated chest pain suspicious of cardiac aetiology is defined as clinician suspicion or entry 

into a cardiac chest pain care pathway.  

2.4.2.2 Prognostic factors considered 

Blood pressure – measured in the emergency department. It was envisaged that the most widely 

available variable would be dichotomous around the common clinically significant threshold of 

140/90 mmHg (97). It is recommended that patients have serial readings, involving periods of rest or 

ambulatory measurements. It was not envisaged that this would be universal in the Emergency 

Departments but we planned to attempt sensitivity analysis of the different measurement 

techniques if possible, to attempt to detect any effect it may have had on measurement (98). 

Dyslipidaemia – this includes low density lipo-protein (LDL), and high density lipo-protein (HDL). This 

is measured from blood serum drawn during presentation from the patient. It is presented in mmol/l 

or mg/dl. There is international variability in the clinically significant threshold for dyslipidaemia and 

is frequently incorporated directly into cardiovascular prognostic models. Therefore, we planned to 

adopt a pragmatic approach on the thresholds, and measure for introduction of error via sensitivity 

analysis if feasible.  

Chronic kidney disease (CKD) – this is routinely measured using the Modification of Diet in Renal 

Disease study equation (MDRD) (99), or the Chronic Kidney Disease Epidemiology collaboration 

(CKD-EPI) (100) which both use an equation based on age, sex, race and creatinine for estimation of 

estimated glomerular filtration rate (eGFR) in the units of ml/min/1.73m2. The measurement is a 

continuous variable, however it is frequently interpreted and presented as an ordinal variable in 

categories of CKD stage 1-5. we sought to analyse it as a continuous variable where possible.
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Type 2 diabetes mellitus (T2DM) – the definition of T2DM varies again internationally, the World 

Health Organisation recommends that serial samples are taken for asymptomatic patients and only 

in patients with symptoms of diabetes can it be diagnosed with a single blood test (101,102). This 

serum blood test can consist of HbA1c, fasting plasma glucose or non-fasting plasma glucose, they 

are considered suspicious of T2DM at levels of 48 mmol/mol (6.5%), 11 mmol/l, 7 mmol/l 

respectively. The American Diabetes Association recommends that these two test can be taken from 

the same sample (103). We will be pragmatic in our proposed meta-analysis and examine both 

definitions and any other encountered.  

2.4.3 Outcome measurement 

Feasibility outcomes – point prevalence, persistence and attendance for follow-up for the prognostic 

factors. 

Prognosis - ability to predict cardiovascular outcomes including acute myocardial infarction, coronary 

revascularisation, coronary heart disease, angina, stroke, transient ischaemic attack, cerebrovascular 

event (ischaemic or haemorrhagic) and death (all cause and CVD). The timescale was greater than 

one year from the index event. 

2.4.4 Information Sources 
The following information sources were searched independently by two researchers. 

- Electronic databases: Medline and Embase  

- World Health Organisation – International Clinical Trials Registry Platform 

- British Library Thesis 

- Secondary Reference checking of papers selected for inclusion 

Experts in the field: Professor Richard Body and Professor Tony Heagerty 

2.4.5 Search Strategy – Medline & Embase 
This was reviewed by two independent researchers and is reported in the appendix. 
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2.5 Data Collection 

2.5.1 Selection of studies 
The studies returned from the initial searches had their title and abstract reviewed by two 

independent reviewers (CR for all, PB for HTN, GO for T2DM and Lipids, MN for CKD). Selected 

papers then underwent full text review by again by two independent researchers, when 

disagreement occurred between researchers a third independent researcher reviewed the paper 

and agreement was met by consensus (RB). 

2.5.2 Data Extraction and Management 
The electronic search strategies were stored electronically on the Ovid interface, bespoke electronic 

study and data collection forms were created for the purpose of the systematic review. These forms 

enabled blinding of each researcher’s review.  

2.5.3 Risk of bias in individual studies 
We used the QUIPS tool to analyse the risk of bias in each prognostic factor study (104), reporting by 

each domain: study participation, study attrition, prognostic factor measurement, outcome 

measurement, study confounding, and statistical analysis.  

2.6 Data Synthesis 

2.6.1 Meta-analysis plan  
When the outcome data was suitable and comparable, we  conducted a meta-analysis using a 

random effect model and exact likelihood method outlined by Hamza et al for binomial distributions 

(105). Statistics were appropriately transformed as needed. We used R, including packages metafor, 

meta and ggplot2 (106–109). We also used the I2 statistic to assess heterogeneity, I2 quantifies the 

impact intra-study heterogeneity on the pooled results (110). 
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2.6.2 Subgroup analysis and sensitivity analysis 
We conducted a sub-group analysis of blood pressure based on initial repetition of BP measurement 

and acuity of presenting patients. Examining dyslipidaemia, we also conducted a sensitivity analysis 

based on the differing diagnostic thresholds, similar for T2DM.  

2.7 Results for the prognostic factor hypertension 

2.7.1 Study selection 
We ran the electronic database search on the 27/10/20 our electronic database search we identified 

1,072 papers, 725 remained after removal of duplicates. 53 were selected for full text review after 27 

were excluded, 26 were included for review. Exclusions were based on outcome, population and 

duplicates (Figure 2.1). The authors of six of the studies identified were contacted for more 

information, including the 4 trial protocols identified and two studies which did not contain sufficient 

data to be included (111–115). Unfortunately, no replies were received in time for publication. No 

additional papers were identified from grey literature searches.  

2.7.2 Study Characteristics 
The characteristics of the 27 included studies can be found in Table 2.1 and Table 2.2, most studies 

reported outcomes relevant to the feasibility outcomes.  

Eighteen were from the USA, two from the UK, one from Australia, Canada, South Korea, Israel, Iran, 

Sweden and Hong Kong. 11 studies were prospective and the remainder retrospective. The sample 

size varied from 701,952,422 to 88 (116,117), the implications of which are discussed later. Prevalence 

estimates were available from fifteen studies (81,87,88,116,118–128). Eight studies had outcomes for 

and the persistence of hypertension within the ED (118,120,123,127,129–132) and 12 outside of ED 

(81,83,87,88,118,125,127,132–136). 8 studies reported attendance rates for follow up appointments 

(87,88,118,126,129,132,134,135) and only three analysed the prognostic characteristics of ED 

hypertension as a risk factor for long-term cardiovascular disease (82,128,137). All studies included 

broad ED populations, none were specific to chest pain.  
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Records identified through 
electronic database searching

(n = 1,072) 

Records after duplicates removed

(n = 725) 

Full-text articles assessed for 
eligibility 

(n = 53) 

26 Studies in included 
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27 Studies excluded

Based on outcome 9, population 9, 
protocols only 4, duplicate 5  

672 Records excluded 

347 Duplicates removed

Figure 2.1 Flowchart of blood pressure study selection process 
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Author, Country,
Year

Study
Design N Measurement

of BP
Recruitment
Period Follow up Outcome

Measure
Risk of
bias

Adhikari, USA, 
2016 (131) R 179 ED 2011 N/A BP advice M

Backer, USA, 2003
(132) P 407 3 x ED 2000 6 months F/U BP M

Baumann, USA,
2007 (120) P 991 3 x Researcher 2004 N/A Descriptive M

Baumann, USA,
2009 (123) R 4245 ED 2005-2006 N/A Repeat ED

BP M

Cienki, USA, 2013
(130) R 1000 ED 2005-2010 N/A BP advice M

Cline, USA, 2006
(134) R 1391 EPR 2003-2004 3 months Secondary

care F/U M

Collins, UK, 2008
(87) P 765 2 x Researcher 2005-2006 6 months Primary

care F/U M

Dolatabadi, Iran,
2014 (125) P 346 2 x ED 2009 - 2010 30 days Prevalence M

Fleming, UK, 2005
(81) P 991 2 x Researcher 2004 30 days Sustained

HTN M

Goldberg, USA,
2017 (127) P 151 3 x Researcher 2014-2017 2 weeks Sustained

HTN M

Julliard, USA, 2012
(88) R 662 EPR 2009 3 months Primary

care F/U M

Karras, USA, 2005
(118) P 7238 1 X ED 2002 30 days Primary

care F/U M

Lee, South Korea,
2018 (82) R 262.927 EPR 2002-2013 10 years MACE M

Table 2.1 Characteristics of the included studies examining hypertension (part one of two), R = retrospective, P = 
prospective, EPR = electronic patient record, N/A = not applicable, F/U = follow up, HTN = hypertension, BP = blood pressure 
H = high risk of bias M = moderate risk of bias, L = Low risk of bias. 
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Author, Country,
Year

Study
Design N Measurement

of BP
Recruitment
Period Follow up Outcome

Measure
Risk of
bias

Masood, Canada, 
2016 (137) R 206,147 EPR 2002-2012 2 years All-cause 

mortality M

McNaughton, USA,
2015 (116) R 701,952,422 EPR 2006-2012 N/A Descriptive M

Meurer, USA, 2019
(136) P 201 1 x ED 1 x self-

reported 2014-2015 3 months Sustained
HTN M

Oras, Sweden,
2020 (128) R 300,193 EPR 2010-2016 6 yeas MACE M 

Shah, USA, 2011
(124) R 601 EPR 2009-2010 N/A F/U M

Shiber-Ofer, Israel,
2015 (133) P 195 ED 2009-2010 5 years F/U BP L

Souffront, USA,
2016 (129) R 2367 EPR 2014-2015 N/A N/A M

Svenson, USA,
2008 (121) R 2821 EPR 2006 1 year Descriptive M

Tan, Australia,
2013 (126) P 534 1 x Researcher 2010-2011 5 weeks Descriptive M

Tanabe, USA, 2004
(117) R 88 ED 2001 N/A Descriptive M

Tanabe, USA, 2008
(83) P 175 2 x ED 2005-2006 1 week Sustained

HTN L

Tilman, USA, 2007
(119) R 1574 EPR 2004 N/A BP advice M

Tsoi, Hong Kong,
2012 (135) P 245 2 x ED 2010 2 weeks Primary

care F/U M

Umscheid, USA,
2008 (122) R 2061 EPR 2005 N/A Descriptive M

Table 2.2 Characteristics of the included studies examining hypertension (part two of two), R = retrospective, P = 
prospective, EPR = electronic patient record, N/A = not applicable, F/U = follow-up, HTN = hypertension, BP = blood pressure 
H = high risk of bias M = moderate risk of bias, L = Low risk of bias. 
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2.7.3 Risk of bias within studies 
We used the QUIPS tool to assess the risk of bias, most studies were rated as a moderate overall risk 

of bias (Table 2.3). No studies were found to have a high risk and two were found to have a low risk of 

bias (83,133). The domain which qualified studies as moderate risk was mostly the study participation 

domain for inclusion criteria. Four studies adjusted for anxiety and fear as confounders, however they 

all demonstrated a persistence of hypertensive readings despite the presence of these factors. Some 

studies accounted for the potential confounders of fear and anxiety (81,83,131,132). A moderate risk 

of bias was assigned to this domain if potential confounders were not accounted for. 

Author, Year Domain 1     
Population 

Domain 2           
Attrition 

Domain 3                
Factor  

Domain 4           
Outcome  

Domain 5                 
Confounding 

Domain 6           
Analysis Overall 

Adhikari, 2016 (131) Moderate Low Moderate N/A Moderate Low Moderate 
Backer, 2003 (132) Moderate Low Low Low Moderate Low Moderate 

Baumann, 2007 (120) Low Low Low Low Low Moderate Moderate 
Baumann, 2009 (123) Moderate Low Moderate N/A Moderate Moderate Moderate 

Cienki, 2013 (130) Low Low Moderate Moderate Moderate Moderate Moderate 
Cline, 2006 (134) Moderate Moderate Moderate Moderate Moderate Moderate Moderate 
Collins, 2008 (87) Moderate Low Low Low Low Moderate Moderate 

Dolatabadi, 2014(125) Low Moderate Low Low Low Moderate Moderate 
Fleming, 2005 (81) Low Moderate Low Low Low Low Moderate 

Goldberg, 2017 (127) Low Low Low Low Moderate Low Moderate 
Julliard, 2012 (88) Moderate Moderate Low Moderate Moderate Low Moderate 
Karras, 2005 (118) Low Low Moderate Moderate Moderate Moderate Moderate 

Lee, 2018 (82) Moderate Moderate Moderate Low Moderate Low Moderate 
Masood, 2016 (137) Moderate Moderate Moderate Moderate Moderate Low Moderate 

McNaughton, 2015 (116) Moderate Moderate Moderate N/A Moderate Moderate Moderate 
Meurer, 2019 (136) Low Moderate Moderate Low Low Low Moderate 

Oras, Sweden, 2020 (128) Low Low Moderate Moderate Moderate Low Moderate 
Shah, 2011 (124) Moderate Low Moderate Moderate Moderate Moderate Moderate 

Shiber-Ofer, 2015 (133) Low Low Low Low Low Low Low 
Souffront, 2016 (129) Moderate Low Low Moderate Low Moderate Moderate 

Svenson, 2007 (121) Moderate Moderate Low Low Moderate Low Moderate 
Tan, 2013 (126) Low Low Low Low Low Moderate Moderate 

Tanabe, 2004 (117) Moderate Low Moderate Moderate Moderate Moderate Moderate 
Tanabe, 2008 (83) Low Low Low Low Low Low Low 

Tilman, 2006 (119) Low Low Low Low Moderate Low Moderate 
Tsoi, 2012 (135) Low Low Low Low Low Moderate Moderate 

Umscheid, 2008 (122) Moderate Low Low Moderate Low Low Moderate 
Table 2.3- Risk of bias in studies examining hypertension. This was conducted using the QUIPs tool (20). Domain 
1 – Study Participation, domain 2 – Study Attrition, domain 3 – Prognostic factor measurement, domain 4 – 
outcome measurement, domain 5 – study confounding, domain 6 – Statistical analysis and reporting
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2.7.4 Extracted outcomes 
Across studies, the prevalence hypertension in the ED (defined by a single reading of ≥ 140/90 mmHg) 

ranged from 16% to 62% (119,127). The pooled prevalence of hypertension was 31% (95% CI 25 – 

37%). This pooled estimate was unchanged in a sensitivity analysis where the largest study was 

removed; 31% (95% CI 25 – 39%) (Figure 2.2) (116). Perhaps due to the inclusion of studies with 

different designs and in different settings, we estimated very high heterogeneity, with an I2 of 99.7. 

Heterogeneity has also been noted to be higher due to the inclusion of more studies in a meta-analysis 

which is relevant here (138). We conducted further sensitivity analyses to see the effect of different 

subgroups of studies on the pooled results. However, they did not demonstrate a significant 

association with the result (subgroups included: blood pressure measurement method, risk of bias, 

prospective vs retrospective and risk of bias). Furthermore, having a pooled estimate is most 

informative for clinicians. The width of the 95% confidence intervals reflects the heterogeneity and 

even the lower 95% confidence interval is a clinically meaningful prevalence.  

Of those with an initial hypertensive reading, hypertension was found to persist throughout the ED 

visit in 62% of patients, overall (pooled estimate, 95% CI 56 – 68%), with a range from 44 to 77% (I2

0.84, indicating high heterogeneity; see Figure 2.3). (127,131). The lowest rate of persistence was 

from Goldberg et al at 44%, this could potentially be due to the automated BP measuring device used 

which averages 5 readings taken over 5 minutes. Following discharge from the ED, hypertension 

persisted in 50% of patients (pooled estimated, 95% CI 38 – 61%, I2 90.2%, see Figure 2.4), with a range 

of 26 to 88%. 

There were substantial differences in the proportion of patients who attended follow-up after 

hypertensive readings in the ED, with estimates ranging from 2% to 65% (I2 97.3%) (129,132). The 

meta-analysis found a pooled estimate for attending a follow up appointment for ED hypertension to 

be 0.41 (95% CI 0.23 – 0.62), see Figure 2.5. Again, a sensitivity analysis was conducted to examine the 

effect of subgroups on the heterogeneity, it appeared to be driven in part by prospective vs 

retrospective methodologies.    
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The prognostic characteristics of hypertensive readings for long term cardiovascular outcomes were 

identified in three large retrospective studies from Canada, South Korea and Sweden (82,128,137). 

The Canadian study examined ED patients who had a coded diagnosis of hypertension and their 

outcomes at two years. Of the 206,147 patients 3.59% (95% CI 3.51-3.68) died and 9.3% had a 

complication of hypertension (control data was not presented) (137). The incidence of major adverse 

cardiac events (MACE) was examined in a South Korean database comprised of 262,972 low acuity 

attendances. The association of coded hypertension with MACE was examined and at 0-3 years follow 

up the hazard ratio (HR) was 4.25 (95% CI 3.83 - 4.71), at 4-6 years follow the HR was 3.65 (95% CI 3.14 

- 4.24), and at 7-10 years follow up the HR was 3.20 (95% CI 2.50 - 4.11) (82). Incident atherosclerotic 

CVD was examined in a Swedish retrospective study of 300,193 ED (128). Over a mean follow up time 

of 3.5 years a systolic blood pressure of 140-159 mmHg had a HR of 1.24 (95% CI 1.09-1.41), 160-

179mmHg had a HR of 1.62 (95% CI 1.42-1.85) and >180mmHg had a HR of 2.02 (95% CI 1.75-2.33) 

(128). This demonstrates an exposure-response relationship for atherosclerotic CVD and increasing 

grades of systolic hypertension. A meta-analysis was not conducted combining the Swedish and South 

Korean studies due to the differing outcome definition. The South Korean study included ACS, 

revascularisation, stroke, heart failure, pacemaker insertion and cardiovascular death (137). Whereas 

the Swedish study included AMI, stroke, and cardiovascular death (128). 
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Figure 2.2 Meta-analysis forest plot of the prevalence of hypertensive readings in the emergency department 

Figure 2.3 Meta-analysis forest plot of the persistence of hypertensive readings in the emergency department
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Figure 2.4 Meta-analysis forest plot of the persistence of hypertensive readings at follow up appointments 

Figure 2.5 Meta-analysis forest plot of the rate of attendance at hypertension follow up clinics 
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2.8 Results for the prognostic factor type two diabetes mellitus 

2.8.1 Search Results 
Searches were conducted on the 09/10/2021 and we identified 969 studies, of which 779 were unique. 

After title and abstract review 21 underwent full text review and 10 were selected for inclusion (Figure 

2.6).  

2.8.2 Study characteristics 
The majority of the studies were conducted in the USA and two diagnostic criteria were encountered 

for T2DM: the World Health Organisation (WHO) definition (102) and American Diabetes Association 

(ADA) definition (103). Eight of the 9 studies were prospective, and the sample sizes ranged from 

101 to 2652 (Table 2.4).  All studies were from general ED cohorts except those with outcomes for 

those reporting prognostic characteristics for CVD.

2.8.3 Risk of bias 
A moderate risk of bias was identified in all but two studies, with Silvermann et al (2006) obtaining a 

low score (139) and Silvermann et al (2011) obtaining a high score (140). Most studies had a high 

participant attrition rate and failed to account for confounders that may have influenced blood 

glucose such as physiological stress. Full details are given in Supplementary Table 8.1. 

2.8.4 Prevalence of type two diabetes mellitus 
Two definitions of the target condition were present amongst the identified studies: WHO and ADA 

definitions. Both used similar thresholds, but the WHO definition explicitly requires the two 

abnormal results to be from two separate samples drawn at different times. These different 

definitions were examined separately in meta-analysis. The studies using the WHO definition 

screened for T2DM in a two-phase process using either a blood glucose or HbA1c as a first screen. If 

this led to a positive result, the patients underwent further confirmatory investigations. The 

reported prevalence is for confirmed cases of T2DM by the end of the diagnostic pathway which 

included follow-up visits. 
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Six studies reported against the ADA definition (140–145). Each study included general ED patients 

based on elevated HbA1c and serum glucose levels in the ED, but they used different glucose 

thresholds (5.5, 6.0, 7.0 mmol/L). On meta-analysis, the pooled prevalence of confirmed T2DM was 

30% (95% CI 18-46%), the I2 value was 70.3% (Figure 2.7). Seven studies were identified that took 

serial samples over separate days thereby enabling the analysis of prevalence as per the WHO 

definition  (139–143,145,146). An exact likelihood random effects model was used that gave an 

estimated prevalence of 18% (95% CI 10 – 29%, I2 91.14%, Supplementary Figure 8.1). 

2.8.5 Adherence to follow-up for type two diabetes mellitus 
Five studies reported the proportion of patients who were identified as at risk of type 2 diabetes 

mellitus in the ED, defined by elevated HbA1c or serum glucose, who attended follow-up (139,141–

145), observed in the USA, Australia and the UK. The pooled estimate of the proportion of patients 

attending follow-up appointments was 0.55 (95% CI 0.25 - 0.82). The I2 value was 98.3% 

demonstrating significant heterogeneity across these studies (Supplementary Figure 8.2). 

2.8.6 Prognostic value of type two diabetes mellitus 
Only two studies reported the association between previously diagnosed T2DM and long-term 

cardiovascular outcomes: Farkouh et al and Sanchis et al (147,148). Farkouh et al retrospectively 

examined 2,271 patients presenting with chest pain for a median follow-up of 13.6 years in Canada 

(147). The adjusted hazard ratio (HR) for T2DM to predict mortality was found to be 2.45 (95% CI 

2.14-2.81) and being under 50 years old interacted with T2DM, resulting in an overall HR 4.7 (95% CI 

1.56-14.1). Farkouh et al also examined a composite outcome for major adverse cardiac and cerebral 

events which included death, AMI, stroke, or revascularisation. The HR for this composite outcome 

was 3.19 (95% CI 1.65 – 6.18). Sanchis et al prospectively analysed 1,011 patients presenting with 

chest pain across one year, with the primary outcomes of all-cause mortality and acute myocardial 

infarction. The hazard ratio for those with T2DM was reported as 2.3 (95%CI 1.4-3.8) for this 

composite outcome. A meta-analysis was not conducted due to the small number of studies. 
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Figure 2.6 Flowchart of type 2 diabetes mellitus study selection process
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Author, Country,

Year

Study

Design

N Glycaemic

Threshold 

(mmol)

Recruitment

Period

Follow up Outcome Measure DM definition Population Risk of bias

Hng, Australia 2016

(146)

P 2652 5.5 NR N/A T2DM Prevalence HbA1c General M

Jelinek, Australia,

2010 (145)

P 725 6.0 2007 - 2008 4 weeks T2DM Prevalence OGTT General M

Charfen, USA, 2009

(142)

P 528 7.8 2004-2006 6 weeks T2DM Prevalence HbA1c & PBG General M

Hewat, UK, 2009

(144)

P 101 5.5 2006-2007 2 months T2DM Prevalence NR General M

George, UK, 2005

(141)

P 500 7.0 2003 1 week T2DM Prevalence Fasting CBG General M

Silverman, USA, 2006

(139)

P 541 6.1 2006 N/A Elevated HbA1c N/A General L

Ginde, USA, 2008

(143)

P 265 N/A 2007 3 months T2DM Prevalence OGTT General M

Silverman, USA 2011

(140)

P 618 N/A 2005-2007 55 days T2DM Prevalence OGTT General H

Farkouh, USA, 2009

(147)

R 2271 N/A 1985-1992 7.5 years Mortality / MACE N/A Chest-pain M

Sanchis, USA, 2008

(148)

P 1011 N/A 2001-2006 1 year Death or AMI N/A Chest-pain M

Table 2.4 - Characteristics of the included studies for the prognostic factor type 2 diabetes mellitus, R = retrospective, P = 
prospective, MACE = major adverse cardiac event, AMI = acute myocardial infarction, CBG = capillary blood glucose, OGTT = 
oral glucose tolerance test, H = high risk of bias M = moderate risk of bias, L = Low risk of bias. Glycaemic threshold = the 
threshold above which further confirmatory testing was conducted.  
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Figure 2.7 -Meta- analysis forest plot of prevalence of type two diabetes mellitus by American diabetes association 
definition. This includes only the general ED population has no other results were identified. 
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2.9 Results for the prognostic factor dyslipidaemia 

2.9.1 Search Results 
We identified 723 papers in the database searches, consisting of 719 unique (Figure 2.8). Seven were 

selected for full text review, resulting in 3 further exclusions due to the sample population, leaving 4 

included for review (126,149–151).  

2.9.2 Study characteristics  
Of the four studies included, two were from the USA (150,151) and two were from Australia 

(126,149)  (Table 2.5). Only Tan et al’s study recruited undifferentiated ED patients (126), with the 

remainder focusing on a suspected ACS population. Three studies reported total cholesterol but 

used a variety of different thresholds (126,149,150) ranging from >5.0mmol/L ((149)), to >6.0mmol/L 

(126). The baseline population prevalence of dyslipidaemia was reported to be similar at 51.5 and 51 

percent in each country (149,150). High density lipo-protein was reported in two trials (149,150), 

and low density lipo-protein levels were reported in two studies (149,151). 

2.9.3 Risk of bias 
Elder et al scored moderate on the domain study attrition due to 51% of patients being missed and 

thereby potentially incorporating bias into the findings. The remaining three studies had a low risk of 

bias with only the prevalence of dyslipidaemia reported. Full details are given in Supplementary 

Table 8.2. 
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Figure 2.8 Flowchart of dyslipidaemia study selection process
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2.9.4 Prevalence of dyslipidaemia 
A direct comparison of the prevalence of dyslipidaemia was not possible due to differing thresholds 

and tests. Total cholesterol levels were abnormal in 21% and 57% of patients respectively, across 

three studies. Elder et al examined any patient with non-traumatic chest pain and had the highest 

prevalence of abnormal total cholesterol (>5mmol threshold) at 57% (149). Diercks et al examined 

low risk patients admitted to a chest pain evaluation unit and found a prevalence of abnormal total 

cholesterol to be 41% (>5mmol threshold) (150). Tan et al found the lowest prevalence of abnormal 

total cholesterol levels when examining all ED attendees without a “substantial illness”, it was 21% 

using a higher threshold of >6mmol (126). Whereas high LDL was noted in 25% to 52% of patients 

and high HDL in 11 to 24%. Because of the variations in the thresholds used to diagnose 

dyslipidaemia between studies, meta-analysis was not felt to be appropriate (Table 2.6). 

Author,

Country, Year

Study

Design

N Recruitment

Period

Components

of 

dyslipidaemia

Total

Cholesterol 

(mmol/L)

Outcome

Measure

Population Risk of

bias

Elder, Australia,

2006 (149)

P 185 2003-2004 TC, LDL, HDL,

Apo B

> 5.0 Prevalence Chest-pain M

Diercks, USA,

2002 (150)

P 606 1999 TC, HDL > 5.2 Prevalence Chest-pain L

Chandra, USA,

2002 (151)

P 112 2001 LDL > 4.9 Prevalence Chest-pain L

Tan, Australia,

2013 (126)

P 827 2010-2011 TC > 6.0 Prevalence General L

Table 2.5 Characteristics of the included studies for dyslipidaemia search, R = retrospective, P = prospective, TC = total 
cholesterol, LDL = low density lipo-protein, HDL = high density lipo-protein, Apo B = Apolipoprotein B, H = high risk of bias M 
= moderate 
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Number of 
studies Pooled estimate (95% CI) Min Max 

Prevalence in ED setting

T2DM 10 - - -

ADA 6 0.3 (0.18 - 0.46) 0.13 0.64

WHO 7 0.18 (0.1 - 0.29) 0.11 0.38

Dyslipidaemia* 4 - - -

Total cholesterol 2 - 0.21 0.57

LDL 2 - 0.25 0.52

HDL 2 - 0.11 0.24

Follow-up attendance

T2DM 5 0.55 (0.25 - 0.82) 0.23 0.99

Table 2.6 Summary of systematic review findings – ADA – American Diabetes Association definition, WHO – World Health 
Organisation definition, LDL – low density lipo-protein, HDL – High density lipo-protein, T2DM – Type two diabetes mellitus, 
*- some studies reported multiple outcomes 
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2.10 Results for the prognostic factor chronic kidney disease

2.10.1 Study selection 
Through our electronic database search, we identified 259 papers, 197 remained after removal of 

duplicates. Five were selected for full text review after 3 were excluded, 2 were included for review 

(148,152). Exclusions were based on outcome, population and duplicates (Figure 2.9).  

2.10.2 Study Characteristics 
Both studies focused on chest pain populations, with Sanchis et al conducting a prospective analysis 

in a low risk chest pain population of 1,011 patients (no ST deviation on ECG or abnormal troponin 

result)(148). It was conducted in a single Spanish hospital and included patients from 2001- 2006. 

Chaikriangkrai et al ran a retrospective analysis of chest pain patients in whom a computed 

tomography coronary angiogram had been done (152). It included 949 patients, from a single USA 

centre between 2005 – 2008 (152). Each study used different outcomes over different follow up 

periods. Sanchis et al recorded one year rate of all-cause mortality or AMI and Chaikriangkrai 

examined major adverse cardiac events over a median of 5.3 years (148,152). Both converted the 

continuous variable of renal function into a dichotomous one, thereby losing statistical power, 

estimated to be equivalent to discarding a third of the data (153). 

2.10.3 Risk of bias 
Risk of bias was assessed using the QUIPS tool (104), this is reported in Supplementary Table 8.3. 

Chaikriangkrai et al was given a high-risk bias due to a very large study attrition rate. Only 949 out of 

a possible 5066 patients were included. This was mainly due to a lack of CT coronary angiography 

being conducted, however unfortunately there was no comparison of these two groups to quantify 

the effect of the missing data. 

The only successfully extracted outcome were for the prognostic effect of CKD on long term CVD 

outcomes. 
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Figure 2.9 - Flowchart of chronic kidney disease study selection process 
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2.10.4 Findings 
Sanchis et al did not find CKD to be a significant individual prognosticator in a cox regression analysis 

for the composite outcome of all cause death or AMI at one year (148). Chaikriangkrai et al 

demonstrated a significant effect of CKD on MACE with a multivariable Cox regression analysis; 

hazard ratio 10.18 (95% CI 4.24 - 24.25) (152). Examining the Kaplan-Meier curves the hazard ratio 

only significantly differs beyond one year. 

2.11 Discussion  

The detection of CVD prognostic factors where it is unrelated to the presenting complaint could be 

considered preventative medicine. Such public health programmes in the emergency department 

have been argued for before. Bernstein et al described it as a “critical juxtaposition”, highlighting the 

large need of the ED population contrasted by a specialty that does not classically take a role in 

primary prevention (154).  

This work has demonstrated that screening patients in the ED would reveal a high prevalence of 

prognostic factors for future cardiovascular disease. It is often believed that hypertension in the ED 

may be caused by pain or anxiety, leading clinicians to downplay its significance. However, this 

systematic review has also identified a substantial rate of persistence beyond the emergency 

department and that it was prognostically important.  We also found that T2DM and dyslipidaemia 

were prevalent in the ED population, particularly those presenting with chest pain, further indicating 

the potential for targeted CVD risk factor screening. 

For hypertension the prevalence was the most reported however it consisted of mainly moderately 

biased studies. The meta-analysis estimate for the prevalence of ED hypertension was 0.31 (95% CI 

0.25 – 0.37).  Furthermore pain was adjusted for in several of the studies and does not appear to 

have a significant effect on the readings.(81,88,117,117,121,122,131–133). These hypertensive 

readings persist within ED, and at follow up (pooled proportion of 0.67 and 0.55 respectively). This 
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suggests that observing hypertension within the ED can not only be indicative of persistent 

hypertension  but there was evidence that hypertensive ED readings were associated with an 

increased risk of long term CVD outcomes (82,137).  

A standard approach for confirming hypertension might be serial measurements between the ED, 

outpatient clinics or primary care. Unfortunately, we demonstrated that services might only expect 

an attendance rate of 41%. To capture these patients in a care pathway this confirmation could be 

conducted in the ED, thereby avoiding loss to follow up. Such a service would be feasible as per the 

review by Bowen et al due to the demonstrated prevalence and persistence (155).   

Our review has identified several articles which indicate that the screening of T2DM and 

dyslipidaemia within patients presenting to the ED provides an opportunity for prevention, by early 

detection and management of risk factors for CVD. In particular, the pooled prevalence for T2DM 

was found to be 30% in the ED setting and was associated with an over 2-fold hazard on cardiac-

related poor outcomes and death in multiple studies, indicating that there could be a missed 

opportunity in current practice. 

The prevalence of the T2DM and dyslipidaemia favour a screening programme in the emergency 

department. However, more needs to be done to ensure retention in the care pathway; the 

proportion of patients with suspected T2DM attending outpatient follow up appointments was low 

with a pooled estimate of 55%. This may pose a challenge to any planned clinical pathway that 

would seek to improve care in this population. It still may be worthwhile given that studies were also 

found indicating an increased risk for long term CVD disease in the ED population (147,148).   

For chronic kidney disease no prevalence estimates, or reliability outcomes were successfully 

identified.  
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Two studies examined the effect of CKD on cardiovascular outcomes. Sanchis et al found no effect , 

and Chaikriangkrai et al found to infer a higher risk of MACE with a hazard ratio of 10.18 (95% CI 4.24 

– 24.25) (148,152). Between these two contrasting studies there are three main issues:  

(i) Sanchis et al used a single serum creatinine measurement whereas Chaikriangkrai used 

an estimated glomerular filtration rate.  

