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Abstract

Temporal action localisation (TAL) has garnered significant attention due to its potential
applications across various fields. The primary challenges in this domain involve detecting
the start/end times of actions and recognising the action themselves. There are two primary
research approaches to address these issues: treating them as separate problems or attempting
to solve them simultaneously. In this thesis, the focus will be on the first component of the
former approach, which is action proposal generation. This has been chosen because the re-
sults can be applied more broadly by not considering the recognition aspect, which is specific
to action classes.

The primary challenge in action proposal generation is detecting the start and end of ac-
tions without labels. To address this issue, it was done in three steps: (1) identifying factors
and challenges affecting TAL performance, (2) implementing anchor-free boundary detec-
tion, and (3) conducting a performance comparison. Five possible scenarios were considered
to examine factors affecting performance and challenging cases, and the performance was
compared using existing algorithms. First, the relationship was analysed between bound-
ary detection and action recognition. In pipeline methods, the outcomes of previous steps
influence those of subsequent steps. Consequently, how recognition results vary according
to proposal generation outcomes was investigated. Second, to determine the effect of class
labels on performance, existing end-to-end methods were modified by transforming multi-
label classification into a binary one. This facilitated the evaluation of the influence of class
labels on performance. Third, in video clips, actions can sometimes be presented discontin-
uously due to editing or abrupt viewpoint changes. How these instances affect performance
was examined. Fourth, the effects of two commonly used types of data (RGB and Flow) in
the literature were studied to understand their influence on performance. Finally, to assess
generalisation, cross-corpora tests were conducted to evaluate how a model trained on one
dataset applied to another dataset. One key challenge in detecting actions is the unknown
and variable length of actions, even within the same category, as it can differ from person to
person. To address this issue, some existing methods have adopted predefined temporal spans
called “anchors”. However, these methods necessitate repetitive operations at the same loca-
tion and often result in inaccurate boundaries. To overcome these limitations, an anchor-free
method was employed to directly predict the length of the action. This approach is less sen-
sitive to boundary inaccuracies caused by predefined lengths and is more efficient due to the
elimination of repetitive operations. However, direct prediction relies on partial information,
which may lead to inaccurate boundaries. Therefore, additional refinement is implemented to
improve boundary accuracy. Finally, the performance of the proposed method was compared
with existing algorithms in challenging situations using the identified factors.
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In summary, factors influencing action detection were examined and an anchor-free ac-
tion proposal generation method incorporating boundary refinement was proposed. Then,
the performance of the proposed method was analysed in various settings, demonstrating its
effectiveness and potential for addressing the challenges associated with action detection.
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Chapter 1

Introduction

The proliferation of videos on social media and CCTV has made it possible to access abun-
dant visual information in everyday life and special circumstances. Consequently, methods
that utilise this visual information have gained considerable attention. Since these videos of-
ten contain a significant portion of events or actions focused on people, valuable insights can
be derived from analysing human actions. Human actions are employed across various do-
mains, including surveillance, video summarisation, and instructional training. For instance,
highlight videos of sports games can be generated by centring on critical actions, and rule
violations can be detected by observing athletes’ actions. Furthermore, by identifying ab-
normal behaviour in CCTV footage, it becomes possible to prevent crimes in advance or aid
in apprehending criminals. In educational settings, action recognition can serve as a virtual
instructor, assisting in training by recognising trainees’ motions. To achieve these objectives,
it is crucial to detect and recognise human actions in videos. However, manual methods such
as police officers watching CCTV videos to identify abnormal events or human editors cre-
ating highlight videos of sports events are time-consuming and labour-intensive. Therefore,
an automated system is needed, and temporal action localisation (TAL) represents one such
attempt to address these challenges.

Action recognition is a task to classify trimmed video clips into one of target labels while
action detection refers to a task that detect actions in untrimmed video and recognise the
detected actions. TAL is alternative terminology of action detection. Action detection and
recognition have advanced alongside recent developments in object and face detection and
recognition. Given the similarities between object detection and recognition and action detec-
tion and recognition, researchers have drawn on insights from face and object detection and
recognition in their investigations. For example, the same object may appear in different sizes
and shapes in a 2D image depending on its location and distance from the camera. Similarly,
the length and form of actions can vary from person to person along the one-dimensional time
axis. However, images and videos have distinct characteristics that make it challenging to ap-
ply the same algorithm to both. While an image encapsulates all information within a single
frame, a video contains information extended along the time axis. That is, images are two-
dimensional data, while videos can be viewed as either one-dimensional or three-dimensional
data. If only the temporal axis is considered, videos become one-dimensional data; however,
when both spatial and temporal axes are considered simultaneously, videos become three-
dimensional data. This means that continuous data along the time axis must be taken into
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account. Furthermore, actions exhibit more significant intra-class variation compared to ob-
jects. Due to these characteristics, when the same algorithm is applied, the performance of
action detection and recognition remains inferior compared to its execution on a single image
for either object or face. For example, recent results in object detection and recognition have
achieved 65.4% accuracy on the COCO dataset [1], while TAL’s accuracy has reached only
42.0% on ActivityNet v1.3 [2]. This discrepancy highlights the significant challenges faced
by the field of action detection and recognition but also presents considerable opportunities
for researchers. In this thesis, the problem of detecting actions is addressed by considering
the unique characteristics of videos that differentiate them from images.

1.1 Motivation and Challenges

In this section, the motivation of this thesis is described by explaining the value of solving
TAL. Subsequently, some challenges inherent to TAL are presented.

Availability Across a Variety of Domains, but a Few Works of Anchor-Free Action
Proposal Generation
By detecting and recognising human actions in untrimmed videos, valuable tools can be pro-
vided to individuals across diverse domains, as most events in everyday life revolve around
human activities. For example, police officers may need to spend hours watching CCTV
footage to locate a criminal. Likewise, creating highlight reels of sports events like the
Olympics often requires watching every match to select crucial scenes. If it were possible
to automatically detect specific human actions, identifying suspicious scenes from CCTV
or automatically collecting important clips from sports games, this could save a significant
amount of time that would otherwise be spent watching videos. Beyond these examples, nu-
merous application domains, such as medical care, tourism, and entertainment, could benefit
from advancements in action detection and recognition in videos.

In TAL, many predefined temporal units, known as anchors, are used to handle the vari-
ation of action lengths, since the lengths are not known in advance. While these approaches
have demonstrated good performance, they also present certain drawbacks. Anchor-based
methods can be computationally inefficient due to repetitive computations at all locations
needed to evaluate every anchor. Additionally, they are known to generate inaccurate bound-
aries because of their reliance on predefined anchors. To overcome these limitations, anchor-
free approaches have been proposed. However, in the literature, there is some work of tem-
poral proposal generation that employ anchor-free methods.

Large Intra-class Variation
In classification problems that generally exhibit high performance, samples within the same
category tend to share similar characteristics. Take object recognition as an example: rigid
objects possess fixed shapes and colours and are less prone to deformation. The variation
in an object’s appearance captured in an image can result from camera position or lighting
condition. Even articulated objects, such as humans or robots, have limitations in their gesture

17



or body shapes due to the limited range of movements imposed by their biological structures.
However, actions are composed of components with an unlimited range and space, making
them more complex and challenging to classify.

Human Behavioural Habits
Even when performing actions with the same purpose, individuals exhibit different forms and
sequences based on their preferences and habits. For example, consider the action of kicking
a ball. Depending on a person’s preference, they might use a different foot for kicking, kick
after running, or kick in place. These variations can make seemingly identical actions appear
different, complicating the process of identifying common patterns.

Irrelevant Data in Video
Action detection using visual information is susceptible to interference from scenes unrelated
to the target actions. When obtaining data through body-attached sensors, such as motion
capture systems, and recognising motion based on the data, the information gathered typi-
cally stems exclusively from the target action. However, videos capture not only the person’s
actions but also background information and the actions of unrelated individuals nearby.

Small Inter-class Variation
There are also instances where human actions appear similar when performed for different
purposes. While actions exhibit a high degree of freedom, the human body, when considered
in isolation, has limitations in expressing simple actions. Consequently, it is common for
certain parts of different movements to appear similar to each other, leading to small inter-
class variation. For example, when comparing the actions of throwing a shot put and throwing
a javelin, the object and purpose of the throws differ, but both share the common feature of
holding an object on the shoulder and then throwing it. In such cases, distinguishing between
the two actions can be challenging when relying solely on the shape of the body itself. Visual
data offers more useful information compared to other data types, such as motion capture
system. With visual data, information about the background in an image or objects held
by a person can be obtained. Consequently, even when a person performs similar motion,
it becomes possible to differentiate between similar yet distinct actions by considering the
surrounding information of the person.

Ambiguous Boundary
Human actions often have ambiguous start and end points. Since specific actions are per-
formed as part of continuous motion, their boundaries can be challenging to define clearly,
unlike that of objects. These boundaries may be related to an individual’s behavioural habits,
and when annotating the start and end points of actions in a video, the resulting annotations
might vary based on the subjective judgement of the annotator.

1.2 Research Questions

The research problem to be addressed in this thesis focuses on TAL. Specifically, how to
estimate the start and end points of actions in untrimmed videos using a pipeline approach is
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investigated. The study begins with a comparative analysis to identify factors affecting perfor-
mance and challenging cases. Subsequently, a novel framework was proposed for generating
action proposals using an anchor-free method. The work presented in this thesis will demon-
strate how the proposed model operates in such challenging cases. The research questions to
be resolved are therefore as follows:

1. What are the factors affecting TAL performance, and in what types of video clips are
actions difficult to detect?
To answer this question, five issues were considered. In each issue, all factors except
for the one under investigation are controlled. The five issues and corresponding sub-
questions are as follows:

(a) In the case of pipeline TAL, which consists of multiple stages, temporal action pro-
posal generation has been improved independently. To measure the overall TAL
performance, existing action recognition algorithms have been reused. The follow-
ing sub-questions are therefore needed to be addressed:

• When the performance of proposal generation improves, will the performance
of recognition also improve?

• Is there any relationship between the performance of proposal generation and
that of recognition?

(b) There are two approaches for TAL in the literature. One is the pipeline method with
multiple stages, which addresses action recognition after generating action pro-
posals, which serve as candidates of actions. The other is the end-to-end method,
which attempts to solve both action boundary detection and action recognition con-
currently. Recent work has favoured the latter approach. The key difference be-
tween these two approaches is that the former detects actions in a class-independent
manner, while the latter addresses action boundary detection and recognition si-
multaneously, requiring the use of class labels. Therefore, the following sub-
question can be proposed:

• Are there any advantages of using action labels in terms of boundary detec-
tion?

(c) On the internet, many video clips edited by individuals, resulting in actions that
may not be continuous. Sometimes, irrelevant scenes are inserted within a single
action. From a method perspective, anchor-based (or boundary-based) methods
create proposal-level feature vectors using a set of predefined temporal spans to
calculate actionness scores, while anchor-free methods construct multi-scale fea-
ture vectors and predict the left and right offsets, enabling method to examine the
partial information of actions. The two approaches employ different strategies.
This gives rise to two further subsidiary questions:

• Which approach is more robust to unwanted discontinuous situation?
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• If one approach exhibits lower performance than the other, what is the reason
behind it?

(d) Two types of data modalities are commonly used as feature vectors: RGB and
Flow. RGB is suitable for representing action appearance information, while the
Flow captures the trajectory of actors and their surroundings. Generally, overall
performance improves by using both modalities. However, for discontinuous ac-
tions, discontinuous points can be perceived as boundaries. The question is then:

• Does Flow data always have a positive effect? Is it possible that, in certain
situations, Flow data could negatively impact performance?

(e) In machine learning, generalisation is one of the crucial issues. Traditional ma-
chine learning algorithms are designed to produce optimal results given a training
dataset. Therefore, when using data with characteristics different from the dataset
used for training, it may lead to poor results in cases with unintended or different
characteristics.
TAL performance was tested using different datasets for action proposal genera-
tion. This instigated the following two additional subsidiary questions:

• How will models trained on different datasets perform when tested on a dataset
that was not used for training?

• What are the factors contributing to this performance difference?

2. How can various length of human actions be dealt with?

Determining the duration of a person’s action can be challenging. Objects composed of
rigid bodies have their own specific dimensions, even when they undergo slight defor-
mation, they maintain a similar shape, allowing to predict their appearance. In contrast,
human actions lack a fixed form. For instance, even when performing a simple action
such as walking, the motion ofthe arm varies from person to person, as does the head’s
orientation. Due to these characteristics, standardising human actions is difficult. The
length of the same action may vary according to the speed of the actor’s movement; some
people might execute the exact same movement quickly, while others do so slowly. This
relates to the multi-scale issue, similar to handling different sizes in object detection.
Object detection addresses this problem in a two-dimensional image plane, whereas
TAL deals with multi-scale issues concerning action length in a one-dimensional time
axis. As the anchor-free method is chosen for this thesis, it is necessary to find solutions
to the following questions:

• How to model multi-scale actions?

The challenge in addressing this problem of the length of human actions is that
since the action’s length is unknown, evaluations must be made for all possible
time lengths. However, if there are too many temporal spans to be evaluated, there
is a disadvantage of increased computational load due to repetitive operations, and
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in the opposite case, some expected actions may be missed. How can both short
and long actions be handled simultaneously? To achieve this, a method that can
efficiently model and evaluate multiple temporal scales is necessary.

• How to convert actions of different lengths into input vectors to represent them with
the same shape?

Even if there is a way to model temporal scale efficiently, the amount of information
included will vary depending on the action’s length. Longer actions will consist
of many image frames and therefore contain more data, while shorter actions will
consist of less data. However, machine learning algorithms require inputs of the
same size. So, how can actions composed of different amounts of data be converted
into input vectors of the same size? To achieve this, a video representation method
that constructs input vectors of the same size is required.

3. How can the boundary of human actions be detected?

Detecting the boundaries of human actions is challenging as continuous actions on the
time axis cannot be accurately separated like object boundaries, and specific actions
must be detected while a person is moving. Additionally, the start and end points of an
action are often determined by the subjective judgement of the annotator. To effectively
model and detect action boundaries, the following questions must be addressed:

• How to model the boundaries of actions?

Since the boundary of an action is a transient moment, it is impossible to detect
a specific time using only data from that particular moment. To overcome this,
surrounding information need to be utilised. From this perspective, it is essential
to address how much and what quantity of surrounding information to include.

• How to deal with the inconsistent boundaries of action determined by people’s
subjective judgements?

Different points may be selected depending on who marks the boundary for the
action of the same person. Some motions at the boundaries may be included or ex-
cluded from a specific action. Consider a jumping action as an example. Whether
or not to include the action of running before jumping depends entirely on the
choice of the marker. In addition, even when an additional motion, such as falling
after landing, occurs, it is ambiguous whether to include this additional motion
in the corresponding action. Therefore, a means to cope with such ambiguity in
action boundaries is needed.

1.3 Contributions

To answer the first research question, comparative studies were conducted according to
the five investigations. Five factors influencing performance were selected, and performance
comparison was carried out in a controlled environment to verify them. To answer the second
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and the third questions, a boundary refinement method based on statistics and a complemen-
tary anchor-free Temporal Action Proposal Generation (TAPG) model were proposed. The
contributions made in this thesis can be summarised as follows.

• Comparative experiments were conducted based on factors. Unlike the ablative study or
overall average recall adopted in performance evaluation, this was to see how the factors
affect performance. Other factors, except for the one under investigation, were controlled
and the corresponding performance was compared. Through this, it was possible to
know how a particular factor affects performance.

• An action proposal generation method was proposed using an anchor-free approach. The
previously used anchor-based method had the disadvantage of high computational cost
due to repeated calculations at each temporal location. However, by directly predicting
the offsets of actions, the need for repetitive operations was eliminated.

• An additional boundary refinement method based on statistics was proposed to predict
boundaries more accurately. Human-marked labels are difficult to represent precise ac-
tion boundaries consistently. However, the boundary was refined under the assumption
that the actual action boundary will exist near the annotated boundary. Similar to the
mean-shift used in object tracking, the boundary was refined using statistical informa-
tion.

• Based on the five investigations from the first research question, the same protocol for
evaluation was applied to the proposed method. It was conjecture that this may provide
insights for new methods of evaluating TAL algorithms.

1.4 Thesis Structure

The remainder of this thesis is structured as follows.

In Chapter 2, essential background knowledge for the work presented in this thesis is in-
troduced. First, the chapter starts by reviewing the basic knowledge required for TAL from
a general machine learning perspective. Second, a method of converting video into feature
vectors is introduced. In the literature, action recognition algorithms are used as the backbone
for this purpose. Therefore, some representative action recognition algorithms are introduced
as a video representation method. Third, methods are reviewed for making data of the same
size from different length of actions, and then, methods are considered for retrieving actions
from untrimmed video clips and predicting the lengths of the actions. Fourth, strategies for
performing TAL such as end-to-end methods and pipeline methods are introduced. Lastly,
the metrics used to evaluate the performance of the algorithm are reviewed for comparison.

In Chapter 3, five hypotheses are established to inspect factors that may affect TAL per-
formance. According to the hypotheses, five corresponding experimental scenarios are con-
structed and comparative studies are conducted to investigate whether and how performance
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is influenced by the identified factors. In each scenario, existing algorithms are selected and
modified for the purpose. The five criteria were considered: 1. Performance relationship of
detection and recognition, 2. advantage/disadvantage of using multi-class labels, 3. robust-
ness to discontinuous actions, 4. multi-modal test (RGB and Flow), 5. cross-corpora test. In
the first scenario, the relationship between the performance of action detection and recogni-
tion is examined. In pipeline methods having the ”detection-then-recognition” scheme, the
results of detection are used as input for the recognition algorithm. Therefore, whether good
detection results lead to good recognition results is investigated. In the second scenario, by the
fact that there are few anchor-free action proposal generation methods in the literature, how
action class labels affect the detection of actions is examined by comparing results of end-to-
end TAL methods and those of their variants for proposal generation. In the third scenario,
the experiment is conducted on discontinuous actions caused by abrupt camera movement or
editing that can be seen in videos uploaded to personal SNS such as YouTube and Facebook,
and how these discontinuous actions affect performance is investigated. In the fourth sce-
nario, a performance comparison is conducted using two commonly used types of data (RGB
and Flow). Finally, in terms of generalisation, the same model is trained on ActivityNet and
THUMOS14, which are primarily used datasets, and how the model trained on one dataset
performs on another dataset are observed.

In Chapter 4, an anchor-free Temporal Action Proposal Generation (TAPG) method is pro-
posed. Action proposals are generated by directly predicting offsets at each location of the
feature pyramid, and refine the predicted boundaries using statistical information to achieve
more accurate predictions. Since the anchor-free method of detecting actions on the feature
pyramid uses only partial information, a proposal evaluation module is introduced to compen-
sate for this disadvantage. Moreover, a temporal evaluation module is introduced to measure
the starting and ending probabilities of an action at each temporal location. This helps in-
crease the reliability of boundary detection. Finally, the comparative studies are conducted
under the same scenarios as in Chapter 3 to investigate the effectiveness of the proposed
method.

In Chapter 5, conclusions are drawn about this research and its shortcomings are discussed.
Furthermore, potential future work is explored to address these limitations and enhance the
research outcomes.

1.5 Summary

In this chapter, TAL has been introduced. The motivation of this thesis and challenges in
this field were described. Based on the motivation and challenges, research questions were
made and the contributions of this thesis were enumerated. Lastly, how this thesis is structured
was explained.
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Chapter 2

Background

TAL is a compelling field in computer vision due to its applicability across various do-
mains, attracting increasing attention over the last few decades. The TAL research field has
advanced from various perspectives, including the design of learning algorithm, modelling
of temporal information and surrounding context, boundary refinement, and more. Unlike
general machine learning issues that aim to solve specific problems, such as feature selection,
TAL is a comprehensive topic. For instance, finding accurate boundaries can be viewed as a
regression problem, while detecting and recognising actions can be considered a classifica-
tion problem. Thus, TAL has connections with various machine learning techniques. In this
chapter, a thorough literature review of essential techniques related to TAL is presented.