(ii) They examined different composite outcomes. 

(iii) The increased risk was only observed by Chaikriangkrai et al beyond 12 months, which 

was the length of follow up for Sanchis et al.  

(iv) Chaikriangkrai et al has a high risk of bias in QUIPs assessment (148,152). 

A targeted screening programme could capitalise on a period of increased acceptability for health 

belief change during an acute episode (156). For example, when exploring screening in patients 

presenting with chest pain, those that had acute coronary syndromes excluded demonstrated a 

willingness to engage with modification of CVD risk factors (85). Consequently, there is potential for 

targeted screening of a population that would be more receptive to change.  

These risk factors could also be used to inform a model for long term CVD, and once risk stratified 

the patient could go on to receive targeted interventions. This would represent an efficient use of 

healthcare visits, and a more holistic approach to the patient.  

2.11.1 Limitations 
The generalisability of the meta-analysis is limited by the degree of heterogeneity that was 

identified. This is likely due to varying practice by country, study type and treatment thresholds. It 

has also been proposed that heterogeneity is also associated with a large number of included studies 

in meta-analyses (138). Despite this the pooling estimate is most informative for clinicians and the 

heterogeneity is reflected in the 95% confidence intervals which are provided. The lower boundary 

of the 95% confidence intervals demonstrate a significant prevalence of these factors, therefore 

even with significant heterogeneity the factors are likely important.  
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 2.12 Conclusions 

Type two diabetes mellitus can be feasibly assessed in the ED, and there is early evidence that 

indicates that it is predictive of CVD diagnosis. Dyslipidaemia, across a range of definitions, appears 

to be prevalent in ED populations but further research is required to estimate its prognostic 

performance.  

CKD measured by eGFR in the ED had sparse data and as such no firm conclusions can be drawn 

regarding the prognostic effect of chronic kidney disease in this population. 

ED measured hypertension is prevalent, persistent, and predictive of long-term CVD outcomes. The  

American college of emergency physicians recommendations state that ED measured hypertension 

should be followed up by an outpatient appointment or immediate therapy initiated (157). This 

systematic review indicates that this is a well-founded recommendation. The care pathway requires 

careful consideration and planning given the potential for low attendance at follow up.  

ED measured hypertension, T2DM and dyslipidaemia present an opportunity to further the ‘critical 

juxtaposition’ of preventative medicine in emergency medicine with little additional burden (154).  
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Chapter 3 Evaluation of the long-term prognostic value of routinely 
collected data for patients presenting to the Emergency Department 
with chest pain  

3.1 Background 

In this chapter I describe the work that builds on the previous chapter. There I demonstrated that ED 

measured hypertension, CKD, T2DM and dyslipidaemia were prevalent and had favourable 

prognostic characteristics for long term CVD. However, there are evidence gaps, many potential 

predictors are yet to be evaluated. Therefore, building on my work in the prior chapter I sought to 

examine routinely collected ED data to confirm the predictive characteristics of predictors.  

Diagnostic innovations in the suspected cardiac chest pain care pathway have been shown to 

demonstrate favourable prognostic characteristics for long term CVD outcomes (147,158,159). 

However, there is still an evidence gap to fully describe the prognostic characteristics of routinely 

collected data for the outcome long term CVD. 

3.1.1 Additional methodological background 

3.1.1.1 Variable Selection  
To measure the prognostic characteristics of candidate variables they can be assessed within 

multivariable cox proportional hazards model which provides adjusted estimates. The variables that 

make up this model need to be selected and there are various methods to do this including expert 

opinion, univariate analysis, stepwise selection and least absolute shrinkage and selection operator 

analysis (LASSO) (160). Tibshirani proposed that LASSO variable section produced less variable 

models than other selection methods, however this has been disputed (161,162).  When practically 

implemented in the statistical programme R, LASSO selection requires a package that can utilise it 

for variable selection. There is currently only one package that can conduct LASSO variable selection 

but it cannot handle other complex functions (such as restricted cubic splines) (160). 
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3.1.1.2 Cox proportional hazard model  

Cox proportional hazard models require upon two underlying assumptions to be correct (i) the 

relationship between the variable and the outcome must be linear,  and (ii) the relative hazard does 

not change over time (163).  

Assessing the linearity of the outcome – candidate predictor relationship 

To assess the linearity of the relationship between the variable of interest and the outcome simple 

plots of the potential predictor or interest versus the outcome can be used. There are also 

Martingale plots that can assess the linearity where a deviation from a best fit line of model 

residuals with a gradient of 1 is an indication of a non-linear relationship (164). 

Restricted cubic splines (RCS) can be used to transform variables which have a non-linear 

relationship with the outcome.  The spline is fitted to the data in a number of windows referred to as 

knots, the more complex the relationship the larger the number of knots that may be required (165). 

However, the more knots that are used the larger the risk of over-fitting. AIC metrics have previously 

been used for the selection of smoothing parameters (number of knots), Keele describes using 

univariate cox proportional hazard models with the untransformed variable and comparing the AIC 

of univariate RCS models (166).  

Assessing the proportional hazards assumption 

Schoenfeld plots are a graphical representation of the scaled Schoenfeld residuals from cox 

regression against time and are used to detect if the proportional hazards assumption has been 

maintained. Grambsch et al ran a series of simulations and demonstrated that plots with non-zero 

slopes indicate the assumption has been broken (167). Further assessment by Hess et al highlighted 
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the benefit of visual inspection of Schoenfeld plots to assess the integrity of the proportional hazards 

assumption (168). 

3.1.1.3 Missing data  

Missing data can be defined as missing completely at random, missing at random or missing not at 

random (169). Data that is missing completely at random has missing values that are not associated 

with those that are present and therefore cannot be predicted from them (169). The more common 

scenario is data that is missing at random where the missingness is associated with the present data 

and can be predicted from the data available, this allows for the prediction of the missing data from 

the present data (169). Finally there is missing not at random where the missing data is associated 

with an unmeasured exposure (169).  

When data is assumed to be missing at random multiple imputation can be used to predict or infer 

the missing data from that the data which is present. Multiple imputation has been shown to have 

greater statistical power when the outcome variable of interest is included in the calculation to 

impute the missing data (170).  

3.2 Aims / objectives 
- To identify the feasibility of measuring and using common risk factors for CVD in the 

Emergency Department setting. 

- External validation of prognostic models for long term CVD outcomes 

3.3 Published work 

Reynard, C., McMillan, B., Jafar, A., Heagerty, A., Martin, G.P., Kontopantelis, E. and Body, R., 2022. 

Long-term cardiovascular risk prediction in the emergency department: a mixed-methods study 

protocol. BMJ open, 12(4), p.e054311. 
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3.4 Methods 

3.4.1 Design and setting 
I conducted a retrospective cohort study using data from Manchester Royal Infirmary (MRI), a large 

teaching hospital and a part of Manchester University NHS Foundation Trust. The annual ED 

attendance for 2021 was 104,449.  

3.4.2 Study population 
I included adult patients (>18 years) who had presented to the ED with a presenting complaint of 

‘chest pain’ recorded by the triage nurse. Patients with an index admission diagnosis AMI were 

excluded (as per local and national coding). 

Three distinct cohorts were identified. First, I included patients between January 1st 2009, to 

December 31st 2009, because this would enable us to obtain long-term (10-year) follow-up data. 

Second, I included patients between November 1st 2011 – October 31st 2012 because hs-cTnT assay 

was introduced in November 2011. This allowed me to study the prognostic value of high-sensitivity 

cardiac troponin with the longest possible follow-up period. Third, I included patients between July 

1st 2016 – June 30th 2017 because the TMACS decision aid was implemented in June 2016. This 

allowed us to study the prognostic value of the TMACS decision aid for the longest possible follow-

up period. 

3.4.3 Data sources 
I collated data from MRI from six different internal databases. This data was then linked by NHSD 

with their outcome data from the Hospital Episode Statistics database – Admitted Patient Care (HES 

APC) and the Civil Registry. The HES APC database records all diagnostic and intervention codes from 

every patient admission in the NHS, as well as some baseline demographic data. The civil registry 

records deaths, including cause and date of death. In compliance with data minimisation principles 

from NHSD only episodes with outcomes matching our definition of a cardiovascular event were 

returned. NHSD returned data for episodes up to ten years after the index event date (see table 3.1).  
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Outcome Data Source

Index event Date Time Local EPR

Index event ICD-10 codes Local EPR

Index event ICD-10-OPC codes Local EPR

Subsequent event Date Time HES APC

Subsequent event ICD-10 codes HES APC

Subsequent event ICD-10-OPC codes HES APC

Subsequent event treatment specialty HES APC

Date of death CR

Cause of death CR

Predictor Data

Age Local EPR

Gender Local EPR

Ethnicity Local EPR/HES APC

Physiological observations Local EPR

Triage Data Local EPR

Time of departmental events Local EPR

Laboratory investigations Local EPR

TMACS data Local EPR

Rural/urban indicator HES APC

Indices of Deprivation HES APC

Table 3.1 Data variables to be collected. EPR – local electronic patient record, HES APC – NHS Digital’s Hospital Episode 
Statistics Admitted Patient Care dataset, CR – NHS Digital’s Civil Registry , TMACS – troponin only acute coronary syndrome 
diagnostic algorithm (includes BP, sweating, crescendo angina, ECG ischaemia, troponin, pain radiating to the right arm or 
shoulder.) 



75 

3.4.4 Outcomes 
The outcome of cardiovascular disease was defined as a composite including international 

classification of disease -10 (ICD-10) coded diagnoses of angina pectoris, myocardial infarction, 

coronary artery revascularisation, ischaemic heart disease, atraumatic stroke, transient ischaemic 

attack, and cardiovascular mortality. The relevant coded diagnoses from the ICD-10 (171) were: I20-

24, I60-64 and G45.9. The intervention codes from the office of population census and surveys 

version four (OPCS-4) were K40-50, K63 and K75 (172). Recorded deaths with a cause of death from 

the aforementioned diagnostic codes was deemed to be a cardiovascular disease death.  

3.4.5 Sample size calculation 

I ran a sample size calculation for the multivariable model that was to be used to provided adjusted 

hazard ratios for the predictors. This was conducted per the methodology by Riley et al (173,174). To 

populate the calculation, as the method suggests, potential model characteristics were extrapolated 

from a similar model. I used Q-Risk3 as a source of model parameters for the sample size calculation, 

specifically the AUC of 0.858 and incidence per 1,000 person years at 61.9 (19). This assumes a 

similar performance and incidence to that of the base model Q-Risk3. This was used to calculate the 

required sample size to derive a survival model with ten candidate predictors in each cohort. The 

maximum sample size was 3,255 patients. A further calculation was conducted to estimate the 

sample size required to derive a survival model with 20 candidate predictors. The sample size 

required per cohort 1 and 2 was 5580 and cohort 3 was 6509. The sample per cohort was expected 

to exceed this. 

3.4.6 Statistical analysis 
R and R studio were used for the statistical analysis, and the packages are outlined in the 

supplementary appendix (175,176). 

I used descriptive statistics to summarise the cohorts, including either mean, standard deviation and 

range, or median and range. I selected candidate variables based on data availability and those that 
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were available in routine clinical care for the prognostic factor study. I sought to consolidate 

predictors based on collinearity to reduce the number of variables in the model.  

3.4.6.1 Missing data 
I prioritised the potential clinical implementation of any individual prognostic factor or CPM in this 

work. The source of the derivation data was the same digital eco-system where any models or 

prognostic factor prediction would be clinically used. As such any data missing in the derivation data 

would likely be missing in the clinical environment where a CPM would be used. I excluded data 

from model development that had missingness greater than 75%. This would also simplify 

implementation as these missing variables would have otherwise create a burden from imputation 

methods that may hamper any practical implementation.  Variables with less than 75% missingness 

were included and missing variables were imputed with multiple imputation that included the 

outcome as this has been shown to benefit the performance (170). I used the argeImpute function 

from the Hmisc package for the imputation which utilises additive regression (177). Informative 

missingness was examined where there was a clinically plausible rationale such as a missing 

laboratory test being caused by a clinical decision not to conduct it (e.g. troponin). This was achieved 

by categorising the variable and adding a “missing” category. The variables representing the 

diagnostic innovations for which the cohorts were chosen were included regardless of the amount of 

missing data, this was due to likely informative missingness and that they were a focus of this work. 

This included conventional troponin T (cTnT), high sensitivity troponin T (hs-cTnT) and TMACS. eGFR 

has previously been shown to be strongly associated with raised cardiac troponins, so as not to miss 

this important interaction it was also included (178). 
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3.4.6.2 Adjustment Model Derivation 
I utilised Cox proportional hazard (CPH) models for the prognostic factor study, the derivation was 

conducted in R with the Survival package (176,179). I assessed the proportionality assumption held 

with Schoenfeld plots (180). If the assumption was invalid, then I had planned to use time-varying 

interactions or flexible parametric survival models. Prior to inclusion in the model, I assessed the 

variables distribution by Joanes et al’s skew metric, histograms and quantile-quantile plots (181). 

Variables were subsequently transformed if they were found to be significantly skewed, with 

improvements sought in the skewness metric. I assessed linearity between the predictor of interest 

and outcome using martingale plots and outcome vs predictor plots. If the martingale plots 

suggested non-linearity then a restricted cubic spline was considered. To assess if a restricted cubic 

spline (RCS) was preferrable, a univariable CPH model was created with the variable of interest 

(transformed if necessary), this was compared to univariable CPH models with the variable 

incorporated into a RCS with three, four and five knots. The models were assessed on Akaike 

information criterion (AIC) metric and Bayesian information criterion (BIC), given the loss of power 

with the increased number of knots only a significant improvement in AIC/BIC was deemed to merit 

inclusion of a more complicated RCS (more knots). Log odds plots were used to further assess if 

there was a significant difference between knots.  

Co-linearity was assessed by visual inspection, and for continuous variables Pearson correlation 

coefficients. Variables that were to be included in the model that appeared correlated on visual and 

statistical inspection were considered for a colinear terms where a biologically plausible mechanism 

was apparent. This was supplemented by assessing variance inflation factors within the multivariable 

models.  



78 

3.4.6.3 Prognostic Factor Evaluation 
For each prognostic factor I reported adjusted hazard ratios by using a multivariable CPH model, I 

planned for three adjustment methods. Firstly, using a single data set with imputed data, I derived a 

multi-variable model with variable selected by backwards selection on the AIC. In the second 

adjustment scenario the same multi-variable model was used but only cases where the predictor of 

interest was originally present (not imputed) were used. Finally, in the third adjustment, a 

multivariable model was created with all available variables included. For each adjustment model we 

reported discrimination (ability to differentiate cases from controls) with c-statistics and calibration 

(agreement between the observed and expected event rates) with intercept, slopes and calibration 

plots. I planned to use forest plots and survival curves to visualise the effect of each prognostic 

factor. Hazard ratio plots were to be used to visualise the variable effect of a non-linear predictor 

transformed with a restricted cubic spline. 

3.4.6.4 External Model Validation 
I considered four models considered for external validation in the emergency care population using 

the same database. They were Framingham, QRisk 1, QRisk 2, and ASSIGN (56,57,182,183). Once the 

database was compiled, I assessed which model the database had the least missing data for. That 

model was then validated. I considered the use of national or regional data sources to provide 

averages for variables that were missing from the study database. 

I reported model performance in the domains of discrimination and calibration. For discrimination I 

reported AUC (or concordance) and for calibration I plotted calibration curves. 
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3.5 Results 

3.5.1 Demographics 
During data extraction there was substantial missing data noted at the beginning of cohort one (Jan 

2009). After discussing with local data analysts, it transpired that the electronic patient record was 

replaced during this period which may have resulted in missing data. I opted to move the cohort 

window forward by 10 months to start in November 2009, this placed the cohort well beyond any 

disruption caused by EPR updates. Furthermore, due to delays from the pandemic and NHS Digital 

the data extract was not available as planned, this delay enabled ten years of follow-up data to be 

collected for the baseline cohort and up to 9.16 years for the hs-cTnT cohort. 

The numbers of patients in cohorts 1-3 were 6055, 6089 and 6846 respectively, fulfilling our sample 

size criteria (table 4.2). In addition to the variables that represented the diagnostic innovations, 

routinely collected variables with less than 75% missing data (averaged across the three cohorts) 

were considered for inclusion. By these criteria, the following variables were included: age, gender, 

ethnicity, heart rate, systolic blood pressure, diastolic blood pressure, respiratory rate, Glasgow 

coma scale, temperature, oxygen saturation, early warning score, haemoglobin, white blood cell 

count, index of multiple deprivation, rural urban index and time of presentation (Figure 3.1). The 

distribution of the missingness demonstrated that the laboratory blood test results were frequently 

clustered, along with physiological observations (Figure 3.2). The time element of the presentation 

date-time variable was corrupted for the most recent 14.52% of patients. The source of the error 

was related to the data export formatting and did not affect the date aspect of the variable. 

The demographics of each group were similar with the exception of ethnicity varying between 

cohorts, the proportion of patients who were white decreased from 51.30% to 44.73% whilst the 

proportion of patients who were of mixed ethnicity increased from 4.95% to 8.24%. The proportion 

of patients who were of Asian ethnicity fluctuated from 20.66%, to 23.19% to 18.03% year on year 

(Table 3.2 and Supplementary Table 8.4).  
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Figure 3.1 Proportion missing for baseline variables. GCS – Glasgow comma scale, RR – respiratory rate, HR- heart rate, SBP 
– systolic blood pressure, DBP – diastolic blood pressure, EWS – early warning score, SaO2 – peripheral oxygen saturation, 
WBC – white blood cell count, Hb – haemoglobin, RUI – rural urban index, IMD – index of multiple deprivation, eGFR – 
estimated glomerular filtration rate, cTnT – cardiac troponin T 
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Figure 3.2 Distribution of missing data for baselines variables. GCS – Glasgow comma scale, RR – respiratory rate, HR- heart 
rate, SBP – systolic blood pressure, DBP – diastolic blood pressure, EWS – early warning score, SaO2 – peripheral oxygen 
saturation, WBC – white blood cell count, Hb – haemoglobin, RUI – rural urban index, IMD – index of multiple deprivation, 
eGFR – estimated glomerular filtration rate, cTnT – cardiac troponin T 
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Cohort 1 Cohort 2 Cohort 3

Time window Nov 2009 – Nov 2010 Nov 2011 – Nov 
2012 

July 2016 – July 
2017 

Total 6,055 6,089 6,846

Age (years)
Mean 45.3 43.4 44.5
SD 18.1 17.4 17.7
Missing (n) 14.5%  (879) 8.8% (534) 7.0% (478)

Male 
Percentage (n) 53.7% (3249) 52.4% (3190) 51.8% (3543)
Missing 6.2% (378) 7.4% (453) 6.1% (419)

Ethnicity 
Asian (n) 20.7% (1251) 23.2% (1412) 18.0% (1234)
Black (n) 9.8% (595) 11.4% (696) 10.5% (719)
Mixed (n) 5.0% (300) 5.3% (321) 8.2% (564)
Other (n) 6.1% (371) 7.1% (434) 4.6% (316)
White (n) 51.3% (3106) 46.8% (2847) 44.7% (3062)
Missing (n) 7.1% (432) 7.2% (439) 7.5% (516)

cTnT (ng/ml)
Mean 0.1
SD 0.5
Missing (n) 81.9% (4956)

hs-cTnT (ng/L)
Mean 11.6 12.4
SD 65.4 67.1
Missing (n) 62.7% (3788) 41.7% (2852) 

TMACS (%)
Mean 8.36
SD 17.07

Missing (n) 80.7% (5522)

Early Warning Score
Median 1 0 0
SD 0 – 10 0 – 10 0-11
Missing (n) 26.5% (1604) 12.0% (732) 9.1% (623)

Table 3.2 Demographic characteristics of cohorts. cTnT – cardiac troponin T, hs-cTnT – high sensitivity cardiac troponin T, 
TMACS – troponin only Manchester acute coronary syndrome rule out strategy 
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3.5.2 Outcome Incidence 
The incidence of the primary outcome (incident cardiovascular disease) steadily declined between 

cohorts, from 10.49% in cohort 1 to 5.30% in cohort 3. The declining length of follow up could be an 

explanation (Table 3.3). However, as the median time to event for the 10-year cohort was 2.05 

years, and the most recent cohort had a follow up period of 4.43 years it might be expected that the 

majority of outcomes would have occurred. Between the 1st and 2nd cohort this change appears to 

be driven by a reduction in cardiovascular death and ICD-10 criteria. The ICD-10 codes that qualified 

a patient for the outcome varied over time (Table 3.4). “Unstable angina”, I20.0, was the most 

prevalent qualify ICD-10 code in cohort 1 but was third by cohort 3. “Angina Pectoris”, I20.9, started 

as the second most frequent qualifying code but in cohort 2 and 3 was the most frequent code. 

Similarly, “non-ST elevation myocardial infarction”, I21.4, was fourth in the rankings of qualifying 

codes in cohort 1 but was second by cohort 3. The OPCS intervention codes were more stable over 

time (Table 3.5). “Percutaneous transluminal balloon angioplasty and insertion of 1-2 drug-eluting 

stents into coronary artery”, K75.1, was the most frequent qualifying code for the intervention 

criteria across all cohorts. “Anastomosis of mammary artery to left anterior descending coronary 

artery” (K45.3), and “percutaneous transluminal balloon angioplasty and insertion of 3 or more drug-

eluting stents into coronary artery” (K75.2) were consistently in the top 3, although their order 

varied.  
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Cohort 1 Cohort 2 Cohort 3
Major adverse cardiac 
event (n) 

10.5% (635) 7.8% (475) 5.3% (363)

ICD-10 criteria 8.1% (491) 6.2% (380) 4.2% (290)
OPCS criteria 2.6% (156) 2.4% (144) 1.5% (101)
Death criteria 0.7% (45) 0.4% (25) 0.2% (14)

Maximum follow up 
(years) 

10.0 9.2 4.4

Median time to 
event (years) 

2.1 2.3 1.6

Table 3.3 Outcome incidence. ICD-10 - International Classification of Diseases, Tenth Revision, OPCS - Office of Population 
Censuses and Surveys Classification of Surgical Operations and Procedures 

Cohort 1 Cohort 2 Cohort 3
Position (n)

1 Unstable angina (151) Stable angina (131) Stable angina (117)
2 Stable angina (147) Unstable angina (99) NSTEMI (64)
3 AMI (45) NSTEMI (54) Unstable angina (42)
4 NSTEMI (36) AMI (27) Acute ischaemia (29)
5 Acute ischaemia (18) Acute ischaemia (20) STEMI (12)

Table 3.4 Top 5 ICD-10 outcome codes for positive cases. Stable Angina = angina pectoris, NSTEMI = Non-ST elevation 
(NSTEMI) myocardial infarction, AMI = Acute myocardial infarction, unspecified, Acute ischaemia = Acute ischemic heart 
disease, unspecified, STEMI = ST elevation (STEMI) myocardial infarction of inferior wall. 

Cohort 1 Cohort 2 Cohort 3
Position (n)

1 PCI + DES (84) PCI + DES (84) PCI  + DES (62)
2 CABG (22) PCI + >3 DES (32) CABG (13)
3 PCI + >3 DES (22) CABG (18) PCI + >3 DES (8)
4 PCI + stents (7) * *
5 * * *

Table 3.5 Top 5 OPCS outcome codes for positive cases. PCI (percutaneous coronary intervention) + DES = Percutaneous 
transluminal balloon angioplasty and insertion of 1-2 drug-eluting stents into coronary artery, PCI + >3 DES  = Percutaneous 
transluminal balloon angioplasty and insertion of 1-2 stents into coronary artery, PCI + stents = Percutaneous transluminal 
balloon angioplasty and insertion of 1-2 stents into coronary artery. * indicates censoring for small groups as per NHS 
Digital policy. 
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3.5.3 Variable preparation 

The potential variables were examined for distribution, linearity with the outcome, and co-linearity. 

In addition, the variables were assessed for the potential opportunity to cluster or reduce their 

number. This process laid out in the methods resulted in 8 variables undergoing transformation, 

including 5 using a RCS (due to non-linearity with the outcome) and 6 being removed through data 

clustering. This is summarised in Table 3.6 and the supplementary appendix section 3.6.1.  

Variable Transformation Data clustering RCS

Age 4 knots
Heart Rate Logarithmic 
SBP Logarithmic 3 knots
DBP Clustered
Temperature Clustered
Respiratory Rate Logarithmic Clustered
GCS Clustered
SaO2 Exponential Clustered
EWS Square root
WBC Logarithmic 3 knots
Haemoglobin
Ethnicity Categorical 
P-time Categorised
IMD
RUI
eGFR Cube
cTnT Logarithmic
hs-cTnT Logarithmic Partially 5 knots
TMACS Logarithmic 5 knots

Co-linear terms
Age & SBP
Hb & eGFR
cTnT & RUI
hs-cTnT & age
hs-cTnT & eGFR
TMACS & age
TMACS & eGFR

Table 3.6 Summary of candidate predictors and their transformations and clustering – grey indicates exclusion after 
clustering. RCS- restricted cubic spline, SBP – systolic blood pressure, DBP – diastolic blood pressure, GCS – Glasgow comma 
scale, SaO2 – oxygen saturations, EWS – early warning score, p-time – presentation time, IMD – index of multiple 
deprivation, RUI – rural urban index, eGFR – estimated glomerular filtration index, cTnT – cardiac troponin T, hs-cTnT – high 
sensitivity cardiac troponin T, TMACS – troponin only Manchester acute coronary syndrome algorithm 
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3.5.3.1 The proportional hazard’s assumption 
The proportional hazard assumption for each variable was examined with Schoenfeld plots, no 

variable’s Beta(t) varied significantly over time. The Beta(t) always fell within the 95% confidence 

interval from the initial time point (Figure 3.3).  The proportional hazard assumption was considered 

to have been maintained. Therefore, no time-varying interactions or flexible parametric survival 

models were used. 

Figure 3.3 Schoenfeld plot for systolic blood pressure 



87 

3.5.4 Missing data 
I used multiple imputation ensuring that the outcome was included in the imputation process (170), 

convergence plots were used to ensure suitability of the imputation. The possibility of informative 

missingness was considered with the variables that were tests within a care pathway that 

represented a clinical decision. These were cTnT, hs-cTnT and TMACS. To test for informative 

missingness these variables were categorised with missing included as the lowest level, the results 

are presented in the next section.  

3.5.5 Prognostic factor evaluation 
Cox models were derived to enable the production of adjusted estimates of each prognostic factor. 

Each prognostic factor was adjusted with three methods. The first method used a model derived 

using forward stepwise selection using the AIC metric where all the missing data was imputed. The 

second method used the same model but only cases where the candidate predictor was not missing 

were included (complete cases). The third method used a model that included all variables with no 

selection and all missing data was imputed.  

3.5.5.1 Cohort 1 – Baseline cohort - cTnT 
I derived the model through forwards stepwise variable selection via AIC metric. This model and the 

variables selected included cTnT, heart rate, WBC, age, gender, ethnicity, and time of presentation 

(Figure 3.4). The concordance (c-statistic) of the model was 0.79, the R2 was 0.135 and the 

calibration slope was 1.00 . The variable cTnT had an unexpected hazard ratio of 0.82 (95% CI 0.69 – 

0.97) and therefore I conducted an exploratory analysis to better understand this result. 85% of all 

cTnT values were 0.01 with only 71 results greater than this limit of blank (LoB). The incidence of the 

outcome was 17.67% (95% CI 15.39% – 20.11%) in those patients with a cTnT equal to the LoB and 

12.68% (95% CI 5.96% - 22.7%) in those with a cTnT greater than the LoB. I also explored removing 

the unstable angina ICD-10 code (I20.9), however this did not change the hazard ratio significantly 

(HR 0.85 95%CI 0.71 – 1.00). 
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The hazard ratios from each multivariable model (adjustment scenario) varied slightly, the variables 

which were consistently statistically significant were gender, the WBC spline variables, part of the 

age spline, Asian ethnicity, other ethnicity (Table 3.7). Female gender had an adjusted hazard ratio of 

0.57 (95% CI 0.48-0.67) demonstrating an association with the absence of the outcome (see survival 

curve – Figure 3.5). The same was true of the “Other” level of the categorical variable ethnicity with 

an adjusted hazard ratio of 0.63 (95% CI 0.41 - 0.97) (Figure 3.6). In contrast the level “Asian” was 

associated with the outcome through an adjusted hazard ratio of 1.25 (95% CI 1.04-1.51). The co-

efficients for the RCS transformed variables are difficult to interpret as such I produced relative 

hazard plots which demonstrates the different hazard ratio produced across the variable range. 

Figure 3.7 demonstrates the varying hazard ratio for age as part of the stepwise selected 

multivariable model. There is a steep exponential increase in the relative hazard to 60 years of age 

which then decreased in shallow linear gradient. The varying hazard ratio for WBC due to the RCS 

transformation is demonstrated in Figure 3.8. The hazard ratio peaks over 2.0 with a log(WBC) value 

of 2.0 (exponentiated 7.4 x109/L), which is in the middle of the normal reference range. The hazard 

ratio decreases significantly above and below this value. The decreasing hazard ratio for 

cardiovascular events above a log(WBC) value of 2.0 may be a product of censoring. Patients with a 

high WBC may have an infection and possibly sepsis. As the mortality for sepsis has been estimated 

to be 24.4% some of these patients may have been censored (184).   

Evening time of presentation was predictive across 2/3 adjusted scenarios with only the complete 

case scenario not finding statistical significance. cTnT was statistically significant in one adjustment 

scenario but as previously mentioned the HR of less than one was unexpected. None of the 

interaction terms were statistically significant. Heart rate, whilst not statistically significant, was 

selected for inclusion by the stepwise method indicating that it improved model performance. This is 

re-enforced by a p value that was just greater than the 0.05 threshold (0.05214).  
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Figure 3.4 - Forest plot of model selected by AIC criteria from cohort 1 – cTnT – cardiac troponin T, and P-time – presentation time 
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Hazard Ratio
Variable Adjusted by 

selected model 
Adjusted by selected 
model with complete 
cases 

Adjusted by all-
inclusive model 

cTnT  0.82 (0.69 – 0.97)* 0.71 (0.48 - 1.05) 0.88 (0.70 – 1.12)
Heart Rate 0.68 (0.46 – 1.00)† 0.66 (0.43 – 1.02) 0.68 (0.45 – 1.00)
WBC – spline 1 2.68  (1.53- 4.70)* 4.37 (2.06 -9.25)* 2.71 (1.54 - 4.74)*
WBC – spline 2 0.25 (0.13 – 0.50)* 0.13 (0.05 – 0.31)* 0.25 (0.13 – 0.49)*
Age – spline 1 1.63 (1.08 – 1.26)* 1.15 (1.07 – 1.24)* 1.16 (1.08 – 1.25)*
Age – spline 2 0.96 (0.76 – 1.21)* 1.00 (0.79 – 1.26) 0.96 (0.76 – 1.22)
Age – spline 3 0.84 (0.51 – 1.39) 0.77 (0.47 – 1.27) 0.83 (0.50 – 1.37)
Gender

Male - reference - - -
Female 0.57 (0.48 – 0.67)* 0.57 (0.49 – 0.68)* 0.56 (0.47 - 0.67)*

Ethnicity
Asian 1.25 (1.04 – 1.51)* 1.25 (1.04 – 1.51)* 1.25 (1.03 – 1.51)*
Black 0.86 (0.64 – 1.16) 0.88 (0.65 -1.18) 0.84 (0.62 – 1.14)
Mixed 0.70 (0.43 -1.14) 0.76 (0.47 – 1.24) 0.70 (0.43 – 1.14)
Other 0.63 (0.41 -0.97)* 0.62 (0.40 – 0.98)* 0.64 (0.41 – 0.98)*
White – reference - - -

Time of presentation
Morning - reference - - -
Afternoon 0.92 (0.74 – 1.15) 0.94 (0.74 - 1.19) 0.92 (0.74 – 1.14)
Evening 1.30 (1.01 -1.66)* 1.28 (0.97 – 1.68) 1.29 (1.00 – 1.65)*
OOH 1.21 (0.97 – 1.51) 1.27 (1.00 – 1.63) 1.20 (0.97 – 1.49)

EWS 1.01 (0.89 – 1.15) 1.03 (0.88 – 1.20) 1.01 (0.89 – 1.15)
SBP – spline 1 1.03 (0.31- 3.45) 0.92 (0.25 -3.38) 1.03 (0.31 - 3.44)
SBP – spline 2 0.82 (0.22 – 2.91) 1.03 (0.26 – 4.12) 0.81 (0.23 – 2.91)
IMD 1.00 (1.00 - 1.01) 1.00 (1.00 - 1.01) 1.00 (1.00 – 1.01)
Rural urban index 1.02 (0.79 – 1.33) 1.09 (0.83 – 1.42) 1.04 (0.80 – 1.34)
Haemoglobin 0.99 (0.94 -1.04) 0.98 (0.92 – 1.04) 1.04 (0.95 – 1.12)
eGFR 1.00 (1.00 – 1.00) 1.00 (1.00 – 1.00) 1.00 (1.00 - 1.00)
Interaction terms
Hb * eGFR - - 1.00 (1.00 – 1.00)
Age * SBP - - 1.01 (0.97 – 1.06)
cTnT * RUI - - 0.65 (0.18 – 2.30)

Table 3.7 The hazard ratios for each predictor across each adjustment scenario in cohort 1 – * statistical significance with a 
p-value of <0.05 and † that the variable was selected for the model but was not sta�s�cally significant itself. SBP – systolic 
blood pressure, EWS – early warning score, IMD – index of multiple deprivation, RUI – rural urban index, eGFR – estimated 
glomerular filtration index, OOH – out of hours cTnT – cardiac troponin T, hs-cTnT – high sensitivity cardiac troponin T, 
TMACS – troponin only Manchester acute coronary syndrome algorithm  
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Figure 3.5 Adjusted survival curve for gender 
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Figure 3.6 Adjusted survival curve for ethnicity 
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Figure 3.7 Adjusted elative Hazard plot of the variable age transformed with a restricted cubic  spline. The grey area represents the 
95% confidence interval. Relative hazard is synonymous with hazard ratio. This is adjusted by the selected model. 
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Figure 3.8 - Adjusted relative Hazard of the variable logarithm of white blood cell count (WBC) passed through a restricted 
cubic spline. This is adjusted by the selected model. 