This chapter is structured as follows. Section 2.1 briefly reviews the context of understand-
ing video from a TAL perspective. Sections 2.2 to 2.4 focus more on TAL starting with tech-
niques used to address issues raised in this field (video representation, variable-length action
duration modelling, proposal representation, temporal duration handling methods, boundary
refinement, and elimination of duplicate results), and then exploring other related topics, such
as performance evaluation methods, benchmarking datasets, and supervised learning.

2.1 Video Understanding and Machine learning Overview

Video understanding in the field of computer vision aims to automatically analyse and
comprehend the content of videos. This encompasses various tasks, including recognition,
detection, anticipation (also known as early recognition in the literature), scene generation,
segmentation, retrieval, captioning, recommendation, question-answering, and more. These
tasks may necessitate extracting relevant information from the video content and perform-
ing additional subsequent tasks. In this regard, handling sequential data presents a greater
challenge than tasks involving single data points, such as object recognition in a still image.
Among the many tasks required for video understanding, detection and recognition are key
topics related to TAL.

The goal of video recognition is to classify trimmed video clips into one of a number of
predefined categories. This involves identifying subjects, such as people and objects in video
clips, and understanding the event taking place. Specifically, when the object of recognition
is a human action, it is called Human Action Recognition (HAR). Various types of data are
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used for this purpose. Some approaches utilise data collected from sensors attached to the
body, while others employ information obtained from devices in the surrounding environment
[3]. Although fusing multi-modal data from diverse sources can yield more accurate results,
there are numerous prerequisites, such as setting up an experimental environment. Alterna-
tively, many studies have been conducted using only video data. In this research direction,
additional information, such as a skeleton, is extracted from video to achieve the same effect
as using a sensor. Furthermore, multi-modal images, such as colour images and depth im-
ages, are utilise through the use of specialised cameras [4]. Some researchers have focused
on information based on the action’s characteristics using only general video data (e.g. a se-
quence of colour images). They have attempted to analyse human actions using motion flow
information and appearance information [5], or by examining the differences between fast and
slow motion [6]. Additionally, other researchers have attempted to separate atomic units from
high-level abstract actions, and then analyse complex activities by combining these units [7].
These efforts have significantly contributed to automatically identifying the actions presented
in videos, as demonstrated by the impressive results in various benchmarking datasets (e.g.
UCF101 (top-1 accuracy: 98.64% [8]), Kinetics- 700 (top-1 accuracy: 84.0% [9]), AVA2.2
(mAP: 41.01 [9])). This progress has been widely reused or inspired many advancements in
the TAL domain. However, as demonstrated in general classification tasks, these methods
classify actions into predefined categories, making it difficult to handle non-defined actions.
Moreover, when applied to untrimmed videos, it is challenging to identify the specific part
of the video where the action takes place, as the trimmed video clips used in the dataset do
not contain boundary information. Additionally, since untrimmed videos often contain many
segments without relevant actions, it is crucial to develop techniques to process and account
for non-defined actions as well.

Action localisation aims to detect the start and end times of relevant actions in untrimmed
videos. This task can be viewed as action detection in videos, similar to object detection in
images. It is divided into two main categories: TAL and spatio-temporal action localisation.
TAL detects actions by considering only the time axis. As a result, this approach focuses
more on how the scene changes and progresses rather than on detailed information, such as
the location of people or surrounding objects in the image. Detection is performed using this
information. The method of representing videos has primarily depended on action recogni-
tion algorithms that use whole frames from videos (which will be addressed in Section 2.3).
Video feature vectors are extracted from a specific layer of the action recognition algorithm,
and then the starts and ends of actions are detected. In contrast, spatio-temporal action locali-
sation aims to detect actions using both temporal information and spatial information present
in each image frame. This approach detects not only the boundaries of the actions but also the
position in the video where the action is taking place, resulting in a 3D tube-shaped outcome
[10].

In the following sub-sections, TAL will be explained from three perspectives: classifi-
cation, regression, and generalization. TAL can be seen as a compound task that includes
both classification and regression tasks. Therefore, it will be explained from these two as-

25



pects. Furthermore, the issue of generalization and the efforts made to address it will also be
described.

2.1.1 Classification

In machine learning, classification refers to assigning a single label to all samples extracted
from a problem domain. TAL can be considered to be a classification problem, as it assigns
corresponding labels to the actions of people present in the video. However, unlike general
classification problems, the video used for TAL includes a class that does not exist in the la-
bel set. This occurs because human actions do not take place continuously but intermittently
in the video, leading to background segments that do not contain any relevant actions. To
address this issue, an additional label called “background” is used. However, instead of per-
forming (N+1)-label classification by directly adding a background label to the label set, this
problem is handled indirectly through two types of classification problems: binary classifica-
tion and multi-label classification. This stratified strategy, in which multi-label classification
is performed after initial binary classification, is adopted due to the nature of intermittently
occurring actions, the number of samples corresponding to the background accounts for a
relatively large proportion, which can cause imbalance in the dataset.

Binary classification is the problem of classifying two target classes. In TAL, it is per-
formed to classify the foreground, which includes an action, and the background, which does
not include any action. Table 2.1 displays the total time of the foreground and background of
THUMOS14 [11] and ActivityNet 1.3 [2], which are widely used datasets in the literature.
Figure 2.1 presents the total time per action class together. The first bar (red) represents the
total time in the background, while the second bar (green) represents the total time in the
foreground (action). The remaining bars (blue) represent the total time for each action class.
As illustrated in this figure, a serious imbalance occurs when the background is treated as a
class equal to other actions. Consequently, it is preferably to first classify the background and
foreground through binary classification.

Table 2.1. Total time for foreground and background in THUMOS14 and ActivityNet v1.3 (Unit: s)

Dataset Background Foreground
THUMOS14 29087.82 12693.8

ActivityNet v1.3 1190704.18 1120239.74

Multi-label classification is a problem of assigning one or more class labels to samples.
In TAL, it is used to assign corresponding action labels to samples classified as foreground
through binary classification. Multi-label classification has been used in many fields and has
made significant progress. Notably, it addresses the data imbalance problem that exists in
various datasets. In general, learning is performed using a cross-entropy loss function, and
samples are classified as belonging to one or more of the label sets. Although this method has
shown excellent performance, it has been argued that data imbalance could negatively affect
performance, and that the cross-entropy loss function may not be able to handle this problem
effectively. Collecting the desired data to create a balanced datasets is often not easy. To
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(a) THUMOS14

(b) ActivityNet v1.3

Figure 2.1. Histogram of background and actions. First bar (red) represents the total time of background, and
the second bar (green) represent total time of foreground, respectively. the remaining bars (blue) represent
total time of each class.

address this issue, an improved function called focal loss was proposed in the field of object
detection, and this demonstrated improved performance [12]. In particular, creating a dataset
for video data requires more effort and time compared to other types of data. Obtaining cor-
responding samples can be challenging if the frequency of occurrence of the desired actions
is low or if risk factors are involved. As a result, there is often an imbalance in dataset used
for action analysis. Researchers studying action analysis often borrow ideas from other re-
lated fields. Specifically, since work related to either objects or actions have taken similar
approaches, many ideas have been adopted from the object analysis field. Focal loss was also
adopted to address the data imbalance problem when performing multi-label classification
in the field of action recognition. It has been shown to be effective in action recognition as
well as object recognition [13]. Since then, numerous studies have attempted to tackle the
data imbalance problem, and various ideas have been proposed to supplement the aspect that
cannot be addressed by focal loss in the field of action recognition [14, 15].

2.1.2 Regression

Regression in machine learning is a technique that uses independent variables to derive out-
puts dependent on these variables. TAL can be viewed as a regression problem in that it
attempts to find the actual start and end of an action through the context in which the action
takes place or the relationship with the action itself. However, there are many cases where
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the boundaries of human actions are not clear, and the information of the environment and
action, which are independent variables used to find the boundaries, are often inconsistent.
Several factors contribute to these difficulties. First, the supervised learning algorithm is
heavily influenced by annotations. Annotation work can be done manually by a person or
supplemented by a person after being done automatically using an existing algorithm. In the
early stage of action analysis, a small number of simple movements, such as running, walking,
and jumping, were collected in controlled environments such as laboratories. This allowed
for relatively accurate annotation work and made it easy to identify errors [16]. However,
recent research trends show that the size of the datasets is gradually increasing, making it
increasingly difficult for humans to annotate manually. HMDB51 [17], considered a large
dataset in 2011, contains 51 action classes in 6,766 videos. In contrast, current large datasets
have grown exponentially in terms of the number of video clips and classes they contain. For
example, Kinetics [18] includes 700 human actions in 650,000 video clips, and the Youtube-
8M [19] dataset comprises 4,716 action classes in 8,000,000 video clips. The increase in size
and number of classes in these datasets makes it nearly impossible to add and modify annota-
tions manually, relying instead on automated algorithms or mass audiences in cloud systems
such as Amazon. This change contributes to increased annotation inaccuracy and decreased
action boundary precision. Second, it is challenging to find common start and end points
in different actions. As mentioned in the Classification (Sub-section 2.1.1), binary classifi-
cation is performed to separate the foreground and background. In one type of action, the
start and end may have similar characteristics. However, finding the same pattern in different
types of actions is not easy. In regression problems, outliers exist as factors that negatively
impact performance. Outliers are data points that belong to the same class but have differ-
ent characteristics from other samples, making the overall pattern appear distorted. In TAL,
different actions can act as outliers to each other. Figure 2.2 shows three different actions
(PoleVault (first row), HammerThrow (second row), and LongJump (third row)). In terms of
the direction of movement, they have different characteristics such as up-and-down motion,
rotational motion, and linear motion, making it difficult to identify a common pattern from
the boundaries of different actions. Thirdly, the action may be interrupted or obscured due
to video manipulation or camera movement. In such cases, some scenes that resemble the
start and end of actions may appear in the middle of actions, resulting in the generating of
false boundaries. Due to countless factors beyond those mentioned above, this aspect has
become one of the most challenging parts of TAL. Therefore, researchers have attempted to
solve this issue by treating it as an independent problem, often referring to it as the boundary
refinement step. They have sought to detect more accurate boundaries by using the results
obtained from other studies as prior knowledge. Detailed information on this is provided in
Sub-section 2.3.4.

2.1.3 Generalisation

Creating a machine learning algorithm with a data set containing all possible samples is nearly
impossible. Therefore, it is ideal for a trained model to perform well even on data not used for
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Figure 2.2. Three different actions: PoleVault (first row), HammerThrow (second row), LongJump (third row).
In terms of the direction of movement, they are up-and-down, rotational, and straight, respectively.

training. In this regard, the issue of generalisation arises. In machine learning, generalisation
refers to a trained model adapting well and showing good performance on new and unseen
samples drawn from the same distribution as the training data. To achieve this, it is essential
that the training data represents the data distribution in the problem domain well and that the
model does not overfit the training data. A commonly used method is partitioning the dataset.
During model training, overfitting can be checked by preparing a non-overlapping training set
and validation set and running the model trained with the training set on the validation set. In
addition to these basic techniques, there have also been efforts on the algorithmic side. One
such approach is the use of boosting algorithms. Boosting algorithms began with the idea
that a strong classifier can be formed when several weak classifiers are combined. They aim
to derive reliable results by applying a weighting scheme to the outcomes of multiple weak
classifiers. This idea has been adopted for action recognition. In [20], the authors attempted
to detect actions by weighing the results of both temporal and spatial classifiers.

When a learning model performs well on the training data but not on new unseen data,
it can be attributed to a potentially biased composition of the training data. Data augmenta-
tion techniques have emerged to transform biased data into unbiased data by generating new
data using existing ones. Traditional data augmentation techniques include methods such as
horizontal flipping and random cropping of images. Although these techniques have been
effective, they may not represent uncollected data well. In another approach, there have been
attempts to create possible but non-existent data using existing ones. With the advent of gen-
erative adversarial network (GAN) [21], which enable the creation of new images,there have
been attempts to create new samples in various fields such as fashion [22], music [23] and
art [24]. In the field of video understanding, researchers have tried to address the data imbal-
ance problem by using newly generated videos. In [25], video augmentation was performed
through GANs, and it was demonstrated that this method can achieve better performance
compared to traditional methods when applied to action recognition. Additionally, efforts
have been made to prevent overfitting by the algorithm itself and to secure generalisation. In
traditional machine learning, regularisation is used, which prevents overfitting by constrain-
ing parameter values to satisfy specific conditions. Recently, with the advancement of deep
learning in the field of machine learning, special layers such as dropout have been employed
to address the generalisation problem. In the field of action detection and recognition, bench-
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marking datasets for performance comparison have been created and provided by numerous
research groups. However, it is still challenging to find algorithms that yield consistently
good results across all datasets every year. Researchers often report results obtained for each
individual dataset. To investigate this phenomenon, a cross-corpora test as conducted which
is reported in Section 3.5.

2.2 Video Representation

In order to analyse a video and comprehend its contents, it is important to determine how
to represent the video in a way that makes the extracted information useful. The amount
of information available may vary depending on the video representing method employed.
Pixels, which represent low-level information, play a significant role in conveying the colour
information of regions of interest (e.g. objects or humans). However, humans can perceive
more than just colour when viewing a video. A wealth of information can be gleaned, such
as what is happening, who and what is present, where events are occurring, and so forth.
What might happen in the near future can be predicted. This implies that more abstract and
meaningful information can be derived from videos than simply colour. So, how should a
machine process videos in order to extract such information, emulating human abilities? Ini-
tially, researchers have attempted to represent videos using human knowledge. This method
is known as a hand-crafted representation. In this approach, a region of interest is first identi-
fied by a detector. The detected regions are then expressed using feature description methods
designed by human experts. Since this method is based on human knowledge, it is easy to
interpret and intuitively understandable. However, valuable information may exist in areas
where people are not aware of it. This can be missed even by experts when devising a de-
scriptor based on their experience and knowledge. To address this, researchers have come
to rely on learning-based representations. Learning-based representations utilise specialised
learning algorithms to automatically extract and express the necessary information from raw
data in order to achieve a specific goal. Although these methods have resulted in signifi-
cant improvements in performance, it may not be easy to intuitively understand which part
of the data the information originates from or how the information takes its final form. In
TAL, video representation derived from the field of action recognition is utilised as input
for boundary detection. To provide context, hand-crafted representations and learning-based
representations are briefly reviewed for action recognition. Following that, the methods pre-
dominantly used in TAL among learning-based representations will be discussed in greater
detail.

Hand-crafted Representation

Hand-crafted video representations can be categorised into local descriptor and global
descriptor based on the area from which information is extracted. Local descriptors are ex-
pressed using local information, such as texture and colour, from a limited area such as interest
point or cuboids determined by a feature detector. In contrast, global descriptors involve ex-
pressing an action using global information, such as illumination changes, phase shifts, and
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speed variations, that may appear throughout the entire screen while an action is taking place.
Once the area for information extraction is determined, hand-crafted video representations
can be further divided into spatio-temporal representations and appearance-based representa-
tions based on the information extracted from the designated area. Spatio-temporal represen-
tation involves expressing information in a volume-shaped space by concurrently considering
both spatial and temporal axes. In [26], two 2D images, binary Motion-Energy-Image (MEI)
and Motion-History-Image (MHI), are utilised to represent actions in a volume-shaped space
for template matching between actions. In [27], a Volume Motion Template (VMT) and
projected Motion Template (PMT) are proposed for view-independent HAR, using images
obtained from a stereo camera. Actions in 3D space can also be represented by the trajecto-
ries of human body joints. In [28], the performance of motion-based descriptors (e.g., his-
togram of optical flow (HOF), motion boundary histogram (MBH)) is significantly improved
by eliminating camera motion, using local feature descriptors such as speeded up robust fea-
ture (SURF) [29], while obtaining motion trajectory information from dense optical flow. In
[30], trajectories are composed of a sequence of skeleton shapes acquired using a camera,
such as a Kinect sensor, which can capture depth images in real-time. The aforementioned
method is known to be computationally efficient by using Transported-Square Root Vector
Fields (TSRVFs) of trajectories and the standard Euclidean norm. It is also robust to various
execution rates. Appearance-based representation is a method designed to efficiently use the
shape and appearance of an action. In [31], actions are represented by dividing the human
silhouette into a fixed number of cells. In [32], contour points on multi-view key poses are
used to represent actions for view-invariant action recognition.

Learning-based Representation

Learning-based representation is a method that automatically learns features from raw
data, and it can be divided into two types: non-deep learning-based representation and deep
learning-based representation. Among non-deep learning-based representations, dictionary
learning is the most widely used method. It learns a sparse representation called an atom
from a large number of samples, and an action is expressed as either an atom or a combi-
nation of these atoms. In [33], extreme points are obtained from the human body, and local
motions are defined by a local motion descriptor using the changes in these points within a
cubic area of a certain size. Three over-complete dictionaries are composed of these spatio-
temporal descriptors. In [34], a hierarchical representation is proposed. After detecting inter-
est points, motion and appearance features are created for spatial information. In the case of
temporal ordering information, a motion segment descriptor is proposed, which is created by
concatenating features. In [35], transferable dictionary learning is performed for cross-view
action recognition. By constructing dictionaries in each view and making them transferable
between dictionaries in different views through a learning method, actions captured in mul-
tiple views share a common dictionary. Besides dictionary learning, evolutionary methods
have also been employed. In [36], genetic programming is used to learn descriptors that can
adapt between different datasets. Using scale and shift invariant features extracted from a
sequence of colour and optical flow images, spatio-temporal motion features can be learned
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automatically with the aid of evolutionary methods. Non-deep learning-based representation
can automatically learn features and represent actions efficiently compared to hand-crafted
representations. However, to create the input data necessary for learning, additional work
is required, including tasks that detect either interest points or extreme points. With the ad-
vancement of deep learning, recent research trends have focused on representing videos using
deep learning for action recognition, resulting in significant improvements in performance.

In the remainder of this section, further details are discussed concerning the deep learning-
based representations primarily used for temporal action detection.

2.2.1 3D Convolution Network

Due to the success of deep learning in image representation for object recognition, there have
been attempts to employ deep learning for video representation for action recognition. Nu-
merous 2D convolution networks have been proposed for image representation [37, 38, 39].
However, several challenges have arisen when applying these networks to videos. While an
image is a 2D plane, a video is expressed in a 3D space, including the time axis. Conse-
quently, using such a network can lead to loss of temporal information about motion; the
primary concern is therefore how to effectively preserve this information using deep learn-
ing. To address this issue, the convolutional 3D (C3D) network [40] employs convolution
layers with 3D filters instead of 2D filters. By doing so, it is possible to learn spatio-temporal
information of actions using the same architecture that has previously demonstrated good
performance in object recognition. Although this method is simple and effective, it has the
drawback of requiring a large amount of computation due to the use of 3D convolutions. As
a result, numerous subsequent work has been conducted to mitigate this disadvantage while
retaining temporal information. Firstly, the use of continuous 3D convolution was considered
a factor that hindered computational efficiency. To address this, 2D convolutions and 3D con-
volutions were combined. In [41], the authors aimed to increase computational efficiency by
reducing the size of the output. They executed 2D convolutions and 3D convolutions in paral-
lel in each layer and applied 2D convolutions to the result once more. Another line of research
attempted to achieve the same effect by decomposing the 3D convolution into several more
efficient operations. In [42], the researchers approximated 3D convolutions by performing
spatial convolutions and temporal convolutions separately. Instead of the 3x3x3 size filter
used in C3D, they employed 1x3x3 and 3x1x1 size filters. The first filter was used to learn
spatial information by producing the same effect as 2D convolution, while the second filter
was used to learn temporal information. Similarly, [43] attempted to implement an approx-
imated 3D convolution, called a (2+1)D convolution, using a 2D convolution followed by a
1D convolution. Lastly, they sought to learn video representation by repurposing networks
designed for image representation. In [44], the authors attempted to achieve the effect of 3D
convolution using only 2D convolution by manipulating the input data. To encode the tem-
poral evolution into a single image, a 2D image called a dynamic image containing temporal
information was created from multiple images using the rank pooling concept. This method
has the advantage of being able to reuse networks that have successfully performed image
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recognition without losing temporal information, by converting the input form from video to
image.

2.2.2 Two-stream Network

Unlike the 3D convolution network, the two-stream network is a method of adding additional
information by creating another network alongside the 2D convolution network. Having a
network that uses 2D convolution means that any network used for image representation can
be reused. Additionally, it has the advantage of allowing any type of additional information to
be inserted through the network of another stream. Among these two-stream networks, there
is a model designed to learn temporal information through the second stream. This is an
effort to obtain a spatio-temporal representation by adding the temporal relationship between
adjacent frames, which cannot be learned in a 2D convolution network that uses still images
as learning data. In [45], motion information along the time axis is learned through optical
flow images. The stacked optical flow is calculated using the neighbouring images around
each colour image, and both the colour image and corresponding optical flow images are
used as input data for the two-stream networks. The output of the two streams incorporates
both spatial and temporal information. In the inflated 3D convolution (I3D) network [46],
the authors believe the original two-stream network is overly simplistic, so they modify the
existing model to enhance performance. In the earlier version of the two-stream approach, a
2D convolution stream for colour image and a 3D convolution stream for stacked optical flow
were employed. However, they opt to use two 3D convolution streams by inflating the 2D
convolution stream. To reduce computational cost, an inception module is introduced. In [6],
the authors express concerns about the difficulty of integrating optical flow computation into a
two-steam network in an end-to-end manner and propose learning motion information without
such computation. They developed two pathways with distinct frame rates: a slow pathway
operating at a low frame rate captures spatial semantics, while a fast pathway operating at a
high frame rate captures motion. Additionally, they introduced lateral connections between
the two streams to fuse the different types of information effectively.

2.2.3 Attention-based Network

In psychology, it is well-established that when people process visual information, they do
not pay equal attention to all visual stimuli but selectively focus on specific parts of the in-
formation [47]. In machine learning, one technique that emulates human visual cognitive
processing is the attention mechanism. The primary challenge in the attention mechanism
is determining the attention weights that represent the areas to focus on and those to ignore.
The simplest method for calculating these weights involves using a linear model. In [48],
the authors proposed an input-dependent module that utilises a fully connected layer with a
tanh activation function to obtain weights for both spatial and temporal attention from human
skeleton data. The module, proposed in Action Attention Recalibration Module (AARM)
[49], generated two attention maps using convolution operations, creating an inter-channel
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attention map and a spatio-temporal attention map to identify informative parts in a video.
For action recognition, the authors improved classification performance by calculating atten-
tion weights for the final activation function. Non-local networks [50] introduced a non-local
block in the form of self-attention, which can be incorporated into existing networks. This
module enables the capture of specific, important information related to a person’s action and
the surrounding context. One of the most notable developments in attention mechanisms is
the transformer [51]. A transformer is a network composed of encoders and decoders that
eliminates recurrences and convolutions found in existing networks, relying solely on atten-
tion mechanisms. The attention mechanism was further systematised by introducing scaled
dot-product attention and multi-head attention. This method demonstrated excellent perfor-
mance for sequential data and has been used with remarkable success in various fields, partic-
ularly language-related tasks. Inspired by this method, the video action transformer network
[52] adapted the transformer architecture for video applications, proving that the transformer
architecture can also be used for spatio-temporal data such as videos. ViViT [53] proposed a
more efficient approach for applying the encoder part of the transformer to video classifica-
tion. The authors factorised the different components of the transformer encoder to address
the spatial and temporal dimensions of the video separately.

2.2.4 Others

As previously discussed, numerous action recognition networks have been proposed, with
some being adopted for TAL in video representations. However, some argue that action
recognition is not well-suited for localisation tasks because it primarily focuses on the video’s
content. Temporally-Sensitive Pretraining (TSP) [54] contends that existing networks are spe-
cialised solely for classifying positive samples, which negatively impacts the accuracy of the
localisation task. To address this issue, researchers are exploring ways to incorporate the
presence or absence of information in video representations.

2.3 Temporal Action Localisation

TAL aims to achieve two goals: boundary detection and action classification. Bound-
ary detection identifies the start and end timestamps of an action in an untrimmed video,
while action classification recognises the specific action within the video. Depending on the
strategy employed to perform these tasks, TAL is divided into one-stage temporal action lo-
calisation (end-to-end method) and two-stage (or multi-stage) temporal action localisation
(pipeline method). One- stage TAL simultaneously addresses both tasks within a single inte-
grated network, while two-stage (or multi-stage) TAL tackles them sequentially by dividing
them into several independent tasks. In this thesis, a two-stage TAL method is employed.
Thus, the related background will be reviewed. Two-stage (or multi-stage) TAL breaks down
the whole task into smaller, independent ones. Following the “detection-then-recognition”
scheme in object recognition, the boundary of an action is first detected, and then the seg-
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ments of the detected action are used as input for recognition. The step of detecting action
boundaries, known as action proposal generation, has emerged as an independent research
area. This field generally involves a three-step process: feature extraction, proposal genera-
tion, and post-processing. In the feature extraction step, feature vectors used for the localisa-
tion task are created through video representation methods. The proposal generation network
uses these extracted features to distinguish between the background and foreground in an
untrimmed video, subsequently detecting action candidates. Finally, in the post-processing
step, proposals with significant overlap are removed to reduce redundant detection.

This section presents an overview of action proposal generation and its relevance in the
context of Temporal Action Localization (TAL). The primary objective is to describe the
adopted methodology for handling actions of varying durations and proposal representation
methods that can effectively capture the essence of these actions in a consistent manner. Ad-
ditionally, the section introduces approaches for efficient search of lengthy videos, refining
action boundaries to improve precision, and eliminating redundant outcomes.

2.3.1 Variable-Length Action Duration Modelling

Actions occur in various forms, depending on the context and the individual performing the
action. Even when repeating the same action, it might be performed differently each time.
To process these variable-length actions within a single network, a consistent representation
method is required. In this section, commonly used methods will be examined found in the
literature.

Grouping

Grouping is a method used to evaluate the length of an action in a bottom-up approach,
addressing the variable length of actions. This technique assesses whether something is an
action within the smallest temporal unit and predicts the length of various actions by com-
bining units that achieve consecutive high scores into a single action. A classifier is applied
to determine if an individual snippet, represented by a feature vector, is an action or not
[55]. Based on the actionness scores, snippets with a high probability of being actions are
grouped together to establish the action’s length. The watershed algorithm [56] is employed
as a grouping method in this process. Proposals are generated by connecting snippets that
merge into one while the water level is raised.

The length and position of an action can sometimes be represented using parameters of
a specific kernel. In [57], Gaussian kernels are applied temporally to represent the dynamic
temporal scales of an action. To achieve this, the model is trained to predict the centre of
the action and a specific interval in each cell of each feature map. Action proposals are then
expressed with a Gaussian kernel, where the centre of the action is represented as the kernel’s
mean, and the action interval is represented as the standard deviation. Grouping is performed
based on the relationship between these kernels. Kernels with a high degree of overlap are
considered to represent a single, longer proposal and are merged into one kernel.
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Grouping offers the advantage of efficient prediction without limiting the evaluation length.
As result, it is considered an appropriate method for detecting actions, taking into account the
unpredictable length of an action and the algorithm’s scalability. However, a challenge arises
when using small snippet units to determine if an action is present for grouping purposes.
Since snippets are the smallest temporal segments, they may only capture incomplete parts
of actions. Relying solely on partial information to determine if it is a positive sample reduces
the accuracy of the decision. If a false positive sample occurs in the middle of an action, a
single action may be split into multiple actions. To address these drawbacks, complementary
methods have been proposed in the literature [58].

Anchor-based Method

As a top-down approach, predefined temporal segments called ”anchors” are used to eval-
uate the completeness of actions. Since each anchor has a fixed-length value, it can only
represent one action length. Therefore, multiple anchors are employed to accommodate vari-
ous lengths. In [59], anchors were expressed using a Recurrent Neural Network (RNN) rather
than being directly defined. A many-to-many RNN configuration is used, where the output
from each time step evaluates the length from the beginning of the input sequence to the cor-
responding output time. The action length is determined based on the number of time steps
set in the model.

In contrast, other work utilising anchors employs a set of predefined anchors. Each anchor
is evaluated to predict whether the corresponding temporal span represents a complete action
or not. These approaches can be found in various literature sources [58, 60, 61, 62].

The performance of anchor-based methods depends on the configuration of the anchors.
Anchor settings can be established through empirical knowledge. By using a large number of
anchors to cover various possible action lengths, performance can be improved. Moreover,
if the length is determined based on expertise in the field, a more efficient set of anchors for
detection can be configured. However, anchor-based methods have some drawbacks. Since
it is necessary to evaluate whether all anchors represent an action at every time location,
the computational cost increases due to the repetition of the same operation for each anchor.
Additionally, since anchors have a fixed length, they may not accurately detect action bound-
aries if their lengths differ slightly from the actual action. As a result, an additional boundary
refinement process is needed to address this issue.

Anchor-free Method

The anchor-free method was developed to address the disadvantages of anchor-based ap-
proaches. In the field of object detection, a technique for detecting objects by directly predict-
ing the offsets of the bounding box, without using an anchor box, was proposed and demon-
strated excellent performance [63]. Inspired by this success, researchers have attempted to
detect actions without using anchors.

To resolve the high computational cost associated with using a large number of anchors, a
problem in anchor-based approaches, the use of anchors was eliminated. Instead, researchers
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directly predicted the left and right offsets of the action from the input vector, streamlining the
detection process. Additionally, since the boundary is determined by the prediction method
rather than using fixed-length information, it overcomes the limitation of generating inac-
curate boundary values in the anchor-based method. However, this approach has to predict
offsets from a single feature vector, which may contain incomplete information about actions,
making it challenging to obtain accurate offsets. As a result, an additional structure is needed
to incorporate multi-scale temporal information into a single vector representation.

To address this issue, various methods have been proposed (which will be discussed in
Sub-section 2.3.3). With the assistance of these methods, action detection has been performed
in an anchor-free manner, as seen in multiple studies [64, 65, 66].

Boundary-based Method

The ultimate goal of action detection is to accurately detect the boundaries of an action.
Several existing algorithms have indirectly predicted action boundaries by evaluating the
probability that a specific part of a video represents an action and the completeness of the
action. In contrast, boundary-based methods directly compute the probabilities of the start
and end of an action from the input sequence.

In [67], the boundary scores are calculated directly from the input data, and these scores
are used to create boundary pairs (start and end) of actions for proposal generation. This
approach shifts the focus to identifying action boundaries more explicitly, potentially leading
to improved detection performance. The action segments created in this manner are used to
calculate the actionness score, as previously described. Extending this idea further, meth-
ods such as BMN [68] and DBG [69] develop a more systematic approach to creating action
pairs, which was done using heuristic rules in earlier approaches. Rather than creating pairs
directly, these methods generate a score map in the form of a table for all possible temporal
pairs. With the horizontal and vertical axes of the map representing starting and ending times,
respectively, the score map contains scores for all potential pairs. These obtained score maps
are then used to determine the ranking of proposals, further refining the action detection pro-
cess. In [69], researchers addressed the issue of noisy boundaries affecting the calculation of
starting and ending scores. They posited that the starting point of an action can be seen as
the ending point when the action proceeds in the opposite direction. By leveraging this idea,
they aimed to generate more stable boundary scores in a complementary manner. In [70], re-
searchers accepted the idea of the previous boundary-based method but noted that boundary
scores predicted by convolution operations might only capture local temporal relationships
between nearby frames. This is due to the limited ability to model long-term temporal in-
formation when using information constrained by the kernel size. To tackle this issue, the
researchers introduced a transformer architecture to better capture long-range temporal rela-
tionships and improve action detection performance.

The boundary-based method offers the advantage of being less likely to miss an action,
thanks to its dense evaluation of all possible pairs. However, calculating scores in the form of a
map to evaluate all possible cases results in a high computational cost and significant memory

37



requirements to handle these values. This trade-off between increased detection accuracy and
computational complexity must be considered when employing boundary-based methods for
action detection.

Graph-based Method

In the feature extraction step, a video is represented as a single vector in snippet units. The
graph-based method is an approach that constructs a graph to determine which vectors come
together to form a single action. Each vector constitutes a node in the graph, and the edges
represent the relationship between the nodes. This structure can also be used for convolution
operations. Unlike conventional convolution operations, the number of nodes participating
in the convolution is not fixed, allowing for more flexible model training. By leveraging
the graph-based structure, this method aims to better understand and model the relationships
between action components in a video sequence.

In [71], the Graph Convolutional Network (GCN [72]) was used to address the action
localisation task as a problem of finding target sub-graphs related to the action. The graph
consists of snippet nodes, temporal edges to maintain the temporal order of the video, and
semantic edges learned from the nodes. Through multiple convolutional operations, the se-
mantic context is encoded into semantic edges, and actions are detected by evaluating sub-
graphs defined by anchors (a fixed number of nodes). In [73], a Graph Reasoning Module
(GRM) is proposed. This approach configures each node of the graph as a snippet and con-
nects two nodes as a result of learning when the two nodes indicate the start and end of an
action. Consequently, nodes connected to each other in the constructed graph represent action
proposals.

The graph-based method offers the advantage of handling actions of various lengths be-
cause it allows for random access to all nodes and can express the relationship between nodes
through edge weights. By leveraging this flexible structure, graph-based approaches aim to
adapt to diverse action lengths and better capture the relationships between different parts of
an action sequence.

2.3.2 Proposal representation

In Sub-section 2.3.1, methods for predicting the lengths of actions with varying durations are
examined. These predicted actions generate proposals comprised of several feature vectors.
Proposals of different lengths consist of different numbers of vectors, but in order to evaluate
whether they represent actions, a unified representation method is needed to perform classi-
fication and regression in a consistent algorithm. This representation is mainly constructed
using pooling and concatenation. Pooling summarises the feature maps generated by the con-
volutional layers. This process has the effect of reducing the computational cost by decreasing
the parameters of the network and the dimension of the feature map. By utilising the pooling
effect, actions composed of various numbers of vectors can be expressed as a vector of the
same size. Common pooling methods include max pooling, which replaces an area with its
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largest value, and average pooling, which uses the average of the area to represent it. Addi-
tionally, to emphasise specific parts of the data, weighted average pooling is applied using a
specialised weighting scheme. Concatenation is a method of creating a single, meaningful
vector from a series of data. While the pooling operation can produce a vector of the same
size from various numbers of data, the loss of detailed information, such as temporal order-
ing, occurs when creating a single vector composed of several vectors. On the other hand,
concatenation is a method that retains more information but leads to an increase in dimension-
ality by connecting several vectors. These two methods can be used separately or together.
To apply both methods to a sequence of vectors, it is necessary to decide which vectors are
used to create a proposal-level representation. According to this approach, proposal repre-
sentation can be divided into dense sampling-based representation and sparse sampling-based
representation.

Dense Sampling-based Representation

Dense sampling-based representation involves using all feature vectors related to each
proposal. It is chosen to include all information without discarding any data. This approach
has been widely used to express video-level representation in the field of video classification.

The most commonly used method in dense sampling-based representation is average pool-
ing, which is employed to represent the region of action defined by an anchor at each temporal
location. Unlike action recognition, in the context of TAL, average pooling is applied to three
parts of proposals to incorporate local context information. This method defines the internal
area between the starting time and the ending time, representing the action itself, and de-
fines a certain area before and after the internal unit as the context area. This inclusion of
the situation before and after the action occurs within the action representation helps provide
more comprehensive information. After average pooling is applied to the internal area and
the context area, which are expressed as three vectors, they are concatenated to create the
complete action representation. This approach has been adopted in many cases, with the only
difference being the context-setting method [60][74].

In [57], actions were composed of multiple Gaussian kernels, and these kernels were
weighted averaged to represent action proposals. This method, called Gaussian pooling, gen-
erated vectors for subsequent tasks. The authors believed that the data at the centre of the
action was more informative than the data at the border, so they wanted to apply different
weights according to their positions within the action. These weights corresponded to the
Gaussian kernel representing the actions. Moreover, since the standard deviation value ex-
presses the length from the centre of the action to the boundary, the context information is
naturally included in the proposal presentation in the tail part of the Gaussian kernel. As a
result, there was no need to set a separate area for including context information.

Sparse Sampling-based Representation

Sparse sampling refers to a technique that reduces the amount of data collected or pro-
cessed while still maintaining sufficient information. Instead of capturing or processing data
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at regular intervals or densely sampling the entire dataset, sparse sampling strategically selects
a subset of representative samples. In [55], inspired by [75], the authors proposed a struc-
tured temporal pyramid to represent actions. [75] used a proposal-level representation based
on sparse sampling instead of the video-level representation based on dense sampling, which
is commonly used for video classification. To achieve this, they created an extended proposal
that included the context area before and after the action. This extended proposal was divided
into nine sections, and one vector from each section was randomly sampled and concatenated
to complete the action representation. In [58] and [67], the proposals were divided into three
parts: one for the proposal itself and two for the context areas (before and after the action).
The two context areas in these methods consist of frames surrounding the action boundaries,
which means they include a small portion of the action itself. By performing sparse uniform
sampling in these three areas, one proposal unit and two context units are created and con-
catenated to represent the proposal. In [68], the authors pre-calculated a weight mask in the
form of a matrix to make sparse sampling more efficient. Since the sampling position ap-
pears as a decimal point, the coefficients multiplied by the vectors are pre-calculated using
linear interpolation. This approach leads to significant computational cost savings while still
effectively representing action proposals and their surrounding context.

Using sparse sampling provides several advantages in action detection algorithms. Firstly,
the computational cost is greatly reduced, as redundant information is removed, and only
necessary data is used. This allows for more efficient processing and analysis of the video
data. Secondly, since the same number of samples is selected from all proposals, it is always
possible to represent them in the same size, regardless of the length of the proposal.

2.3.3 Temporal Duration Handling Methods

Detecting actions in untrimmed videos, which can vary in length from a few minutes to a
few hours, presents unique challenges compared to action recognition in trimmed clips. To
efficiently traverse videos and detect actions, various strategies can be employed. Here, some
of these strategies are discussed.

Sliding Window

The sliding window strategy processes sequential data by sliding a fixed-size window
over the sequence and evaluating the data within the window at each position. The perfor-
mance of the sliding window method can be affected by the size and stride of the window.
However, there is no theoretical method to determine these parameters, and they are usually
chosen based on practical experience and the nature of the data. The sliding window tech-
nique is commonly used with top-down proposal evaluation methods such as anchor-based
approaches, or when processing long sequential data by dividing it into segments.