95 

The possibility of informative missingness was also explored with cTnT. The variable was categorised 

into three levels: missing, less than or equal to the limit of blank (LoB) or greater than the LoB (high). 

LoB was used as the reference level in the analysis which identified that missing data was associated 

with an absence of an outcome shown by a hazard ratio of 0.73 (95% CI 0.61 – 0.86) (Table 3.8). cTnT 

that was deemed high did not have a statistically significant hazard ratio.  

Hazard Ratio
Variable Adjusted by 

selected model 
Adjusted by selected 
model with complete 
cases 

Adjusted by all-
inclusive model 

cTnT – categorised
Missing    - 0.73 (0.61 – 0.86)* 0.73 (0.61 -0.87)*
LoB - reference - - -
High - 0.58 (0.30 – 1.14) 0.62 (0.31 - 1.23)

Table 3.8 Hazard ratios of categorised conventional cardiac troponin T (cTnT) 

3.5.5.2 Cohort 2 – hs-cTnT  
Again, I derived an adjustment model with forward stepwise selection of variable by AIC metric, this 

time including the potential variable hs-cTnT which had superseded cTnT from cohort 1. The results 

of this derivation differed from cohort 1 by only one included factor. Instead of the variable heart 

rate this new derivation included the interaction term hs-cTnT * age. This interaction term was 

associated with the absence of the outcome with a hazard ratio of 0.99 (95%CI 0.98 - 0.99) but was 

only statistically significant in one adjustment scenario (Table 3.9). When inspecting for informative 

missingness only the missing level of the categorical variable was statistically significant with a 

hazard ratio of 0.68 (95% CI 0.53 – 0.87). The coefficients of the RCS transformed hs-cTnT are 

difficult to interpret, whilst the individual coefficients were not consistently statistically significant 

they were included in the stepwise selection model indicating that they improved model 

performance. The varying hazard ratio is demonstrated in Figure 3.9, it shows a hazard ratio of <1 
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inflecting above one after hs-cTnT of 2.72ng/l with a steep gradient till 20.1ng/l where the hazard 

ratio continues to increase but at a slower rate. The confidence intervals are wide for this RCS, this is 

despite multiple imputation replacing missing variables. This is due to the clustering of results 

around the limit of blank, meaning that even when missing data is imputed there are still sparce 

results at the higher values. Informative missingness was examined by categorising hs-cTnT into 

missing, limit of detection (<3 ng/l), 99th centile (14 > x ≥ 3ng/l), and high (>14ng/l). A dose response 

relationship was seen with the hazard ratio climbing with each ascending category (HR 0.68, 0.94, 

1.07). Only the missing level of the categorical variable was persistently statistically significant with 

an adjusted hazard ratio of 0.68 (95% CI 0.53 – 0.87). Interestingly the missing level was the lowest 

risk group, even more than the LoB group (Figure 3.10). This may indicate that the clinical decision to 

take a serum hs-cTnT is associated with an increased risk of cardiovascular disease even compared 

to those patients with an undetectable hs-cTnT. 

Hazard Ratio
Variable Adjusted by selected 

model 
Adjusted by 
selected model 
with complete 
cases 

Adjusted by all-
inclusive model 

hs-cTnT x age 0.99 (0.98 - 0.99) * 0.99 (0.99 -1.00) 0.99 (0.98 -1.00)
hs-cTnT – spline 1 0.63 (0.19 – 2.09) 0.69 (0.28 - 1.70) 0.63 (0.25 – 1.61)
hs-cTnT – spline 2 1.01 x 105

(4.44 – 2.31x109)* 
0.69 (0.28 -1.70) 1.40 x 102                      

(0.30 – 6.66x104) 
hs-cTnT – spline 3 4.28 x 10-9                                    

(1.31x10-16 - 0.14)* 
1.55 x10-4        

(3.35x10-9 – 7.14) 
2.81 x 10-4                           

(5.71 x 10-9 - 13.86) 

hs-cTnT – categorised
Missing    - 0.68 (0.53 -0.87)* 0.68 (0.53 -0.87)*
LoB – reference - - -
99th centile - 0.94 (0.72 -1.24) 0.94 (0.72 -1.24)
High - 1.07 (0.74 -1.55) 0.94 (0.64 - 1.37)

Table 3.9 Hazard ratios for hs-cTnT across adjustment scenarios. Hs-cTnT – high sensitivity cardiac troponin T, LoB – limit of 
blank. * denotes statistically significant result 
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Figure 3.9 Adjusted relative hazard of the restricted cubic spline transformation of the logarithmic of high sensitivity cardiac troponin 
T (hs-cTnT). This is adjusted by the selected model. 
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Figure 3.10 Adjusted survival curve of categorised high sensitivity cardiac troponin T. LoD – limit of detection 



99 

3.5.5.3 Cohort 3 – TMACS 
TMACS was considered as a prognostic variable in cohort 3, again the spline terms are difficult to 

interpret with varying statistical significance across adjusted hazard ratios (Table 3.10). Furthermore 

the 95% confidence intervals are very broad implying increased uncertainty even in imputed 

scenarios. There was instability in the estimates of the spline coefficients across the three 

adjustment methods (spline term 3 HR 1.25 x10150, 5.29x10-15, 3.69x10140). The complete case 

adjustment scenario was persistently discrepant with the other two fully imputed scenarios. This is 

likely in part due to the high number of knots in the RCS and the low number of complete cases that 

the imputed data could be based on. Despite this the RCS for TMACS was selected as part of the 

multivariable model, therefore it has a statistically significant effect as part of the wider model. 

Furthermore, when the spline terms are examined on a relative hazard plot it is apparent that the 

confidence intervals are not prohibitively broad in practice (Figure 3.11).  

When the TMACS variable was considered for informative missingness it was categorised according 

to the clinical pathway risk groups (missing, very low, low, moderate and high risk). As with hs-cTnT a 

dose response relationship was seen with larger hazard ratios for cardiovascular disease with 

ascending risk groups. The missing level of categorised TMACS was associated with a statistically 

significant decreased risk of cardiovascular disease with a HR 0.51 (95% CI 0.36 - 0.71). The very low 

risk level was associated with a statistically significant but lower magnitude of risk reduction with a 

HR of 0.64 (95% CI 0.42 – 0.98). Neither moderate nor high risk levels were statistically significant as 

both had hazard ratios spanning 1. Only high risk had a HR point estimate greater than one; HR 1.77 

(95% CI 0.54-5.76). This indicates a possible association with an increased risk of cardiovascular 

disease (Figure 3.12). 
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Hazard Ratio
Variable Adjusted by selected model Adjusted by selected 

model with complete 
cases 

Adjusted by all-inclusive 
model 

Log(TMACS)
Spline term 1 231.40  

(9.93 – 5.4x103)* 
3.71  
(0.03 – 401.50) 

1.59 x102

(6.70 -3.79x103)* 
Spline term 2 3.78 x10-101

(1.15 x10-181 – 1.23 x10-20)* 
5.62 x 106

(1.96 x 10-124 – 1.61 x 10137) 
3.46x10-95

(1.08x10-175 -1.11x1014) 
Spline term 3 1.25 x10150

(2.24 x1024 – 6.93x10275)* 
5.29x10-15

(3.76 x10-218  - 7.43 x10188) 
3.69x10140  

(6.50x1014 - 2.09x10266)* 
Spline term 4 7.14 x10-50

(4.66x10-97 – 0.01)* 
21.07  
(4.51 x10-67 - 4.48x1084) 

4.83x10-46

(2.93x10-93 - 79.63)
TMACS * Age 1.00 (0.99 - 1.00) 0.99 (0.97 – 1.00)* -

TMACS – categorised
Missing - 0.51 (0.36 - 0.71)* 0.51 (0.36 – 0.71)*
Very Low Risk    - 0.64 (0.42 – 0.98)* 0.64 (0.42 - 0.98)*
Low Risk - reference - - -
Moderate Risk - 0.89 (0.59 – 1.34) 0.89 (0.59 – 1.34)
High Risk - 1.77 (0.54 – 5.76) 1.77 (0.57 – 5.76)

Table 3.10 - Hazard ratios for TMACS across adjustment scenarios. * indicates statistical significance. TMACS risk categories 
are defined as very low risk <2%, 2%<=low risk<5%, 5%<moderate risk<95%, and high risk >95%. TMACS – troponin only 
Manchester acute coronary syndrome algorithm 



101 

Figure 3.11 Relative Hazard plot of log(TMACS) when transformed in a five-knot restricted cubic spline adjusted with the 
selected model. TMACS - Troponin only Manchester acute coronary syndrome algorithm 
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Figure 3.12 - Adjusted survival curve for categorised TMACS. TMACS risk categories are defined as very low risk <2%, 
2%<=low risk<5%, 5%<moderate risk<95%, and high risk >95%. TMACS – troponin only Manchester acute coronary 
syndrome algorithm 
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3.5.6 External Validation of Pre-existing Models 
I considered four models for external validation, Framingham, QRisk 1, QRisk 2, and ASSIGN 

(56,57,182,183). The Framingham model has a different outcome definition to the earlier work in 

this chapter and the other models considered for external validation. It did not include stroke or TIAs 

in the composite outcome.  

I mapped the variables required for each model to what was available from our routinely collected 

data (Table 3.11). Data that was missing from our database represented data not collected as part of 

routine care. Whilst the Framingham model was the simplest and oldest model we had the least 

missing data for it. As such I opted to carry this model forwards for external validation.  

Of the variables held within our database only SBP had been shown to vary in effect over time for 

our broader outcome. Given that Framingham’s outcome was different and that this was the only 

variable showing such variation I opted to pool the three cohorts for the external validation. The 

missing variables (total cholesterol, high density lipo-protein, smoking and type two diabetes 

mellitus) were sourced from regional and national data. Regional data was used for prevalence of 

smoking and T2DM (18.2% and 6.5%) (185). No regional data was identified for TC or HDL, therefore 

national data was sourced from the SCORE project (TC - 6.3 mmol/l and HDL 1.1mmol/l)  (186). 

In the pooled cohort of 18,990 patients the mean predicted risk was 12.3% with a range of 0.02 to 

88.56%. The concordance was 0.75 (95% CI 0.74 - 0.76), interestingly this was lower than the 

adjustment models which had concordances ranging from 0.79 – 0.85 (Supplementary Table 8.9). 

The Framingham concordance is likely more accurate as this is an external validation, as a pose to 

the adjustment models which are not.   
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Variable Framingham QRisk1 QRisk2 ASSIGN
Age
Sex
SBP
Smoking
TC/HDL
BMI
Ethnicity
IMD
FMH
CKD
RA
AF
DM
Anti-hypertensives

Table 3.11 Required variables for different pre-existing long term cardiovascular disease models. TC/HDL – total cholesterol 
/ high density lipoprotein, BMI – body mass index, IMD, indices of multiple deprivation, FMH – family medical history of 
cardiovascular disease <50 years old, CKD – chronic kidney disease, RA – rheumatoid arthritis, AF – atrial fibrillation, DM – 
diabetes mellitus. Green >75% data, Yellow <75%, Grey – absent, white not present in model of interest 

The calibration was visually inspected by a calibration plot (Figure 3.13). The lower 9 risk deciles 

appeared in close proximity to the perfectly calibrated line (y=x), but there was a deviation in the 

highest risk. This was markedly better than the calibration for the adjustment models which showed 

a similar pattern of mis-calibration for the high risk deciles but it was much more exaggerated 

(Supplementary Figure 8.6, Supplementary Figure 8.8, and Supplementary Figure 8.7). It may be 

possible for Framingham to be further improved by adding TMACS or hs-cTnT through model 

extension. The summary characteristics of the Framingham model should be considered more 

robust than the adjustment multivariable models as it is not being assessed upon the data it was 

derived from. As such the discrimination and calibration statistics are nor prone to over fitting.  
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Figure 3.13 Calibration plot of the Framingham model applied to all cohorts 
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3.6 Discussion 

I have evaluated the potential to use data that are routinely collected in the ED to predict the future 

occurrence of CVD among patients with suspected cardiac chest pain who do not have AMI. I found 

that cardiac troponin, using either a contemporary or a high-sensitivity assay, is a relatively poor 

predictor of long-term CVD. The TMACS decision aid had modest predictive value. However, the 

Framingham risk score appeared to have the greatest predictive value with a concordance of 0.75 

(95% CI 0.74 - 0.76). 

I found statistically significant predictors in the baseline cohort most consistently were WBC, age, 

gender and ethnicity. Heart rate and time of presentation were found to be either statistically 

significant predictors or statistically significant beneficial additions to the stepwise selected models. 

Predictors that have been included in primary care cardiovascular prediction models were not all 

found to be significant in this acute care population (19). Of note eGFR, SBP and IMD were not found 

to be significant predictors. This could be due in part to the acute population, particularly for eGFR 

and SBP. In my data it is not possible to distinguish between acute kidney injury and chronic kidney 

disease from the one eGFR result we have available. It is possible that if CKD could have been 

distinguished then an effect may have been seen. I have shown that a high blood pressure in the 

emergency department is confirmed as hypertension in the community in 0.50 of cases (93). As such 

it may be that a single hypertensive reading in the emergency department cannot prognosticate for 

long term cardiovascular outcomes, even within a multivariable model.  

When cTnT was categorised, the missing level was found to have a hazard ratio of 0.73 (95%CI 0.61 -

0.86). This predictive missingness was present across the diagnostic innovations of hs-cTnT and 

TMACS. This consistency implies the predictive value is due to a clinical decision; to investigate the 

diagnosis of AMI. Further research could consider if this logic can be extended back to the factors 

that a clinician uses to judge the need for further investigation i.e. cardiac chest pain symptoms and 

examination findings. Across the three cohorts, the median time to event was 2.05, 2.25 and 1.55 
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years. This highlights a potential limitation of recent AMI rapid rule out pathways. In some studies 

the follow up is one year, this data would suggest this is insufficient and that a longer time period is 

required (187–189).  

Hinton et al examined all hospital admissions and the prognostic value of hs-cTnI for the outcome of 

mortality at one year. These results demonstrated a HR of less than 3 rather than 17.86 from Hinton 

et al (190). The primary outcome is a key difference in these analyses. Firstly, Hinton et al did not 

report HR for CVD mortality only all-cause mortality, and secondly as a cause of death CVD only 

made up 13.4%. This makes direct comparison difficult. Moreover, my analysis looked at a 

composite outcome of CVD disease beyond death.  

The overall performance of the multivariable models used to adjust the prognostic factors improved 

in each cohort with each diagnostics innovation. This work only derived these models and did not 

seek to validate them, however it is still apparent that the discrimination and calibration improved.  

Interestingly the simple Framingham model was better calibrated in external validation, but the 

discrimination was lower than that of adjustment models. It is possible that the addition of TMACS 

or hs-cTnT, through model extension, could enhance the Framingham score further (191). The 

improvement in calibration could be due to several factors: additional variables, prospective data 

collection, or modified outcome. The additional cholesterol, smoking and T2DM variables may have 

significantly improved the model’s calibration. The data collection for the Framingham study was 

prospective in an observational cohort study, it is possible the retrospective nature of my work using 

routinely collected data may be more prone to biases. Similar studies that have used routinely 

collected data have utilised much larger cohorts up to 7.89 million (19). It is possible this sample size 

is required to better derive new clinical prediction models with this type of data. Finally, the 

outcome may be the reason for the improvement in calibration. The absence of stroke may have 

driven some of the improvement in calibration, it is possible that stroke is harder to predict in this 
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cohort than the other constituent parts of the combined cardiovascular outcome. As such its 

removal may improve model performance.  

3.6.1 Limitations 
cTnT had an unexpected hazard ratio of <1. This is likely due to selection bias which is a limitation of 

this work. We sought to include patients presenting with chest pains as this was the largest 

populations laid out in our qualitative work. The practical implementation of this was to select 

patients by the “chest pain” category given by the triage nurses. Given my experience with TMACS, I 

expected to accrue roughly 3,600 patients with TMACS scores in the final cohort, however only 

1,324 were present. This indicated that not all patients undergoing investigation for AMI were 

included in our data. This could be due to the subsequent clinical review where a history of chest 

pain may have been newly offered or denied thereby changing the diagnostic focus of their visit. 

However, given that less than half of TMACS patients were present, this may represent a database 

issue in the EPR.  

Another limitation is the biases inherent with retrospective data from the electronic patient record, 

cohorts are prone to selection bias and confounding from unmeasured risk factors.  

The data relies on reliable data linkage from NHS Digital, and it was not possible to distinguish 

between cases which did not successfully link and linked cases without a primary outcome. It is 

therefore not possible to quantify the extent of missing data due to absent or incorrect data linkage 

via the NHS Digital process.  
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3.7 Conclusion 

The ED EPR does contain data that can be used to predict long term CVD outcomes. The improving 

diagnostic technology for AMI appeared to improve the prognostic characteristics. The available 

data suited the Framingham model, and it demonstrated acceptable prognostic characteristics, it 

could be improved with the additional of recent diagnostic innovations. 

This work enhances the understanding around what is a good prognostic predictor or CPM from the 

ED for long term CVD. From this new understanding it is possible to build a care pathway to 

implement and utilise this knowledge. 
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Chapter 4 Co-produced long term cardiovascular care pathway for 
acute care 

4.1 Background 

Previous research has shown that patients often attend the ED instead of engaging with primary 

care because of greater perceived accessibility and greater availability of diagnostic testing (192). Up 

to 37% of patients who attend EDs have unsuccessfully attempted to access primary care before 

their visit (79). There is evidence that access to transport and social support also influence 

engagement with primary care following discharge from hospital (193). Further, patients who attend 

EDs may have disproportionately high cardiovascular risk: one study found that 27% of patients in 

primary care have asymptomatic hypertension, versus 43.5% for patients who attend EDs (194). 

There is also evidence that patients who attend the ED with chest pain would like more attention to 

be paid to their long-term risks. For example, in a pilot trial of the original version of the T-MACS 

decision aid, our research group administered a patient survey to research participants (9). Patients 

were asked to rate “Advice you got about ways to avoid illness and stay healthy” out of five the 

mean score from 127 patients was 2.78. This was by far the lowest score, of any polled rating. This 

viewpoint was expressed multiple times at two patient and public involvement meetings that have 

since been run by the research group. This concept of improving advice on ways to stay healthy has 

led us to how we could improve cardiovascular disease.  

For patients diagnosed with hypertension in an ED, early engagement with follow-up in primary care 

is associated with greater compliance with treatment (195). Despite this, one study found that only 

49% of patients who were found to be hypertensive in the ED had repeat measurements in primary 

care and only 4.6% received appropriate onward referrals (129).  
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Together, this highlights the need for (a) better identification of risk factors for cardiovascular 

disease in patients who attend the ED; and (b) more patient-centred systems to support successful 

engagement with follow-up to mitigate for and treat risk factors when present. With that in mind, 

careful consideration is required when designing the optimal pathway to intervene on long-term 

CVD risk. Co-production enables the designing of a pathway using a mixed methods approach with 

all stakeholders taking part in the design process. 

4.2 Published work 
Reynard, C., McMillan, B., Jafar, A., Heagerty, A., Martin, G.P., Kontopantelis, E. and Body, R., 2022. 

Long-term cardiovascular risk prediction in the emergency department: a mixed-methods study 

protocol. BMJ open, 12(4), p.e054311. 

4.3 Aims and Objectives 

The overarching aim of the work described in this chapter is to co-produce a care pathway  to 

optimise the identification and management of CVD risk in the acute care setting. This was achieved 

through understanding the opportunities and barriers to implementing such a care pathway, 

creating and gathering feedback on prototype pathways and creating a final care pathway. 
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4.4 Methods 

I adopted a co-production methodology using the qualitative technique of semi-structured 

interviews. This work took part in two waves; firstly, idea creation and design of potential solutions, 

then secondly a prototyping phase of those solutions. I envisaged that these would be prototypes of 

methods to disseminate information and interventions for cardiovascular disease. 

This study gained ethical approved by a Research Ethics Committee and the Human Research 

Authority under reference 19/WA/0312. 

4.4.1 Positionality and ethical paradigm 
I believe that this project is a worthy endeavour and that its objectives can be achieved, this is likely 

an inherent position of any researcher who undertakes a project. My clinical work has 

predominantly been in Emergency Medicine. This means I am well versed in the operational aspects 

of this clinical area, but this could be perceived as a bias towards this specialty. I was cautious when 

undertaking interviews to not only maintain impartiality in my judgement but also the appearance 

impartiality so as not to influence the interviewee.  

The work presented here embraces the principles of post-positivism, by which we understand that 

there is a single reality however it cannot be understood perfectly (196). There are biases that 

influence the data I collect to ascertain the reality, which should be minimised but are unavoidable. 

However, there are also constructivist principles that apply to this work, i.e., that reality is perceived 

through a subjective human mind and can therefore be best described as a social construct. It is 

possible to have valid conclusions that are different depending on the different subjective 

perspective. The co-produced pathway that I sought to create is an example: there is no single 

pathway that I am seeking to discover, but rather it will be socially constructed based on the 

subjective understanding of the relevant stakeholders. In this work an example might be that an 

intervention is deemed an unwise idea from a secondary care perspective and a fantastic one from a 

primary care perspective.  
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4.4.2 Study design and setting 
I conducted two waves of semi-structured interviews according to the topic guides. The overall 

objective of the first wave was to co-design an improvement for heart disease care in ED. I invited 

consultants in Emergency Medicine, general practitioners, nurses, and patients. I used the topic 

guide in the supplementary appendix.  

Participants from wave 1 were also invited to participate in wave 2, however this was not mandatory 

for inclusion.  

In wave 2 I invited feedback upon prototype solutions developed from wave 1, seeking to elicit the 

participants opinions on the benefits or challenges of the different approaches. 

Semi-structured interviews were again conducted with consultants in Emergency Medicine, general 

practitioners, nurses, and patients. A second topic guide was developed seeking feedback on initial 

themes from WP1 and on the prototype solutions (see supplementary appendix).  

4.4.3 Sample Size 
I planned to include at least four emergency medicine consultants, four general practitioners, four 

acute care nurses and eight patients. 

I intended to continue until data saturation was met, I anticipated that this would be achieved with 

20 interviews per wave but planned to continue if necessary. In wave 2 I iterated target recruitment 

by participants role to make it an equal 5 per group, this was due to early data saturation in the 

wave 1 patient cohort. 

4.4.4 Selection of participants 
The clinicians (ED doctors, GPs, and Nurses) were recruited from local NHS centres. Patients were 

recruited from the emergency departments at Manchester Royal Infirmary. Participant information 

sheets were be distributed with consent forms collected on the day of the interviews.  
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I offered the chance of participation to patients who were streamed to an ambulatory part of the 

emergency department and were awaiting blood results. I approached patients during what I 

anticipated to be a “teachable moment,” when the intervention might be applied in practice, and 

was therefore most likely to yield findings that could be generalised. 

Participants from wave 1 were invited to participate in wave 2, however this was not mandatory for 

inclusion. I anticipated that additional participants could be required if the sample size was not met, 

or data saturation was not met. If this was the case, then the same identification method as 

stipulated in wave 1 were used. 

4.4.5 Inclusion Criteria  
Participants were either emergency medicine consultants, general practitioners, nurses, or 

emergency department patients with low-risk chest pain.  

These patients were deemed low risk by the standard care pathway based around the TMACS 

algorithm. Once deemed low risk they are then transferred to an ambulatory care unit where they 

receive further assessment. 

4.4.6 Exclusion Criteria 
- The participants could not attend at least one of the semi-structured interviews 

- Not fluent in English language  

- The ambulatory ward patient’s clinical condition had deteriorated or was severe to the extent that 

participating in the research would (a) interfere in their clinical care, or (b) that participating would 

be too strenuous. This was be judged by the nursing staff on the ambulatory care unit, and myself 

prior to the interviewing the patients.  

- Unwilling to take part 

4.4.7 Consent 
To ensure varied patient opinions I needed to conduct interviews during the “teachable moment,” 

which required approaching patients about potential participation while they were waiting for blood 
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results in the Emergency Department or Ambulatory Care Unit. Patients were given time to read and 

digest the patient information sheet and to ask any questions. Whilst this approach did not give the 

patients the same time to consider the consent as the other participants it did have the important 

advantage of enabling the interviews to be conducted there and then, thereby not inconveniencing 

the patient by asking them to return. 

Clinicians were given more than 24 hours to consider their consent to being involved in the study. 

This gave them time to read the participant information sheet and seek any clarification they 

needed. This was feasible as the interviews were be scheduled with 24 hours advanced notice. 

4.4.8 Coding 
I used multi-grounded theory described by Goldhulkl et al (197). This enables a mixture of deductive 

and inductive reasoning, using ‘pure’ grounded method to deduct and existing theory to induct 

creating a more robust analysis as a whole. The audio was transcribed by an external contractor and 

analysed using thematic analysis.  

Two separate researchers coded select transcripts separately to ensure that no themes were 

misinterpreted or omitted. Each researcher was blinded to the process and if conflicting codes were 

identified then a third researcher adjudicated. This was to ensure the transferability of the findings. 

4.4.9 Care pathway creation  
From the first wave of semi-structured interviews concepts and themes were mapped to a logic 

model in a similar method to that of Smith et al (198). There were two logic models, one consisting 

of potential model inputs and a second with potential model outputs. The trial steering committee 

group was then involved which had members from emergency medicine, primary care and patient 

representatives. The logic models were reviewed by the trial steering committee in conjunction with 

the thematic analysis to collaboratively generate care pathways. This process was used to create 

three prototype care pathways for feedback at the second wave of semi-structured interviews. 
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4.5 Results 

The interviews were conducted in the two waves and with sample sizes of 21 and 20. The first wave 

took place over four months from October 2020 to January 2021 and the second wave over three 

months from November 2021 to January 2022. These interviews took place in the COVID-19 

pandemic, and the influence of this is discussed later. 

Demographic Factor   Wave 1 Wave 2 

Mean Age (SD)   49.2 (11.8) 42.1 (14.0)

Gender (n) Male  66.7% (14) 45%% (9)
  Female  33.3% (7) 55% (11)

Ethnicity (n) White 76.2% (16) 76.2% (16)
 Black, Black British, Caribbean or African 9.5% (2) 9.5% (2)
 Mixed 9.5% (2) 4.8% (1)
 Asian or Asian British 4.8% (1) 4.8% (1)
Participant roles Patient 8 5

GP 5 5
EMN 4 5

  EMC 4 5

Years’ Experience (SD)   14.4 (13.3) 7.1 (8.0)

Highest Educational achievement Nil 3 0
Secondary school  0 4
Undergraduate 16* 10

  Postgraduate 1 6

Average IMD Decile (SD)   3.3 (2.2)* 4.8 (3.2)

Table 4.1 Demographics of participants in wave 1 of interviews. SD – standard deviation, GP – general practitioner, EMN – 
emergency medicine nurse, EMC – emergency medicine consultant. Secondary school education encompasses GCSEs, A-
levels and MVQs. * Highest educational achievement and years’ experience were data points added by amendment and 
were only collected part way through wave 1. 

I reached the target sample size in wave one across the different stakeholders (primary care, 

emergency medicine clinicians, nurses, and patients). The sample was in keeping with expected 

demographic factors of age, years’ experience, education achievement and index of multiple 

deprivation (Table 4.1). The ethnicity of the professional cohorts was predominantly White British 

with only one participant being mixed African-Caribbean. Only five of the thirteen participants were 
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female. This is an under-representation of these groups. The patient cohort is mainly male (7/8) and 

four were White British (50%), two Black British, one Pakistani ethnicity and mixed Irish/central 

American black. This is a far more representative sample of the varied ethnic groups of Manchester’s 

population, and whilst the majority were male this is representative of chest pain patients. An 

amendment was submitted on the advice of the trial steering committee to include highest 

educational achievement and indices of multiple deprivation. Unfortunately, due to study timelines 

it was not possible to include to wait for the amendment prior to starting the semi-structured 

interviews. The amendment and resulting data were therefore only collected from participant 14. 

The nurses and medical doctors were assumed to have an undergraduate degree (including 

diplomas) as this is a criterion for professional registration.  

The wave two cohort consisted of 20 participants with an even representation of each role within 

the care pathway. The second wave was younger than the first with a mean age of 42.1 versus 49.1, 

on average the clinical staff were also less experienced with an average years’ experience of 7.1 

versus 14.1. The cohort had a higher proportion of women at 55% compared to 33.3% in the first 

cohort and the distribution of ethnicities were broadly similar. Highest educational achievement was 

different between wave 1 and 2, with the second cohort having more participants with postgraduate 

qualifications 6 vs 1 and no one with no educational qualifications or achievements. The average 

IMD for wave 2 was 4.8 which sits close to the middle decile for the country (5), implying that this 

was overall a representative cohort. Given the missing IMD data from the first wave a comparison is 

not possible.  
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4.5.1 Wave 1 Thematic analysis 
Interviews were coded with multi-grounded theory in a thematic analysis. Prior knowledge of the 

subject matter was used to inform the interpretation of the interviews, which were coded and 

synthesised into themes. These themes were to be used to guide the creation of care pathways 

later. The interviews were also deconstructed into building blocks for a pathway (attached), this is 

presented in a series of lists from which different aspects can be selected to create a care pathway.  

There were six main themes from the current version of the analysis: Loci of clinical responsibility, 

Poor communication, avoidance of pandemic hospitals, reductive EM care, acceptability of CVD care 

in EM and automation of preventative EM care. As this is an iterative process this was refined in the 

second wave of interviews. 

4.5.1.1 Loci of clinical responsibility 

The study participants repeatedly highlighted the importance of who was responsible for new 

clinical findings and their treatment. This incorporated two main sub themes: primary care to 

secondary care and patients vs the NHS. This was an important theme as it is the foundation of any 

clinical pathway.  

Primary to secondary care 
Whilst the overall sentiment of the interviews was in favour of some degree of preventative clinical 

pathway, precisely who should be responsible elicited emotive responses from some participants. 

This was also an emotive point for some professional participants as the potential pathways 

represented, to some, a change in definition of their role. EM clinicians were frustrated at the 

general lack of resource and time available for clinical care and felt that any further task would only 

exacerbate this issue. Some general practitioners felt that this was not the remit of emergency care 

and expressed concern that it was encroaching on an already embattled primary care identity. 

A given example of the current loci of responsibility for patients in the ED was referral to rapid 

access cardiology clinics. Current practice is that patients requiring an elective cardiology 

investigation should be referred by EM to GPs who then refer to a cardiology clinic. Frequently this 
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request is a single line on a discharge summary. The logic for this that potentially GPs have access to 

the wider patient record and then can make a more informed referral. However the counter 

argument is that this is a system inefficiency that forces patients through a complicated system. In 

this process the loci of responsibility transitions from EM to primary care to cardiology. EM 

delegates responsibility to colleagues in primary care after their emergency visit is completed 

(normally for chest pain), at which point due to system factors the responsibility does not move 

directly to cardiology rather via general practice. It was noted by participants that every time the 

responsibility for patient care transitioned, information was known to be lost (e.g. a heart tracing), 

which may indicate that more information is also unknowingly lost. There are conflicting sentiments 

here (i) the emergency physicians are too busy to take it on and (ii) we shouldn’t shift responsibility 

because information might be lost. It is clear that responsibility has to shift back to primary care 

because the ED cannot go on looking after patients’ long-term CVD risk indefinitely (or at all, 

following the ED visit). Therefore, we need to minimise transitions in responsibility and ensure that 

systems are designed to minimise data loss at handover points. 

Regarding risk factors for long term heart health all participants agreed that a positive result 

identified opportunistically in the ED should be followed up or actioned. Some clinicians felt that the 

clinician overseeing the acute episode should be ultimately responsible, whilst others felt it 

reasonable to merely act as a conduit for the results to pass to another service. Caution was noted 

that sometime clinicians are not aware of all services available, or if they are functional in part due 

to a lack of feedback.  

Some patient participants deferred to the paternalistic medical model where they were happy to 

follow the clinician’s instructions, thereby keeping the responsibility on the clinician. However, other 

patients felt that once their fellow patients had been given the knowledge and tools to themselves 

action a positive result, the onus should be on the patient to act. Clinicians echoed this, in one 

instance with frustration when an international comparison was drawn. 
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“I think, the NHS is already brilliant at taking responsibility away from patients, we follow up a lot, 
we do a lot for patients compared to other countries.” 

A GP participant quote regarding the theme loci of clinical responsibility. 

Clinicians in general were in favour of the system reaching out to patients to investigate/treat a new 

risk factor. However, some did caution that this should be done in a limited way, as the result of 

these pathways may well be the patient being offered a therapy which requires them to comply 

autonomously. They were however keen that wherever the pathway’s responsibility lay it was 

transparent and communicated clearly (see below quote). 

“responsibility is kind of important, but actually making sure that everybody is probably aware of 
what everyone’s responsibility is.” 

An Emergency Medicine Consultant’s quote regarding the theme loci of clinical responsibility. 

4.5.1.2 Poor communication 

Communication throughout the healthcare system was described as sub-optimal. This theme was 

split into two further subthemes. 

Primary and secondary care interface 
GPs universally felt that the discharge summaries from the emergency department were not 

optimal, some were emotive at the suggestion of additional communication when the basics were 

not yet acceptable. Overall comments were that the summaries were short, poorly organised and 

the requested actions were of varying acceptability. Some GPs expressed a lack of trust in the 

accuracy of the information contained within the summaries. Two GP participants reported having 

recent experience of the EM clinical environment and expressed sympathy for the workload in EM, 

the remainder expressed strong feelings that this was not an optimal situation. It is possible that 

knowledge of the context enabled empathy between the specialties.  

“We know that communication between Emergency Departments and primary care are very poor.” 

A quote from an Emergency Medicine Consultant describing communication between primary and 
secondary care. 
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EM clinicians agreed with GPs that the summaries required improvement. They expressed doubt 

that this could not be easily fixed due to a lack of time available to fill in a sufficiently detailed 

summary per patient. They hoped for an IT solution where work was not duplicated, and an 

automated system could create a summary from the existing clinical record. EM clinicians also noted 

that they did not know if a referral/summary had been received, was deemed appropriate, or 

actioned. This blind follow-up disincentivised clinicians from using follow up systems. GPs also 

expressed concern at the vulnerability of their care pathway due to the volume of the secondary 

care communication and the required processes to action and requests. 

“A lot of these emergency department letters, especially in today’s brave new world where a lot of 
letters won’t get seen by clinicians at all, but they’ll get simply triaged by the admin teams in 
practices, they’ll just get filed and no further action will be taken.” 

A quote from a general practitioner describing the processing of communications from secondary 
care 

“… quality of the letters from the emergency department to GP which vary a lot depending on who 
writes and their understanding of the SHO, consultant, …” 

A quote from a general practitioner describing the range of quality of letters from secondary care 

EM clinicians also noted the variation in GP practices and that they were not one single organisation 

that could be consulted. Instead, they were interacting with a series of individual businesses with 

unique characteristics. 

Acute condition diagnosis 
Patients expressed frustration that they were not always told what the cause of their original acute 

presentation could be. They felt that often it was simply stated that it was not a heart attack, and 

that this was not further explored. This view was reinforced by the nursing participants who stated 

that they often found themselves explaining results to patients again, due to miscommunication. 

The source of this miscommunication was hypothesised to be a lack of time, and the potential for 

patients to have a reduced capacity to process the information in a stressful situation. Patients and 
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nurses also felt that there was a different primary focus for the patient and clinician. Patients 

wanted to know what the cause of their symptoms was, whereas clinicians were primarily focused 

on excluding high risk pathologies (such as a heart attack). These different priorities often went 

unnoticed early in the patient’s journey and only became apparent at the conclusion when the 

patient was simply told they did not have a heart attack. GPs expressed an awareness of this 

situation and empathy for EM clinicians due to the clinical uncertainty, however they were keen for 

a provisional diagnosis to be made in EM prior to discharge.  

“… a possible explanation for why I got that such severe pain that was just out of the blue, rather 
than just, oh, it’s nothing, don’t worry about it, because brains don’t work like that, and my brain 
certainly doesn’t. “  

A quote from a patient explaining their concerns about why they got such severe pain,  

4.5.1.3 Avoidance of pandemic hospitals 

Patients stated that they wanted to avoid hospitals in the pandemic and that their thresholds for 

attending were substantially higher. They were anxious regarding catching COVID-19 whilst in 

hospital and were wary of overburdening the system. Clinicians noted the change in patient 

behaviour as well but reflected that it was had changed. Early in the pandemic it was felt that all but 

the most unwell patients stayed away from hospital, however later the normal patient mix returned. 

GPs noted that they were dealing with more patient presentations that would normally have been 

deemed worthy of attendance at an emergency department. 

Clinicians universally expressed that there was a cohort of patients who did not attend hospital but 

should have, and that this was a problem that would become more apparent later for the health 

service. 

4.5.1.4 Reductive emergency medicine care 

In contrast to whole patient or holistic patient care, EM care was pervasively described as reductive. 

For example, it was focused on a condition or symptom such as focusing on a pneumonia whilst 

excluding other issues. This was seen to be because of time pressures and the desire for efficiency. 
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These characteristics of reductive care were viewed as both a positive and negative. Nurses felt this 

described their role was and it was the “ED lane”, this was echoed by some GPs and EM doctors as 

exemplified in the below quotes.  

“I think the GP is going to take the care, this is a long-term chronic condition, which the patient is 
going to have to live with.  So the GP needs to be the person to do that. I don't think that's A&Es 
role.“ 

Emergency Medicine Consultant quote 

Not actioning this had negative connotations for some EM clinicians who stated it was patching a 

problem only for it to break in the future. Frustrations around this were shared by GPs particularly 

when it came to communication, they felt that often EM clinicians placed things outside their remit 

inappropriately by solely focusing on a single symptom or condition. EM’s high-pressure 

environment and time focused clinical targets were thought to exacerbate this issue by placing 

reward on quick pathways and penalising slower versions. 

4.5.1.5 Acceptability of implementing measures to prevent long-term cardiovascular disease in the 

acute care setting 

Clinical stakeholders felt that implementing measures that aim to prevent future cardiovascular 

disease would be broadly acceptable but there were some concerns expressed. EM clinicians were 

positive about the potential intervention but were cautious about what could be done in the ED and 

how this would be followed up over a prolonged period. GPs were broadly in favour if it was a low 

intensity activity that might signpost patients to traditional primary care prevention care pathways. 

“If they’ve got risks of heart disease, then they need to get followed up and they need to be started 
on the appropriate treatments and given appropriate health advice. And then probably followed up, 
not just once but over a period of time, to actually encourage them to modify their risks as best we 
can.” 

Emergency Medicine Consultant quote 

“I don’t see anything wrong with using it as an opportunity thing.” 

General Practitioner quote 
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The ED nursing staff were similarly positive about the prospect. However, whilst they were in favour 

of the concept there was some concern that some patients may not be receptive to the concept of 

the teachable moment. Given the length of time that patients often wait they were concerned that 

they may be frustrated if a topic not directly relevant to their acute presentation was raised. 

“I guess what I’m trying to say is, lecturing a patient after they’ve spent four hours in A&E waiting for 
blood results and a chest x-ray I don’t think is the right time and place.” 

Emergency Medicine Nurse quote 

Patients were firmly in favour of the focus on preventing future CVD. They were surprised that data 

collected that could be interpreted to predict CVD was not utilised. They did not express any of the 

concern that the other health care stakeholders had. 

“No, I think they should do it, I think they should be truthful with everything they say to you what’s 
going to happen” 

Patient quote

4.5.1.6 Automation of preventative care in EM 

The use of routinely collected data for preventative medicine was widely seen to be an efficient use 

of resources. The addition of further tests, such as HbA1c (to screen for type two diabetes mellitus) 

and a cholesterol panel, was also seen to be a welcome addition. Particularly as this addition may 

well avoid a patient visit in primary care. There was concern over ownership of the results which is 

discussed previously.  

The ability to target a potentially under-served group whilst they were in a teachable moment was 

also seen to be a strength. Alternative strategies to identify a cohort previous hidden from 

preventative care strategies were thought to be likely too costly.  
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4.5.2 Logic model for care pathway generation 
To build the prototype care pathways logic models were constructed from the semi-structured 

interviews. These were separated into care pathway inputs and outputs. Inputs included those 

things required to go into the care pathway such staff, risk factors and data (Supplementary Table 

8.10). The outputs or potential outcomes of the care pathway including a referral or lifestyle advice 

which were placed in a separate logic model (Supplementary Table 8.11). I have summarised these 

logic models in the style from Bradbury et al in Figure 4.1 (199). 

The prototype synthesis was conducted within the trial steering committee by collaboration based 

on the themes and sub-themes identified. Key themes that influenced the prototype care pathways 

were the loci of responsibility, poor communication and reductive EM care. Three pathways were 

distilled from the trial steering committee deliberations, an ideal care pathway, a streamlined care 

pathway and a worst possible care pathway (Figure 4.2, Figure 4.3, and Figure 4.4). The later care 

pathway was designed to stimulate discussion and to highlight factors to avoid.  

The ideal care pathway prototype is detailed in Figure 4.2, it utilises automated data collection 

thereby avoiding any additional burden on clinical staff. Routinely collected data would be used to 

calculate future CVD risk, which would then be automatically pushed to the treating clinician. At this 

point the clinician would communicate the results to the patient, providing relevant leaflets and/or 

internet links for bespoke websites. The aim of this brief interaction would be to communicate the 

patient’s future risk of CVD and discuss lifestyle factors that could begin to manage the risk. The 

output of the pathway would also be communicated to the patient’s general practitioner, where a 

pre-agreed automated handover will take place and the patient is considered for further review.  

This proposed care pathway and data flow is hypothesised to make the identification of patients 

who are at risk of future CVD feasible in a busy ED, thereby enabling primary prevention and a 

reduced future burden of CVD. This requires patients to engage in behavioural change (potentially 

including medication compliance) over a prolonged period. The concept of capitalising upon a 
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teachable moment when patients may be more amenable to interventions is central to this pathway. 

It warrants further investigation to understand the magnitude of this effect.  

A disadvantage of the ideal pathway is that it requires a brief intervention by the treating emergency 

clinician, which conflicts with the sentiment that busy EM clinicians need to retain focus on the acute 

complaint. Therefore, an alternative streamlined care pathway was also distilled (Figure 4.3). This 

pathway is identical to the ideal pathway until it comes to communicating the results of the pathway 

to the patient. At discharge, the patient is told that the results will be communicated later to their 

primary care service. This allows for a warm handover between primary and secondary care whilst 

not burdening the ED clinician with an undertaking a brief intervention.  

A ‘worst possible’ care pathway was also defined to incorporate the ‘faux pas’ highlighted in the 

interviews (Figure 4.4). This pathway required manual input from clinical staff to collect and input 

additional data. The patient was not informed of the process at any point of their acute 

presentation. Primary care was informed in a verbal hand over which would entail a time burden to 

acute care and potentially lead to miscommunication. In this scenario the care pathway has not 

been agreed between primary and secondary care and therefore the call will likely be unexpected. 

The patient, unaware of this process, only becomes aware if primary care contacts them to invite 

them for follow up. This negates the benefit of the teachable moment by disconnecting the long-

term CVD consultation from the acute care episode.  
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Figure 4.1 Summary logic model of potential cardiovascular care pathway  
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Figure 4.2 Prototype care pathway – the ideal care pathway from the totality of the research 



129 Figure 4.3 Prototype care pathway – the streamlined care pathway reducing the activity in acute care to a minimum 



130 Figure 4.4 Prototype care pathway – the worst possible care pathway from the totality of the research 
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4.5.3 Wave 2: Finalisation of the co-produced care pathway 

4.5.3.1 Reflection on previous themes 
Loci of clinical responsibility was explored again with participants and again the broad concepts of 

the importance of transparency came out. There was reflection that some clinical practice was in 

part driven by concerns around medico-legal consequences. Below are two quotes that demonstrate 

this concept. 

“ultimately, you know, there’s the consultant name on for that day” 

A quote from an Emergency Medicine Consultant regarding the medico-legal impact perspective on  
responsibility 

“I think ultimate responsibility for a test still has to lie with the person who does it.” 

A quote from a GP regarding the medico-legal impact perspective on responsibility 

The theme of poor communication was also reinforced in the second wave of interviews, for the 

primary/ secondary care interface and the clinician/EPR interface. That information was lost or 

corrupted when a clinician inputted into a computer system be it a discharge summary to the GP or 

a referral from primary care to the ED. Not only was communication through the clinical/EPR 

interface leading to information being lost but clinicians also felt that it was oversharing. Secondary 

care discharge summaries contained data that was not relevant to primary care and this increased 

the noise and made it harder to identify the signal or clinically pertinent information. The use of the 

EPR particularly for discharge summaries was not valued by secondary care staff, the acute patients 

were prioritised and this task with no immediacy to its nature was devalued. 

“I think in a working A&E department that’s a low priority task and a lot of the time it’s left until a 
later date when somebody can just go through and write all these letters” 

A quote from an Emergency Medicine nurse  
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“A lot of information that can be communicated, I would imagine that the GPs suffer from two 
different information deluge of stuff that they don’t need to know and a lack of stuff that they think 
that we do need to know.” 

A quote from an Emergency Medicine consultant 

4.5.3.2 The dangers of “bolt-on” activities to core clinical work  
A new theme emerged from the second wave of interviews, and it focused on the dangers of ‘bolt 

ons.’ These were small additional burdens to a core piece of work, in this context it was used to 

describe the additional work created by an axillary pathway . There was frustration from primary 

care stakeholders that they had previously agreed to pathways that had changed over time and 

become more burdensome. This was on top of a background sentiment of already be used as the 

administrators of the NHS by some in secondary care. Interestingly this feeling of imposition was 

also felt by EM stakeholders either from within their own department or other hospital specialties. 

“all these pathways, they are presented in a way that’s like, oh you can barely feel it, it’ll be fine. And 
nearly always that’s not the case. I’m a little bit sceptical that it’ll be as easy as, [it says]”  

Quote from Emergency Medicine Consultant 

“It’s the opposite of British cycling, you chip away tiny little fractions that in the end make the 
difference between winning and losing.  Well in the NHS we do the exact opposite, we gradually 
make things less and less efficient until the whole thing falls apart because we’ve overloaded it.”  

Quote from Emergency Medicine Consultant 

“there’s a lot of local angst about agreed pathways which subtly change over time, to burden the GP 
with more work” 

Quote from General Practitioner  

This anxiety translated into inertia around care pathway innovation, where the clinical stakeholders 

felt justified in their hesitancy for implementation. Primary care stakeholders repeated a narrative of 

being asked by secondary care to do activities that in their opinion should and were previously 
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routinely conducted in secondary care. In EM, an example of a well implemented bolt on was where 

the implementation was contingent on no extra EM resources being required.  

4.5.3.3 Feedback on pathways 

The feedback for the care pathway prototypes was guided by the structure described by Peters et al 

(200). This included acceptability, likely adoption, appropriateness, feasibility, and coverage.  

The acceptability of the care pathways for the clinical stakeholders was contingent on the additional 

workload it would give them. All felt that the principle of improving long term CVD outcomes in this 

group was a worthwhile endeavour, however there was concern that any new care pathway might 

detract from other work. The EM clinical stakeholders demonstrated a preference for the stream-

lined care pathway prototype, which reduced the tasks for EM. General practitioners expressed 

concern over the feasibility and appropriateness of these tasks being inevitably pushed to them. The 

sentiment that the problem should be fixed where it was identified was common. Patients found 

both the streamlined and optimal pathways acceptable, though they did express a preference for 

the optimal pathway where more activity took place in the ED. 

The initial adoption of the pathway relied on the alignment between primary and secondary care as 

the pathway spanned both areas. A suggestion to facilitate this was a local clinical forum, which 

could be initiated prior to care pathway implementation. The EM nursing stakeholders highlighted 

the need for training in the subject area long term CVD if a lot of activity was expected in the ED. A 

primary care stakeholder suggested that it may be possible for some of the EM activity in this care 

pathway to contribute to quality and outcome framework payments in primary care. If it was 

possible to automate the sharing and coding from secondary to primary care EPRs then this may 

drive adoption from the primary care stakeholders.  

The appropriateness of the pathway was not questioned, however the location and intensity of the 

intervention was. Primary care stakeholders expressed concern for more work to be passed from 



134 

secondary to primary care. EM stakeholders were concerned that this was another ‘bolt-on,’ and 

that it would divert resources from their core work reducing their ability to provide ‘routine’ clinical 

care. The streamlined care pathway was broadly acceptable to both groups of stakeholders, with the 

caveat from primary care that any communication and its integration into their systems was pivotal 

to its success. The optimal care pathway with a bespoke consultation at the point of discharge was 

seen as inappropriate by EM stakeholders given the current clinical pressures faced by EDs. There 

was an acceptance from primary care stakeholders that the eventual management of long-term CVD 

would fall to them, the point of contention was when that hand over happened. 

The acceptability links to feasibility, as something unacceptable to staff is inherently not feasible. A 

key factor for the feasibility is the streamlined care pathway requiring an integrated EPR system 

across primary and secondary care. The ability of the NHS to deploy such a complicated digital 

solution was questioned when other far less difficult digital tasks were seen as unachieved. This 

digital solution allows the worst-case care pathway to be avoided. Specifically preventing additional 

tasks being added at triage, allowing the risk prediction to occur seamlessly in the background and 

the information transfer to primary care in a pre-agreed system and format that maximises utility. 

The capacity for the pathways to function out of hours was a concern for stakeholders and the trial 

steering committee. EM nursing stakeholders were concerned that patients attending out of hours 

may not receive the same level of care from this pathway due to extra overnight pressures. The 

steering committee members were concerned regarding the lack of adaption for highlighted the 

need to adapt any patient-facing material for non-English speakers in the optimal care pathway. The 

streamlined care pathway was selected as being able to maximise coverage overnight due to its 

simplicity and to for non-English speakers any materials could be translated and the messaging from 

the clinician would be shorter and more easily translated in a time poor environment.  
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4.5.4 Final care pathway 

The final care pathway was derived from the feedback and analysis of the wave two interviews 

(figure 4.4). EM clinicians made it clear that a pathway that added extra ‘non-routine’ activity would 

not be easily implemented and that for some it was deemed completely unfeasible. Given this red 

line for EM stakeholders an option was added that merged the optimal and stream-lined care 

pathways. This choice aims to alleviate the feeling of an imposed bolt-on for EM stakeholders but 

introducing an element of clinician control over the pathway. At the same time it allows for quick 

communication with the patient to maximise the potential of the teachable moment. Any materials 

would need to be translated into prevalent languages for the local area.  

Similarly the prototype care pathways the CPM inputs were automated from the routinely collected 

data in the ED. Also, the pre-agreement and integration with primary care remained a pivotal part of 

the pathway. 
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4.6 Discussion  

In this chapter I have described the co-production of a long-term CVD care pathway using 41 semi-

structured interviews across multiple stakeholder groups. The final care pathway has the potential 

to be successfully trialled and deployed without failing at the identified points of contention. It 

utilises routinely collected data to predict long term CVD risk relying on a digital solution for 

secondary care. The integration into primary care relies on good pre-implementation 

communication and agreement regarding the medium and content of any communication. This 

could be maximised if QoF targets could be achieved for primary care by the secondary care activity.  

This work draws on elements of EBCD as described by The Point of Care Foundation (201). I did not 

conduct all the formal stages of EBCD such as a trigger film or celebration event. The framework 

seeks to overcome the asymmetry between clinicians and patients and it has been hypothesised that 

not following it fully could compromise this (202). A systematic review by Green et al proposed that 

to qualify as EBCD patients needed to be involved in the experience gathering and co-design phase 

(202). It is reasonable to argue that in this work the semi-structured interviews with patients formed 

the experience gathering portion. Furthermore the co-design phase could be satisfied by noting the 

important participation of two lay members in the steering trial steering committee, and the 

valuable feedback provided by patients in the second wave of interviews. It is important to note that 

the patients and clinicians involved in this work were all from the Greater Manchester area. This may 

limit the transferability, particularly to rural areas.  

The patient desire to receive advice about how to stay healthy after leaving the ED has also been 

identified in previous qualitative work. Ferry et al conducted semi-structured interviews with 

patients before and after implementation of a rapid rule-out pathway for suspected ACS (84). They 

identified a theme on ‘approaches to future heart health’ with patients noting that they were likely 

to be particularly receptive to health prevention activities when attending the ED with chest pain. 
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This further confirms that there is an unmet need and untapped potential for a care pathway to 

address ongoing CVD risk in the teachable moment around chest pain attendances.  

The MRC and NIHR have provided guidance for the development of complex interventions in 

healthcare (203). This package of work, combined with the outputs of the two preceding chapters, 

adheres to that guidance (Table 4.2). The process was planned and involved a multitude of 

stakeholders. I reviewed the evidence in systematic reviews and undertook primary data collection 

where necessary. I designed the intervention with thought to the future implementation. 

NIHR & MRC complex intervention guidance 
theme (203)

Doctoral activity 

Plan the process Doctoral planning/protocol publication 
Involve stakeholders Semi-structured interviews with GPs, patients, 

EM consultants and nurses. 
Bring together a team and establish a decision-
making process 

Trial steering committee involving 
representatives from primary and secondary 
care as well as patient representatives. 

Review published evidence & draw on existing 
theories 

Conducted a systematic review and used multi-
grounded theory to enable iterative approach 
in qualitative studies 

Undertake primary data collection & 
understand the context  

Co-production of the pathway made possible 
by semi-structured interviews, and prognostic 
factor study to understand what can be 
included. 

Design the intervention and pay attention to 
future implementation 

Co-produced care pathway iterated in part to 
enable sustainability.  

Table 4.2 O’Cathain et al’s complex intervention guidance themes mapped to conducted doctoral activity (199) .  

This work could be carried forward by a pilot randomised control trial (RCT). A stepped wedge 

cluster randomised control trial could be used to deploy the intervention and the primary outcome 

could be CVD risk factor modification in the primary care setting. A prognostic outcome (incident 

CVD identified at longer term follow up) could be examined however this would require a prolonged 

follow period. An interrupted time series could be conducted examining the period before and after 

the intervention and accounting for trends in outcomes of interest (204). This trial design is generally 

cheaper than RCTs and quicker to complete.  
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4.7 Conclusion 

This chapter reports on the co-production of a care pathway to identify and manage ongoing CVD 

risk for patients who present to the ED with chest pain. The work is synergistic with the outputs for 

the systematic review and prognostic factor studies of chapter 2 and 3. In totality this work 

demonstrates the prognostic factors and CPMs that can best predict long term CVD in patients 

accessing acute care. Critically, it also defines a pathway to implement this for the benefit of 

patients.  
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Chapter 5 Validation of TMACS across the GM-TMACS database 

5.1 Background 

The TMACS CPM has been in clinical use in the Greater Manchester region since 2016. It has been 

externally validated for patients with suspected cardiac chest pain (5,49–51). However, the CPM’s 

performance has not been examined locally using routinely collected data, nor has it been examined 

longitudinally to see how the model performance changes over time.  

Furthermore, there are now additional factors and subgroups that are of special interest for model 

performance. Since the derivation of TMACS age and sex dependent reference limits for high 

sensitivity troponin have been proposed, given that high sensitivity troponin is an integral part of 

TMACS the effect of these factors should be examined (205). A similar variation has also been shown 

with eGFR with lower kidney function being associated with higher high sensitivity troponins, this 

could affect the CPMs performance and also warrants further investigation (178). Ethnicity has been 

highlighted as another factor to consider when examining model performance, in the Framingham  

model the calibration and model performance was found to vary by gender and ethnicity (206,207). 

Another factor of interest is deprivation which has previously been shown to be associated with an 

increased prevalence of CVD  risk factors, and an increase in 10 year CVD mortality (208,209). 

5.1.1 Model Performance Metrics 
A CPM can have its diagnostic performance measured in two domains discrimination and calibration. 

Discrimination is the ability of the model to discern a positive outcome from a negative and 

calibration is the closeness of the model’s predicted probability to the observed (actual) probability. 

Area under the curve 
Area under the curve is a measure of discrimination and can also be referred to as the area under 

the receiver operator curve, c-statistic, Harrell’s c-statistics or concordance. The curve that AUC 
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refers to is created by plotting sensitivity against 1- specificity (210). An AUC of 1 describes a model 

with perfect discrimination and an AUC of 0.5 infers that the model had no predictive ability (210).  

Calibration in the large 
Calibration in the large (CITL) is an overall measure of a model’s calibration. This is where the mean 

predicted risk is compared to the outcome event rate (211,212). If a model had a mean predicted 

risk of 2% for a population and the event rate was also 2% the CITL would be 0, indicating good 

overall calibration. However if the model over estimated risk the CITL would be less than 0 and if it 

underestimated the risk it would be greater than 0.  

Calibration plot and slope 
Calibration can be visualised by a calibration plot where the observed versus the predicted risk are 

displayed (212). Here the model’s predictions can be grouped by decile or pre-allocated risk groups. 

This enables the visualisation of the model’s calibration across different predicted and observed 

risks. 

Calibration can also be assessed by measuring the calibration slope, the gradient of the points on the 

calibration plot (213). The best overall calibration would be a calibration slope of 1. A slope of less 

than one would that the risks predicted are too polarised, i.e. the high observed risk predictions are 

too high and the low observed risk predictions are too low (212).  

Brier score 
The brier score is a metric that assesses both calibration and discrimination and is of interest in 

models with a binary outcome (214). The Brier score is calculated from the average squared error of 

the observed outcome compared to the predicted risk (215). The score ranges from 0 to 1, with 0 

inferring the model can has no average error (perfect) and 1 the model has the maximum possible 

average error (worst).  
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5.2 Aims 

To evaluate the diagnostic accuracy of the TMACS CPM for acute myocardial infarction in a real-

world cohort of patients. 

I. To evaluate the diagnostic accuracy of the TMACS decision aid for acute myocardial 
infarction in a real-world cohort of patients. 

II. To assess the performance of TMACS in subgroups of interest including site of presentation, 
age quartiles, gender, ethnicity, kidney function clinical stage, deprivation quintile.  

III. To assess the variation in performance of TMACS over time  

5.3 Published work 

Reynard, C., Martin, G.P., Kontopantelis, E., Jenkins, D.A., Heagerty, A., McMillan, B., Jafar, A., 
Garlapati, R. and Body, R., 2021. Advanced cardiovascular risk prediction in the emergency 
department: updating a clinical prediction model–a large database study protocol. Diagnostic and 
Prognostic Research, 5(1), pp.1-7. 

5.4 Methods 

These methods and results are reported in keeping with the TRIPOD guidelines (45). 

5.4.1 Design and setting 
I used a multi-centre retrospective cohort study to assess the real-world performance of TMACS. 

Patients who presented with chest pain to the ED where the clinician suspected ACS were included. 

This was achieved by using sites where TMACS had been implemented in a care pathway to target 

these specific patients. These sites were the emergency departments at Manchester Royal Infirmary 

(MRI), Royal Blackburn Teaching Hospital (RBTH), and Burnley General Teaching Hospital (BGTH). 

The respective annual ED attendances in 2020 were 104,449, 104,009 and 44,519.  

5.4.2 Study Population 
Patients presenting to the ED with chest pain were included if the clinician suspected ACS and 

therefore used TMACS as part of the routine clinical pathway. Across the three clinical sites from 

June 2016 to October 2022 this was estimated to include approximately 14,000 patient episodes. All 

patients had two troponin tests recommended during the study period, which minimised verification 
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bias. Each site had a different troponin assay in operation, MRI used Roche’s hs-cTnT, Blackburn 

used Siemens hs-cTnI and Burnley used an Abbott iStat point of care troponin assay. 

5.4.3 Data Sources 
At each centre, TMACS was implemented using a bespoke digital interface, which enabled the 

collection of data from consecutive patients who followed the pathway. At MRI, clinicians entered 

data directly into a macro-enabled spreadsheet (Microsoft Excel) at the point of care. This was the 

only way for clinicians to access departmental guidelines for management of patients with suspected 

acute coronary syndromes, helping to ensure complete data collection. Upon completion of data 

entry, all data were saved to a secure NHS server. The data were subsequently collated and linked to 

the hospital central laboratory database (to include results of all cardiac troponin and renal function 

testing). 

At RBTH and BGTH, clinicians were similarly required to enter data directly into a TMACS calculator 

that was integrated with the electronic patient record. The data was to be cross-referenced with 

NHS Digital’s Hospital Episode Statistics (HES) database and the civil registry. This would provide data 

for the outcomes of interest (AMI & MACE), even if the patient had not reattended the original 

hospital.  

The MRI TMACS database required a validation step to check the compiling of the database had 

been successful. The macro-enabled spreadsheet outputted one fully populated spreadsheet per 

patient episode. However, clinicians were able to update their calculation by creating a newer 

version, which was also saved creating some duplicate entries. Given that duplicate entries are likely 

to be a result of corrections or newly available data, I selected the last prediction calculated by the 

clinician as the ‘prime entry’. Validity for duplicate entries was checked using the principles of 

Weiskopf et al (216). Initially an automated check was planned reviewing electronically stored versus 

manually transcribed biochemistry data, then a random sample of 100 patient episodes underwent 

case note review. If the error rate was greater than 5% then all duplicate entries were to be 

reviewed (as per workflow in supplementary materials).   
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5.4.4 Outcomes 
The primary outcome was a diagnosis of AMI within 30 days of the index date, including any 

subsequent admission. Patients were considered to have an AMI if they had an ICD-10 coded 

diagnosis present as a primary discharge code on any admission within 30 days. A sensitivity analysis 

was conducted to expand the outcome definition to any AMI code regardless of position. The 

relevant AMI codes included I21, I22 or I23 (see Supplementary Table 8.12). There was also a 

secondary composite outcome of major adverse cardiovascular events (MACE) within 30 days. MACE 

was defined as AMI, death and revascularisation. ICD-10 diagnostic codes included I21, I22, I23, I46, 

R96, R99. OPCS intervention codes included K40-50, K63, and K75 (see Supplementary Table 8.12).  

5.4.5 Statistical analysis 
I calculated the output of TMACS using the algorithm as it was used in clinical practice during the 

study period, which includes minor alterations to the originally published coefficients (unpublished – 

figure 5.1). I used  the c-statistic to measure discrimination and confidence intervals were calculated 

using the method described by DeLong et al (217). Calibration was evaluated through calibration 

plots in conjunction with CITL and calibration slopes. The Brier score was used to capture overall 

model accuracy. I also observed the diagnostic characteristics longitudinally, splitting the cohort into 

annual quarters. Sensitivity of TMACS was calculated using the very low risk group threshold (<2%. 

Predicted risk). Specificity of TMACS was calculated using the high-risk group (> 95% predicted risk). 

I pre-specified additional variables/subgroups of interest including age (quartile), gender, site, kidney 

function, ethnicity, and deprivation (indices of multiple deprivation – quintiles).  

The model was also validated longitudinally to assess for any temporal change in its performance, 

this was done by quarter (January – March, April – June, July – September and October – December). 

� = ����
�
��� = 1.828�	 + 1.514�
 + 0.849�� + 1.783�� + 1.878� + 1.412�� + 0.089�� − 4.65
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Figure 5.1 – The TMACS clinical prediction model. � = log-odds of the primary outcome acute 
myocardial infarction, �	 = presence of ECG ischaemia, �
 = crescendo angina,  �� = paint radiating 
to the right arm, ��= pain associated with vomiting, � = sweating observed, �� = hypotension, and 
��=  is high sensitivity troponin T result on arrival. 

5.5 Results 

5.5.1 Cohort description 
A total of 13,207 patient episodes were collated from MRI (10,710), BGTH (1,242) and RBTH (1,255) 

from June 2016 to October 2020. A validation step was undertaken for MRI data, given that data 

entry into the TMACS interface relied upon manual input. First, the troponin results entered into the 

TMACS calculator were compared with the central laboratory database. This identified an error rate 

of 2.9% of (n = 312). Because this was a real-world assessment of TMACS, these values were not 

corrected, although we ran a sensitivity analysis using the correct initial laboratory results. Second, 

100 cases were randomly selected for case note review to compare the data taken from the TMACS 

database with the output of TMACS that was documented in patient case notes. No mismatches 

were identified. This did not meet the prespecified threshold of a 5% error rate to require a full set 

of case note reviews, therefore the data validation was deemed to have been passed.  