Anchors for action detection can be viewed as sliding windows with varying settings. A
small window size is utilised to detect relatively short actions, as it enables finer searching,
while a large window size is ideal for detecting longer actions by processing a substantial
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amount of data simultaneously. When employing the sliding window approach, a crucial hy-
perparameter must be determined: whether all anchors share the same stride value or each
anchor has a unique stride value. Using the same stride for all windows simplifies implemen-
tation since it can be controlled with a single value. However, adopting a small value might
be suitable for short actions, but it can lead to inefficient calculations due to repetitive redun-
dancy in longer windows. Alternatively, the overlap ratio of windows at adjacent locations
can be considered. This parameter represents a trade-off between computational efficiency
and detection accuracy.

In the literature, the parameter selection is often determined empirically based on the
length of the target action class present in the dataset and the overall video length. In [76],
the authors implemented a sliding window strategy to run the RNN on untrimmed videos,
requiring only one window size. To determine this size, they selected one that could cover
98% of the action by referring to the ground-truth annotations and validated the setting ex-
perimentally. This configuration has since been adopted by several researchers [68, 69, 77].
Regarding the stride of the sliding window, many cases involve an overlap of 75% [58, 60,
78].

Video Resizing by Linear Interpolation

In a dataset, videos have varying lengths. After the feature extraction process, each video
is represented as a set of vectors with different numbers of vectors. However, by applying
linear interpolation, it is possible to make each video have the same number of vectors. In the
literature, this method has been employed specifically for handling the ActivityNet dataset.
As depicted in Figure 2.3, the distribution of action lengths within the dataset is skewed.
However, when expressed as a ratio of action length to video length, the distribution appears
relatively even. The use of linear interpolation to rescale each video can help alleviate data
imbalance in the dataset. This approach is particularly beneficial for efficiently handling long
videos. To detect long actions within long videos, it is necessary to have a means of processing
these videos within the network model. However, doing so demands significant memory and
increases computational costs. By rescaling videos to a more reasonable length using linear
interpolation, long videos can be processed with reduced memory requirements and lower
costs. For this purpose, in studies such as [67, 68, 69, 77], videos were rescaled to a length
that could be processed in a single pass, allowing the dataset to be used without the need for
repetitive operations like sliding windows.

Multi-scale Pyramid

Pyramid structures, as described in [79], are designed to process images in a scale-invariant
manner. These structures have been introduced to tackle multi-scale challenges in performing
detection tasks and have demonstrated positive results [80][81]. The pyramid structure stacks
images of varying resolutions. The lower layer, with a higher resolution, contains detailed
information and is therefore well-suited for handling small objects. Conversely, the upper
layer, with a lower resolution, is better equipped to manage larger objects.
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(a) Action Length in Second (b) Length Ratio of Action to Video

Figure 2.3. Histogram of action length in ActivityNet 1.3 dataset. The dataset contains a large number of
short actions, resulting in an imbalanced distribution when looking at the length of action in seconds. To alle-
viate this, a sequence of feature vectors can be rescaled using linear interpolation.

In further development, [82] discovered that data at each scale contributed to performing
tasks at different scales, and incorporated links allowing data at each scale to receive infor-
mation from other scales. This approach demonstrated outstanding performance in object
detection tasks. Owing to this success, the pyramid structure has been employed in action
detection to manage actions of varying lengths from a multi-scale perspective.

Feature pyramids can be created through convolution and pooling operations. To generate
a layer with a lower resolution from one with a higher resolution, the data can be processed
either by reducing the number of output filters in a 1D convolution or by applying a pooling
operation to the feature map. In [65], a temporal reduction unit consisting of four convolu-
tion layers was proposed to create a subsequent feature map with a larger receptive field in a
pyramid structure. The first three convolutions operate with a stride of 1, while the last convo-
lution used a stride of 2 to create a feature map with half the scale. [64] introduced a U-shaped
architecture to convey both high-level semantic information and low-level detail information.
After applying the convolution operation, a deconvolution operation was performed to create
a U-shaped pyramid architecture. Lateral connections were then inserted between the layers
to enable information fusion. In [83], a relation-aware module was proposed, similar to the
self-attention mechanism, to address the long-range dependency problem in U-shaped archi-
tectures. In [84], a pyramid non-local block was proposed to handle multi-scale challenges.
A pyramid with different scales was created using average pooling, and a non-local operation
was applied to obtain long-range context information in each layer. Subsequently, a feature
representation with multi-scale information was generated through upsampling, convolution,
and concatenation operations.

The pyramid structure is primarily employed in TAL algorithms for detecting actions using
an anchor-free method. As the anchor-free method predicts offsets with a single feature vector,
these vectors need to contain scale information corresponding to the action being detected.
It is expected that each layer of the pyramid structure will detect actions with lengths similar
to their corresponding scales, allowing for more precise action localisation across different
lengths.
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2.3.4 Boundary Refinement

In TAL, detecting the exact boundary of an action is a crucial task. However, accurately
predicting boundaries is challenging due to the inherently difficult-to-define nature of action
boundaries. Researchers often perform boundary refinement to readjust the detected action
boundaries, making them more accurate. In this section, the proposed methods are reviewed
for refining action boundaries. In the literature, boundary refinement typically adopts one
of two strategies: coarse-to-fine refinement or progressive refinement. Coarse-to-fine refine-
ment mainly involves using dedicated modules to enhance the accuracy of detected bound-
aries, while progressive refinement iteratively employs the same boundary detection module
to refine the boundary with increasing precision.

Coarse-to-fine refinement initially performs a coarse detection to obtain preliminary ac-
tion detection results. These results are then refined further using additional modules to en-
hance their accuracy. In [85], the authors addressed this problem by designing a novel type
of boundary feature for refinement and performing regression once more. Recognising that
pooling methods such as mean pooling and Gaussian weighted average do not adequately rep-
resent action boundary information, they proposed a boundary pooling method that leverages
salient boundary features. Based on the start and end points of the action detected by coarse
detection, a certain region is designated as a boundary area. Large values, such as those ob-
tained through max pooling, are considered salient features of the boundary. The start and
end features composed of these salient values are concatenated to obtain a salient boundary
feature. Utilising the salient boundary feature, boundary regression was performed again to
readjust the boundary. In [86], the authors introduced a structure resembling an inverted pyra-
mid to refine the proposals detected in the feature pyramid. The detected proposals from the
coarse detection step were refined by incrementally increasing the temporal resolution and
merging features from the feature pyramid. Moreover, frame-level features were generated
from the output of the reverse pyramid, and the final boundary was determined using dilated
convolution.

On the contrary, progressive refinement iteratively uses the same module to determine in-
creasingly more accurate boundaries, presenting a trade-off between the number of iterations
and accuracy. In [74], videos are extracted using snippet-level representation. The authors
believed that although frame-level coordinate regression might yield more accurate results,
snippet-level coordinate regression was easier to learn since frame-level features were not dis-
criminative enough for regression. However, unit-level regression lacked accuracy, so bound-
ary refinement was performed. More refined results were obtained by using the regression
and classification outcomes from the previous step as input. The number of repetitions was
determined experimentally. In [87], cascaded boundary refinement was conducted based on
the same concept. Specifically, they aimed to improve the boundary in the boundary-based
approach. The boundary-based approach involves detecting an action among all possible
temporal location combinations in a video with a uniform temporal interval, and the precise
boundary is influenced by how the temporal interval is configured. However, it was argued
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that small intervals increase the computational cost, making the entire process inefficient. To
address this issue, additional boundary refinements were performed to obtain accurate bound-
aries without increasing computational complexity. Ultimately, a cascade boundary refine-
ment (CBR) module was proposed, and it was executed iteratively to output finer boundaries
for the proposal. In [88], the authors attempted to address the refinement problem by utilising
the dependency between feature vectors. To achieve this, local and global dependencies were
calculated using cosine similarity. Local dependency is determined using similarity within a
specific window, while global dependency is calculated using similarity with the entire input.
Each feature vector is encoded to include both local and global information. With this en-
coding method, a regression module predicted more precise boundaries, where frame-level
and segment-level boundary regression work complementarily. Lastly, complementary and
progressive boundary refinement was performed by repeatedly applying this method.

Both methods have been experimentally proven to detect more accurate boundaries; how-
ever, they have their respective challenges. The coarse-to-fine method necessitates additional
model design, while the progressive method requires determining the optimal number of it-
erations for refining the boundaries.

2.3.5 Elimination of Duplicate Result

Many temporal segments with only slight differences in location share numerous similar char-
acteristics. These areas have comparable scores during the inference step, resulting in the
generation of many similar outputs. To address this issue, numerous researchers implement
additional post-processing techniques or incorporate modules that prevent the learning algo-
rithm from producing redundant outputs.

Post-processing The most widely used method for eliminating redundant detection in
TAL is non-maximum suppression (NMS). NMS is an algorithm that selects a single entity
by retaining only the entity with the maximum value among those in similar positions while
removing the rest. Traditionally, it has been employed in computer vision for edge detec-
tion tasks, where it is used to make bold edges thin [89]. The application domain of this
algorithm has expanded to cover multiple detection tasks, effectively removing redundant de-
tection results. Specifically, in the field of object detection, it has been used to select one of
the overlapping bounding boxes, exhibiting excellent performance. In action detection, the
same method is adopted to address the issue of redundant detection.

NMS is primarily categorised into two types: hard NMS and soft NMS. Hard NMS rep-
resents the original form of this algorithm, retaining only the entity with the maximum score
and suppressing all other entities. Upon selecting an entity with the maximum score, highly
overlapped entities are removed using a predetermined threshold applied to the remaining
entities. During this process, intersection over union (IoU) is used as an evaluation criterion
for object detection, while temporal intersection over union (tIoU) is employed for action
detection. However, due to the algorithm’s nature of removing overlapped entities using a
predefined threshold, a problem arises when closely existing objects or actions are removed,
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leading to misses. To address this issue, soft NMS has been proposed [90]. Soft NMS holds
duplicate entities by decaying their corresponding scores instead of completely removing
them.

NMS is a simple yet effective method that is widely employed in both object detection and
action detection [70].

No post-processing

While NMS demonstrates excellent performance in removing redundant detection, it has
the drawback of necessitating a separate pipeline. In deep learning, end-to-end networks offer
the advantage of consolidating learning and testing within a single network, eliminating the
need for separate processes. However, integrating NMS into learning is challenging, and it is
typically employed as an additional step during inference time. To overcome these limitations,
methods have been proposed for conducting learning without generating duplicate entities.

These efforts were first attempted in the field of object recognition. In one study [91],
researchers tried to directly implement NMS as a convolutional network. They proposed
a module that generated pairwise representations for all detection results and re-scored the
current detections using them. Another study [92] addressed this problem by formulating
it as a classification problem that distinguished between correct and duplicate detections.
Similar to a network module primarily performing object detection, a classification module
was inserted and generated scores indicating whether each detection was correct. The initial
detection scores were then decayed by multiplying the scores. In these approaches, the goal
of creating end-to-end trainable networks was achieved by rescaling scores during training,
similar to soft NMS.

Alternatively, the problem was treated as an assignment problem that assigns one entity
among several redundant detections to a single ground-truth annotation. In one study [93],
the Hungarian algorithm [94] was utilised. Direct prediction was performed without post-
processing, such as NMS, by applying a loss function based on bipartite matching between
ground truth and prediction. Adapting this idea for action detection, another study [66] ad-
dressed the duplicate detection problem through bipartite matching as well. However, unlike
object detection, multiple detected action proposals were permitted to be assigned to a single
ground truth in action detection. The reason for this is that generating temporal action pro-
posals is more ambiguous than defining bounding boxes for an object, as actions may occur
intermittently in a video or span the entire video, making it difficult to assign a single entity
to a ground truth. The researchers believed that forcing proposals to match only one ground
truth could have a detrimental effect on obtaining a stable solution.

Indeed, the two methods mentioned above appear to be attempts to implement the concept
of NMS as an end-to-end approach. Rescaling the scores during training is akin to soft NMS,
while retaining a single detection result through matching is a form of hard NMS.
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2.4 Miscellaneous on Temporal Action Localisation

Action detection in untrimmed video is typically performed using the techniques described
in Sections 2.2 and 2.3. For example, anchor-based methods employ a sliding window strat-
egy to traverse a long video using predetermined anchors, while anchor-free methods use a
multi-scale structure such as a feature pyramid for direct offset prediction on a single vector.
Additionally, boundary-based methods rescale the entire length of the video using linear inter-
polation to handle long videos, and evaluate actions for all possible combinations of temporal
spans. These techniques provide ways to handle untrimmed video and model action segments
of varying lengths to detect actions.

In this section, an overview is provided of how the techniques mentioned above are utilised
in practice for action detection in untrimmed videos. Additionally, some additional topics
will be reviewed that were not covered in the previous sections, such as how to utilise context
information outside of the action, strategies for implementing TAL, learning supervision,
evaluation metrics used to compare performance, and widely used datasets.

2.4.1 Temporal Proposal Generation

Initially, anchor-based methods were the primary focus in action detection, thanks to the
success of using anchor boxes in object recognition. In one study [60], action detection
based on a sliding window was performed using multiple anchors. To compensate for the
inaccuracies of boundary detection based on the stride of sliding windows and the config-
uration of anchors, boundary regression was performed in addition to binary classification.
In contrast, another study [55] utilised grouping-based proposal generation using actionness
scores. After generating initial proposals based on the scores and creating a proposal-level
representation through structured temporal pyramid pooling, two types of classifiers were
employed: one for predicting the class of each proposal and another for determining the com-
pleteness of each class. Furthermore, the class-dependent boundary regression module was
employed to obtain more precise results. The above-mentioned methods utilise top-down
and bottom-up approaches, respectively. For fine-grained detection, it would be beneficial
to perform bottom-up detection using frame-level or snippet-level representations. However,
this representation method contains only a small amount of information, leading to unstable
detection results. Conversely, top-down methods such as anchor-based methods can obtain
more stable results by performing detection in units of temporal segments, but this approach
has the disadvantage of inaccurate boundary detection. In another study [58], researchers
attempted to compensate for the limitations of each approach by leveraging their respective
strengths. First, two types of proposal generation were performed using both anchor-based
and grouping-based methods. As these two types of results can detect actions that may be
missed in each method, both types of results were merged and used as input for subsequent
steps, such as action recognition and boundary refinement.

The methods mentioned above treat all data equally when creating a proposal-level rep-
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resentation. However, in recognising an action, there may be more or less important parts of
the data. In one study [62], an attention mechanism was applied to the anchor-based method.
Temporal attention was applied to suppress insignificant parts within the action sequence,
thereby improving classification performance. In another study [84], a different approach
was taken to the bottom-up method. The researchers believed that the feature vectors con-
stituting one action would be related to each other and attempted to learn this relationship.
Pyramid pooling was utilised to address multi-scale issues, and channel-wise and temporal-
wise non-local operation blocks were proposed to discover the relationship using the attention
mechanism.

In general, anchor-based methods evaluate whether a corresponding region has a high
probability of containing an action in units of temporal segments. Boundary-based methods,
on the other hand, additionally calculate the probability of a corresponding region being a
boundary of the action. For instance, BSN [67] predicted the boundary score and used it to
generate proposals. The boundary scores were then multiplied by the actionness score during
proposal ranking to increase reliability. This method was further improved upon in BMN [68].
In BSN, action proposal generation was divided into several stages and was not consolidated
into a single model. To address this limitation, a score map was created in BMN, which
allowed for the calculation of the actionness score before setting proposal pairs. This allowed
the entire process to be carried out in a single unified model. In another study [77], while the
previous two studies concatenated the two types of data (RGB, Flow) and treated them as a
single data stream, better results were achieved by handling each data type independently and
performing proposal generation through late fusion. In yet another study [70], to address the
issue of unstable boundary scores, the scores were supplemented by utilising boundary scores
detected in the reverse direction. The utilisation of boundary scores significantly contributed
to improving the performance. However, these approaches have the disadvantage of requiring
a large amount of memory due to the output in the form of a map.

The methods mentioned above rely on the data surrounding the boundary to detect the con-
text before and after the action, which can capture the local context. However, this approach
may be insufficient for detecting the boundary due to the ambiguity of the action boundary.
To supplement this, global context was utilised. The success of transformer architecture in
the field of natural language processing has made it possible to efficiently apply attention
mechanisms. This is useful for creating global context feature vectors since it can compute
attention weights for the entire input sequence. In [66], various techniques were combined to
comprehensively address existing limitations. The researchers used a transformer architec-
ture for efficient context aggregation and predicted offsets directly, without utilising anchors.
Additionally, in order to eliminate the need for post-processing, duplicate results were not
produced by using Hungarian matching. While this method greatly improved performance,
it still exhibited poorer performance compared to object detection, indicating that many po-
tential issues still exist in TAL.
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2.4.2 TAL Strategy

In TAL, there are two main approaches to achieving the ultimate goal of detecting and recog-
nising actions in untrimmed video: the pipeline method and the end-to-end method.

The pipeline method, also known as the multi-stage method, solves TAL by dividing it
into several stages. The most representative of these is a two-stage approach that proceeds
by dividing it into action detection and action recognition. Studies that deal with Temporal
Action Proposal Generation (TAPG) in the literature can be said to belong to this approach, as
TAPG is the first step of the two-stage approach. This step does not use class labels because it
only deals with action detection in a class-independent way, detecting actions by distinguish-
ing between background and foreground. The detected action proposals are used as input for
the next step, action recognition, and are refined more precisely while assigning action labels.
For the second step, any algorithm can be used. For example, in UntrimmedNet [95], each
detected action was treated as a single video clip and classified using a video-level classi-
fier. In p-SCNN classifier [96], direct recognition of action proposals is performed using a
proposal-level classifier. By separating the first detection step from the recognition step, the
pipeline method becomes more versatile. The results of proposal generation can be used as
input for an action recognition algorithm or other algorithms for other purposes, increasing
the reusability of existing recognition algorithms. Additionally, since the pipeline method is
divided into several steps, the overall performance can be increased by replacing a specific
step, or the problem can be divided into smaller units using a divide-and-conquer strategy.
However, there is a disadvantage to this method, which is that each step must be separately
prepared and tested, which can be inconvenient.

The end-to-end approach, also known as the one-stage method, solves the goal of TAL,
action detection and action recognition, with one learning algorithm. With this approach, the
action detection and recognition result can be obtained using one learning model without the
need for a separate additional process, making the preparation process simpler and the final
result more immediate. Due to these advantages, recent research trends have increasingly
focused on end-to-end approaches. In the past, the performance of end-to-end approaches was
worse than the pipeline approach, but recent studies have shown more advanced results due
to various efforts. As a result, attempts to achieve better performance with simple methods
are continuously being made.

2.4.3 Supervision Learning

Ground-truth labels are provided for datasets used for training. Depending on the type and
number of labels provided, there are four types of learning: supervised learning, semi-supervised
learning, weakly-supervised learning, and unsupervised learning. From the perspective of
TAL, the labels included in the dataset are temporal annotations indicating the start and end
points of actions, and class labels indicating what the action is.

(Fully) supervised learning is applicable when both temporal annotations and class labels
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are provided for all available data. All the studies mentioned in this chapter fall under this
category. However, annotating untrimmed videos can be a tedious and time-consuming task,
leading to increased attention towards other learning supervision methods. Semi-supervised
learning is a scenario where temporal annotations and class labels are provided only for a part
of the dataset [97]. With the recent increase in the amount of available datasets and videos
on the internet, this method has been developed to further utilise unlabelled data based on
previously labelled datasets. This method relies on accurately assigning pseudo-labels to un-
labelled data based on existing labels, and then performing the learning process to further
advance the model like in fully supervised learning. Weakly-supervised learning is a tech-
nique used when action labels are available in videos, but corresponding temporal annotations
are unknown [98]. In this approach, similar segments are identified by calculating similar-
ity between videos, separated into actions of the same category, and appropriate labels are
assigned to the corresponding segments. Unsupervised learning is used when no annotation
information is provided [99]. In such cases, it is impossible to recognise a specific action
as there is no action label information available. Instead, actions in the same category are
detected by using similarity matching between videos.