Of the 13,207 patients, 81.2% were from MRI and 46.8% were male. The mean age was 56.4 and 

31.9% were of white ethnicity (Table 5.1). The mean predicted probability was 13.7%. However, the 

most frequent risk category was ‘very low risk’ (calculated probability of AMI <2%), accounting for 

42.3% of patients (Table 5.1). The high proportion of very low risk predictions caused a positive skew 

in the distribution of predicted risk (Error! Reference source not found.) 
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Feature N (%)

Total number of patients 13207
Manchester Royal Infirmary 10710 (81.2%)
Burnley 1242 (9.4%)
Blackburn 1255 (9.5%)

Male 6175 (46.8%)
Female 4535 (34.4%)
Missing 2497 (18.9%)

Age
Mean 56.38
Standard Deviation 16.91
Range 16-103
Missing 0

Ethnicity
Asian 2435 (18.4%)
Black 756 (5.7%)
Mixed 472 (3.6%)
Other 347 (2.6%)
White 4213 (31.9%)
Missing 4984 (37.7%)

Original Predicted Probability
Mean 13.68%
Range 1.12 – 100.00 %
Standard Deviation 24.29
Missing 13

Risk category
Very low risk (<2%) 5580 (42.3%)
Low risk (2<=x>5%) 2213 (16.8%)
Moderate risk (5<=x>95%) 4897 (37.1%)
High risk (>95%) 504 (3.8%)

Index of Multiple Deprivation
Mean 39.27
Range 1.03-81.76
Standard deviation 17.86
Missing 3408

Table 5.1 TMACS Cohort Demographics  
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There was confirmed linkage with NHSD in 74.76% of cases where information on the index 

admission was returned from NHSD (Table 5.2). The remaining 25.2% did not have any data 

returned, this is confirmation that no index event data was successfully linked however it is possible 

that beyond the index episode the care record was successfully searched but no further episodes 

found (i.e. no link to index episode but linked to general record with no primary outcome present). 

The NHSD linkage was only with the admitted patient care dataset, so for a successful link the 

patient had to be admitted. The 25.2% with no data returned is in keeping with the literature for the 

proportion of patients discharged directly from the Emergency Department, in whom we would not 

expect to see linkage with NHSD’s admitted patient care dataset (218).  

The incidence of the primary outcome was lower than originally anticipated in the cohort overall 

(3.7%), though the incidence of AMI was marginally higher at RBTH (4.3%) and BGTH (4.6%) (Table 

5.3). MRI had lower rates of the primary outcome with an incidence of 3.6%. When any AMI coded 

in any position was considered the incidence rose to 4.2%. For MACE the overall incidence was 5.7% 

in the primary code position and 6.1% in any position.  

Group N (%)
No data returned 25.2% (3334)
Linked 74.8% (9873)

Fully linked 57.2% (7551)
Linked but date time error up to 24 hours 15.6% (2055)
Linked but no index episode data 2.0% (261)
Local outcome linkage 0.1% (6)

Table 5.2 Linkage status between local electronic patient record data and national data held by NHS digital  

Outcome group Incidence
Acute myocardial infarction (position 1) 3.7%
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MRI 3.6%
Burnley 4.6%
Blackburn 4.3%
Acute myocardial infarction (any position) 4.2%
MRI 4.1%
Burnley 4.7%
Blackburn 4.8%
Major adverse cardiovascular event (position 1) 5.7%
MRI 5.5%
Burnley 5.7%
Blackburn 7.5%
Major adverse cardiovascular event (any position) 6.1%
MRI 6.0%
Burnley 5.8%
Blackburn 7.9%

Table 5.3 Incidence for outcomes of interest. Position 1 denotes where the relevant codes were found in the primary 
position. Any position denotes where the codes were found at any position in the electronic patient record. 

5.5.2 Overall Model performance  

TMACS demonstrated good discrimination for the primary outcome with an AUC of 0.88 (95% CI 

0.86 to  0.89) (Figure 5.1). The sensitivity of TMACS to ‘rule out’ AMI (very low risk group versus all 

other risk groups) was 97.2% (95% CI 95.7 to 98.6) with a negative predictive value of 99.7% (95% CI 

99.6 to 99.9%) (Table 5.4). There were 14 false negatives for the primary outcome (Table 5.5). These 

cases were examined, and a number were found to be likely erroneous due to issues with the 

outcome and predictions. Due to data privacy agreements, small subgroups cannot be reported, and 

as such it is not possible to specify the precise number of suspected erroneous false negatives or the 

directly attributable rationale. The rationales included incorrect troponin values and differing codes 

across local and national databases. If all suspected erroneous false negative cases are discounted 

then the sensitivity and NPV rise to 97.8% (95% CI 96.0 to 98.9%) and 99.9% (95% CI 99.7 to 99.9%), 

respectively. This results in an AUC of 0.88 (95% CI: 0.87 to 0.90). 
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Figure 5.1 Receiver operator curve for TMACS predicting different outcomes of interest. AMI – acute myocardial infarction, 
MACE – major adverse cardiac event 
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Sensitivity VLR 
(95% CI) 

Specificity HR 
(95% CI) 

Negative predictive 
value VLR (95% CI) 

Positive predictive 
value HR (95% CI) 

AMI (P1) 97.2 (95.7 to 98.6) 40.1 (35.8 to 44.4) 99.7 (99.6 to 99.9) 97.7 (96.3 to 99.0) 
AMI (any) 96.4 (94.9 to 98.0) 38.7(34.6 to 42.7) 99.6 (99.5 to 99.8) 97.3 (95.9 to 98.7) 
MACE (P1) 96.1 (94.8 to 97.5) 32.0 (28.6 to 35.3) 99.5 (99.3 to 99.6) 96.0 (94.3 to 97.7) 
MACE (any) 95.4 (94.0 to 96.9) 31.5 (28.3 to 34.7) 99.3 (99.2 to 99.5) 95.6 (93.8 to 97.4) 

Table 5.4 Diagnostic characteristics for the different risk categories predicted by TMACS. VLR = Very low risk and HR = high 
risk, CI – confidence interval, AMI – acute myocardial infarction, MACE – major adverse cardiac event, P1 – qualifying code 
at position one only. 

Acute Myocardial infarction (position 1)
Present Absent

Very low risk 14 5566
Greater than very low risk 480 7134

Table 5.5 2x2 diagnostic table for TMACS very low risk group versus the primary outcome – acute myocardial infarction 
coded in first position

The calibration of TMACS demonstrated significant over prediction with an overall CITL of -3.93 (95% 

CI -4.12 to -3.74) and a O/E of 0.27 indicating significant overestimation of risk. The calibration slope 

was 0.05 which indicates significant miscalibration. This overestimation of risk is again shown in the 

calibration plot for the primary outcome in figure 5.8. The highest TMACS prediction decile 

substantially overestimated the risk, however the lower 7 deciles are clustered very tightly below 0.2 

expected risk (2% predicted risk). When these deciles are examined closely, the calibration curve is 

more favourable (Figure 5.2 and Figure 5.3). 
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Figure 5.2 Calibration plot for TMACS predicting the primary outcome. TMACS predictions were grouped into deciles and a 
Loess curve was fitted to the values. 
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Figure 5.3 Focused calibration for TMACS predicting the primary outcome. TMACS predictions were grouped into deciles 
and a Loess curve was fitted to the values. 

For the secondary outcome of MACE, the AUC was 0.86 (95% CI 0.85 to 0.87) and CITL -2.32 (95% CI -

2.45 to -2.19). Using the broader outcome definition incorporating codes from any position more 

outcomes were identified. This decreased the performance of TMACS for the primary and secondary 

outcome across both discrimination and calibration metrics, AUC decreased by 0.09 for AMI and 

0.06 for MACE (Table 5.6).  
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AUC (95% CI) CITL (95% CI) C-slope (95% CI) Brier 
AMI (P1) 0.88 (0.86 to 0.89) -3.93 (-4.12 to -3.74) 0.05 (0.04 to 0.06) 0.07 

AMI (any) 0.87 (0.86 to 0.89) -3.41 (-3.58 to -3.24) 0.06 (0.05 to 0.07) 0.07 

MACE (P1) 0.86 (0.85 to 0.87) -2.32 (-2.45 to -2.19) 0.09 (0.07 to 0.10) 0.07 

MACE (any) 0.86 (0.84 to 0.87) -2.07 (-2.20 to -1.95) 0.09 (0.07 to 0.10) 0.07 

Table 5.6 TMACS discrimination and calibration metrics for different outcomes. AMI (P1) – acute myocardial infarction 
position 1, AMI (any) acute myocardial infarction coded in any position, MACE (P1) – major adverse cardiac event in 
position 1, MACE (any) – major adverse cardiac event in any position, AUC – area under the curve, CITL – calibration in the 
large, C-slope – calibration slope. 

5.5.3 Subgroups of interest 
Six subgroups of interest were examined in the cohort: site of presentation, age quartiles, gender, 

ethnicity, kidney function clinical stage, deprivation quintile.  

Geography 
The diagnostic performance of TMACS at each site was examined and heterogeneity was identified. 

The AUC for MRI was lower than the pooled AUC at 0.87 (95% CI 0.85 to 0.89), in contrast to 

Blackburn and Burnley where this discrimination metric was higher at 0.91 (95% CI 0.86 to 0.95) and 

0.92 (95% CI 0.89 to 0.96) (Table 5.7and Figure 5.4). The calibration for MRI was slightly better (but 

still shows miscalibration) than the pooled estimate with a CITL of -3.00 (95% CI -3.18 to -2.82). 

Blackburn and Burnley demonstrated poorer calibration with a lower CITL of -8.34 (95% CI -9.29 to -

7.38) and -10.63 (95% CI -11.63 to 9.63) (Figure 5.5). The calibration slope for MRI was slightly 

improved over the pooled results at 0.20 vs 0.05, however this still demonstrate significant 

miscalibration.  
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AUC (95% CI) CITL (95% CI) C-slope (95% CI) Brier 
Overall 0.88 (0.86 to 0.89) -3.93 (-4.12 to -3.74) 0.05 (0.04 to 0.06) 0.07 

MRI 0.87 (0.85 to 0.89) -3.00 (-3.18 to -2.82) 0.20 (0.17 to 0.22) 0.06  

RBTH 0.91 (0.86 to 0.95) -8.34 (-9.29 to -7.38) 0.01 (0.00 to 0.01) 0.10 

BGTH 0.92 (0.88 to 0.96) -10.63 (-11.63 to -9.63) 0.03 (0.02 to 0.04) 0.12 

Table 5.7 TMACS discrimination and calibration metrics for sites. MRI - Manchester Royal Infirmary, RBTH - Royal Blackburn 
Teaching Hospital, BGTH - Burnley General Teaching Hospital, AUC – area under the curve, CITL – calibration in the large, C-
slope – calibration slope. 

Figure 5.4 Receiver operator curve for TMACS predicting the primary outcome separated into the different sites. MRI – 
Manchester Royal Infirmary, Burnley - Burnley General Teaching Hospital, and Blackburn - Royal Blackburn Teaching 
Hospital 
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Figure 5.5 Calibration plot for TMACS predicting the primary outcome by site. A Loess curve was fitted to the values of the 
different subgroups. MRI – Manchester Royal Infirmary, Burnley - Burnley General Teaching Hospital, and Blackburn - Royal 
Blackburn Teaching Hospital 
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Age 
Age was examined in quartiles, for this cohort that created groups for the ages of <44 years old, 44 

to 55, 56 to 69 and greater than 69. The discrimination deteriorated with increasing age, the first 

quartile had an AUC of 0.92 (95% CI 0.88 to 0.95) compared to the last quartile with an AUC of 0.85 

(95% CI 0.82 to 0.88) (Table 5.8 and Figure 5.6). The calibration across the age quartiles was also 

found to be variable but not in the same manner as AUC. The second and third age quartile had 

lower CITL compared to the first and last quartile indicating better calibration. However, all quartiles 

demonstrated systemic overestimation of risk (Table 5.8 and Figure 5.7) 

Age AUC (95% CI) CITL (95% CI) C-slope (95% CI) Brier
Q1 0.92 (0.88 to 0.95) -4.71 (-5.42 to 3.99) 0.03 (0.01 to 0.05) 0.03 

Q2 0.89 (0.86 to 0.91) -3.35 (-3.73 to 2.96) 0.29 (0.24 to 0.33) 0.05 

Q3 0.86 (0.83 to 0.89) -3.21 (-3.51 to -2.92) 0.07 (0.05 to 0.09) 0.08 

Q4 0.85 (0.82 to 0.88) -4.83 (-5.19 to -4.48) 0.04 (0.03 to 0.05) 0.12 

Table 5.8 - TMACS discrimination and calibration metrics for age quartiles. AUC – area under the curve, CITL – calibration in 
the large, C-slope – calibration slope. 
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Figure 5.6 Receiver operator curve for TMACS predicting the primary outcome separated into age quartile. 
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Figure 5.7 Calibration plot for TMACS predicting the primary outcomes separated by age quartile. A Loess curve was fitted 
to the values of the different age quartiles 
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Gender 
The AUC for females was 0.89 (95% CI 0.87 to 0.92) versus 0.87 for men (95% CI 0.85 to 0.89) (Table 

5.9 and Figure 5.8). Conversely the calibration was better for men with a CITL of -3.58 (95% CI -3.81 

to -3.35) (Figure 5.9). This was also reflected in the c-slope, however it still demonstrated significant 

miscalibration.   

Gender AUC CITL C-slope Brier
Male 0.87 (0.85 to 0.89) -3.58 (-3.81 to -3.35) 0.10 (0.09 to 0.12) 0.08 

Female 0.89 (0.87 to 0.92) -4.25 (-4.58 to -3.92) 0.04 (0.02 to 0.05) 0.06 

Table 5.9 TMACS discrimination and calibration metrics for age quartiles. AUC – area under the curve, CITL – calibration in 
the large, C-slope – calibration slope. 

Ethnicity 
Ethnicity was examined in five groups: Asian, Black, Mixed, Other and White. The discrimination and 

calibration were variable across the groups with no group consistently better or worse across both 

domains (Table 5.10). Mixed ethnicity had the highest AUC of 0.92 (95% CI 0.87 to 0.97) whereas 

White ethnicity demonstrated the lowest with an AUC of 0.87 (95% CI 0.85 to 0.89) (Figure 5.10). 

CITL was lowest in those with Asian ethnicity at -2.52 (95% CI -2.80 to 2.24) and highest in Black 

ethnicity at -5.98 (95% CI 6.86 to -5.10). Similarly for c-slope Asian ethnicity were the least mis-

calibrated group at 0.22. The calibration plot demonstrated that for mixed ethnicity the calibration 

across different predicted risks varied and was comparatively worse at higher predicted risks (Figure 

5.11).  

Ethnicity AUC CITL C-slope Brier
Asian 0.87 (0.84 to 0.90) -2.52 (-2.80 to -2.24) 0.22 (0.18 to 0.26) 0.06 

Black 0.90 (0.83 to 0.97) -5.98 (-6.86 to -5.10) 0.15 (0.07 to 0.22) 0.06 

Mixed 0.92 (0.87 to 0.97) -3.71 (-4.60 to -2.81) 0.10 (0.06 to 0.15) 0.05 

Other 0.92 (0.86 to 0.97) -3.86 (-4.91 to -2.82) 0.13 (0.05 to 0.22) 0.06 

White 0.87 (0.85 to 0.89) -4.03 (-4.28 to -3.77) 0.03 (0.02 to 0.04) 0.08 

Table 5.10 TMACS discrimination and calibration metrics by ethnicity. AUC – area under the curve, CITL – calibration in the 
large, C-slope – calibration slope. 
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Figure 5.8 Receiver operator curve for TMACS predicting the primary outcome separated by gender. 
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Figure 5.9 Calibration plot for TMACS predicting the primary outcomes separated by gender. A Loess curve was fitted to the 
values 
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Figure 5.10 - Receiver operator curve for TMACS predicting the primary outcome separated by ethnicity. 
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Figure 5.11 - Calibration plot for TMACS predicting the primary outcomes separated by ethnicity. A Loess curve was fitted to 
the values  
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Kidney function 
TMACS performance was examined by kidney function stratified by chronic kidney disease (CKD) 

classification as per the Kidney Disease: Improving global Outcomes guideline (219). In contrast to 

other subgroups the discrimination and calibration performance followed a similar pattern of 

deterioration as the kidney function worsened with increasing stage of chronic kidney disease (Table 

5.11). The AUC in the CKD stage 1 group was 0.91 (95% CI 0.88 to 0.93) and it decreases to 0.78 (0.54 

to 1.00) in the stage 5 group (Figure 5.12). Similarly, the CITL starts at -2.08 (95% CI -2.36 to -1.80) 

and decreases to -14.96 (95% CI 17.28 to 12.65). The calibration plot indicates that this hierarchy of 

calibration is persistent across predicted risk (Figure 5.13).  

CKD stage AUC CITL C-slope Brier
I (or <) 0.91 (0.88 to 0.93) -2.08 (-2.36 to -1.80) 0.40 (0.35 to 0.46) 0.03 

II 0.87 (0.84 to 0.90) -2.32 (-2.57 to -2.08) 0.32 (0.27 to 0.37) 0.06 

III 0.81 (0.75 to 0.86) -3.63 (-4.05 to -3.20) 0.12 (0.08 to 0.16) 0.12 

IV 0.89 (0.80 to 0.98) -7.08 (-8.59 to -5.56) 0.21 (0.10 to 0.32) 0.27 

V 0.78 (0.54 to 1.00) -14.96 (-17.28 to -12.65) 0.05 (-0.00 to 0.11) 0.56 

Table 5.11 TMACS discrimination and calibration metrics by Chronic Kidney Disease (CKD) stage. AUC – area under the 
curve, CITL – calibration in the large, C-slope – calibration slope. 
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Figure 5.12 Receiver operator curve for TMACS predicting the primary outcome separated by Chronic Kidney Disease Stage. 
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Figure 5.13 Calibration plot for TMACS predicting the primary outcomes separated by Chronic Kidney Disease stage. A Loess 
curve was fitted to the values 
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Deprivation 
The performance of TMACS was examined against quintiles of deprivation from the index of multiple 

deprivation (IMD) provided by NHSD. Discrimination trended to deteriorate with increasing 

depravation (Table 5.12). AUC in the first quintile was 0.89 (95% CI 0.86 to 0.92) and the highest fifth 

quintile it was 0.84 (95% CI 0.80 to 0.88) (Figure 5.14). CITL did not demonstrate a similar trend and 

demonstrated consistent overestimation of risk by TMACS, the comparative calibration across the 

different subgroups was relatively static across different predicted risks (Figure 5.15). 

IMD AUC CITL C-slope Brier
Q1 0.89 (0.86 to 0.92) -3.44 (-3.85 to -3.04) 0.02 (0.01 to 0.02) 0.08 

Q2 0.85 (0.81 to 0.88) -3.94 (-4.38 to -3.50) 0.11 (0.08 to 0.14) 0.09 

Q3 0.89 (0.86 to 0.92) -2.97 (-3.36 to -2.58) 0.01 (0.00 to 0.02) 0.07 

Q4 0.87 (0.83 to 0.91) -3.18 (-3.57 to -2.80) 0.19 (0.14 to 0.23) 0.08 

Q5 0.84 (0.80 to 0.88) -3.30 (-3.70 to -2.91) 0.14 (0.10 to 0.17) 0.09 

Table 5.12 TMACS discrimination and calibration metrics by Index of Multiple Deprivation quintile. AUC – area under the 
curve, CITL – calibration in the large, C-slope – calibration slope. 
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Figure 5.14 Receiver operator curve for TMACS predicting the primary outcome separated by quintile of index of multiple 
deprivation 
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Figure 5.15 Calibration plot for TMACS predicting the primary outcomes separated by quintile of index of multiple 
deprivation. A Loess curve was fitted to the values 
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5.5.4 Longitudinal model performance 
The incidence of the primary outcome varied substantially over time from 4% in Q2 2016 to 30% in 

Q4 2018. The secondary outcome of MACE followed the incidence trends of the primary outcome at 

a low of 5% in Q2 2016 and a high of 48% in Q4 2018 (Figure 5.16). The expanded outcome definition 

in the sensitivity analysis demonstrated a small increase in incidence which at its most was a 5% 

increase in incidence of the primary outcome (Q4 2018) 

Figure 5.16 Incidence of outcomes of interest over time. Red solid line - acute myocardial infarction in first code position, red 
dotted line – acute myocardial infarction in any position, blue solid line – major adverse cardiovascular event in first code 
position, blue dotted line -major adverse cardiovascular event in any position 
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The performance of TMACS over time was examined, by yearly quarters. The calibration slope 

demonstrated a trend for decreasing over time, however there was significant variation. C-slope 

ranged from 0.51 in the first quarter to 0.10 in the last. CITL varied substantially over time, with a 

low of -2.10 (95% CI -2.68 to -1.53) in Q1 2017 to -7.05 (95% CI -8.00 to - 6.11) in Q1 2019 (Figure 

5.18). A similar but lower magnitude variation was demonstrated in the AUC with a high of 0.94 

(95% CI 0.91 to 0.97) in Q4 2016 and a low of 0.81 (95% CI 0.72 to 0.90) in Q2 2018 (Figure 5.19). 

Figure 5.17 Calibration slope of TMACS plotted against time - time measured in annual quarters. 95% confidence intervals 
are displayed.
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Figure 5.18 Calibration in the large plotted against time - time measured in annual quarters. 95% confidence intervals are 
displayed.  
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Figure 5.19 Area under the curve plotted against time - time measured in annual quarters. 95% confidence intervals are 
displayed. 
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5.6 Discussion 

TMACS demonstrated good discrimination overall with an AUC of 0.88 (95% CI 0.86 – 0.89). This 

corresponded to a sensitivity for the very low risk group of 97.2% and a negative predictive value of 

99.7%. However, if the correct hs-cTnT had been used and suspected coding errors were factored in 

the model performance is marginally improved with a sensitivity of 97.76% and an AUC of 0.88 (95% 

CI 0.86 to 0.90). This was a marginal drop in discriminatory performance compared to the original 

validation for the outcome of ACS which had a sensitivity of 98.1% (95% CI 95.2 to 99.5%) and an 

AUC of 0.91 (220). An external validation of TMACS predicting AMI demonstrated a sensitivity of 

99.1% (95% CI 95.2% to 100%) and an AUC of 0.91 (95% CI 0.88 to 0.95), again highlighting how 

TMACS in this study appears to have deteriorated in discriminatory performance.  

In this analysis I used the same co-efficient for the troponin variable across different troponin assays, 

as this has been consistent across various validation studies (221–223). Other CPMs have used cut-

offs for each individual troponin assay, as specified by the manufacturers, such as the LoD or URL 

(30). An area for future research could be to further evaluate whether the accuracy of T-MACS 

would be optimised by re-calibrating the CPM using different commercially available troponin 

assays. 

The three sites did not contribute equal numbers of participants to the database, with MRI 

contributing 81.2%, Blackburn 9.5%, Burnley 9.4%. This is despite MRI and Blackburn having similar 

attendance rates for the ED. This could be in part due to different compliance with the TMACS care 

pathway, different rates of chest pain attendances or differences in the data collection methods 

between sites. 

Overall TMACS did not have favourable calibration results, with a very low CITL of -3.93 and low C-

slope of 0.05 confirming the findings in the calibration plots that the model substantially 

overestimated risk. This could in part be related to the concentration of TMACS risk predictions in 

the very low risk group (Error! Reference source not found.) and the low overall incidence of 3.7% 
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compared to the 22.3% from the derivation trial (220). In the focused calibration plot TMACS 

appears visually to be well calibrated around the majority of the risk prediction deciles (Figure 5.2). 

This over-estimation of risk is not out of keeping with clinical practice where clinicians felt that they 

were only willing to miss 0.1 to 1% of AMI diagnoses (224). In this risk averse clinical setting a CPM 

that is very well calibrated in the lower risk groups but overestimates risk in the higher risk groups 

may be clinical advantageous. Future work could seek new methods to assess calibration when such 

caution is warranted. Calibration is an important CPM characteristic. However, how to describe or 

quantify it where over-estimation of risk is preferable is not yet clear. Loess calibration plots have 

been ranked as the most important test for calibration (when continuous predictors are present) 

(225,226). It may be that the visual inspection of a loess calibration plot is the appropriate test for 

such scenarios. 

The incidence was lower than anticipated, this could be because of the change in use of the CPM. It 

could also be due to the reliance on clinical codes, it is possible that the clinical teams and coders are 

underdiagnosing AMI. Clinically adjudicating the outcomes could cast light on the cause of this low 

incidence and should be considered for future work. 

The variation in performance by TMACS site is interesting. As TMACS was derived using data from 

MRI, it was probable that it was overfitted and could have struggled in predictions at different sites. 

However, the inverse appears to be the case regarding discrimination, with MRI demonstrating a 

lower AUC than RBTH and BGTH (0.87 vs 0.91/0.92). The calibration at different sites did follow the 

expected pattern with a better CITL for MRI than RBTH or BGTH.  

TMACS demonstrated decreasing discriminatory performance with increasing age. Ethnicity 

highlighted further variation in TMACS with mixed ethnicity having the highest AUC (0.92) and Asian 

ethnicity the closest CITL to zero (-2.52). The Brier score however suggested that when accounting 

for discrimination and calibration, white ethnicity had better overall model performance (0.08).  
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When the cohort was examined by CKD stage, based off the initial urea and creatinine 

measurement, a consistent drop in performance across domains was demonstrated. This is likely 

related to two factors, firstly a portion of these patients will have established chronic kidney disease 

and as such likely have raised background levels of cardiac troponin circulating due in part to 

microvascular damage to the myocardium (227). The troponin variable in TMACS may be 

inappropriately calibrated to patients with normal renal function and not to this pathology. Secondly 

another cause for impaired renal function can be due to an acute physiological issue related to 

infection, it is possible that by examining by kidney function I selected a portion of patients who 

were more likely not to have a diagnosis of AMI. Thirdly If the kidney function test reflected chronic 

kidney disease then this would represent a cohort of patients who had a higher rate of 

cardiovascular disease as such this difference in background risk may have impacted the 

performance of the model (228).  

These different subgroups represent different variables that could be incorporated into the model in 

future updating work. Furthermore, any further updating work should re-examine these subgroups 

to see if the performance across domains has improved. 

The longitudinal performance of the model did demonstrate variability. The c-slope trended for a 

decrease overtime, but the CITL demonstrated no such visual trends in its variability. As such it 

appears that the model became mis-calibrated prior to the start of our cohort. Whilst this is 

indicative of calibration drift it could be more accurately described as a ‘jitter’, due to the substantial 

variation in performance without a clear trend. Incidence varied substantially through the year 

however it did not appear to correlate with the change performance of TMACS across discrimination 

and calibration domains. This is in contrast to the analysis conducted by Hinkley et al on a 

cardiovascular surgery CPM (229). They demonstrated a consistent drop in model calibration over 

time which was not evident from our model, however their outcome was death which is feasibly 

more objective and less open to misdiagnosis/coding than specific medical conditions such as AMI.  
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5.7 Conclusion 

TMACS demonstrated good discriminatory performance and was well calibrated in the majority of its 

predicted risk deciles. There was a marginal drop in discriminatory model performance overall 

compared to the original internal and external validation. TMACS demonstrated substantial 

calibration drift overall. The cause of this could be due to outcome data quality issues or may 

represent an actual drop in performance. In various subgroups of interest, the model performance 

across discrimination and calibration domains varied, which was most prominent in kidney function 

subgroups. Calibration jitter was identified but no declining trend or drift in performance was 

evident. Updating TMACS may counter this jitter and improve model performance across subgroups 

of interest.  
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Chapter 6 Updating and refining TMACS 

6.1 Introduction 

It is important to ensure that the performance of a CPM remains optimal once introduced into 

practice. There are several reasons for this, including (a) the need to verify performance in real-

world cohorts and in different settings (ensuring external validity); (b) the need to re-calibrate based 

on changing technologies (e.g., new biomarker assays) or practices (e.g., ECG interpretation); (c) the 

need to ensure optimal performance in subgroups of interest (e.g., based on gender, ethnicity, 

comorbidities such as CKD); and (d) the need to ensure that performance doesn’t deteriorate over 

time. 

In the previous chapter I identified and examined how calibration drift was affecting TMACS. There 

are numerous methods available to update CPMs that have become mis-calibrated over time. In this 

chapter I focused on three methods to update TMACS, model recalibration, model extension and 

Bayesian dynamic updating.  

The simplest is a model recalibration using a single static recalibration where the linear predictor is 

used as a prediction variable in a new model (66). Another possible method is model extension 

where additional variables are incorporated into the pre-existing model to create a new model 

(230). This would enable new variables that could represent new diagnostic technologies or newly 

identified predictors to be added to CPMs. These updating techniques do not allow for continual 

improvements, Bayesian dynamic updating enables the constant rederivation of a model after every 

prediction (66). By constantly updating the model it may prevent the model from deteriorating over 

time (calibration drift). 
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6.2 Aims 

 Identify the optimal machine learning methods for ongoing updating of TMACS 

- model recalibration 
- model extension 
- Bayesian dynamic updating 

6.3 Published work 

Reynard, C., Martin, G.P., Kontopantelis, E., Jenkins, D.A., Heagerty, A., McMillan, B., Jafar, A., 
Garlapati, R. and Body, R., 2021. Advanced cardiovascular risk prediction in the emergency 
department: updating a clinical prediction model–a large database study protocol. Diagnostic and 
Prognostic Research, 5(1), pp.1-7.

6.4 Methods 

I used the cohort described in chapter 5 to examine the different methods for updating TMACS. In 

summary, this included patients presenting to the ED with chest pain where the clinician suspected 

ACS and used TMACS as a part of routine care. Data were collected across three clinical sites from 

June 2016 to October 2022. As part of routine clinical care all patients received two troponin tests. 

TMACS was digitally captured at each site and this data was supplemented with outcome data from 

NHS Digital. The primary outcome was a diagnosis of AMI within 30 days of the index attendance at 

the ED.  

6.4.1 Data sources         
TMACS data was collated from local registries that used routinely collected clinical data from NHS 

trust’s where it was part of routine care. This included sites in Manchester (MRI), Burnley (RBTH) and 

Blackburn (BGTH). Subgroup data was extracted locally where possible and centrally from NHSD. The 

local databases were linked with NHSD to provide national coverage for outcome codes relating to 

AMI. Subgroup data was also provided by NHSD where possible. 
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6.4.2 Outcome 
The primary outcome was a diagnosis of AMI within 30 days of the index date, including any 

subsequent admission. To achieve this primary discharge codes were examined for AMI ICD-10 

codes including I21, I22 or I23 (see Supplementary Table 8.12). 

6.4.3 Sample Size Calculation 
I calculated the sample size required by using the more conservative of two methods, firstly the 

protocol described by Riley et al for model derivation (173) and secondly the rule of 10 primary 

outcome cases per variable that had become standard practice, with a plan to accept whichever 

calculation yielded a larger minimum sample size. I estimated the use of 17 variables which were 

dependant on data availability. It was anticipated that for the rule of ten we would need 170 primary 

cases. In unpublished service evaluations, it was found that the prevalence of AMI in the first 1,033 

patients was 6.9%. Therefore. in order to achieve the rule of ten sample size we would require 2,464 

patients. I also used Riley et al’s sample size calculation using the original TMACS validation AUC of 

0.90, the prevalence of AMI at 6.9% and the derivation of a model with 17 variables (173,231). This 

estimated that 727 was the minimum sample size required. The rule of ten sample size calculation 

exceeded Riley et al’s method so I opted to be conservative and adopt it. 
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6.4.4 Recalibration 
Initially I planned to update TMACS by recalibration, re-estimating both the intercept and a new 

overall calibration slope.  

�� = � + �	 
�

�� = � + � � ����� + � � � ∗ ( �,�����
� � �,…,�

��)

Equation 1:  �� - model updated by recalibration, � is the re-estimated intercept, �	  the new 

overall calibration slope, and 
�  – is the linear prediction of the TMACS model. 

6.4.5 Extension 
I sought to update the model by extending it and adding new variables to the original TMACS 

algorithm (see equation 2). These new variables were sourced from the available data and included 

the subgroups of interest: age, ethnicity, kidney function, IMD, and gender. The distribution of each 

variable was assessed visually and with a skew metric. If a skew was identified the variable was 

transformed.  Secondly a linear relationship with the outcome was assessed by outcome variable 

plots, if non-linearity was suspected then splines were considered. The resulting transformed 

variables were then selected for the extended model using forward step wise selection. Co-linearity 

between the new candidate variables was assessed in co-linear plots. In a sensitivity analysis where 

co-linearity was suspected colinear terms were added and included in a further stepwise selected 

model.  

� =  � + � � ���
� � �,…,�

+� ��
��


��

Equation 2: �  - model updated by extension, � are the original coefficients for the original 
covariables, s is the new covariates and ��their new coefficients. 
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6.4.6 Bayesian dynamic updating 
I planned to use dynamic updating to update the T-MACs’ intercepts and coefficients after each 

patient episode. During the course of this project we engaged with patient representatives who 

desired a trial period where the model would be monitored in real-time and after which it could 

progress to run autonomously. A 3-month probationary period was highlighted in the model to 

demonstrate a period when there would be human oversight. After this period we will update the 

model after every patient episode. The dynamic updating was conducted with recursive estimation 

via a prediction equation: 

�| ���~ ( ����, �)

is a dimensional vector of regression coefficients, ���is a set of past outcomes, t is a given time 

and � = ∑
����

�
�  (71). � is the forgetting factor, that serves to down-weight previous observations 

by increasing the variance. It will be selected in order to enable the sample size to continue to meet 

the specifications laid out by Riley et al (232) and to ensure appropriate stability of the intercept and 

the coefficients for the variables.  

This is passed through a Bayesian framework, the posterior is proportional to the product of the 

probability distribution at time t and t-1, giving. 