Depending on the amount and type of labels provided, the supervision used for learning
changes, and the fewer labels of ground-truths are available the more challenging it is. Alter-
natively, there is also a method called self-supervised learning. This method may look similar
to semi-supervised learning. The difference is that self-supervised learning uses labelled data
to create additional data and assigns the original data labels to this data to enrich the dataset.

2.4.4 Evaluation Measures

In this section, the metrics that are used to evaluate the performance of information retrieval
are explained. First, the basic concepts are introduced, and the individual evaluation metrics
that are frequently used in TAL are considered.

• Basic Concepts

For the convenience of explanation, a binary classification example will be considered.
In a classification problem, the cases can be divided into the following confusion matrix
(Table 2.2).

Table 2.2. Confusion matrix of four outputs in binary classification.

Actual
True False

Predicted True True Positive (TP) False Positive (FP)
False False Negative (FN) True Negative (TN)

TP represents a true positive that predicts a value that is actually true as true, while FP
represents a false positive that predicts a value that is actually false as true. FN is a false
negative that predicts an actual true value as false, and TN is a true negative that predicts
an actual false value as false. In other words, TP and TN are correct predictions, while
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FP and FN are incorrect predictions. These four parameters are used to evaluate the
performance of different models in solving classification problems.

Recall

Recall, also known as sensitivity or hit rate, refers to the probability of correctly classi-
fying the ground truth, which is the proportion of actual true values predicted out of all
true values. The formula can be represented as follows:

Recall =
TP

TP + FN
(2.1)

Recall has a value between 0 and 1, and a high recall score indicates that most ground
truths are predicted correctly. However, a high recall score does not necessarily indicate
the most ground truths are predicted correctly since it does not deal with TNs. For ex-
ample, if a dataset with a total of 200 samples has only 10 true samples, and the classifier
predicts 100 samples as true, including these 10 samples, it cannot be considered a clas-
sifier with good performance. This is because the remaining 90 samples are incorrect,
despite the recall score being 1.

Precision

Precision, also referred to as the positive predictive value, represents the proportion of
true positive predictions out of all predicted positive values. It measures the accuracy
of positive predictions and is calculated as:

Precision =
TP

TP + FP
(2.2)

Precision, like recall, has a value between 0 and 1, and a high precision score means
that most of the results predicted to be true actually have a true value. This metric does
not detect misses. For example, if there were 50 predictions that were predicted to be
true in a dataset containing a total of 45 true samples, but only 40 of them were actually
true, it would have a high precision score of 0.8, but it would not indicate that five true
samples were missed.

Accuracy

Accuracy is the percentage of all samples that are predicted correctly, regardless of
whether they are true or false. While recall and precision focus only on correctly pre-
dicting true samples, accuracy also considers the correct prediction of false samples.
The formula for accuracy is as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(2.3)

The accuracy metric is commonly used to evaluate the performance of a classifier In a
straightforward manner. However, it can be influenced by class imbalance in the dataset,
where the dominant class can dominate the evaluation. Hence, a metric that can com-
pensate for class imbalance is required.
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F1-score

The F1-score is a metric that can deal with the class imbalance problem and make up
for the disadvantages of precision and recall mentioned above. It is a harmonic average
of precision and recall. The formula for F1-score is:

F1_score = 2× 1
1

Precision
+ 1

Recall

= 2× Precision×Recall
Precision+Recall

(2.4)

Intersection over Union (IOU)

IoU, also known as the Jaccard Index, is a metric that measures the overlap between the
predicted bounding box and the ground-truth bounding box. It is widely used in object
detection tasks, including TAL. The IoU score represents the accuracy of detection,
where a higher value indicates a better match between the predicted and ground-truth
bounding boxes. The IoU can be calculated using the following formula:

Intersection_over_union(IOU) =
predicted_box ∩ ground_truth
predicted_box ∪ ground_truth

(2.5)

In the detection task, if the IoU value is greater than a certain threshold value, it is
considered to be correctly detected. TAL utilises tIoU, which is a version of IoU that is
applied temporally.

• Evaluation Metrics for TAL

In literature, TAPG and TAL are evaluated using different metrics. Average Recall (AR)
and Area Under the Curve (AUC) are used for TAPG while mean Average Precision
(mAP) is used for TAL. These metrics will be explained.

Average Recall (AR)

This metric is used to evaluate the performance of TAPG and represents the recall score
when Np proposals are given. The networks for action proposal generation generate
numerous proposals. Even if duplicates are removed using techniques such as NMS,
a considerable number of proposals still remain. By limiting the number of proposals,
it is possible to evaluate whether accurately detected proposals receive a high-ranking
score. This metric is denoted as AR@AN (average recall given the average number of
proposals). For instance, when the performance of two models is expressed as AR@10
and AR@1000, it means that the model with a high recall score in AR@10 assigns a
high score to the correct proposal. On the other hand, a model with a high AR@1000
indicates that it can detect more ground truth when a large number of proposals are
given.

AN =
total number of proposals

total number of videos in the testing subset
(2.6)

ARNp =
sum of recall per video given Np proposals

total number of videos
(2.7)

Area Under the Curve (AUC)
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Among the indicators used to evaluate the performance of a classification model, the
plot measuring the performance of the model at various threshold values is called the
AUC. The receiver operating characteristic (ROC) is a graph that shows the performance
of a classification model at all threshold values, and the AUC refers to the area under the
ROC curve. In the context of TAPG, the x-axis of the ROC curve represents the average
number of proposals per video (AN), while the y-axis represents the AR. The ROC curve
can draw one curve according to a specific threshold and calculate the corresponding
AUC. Instead of calculating AUC for a specific IoU value, AUC for a range of IoUs is
calculated. In general, for the detection task, it is judged that a result has been correctly
detected if the IoU value is 0.5 or greater. Therefore, AUC is calculated using an IoU
threshold in the range [0.5, 1] and used to evaluate the overall performance of the model.

mean Average Precision (mAP)

The mean average precision (mAP) is the average of the Average Precision (AP) scores
for each class, and it is the most commonly used metric for evaluating the performance
of TAL models. Specifically, when a single video is given, the precision of a particular
class can be calculated as follows.

P =
TP

TP + FP
=

number of correctly predicted proposals
total number of predicted proposals

(2.8)

However, since one video may include several action classes, precision can be calculated
for each class. Using these precision values, the AP can be calculated as follows:

AP =
sum of precision of all classes

total number of classes
(2.9)

The final performance evaluation of TAL in a dataset, which typically contains a large
number of videos, is measured and compared using mAP.

mAP =
sum of average precision of all classes
total number of videos in testing set

(2.10)

In general, when tIoU is 0.5, mAP is used for performance comparison.

2.4.5 Benchmark Datasets

Although there is no official benchmark for TAL, many researchers use THUMOS14 and
ActivityNet 1.3 to report algorithm performance. THUMOS14 is a dataset that was used in
the THUMOS Challenge 14, held at the European Conference on Computer Visoin (ECCV)
14, and has since been used for benchmarking with the evaluation setting still being adopted.
Similarly, the ActivityNet dataset was used for the international challenge on activity recog-
nition held together with the Computer Vision and Pattern Recognition (CVPR) conference.
After releasing v1.2 in 2015, it was expanded and v1.3 was released in 2016. Since then, it
has been widely used as a benchmark along with THUMOS14. In this thesis, ActivityNet
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v1.3 and THUMOS14 are mainly used as benchmark datasets. There are also other large-
scale datasets such as MultiTHUMOS, Charades, and HACS. These are all introduced in this
section.

THUMOS14[11]

The THUMOS14 dataset was created for the purpose of action recognition and temporal
action detection. It includes 254 hours of video data and 25 million frames, and is divided
into a training set, a validation set, and a test set. The training set uses the UCF101 [100]
dataset, which consists of 13,320 temporally trimmed videos for 101 action classes. The val-
idation and test sets consist of 1,010 and 1,574 temporally untrimmed videos, respectively.
The THUMOS14 dataset provides video-level annotation for action recognition on its sets,
and temporal annotation for only 20 sport-related classes for temporal detection. The valida-
tion set and test set each contain 200 and 213 videos respectively, corresponding to these 20
classes. Since the training set lacks temporal annotation and untrimmed videos, researchers
use the validation set for training models to leverage untrimmed videos and evaluate perfor-
mance on the test set.

ActivityNet v1.3[2]

ActivityNet is the second largest dataset for temporal action detection. It was created
to target 100 action classes in 2015 and was later expanded to 200 classes in 2016. The
dataset comprises 19,994 untrimmed videos with a total duration of 849 hours. It consists
of 10,024 training videos, 4,926 validation videos, and 5,044 testing videos. It provides
temporal annotations for a total of 23,064 instances, with each video having an average of 1.41
action instances. However, ground-truth annotation is not provided for the test set. Hence,
many researchers train the algorithm on the training set and report performance using the
validation set in the testing phase.

HACS[101]

The HACS dataset is composed of two parts: HACS Clips for action recognition and
HACS Segments for temporal action detection. HACS Clips contains 1.5 million video clips,
while HACS Segments provides 139,000 temporal annotations on 50,000 untrimmed videos.
Like ActivityNet, the dataset targets 200 action classes.

MultiTHUMOS[102]

The MultiTHUMOS dataset was created by extending the THUMOS14 dataset to include
multi-label classification. It consists of 400 videos with a total length of 30 hours and includes
38,690 temporal annotations for 65 action classes. In contrast to the previous dataset, each
action instance has an overlap, with an average of 1.5 labels per frame, and an average of 10.5
action classes per video.

Charades[103]

The Charades dataset is a large-scale dataset that targets common indoor activities. It
comprises a total of 9,848 untrimmed videos and 157 actions that have been collected from
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267 people. Each video is about 30 seconds long, providing 66,500 temporal annotations
with each instance being 12.8 seconds long on average. Additionally, the dataset provides
41,104 labels for 46 objects and 27,847 descriptions for each video.

2.5 Summary

In this chapter, the task of TAL was reviewed. TAL is a crucial component of video under-
standing. Unlike previous survey papers that classify algorithms based on their characteris-
tics, in this literature review, the adopted approach was to examine the different components
required for research in this field and the corresponding techniques. The field of TAL con-
sists of multiple tasks, including regression to accurately find the boundaries of an action
and classification to recognise the action itself. The process of action detection begins with
converting the video into a vectorised feature representation. To achieve this, action recog-
nition models are utilised as a backbone for representing video, and researchers are working
towards creating more suitable backbones by modifying or fine-tuning pre-trained networks
specifically for action detection.

TAL involves detecting actions of various lengths efficiently in long videos. To achieve
this, techniques such as sliding window or video rescaling are used to search long videos
efficiently, and anchors, which are predefined temporal segments of a specific length, are
used to evaluate actions of various lengths. Alternatively, actions can be detected through
grouping, or through the direct prediction of left and right offsets in an anchor-free manner
using a pyramid structure with multi-scale features. The boundary-based method predicts the
probability of being a boundary to detect action boundaries, and action detection problems
of various lengths is addressed by learning the relationship between feature vectors using a
graph structure.

In addition to detecting action boundaries, TAL also requires the ability to perform other
tasks such as classification and regression. To achieve this, a method of representing propos-
als as action candidates is needed. Typically, a proposal-level vector is created by applying a
convolution or pooling operation to the feature vectors between the starting and ending points
of the proposal. To improve efficiency, sparse sampling is used to reduce the number of fea-
ture vectors, and structured pooling is used to preserve the temporal ordering of the features.
Additionally, a weighted pooling approach can be used to suppress unimportant information
through an attention mechanism.

Due to the ambiguity of the action boundary, boundary refinement is optionally performed
for more accurate detection. This problem is addressed in the regression branch of the action
detection model, or additional refinement is performed using the initial proposals. After
completing action proposal generation, duplicate detection results are removed through non-
maximum suppression. Although attempts have been made to eliminate this post-processing
process, it still relies on NMS.

In the literature, there are many benchmark datasets available for TAL. However, even al-
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gorithms that currently report excellent performance use different hyperparameters depending
on the dataset’s characteristics and traverse the video in different ways. Furthermore, com-
pared to the performance of other similar fields, such as object detection, the performance of
TAL is not yet sufficient. This implies that there are still many potential problems in the field
of TAL.
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Chapter 3

Investigation on Challenges in Pipeline

TAL – Comparative Study

New research papers are consistently published every year, and they report their perfor-
mance on benchmarking datasets to demonstrate the effectiveness of their work. They achieve
better results by either enhancing existing algorithms or proposing new methods that are more
suitable for action detection. However, these papers often claim their superiority by com-
paring the AR value with the state-of-the-art. As a result, it can be challenging to identify
potential limitations that may impede further advancements, despite the proposed methods
improving overall performance. In this chapter, factors that can positively or negatively af-
fect overall performance will be examined, rather than discussing concepts or ideas that can
contribute to performance improvement.

There can be many factors that affect the performance of machine learning algorithms.
These can include the distribution of data within the dataset, as well as the specific methods
used to solve a problem. If a dataset is composed of samples that accurately represent the task
domain, even a small dataset can yield excellent results. Conversely, a dataset with biased
characteristics, even if it contains a large number of data, may yield low performance when
training a model. To identify potential factors that affect performance, this chapter explores
five scenarios through experiments. Although these factors are not necessarily fatal problems,
they should be considered in future research. The five investigations are as follows:

1. The relationship between detection and recognition performance

2. The effect of using multi-class labels on learning

3. The robustness to discontinuous actions

4. The relationship between multi-modal data and performance

5. Cross-corpora testing

3.1 The Relationship Between Detection and Recognition Performance

Studies in object detection have adopted a detection-then-recognition scheme, which first
detects an object and then recognises the detected object. This method has consistently
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demonstrated excellent performance over an extended period of time. Consequently, this
scheme has also been applied to multi-stage methods in TAL. In particular, the two-stage
method can be executed using the same procedure as object detection, making the detection-
then-recognition scheme a suitable approach for performing pipeline methods in TAL. In
TAL, proposal generation (corresponding to the detection phase in object detection) aims to
find the boundaries of actions in untrimmed videos, while recognition classifies the detected
actions into specific classes. Algorithms in multi-stage methods utilise the results of previous
steps as inputs for subsequent steps. As a result, it is reasonable to expect that the outcome of
action recognition will be influenced by the performance of proposal generation. In the first
step of the two-stage method, TAPG, significant efforts have been made to improve detection
performance with the expectation that advancements in this area will lead to overall improve-
ments in TAL. This is because action recognition has made more progress than TAPG, the
results of which can be used as input for action recognition in TAL. The input data for action
recognition consists of trimmed video clips containing a single action. This data does not
include background information unrelated to the action, and almost all the clips start at the
beginning of the action and end at the final boundary, revealing that actions are arranged in
units of video clips. In contrast, in TAL, the recognition process commences after an action
has been detected in untrimmed video. Therefore, the outcome of action detection can be
viewed as a step to create trimmed video clips used in action recognition. As the results in
the detection step become more accurate, the detected actions will yield well-aligned action
segments, similar to trimmed video clips. This, in turn, can lead to improved performance of
the entire TAL process by enhancing the results of action recognition.

In this sections, the performance between TAPG and TAL will be compared to verify
TAL is affected by TAPG. In addition, to find out the relationship between the performance
of TAPG and that of TAL, the result of the experiments will be further investigated.

3.1.1 Research Question

It is easy to assume that the accuracy of action detection in the two-stage method can lead to
improved action recognition results. If so, the enhancement in action detection performance
would consistently result in better action recognition. Among several TAPG algorithms, can it
be said that the algorithm with the best performance consistently exhibits superior recognition
performance? Based on this, the following questions can be asked:

• For 2-stage TAL, TAPG has been improved for better detection performance, and the
overall TAL performance is measured by the output of the subsequent recognition.

– When the performance of proposal generation is improved, will the performance
of recognition be also improved?

– Is there any relationship between the performance of proposal generation and that
of recognition?
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The above question aims to determine how the results of action detection impact the out-
comes of action recognition. Due to the ambiguity of action boundaries, accurately detecting
actions is challenging. Consequently, it is also quite difficult to create data, such as trimmed
video clips, through proposal generation. In this context, it is believed that the influence
of the proposal generation results on the overall TAL outcomes will vary according to the
performance of the algorithms. Some proposal generation algorithms may exhibit high over-
all performance (AR), but they might miss target instances under stricter criteria. Due to
these characteristics, it is meaningful to explore the relationship between the results of action
detection and action recognition. In this section, the aim is to uncover this relationship by ex-
amining how action recognition outcomes differ when using proposal generation results with
varying characteristics, produced by several existing temporal action generation algorithms.

3.1.2 Experimental Settings

To investigate the relationship between proposal generation and the subsequent task (recog-
nition), different sets of proposals are required to display various aspects, as well as action
recognition algorithms. To prepare these sets of proposals, four existing TAPG algorithms
were employed: BSN [67], BMN [68], DBG [77], and BSN++ [69]. All four of these algo-
rithms belong to the boundary-based method and exhibit differing performances. Boundary-
based models have reported better performance than other models, so among them, four mod-
els having similar TAL performance were chosen. For recognition, the proposal-level classi-
fier p-GCN [104] was used. This accepts proposal-level information as input, so it is suitable
for the pipeline TAL task. Once initial proposals are provided, this recognition algorithm
generates and recognises proposal-level feature vectors from feature sequences.

In this experiment, action proposals obtained from the four TAPG algorithms mentioned
earlier were used as initial proposals for recognition. The investigation was to how recognition
results vary based on different initial proposals. To obtain more diverse results from each
TAPG algorithm, two feature extraction algorithms were employed: the TSN [105] and I3D
[46]. All currently published TAPG algorithms produce varying results depending on the
feature extraction method used. This is because the information contained in features differs
according to the chosen feature extraction methods. In published papers, C3D[40] and the 2-
stream network are widely used for feature extraction. However, the feature extraction method
currently favoured by many researchers is the 2-stream network (e.g. TSN, I3D). Thus, for
a more general comparison, feature vectors generated by the 2-stream network were used.
As different results can be obtained depending on the type of feature, more diverse initial
proposals can be acquired by utilising feature vectors generated by various feature extraction
methods.

The experiment was conducted on the THUMOS14 dataset. This dataset provides a train-
ing set, validation set, and test set; however, the training set does not include temporal annota-
tion, as it consists of trimmed video clips. Following a convention in the literature, the TAPG
model was trained on the validation set and evaluated on the test set. Feature vectors was ex-
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tracted every 5 frames. To use different types of input vectors, the TAPG model was trained
on the two types of feature vectors (TSN and I3D). Since the goal was to investigate how
recognition results vary according to the proposal generation results, the parameters were not
optimised for training the TAPG model and instead used the parameters mentioned in each
paper. A sliding window technique was employed to retrieve actions in the THUMOS14
dataset. During this process, the window size (lw) was set to 128, and the overlap ratio is
0.5. This means that the window has a stride value of 64 and detects the action while moving
across the untrimmed video. This configuration covers the length of 98% of action instances.
all models were trained from scratch using the Adam optimiser, with a batch size of 16. The
learning rate was set to 0.001 for the first seven epochs of BSN++ and the first ten epochs of
the others. It was then decayed to 0.0001 for another ten epochs (BSN, BMN), two epochs
(DBG), and three epochs (BSN++). Soft NMS was performed to address redundant results.
For action recognition, the P-GCN classifier is used. This is a proposal-level classifier that
can accept proposals (the starts and ends of boundaries) as input. This classifier has its own
configuration, distinct from that of proposal generation. The configuration mentioned in its
original paper is used without changes. Each input video is uniformly divided into 64-frame
segments, and features are extracted using a two-stream inflated 3D ConvNet (I3D) model
pre-trained on the Kinetics [18] dataset. This model has different learning rates for the two
streams: 0.001 for the RGB stream and 0.01 for the Flow stream. This learning rate is divided
by 10 every 15 epochs. In the NMS stage, the total number of proposals was controlled such
that it does not to exceed 1500 per video.