( �| �) ∝  ( �| �) ( �| ���) ∝ �� � ��� ℎ��� �� ����

The pooling of data from different sites was to be assessed by dynamically updating each site 

individually and observing the variation and trends in the intercept and coefficients for the variables 

(betas). If a similar beta fingerprint could be identified between sites then pooling would be 

considered.  

6.4.7 Model Characteristics 
The new models were assessed with measures of discrimination and calibration, including AUC, CITL, 

C-slope and calibration plots. For the recalibrated and extended models’ internal validation was 
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conducted by boot strap validation across 1,000 iterations. Sensitivity analyses were conducted to 

examine the effect of not pooling the data from different sites.  

The dynamically updated model was validated using one-step ahead prediction. As the model was 

dynamic, I also sought to describe the changes in the model over time by reporting these summary 

statistics per annual quarter as well.  

As before, subgroups of interest were examined including age, IMD, gender, kidney function and 

ethnicity. Reclassification was visualised by Sankey plots and new model intercepts/coefficients were 

reported.  

The updating methods recalibration and dynamic updating only required the original TMACS 

variables and the outcome variable. There was no missing data for these data points. For model 

extension new variables were added whilst updating the model, multiple imputation was used to 

handle missing data. 
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6.5 Results 

 A total of 13,207 patient episodes were included in the database from MRI (10,710), BGTH (1,242) 

and RBTH (1,255) from June 2016 to October 2020. The incidence of the primary outcome was 3.7% 

overall, with higher rates found at RBTH (4.3%) and BGTH (4.6%) and slightly lower rates at MRI 

(3.6%.) Missing data for potential predictors in the model extension method is reported in Table 6.1. 

Table 6.1 Cohort Demographics

Feature N (%)

Total number of patients 13207
Manchester Royal Infirmary 10710 (81.2%)
Burnley 1242 (9.4%)
Blackburn 1255 (9.5%)

Gender
Male 6175 (46.8%)
Female 4535 (34.4%)
Missing 2497 (18.9%)

Age
Mean 56.38
Standard Deviation 16.91
Range 16-103
Missing 0

Ethnicity
Asian 2435 (18.4%)
Black 756 (5.7%)
Mixed 472 (3.6%)
Other 347 (2.6%)
White 4213 (31.9%)
Missing 4984 (37.7%)

Estimated glomerular filtration rate
Mean 84.00
Range 2.51-159.30
Standard Deviation 24.27
Missing 2793

Index of Multiple Deprivation
Mean 39.27
Range 1.03-81.76
Standard deviation 17.86
Missing 3408
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6.5.1 Recalibration 
The recalibrated model had a new overall intercept of -3.22 and a new overall co-efficient of 0.05, 

which gave an AUC of 0.88 (95% CI 0.86 to 0.89). When adjusted for optimism by bootstrapping 

through 1,000 iterations the AUC was found to be 0.88 and the CITL 0.00  (Table 6.2) . The 

recalibration reclassified all patients who were originally very low risk, low risk and moderate risk to 

low risk (Figure 6.1). This reclassification made the calculation of the sensitivity for the very low risk 

group impossible, as such for the sensitivity statistic calculation a new predicted risk threshold was 

used. The threshold was selected that had properties similar to the original sensitivity, this yielded a 

threshold of <3.2% which had a sensitivity of 97.2% (95% CI 95.7 to 98.6) and a specificity of 100 % 

(95%CI 99.9 to 100.0). This risk threshold demonstrated a proportion ruled out of 42.3%. 

I conducted a sensitivity analysis to see if recalibrating each site individually resulted in better model 

performance statistics. The AUC per site was unchanged between pooled and individually 

recalibrated site subgroups. As such the pooled analysis was adopted.  

The calibration of the new model was also examined with a calibration plot (Figure 6.2), this 

demonstrated a different pattern for the predicted risk deciles compared to the original TMACS. The 

majority of the deciles sit under the dashed line (y=x) indicating risk is underestimated for the lower 

deciles. As expected in a recalibrated model the parametrically fitted line of best fit for the 

calibration plot demonstrated near perfect calibration (y=x). However, when examined with a non-

parametrically fitted line, an issue is exemplified (Figure 6.3), significant overestimation is observed. 

It demonstrated that below 0.60 predicted risk the observed risk was higher i.e. underestimation of 

risk.  
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Recalibration
Derivation (95% CI) Bootstrapping Status Quo

AUC 0.88 (0.86 to 0.89) 0.88 0.88 (0.86 to 0.89)
CITL 0.00 (-0.09 to 0.09) 0.00 -3.93 (-4.12 to -3.74)
C-slope 1.00 (0.82 to 1.12) 0.03 0.05 (0.17 to 0.22)

Table 6.2 Recalibrated TMACS summary statistics. AUC -area under the curve, CITL – calibration in the large, VLR – very low 
risk group, 95% CI – 95% confidence interval. 

Figure 6.1 Sankey Diagram for reclassification of risk from the original predicted risk groups on the left to the newly 
predicted risk groups on the right from the recalibrated TMACS model. 
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Figure 6.2 - Focused calibration plot for the recalibrated TMACS CPM. Predicted risk deciles are plotted on an axis of 
observed vs expected risk. A non-parametric fitted line is applied using LOESS regression. 
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Figure 6.3 Calibration plot for the recalibrated TMACS model demonstrating the comparison of a logistic vs non-parametric 
line of best fit. 
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6.5.1.1 Subgroup results 

Site 
When the recalibrated model performance was examined by site subgroups the AUC for MRI was 

below the pooled AUC result of 0.87 (95% CI 0.85 to 0.89) at 0.88 (95% CI 0.86 to 0.89). Blackburn 

and Burnley demonstrated more favourable numeric discriminatory characteristics with AUCs of 

0.91 and 0.92, respectively (Table 6.3). In contrast the CITL for MRI was closer to 0 than that for 

Blackburn and Burnley, which was an improvement compared to the original statistic.  

Extension
Derivation Bootstrapping Status Quo

AUC
MRI 0.87 (0.85 to 0.89) 0.87 0.87 (0.85 to 0.89)
Blackburn 0.91 (0.86 to 0.95) 0.91 0.91 (0.86 to 0.95)
Burnley 0.92 (0.88  to 0.96) 0.92 0.92 (0.88 to 0.96)
CITL
MRI 0.02 (-0.09 to 0.12) 0.02 -3.00 (-3.18 to -2.82)
Blackburn -0.05(-0.37 to 0.24) -0.04 -8.34 (-9.29 to -7.38)
Burnley -0.10 (-0.42 to 0.12) -0.09 -10.63 (-11.63 to -9.63)

Table 6.3 Recalibrated TMACS summary statistics by site. AUC -area under the curve, CITL – calibration in the large, VLR – 
very low risk group, 95% CI – 95% confidence interval. 

Gender 
The discrimination by gender was numerically higher for females with an adjusted AUC of 0.89, 

however the CITL for females was -0.23 versus 0.17 for males (Table 6.4). Indicating slight over and 

under estimation of predicted risk respectively. However, in contrast to the original TMACS CPM the 

CITL was markedly improved. 

Recalibration
Derivation Bootstrapping Status Quo

AUC
Male 0.86 (0.83 to 0.88) 0.86 0.87 (0.85 to 0.89)
Female 0.89 (0.87 to 0.92) 0.89 0.89 (0.87 to 0.92)

CITL
Male 0.17 (0.04 to 0.29) 0.17 -3.58 (-3.81 to -3.35)
Female -0.23 (-0.42 to -0.06) -0.23 -4.25 (-4.58 to -3.92)

Table 6.4 Recalibrated TMACS summary statistics by gender. AUC -area under the curve, CITL – calibration in the large, VLR 
– very low risk group, 95% CI – 95% confidence interval. 
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Age 
The discriminatory performance numerically decreased with increasing age quartile according to 

AUC adjusted for optimism starting at 0.92 for those <44 years of age and ending at 0.85 for those 

>69 years of age (Table 6.5). The recalibrated model demonstrated an improved CITL compared to 

the original TMACS (status quo), but in contrast to discriminatory performance the calibration was 

worst in the younger age quartile.  

Recalibration
Derivation Bootstrapping  Status Quo

AUC
Age Q1 (<44) 0.92 (0.88 to 0.95) 0.92 0.92 (0.88 to 0.95)
Age Q2 (44-55) 0.89 (0.86 to 0.92) 0.89 0.89 (0.86 to 0.91)
Age Q3 (56-69) 0.86 (0.83 to 0.89) 0.86 0.86 (0.83 to 0.89)
Age Q4 (>69) 0.85 (0.82 to 0.88) 0.85 0.85 (0.82 to 0.88)
CITL
Age Q1 (<44) -1.06 (-1.40 to -0.75) -1.05 -4.71 (-5.42 to -3.99)
Age Q2 (44-55) -0.02 ( -0.21 to 0.17) - 0.01 -3.35 (-3.73 to -2.96)
Age Q3 (56-69) 0.23 (0.06 to 0.39) 0.23 -3.21 (-3.51 to -2.92)
Age Q4 (>69) 0.28 (0.12 to 0.44) 0.29 -4.83 (-5.19 to -4.48)

Table 6.5 - Recalibrated TMACS summary statistics by age quartile. AUC -area under the curve, CITL – calibration in the 
large, VLR – very low risk group, 95% CI – 95% confidence interval. 

Ethnicity 
Through the different ethnicities, variation was observed in discrimination and calibration 

performance of the recalibrated model. The highest AUC adjusted for optimism was for Mixed 

ethnicity at 0.92 compared to the lowest of 0.87 for Asian and White ethnicities (Table 6.6). In 

contrast the CITL did no demonstrate the same pattern with Black ethnicity having the largest 

magnitude CITL of -0.43 representing systematic over-estimated risk and Asian ethnicity had an AUC 

of 0.35 indicating an underestimation of risk. This was however a marked improvement to the 

calibration by ethnicity demonstrated in the original status quo TMACS CPM.  
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Recalibrated
Derivation Bootstrapping  Status Quo

AUC
Asian 0.87 (0.84 to 0.90) 0.88 0.87 (0.84 to 0.90)
Black 0.90 (0.83 to 0.97) 0.90 0.90 (0.83 to 0.97)
Mixed 0.92 (0.87 to 0.97) 0.92 0.92 (0.87 to 0.97)
Other 0.92 (0.86 to 0.97) 0.91 0.92 (0.86 to 0.97)
White 0.87 (0.85 to 0.89) 0.86 0.87 (0.85 to 0.89)
CITL
Asian 0.35 (0.17 to 0.51) 0.35 -2.52 (-2.80 to -2.24)
Black -0.44 (-0.86 to -0.06) -0.43 -5.98 (-6.86 to -5.10)
Mixed -0.09 (-0.54 to 0.30) -0.08 -3.71 (-4.60 to -2.81)
Other -0.29 (-0.92 to 0.24) -0.29 -3.86 (-4.91 to -2.82)
White 0.12 (-0.01 to 0.24) 0.12 -4.03 (-4.28 to -3.77)

Table 6.6 Recalibrated TMACS summary statistics by ethnicity. AUC -area under the curve, CITL – calibration in the large, 
VLR – very low risk group, 95% CI – 95% confidence interval. 

Kidney Function 
The discriminatory performance for kidney function strati was only minimally changed still 

demonstrating a decreasing trend for AUC from stage 1 to stage 5 with an optimism adjusted AUC of 

0.90 – 0.79  (Table 6.7). Calibration was however markedly improved across each group with no clear 

trend apparent in contrast to the decreasing trend in the status quo model. 

Recalibration
Derivation Bootstrapping  Status Quo

AUC
Stage 1 0.91 (0.88 to 0.93) 0.90 0.91 (0.88-0.93)
Stage 2 0.87 (0.84 to 0.90) 0.87 0.87 (0.84-0.90)
Stage 3 0.81 (0.75 to 0.86) 0.80 0.81 (0.75-0.86)
Stage 4 0.89 (0.79 to 0.98) 0.89 0.89 (0.80-0.98)
Stage 5 0.78 (0.54 to 1.00) 0.79 0.78 (0.54-1.00)
CITL
Stage 1 -0.22 (-0.40 to -0.05) -0.21 -2.08 (-2.36 to -1.80)
Stage 2 0.11 ( -0.06 to 0.27) 0.12 -2.32 (-2.57 to -2.08)
Stage 3 0.36 (0.12 to 0.60) 0.36 -3.63 (-4.05 to -3.20)
Stage 4 0.66 (0.03 to 1.19) 0.68 -7.08 (-8.59 to -5.56)
Stage 5 -0.10 (-1.19 to 0.74) -0.01 -14.96 (-17.28 to -12.65)

Table 6.7 Recalibrated TMACS summary statistics by kidney function stage. AUC -area under the curve, CITL – calibration in 
the large, VLR – very low risk group, 95% CI – 95% confidence interval. 
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Index of multiple deprivation 
The discrimination and calibration performance across IMD quintiles in the recalibrated model did 

not demonstrate any clear trends (Table 6.8). The AUC ranged from 0.88 to 0.84 which was a slight 

decrease from the status quo range of 0.89 – 0.84. The CITL was markedly improved across all IMQ 

quartiles ranging for 0.323 – 0.367 in comparison to the status quo results. 

Recalibration (95% CI)
Derivation Bootstrapping  Status Quo (95% CI)

AUC
IMD Q1 0.88 (0.85 to 0.91) 0.88 0.89 (0.86 to 0.92)
IMD Q2 0.86 (0.82 to 0.89) 0.86 0.85 (0.81 to 0.88)
IMD Q3 0.89 (0.86 to 0.92) 0.88 0.89 (0.86 to 0.92)
IMD Q4 0.87 (0.53 to 0.91) 0.87 0.87 (0.83 to 0.91)
IMD Q5 0.84 (0.80 to 0.88) 0.84 0.84 (0.80 to 0.88)
CITL
IMD Q1 0.32 (0.11 to 0.51) 0.32 -3.44 (-3.85 to -3.04)
IMD Q2 0.30 (0.09 to 0.50) 0.31 -3.94 (-4.38 to -3.50)
IMD Q3 0.19 (-0.04 to 0.41) 0.19 -2.97 (-3.36 to -2.58)
IMD Q4 0.30 (0.08 to 0.51) 0.31 -3.18 (-3.57 to -2.80)
IMD Q5 0.36 (0.14 to 0.56) 0.37 -3.30 (-3.70 to -2.91)

Table 6.8 Recalibrated TMACS summary statistics by index of multiple deprivation quintile. AUC -area under the curve, CITL 
– calibration in the large, 95% CI – 95% confidence interval. 
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6.5.2 Model Extension 
The variables age, ethnicity, kidney function, IMD, and gender were considered for inclusion in an 

extended model. Initially the distribution of the variables were assessed visually and with the 

skewness metric (181). Kidney function (eGFR) was found to have a left skew which was most 

improved with a transformation by squaring. The variables relationship with the outcome was 

assessed for linearity. The linearity plot for age did not demonstrate a linear relationship, so the 

variable was transformed with a restricted cubic spline (Figure 6.4).  

Variable Skewness Linear outcome 
relationship 

Transformation

Age 0.01 No Spline 
Kidney function -0.62 Yes Squared
IMD 0.42 Yes Nil

Table 6.9 Summary of variable transformations for inclusion in extended TMACS model. 

Forwards stepwise selection for additional variables resulted in all but IMD being added to the final 

model (Figure 6.5 and Supplementary Table 8.15).  The resulting model had an AUC of 0.84 (95% CI 

0.82 -0.86) which after adjustment for optimism was unchanged at 0.84 (Figure 6.6). The sensitivity 

for the very low risk group (by original <2% threshold) was 0.63 (95% CI 0.59 – 0.68) and specificity 

for the high risk group was 0.99 (95% CI 0.99 – 00.99). Calibration was assessed again with CITL 

which was 0.00 (95% CU -0.15 – 0.15) and after adjustment for optimism by bootstrapping the CITL 

was -0.01. The C-slope was 0.07 (95% CI 0.06 – 0.08) and after adjustment for optimism it was 0.39. 

This is indicative of miscalibration. This significant miscalibration is likely due to the linear predictor 

from the original TMACS being included. However. when the calibration was also assessed by 

calibration plots this demonstrated good calibration at the lowest predicted risk deciles, with slight 

over-estimation (Figure 6.7).  
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Figure 6.4 Outcome variable linearity plot with the variable age plotted by decile against the proportion positive for the 
primary outcome. 
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Figure 6.5 Forest plot of variables included in the new extended TMACS clinical prediction model. TMACS’s original 
coefficients remained unchanged. eGFR – estimated glomerular filtration rate (kidney function).   
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Figure 6.6 - Receiver operator curve for extended and status quo TMACS clinical prediction models 
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Figure 6.7 - Focused calibration plot of the extended TMACS model plotted by predicted risk deciles. A Loess line of best fit is 
also plotted. 
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The reclassification of patients in the new extended model was a more complex picture than that for 

recalibration (Figure 6.8). The overall trend was for the downgrading of risk categories across low 

risk, moderate risk and high risk groups. The majority of the original very low risk group were again 

classified as very low risk however some participants were reclassified upwards with less than or 

equal to 5 moving to low and moderate risk groups respectively (data censoring is mandated in small 

groups). For the original low risk group, the majority were reclassified downwards to the new very 

low risk group, however 1.85% kept their low-risk classification and six were reclassified upwards to 

moderate risk. The original moderate risk group was mainly reclassified to very low risk (70.64%), 

low risk (14.72%) and moderate risk (14.62%). Less than or equal to 5 participants were classified 

upwards to high risk.  A large portion of the high risk group was again classified as high risk in the 

extended TMACS algorithm (45.13%), with 31.6% moving to moderate risk, 2.18% moving to low risk 

and 21.07% being reclassified to very low risk.   
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Figure 6.8 Sankey Diagram for reclassification of risk from the original predicted risk groups on the left to the newly 
predicted risk groups on the right from the extended TMACS model. 

6.5.2.1 Sensitivity analysis 
A sensitivity analysis was again conducted to examine the effect of not pooling the data from 

different sites and instead deriving at the site level. The AUC for the extended model for MRI, 

Burnley and Blackburn were 0.80 (95% CI 0.78 to 0.82), 0.76 (95% CI 0.70 to 0.82) and 0.84 (95% CI 

0.79 to 0.90) respectively. The calibration measured by CITL was -0.06 (95%CI -0.18 to 0.06), 1.03 

(0.72 to 1.32), and -0.41 (95% CI 0.78 to 0.06) respectively.  
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A further sensitivity analysis was conducted including co-linear terms into the pool of potential 

predictors prior to forward stepwise selection. After assessment by co-linear plots (example in figure 

6.9) and consideration of biological plausibility. After this the following colinear terms were 

considered [ethnicity∗kidney function], [ethnicity ∗troponin], [gender ∗troponin], [kidney function 

∗troponin], and [kidney function ∗ age]. Following stepwise selection of the additional variables the 

following terms were selected: age, ethnicity, ethnicity*troponin, troponin*kidney function and 

gender*troponin. The final model characteristics were similar for domains of calibration with a CITL 

of 0.00 (95% CI -0.10 – 0.10) after adjustment for optimism was found to be -0.01. However, the AUC 

was 0.78 (95% CI 0.76 – 0.80) and 0.79 after adjustment for optimism, compared to 0.84 from the 

model extension with no co-linear terms. 
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Figure 6.9 Colinear plot of kidney function against other potential variables. eGFR – estimated glomerular filtration rate 
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6.5.2.2 Subgroup results  

Site 
The extended TMACS model decreased the discriminatory performance across the site subgroups 

with a lower AUC in all sites with Burnley falling from 0.92 to 0.77 (Table 6.10). The calibration was 

improved across each site with the CITL coming closer to 0. Burnley’s CITL was -10.63 in the status 

quo model but in the extended model it had improved to 2.90 

Gender 
Similarly for the gender subgroups there was a drop in AUC for the extended TMACS model with the 

AUC for Males originally being 0.87 but dropping to 0.82 (Table 6.11). For Females the AUC 

decreased from 0.89 to 0.85 in the extended TMACS model. Calibration was improved across both 

male and female subgroups closing on 0 from -3.58 and -4.25 to -0.01 and -0.01 respectively.  

Extension
Derivation Bootstrapped Status Quo

AUC
MRI 0.85 (0.83 to 0.87) 0.85 0.87 (0.85 to 0.89)
Blackburn 0.90 (0.86 to 0.95) 0.91 0.91 (0.86 to 0.95)
Burnley 0.77 (0.71 to 0.83) 0.77 0.92 (0.88 to 0.96)
CITL
MRI -0.02 (-0.19 to 0.14) -0.03 -3.00 (-3.18 to -2.82)
Blackburn -4.52 (-5.38 to -3.65) -4.52 -8.34 (-9.29 to -7.38)
Burnley 2.90 (2.58 to 3.19) 2.90 -10.63 (-11.63 to -9.63)

Table 6.10 Extended TMACS summary statistics by index of clinical site AUC -area under the curve, CITL – calibration in the 
large, 95% CI – 95% confidence interval. 

Extension
Derivation Bootstrapped Status Quo

AUC
Male 0.82 (0.80 to 0.85) 0.82 0.87 (0.85 to 0.89)
Female 0.85 (0.82 to 0.88) 0.85 0.89 (0.87 to 0.92)
CITL
Male 0.00 (-0.18 to 0.18) -0.01 -3.58 (-3.81 to -3.35)
Female 0.00 (-0.26 to 0.26) -0.01 -4.25 (-4.58 to -3.92)

Table 6.11 Extended TMACS summary statistics by gender. AUC -area under the curve, CITL – calibration in the large, 95% CI 
– 95% confidence interval. 
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Age 
Age quartiles demonstrated a drop in discriminatory performance from the status quo TMACS to the 

extended model. The fourth age quartile dropping from 0.85 to 0.79 (Supplementary Table 8.16). 

However, the calibration again improved across all quartiles with the range of the CITL for the 

extended model being 0.652 to -0.180 compared to the status quo’s range of -4.83 to -3.21.  

Ethnicity, Age and Index of Multiple Deprivation 
This pattern of improvement was also demonstrated in ethnicity and IMD subgroups with AUC 

decreasing but CITL improving (Supplementary Table 8.17 and Supplementary Table 8.19). The 

kidney function subgroups again demonstrated the same decrease in AUC but the CITL still 

demonstrated marked miscalibration (Supplementary Table 8.18). The stage five kidney function 

group had a CITL of -10.21 in the extended TMACS model from -14.96. The magnitude of the 

improvement for CITL from the extended to status quo model is similar across the subgroup.  

6.5.3 Dynamic updating 

6.5.3.1 Forgetting factor selection (lambda) 
To proceed with the dynamic updating a lambda was required, to avoid confounding from pooling 

between sites for this lambda selection only the Manchester data was used. I initially used Riley et 

al’s sample size calculation to calculate a suitable lambda as suggested in a doctoral thesis by Jenkins 

et al (233).  This lambda is used in Figure 6.10 (lambda = 0.99876), this figure is a beta plot of the 

intercept and variable coefficients over time. It enables visualisation of the change of the model over 

time. There are dramatic changes in the coefficients with this lambda and these dramatic changes 

indicate instability that is not clinically acceptable. Particularly for the coefficients that cross 0 

indicating a switch from positive to negative predictive properties (Figure 6.10– graph C,D,E,F,G and 

H). The lambdas up to 0.9999 were examined (at increments of 0.9990, 0.99925. 0.99950, and 

0.99975), all except 0.9999 demonstrated the same instability (see supplementary figures). A 
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lambda of 0.9999 was therefore selected for model stability whilst still enabling the model to be 

dynamic (Figure 6.11). 

Figure 6.10 Beta plot for lambda selection 0.99876 – Manchester data only used in Bayesian dynamic updating model. The 
intercept and coefficients of each variable are plotted on separate graphs each against time measured by number of 
episodes. 

Figure 6.11 Beta plot for lambda selection 0.9999 – Manchester data only used in Bayesian dynamic updating model. The 
intercept and coefficients of each variable are plotted on separate graphs each against time measured by number of 
episodes. 
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6.5.3.2 Pooling review 
Using the selected lambda (0.9999) each site’s data was used to create a dynamic updating model. 

The resulting beta plot was used to assess the suitability for pooling. Manchester and Blackburn 

demonstrated similar trends across the intercept and variable coefficients (Figure 6.11 & Figure 

6.12). In contrast Burnley did not have the same trends of the other sites with the intercept 

demonstrating the near inverse trend and hypotension co-efficient not falling (Figure 6.13).  

Therefore I opted to pool Manchester and Blackburn’s data and treat Burnley separately.  

Figure 6.12 Beta plot for Blackburn data only used in Bayesian dynamic updating model. Lambda = 0.9999. The intercept 
and coefficients of each variable are plotted on separate graphs each against time measured by number of episodes. 
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Figure 6.13 Beta plot for Burnley data only used in Bayesian dynamic updating model. Lambda = 0.9999. The intercept and 
coefficients of each variable are plotted on separate graphs each against time measured by number of episodes 

6.5.3.3 Model Summary results 

The betas all varied overtime with the intercept and hypotension coefficient demonstrating the most 

substantial change from -4.65 to -6.48 and 1.412 to -0.82 respectively (Table 6.12). The patient 

representatives felt it was important to have a supervised period prior to a more automated one. 

Whilst this has no impact on the underlying statistical method used in this work and is a practicality 

for implementation, this 3-month supervised period is highlighted in (Figure 6.14) to assess the 

trends during this supervised period and after. During this period no beta demonstrated a dramatic 

change in trend after the supervised period. Sweating and vomiting coefficients became more stable 

after the supervised period.  

Initial Final
Intercept -4.65 -6.48
Coefficient

Troponin 0.084 0.079
Hypotension 1.412 -0.82
ECG ischaemia 1.828 0.562
Worsening Angina 1.514 1.069
Right arm pain 0.849 1.098
Sweating 1.878 0.872
Vomiting 1.783 0.433
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Table 6.12 Comparison of TMACS model components from status quo to final dynamic update – for Manchester and 
Blackburn data only. 

Figure 6.14 - Beta plot for Manchester and Blackburn data only used in Bayesian dynamic updating model. Lambda = 
0.9999. The intercept and coefficients of each variable are plotted on separate graphs each against time measured by 
number of episodes. A three-month intensive observation period is highlighted in red. 

The model derived by Bayesian dynamic updating from Manchester and Blackburn’s pooled data had 

an AUC of 0.87 (95% CI 0.85 to 0.89), a CITL of -1.45 (95% CI -1.63 to -1.27) and a C-slope of 0.061 

(95%CI 0.049 – 0.073) (Table 6.13) . Burnley’s dynamically updated model had an AUC of 0.73 (95% 

CI 0.66 - 0.80) and a CITL of 0.47 (95% CI 0.18 to 0.76). The calibration of the model was also 

assessed with a calibration plot (Figure 6.15). This demonstrated good calibration especially at the 

lowest deciles. The sensitivity for the Manchester and Blackburn dynamic model was found to be 

98.7% (95% CI 98.5 -98.9) and the specificity 80.7% (95% CI 77.0 to 84.4). For the dynamic updated 

model from the Burnley data, the sensitivity was 59.6% (95% CI 46.9 to 72.4) and the specificity was 

89.3% (95% CI 87.5 to 91.0).  

The cohort size for Burnley was not sufficient for detailed analysis by quarter and due to missing 

data subgroup analysis was not possible for gender or kidney function. The results therefore focus 

on the Manchester and Blackburn pooling. 
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Dynamic updating (95% CI) Status Quo (95% CI)
AUC
MRI 0.86 (0.84 to 0.88) 0.87 (0.85 to 0.89)
Blackburn 0.92 (0.89 to 0.95) 0.91 (0.86 to 0.95)
Burnley 0.73 (0.66 to 0.80) 0.92 (0.88 to 0.96)
CITL
MRI -1.15 (-1.32 to -0.98) -3.00 (-3.18 to -2.82)
Blackburn -5.87 (-6.79 to -4.94) -8.34 (-9.29 to -7.38)
Burnley 0.47 (0.18 to 0.76) -10.63 (-11.63 to -9.63)

Table 6.13 Dynamically updated TMACS summary statistics by index of clinical site AUC -area under the curve, CITL – 
calibration in the large, 95% CI – 95% confidence interval. Manchester and Blackburn’s results are from a pooled 
dynamically updated TMACS analysis. 

Figure 6.15 Focused calibration plot of the dynamically updated TMACS model plotted by predicted risk deciles. A Loess line 
of best fit is also plotted. Manchester and Blackburn data only. 



209 

Figure 6.16 Sankey Diagram for reclassification of risk from the original predicted risk groups on the left to the newly 
predicted risk groups on the right from the dynamically updated TMACS model. (Manchester and Blackburn data only) 

The reclassification of patient risk groups was predominantly a single step downgrading the group 

(Figure 6.16). The exception was the original moderate risk group in which a portion moved down 

two risk groups to very low risk. All the very low risk group were reclassified to the same group, 

89.1% of the low risk group were classified as very low risk and the remaining 10.9% were classified 

as low risk again. 44.2% of the original moderate risk group were reclassified as VLR, 27.0% were 

classified as low risk and 28.8% were classified again as moderate risk. Of those originally classified 

high risk 71.8% remained high risk and 28.2% were reclassified to moderate risk.  

As the model varied with time, I assessed the model performance per quarter to examine any 

change over time. Figure 6.17 shows the changing AUC over time starting a 0.93 (95% CI 0.85 to 
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1.00) and ending at 0.93 (95% CI 0.87 to 0.99). Whilst it ranged from a low of 0.78 (95% CI 0.67 to 

0.89) in quarter 10 to 0.98 (95% CI 0.92 to 0.97) in quarter three no clear trend was visible, and most 

of the quarters had AUCs with overlapping confidence intervals.  

Figure 6.17 Area under the curve of the dynamically updated TMACS model per quarter. Confidence intervals are displayed. 

Whilst no trend was identifiable from the AUC over time the CITL demonstrated a clear trend for 

improvement (Figure 6.18). Q1 CITL was – 2.16 (95% CI -3.45 to -0.87) and finished at 0.14 (95% CI -

1.05 to -1.34). 
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Figure 6.18 Calibration in the large of the dynamically updated TMACS model per quarter. Confidence intervals are 
displayed. 
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6.5.3.4 Subgroups 

In the age subgroups, the AUC was calculated and the point estimate results were similar to the 

status quo results with a slight up to 0.02 decrease (Supplementary Table 8.21). The confidence 

intervals all overlapped, however there was a decrease of up to 0.03. The CITL across the age 

subgroups was improved in the dynamically updated model, there was still a slight overestimation of 

risk. A similar pattern was seen in the IMD, ethnicity and gender subgroups (Supplementary Table 

8.22, Supplementary Table 8.23, and Supplementary Table 8.24). In the kidney function subgroups 

the AUC followed the pattern of a marginal decrease (Supplementary Table 8.25). The calibration 

whilst improved was still significantly mis-calibrated. There was a trend for worsening calibration 

with increasing CKD stage with stage groups 4 and 5 having a CITL of -5.53 (95% CI -7.13 to -3.93) 

and -13.26 (95% CI -15.49 to -11.03) respectively.  

6.6 Discussion 

In this analysis I successfully trialled three methods for updating a clinical prediction model. 

Calibration was improved across all methods however discrimination was impacted to varying 

degrees (Table 6.14).  

Recalibration demonstrated marked improvements in calibration including across subgroups for 

kidney function. This was not improved for the other updating methods. This model updating 

technique had the best calibration results with a CITL and unadjusted c-slope. However, when 

calibration is examined with a non-parametric line of best fit or the c-slope was adjusted an 

overestimation of risk was apparent. 

Model extension allowed new variables to be added to the model, however it did not improve the 

discriminatory performance. Whilst there were modest gains in calibration these were 

overshadowed by the benefits from recalibration. This method led to a general lowering of the risk 

groups, however some patients were reclassified to higher risk groups. I did not observe this with 
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any other of the updating methods and was driven by the addition of new variables. It unfortunately 

did not lead to a substantial improvement in discrimination and the improvements in calibration 

were better by other methods. The substantial miscalibration here is likely partly attributable to the 

forced addition of the original TMACS to the model.  

The discrepancy between the parametric (C-Slope) and non-parametric assessment (LASO fitted lines 

of best fit) may indicate that in this CPM non-parametric assessment is more appropriate. It is 

possible that the skewed distribution of the predicted probabilities unduly effects the parametric 

measures of calibration. 

Updating method (95% CI)
Status Quo Recalibration Extension Dynamic Updating

AUC 0.88 (0.86 to 0.89) 0.88 (0.86 to 0.89) 0.84 (0.82 to 0.86) 0.87 (0.85 to 0.89)
Adjusted 0.88 0.84
CITL -3.93 (-4.12 to -

3.74) 
0.00 (-0.09 to 0.09) 0.00 (-0.15 to 0.15) -1.45 (-1.63 to -1.27)

Adjusted 0.00 -0.01
C-Slope 0.05 (0.17 to 0.22) 1.00 (0.82 to 1.12) 0.07 (0.06 to 0.08) 0.06 (0.05 to 0.07)
Adjusted 0.03 0.39

Table 6.14 TMACS summary statistics across different updating methods. 95% CI – 95% confidence interval, AUC – area 
under the curve, CITL – calibration in the large, C-slope – calibration slope. Adjusted – adjusted for optimism with 
bootstrapping. 