3.1.3 Experiment Results and Analysis

The results of the proposal generation used as input are shown in Table 3.1. This table displays
eight different sets of proposals generated using two feature types (TSN, I3D) and four types
of TAPG algorithms (BSN [67], BMN[68], DBG[77], BSN++[69]). The results of the eight
proposals are presented in the form of AR, given 50, 100, 200, 500, and 1000 proposals.
As evident in this table, the eight sets of proposals exhibit different characteristics. The most
notable observation is that even when the same algorithm is employed, the performance varies
depending on the feature used.

The results of the action recognition using P-GCN with the initial proposals having eight
different properties are shown in Table 3.2. When training P-GCN, the I3D feature vectors are
generated using a different configuration from that of proposal generation, so the recognition
results are affected only by the initial proposals. Much work on two-stage TAL has focused on
improving the performance of proposal generation, assuming that better accuracy in proposal
generation leads to better performance In action recognition. However, the results in Table 3.2
indicate that this assumption may not hold true for action recognition. Figure 3.1 is a plot
designed to facilitate the comparison of proposal generation results and recognition results.
Since the total number of generated proposals from BSN is different from the others, the
results were compared excluding BSN to maintain equal conditions.
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According to Figure 3.1, AR@AN is the highest for BMN using TSN and the lowest for
BSN++ using I3D. However, the recognition results were the lowest in the average mAP for
BMN with TSN, while the recognition performance of BSN++ with I3D is relatively excel-
lent. To analyse these phenomena, the distribution of positive samples included in the initial
proposals was examined. Table 3.3 displays the number of positive samples included in each
set of initial proposals. The performance of BSN++ is noteworthy. In Table 3.1, AR@AN for
BSN++ is lower than those of BMN and DBG. However, in Table 3.2, the recognition results
show a similar level to those of BMN and DBG. As demonstrated in Table 3.3, even if the
TAPG performance is relatively low, the recognition performance can be improved if the num-
ber of positive samples accounts for a large proportion of the proposal set. When evaluating
proposal generation, all generated proposals are sorted according to their confidence scores,
and then the AR is calculated. However, when using initial proposals for the recognition task,
the TAPG scores were not taken into consideration, which may undermine the assumption
that better proposals lead to better recognition results. In other words, high-quality propos-
als might have low confidence scores. This can also be verified through the results of BSN.
The proposal set created using TSN is found to contain more positive samples than the one
generated using I3D. Consequently, the corresponding result of action recognition with I3D
is also better than that using the proposal set with TSN.

This experiment demonstrated that the performance of the final TAL when using the two-
stage method is influenced not only by the performance of proposal generation but also by
the number of positive samples included in the proposal set.

Figure 3.1. Average Recall (AR) and mean Average Precision (mAP) Results of proposal generation and
recognition using THUMOS14.

3.1.4 Summary and Discussion

In this section, how TAPG results affect the recognition of the subsequent task in the two-
stage (Pipeline) method was examined. To answer the first question, “When the performance
of proposal generation improves, will the performance of recognition also improve?”, ex-
periments were conducted using four types of TAPG algorithms and two types of features,
producing proposal sets with eight different average recalls. The experiment was performed
using the P-GCN classifier. In general, for pipeline methods, it was suggested that better re-
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sults in the previous stage lead to better results in the next stage. According to the results, it
holds true in general. However, in the two-stage TAL, it cannot be guaranteed that the action
recognition results are directly proportional to the TAPG results. TAPG is evaluated after
sorting the generated proposals, but there is a possibility that high-quality proposals have low
confidence scores. When training the classifier for the subsequent task, the scores of initial
proposals are not taken into account. As the answer of the second question, “Is there any
relationship between the performance of proposal generation and that of recognition?”, the
experiment in this section demonstrated that the more positive samples are in the proposal
set, the better the performance of the whole TAL (proposal generation + classification) when
the same number of proposals are provided.

In these experiments, it can be observed that high-quality proposals may have low confi-
dence scores. This implies that there are still undiscovered features and information hidden
in action detection, and there is much to be studied and improved in the future.

3.2 The Effect of Using Multi-Class Labels on Learning

In TAL, the labels used in the one-stage method and the multi-stage method contain differ-
ent levels of information. Since the one-stage method has the final goal of detecting an action
from untrimmed video and classifying it as a specific action, the ground-truth label includes
the timestamps of the start and end of the action, as well as the action name indicating the
class of the action. On the other hand, the labels in multi-stage methods include only target
information to be obtained at each stage. In particular, in the two-stage method, since the goal
in the first stage is to classify the foreground action from the background, the ground-truth
label set includes the timestamps of the start and end of the actions, but does not include the
specific action class names. Instead, the model is trained using a label indicating whether
each temporal segment is foreground or background. Until about three years ago, two-stage
methods were dominant in the TAL field, and TAPG was included as one of the challenges in
the ActivityNet challenge held at CVPR 2019. However, since 2020, the TAPG task has been
removed, and only the TAL task has remained, requiring researchers who plan to participate
in the competition to submit action timestamps and class labels simultaneously. Influenced
by this change, a number of papers have begun to be published using the one-stage method.

It is not that there were no studies adopting the one-stage method before 2019. There have
been attempts to solve the detection and recognition of actions simultaneously by propos-
ing an end-to-end model [106, 107]. However, since then, the multi-stage method has been
recognised as superior to the one-stage method in terms of performance. Recently, studies
adopting one-stage methods have begun to be dominant, and they are reporting similar or
superior results to those of multi-stage methods [85, 108].

With the advancement of the one-stage method and the removal of the TAPG task in the
ActivityNet challenge, it can be assumed that the one-stage method will gradually dominate
the research direction in the TAL field. As long as the one-stage method is superior in terms of
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performance, this method will be preferred over the multi-stage method because it is easier to
use and the results can be obtained immediately. It has been recognised that solving multiple
tasks at once in one model is more difficult than solving each problem separately after dividing
the whole task. So, in an effort to deal with the TAL problem by dividing the whole task into
easier, independent units, multi-stage methods have been preferred. However, the multi-stage
method requires a separate configuration of the experimental environment to solve each task,
and it cannot be guaranteed that the improvement of the result in the intermediate stage will
improve the result in the final stage. It also makes it more difficult for information used to
solve a problem in an earlier stage to be reused in a later stage.

3.2.1 Research Question

The one-stage method presented in the literature is not conceptually very different from
the two-stage method. However, when comparing the TAPG – which is the first stage of
the two-stage method – with the one-stage method, there is a noticeable difference. The
one-stage method performs multi-label classification and directly predicts the corresponding
class, while the TAPG performs binary classification to classify foreground and background.
Hence, the only difference in the output is the inclusion of specific action labels. Various tech-
nical skills, such as multi-scale modelling and proposal-level representation, can be shared
for both methods. Furthermore, the pre-trained model for TAPG is leveraged to initialise the
parameters of the one-stage method, and the modified one-stage model can be utilised for
other video understanding tasks, besides TAL. It would be interesting to examine the impact
of action labels on the performance of one-stage methods versus two-stage methods, which
share common internal modules. In light of this, the following question can be posed:

• Two-stage methods do not use action labels for action proposal generation, while one-
stage methods employ both temporal annotations and action labels.

– Are there any advantages of using action labels in terms of boundary detection?

The above question arises from the assumption that it is easier to extract features for each
action than to find common features for all actions. Different actions have unique character-
istics, and if treated as one class, various actions may be mistakenly classified as background.
However, if considered separately, the same action may be expressed in seemingly differ-
ent forms depending on the performer. Nonetheless, certain motions occur more commonly,
making classification easier. To verify the effect of action labels on boundary detection, an
experiment using an existing one-stage method was conducted.

3.2.2 Experimental Settings

The primary focus of the work presented in this section was to examine the impact of using
action labels on boundary detection. To achieve this objective, two experimental environ-
ments were required. The first involved completing the TAL task using an end-to-end model,
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such as a general one-stage method. The second involved generating temporal action propos-
als using a label that indicates whether it is foreground or background, without specific action
labels. All other conditions remained constant. The experiments were performed using the
THUMOS14 dataset.

For the case of using labels, the study employed existing one-stage methods, namely Ac-
tionFormer [109] and AFSD [85]. AFSD is a model that was introduced in 2019 and demon-
strates comparable performance to multi-stage methods in an anchor-free manner. Mean-
while, ActionFormer, which is based on transformer architecture, demonstrates superior per-
formance to multi-stage methods and is considered a more advanced form. The investiga-
tion focuses solely on the effect of using labels on boundary detection, so Average Precision
(AP), which is used to evaluate the entire TAL task, was not used. To evaluate detection per-
formance exclusively, the study employs AR instead of AP. To compare boundary detection
performance exclusively, the classification results of each class were disregarded, and the out-
put from using multi-label classification was treated the same as that of TAPG. In the absence
of labels, the two algorithms mentioned above were adjusted. Rather than multi-label classi-
fication, binary classification was used solely for separating foreground from background.

3.2.3 Experiment Results and Analysis

Table 3.4. Results of temporal action proposal generation either with labels or without labels. Binary
classification without using specific class labels yields better outcomes in terms of boundary detection.

AFSD[85] ActionFormer[109]
with labels without labels with labels without labels

AR@5 14.25 14.97 15.49 15.71
AR@10 26.98 27.79 26.75 26.70
AR@50 53.02 54.32 55.68 56.31
AR@100 57.74 58.49 61.86 62.72

Table 3.4 presents the results obtained using AFSD and ActionFormer. Recall is calcu-
lated at 5, 10, 50, and 100 proposals. The first two columns of the table display the results
from AFSD’s algorithm, while the last two columns show the results from ActionFormer. The
findings reveal that binary classification without class labels yields better outcomes. Upon
closer inspection, marginally better results are obtained consistently when class labels are not
used, likely due to the added complexity of the problem when action labels are incorporated.
With action labels, the network model is tasked with solving both boundary detection and ac-
tion classification problems simultaneously, which is more complex than binary classification
without class labels.

3.2.4 Summary and Discussion

This section has presented an investigation of the impact of action class labels on perfor-
mance. The one-stage method, which is an end-to-end method, handles both boundary de-
tection and action classification of action classes in a single model, while the multi-stage
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method, which is a pipeline method, divides complex problems into simpler problems and
solves them step by step. Due to this difference, the one-stage method classifies actions
through multi-label classification, while the multi-stage method (particularly the two-stage
method) separates foreground actions from background scenes and assigns one of the ac-
tion labels to detected action segments. Based on this difference, the study raises a question
regarding the effect of using class labels on detection performance.

Intuitively, using class labels provides an advantage in that common characteristics among
the same classes can be used to distinguish between different actions. However, the exper-
iments presented in this section indicated that using multi-class labels is not helpful in de-
tecting action boundaries. Since multi-label classification is conducted simultaneously with
boundary regression, the complexity of the problem increases. In contrast, when class labels
are not employed, multi-label classification is simplified to binary classification, reducing the
complexity of the problem.

The experiments presented in this section indicated that considering only boundary detec-
tion, results for a simpler problem outperforms those of complicated one, and the complexity
of the problem can have a negative impact on detection performance. However, treating all
types of actions as one class prevents the utilisation of the unique characteristics of each ac-
tion. Moreover, employing several stages increases the complexity of the preparation process
and the procedures for obtaining the final result. This suggests that there is still room for
research on a method that can perform multi-label action classification without adversely af-
fecting the final detection result and an appropriate approach should be selected according to
a purpose.

3.3 Robustness to Discontinuous Actions

Due to the proliferation of the internet and the influence of various forms of mass me-
dia, countless videos are encountered every year. Scenes in these videos may be enlarged or
reduced to create a dramatic effect or enhance viewers’ understanding, and multiple scenes
can be overlapped. Moreover, as images are captured from multiple angles using multiple
cameras, a scene captured by one camera may transition to the viewpoint of another camera.
While such directing can be helpful in comprehending an event or context, it can pose a sig-
nificant obstacle in analysing human behaviour. An action consists of a continuous flow of
motions aimed at achieving a specific goal. Since it is impossible for a person to instantly
move from one place to another, human behaviour, in reality, does not occur discontinuously.
However, in videos, the continuity of actions may be disrupted due to video editing or abrupt
camera movements. Furthermore, the vast amount of information has led to the utilisation of
large-sized datasets in the field of machine learning. As a result, it is nearly impossible to di-
rectly create well-designed datasets. Consequently, video clips from films, TV programmes,
and social media are collected to construct these datasets. For this reason, they inherently
contain discontinuous action instances.

66



The continuity of action instances is valuable information for analysing and recognising
human behaviour. An individual’s next action can be predicted because they often adopt a
similar approach when pursuing a specific goal. Although each person may employ a different
method to achieve the same goal, what will happen next can still be anticipated based on
experiential knowledge. Furthermore, in sports activities like kicking or throwing a ball, it is
possible to predict the subsequent action by observing an individual’s movement at a specific
moment. Due to the human body’s structure, its range of motion is limited, and it is believed
that the next movement will smoothly follow the previous one, owing to the continuity of
action. This information is used to recognise human actions between consecutive images. As
a person moves, pixel colour values in the image are updated, and their movement path may
be predicted using the motion information of the same colour.

It can be reasonably expected that videos with disrupted action continuity may pose chal-
lenges in detecting and recognising actions. Consequently, addressing this issue will be a
crucial factor in enhancing performance. This section reports on an investigation directed at
identifying which method is more effective among the existing methodologies, specifically
comparing the anchor-based method and the anchor-free method.

3.3.1 Research Question

On the internet, there are numerous video clips edited by individuals. In such situations,
actions may not be continuous. Sometimes, irrelevant scenes are inserted within a single
action. On the other hand, from a methodological perspective, anchor-based (or boundary-
based) methods generate proposal-level feature vectors to calculate actionness scores, while
anchor-free methods construct a multi-scale feature structure and predict the left and right off-
sets, allowing them to examine the partial information of actions. These approaches employ
different strategies. The following research question was therefore suggested:

• Which approach is more robust to unwanted discontinuous situation?

• If one approach exhibits lower performance than the other, what is the reason behind it?

Since the anchor-based method evaluates temporal segments using all proposal unit in-
formation, if there is a discontinuous point within the action, this part is inevitably included
in the evaluation. In contrast, anchor-free methods detect actions by predicting offsets while
creating multi-scale features. As a result, the action is detected based on the incomplete in-
formation of the action. One consideration is that although using incomplete information
could be a disadvantage, the likelihood of avoiding discontinuous parts may increase. From
this perspective, the investigation was to know whether the different action detection meth-
ods, namely the anchor-based method and anchor-free method, are more robust in detecting
discontinuous actions.
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3.3.2 Experimental Settings

For the experimental set-up, publicly available anchor-based (or boundary-based) methods
and an anchor-free method were selected. The difference between anchor-based and boundary-
based methods is that anchor-based methods utilise a set of temporal segments with prede-
fined lengths, while boundary-based methods divide the video into fixed intervals and use
all possible temporal pairs. In other words, anchor-based methods employ the same set of
anchors at all locations, regardless of video length or time location conditions. Meanwhile,
boundary-based methods use only the temporal pairs that are actually possible, ensuring that
at the beginning and ending of a video, they do not exceed the video’s bounds. However, both
temporal pairs in anchor-based and boundary-based methods can be regarded as fixed-length
temporal segments. Temporal pairs in the boundary-based method can be seen as utilising
only the anchors that are actually possible. Therefore, in this experiment, the boundary-based
method is used instead of the anchor-based method algorithm, and the two terms will be used
interchangeably.

In the literature, only one anchor-free TAPG method has bee found, called RTD [66], so
RTD was used as an anchor-free method. BMN and BSN++ were used as boundary-based
methods. The experiments were conducted on the THUMOS14 dataset, and discontinuous
action segments were manually selected from the ground-truth action labels.

3.3.3 Experiments Results and Analysis

Figure 3.2. Three samples of discontinuous actions in THUMOS14 dataset caused by viewpoint change (first
row), occlusion (second row), and pause and insertion of text (third row).

Manually selected discontinuous actions are used to find out which method is more ro-
bust against discontinuous actions between the boundary-based method and the anchor-free
method. Examples of these actions are shown in Figure 3.2. In this figure, the first row shows
discontinuous actions due to a sudden change in viewpoint, and the second row displays cases
of occlusion caused by a passer-by. The third row is the case where the action pauses while
the action is taking place, and the character is inserted, disappears, and proceeds again. Video
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clips with disrupted action continuity will likely exist in datasets collected from the internet,
potentially hindering the analysis of continuous actions.

To determine which method is more robust in these discontinuous situations between the
boundary-based method and the anchor-free method, the AR for only discontinuous actions
is calculated. These results are shown in Table 3.5. In this table, the top two rows are from
the boundary-based methods, while the last row is obtained from the anchor-free method.
Based on these results, it can be inferred that the anchor-free method is more robust against
discontinuous action instances. Several reasons can be considered for this outcome. Firstly,
the boundary-based method evaluates whether an action is complete or not by using all infor-
mation included in the given temporal segments when performing proposal-level evaluation.
Consequently, even if discontinuous scenes are embedded within the action, there is no way
to avoid such scenes. On the other hand, anchor-free methods predict action segments using
a structure similar to a feature pyramid network. Each feature vector present in the feature
pyramid is likely to contain only partial information, rather than all information about the
action. Due to this, it is possible to avoid discontinuous scenes. Another consideration is
whether the impact of discontinuous scenes can be reduced using an attention mechanism.
Both BSN++ and RTD are algorithms based on the attention mechanism. Even when com-
paring the results of these two algorithms, the anchor-free method appears to be superior in
this experiment.

Table 3.5. Average recall of discontinuous actions.

Method AR@50 AR@100 AR@200 AR@500
BMN

Boundary-based
38.15 44.29 50.09 57.43

BSN++ 36.40 45.93 52.68 59.33
RTD anchor-free 42.85 51.55 57.72 65.61

3.3.4 Summary and Discussion

This section has reported on conducted experiments to determine which method is more ro-
bust against discontinuous action instances among anchor-based (boundary-based) methods
and anchor-free methods, which are approaches widely used for TAL in the literature. Ac-
cording to the experimental results, the anchor-free method appears to be more robust to
unwanted discontinuous situations. The reason for this is that the anchor-based (boundary-
based) method evaluates actions using all features within the given temporal segments, mak-
ing it impossible to avoid unexpected discontinuous scenes. On the other hand, the anchor-
free method may be more likely to avoid these discontinuous scenes because action instances
are predicted using a multi-scale feature representation. However, this characteristic of the
anchor-free method can also be a disadvantage. Multi-scale representation is highly likely
to lack complete action information. As a result, making predictions using incomplete infor-
mation may yield unstable results. For this reason, in the literature, anchor-based (boundary-
based) methods often outperform anchor-free ones in TAPG.

Three algorithms were used for the experiment. Due to the limited number of algorithms
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utilised, the results obtained here may not be representative of all anchor-based (boundary-
based) and anchor-free methods. However, the performance of each methodology in unex-
pected situations may provide insight into future research directions. It is anticipated that
more advanced results can be achieved if TAL is performed, taking into account the charac-
teristics of each methodology.

3.4 The Relationship Between Multi-modal Data and Performance

A person can easily determine what action is taking place by watching a video. This is
accomplished by combining latent knowledge learned from past experiences and the infor-
mation seen and heard from videos, while unconsciously processing complex information.
Although this complex process can be easily performed by humans, it is not simple to en-
able automatic execution through algorithms. To reason based on this complex information,
different data modalities would be used to analyse and learn human behaviour. The use of
different types of data is due to each type containing distinct information. Information that
can be directly utilised from videos is obtained from RGB channels. This represents the ac-
tions occurring in the video or the background scenes. Objects used in daily life may have
a unique colour or a specific pattern. All of this information is expressed through the RGB
channels. However, while the person who is the subject of the action cannot be considered
to have a unique colour, the colour is arranged in a shape similar to that of the human body,
which provides valuable information for analysing human behaviour. However, RGB chan-
nels also have the disadvantage of not being able to express changes over time. Although the
appearance of the person performing the action and the objects interacting with the person is
important, an action is not a static object. Therefore, it is necessary to understand the change
over time in how the target to be detected and recognised moves.

An action is a set of consecutive postures of a person. The set of positions and postures
of people and objects over time is important information about the progression of the current
action. Therefore, motion information of a person has been obtained using equipment such
as motion capture or the trajectory of specific parts, such as a person’s joints, and used as
motion information. In the TAL field using video, optical flow images are used for motion
information. Optical flow is an image that expresses the movement of the same pixel be-
tween adjacent image frames. Since the amount of change in motion can be expressed as the
position difference between the same pixels in an image, it is suitable for conveying motion
information. In an environment where the camera is fixed, it can be used to clearly represent
moving objects in an image. Due to the continuity of action, optical flow serves as a useful
means to obtain motion information for video understanding purposes. However, many of
the videos included in the dataset contain numerous discrete instances of action. How the
performance of TAL is affected by this situation may be a subject of inquiry.

Does using both types of data always benefit TAL’s performance? In this section, how
each type of data impacts performance will be examined.
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3.4.1 Research Question

Two types of modality are used as feature vectors (RGB and Flow). RGB is suitable for con-
veying appearance information, while Flow represents the motion of actions. Generally, many
papers have reported that overall performance is improved by using both types of modality.
However, discontinuous actions may appear as boundaries in the Flow data.

• Does Flow data always have a positive effect? Is it possible that, in certain situations,
Flow data could negatively impact performance?

Since the two modalities of data contain different information, they can be considered
helpful in improving performance through a complementary relationship. However, in the
case of discontinuous actions, motion information may not provide accurate information. In
particular, optical flow represents the continuous movement of humans. Therefore, it has
been considered as useful information based on the assumption that one action consists of a
series of postures. However, in the case of discontinuous actions, flow images cannot express
the continuity of actions. Actions do not progress smoothly at points where video editing
or a sudden change in camera viewpoint occurs, making it easy to observe a sudden change
of context or a different event. Therefore, these points are likely to be recognised as the
boundaries of actions. In these discrete actions, the results obtained from the utilisation of
RGB and Flow data separately versus their combination will be compared, and the influence
of each data type on performance will be examined.

3.4.2 Experimental Settings

To conduct experiments on multi-modal data, three TAPG models were used (BMN, DBG,
BSN++) on the THUMOS14 dataset. Feature extraction was performed by two types of two-
stream network (TSN, I3D). For feature extraction, pre-trained models were used. These can
be downloaded from the internet. Without any modification, the models were used to extract
the two types of data, RGB and Flow.

For both feature types, feature vectors can be obtained from RGB and Flow channels,
respectively. Firstly, three cases were set up to examine the performance of TAPG using
features obtained from different channels: 1) only RGB data was used, 2) only Flow data was
used, and 3) both channels were used. Additionally, to determine how these two types of data
affected performance in the case of discontinuous actions, the performance evaluation of the
discontinuous action used in Section 3.3 was also performed.

3.4.3 Experiment Results and Analysis

The results for the three cases on the test set of the THUMOS14 dataset are shown in Ta-
ble 3.6. In each model, only 1500 proposals are kept after the post-processing process. AR
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is calculated when 50, 100, 200, 1000, and 1500 action proposals are given for the six cases
using two feature types and three models. According to this result, performance is generally
better when using Flow data than when using RGB data. This can be seen as Flow data better
represents the characteristics of action over time compared to RGB data. When extracting
feature vectors using RGB frames, the entire image is used. Using RGB frames for feature
extraction includes not only the parts related to the action but also many unrelated parts such
as the surroundings. The THUMOS14 dataset comprises sports events scenes where athletes
are often shown in small sizes to capture the entire scene. As a result, more unrelated parts
are included in the image than action-related ones. In contrast, Flow data captures only the
moving parts in the video. Hence, if the camera is fixed, even if the actor doing the action is
small, the Flow data can capture their information well.

The above description indicates that both RGB and Flow data have their strengths and
weaknesses, and by combining them, they can compensate for each other’s limitations and
improve performance. Therefore, it is beneficial to use both types of data when performing
TAPG. However, it should be noted that in the case of discontinuous actions, the performance
improvement effect of using both data types is not significant compared to the case of con-
tinuous actions. This is because in the case of discontinuous actions, the Flow data used to
capture motion information may not accurately represent the action due to sudden changes or
camera movements.

The overall performance in Table 3.6 shows that using both data types is more beneficial.
Next, whether this holds true for discontinuous actions was tested. The results in Table 3.7
show a similar trend to the previous result, with Flow data outperforming RGB data even for
discontinuous actions. This is somewhat unexpected, as it had been assumed that Flow data
would not perform as well as RGB data in discontinuous actions. However, there are a few
cases where using both types of features did not result in better performance than using only
Flow data. Specifically, in the case of BMN with TSN and BSN++ with I3D, the AR@AN
using both types of features was lower than that of using only Flow data. It was speculated
that this may be due to the boundary-based models used in this experiment, which make
proposal-level feature representations through sparse sampling and may skip discontinuous
points.

Despite the unexpected results, it can be concluded that discontinuous actions have an
impact on detection performance. cases where using both types of features did not ensure
performance improvement in discontinuous actions were observed. Moreover, since only
boundary-based methods were used in the experiments, different results may be obtained with
anchor-free methods. In Chapter 4, this will be further investigated by using the proposed
framework.

3.4.4 Summary and Discussion

In this section, how two modalities of data, RGB and Flow, which are primarily used to
perform TAL, affect overall performance was investigated. RGB data contains colour infor-

72



Ta
bl

e
3.

6.
Re

su
lt

of
us

in
g

ei
th

er
RG

B
ch

an
ne

lo
rF

lo
w

ch
an

ne
lo

rb
ot

h
in

al
la

ct
io

ns
(T

H
U

M
O

S1
4)

Fe
at

ur
e

ty
pe

C
ha

nn
el

A
R

@
50

A
R

@
10

0
A

R
@

20
0

A
R

@
50

0
A

R
@

10
00

A
R

@
15

00
A

R
@

A
N

B
M

N

TS
N

RG
B

23
.8

7
30

.8
8

37
.9

4
46

.9
1

53
.8

1
57

.3
6

48
.1

3
Fl

ow
37

.0
9

44
.9

0
51

.6
7

59
.2

9
63

.8
6

66
.2

1
59

.3
3

B
ot

h
(R

G
B

+F
lo

w
)

37
.3

5
46

.0
3

53
.2

8
61

.3
2

66
.3

6
69

.1
0

61
.4

6

I3
D

RG
B

31
.6

9
39

.5
2

46
.7

3
55

.2
7

61
.2

3
64

.3
2

55
.8

9
Fl

ow
34

.4
6

42
.9

7
50

.3
4

58
.4

6
63

.8
7

66
.4

6
58

.8
0

B
ot

h
(R

G
B

+F
lo

w
)

37
.2

3
45

.4
3

52
.6

9
60

.3
0

65
.3

5
68

.1
0

60
.5

4

D
B

G

TS
N

RG
B

25
.1

7
32

.4
9

39
.5

2
47

.9
9

54
.2

2
57

.4
6

48
.8

7
Fl

ow
38

.1
6

46
.4

5
53

.2
7

60
.5

7
64

.0
5

65
.9

9
60

.0
0

B
ot

h
(R

G
B

+F
lo

w
)

36
.2

6
45

.2
7

52
.3

9
59

.8
2

63
.7

4
65

.6
1

59
.4

5

I3
D

RG
B

32
.9

3
40

.6
8

48
.2

5
56

.3
1

61
.0

4
63

.6
1

56
.3

3
Fl

ow
34

.8
8

43
.0

4
50

.9
1

58
.4

8
62

.6
0

64
.6

5
58

.1
0

B
ot

h
(R

G
B

+F
lo

w
)

38
.2

6
47

.1
9

54
.5

0
61

.7
6

65
.4

4
67

.1
4

61
.2

1

B
SN

++

TS
N

RG
B

23
.2

3
29

.5
6

35
.8

8
44

.5
5

51
.6

3
55

.4
6

46
.0

8
Fl

ow
34

.1
9

41
.4

2
47

.7
0

55
.7

6
61

.0
8

63
.5

6
56

.2
2

B
ot

h
(R

G
B

+F
lo

w
)

37
.3

8
44

.7
1

51
.2

2
58

.6
7

63
.1

6
65

.6
3

58
.8

1

I3
D

RG
B

28
.4

4
35

.1
7

42
.2

7
50

.3
2

56
.4

3
59

.7
4

51
.3

4
Fl

ow
32

.6
1

40
.6

7
47

.7
4

55
.8

6
61

.4
1

64
.1

4
56

.3
0

B
ot

h
(R

G
B

+F
lo

w
)

33
.4

0
40

.6
3

46
.5

6
53

.8
6

58
.8

6
61

.3
8

54
.3

6

73



Ta
bl

e
3.

7.
Re

su
lt

of
us

in
g

ei
th

er
RG

B
ch

an
ne

lo
rF

lo
w

ch
an

ne
lo

rb
ot

h
in

di
sc

on
tin

uo
us

ac
tio

ns
(T

H
U

M
O

S1
4)

Fe
at

ur
e

ty
pe

C
ha

nn
el

A
R

@
50

A
R

@
10

0
A

R
@

20
0

A
R

@
50

0
A

R
@

10
00

A
R

@
15

00
A

R
@

A
N

B
M

N

TS
N

RG
B

24
.0

1
29

.1
7

36
.9

1
47

.1
3

53
.7

2
56

.8
5

47
.7

4
Fl

ow
38

.8
1

47
.7

7
53

.4
5

60
.3

3
64

.1
8

67
.9

1
60

.2
7

B
ot

h
(R

G
B

+F
lo

w
)

35
.2

8
44

.1
9

50
.7

4
58

.5
6

65
.6

2
68

.1
3

59
.5

2

I3
D

RG
B

33
.7

7
43

.1
9

49
.3

6
56

.3
9

61
.2

9
63

.9
1

56
.5

4
Fl

ow
32

.4
9

39
.3

4
45

.1
4

55
.4

6
60

.8
4

63
.4

7
55

.5
8

B
ot

h
(R

G
B

+F
lo

w
)

38
.1

5
44

.2
8

50
.0

9
57

.4
3

62
.8

1
66

.2
1

58
.1

5

D
B

G

TS
N

RG
B

29
.0

4
39

.8
1

45
.0

3
52

.8
3

57
.6

1
60

.2
9

52
.9

7
Fl

ow
36

.4
9

49
.9

4
57

.9
7

63
.8

5
67

.3
1

68
.2

9
62

.8
2

B
ot

h
(R

G
B

+F
lo

w
)

31
.3

6
46

.8
1

53
.8

2
59

.7
5

62
.7

8
65

.6
1

59
.1

1

I3
D

RG
B

32
.6

4
43

.0
9

51
.5

8
59

.9
7

64
.7

8
65

.9
9

59
.4

2
Fl

ow
34

.9
4

46
.6

4
56

.5
4

63
.5

8
66

.7
6

68
.0

2
62

.2
8

B
ot

h
(R

G
B

+F
lo

w
)

35
.9

2
47

.6
8

57
.5

4
63

.3
8

67
.3

1
68

.3
5

62
.6

8

B
SN

++

TS
N

RG
B

32
.6

6
39

.8
3

45
.3

4
54

.2
7

59
.6

4
61

.8
3

54
.3

2
Fl

ow
36

.7
8

45
.6

9
50

.8
4

59
.0

9
64

.2
2

67
.3

6
59

.1
7

B
ot

h
(R

G
B

+F
lo

w
)

39
.0

6
45

.6
4

53
.8

7
61

.0
8

64
.6

8
68

.5
1

60
.7

6

I3
D

RG
B

30
.1

0
40

.4
3

46
.4

8
57

.6
1

61
.8

8
64

.9
5

57
.0

3
Fl

ow
33

.3
9

45
.0

9
52

.5
7

59
.5

1
64

.7
5

66
.2

6
59

.7
0

B
ot

h
(R

G
B

+F
lo

w
)

36
.4

0
45

.9
3

52
.6

8
59

.3
3

64
.5

7
66

.2
6

59
.5

3

74



mation that reveals the appearance of an action, while Flow data indicates how the scene
has changed by showing the movement of the same pixel between successive image frames.
These two data types are known to complement each other to improve performance. This
was validated using three TAPG algorithms. The experimental results demonstrated that us-
ing both types of data is more effective in enhancing performance than using only one type
of data.

Also, to analyse the effect in other aspects, the same experiment was conducted on dis-
continuous actions. Discontinuous actions were expected to have a negative effect on perfor-
mance as the continuity of actions is disrupted. In particular, since Flow data expresses the
movement of pixels, it had been assumed it would not be helpful in detecting actions when
an unexpected scene occurred or was inserted. However, the results were reversed, and the
assumption held true in only one case. Rather, there were cases where the results were good
when only Flow data was used. This is because proposal-level representation was made with
sparse sampling in the models, so discontinuous scenes may be ignored.

Although Flow data made a positive impact on performance in general, it was confirmed
that performance was influenced by the discontinuous actions. An case where RGB data is
better than Flow data was observed, so it can be concluded that Flow data is not always helpful
and negatively influenced by discontinuous actions. This will be further investigated with the
proposed model, and using both types of features tended to show enhanced performance.

3.5 Cross-Corpora Testing

Ideally, many researchers aim to develop algorithms that perform well in any given situ-
ation. However, it is almost impossible to collect all possible samples from domains related
to problems to be solved using data-driven methods such as machine learning. Thus, the
issue of generalisation becomes important in the field of machine learning. Even when ad-
dressing tasks such as TAL through learning-based methods, generalisation remains a signif-
icant challenge. Many papers in the literature report performance on benchmarking datasets
that are widely used by others to demonstrate the excellence of their research results. There
are various datasets available to detect and recognise human actions, as discussed in Sub-
section 2.4.5. These datasets differ in their target classes and class characteristics, making
them suitable for different purposes. For instance, THUMOS14 and ActivityNet are com-
monly used benchmarking datasets in this field. However, when reporting performance using
these datasets in most papers, different hyperparameters and configurations are set, and per-
formance is reported separately. This situation is not ideal, and it raises doubts about the
possibility of detecting action classes that were not used during training in a unified experi-
mental environment.

In the TAPG step of the two-stage (pipeline) method, action proposals are generated with-
out utilising class labels. This setting implies that there may be shared features that can be
used for classification across different actions. If this is the case, it raises the question of
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whether there are common features between unseen classes and seen classes. This section
reports on experiments conducted to examine this issue.

3.5.1 Research Question

To assess the generalisation performance of the model trained with seen data, the model is
evaluated on unseen data that share target categories with the seen data. The corresponding
results are used to demonstrate excellence in terms of generalisation. However, what if the
seen and unseen data have different target categories? Can the problem of generalisation in
such extreme cases be addressed? The datasets commonly used in TAL consist of different
target classes. Hence, the issue of generalisation between seen and unseen classes can also
be addressed. Therefore, the following research question can be formulated:

• How will models trained on different datasets perform when tested on a dataset that was
not used for training?

• What are the factors contributing to this performance difference?

This problem has already been addressed in a research topic called Transfer Learning.
Specifically, transfer learning is utilised to solve a problem by leveraging the learned knowl-
edge or information used to solve other or related problems. While this approach can be
used to solve new problems using learned knowledge, it requires appropriate updates for new
data through fine-tuning to acquire new knowledge. Therefore, if only the dataset is differ-
ent, can’t the trained model be used without additional procedures? To address this question,
experiments with models trained on different datasets was conducted.

3.5.2 Experimental Settings

To conduct cross-corpora tests, three types of TAPG algorithms (DBG, BMN, BSN++) were
used, all designed to solve the same problem. For this purpose, two datasets were prepared
to evaluate the performance of models trained on different datasets. ActivityNet and THU-
MOS14 are the most commonly used datasets for TAPG in the literature; hence experiments
were conducted using these two datasets. First, each model was trained using one dataset.
The released versions of the models were used without any modification, and untrimmed
videos were traversed differently depending on the dataset. For the ActivityNet dataset, a
sequence of feature vectors from the video was resized using linear interpolation, and the re-
sized length of videos was set to 100. For the THUMOS14 dataset, a sliding window scheme
was utilised. A window size (lw) of 100 was used, and a stride value of 50 was set to have an
overlap ratio of 0.5 between neighbouring windows. This configuration is compatible with
that of the ActivityNet dataset.

The testing set of the ActivityNet dataset does not include temporal annotations. There-
fore, following the reporting convention of other research work, the model was trained using
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the training set, and its performance was evaluated on the validation set. The training set
of the THUMOS14 dataset consists of trimmed video clips, making it impossible to obtain
temporal annotations or information about the context before and after the action. For this
dataset, following the convention used in other work, the model was trained using the valida-
tion set, and its performance was evaluated on the testing set. The experiment was conducted
according to the following procedure.

• The three models were trained on each dataset.

• Inference was executed using both a testing set included in the same dataset and a testing
set included in a different dataset using the trained model. For instance, a model trained
on the training set of the ActivityNet dataset was run on the validation set of ActivityNet
and the test set of the THUMOS14 dataset. The same approach was used for the other
cases.

• The performance was evaluated using the recall metric for the output of each case, and
a comparison was made.

3.5.3 Experiment Results and Analysis

The results of the cross-corpora test are presented in Tables 3.8 and 3.9. Table 3.8 shows
the results obtained from models trained on the training set of ActivityNet v1.3 and tested on
the validation set of the same dataset (i.e., unseen data of seen classes) and the testing set of
THUMOS14 (i.e., unseen data of unseen classes). As shown in this table, it can be observed
that the models were able to detect actions even in datasets that were not used for training.
There could be two reasons for this. Firstly, some actions in ActivityNet v1.3 are similar
to those in THUMOS14 (as shown in Appendix A.1). From these similar classes, it can be
inferred that the classes belonging to the unseen dataset could have been learned. Secondly,
this could be attributed to the assumption that there are latent common characteristics between
actions. TAPG is performed in a class-independent way, which means that the algorithm
is designed to distinguish between background and foreground. Detecting an action in a
dataset that includes unseen classes would indicate that the unseen classes also share the
same characteristics that distinguish them from the background.

Table 3.9 shows the results obtained from models trained on the validation set of THU-
MOS14 and tested on the testing set of the same dataset (i.e., unseen data of seen classes)
and the validation set of ActivityNet v1.3 (i.e., unseen data of unseen classes). Even in this
case, it can be observed that detecting unseen classes is possible, as evident from the value
of AR@1000. However, it is noticeable that the performance is poorer than that of models
trained on the ActivityNet v1.3 dataset. This can be attributed to the size of the dataset. The
ActivityNet v1.3 dataset comprises 10,024 untrimmed videos containing 200 action classes
in the training set, including various actions such as leisure, sports, and daily life actions. In
contrast, the THUMOS14 dataset comprises 200 videos containing 20 classes and is mainly
composed of sports activities. Hence, the models trained on the ActivityNet v1.3 dataset
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demonstrate better performance in the cross-corpora test as they could observe a more exten-
sive range of actions than the models trained on the THUMOS14 dataset.