Dynamic updating demonstrated fascinating results with maintained discriminatory characteristics 

and improved calibration. The model adapted over time, varying with the patient cohort that it was 

exposed to. The CITL steadily improved as the model learnt. The performance in subgroups was also 

improved across the domains of discrimination and calibration except kidney function. In this 

analysis only recalibration demonstrated a marked improvement in patients with poor kidney 

function (CKD stage >3). The dichotomised hypotension variable in the dynamically updated model 

changed from being positively predictive of the outcome to negatively. An exploratory analysis was 

conducted to check the linearity of the continuous form of this variable in relation to the outcome 

(Figure 6.19). In contrast to the original TMACS derivation cohort (unpublished data), SBP did not 
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demonstrate a linear relationship. Whilst the lower deciles did demonstrate an increased risk so did 

the upper most deciles. This currently dichotomised variable could be a target for future 

improvement.  

Hickey et al previously reported a deterioration in the  calibration of EUROSCORE, a CPM to predict 

mortality in patients undergoing cardiothoracic surgery (229). EUROSCORE II was an updated version 

of the original CPM, with re-derivation and extension to include new variables. Whilst forward 

stepwise selection was used as in our extended model, univariable regression was used to screen 

candidate variables and they also rederived the original model (234). The original model has an AUC 

of 0.79 and the updated model an AUC of 0.81 which was not a statistically significant different 

trend. Calibration was examined by comparing the expected vs observed mortality which was 3.95% 

vs 4.18% which was deemed to be an acceptable under-prediction (234). Dynamic updating was also 

trialled for this cohort and it was demonstrated to be possible and variables changed from being 

positively to negatively predictive as well, potentially indicating that this a phenomenon not specific 

to TMACS (235). 

Dynamic prediction models have been thought to be able to counter the static nature of derivation 

or updating by continually updating (236). However, the required connected digital infrastructure to 

enable such a system is expensive and may require a more mature digital healthcare system.  
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Figure 6.19 - Linearity plot of Systolic blood pressure deciles (SBP) by the proportion of each decile positive for the primary 
outcome. Line of best fit by lasso and the 95% confidence intervals are plotted. 
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6.7 Conclusion 

The TMACS CPM can have its calibration updated and discrimination maintained by recalibration and 

dynamic updating and whilst model extension did improve calibration it did not maintain the 

discriminatory performance and performed worse across the subgroups of interest. The kidney 

function subgrouping revealed poor model calibration at CKD stage 3 and above, whilst this was 

improved most by recalibration it is a potential target for future work. Dynamic updating offers the 

prospect of a model that can adjust to changes in the population and if nested within the required 

digital infrastructure it could constantly update the CPM.  
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Chapter 7 Conclusions  

The overarching objective of improving ED care and outcomes for CVD in the long and short term 

has been achieved through two aims. Firstly, I have developed a new care pathway to predict future 

CVD in the acute care setting by developing the quantitative evidence base and the qualitative data 

for how to implement such a pathway in chapters 2 through 4. This work creates a care pathway 

that utilises routinely collected data with minimum impact of ED resources and takes advantage of 

the teachable moment in a patient’s journey. Secondly TMACS has been validated in its largest 

cohort, allowing for a detailed analysis of its real-world diagnostic characteristics in chapters 5 and 6. 

This revealed relatively preserved diagnostic accuracy (in terms of sensitivity and NPV) but 

suboptimal calibration. The latter did not appear to be deteriorating progressively over time. Loss of 

calibration could be countered with model updating strategies, although this led to compromised 

sensitivity as a rule-out tool. Clinical CPMs that have been deployed in clinical practice should be 

assessed for similar deterioration in their performance characteristics.   

7.1 Limitations 

The limitations for this work are explored individually in each chapter. My thesis uses qualitative and 

quantitative data which is predominantly from the Greater Manchester area. When seeking to 

generalise the conclusions of my work others should examine if factors such as population 

demographics or clinical practices are similar enough to enable this. The quantitative elements of my 

thesis rely on the accuracy of diagnostic and interventional coding in local sites. Coles et al examined 

the accuracy of HES for detection of AMI in a cancer cohort (237). They found a discrepancy in STEMI 

admissions where 16.5% of admissions were not recorded in HES. The study did not seek to 

understand if these were false positives or true positives however it is a signal that warrants further 

investigation with clinical verification of coded AMI outcomes. The national data opt out is also 

another factor to consider when interpreting the quantitative data. Patients in the UK have the 

option to opt out of their data being shared for research purposes, the national average is 5.36% and 
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the northwest has an overall average of 5.9% (238). This may have removed positive CVD outcomes 

from this work and may artificially lower the primary outcome incidence. It is possible that patients 

who have opted out are systematically different to the remaining patients, which could mean that 

the models evaluated perform differently in those patients. 

7.2 Long-term cardiovascular care  

The long-term CVD care pathway relies on close co-ordination between primary and secondary care. 

The interface between these two parts of the patient’s journey was highlighted as a risk for any 

potential pathway. More broadly, work is required to bring primary and secondary care stakeholders 

together to better understand their peers’ perspectives. Patients expect the different parts of the 

health care system to be seamless in the way they operate, however, operationally there is room for 

more alignment. The strength of such a pathway is the use of routinely collected data to inform the 

risk of long-term CVD. Age, gender, WBC, ethnicity, hs-cTnT and TMACS all demonstrated favourable 

prognostic characteristics. In addition, informative missingness was identified for cardiac specific 

investigations (cTnT, hs-cTnT and TMACS), indicating that the decision not to investigate cardiac 

causes of chest pain was associated with a lower rate of CVD. More work could be conducted to 

better understand what is underlying this decision making, that may be prognosticating for long 

term outcomes (absence of symptoms etc.) The external validation of the Framingham model 

demonstrated accepted characteristics in the domains of discrimination and calibration. It may be 

that this model could be improved with the addition of hs-cTnT or TMACS. This work lays the 

foundation for a long-term CVD care pathway for acute care and whilst further work is required to 

assess the implementation of the proposed pathway my research has demonstrated that this 

warrants further investigation.  

CPMs have been re-purposed from facilitating the early diagnosis of ACS in the ED to predicting long-

term CVD. Farkouh et al examined patients who were triaged according to the Agency for Health 

Care Policy and Research AMI CPM (147). Their participants had a medium follow up of 7.3 years and 
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they found patients deemed high risk by the CPM had a hazard ratio of 2.45 (95% CI 1.67-3.58) for 

cardio and cerebrovascular events. Kavsak et al examined laboratory predictors including hs-cTnT 

and found sensitivities of  up to 98.5% for the prediction of CVD outcomes at one year (158). Etaher 

et al examined hs-cTnT in the elderly with suspected ACS with a median follow of 32 months, it was 

reported that regardless of index diagnosis there was an increased rate of mortality with higher 

baseline hs-cTnT levels (159). Whilst these models are not looking into the decade long follow up 

associated with primary care CVD CPMs, they demonstrate a potential.  Hinton et al in a multi-

variate cox regression found that a hs-cTnI relative to upper reference limit >0.25, had a statistically 

significant hazard ratios of 2.09 (95% CI 1.40 – 3.13), 2.10 (95%CI 1.37 – 3.23), and 6.02 (95%CI 2.20 

– 16.47) in inpatient, outpatient and ED settings respectively (190). Age and gender were also found 

to predictive in this setting.   

7.3 Acute cardiovascular care 

TMACS has been validated in a variety of settings previously and the AUC has been reported to be 

between 0.86 to 0.91 in validations (49,222). Due to the smaller sample size in previous prospective 

studies, its performance has not been evaluated in subgroups of interest. In contrast this work is the 

largest evaluation of T-MACS to date. It does however utilise coded diagnoses from the clinical 

record in contrast to prospective observational studies with carefully validated outcomes (220). 

There was an apparent deterioration in the performance of TMACS between the prospective 

derivation clinical trial and this real-world evaluation (231). Direct comparison of the two trials is 

difficult due to the lack of adjudicated outcomes in the real-world evaluation. There was variation in 

the performance of the model within this real-world evaluation in domains of calibration and 

discrimination. There was variation in model performance across subgroups, particular kidney 

function. TMACS demonstrated calibration drift with miscalibration measured by CITL and c-slope. 

However more favourable calibration was identified when non-parametric lines were fitted to 
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calibration plots, particularly at the lower predicted risk deciles in which AMI would be ruled out by 

TMACS. This focus is useful, given the need for caution when treating suspected AMI, however it 

may be at the expense of better calibration at the higher predicted risk thresholds. The focus of 

future work could be to understand the most appropriate calibration metric for such a scenario. 

Further research could also look to adjudicate the coded outcomes so as to better align with the 

prospective cohort trial that derived the work (231). 

The calibration of TMACS across different genders and ethnicities varied. The CITL for males was -

3.58 (95% CI -3.81 to -3.35) compared to -4.25 (95% CI -4.58 to -3.92) for females. This is potentially 

due to the derivation population which was 61.2% male, however this was representative of the 

gender disparity in cardiovascular disease (220). The calibration by ethnicity also varied substantially, 

the Asian ethnicity subgroup had a CITL of -2.52, Mixed -3.71, Other -3.86, White -4.03 and Black -

5.98. The ethnicity of the derivation cohort was not described so inferences cannot be made if this 

miscalibration is due to the derivation cohort. The prospective verification of these results will be 

important to better understand this apparent discrepancy in performance. It is possible that the 

CPM and its selected predictors vary in their diagnostic ability between ethnicities, this is of interest  

as different AMI symptom profiles have been noted previously in Canada (239). It is also possible 

that the outcome diagnostic and intervention codes are the source of the miscalibration.  

Updating TMACS did not yield the same discrimination statistics as its original clinical trial validation, 

however, it did improve the calibration of the CPM. This improvement was seen across various 

subgroups. The static recalibration yielded substantial improvements in calibration, but it is a 

method that will require constant manual updating. The dynamic updating model yielded similar 

improvements but is a method that could be semi-autonomous with the pre-requisite digital 

infrastructure. Careful consideration is required for variables which change from being positively 

associated with the outcome to negative. In this work we allowed the variable to flip, however it 
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may be that where there is biological implausibility the variable is only permitted to become null 

(equal to zero).  

The in-depth assessment of a CPM highlights important areas for the future including the 

performance and improvement of models by ethnic group. This large RWE evaluation of a CPM also 

emphasises the importance of monitoring the performance of already implemented CPMs. 

Guidelines for the reporting of CPMs highlight external validation as an important step, now 

implemented CPMs are widespread and addition may be not just external but temporal validation 

(45). This could be a further validation at a post-implementation time point to assess the CPM’s 

performance. Specifically to TMACS further formal health economic assessment is required to 

understand which updating method is viable, balancing the cost of each respective method versus 

the improvement in performance. This would have to assess costs of digital infrastructure required 

for dynamic updating versus the benefit of continual updating on clinical outcomes.  

7.4 Personal development 

I have gained extensive experience through my PhD journey in qualitative and quantitative 

methodologies as well as practical operational knowledge required to run clinical trials.  I have 

obtained new skills in qualitative methodologies and thematic analysis. I have also gained skills in 

real world evidence including database creation, cleaning, linking and machine learning 

methodologies. To deploy these newly developed skills I also successfully setup, gained approval and 

ran two clinical trials as chief investigator and principal investigator. This included complicated 

research ethics applications and data sharing agreements. This development has given me a broad 

transferable skill set. 
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Chapter 8 Supplementary Materials 

8.1 Supplementary figures 

Supplementary Figure 8.1 - Meta-analysis forest plot of the prevalence of type two diabetes in the emergency department 
as per the World Health Organisation definition  (50–54,56,57). 
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Supplementary Figure 8.2 Meta-analysis forest plot for the proportion attendance at follow up appointments for type two 
diabetes (50,52–56) 
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Supplementary Figure 8.4 Linearity check for Systolic Blood Pressure (SBP). A – Plot of systolic blood pressure grouped by 
decile against the proportion with a positive outcome B – Martingale residual plot for systolic blood pressure. 

Supplementary Figure 8.3 Skew check for systolic blood pressure variable. A – A histogram of the systolic blood pressure measured in millimetres of 
mercury, B – Quantile – Quantile plot of the untransformed systolic blood pressure variable, C- a Quantile-Quantile plot of the systolic blood pressure 
variable logarithmically transformed. 
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Supplementary Figure 8.5 Colinear plot for systolic blood pressure 
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Supplementary Figure 8.6 calibration plot of the multivariable cox model from cohort 1 selected by AIC statistic including 
conventional cardiac troponin T as a continuous variable. 
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Supplementary Figure 8.7 Calibration plot of the multivariable cox model from cohort 2 selected by AIC statistic including TMACS 
as a continuous variable 
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Supplementary Figure 8.8 Calibration plot of the multivariable cox model from cohort 2 selected by AIC statistic including high 
sensitivity cardiac troponin T as a continuous variable. 
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8.2 Supplementary tables 

Author,
Country, 
Year Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6 Overall

Hng,
Australia 

2016 (146) Low Low Low Moderate Low Low Moderate

Jelinek,
Australia, 

2010 (145) Low Moderate Low Low Moderate Low Moderate

Charfen,
USA, 2009 

(142) Low Moderate Low Low Moderate Low Moderate

Hewat, UK,
2009 (144) Low Moderate Low Low Moderate Low Moderate

George, UK,
2005 (141) Low Low Low Low Moderate Low Moderate

Silverman,
USA, 2006 

(139) Low Low Low Low Low Low Low

Ginde, USA,
2008 (143) Low Low Low Low Moderate Low Moderate

Silverman,
USA 2011 

(140) Low High Low Low Moderate Moderate High

Farkouh,
USA, 2009 

(147) Moderate Moderate Low Low Low Low Moderate

Sanchis,
USA, 2008 

(148) Low Moderate Moderate Moderate Low Moderate Moderate
Supplementary Table 8.1 - Risk of bias of studies examining type two diabetes mellitus. This was conducted using the QUIPs 
tool (25). Domain 1 – Study Participation, domain 2 – Study Attrition, domain 3 – Prognostic factor measurement, domain 4 
– outcome measurement, domain 5– study confounding, domain 6 – Statistical analysis and reporting 



231 

Study Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6 Overall

Elder, Australia,
2006 (149) Low Moderate Low NA Low Low Moderate

Diercks, USA,
2002 (150) Low Low Low NA Low Low Low

Chandra, USA,
2002 (151) Low Low Low NA Low Low Low

Tan, Australia,
2013 (126) Low Low Low NA Low Low Low

Supplementary Table 8.2 - Risk of bias of Dyslipidaemia studies. This was conducted using the QUIPs tool. Domain 1 – Study 
Participation, domain .22 – Study Attrition, domain 3 – Prognostic factor measurement, domain 4 – outcome measurement, 
domain 5 – study confounding, domain 6 – statistical analysis and reporting, N/A denotes not applicable 

Study Author Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6 Overall 

Sanchis (148) Low Moderate Moderate Moderate Low Moderate Moderate 
Chaikriangkrai (152) Low High Moderate Low Low Moderate High 

Supplementary Table 8.3 Risk of bias of chronic kidney disease prognostication studies. This was conducted using the QUIPs 
tool (25). Domain 1 – Study Participation, domain 2 – Study Attrition, domain 3 – Prognostic factor measurement, domain 4 
– outcome measurement, domain 5 – study confounding, domain 6 – Statistical analysis and reporting
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Cohort 1 Cohort 2 Cohort 3
Heart Rate (bpm)

Mean 84.1 84.0 83.0
SD 17.1 17.7 16.9
Missing (n) 19.1% (1154) 12.1% (734) 9.1% (625)

Systolic blood pressure (mmHg)
Mean 144.0 134.6 136.6
SD 18.9 19.5 22.0
Missing (n) 19.1% (1158) 12.1% (737) 9.1% (623)

Diastolic blood pressure (mmHg)
Mean 80.1 79.0 82.8
SD 14.1 13.4 14.8
Missing (n) 19.2% (1160) 12.0% (733) 9.2% (627)

Oxygen Saturations (%)
Mean 98.1 98.1 97.7
SD 2.0 1.9 2.2
Missing (n) 28.6% (1732) 12.2% (740) 9.1% (622)

Glasgow Coma Scale
Median 15 15 15
Range 12-15 15 15
Missing (n) 26.5% (1604) 12.0% (732) 9.1% (623)

Temperature (degrees Celsius)
Mean 36.4 36.5 36.5
SD 0.6 0.6 0.6
Missing (n) 19.3% (1170) 12.2% (745) 9.1% (623)

Index of Multiple Deprivation
Mean 41.9 41.2 41.1
SD 17.3 17.9 17.4
Missing (n) 57.3% (3470) 64.3% (3915) 71.0% (4836)

Haemoglobin (g/L)
Mean 13.6 13.7 13.6
SD 1.81 1.8 18.1
Missing (n) 50.44% (3054) 30.1% (1834) 27.8% (1900)

White Blood Cell Count (109/L)
Mean 8.4 8.2 8.5
SD 3.3 3.0 3.7
Missing (n) 50.2% (3042) 29.8% (1815) 27.6% (1886)

Estimated Glomerular Filtration Rate 
(ml/min/1.73m2) 

Mean 69.8 71.4 71.1
SD 17.7 15.9 16.0
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Missing (n) 79.9% (4838) 61.5% (3744) 59.0% (4042)

Rural Urban Index
Median 5 5 5
Range 2-9 1-8 1-9
Missing (n) 57.1% (3459) 64.3% (3912) 70.6% (4832)

Supplementary Table 8.4 Additional demographic characteristics of cohorts 

Variable Skewness Histogram/QQ 
Plot  

Transformation New 
skewness 

Age 0.44 Right Skew Nil NA
Heart Rate 0.87 Right Skew Logarithmic -0.02
SBP 0.61 Right Skew Logarithmic 0.09
DBP 0.15 Nil Nil NA
Temperature 0.44 Right Skew Nil NA
Respiratory 
Rate 

2.92 Right Skew Logarithmic -0.02

EWS 1.52 Right Skew Square root 0.04
SaO2 -4.38 Left Skew Exponential 0.93
WBC 2.1 Left Skew Logarithmic 0.20
Haemoglobin -0.47 Right Skew Nil NA
IMD -0.04 Nil Nil NA
eGFR -1.26 Left Skew Cube -0.20
cTnT 18.67 Right Skew Logarithmic 6.29
hs-cTnT 15.33 Right Skew Logarithmic 1.74
TMACS 3.64 Right Skew Logarithmic 1.21

Supplementary Table 8.5 Variable transformation summary 
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Restricted Cubic Spline
Variable Univariate 3 knots 4 knots 5 knots
Age

AIC 10371.04 10166.92 10160.77 10162.59
BIC 10375.48 10180.19 10174.09 10180.35

Respiratory Rate
AIC 8289.32 8290.83 8292.71 8292.71
BIC 8293.52 8299.23 8305.30 8305.30

Temperature
AIC 8267.96 8268.24 8270.11 8271.91
BIC 8272.16 8276.63 8282.69 8288.69

WBC
AIC 6212.85 6197.58 6198.75 6200.29
BIC 6216.82 6205.52 6210.65 6216.16

Heart Rate
AIC 8272.49 8273.72 8275.78 8277.53
BIC 8276.69 8282.11 8286.88 8294.32

SBP
AIC 8279.56 8272.95 8274.29 8274.44
BIC 8283.76 8286.95 8286.88 8291.22

IMD
AIC 9584.89 9584.10 9586.12 9587.69
BIC 9589.32 9595.81 9599.41 9605.41

eGFR
AIC 3124.64 3124.30 3126.17 3126.61
BIC 3128.04 3131.12 3136.39 3140.24

cTnT
AIC 2671.11 2671.10 2671.67 2673.21
BIC 2674.37 2677.63 2681.45 2686.26

hs-cTnT
AIC 4322.74 4330.90 4328.00 4314.96
BIC 4336.39 4338.20 4335.31 4325.92

TMACS
AIC 2377.77 2374.87 2355.46 1357.84
BIC 2380.89 2381.12 2364.83 2370.34

Supplementary Table 8.6 Restricted Cubic Spline comparison. 
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Supplementary Table 8.7 Co-linearity check 
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Adjusted Hazard Ratio (using all-inclusive model)
Variable Cohort 1 Cohort 2 Cohort 3
Gender – Female 0.56 (0.47 - 0.67)* 0.52 (0.42 -0.64)* 0.50 (0.39 - 0.63)*
Ethnicity

Asian 1.25 (1.03 – 1.51)* 1.23 (1.00 – 1.51)* 0.90 (0.71 - 1.15)
Black 0.84 (0.62 – 1.14) 0.51 (0.34 – 0.77)* 0.61 (0.40 – 0.94)*
Mixed 0.70 (0.43 – 1.14) 0.74 (0.44 – 1.25) 0.27 (0.12 – 0.60)*
Other 0.64 (0.41 – 0.98)* 0.72 (0.46 – 1.13) 0.49 (0.23 -1.06)

WBC - summarised All significant All significant Nonsignificant
Heart rate 0.68 (0.45 – 1.00)† 0.79 (0.50 – 1.25) 0.51 (0.30 – 0.86)*
Time

Morning - reference - - -
Afternoon 0.92 (0.74 – 1.14) 0.89 (0.70 – 1.13) 1.38 (1.02 - 1.87)*
Evening 1.29 (1.00 – 1.65)* 1.11 (0.84 – 1.46) 1.58 (1.10 - 2.25)*
OOH 1.20 (0.97 – 1.49) 1.12 (0.87 – 1.46) 1.86 (1.36 – 2.54)*

Haemoglobin 1.04 (0.95 – 1.12) 0.89 (0.84 – 0.94)* 1.00 (0.99 – 1.00)
SBP – summarised Nonsignificant All significant Nonsignificant

Supplementary Table 8.8 - Hazard ratios of variables that were statistically significant in at least one cohort (excluding 
conventional troponin T, high sensitivity cardiac troponin T and TMACS variables). 

AIC R2 Concordance (c-
statistic) 

Cohort 1
Stepwise selection 10292.50 0.14 0.79 (0.77 – 0.80)
All variables 10308.86 0.14 0.79 (0.77 - 0.81)

Cohort 2
Stepwise selection 7651.56 0.13 0.81 (0.80 - 0.83)
All variables 7647.04 0.13 0.81 (0.79 - 0.82)

Cohort 3
Stepwise selection 5806.08 0.14 0.84 (0.83 -0.86)
All variables 5823.12 0.14 0.85 (0.83 – 0.86)

Supplementary Table 8.9 - Summary statistics for the underlying adjustment models by cohort year. 
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Risk factor Data source EM Staff non-EM staff Patient facing 
materials 

Blood pressure Patient record Novel heart 
disease 
practitioner 

GP Leaflet

Smoking Receptionist EM nurse Pharmacist Video advert

Cholesterol Triage nurse EM clinician Lifestyle guide Email

Diabetes Treating nurse Ring fenced 
discharging EM 
clinician 

Specialty clinic Letter given at 
discharge 

BMI Clinician Infographic

Lifestyle Scavenged blood 
samples 

Ambulatory BP 
monitor 

Prediction model 
output Letter sent 

after visit 
Chronic kidney 
disease Text messages 

Website  

Medication 
Supplementary Table 8.10 Logic model of potential care pathway inputs 
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Professional facing 
materials Discharge outcomes 

Clinical 
responsibility Care outcomes 

Discharge summary Self-referral EM clinician 
Patient awareness of risk 
factor 

Bespoke letter 
Referral to GP or primary care 
practitioner GP 

Non-pharmacological 
management of risk factor 

Pure data transfer only Referral to other specialty Specialty 
Pharmacological management 
of risk factor 

Verbal handover Educational material Patient 
Patient engagement in 
preventative services 

Infographic CVD prevention practitioners 
Clinician awareness of 
patient's risk factor 

Initiation of non-
pharmacological intervention 

Reduction in cardiovascular 
risk 

Initiation of pharmacological 
intervention Holistic EM care 

Results streamed to GP 

Results streamed to another 
provider 

Referred to new EM clinic 

Counselling in EM 

Repeated discussion in EM 
Supplementary Table 8.11 Logic model of potential care pathway outputs 
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OPCS/ICD-10 code Definition (172,240)
I21 “Acute Myocardial Infarction (AMI)”
I22 “Subsequent Myocardial Infarction”
I23 “Certain current complications following AMI“
I46 “Cardiac arrest“
R96 “Other sudden death, cause unknown“
R99 “Other ill-defined and unspecified causes of 

mortality“ 
K40 “Saphenous vein graft replacement of coronary 

artery“ 
K41 “Other autograft replacement of coronary 

artery“ 
K42 “Allograft replacement of coronary artery“
K43 “Prosthetic replacement of coronary artery“
K44 “Other replacement of coronary artery“
K45 “Connection of thoracic artery to coronary 

artery“ 
K46 “Other bypass of coronary artery“
K47 “Repair of coronary artery“
K48 “Other open operations on coronary artery“
K49 “Transluminal balloon angioplasty of coronary 

artery“ 
K50 “Other therapeutic transluminal operations on 

coronary artery“ 
K63 “Contrast radiology of heart“ (including 

coronary arteriography) 
K75 “Percutaneous transluminal balloon angioplasty 

and insertion of stent into coronary artery“ 
Supplementary Table 8.12 OPCS/ICD-10 codes and definitions 
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Day of index event
Sun 1508 (11.4%)
Mon 2201 (17.4%)
Tue 2064 (15.6%)
Wed 1864 (14.1%)
Thu 2032 (15.4%)
Fri 1924 (14.6%)
Sat 1614 (12.2%)

Month of index event
Jan 1190 (9.0%)
Feb 1174 (8.9%)
Mar 1059 (8.0%)
Apr 972 (7.4%)
May 938 (7.1%)
Jun 1001 (7.6%)
Jul 1155 (8.7%)
Aug 1259 (9.5%)
Sep 1233 (9.3%)
Oct 1272 (9.6%)
Nov 887 (6.7%)
Dec 1067 (8.1%)

Supplementary Table 8.13 TMACS entry day and month frequency 
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Troponin values
MRI
Mean 16.3
Range 2-5270
Standard Deviation 16.35233 

Missing 5

Troponin values
Blackburn
Mean 60.75
Range 2-11000
Standard Deviation 22.660 

Burnley
Mean 0.094  

Range 0.009 – 23.860
Standard Deviation 0.882 

Urea
Mean 5.76
Range 0.70-75.10
Standard Deviation 3.14
Missing 2766

Creatinine
Mean 88.51
Range 24-1545
Standard Deviation 66.31
Missing 2767

Estimated glomerular filtration rate
Mean 84.00
Range 2.51-159.30
Standard Deviation 24.27
Missing 2793

Physiological Parameters
Temperature
Mean 36.42
Range 33.30-41.90
Standard Deviation 0.56
Missing 4065

Respiratory rate
Mean 17.16
Range 6 – 126
Standard Deviation 2.80
Missing 4065

Heart Rate
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Mean 79.58
Range 10.00-206.00
Standard Deviation 16.50
Missing 4065

Oxygen Saturations
Mean 97.48
Range 70.00-100.00
Standard Deviation 1.96
Missing 4065

Glasgow Coma Scale
Median 15
Missing 4065

Alert-Voice-Pain-Unresponsive scale
Mode Alert
Missing 4065

Supplementary Table 8.14 – Additional TMACS cohort demographics  

Variable Co-efficient P-value
Intercept -2.419e01 1.81e-15
Age Spline term 1 3.440e-01 5.72e-06
Age Spline term 2 -6.797e-01 0.00354
Age Spline term 3 1.778 0.07158
Age Spline term 4 -1.100 0.38034    
Kidney function 3.025e-04 < 2e-16

Gender - Female -3.556e-01 0.02988
Ethnicity - Asian 9.714e-01  1.09e-08

Ethnicity – Black -1.859 2.38e-05

Ethnicity – Mixed 5.595e-01 0.08760
Ethnicity - Other -2.143  6.95e-05

Supplementary Table 8.15 Extended TMACS model variable coefficients and their respective p-values. 
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Extension
Derivation Adjusted for optimism Status Quo

AUC
Age Q1 0.882 (0.823 – 0.941) 0.878 0.92 (0.88-0.95)
Age Q2 0.852 (0.816 – 0.889) 0.852 0.89 (0.86-0.91)
Age Q3 0.815 (0.778 – 0.852) 0.814 0.86 (0.83-0.89)
Age Q4 0.795 (0.758 -0.832) 0.793 0.85 (0.82-0.88)
CITL
Age Q1 0.603 (0.087 – 1.120) 0.652 -4.71 (-5.42 - -3.99)
Age Q2 -0.187 (-0.480 – 0.105) -0.180 -3.35 (-3.73 - -2.96)
Age Q3 0.301 (-0.233 – 0.262) 0.012 -3.21 (-3.51 - -2.92)
Age Q4 0.015 (-0.272 – 0.301) -0.010 -4.83 (-5.19 - -4.48)

Supplementary Table 8.16 Extended TMACS summary statistics by age quartile. AUC -area under the curve, CITL – 
calibration in the large, 95% CI – 95% confidence interval. 

Extension
Derivation Adjusted for optimism Status Quo

AUC
IMD Q1 0.809 (0.766 – 0.852) 0.810 0.89 (0.86-0.92)
IMD Q2 0.817 (0.772 – 0.862) 0.814 0.85 (0.81-0.88)
IMD Q3 0.838 (0.788 – 0.887) 0.838 0.89 (0.86-0.92)
IMD Q4 0.846 (0.804 – 0.888) 0.844 0.87 (0.83-0.91)
IMD Q5 0.767 (0.713 – 0.820) 0.767 0.84 (0.80-0.88)
CITL
IMD Q1 0.740 (0.438 – 1.042) 0.741 -3.44 (-3.85--3.04)
IMD Q2 -0.101 (-0.453 – 0.252) -0.106 -3.94 (-4.38--3.50)
IMD Q3 0.153 (-0.197 – 0.504) 0.126 -2.97 (-3.36--2.58)
IMD Q4 -0.033 (-0.364 – 0.340) -0.019 -3.18 (-3.570--2.80)
IMD Q5 0.548 (0.227 – 0.851) 0.548 -3.30 (-3.70--2.91)

Supplementary Table 8.17 Extended TMACS summary statistics by index of multiple deprivation quintile (IMD). AUC -area 
under the curve, CITL – calibration in the large, 95% CI – 95% confidence interval. 
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Extension
Derivation Adjusted for 

optimism
Status Quo

AUC
Stage 1 0.905 (0.878 – 0.931) 0.903 0.91 (0.88-0.93)
Stage 2 0.848 (0.815 – 0.881) 0.848 0.87 (0.84-0.90)
Stage 3 0.812 (0.759 -0.866) 0.811 0.81 (0.75-0.86)
Stage 4 0.868 (0.763 – 0.974) 0.877 0.89 (0.80-0.98)
Stage 5 0.826 (0.657 -0.996) 0.823 0.78 (0.54-1.00)
CITL
Stage 1 -0.399 (-0.657 - -0.118) -0.378 -2.08 (-2.36 - -1.80)
Stage 2 0.682 (0.440 -0.924) 0.679 -2.32 (-2.57 - -2.08)
Stage 3 0.724 (0.310 – 01139) 0.763 -3.63 (-4.05 - -3.20)
Stage 4 -2.523(-4.141 - -0.910) -2.488 -7.08 (-8.59 - -5.56)
Stage 5 -10.355 (-12.968 - -8.396) -10.214 -14.96 (-17.28 - -12.65)

Supplementary Table 8.18 Extended TMACS summary statistics by kidney function categorised by chronic kidney disease 
stage. AUC -area under the curve, CITL – calibration in the large, 95% CI – 95% confidence interval. 

Extension
Derivation Adjusted for optimism Status Quo

AUC
Asian 0.832 (0.796 -0.869) 0.832 0.87 (0.84 – 0.90)
Black 0.887 (0.804 -0.970) 0.886 0.90 (0.83 – 0.97)
Mixed 0.830 (0.744 – 0.917) 0.830 0.92 (0.87 – 0.97)
Other 0.855 (0.757 – 0.954) 0.855 0.92 (0.86 -0.97)
White 0.810 (0.781 – 0.839) 0.809 0.87 (0.85 – 0.89)
CITL
Asian 0.047 (-0.205 – 0.300) 0.041 -2.52 (-2.80 - -2.24)
Black 0.184 (-0.670 – 1.028) 0.178 -5.98 (-6.86 - -5.10)
Mixed 0.050 (-0.603 – 0.623) 0.044 -3.71 (-4.60 - -2.81)
Other 0.454 (-0.763 – 1.473) 0.448 -3.86 (-4.91 - -2.82)
White 0.052 (-0.158 – 0.261) 0.045 -4.03 (-4.28 - -3.77)

Supplementary Table 8.19 Extended TMACS summary statistics by ethnicity. AUC -area under the curve, CITL – calibration in 
the large, 95% CI – 95% confidence interval. 
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Quarter CITL CITL 
lower 
95% CI 

CITL 
upper 
95% CI AUC 

AUC 
lower CI 

AUC 
upper CI 

1 -2.15956 -3.44933 -0.8698 0.925358 0.851837 0.998879
2 -2.02779 -2.6831 -1.37248 0.931566 0.898485 0.964647
3 -3.78715 -4.94238 -2.63192 0.945646 0.918345 0.972947
4 -0.9672 -1.53247 -0.40193 0.897424 0.845633 0.949216
5 -2.27358 -3.06929 -1.47788 0.92056 0.868488 0.972633
6 -1.06512 -1.74511 -0.38513 0.870215 0.797435 0.942994
7 -2.7947 -3.94655 -1.64285 0.920052 0.841137 0.998966
8 -1.08672 -1.89031 -0.28313 0.887939 0.804551 0.971328
9 -1.46692 -2.37315 -0.56069 0.813458 0.717758 0.909159
10 -0.80734 -1.52014 -0.09453 0.778386 0.665618 0.891153
11 -1.83748 -2.5205 -1.15447 0.891795 0.841768 0.941822
12 -3.4177 -4.45226 -2.38314 0.913092 0.857295 0.968888
13 -1.62887 -2.47441 -0.78333 0.846833 0.760009 0.933656
14 -0.53342 -1.12628 0.059438 0.895466 0.855758 0.935173
15 -0.38555 -1.13519 0.364098 0.897611 0.83635 0.958871
16 -0.95971 -1.58094 -0.33849 0.873165 0.826689 0.919642
17 -0.14914 -0.78774 0.489457 0.825706 0.738871 0.91254 
18 -1.19835 -2.01506 -0.38164 0.891063 0.826987 0.955138
19 0.142026 -1.0538 1.337848 0.931217 0.87047 0.991964

Supplementary Table 8.20 Model descriptive statistics by quarter for dynamically updated TMACS. CITL- calibration in the 
large, 95% CI – 95% confidence interval, AUC- area under the curve 

Dynamic Updated TMACS Status Quo
AUC
Age Q1 0.89 (0.83 - 0.95) 0.92 (0.88-0.95)
Age Q2 0.88 (0.85 - 0.92) 0.89 (0.86-0.91)
Age Q3 0.85 (0.82 - 0.89) 0.86 (0.83-0.89)
Age Q4 0.84 (0.80  - 0.87) 0.85 (0.82-0.88)
CITL
Age Q1 -1.14 (-1.67 - -0.6) -4.71 (-5.42 - -3.99)
Age Q2 -0.93 (-1.29 - -0.56) -3.35 (-3.73 - -2.96)
Age Q3 -0.81 (-1.09 - -0.53) -3.21 (-3.51 - -2.92)
Age Q4 -2.43 (-2.77 - -2.1) -4.83 (-5.19 - -4.48)

Supplementary Table 8.21 Dynamically updated TMACS summary statistics by age quartile (Manchester and Blackburn). 
AUC -area under the curve, CITL – calibration in the large, 95% CI – 95% confidence interval. 
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Dynamic Updated TMACS Status Quo
AUC
IMD Q1 0.87 (0.83 - 0.91) 0.89 (0.86-0.92)
IMD Q2 0.84 (0.8 - 0.88) 0.85 (0.81-0.88)
IMD Q3 0.89 (0.85 - 0.92) 0.89 (0.86-0.92)
IMD Q4 0.88 (0.83 - 0.92) 0.87 (0.83-0.91)
IMD Q5 0.81 (0.76 - 0.86) 0.84 (0.80-0.88)
CITL
IMD Q1 -0.90 (-1.26 - -0.54) -3.44 (-3.85--3.04)
IMD Q2 -1.42 (-1.81 - -1.03) -3.94 (-4.38--3.50)
IMD Q3 -1.13 (-1.54 - -0.72) -2.97 (-3.36--2.58)
IMD Q4 -1.06 (-1.47 - -0.66) -3.18 (-3.570--2.80)
IMD Q5 -0.89 (-1.26 - -0.52) -3.30 (-3.70--2.91)

Supplementary Table 8.22 Dynamically updated TMACS summary statistics by index of multiple deprivation quintile (IMD) – 
Manchester and Blackburn only. AUC -area under the curve, CITL – calibration in the large, 95% CI – 95% confidence 
interval. 

Dynamic Updated TMACS Status Quo
AUC
Male 0.85 (0.83 - 0.88) 0.87 (0.85-0.89)
1Female 0.88 (0.85 - 0.91) 0.89 (0.87-0.92)
CITL
Male -1.11 (-1.33 - -0.89) -3.58 (-3.81--3.35)
Female -1.22 (-1.51 - -0.93) -4.25 (-4.58--3.92)

Supplementary Table 8.23 Dynamically updated TMACS summary statistics by gender (Manchester and Blackburn). AUC -
area under the curve, CITL – calibration in the large, 95% CI – 95% confidence interval. 

Dynamic Updated TMACS Status Quo
AUC
Asian 0.87 (0.83 - 0.9) 0.87 (0.84 – 0.90)
Black 0.9 (0.84 - 0.97) 0.90 (0.83 – 0.97)
Mixed 0.87 (0.8 - 0.95) 0.92 (0.87 – 0.97)
Other 0.91 (0.84 - 0.97) 0.92 (0.86 -0.97)
White 0.86 (0.83 - 0.88) 0.87 (0.85 – 0.89)
CITL
Asian -0.3 (-0.57 - -0.03) -2.52 (-2.80 - -2.24)
Black -3.66 (-4.52 - -2.79) -5.98 (-6.86 - -5.10)
Mixed -0.87 (-1.61 - -0.13) -3.71 (-4.60 - -2.81)
Other -1.81 (-2.91 - -0.7) -3.86 (-4.91 - -2.82)
White -1.72 (-1.97 - -1.47) -4.03 (-4.28 - -3.77)
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Supplementary Table 8.24 Dynamically updated TMACS summary statistics by ethnicity (Manchester and Blackburn). AUC -
area under the curve, CITL – calibration in the large, 95% CI – 95% confidence interval. 

Dynamic Updated TMACS Status Quo
AUC
Stage 1 0.89 (0.86 - 0.92) 0.91 (0.88-0.93)
Stage 2 0.85 (0.82 - 0.88) 0.87 (0.84-0.90)
Stage 3 0.81 (0.75 - 0.87) 0.81 (0.75-0.86)
Stage 4 0.85 (0.72 - 0.99) 0.89 (0.80-0.98)
Stage 5 0.77 (0.57 - 0.98) 0.78 (0.54-1.00)
CITL
Stage 1 -0.29 (-0.56 - -0.03) -2.08 (-2.36 - -1.80)
Stage 2 -0.50 (-0.73 - -0.27) -2.32 (-2.57 - -2.08)
Stage 3 -1.72 (-2.11 - -1.32) -3.63 (-4.05 - -3.20)
Stage 4 -5.53 (-7.13 - -3.93) -7.08 (-8.59 - -5.56)
Stage 5 -13.26 (-15.49 - -11.03) -14.96 (-17.28 - -12.65)

Supplementary Table 8.25 Dynamically updated TMACS summary statistics by kidney function categorised by chronic kidney 
disease stage (Manchester and Blackburn). AUC -area under the curve, CITL – calibration in the large, 95% CI – 95% 
confidence interval. 

8.3 Supplementary notes 

Chapter 2  
Medline Search strategy 

Population 

1. exp Emergency Service, Hospital/ or exp Emergency Medical Services/ or emergency service.mp. 

2. emergency medicine.mp. or exp Emergency Medicine/  

3. acute care.mp.  



248 

4. (accident and emergency).mp. [mp=title, abstract, original title, name of substance word, subject 
heading word, floating sub-heading word, keyword heading word, protocol supplementary concept 
word, rare disease supplementary concept word, unique identifier, synonyms]  

5. A&E.mp. 

6. 1 OR 2 OR 3 OR 4 OR 5 

Outcome 

1. cardiovascular diseases.mp. or exp Cardiovascular Diseases/  

2. exp DIAGNOSTIC TECHNIQUES, CARDIOVASCULAR/ or exp MODELS, CARDIOVASCULAR/ or 
cardiovascular.mp.  

3. acute coronary syndromes.mp. or exp Acute Coronary Syndrome/  

4. exp Myocardial Infarction/ or acute myocardial infarction.mp.  

5. non-st elevation myocardial infarction.mp. or exp Non-ST Elevated Myocardial Infarction/  

6. exp Angina, Unstable/ or st elevation myocardial infarction.mp. or exp ST Elevation Myocardial 
Infarction/  

7. exp Myocardial Revascularization/ or exp Coronary Artery Disease/ or exp Coronary Disease/ or 
coronary revascularisation.mp. or exp Coronary Artery Bypass/  

8. death.mp. or exp DEATH/ or exp DEATH, SUDDEN, CARDIAC/ or exp DEATH, SUDDEN/  

9. stroke.mp. or STROKE, LACUNAR/ or exp STROKE/  

10. cerebral vascular accident.mp.  

11. cerebrovascular accident.mp. or Stroke/  

12. Cerebrovascular disease.mp. or exp Cerebrovascular Disorders/  

13. CVA.mp.  

14. exp Ischemic Attack, Transient/ or TIA.mp.  

15. Brain Ischemia/ or Transient ischaemic attack.mp.  

16. 1 OR 2 OR 3 OR 4 OR 5 .... OR 15 

Prognostic Factors 

a) Blood pressure  

1. systolic blood pressure.mp.  

2. exp HYPERTENSION, RENAL/ or exp ESSENTIAL HYPERTENSION/ or exp HYPERTENSION, 
MALIGNANT/ or exp HYPERTENSION/ or exp HYPERTENSION, RENOVASCULAR/ or hypertension.mp. 
or WHITE COAT HYPERTENSION/ or exp Blood Pressure/  
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3. hyperten*.mp. 

4. 1 OR 2 OR 3  

b) Dyslipidaemia 

1. exp LIPIDS/ or lipid.mp.  

2. exp Dyslipidemias/ or dyslipidaemia.mp. or Hyperlipidemias/  

3. exp Hypercholesterolemia/ or hypercholestraemia.mp.  

4. exp Metabolic Syndrome/ or exp Triglycerides/ or exp Hypertriglyceridemia/ or 
hypertriglyceridaemia.mp. or exp Dyslipidemias/ or exp Hyperlipidemias/  

5. 1 OR 2 OR 3 OR 4  

c) Diabetes mellitus 

1. exp DIABETES MELLITUS, EXPERIMENTAL/ or exp DIABETES MELLITUS, TYPE 2/ or diabetes.mp. or 
exp DIABETES COMPLICATIONS/ or exp DIABETES MELLITUS, TYPE 1/ or exp LATENT AUTOIMMUNE 
DIABETES IN ADULTS/ or exp DIABETES MELLITUS/  

2. exp Diabetes Mellitus, Type 2/ or exp Diabetes Mellitus, Type 1/ or T1DM.mp.  

3. T2DM.mp. or exp Insulin Resistance/ 

1 OR 2 OR 3 

d) Chronic kidney disease 

1. chronic kidney disease.mp. or exp Renal Insufficiency, Chronic/  

2. exp Kidney Failure, Chronic/ or exp Renal Insufficiency, Chronic/ or CKD.mp. or exp Glomerular 
Filtration Rate/ or exp Kidney Diseases/  

3. exp Renal Dialysis/ or exp Kidney/ or renal disease.mp. 

4. 1 OR 2 OR 3 

Limited to:   

limit 20 to (English language and humans and all adults (19 plus years) and (adaptive clinical trial or 
clinical study or clinical trial, all or clinical trial, phase i or clinical trial, phase ii or clinical trial, phase 
iii or clinical trial, phase iv or clinical trial or comparative study or controlled clinical trial or 
equivalence trial or evaluation studies or meta analysis or multicenter study or observational study 
or pragmatic clinical trial or randomized controlled trial or systematic reviews or validation studies) 
and last 20 years) 
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Embase Search strategy 

Population 

1. emergency service.mp. or exp emergency health service/  

2. emergency department.mp. or exp emergency ward/  

3. emergency medicine.mp. or exp emergency medicine/  

4. (accident and emergency).mp. [mp=title, abstract, heading word, drug trade name, original title, 
device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word]  

5. ER.mp. or exp emergency care/  

1 OR 2 OR 3 OR 4 OR 5 OR 6 

Outcome 

1. cardiovascular disease.mp. or exp cardiovascular disease/  

2. acute coronary syndromes.mp. or exp acute coronary syndrome/  

3. myocardial infarction.mp. or exp heart infarction/  

4. acute myocardial infarction.mp. or exp acute heart infarction/  

5. non-st elevation myocardial infarction.mp. or exp non ST segment elevation myocardial 
infarction/  

6. NSTEMI.mp.  

7. unstable angina.mp. or exp unstable angina pectoris/  

8. st elevation myocardial infarction.mp. or exp ST segment elevation myocardial infarction/  

9. STEMI.mp.  

10. myocardial revascularisation.mp. or exp heart muscle revascularization/  

11. coronary artery disease.mp. or exp coronary artery disease/  

12. coronary disease.mp.  

13. coronary revascularisation.mp.  

14. coronary artery bypass.mp. or exp coronary artery bypass graft/  

15. exp death/ or exp sudden cardiac death/ or death.mp. or exp "cause of death"/ or exp sudden 
death/ or brain death/ or exp heart death/ 

16. 1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 13 OR 14 OR 15 

Prognostic Factors 

a) blood pressure  
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1. exp essential hypertension/ or exp hypertension/ or hyperten*.mp.  

2. exp malignant hypertension/ or exp masked hypertension/ or exp essential hypertension/ or exp 
orthostatic hypertension/ or exp diabetic hypertension/ or exp resistant hypertension/ or exp 
hypertension/ or exp systolic hypertension/ or exp borderline hypertension/ or hypertension.mp. or 
exp renovascular hypertension/ or exp hereditary hypertension/ or exp white coat hypertension/ 

3. blood pressure.mp. or exp blood pressure/ 

4. 1 OR 2 OR 3 

b) lipid profile 

1. exp lipid storage/ or lipid.mp. or exp lipid metabolism/ or exp lipid/ or exp lipid blood level/ or exp 
lipid homeostasis/ or exp lipid liver level/  

2. dyslipidaemia.mp. or exp dyslipidemia/  

3. exp hyperlipidemia/ or hyperlipidemia.mp.  

4. exp hypercholesterolemia/  

5. metabolic syndrome.mp. or exp metabolic syndrome X/  

6. Hypertriglyceridemia.mp. or exp hypertriglyceridemia/ 

1 OR 2 OR 3 OR 4 OR 5 OR 6  

c) diabetes mellitus 

1. diabetes mellitus.mp. or exp diabetes mellitus/  

2. type 2 diabetes mellitus.mp. or exp non insulin dependent diabetes mellitus/  

3. T2DM.mp.  

4. insulin resistance.mp. or exp insulin resistance/ 

5. 1 OR 2 OR 3 OR 4 OR 5 

d) Chronic kidney disease 

1. chronic kidney disease.mp. or exp chronic kidney failure/  

2. renal insufficiency.mp. or exp kidney failure/  

3. exp chronic kidney failure/ or kidney/  

4. exp chronic kidney disease/ or exp chronic kidney failure/ or CKD.mp.  

5. renal disease.mp. 

Limits 

29. limit 28 to (human and english language and (evidence based medicine or consensus 
development or meta analysis or outcomes research or "systematic review") and yr="2000 - 2020" 
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and (article or article in press or conference abstract or conference paper or "conference review" or 
"review")) 

Chapter 3 

Variable Transformation – additional detail 

The aforementioned variables were carried forward into the study. Their distribution and skew was 

checked by the Joanes and Gill method (181). The distribution was then visually inspected with 

histograms and quantile – quantile plots. Any variable with a skewness of > 0.5 or <-0.5 considered 

for transformation along with those with a non-normal distribution. For those variables selected, 

multiple transformations were trialled, and the final was selected based on the skewness metric. 

Based on this method 10/15 continuous variables underwent transformation, the most common 

being logarithmic (Supplementary Table 8.5). The resultant transformation was then checked again 

in a quantile-quantile plot to visually assess the improvement and a new skewness metric was 

calculated (Supplementary Figure 8.3). Presentation time was categorised into morning (0800 - 

1159), afternoon (1200 – 1659), evening (1700 – 2059) and out of hours (2200 – 0759) to enable 

interpretation of the resultant function.  

I then checked the variables for linearity with the outcome, using Martingale residual plots and 

outcome-predictor plots. RCS transformations were trialling different univariate cox proportional 

hazard models and comparing AIC and BIC. A univariate cox proportional hazard models were 

derived for the original predictor, the predictor transformed into a restricted cubic spline with 3,4 

and 5 knots. Each model was assessed using AIC and BIC metrics, given the increasing sample size 

requirements for increasing number of knots a substantial increase in model performance was 

deemed to be needed to use another knot. Of the 11 predictors suspected of being non-linear, 6 

were found to have better prognostic performance with an RCS leaving 5 untransformed.  
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I also examined for opportunities to conduct variable reduction. I found systolic blood pressure (SBP) 

and diastolic blood pressure (DBP) to be colinear by the study’s definition. I opted for the exclusion 

of DBP on the grounds of data reduction given the magnitude of the collinearity and that SBP had 

fewer missing data. The candidate predictors included a clustered predictor already, the early 

warning score (EWS). This incorporated physiological predictors into one metric. As such, the 

physiological variables already included in the EWS were removed from the predictor pool and only 

physiological predictors with previously demonstrated long term CVD prognostic ability were 

retained (heart rate and SBP).  

After the variables had been transformed, and variable clustering was considered collinearity was 

examined.  For continuous variables Pearson’s correlation coefficient was calculated and colinear 

plots were produced to provide a visual inspection (Supplementary Table 8.7 & Supplementary Figure 8.5). 

Substantial collinearity was defined as a correlation co-efficient of > 0.2 or <-0.2 with a significant p-

value, biological plausibility and confirmation on visual inspection.  Collinearity was identified for 

seven pairs of variables. These were haemoglobin with eGFR, cTnT with RUI, hs-cTnT with age, hs-

cTnT with eGFR, TMACS with age, and finally TMACS with eGFR. These colinear interaction terms 

were included to improve the performance of the adjustment multivariable models.  

I then checked the variables for linearity with the outcome, using Martingale residual plots and 

outcome-predictor plots. Systolic blood pressure demonstrated a parabolic relationship with the 

outcome and the Martingale residual plot confirms this with a non-straight line (Supplementary Figure 

8.4). In addition to SBP non-linearity was suspected in age, respiratory rate, temperature, white 

blood cell count, heart rate, IMD, eGFR, cTnT, hs-cTnT, and TMACs variables. Restricted cubic splines 

were assessed to identify if they yielded better prognostic performance. Univariate cox proportional 

hazard models were derived for the original predictor, the predictor transformed into a restricted 

cubic spline with 3,4 and 5 knots. Each model was assessed using AIC and BIC metrics, given the 

increasing sample size requirements for increasing number of knots a substantial increase in model 
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performance was deemed to be needed to use another knot. Of the 11 predictors suspected of 

being non-linear, 5 were found to have better prognostic performance without an RCS and were not 

transformed any further. Of the remaining 6 WBC, SBP and RR had the best prognostic performance 

when transformed in a 3 knot RCS. The predictor age had the best prognostic performance when in 4 

knot RCS and hs-cTnT/TMACS had the best performance in a 5 knot RCS.  

I also detected co-linearity between TMACS and hs-cTnT which met the study criteria, as TMACS 

already incorporated hs-cTnT within it I removed it in cohort 3 only. The interaction between the 

predictors age and SBP was found to have a correlation coefficient of -0.21, a p-value of <0.01, had 

biological plausibility and was confirmed on visual inspection (Supplementary Figure 8.5) This was also 

the case for haemoglobin with eGFR, cTnT with RUI, hs-cTnT with age, hs-cTnT with eGFR, TMACS 

with age, and finally TMACS with eGFR. These colinear interaction terms were included to improve 

the performance of the adjustment multivariable models.  

Variation of hazard ratios across cohorts 

I considered the benefit of pooling all three cohorts to better understand the prognostic 

characteristics of the baseline variables. Prior to this I examined the variation in the hazard ratio per 

predictor overtime to see if the proportional hazards assumption was maintained between cohorts. I 

did not include the cardiac diagnostic variables as they were not available across cohorts.  

Only female gender was found to be consistently statistically significant (Supplementary Table 8.8). 

Whilst the categorical variable ethnicity was consistently included by the stepwise selection mode 

no level was persistently statistically significant. Asian and Black ethnicities were significant across 

two consecutive cohorts. This may indicate a change in the association of ethnicity with 

cardiovascular disease over time between the three cohorts. If a multivariable model was to be 

derived pooling a wider time fame this variation should be considered however this is beyond the 
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scope of this thesis. 3.6.3 Adjustment models - Multivariable cox proportional hazard models – 

additional detail 

I have described the models that enabled the adjustment of the hazard ratios. These are not 

primarily intended to be deployable clinical prediction models, instead they are presented to offer 

perspective for future research. A model derivation study could understand what might be expected 

from work building on this prognostic factor study. Across the multivariable models for each cohort 

the R2 value was found to be 0.14, 0.13 and 0.14 (Supplementary Table 8.9). This was significantly below 

the R2 in QRisk 3 used for the sample size calculation (19). If work was to be conducted in the future 

deriving a multivariable model for use as CPM, then these values should be used as the base case.  

The AIC and concordance summary statistics of the multivariable models improve as the diagnostic 

technology innovated between cohorts from cTnT (0.79 95% CI 0.77 – 0.81) to TMACS (0.85 95% CI 

0.83 – 0.86). These statistics and underlying models have not been validated, as this was not the 

primary purpose. As such these summary statistics should be interpreted with caution.  

The calibration was assessed with calibration plots (Supplementary Figure 8.6, Supplementary Figure 

8.8, and Supplementary Figure 8.7). The baseline cohort model underestimated the risk when the 

predicted survival was greater than 0.85 and overestimated when the predicted risk was greater 

than 0.85 (Supplementary Figure 8.6). The highest three deciles were markedly mis-calibrated.  

The calibration of the hs-cTnT model (cohort 2), appeared improved with only the last two deciles 

being markedly mis-calibrated rather than 3 in cohort 1. The calibration of the TMACS model was 

again visually improved. Only one decile demonstrated significant risk underestimation. This must be 

taken in the context of a shorter follow up time for the TMACS cohort. These results would signal 

that the calibration as well as the discrimination of the multivariable models improved with the 

diagnostic innovations.  
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The code for the adjustment models is as follows: 

Function of stepwise selected model 

function(age_imp5 = 43,sex_imp5 = "Male",logwbc = 2.0412203,ethn_imp5 = "W
hite",logtrop_mi = -4.6051702,loghr = 4.4067192,time_imp5 = "Afternoon") {
age_imp5 <- as.numeric(age_imp5);-6.6319705+0.1514914* age_imp5-1.2403479e
-05*pmax(age_imp5-20,0)^3-5.1814036e-05*pmax(age_imp5-35,0)^3+0.0001091631
6*pmax(age_imp5-51,0)^3-4.4945646e-05*pmax(age_imp5-78,0)^3-0.56409371*(se
x_imp5=="Female")+0.98521565* logwbc-1.8002758*pmax(logwbc-1.6292405,0)^3+
3.4118622*pmax(logwbc-2.0412203,0)^3-1.6115864*pmax(logwbc-2.501436,0)^3+0
.22646909*(ethn_imp5=="Asian")-0.15278649*(ethn_imp5=="Black")-0.35802643*
(ethn_imp5=="Mixed")-0.45808773*(ethn_imp5=="Other")-0.19983302*logtrop_mi
-0.3840946*loghr-0.078043276*(time_imp5=="Afternoon")+0.25850546*(time_imp
5=="Evening")+0.18791949*(time_imp5=="OOH") } 

Function of stepwise selected model with categorised cTnT 

function(cat_oldtrop = "Missing",age_imp5 = 43,sex_imp5 = "Male",logwbc = 
2.0412203,ethn_imp5 = "White",loghr = 4.4067192,time_imp5 = "Afternoon") {
age_imp5 <- as.numeric(age_imp5);-4.2798331-0.31208245*(cat_oldtrop=="Miss
ing")-0.55297394*(cat_oldtrop=="High")+0.13375357* age_imp5+2.7942204e-06*
pmax(age_imp5-20,0)^3-8.2492236e-05*pmax(age_imp5-35,0)^3+0.00012537412*pm
ax(age_imp5-51,0)^3-4.5676109e-05*pmax(age_imp5-78,0)^3-0.56454257*(sex_im
p5=="Female")+0.78967752* logwbc-1.491918*pmax(logwbc-1.6292405,0)^3+2.877
2212*pmax(logwbc-2.0412203,0)^3-1.3853032*pmax(logwbc-2.4849066,0)^3+0.227
6588*(ethn_imp5=="Asian")-0.1022863*(ethn_imp5=="Black")-0.27773461*(ethn_
imp5=="Mixed")-0.49729042*(ethn_imp5=="Other")-0.46303019*loghr-0.01938328
1*(time_imp5=="Afternoon")+0.19950745*(time_imp5=="Evening")+0.21757445*(t
ime_imp5=="OOH") } 
<environment: 0x000000002771c248> 

Function for all-inclusive model 

function(hb_egfr = 1065.6,age_sbp = 1.33,tnt_rui = 0.05,logtrop_mi = -4.60
51702,cubegfr_mi = 493039,loghr = 4.4067192,logwbc = 2.0412203,sqrtews = 1
,age_imp5 = 43,logsbp = 4.8828019,imd_imp5 = 42.28,hb_imp5 = 13.8,sex_imp5 
= "Male",ethn_imp5 = "White",rui_imp5 = 5,time_imp5 = "Afternoon") {age_im
p5 <- as.numeric(age_imp5);logsbp <- as.numeric(logsbp);-6.6430144-0.00065
700265*hb_egfr+0.01322783*age_sbp-0.43644671*tnt_rui-0.12402813*logtrop_mi
+5.7451681e-07*cubegfr_mi-0.39272516*loghr+0.99503274* logwbc-1.8293413*pm
ax(logwbc-1.6292405,0)^3+3.4669469*pmax(logwbc-2.0412203,0)^3-1.6376055*pm
ax(logwbc-2.501436,0)^3+0.0085741369*sqrtews+0.15016176* age_imp5-1.090364
1e-05*pmax(age_imp5-20,0)^3-5.5884899e-05*pmax(age_imp5-35,0)^3+0.00011242
451*pmax(age_imp5-51,0)^3-4.5635972e-05*pmax(age_imp5-78,0)^3+0.031450622* 
logsbp-1.7777433*pmax(logsbp-4.7095302,0)^3+3.621653*pmax(logsbp-4.8828019
,0)^3-1.8439097*pmax(logsbp-5.049856,0)^3+0.0013172555*imd_imp5+0.03503185
2*hb_imp5-0.5748073*(sex_imp5=="Female")+0.22351636*(ethn_imp5=="Asian")-0
.17152245*(ethn_imp5=="Black")-0.3570141*(ethn_imp5=="Mixed")-0.45184814*(
ethn_imp5=="Other")+0.036779024*rui_imp5-0.085733948*(time_imp5=="Afternoo
n")+0.25210837*(time_imp5=="Evening")+0.17820774*(time_imp5=="OOH") } 
<environment: 0x00000000380cd6f8> 
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Chapter 4 
Wave 1 Topic Guide 

Thank you for attending today and taking the time out of your schedule. The session ought not to 
last more than one hour. 

Before starting I would just like to remind you to avoid identifying yourself whilst we record the 
audio of this session. 

Today I would like to explore what we can do for patients who attend the emergency department 
with chest pain but have a heart attack excluded. We have been told by previous patient groups that 
they are often left feeling dissatisfied at this abrupt end of care, many are left wanting more 
information particularly about long term risk.  

I would like to start with a fictional case; Imagine a patient has presented to the emergency 
department with chest pain. Serial blood tests and an ECG are conducted looking for evidence of a 
heart attack. After five hours all the results are returned, and a heart attack is excluded.  

Once the patient is told that this wasn’t a heart attack, what more could be done for them? 

What other information might be useful at that stage? 

What about long term heart health (cardiovascular disease)? 

A common risk factor for long term heart health is high blood pressure, if this patient had a high 
blood pressure what should we do for them in the ED? 

-High cholesterol - smoking, kidney disease - diabetes 

What would be the best way to communicate this? 

-leaflets -apps -emails – text alerts 

There are medications available to treat some of these risk factors, how could we guide patients 
towards them? 

Who should we approach with this extra information? 

Do you think it should be only given to patients with chest pain? 
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Wave 2 Topic Guide 

Thank you for your time today, this will be about 30 minutes. 

Please refrain from saying your name to protect your privacy. We can remove identifiable sections of 
the interview later. 

Patients told us that they were interested in their long-term heart health when attending for acute 
chest pain. 

We have interviewed stakeholders and formulated prototype care pathways that uses information 
from the Emergency Department to inform long term heart health. 

First, I would like to get some feedback on the themes we found from first interviews: 

 Who is responsible? 
 Primary secondary care interface 
 Acute condition diagnosis 
 Reductive EM care 
 Efficiency of preventative care in EM 

There are three prototype care pathways (1) best pathway (2) slim line pathway (3) worst case 
pathway. 

Explain through pathway with print outs 

Invite feedback against Peter’s et al’s  framework 

Peters, David H., Taghreed Adam, Olakunle Alonge, Irene Akua Agyepong, and Nhan Tran. 
"Implementation research: what it is and how to do it." Bmj 347 (2013).
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Chapter 5 
CPM data validation procedure 

Due to the presence of duplicate entries by clinicians in the MRI TMACS CPM database, the last entry 

within the admission was considered to the valid and final entry (prime entry). There is the 

possibility that the selected prime entry, whilst the last data inputted, was not the version used by 

the clinician, if so then the correct entry may be in the discarded duplicates. To assess this, we will 

seek to validate the data analysis, by examining the clinical co-variates (troponin, visibly sweating, 

systolic blood pressure <100mmhg etc).  

Aim 
In patient episodes that have multiple TMACS entries we will seek to identify if an incorrect entry 
has been selected as the prime version. 

We will seek to validate this by firstly detecting discrepancies between other sources of the clinical 
inputs and the TMACS database, and secondly attempting to identify if another TMACS entry 
matches those validated outputs. 

Outcome definition 
Incorrect entry selection – when the current prime TMACS entry has incorrect clinical inputs and 
there is a correct TMACS entry present. 

If all the TMACS entries are incorrect then this definition will not have been met, this will instead be 
a clinician error. 

Clinician error – when there are no TMACS entries with valid clinical inputs  

Phase 1 - automated 
This will be an automated phase using databases external to TMACS to validate the clinical inputs.  

We will automatically proceed to phase 2 

Phase 2 – case note review 
We will randomly select 100 patient episodes that have TMACS duplicates. These episodes will 
undergo case note review (as per the case note review process below), to validate which duplicate is 
the final clinical version.   

The case note review will be blinded to the TMACS clinical data points. 

If we detect an error rate of more than 5% we will review all duplicate cases (phase 3) 

Phase 3 
We will review all case notes, as per the case note review flow chart 
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Case note review process 
n.b. we have assumed that in the absence of contradictory data the clinical input is a match

(1) Does the troponin match from the automated review? 

Yes – continue to question 2 

No – check duplicates – if match restart process - if no match mark as clinician error 

(2) Does the blood pressure match from the automated review? 
Yes – continue to question 3 

No – check duplicates – if match restart process - if no match mark as clinician error 

(3) Is there a scanned ECG in the notes? 
Yes – go to Q3a 

No – got to Q3b 

(3a) Does the scanned ECG match the prime TMACS clinical input for evidence of ischaemia 
on the ECG? 

Yes – continue to question 4 

No – check duplicates – if match restart process – if no match mark as clinician error 

(3b) Does a written statement confirming or refuting the presence of ischaemia match the 
TMACS clinical inputs? 

Yes – continue to question 4 

No - check duplicates – if match restart process – if no match mark as 
clinician error 

No statement – continue to question 4 

(4) Is there a statement regarding the radiation of pain in the clinical notes? 
Yes – go to Q4a 
No – go to Q5 

(4a) Does a written statement regarding the radiation of pain match the prime TMACS 
clinical input? 
Yes – go to Q5 

No - check duplicates – if match restart process – if no match mark as 
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clinician error 
(5) Is there a statement regarding crescendo or worsening angina in the notes? 

Yes – go to Q5a 
No – got to Q6 

(5a) Does the statement in the clinical notes regarding angina match the prime TMACS 
clinical input? 
Yes – go to Q6 
No - check duplicates – if match restart process – if no match mark as clinician error 

(6) Is there a statement regarding sweating in the notes? 
Yes – go to Q6a 
No – go to Q7 

(6a) Does the statement in the clinical notes regarding angina match the prime TMACS 
clinical input? 
Yes – got to Q7 
No - check duplicates – if match restart process – if no match mark as clinician error 

(7) Is there a statement regarding vomiting in the notes 
Yes - go to Q7a 
No – go to Q8 

(7a) Does the statement in the clinical notes regarding vomiting match the prime TMACS 
clinical input? 
Yes – go to Q8  
No - check duplicates – if match restart process – if no match mark as clinician error 

(8) Is the now validated TMACS entry the original prime? 
Yes – PASS 
No – incorrect entry selection criteria met 
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