3.5.4 Summary and Discussion

In this section, a cross-corpora test was conducted to analyse the model’s performance in
terms of generalisation. Unlike transfer learning, which utilises learned knowledge for other
or related tasks, the performance was evaluated without any further processes like fine-tuning
when using different datasets for the same task. Experiments were conducted using the Ac-
tivityNet v1.3 and THUMOS14 datasets, which are two widely used datasets for TAPG task.

The experiments conducted in this section indicates that a model does not perform well
on an unseen dataset as well as on a seen dataset. The performance varied depending on
the dataset used for training, which is proportional to the amount of information available
from the dataset. It is found that the more classes and numbers of actions included in the
training set, the higher the probability of detecting the unseen class by distinguishing it from
the background.

Based on these results, new research directions can be suggested. One possible research
direction could be to enrich background and foreground data based on data augmentation
using generative models, and another one will be a zero-shot TAPG task by inspiring the
detection of unseen classes.

3.6 Summary

This chapter has considered five investigations to identify factors that may impact the per-
formance of TAL and conducted experiments to investigate how they affect that performance.
These investigations include: 1) Examining performance relationship between detection and
recognition, 2) Investigate the effect of using class labels on boundary detection, 3) Verify-
ing a robust methodology for discontinuous actions, 4) Investigating the relationship between
multi-modal data and TAL performance, and 5) Conducting a cross-corpora test.

The first investigation was related to the performance relationship between detection and
recognition in the pipeline method. In particular, the two-stage method detects an action based
on a detection-then-recognition scheme. In this approach, the result of the previous step is
used as an input to the next step, and the accuracy of the previous step can influence the per-
formance of the next step. This approach is widely used to improve performance in various
fields including TAL. Two research questions were asked: 1) “When the performance of pro-
posal generation improves, will the performance of recognition also improve?” 2) “Is there
any relationship between the performance of proposal generation and that of recognition?”.
As the answer of the first question, better performance of proposal generation produced better
results of recognition. As the answer of the second question, it was discovered that including

79



more positive samples in the action proposals used as input leads to better recognition per-
formance. This is a factor that cannot be determined by AR alone. Therefore, even if the AR
is high, the overall performance of TAL, including action recognition, cannot necessarily be
considered excellent.

Secondly, the effect of using class labels on proposal generation was examined. It was
assumed that using specific labels would be more beneficial in classifying actions by utilising
the unique characteristics of each class. The subsidiary research question was “Are there
any advantages of using action labels in terms of boundary detection?”. However, contrary
to expectations, there was no advantage in using specific labels, and the results of proposal
generation were not as good as when training the models in a class-independent way. It was
suggested that this was due to the complexity of the problem. This does not mean that one-
stage methods are worse than pipeline methods. There is therefore a need for research that
can utilise the unique characteristics of each class in a unified model.

In the third experiment, inspired by the fact that online video data often contains discon-
tinuous actions due to editing, occlusion, sudden changes in viewpoint, and other factors,
the anchor-based (boundary-based) method was compared with the anchor-free method for
detecting discontinuous actions. Two research questions were asked: 1) “Which approach
is more robust to unwanted discontinuous situation?” 2) “If one approach exhibits lower
performance than the other, what is the reason behind it?”. It was found that the anchor-
free method is more robust to discontinuous actions than the anchor-based (boundary-based)
methods. The anchor-based (boundary-based) method includes discontinuous points in the
action because boundary detection is done in proposal units to calculate the score. On the
other hand, the anchor-free method predicts boundaries using incomplete information, which
could avoid discontinuous scenes. It should be noted that this experiment does not imply
that the anchor-free method is superior in all cases. In fact, the results obtained with the
anchor-free method are typically worse than those reported in the literature. However, this
experiment provides an opportunity to find a way to leverage the unique advantages of the
anchor-free method, which can be further explored in future research.

The fourth experiment investigated the relationship between multi-modal data and perfor-
mance. The question was “Does Flow data always have a positive effect? Is it possible that, in
certain situations, Flow data could negatively impact performance?”. It is generally believed
that combining RGB and Flow data improves performance, and through the experiments, it
was confirmed that data fusion does indeed help improve performance, as reported in many
other studies. However, for discontinuous actions, a case in which using RGB data is better
than using Flow data was noticed, which means Flow data is negatively affected by the discon-
tinuity. Nevertheless, it was also confirmed whether this relationship between multi-modal
data and performance holds true for discontinuous actions as well.

Finally, a cross-corpora test on TAPG was conducted. The question was “How will models
trained on different datasets perform when tested on a dataset that was not used for training?”.
As is well-known, the performance of TAPG models differs depending on the dataset used
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for training, and the larger the difference between the classes included in the training set and
the classes included in the test set, the lower the performance. It was found that models
trained on the ActivityNet v1.3 dataset did not show significant performance degradation on
the THUMOS14 dataset. This suggests that the larger the size of the dataset and the more
diverse classes it contains, the smaller the performance degradation in the TAPG task.

While some of the experiments performed in this chapter may already be established find-
ings, they are still meaningful in that they provide a rigorous investigation into these factors
and suggest areas that can be further explored in future research. By clarifying these fac-
tors through experiments, the impact on TAL performance can be better understood and this
knowledge can be used to inform the development of more effective TAL systems in the fu-
ture.
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Chapter 4

Anchor-free Pipeline Temporal Action

Localisation

There are many anchor-based (boundary-based) methods for TAL in the literature. These
methods allow for easy adjustment of the evaluation interval according to hyperparameter set-
tings, which can prevent the omission of specific temporal segments during evaluation and
reduce the possibility of missing action detection. However, this method can also cause com-
putational inefficiency. When an untrimmed video is converted into feature vectors through
the feature extraction process, a large number of vectors are created. Each vector becomes
a temporal location to be evaluated for the presence of an action. At this time, the length of
the action is unknown, and a set of anchors composed of several predefined lengths is used
to evaluate the action length. The number of anchors included in this set can be adjusted as
needed. This approach involves creating a large number of anchors to cover as many cases
as possible. The resulting anchor set is used to evaluate the presence of an action in a similar
way to block matching in computer vision, predicting the length of actions at each temporal
location. This method requires repeated operations for each anchor at each temporal loca-
tion, leading to computational inefficiency. Alternatively, boundary-based methods replace
anchor sets with all possible combinations of temporal location pairs, with these pairs acting
as anchors. However, since a specific temporal location may be included in multiple pairs,
these two methods ultimately evaluate the length of the action in the same way, except for the
method used to determine the set of temporal segments with a predefined length, resulting
in inefficient calculation due to repetitive operation. Additionally, setting the anchor lengths
using an empirical criterion may not cover the length of all possible actions. If the maximum
number of anchors is set, the possibility of covering the length of possible actions increases,
but it also increases the amount of computation. If the number of anchors is reduced for com-
putational efficiency, it becomes difficult to cover the length of possible actions, resulting
in lower boundary accuracy. Thus, anchor-based methods are known to be computationally
inefficient and the detected boundary may not be accurate.

In contrast, anchor-free methods are mainly performed on feature pyramids consisting of
multi-scale feature representations. Each layer consists of vectors containing information
of different scales, and actions are detected by predicting left and right offsets using these
vectors. This method has the advantage of not having to perform repetitive calculations at
each temporal location by directly predicting the offsets of an action without using an anchor.
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In addition, because it does not use predefined temporal segments, it can theoretically be free
from the problem of inaccurate boundaries. However, it cannot be assumed that the feature
pyramid’s vectors contain all the necessary information about the actions present in the video.
Each layer consists of vectors that possess information of the same scale. These vectors
hold information divided into different scales of the video, but it is not guaranteed that one
vector contains all the information about a complete action. In other words, offset prediction
is conducted by analysing only a portion of the action, which is incomplete information.
Therefore, although it is theoretically free from the inaccurate boundary issue, it cannot be
conclusively stated that its accuracy in detecting an action is superior to that of the anchor-
based method in practical applications.

In this chapter, the research question 2 and 3 are mainly handled: “How can various length
of human actions be dealt with?” and “ How can the boundary of human actions be de-
tected?”. To answer the questions, the proposed model, the Complementary Anchor-free net-
work (CAFN), will be described. After introducing the motivation, the components of CAFN
are explained in detail. Then, the performance is investigated by comprehensive ablation and
comparative studies.

4.1 Motivation

Based on the strengths and weaknesses of anchor-based and anchor-free methods, there
is a possibility of performing TAL while taking advantage of these strengths and compen-
sating for the weaknesses. The repetitive computation of anchor-based methods caused by
using anchors can be eliminated by directly predicting left and right offsets as in anchor-free
methods, and action detection using incomplete information in the anchor-free method can be
supplemented by checking the completeness of the detected action by performing proposal-
level evaluation as in the anchor-based method. By combining these two methods, a more
efficient and accurate TAL method can be developed. A complementary anchor-free network
(CAFN) is proposed that utilises the strengths of both methodologies and compensates for
their weaknesses. As mentioned earlier, the aim is to address each other’s shortcomings with
their respective strengths. In the anchor-based method, the length of the action is unknown,
and a large number of anchors are used to cover all possible cases, leading to computational
inefficiency. To address this, a set of anchors are generated by predicting them using an
anchor-free method. By using predicted anchors instead of predefined ones, the number of
repeated operations can be reduced at all temporal locations. On the other hand, proposal-
level evaluation is performed to compensate for the unstable prediction caused by feature
vectors in the anchor-free method, which contain incomplete information. This way, each
other’s weaknesses can be complemented with their strengths.

In addition to the challenge of defining the start and end of an action, inaccurate prediction
of action boundaries may also arise from the characteristics of the two methodologies. There
could be several reasons for this. The learning approach used here is supervised learning,
which relies on the accuracy of the given ground-truth annotations. However, since human
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judgement is subjective, even actions of the same category may have inconsistent boundary
information. Additionally, the feature vectors used in the anchor-based method are composed
of a fixed number of consecutive image frames. The temporal interval for evaluating actions
depends on the number of images and strides used for feature extraction. Real boundaries
may be missed if they fall between consecutive temporal locations. While the anchor-free
method can avoid missing boundaries due to direct boundary prediction, inaccurate bound-
aries may still be predicted due to the use of feature vectors containing incomplete actions.
To address this issue, a boundary refinement module is proposed. Given the inconsistency of
temporal annotations, it is nearly impossible to obtain exactly the same results as ground-truth
labels. However, there is likely an implicit consensus on the human-perceived boundaries of
actions, despite annotation inconsistencies. Therefore, boundaries can be refined using er-
ror information between the prediction results and ground-truth annotations. By statistically
analysing the errors between the temporal annotations and prediction outputs, a point where
people commonly agree on the boundary of an action can be identified.

4.2 Limitation of Anchor-free Method Compared to Boundary-based One

Before performing anchor-free TAL, why anchor-based (boundary-based) methods gen-
erally perform better than anchor-free methods was analysed. To achieve this, the temporal
span covered by the feature vectors used for action boundary prediction were investigated. The
construction of vectors used for action proposal generation was examined in a model that has
demonstrated excellent performance in the literature, and the tIoU (temporal Intersection over
Union) was calculated between the temporal span covered by each vector and the ground-truth
segments. To do so, the boundary-based method (BMN[68], DBG[77], BSN++[69]) and the
anchor-free method AFSD[85] were used to construct feature vectors on the ActivityNet v1.3
dataset.

The results are presented in histogram format in Figure 4.1. Based on the analysis, it was
found that in the boundary-based method, approximately 90% of the ground-truth actions
have a tIoU value of over 0.9 with one of the temporal spans used as an action evaluation
unit. This indicates that the action is evaluated using a highly overlapped temporal span.

In contrast, it can be observed that there are few multi-scale feature vectors with high tIoU
values that correspond to the ground-truth actions in the feature pyramid used in the anchor-
free method. This implies that the vectors employed for predicting left and right offsets only
capture a portion of the action. This difference arises from the way each method addresses the
multi-scale issue. Figure 4.2 illustrates how the feature vectors span temporal extents in each
method. For the sake of simplicity in explanation, it is assumed that the video comprises
T feature vectors and that the input for each method accepts T vectors simultaneously. In
the table at the bottom left of this figure, temporal pairs featuring feature vectors within the
boundary-based method are marked with black circles. All temporal segments represented
by pairs whose start time precedes the end time serve as evaluation units for action detection.
In the boundary-based method, (T + 1)T/2 temporal pairs are evaluated, enabling a dense
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(a) tIoU with ground truth in boundary-based methods (BMN[68], DBG[77], BDN++[69])

(b) tIoU with ground truth in feature pyramid of anchor-free method (AFSD[85])

Figure 4.1. tIoU Histogram of temporal segments with ground truth (GT) in ActivityNet 1.3 dataset.

search for actions.

On the other hand, the table at the bottom right of Figure 4.2 depicts the temporal spans in
the feature pyramid. Compared to the boundary-based method, it demonstrates a very sparse
distribution. In the anchor-free method, the presence of actions is evaluated using feature
vectors of σT/2L−1 . In each algorithm of boundary-based methods, T is set to 100. Therefore,
(100 + 1)100 / 2 = 5,050 temporal segments are evaluated to detect actions in one video.
In contrast, in ASDF (anchor-free method), feature vectors are obtained from layers C4 and
C5 of the I3D network. The C4 layer generates 192 vectors, and the C5 layer generates 96
vectors. If a feature pyramid was constructed using this, (192 + 96 + 48 + 24 + 12 + 6) = 378
vectors would be present. As such, since the two methods differ in the unit of information
used for action detection, the anchor-based method generally exhibits superior performance
compared to the anchor-free method. However, using a larger number of vectors necessitates
more computing resources. These two methodologies can be said to have a trade-off between
computing resources and performance.

4.3 Problem Formulation

The goal was to generate action proposals given a set of untrimmed videos. More specif-
ically, it can be described as follows. Let a video dataset be denoted as D = {V train, V test},
where V train and V test are sets of untrimmed videos for training and testing, respectively.
Each data V train, V test = {X,Ψg} contains a frame sequence X = {xi}lvi=1, where xi repre-
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Figure 4.2. Temporal span of features in both boundary-based method and anchor-free method.

sents the i-th RGB frame in the video of length lv. The corresponding temporal annotation
Ψg of X consists of temporal action instances Ψg = {ψg,i = (tsg,i, t

e
g,i, l

c
g,i)}

Ng

i=1, where Ng is
the number of ground truth action instances in video V, and tsg,i, teg,i, lcg,i are the starting time,
ending time and class label of the action instance ψi, respectively. During the training phase,
the model is trained onΨg. Unlike in the whole TAL, the categories of action instances are not
included in ground-truth labels. During the inference phase, the trained model will generate
action proposals Ψ̂p = {ψ̂i = (t̂

s

i , t̂
e

i , pi)}
Np

i=1, where t̂si , t̂
e

i are the starting and ending times of
the predicted action proposals, and pi is the confidence score of ψ̂i. The proposals Ψ̂p should
cover the ground truth action instances Ψg with high recall and high temporal overlap.

4.4 Pipeline of Complementary Anchor-free Network (CAFN)

A complementary TAPG model was proposed that leverages the strengths of both anchor-
based and anchor-free methods. The entire proposed pipeline is depicted in Figure 4.3. A
video representation network was employed to encode the spatial and temporal information
in the input video. A type of two-stream network, called the inflated 3D network (I3D),
proposed by [46], was used, and its output scores served as RGB and Flow feature vectors.
These feature vectors were then fed into the proposed TAPG model.

The TAPG model was divided into two main parts: proposal generation in an anchor-free
manner and verification of predicted proposals, similar to the approach used in boundary-
based methods. In proposal generation, a feature pyramid is created to accommodate the var-
ious action lengths using the extracted I3D feature vectors. The feature pyramid comprises
vectors containing information of different scales in each layer, making it suitable for handling
multi-scale issues. This feature pyramid is considered as the base module of the framework.
It is known that fusing vectors with those in adjacent layers is helpful for improving detection

86



Figure 4.3. Overview of proposed approach (CAFN), which consists of two parts: 1) proposal generation in
an anchor-free manner, and 2) proposal verification in an anchor-based manner. The proposal generation part
includes both coarse and refined prediction steps, while the verification part consists of a temporal evaluation
module and a proposal evaluation module.

performance. To incorporate these aspects, a pyramid-type attention mechanism is utilised
to update the feature pyramid. Following this, the left and right offsets of action proposals
are predicted. This step consists of two modules. First, proposals are generated using a sim-
ple regressor and classifier. This step is referred to as coarse prediction. Subsequently, the
boundaries of the generated proposals are refined further. To achieve this, refined prediction
is performed by creating boundary feature vectors using statistical sampling techniques at
the boundaries of the generated proposals. Since the vectors present in the feature pyramid
contain only a portion of the action information, the result cannot be considered stable. To
compensate for this, proposal-level actionness scores, as well as starting and ending scores,
are calculated similarly to the boundary-based method. This is carried out in the proposal
evaluation module and the temporal evaluation module, respectively. Instead of using ei-
ther all possible temporal pairs or predefined anchors, the generated proposals are utilised
as anchors or temporal pairs to predict the starting and ending scores, along with actionness
scores. The ranking of generated proposals is determined using the scores from the coarse
prediction, refined prediction, proposal evaluation module, and temporal evaluation module.
Finally, soft NMS is performed to remove duplicate results.

4.4.1 Video Feature Encoding

Following previous proposal generation methods [59, 60, 67, 76], the proposed model was
built on visual feature sequences extracted from raw video. In this work, the inflated 3D
network (I3D) were employed for video encoding. This method has achieved high precision
in action recognition and has been widely used in numerous video understanding studies [55,
74, 110]. A pre-trained I3D model trained on the Kinetics dataset was used. Image frames
X = {xi}lvi=1 were extracted from the untrimmed video at a controlled frame rate (details
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will be explained in Appendix B), and the set of images is partitioned into snippets sequence
S = {si}lsi=1 by a regular interval δ, where ls = lv/δ. The snippet si consists of five RGB
images and five stacked optical flow images. The outputs were collected from the layer right
before the last fully connected (FC)-layer of the two-stream network to represent a video with
a set of 3D features F = {f rgb

i , f flow
i }lsi=1 ∈ RT×C×H×W , where T,C,H , and W represent

the time step, channel, height, and width, respectively.

4.4.2 Base Module

Many anchor-free methods utilise the feature pyramid structure to handle multi-scale issues.
The feature pyramid was used as a base module to address the same problem as in previous
studies. Once 3D features F = {f rgb

i , f flow
i }lsi=1 ∈ RT×C×H×W have been obtained in the

feature extraction step, these two types of feature vectors are concatenated. In the proposed
framework, only the time axis is taken into consideration. Therefore, convolution is used to
shrink the dimension of H and W to size 1, and these dimensions are subsequently dropped
out (4.1). In this way, the base feature is converted to F̂ = {f̂ i}lsi=1 ∈ RT×2C , and this is used
as input to construct the feature pyramid.

F̂ = {f̂ t}lst=1

= ReLU(GN(Conv3D(concat(f rgb
t , f flow

t ), Cin, Cout, ks))) ∈ RT×C ,
(4.1)

where Cin, and Cout are the channel size of input and output respectively, GN stands for
group normalisation, and ks is the kernel size, which is set as (1,3,3).

Feature Pyramid

(a) Featurized image pyramid (b) Single feature map

(c) Pyramidal feature hierarchy (d) Feature Pyramid Network

Figure 4.4. Four types of pyramids from [82]. In the proposed framework (CAFN), FPN was constructed
based on (d), then it was updated a pyramidal attention instead of downward connection.
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Given the base feature F̂ , a feature pyramid is formed by stacking layers with progres-
sively wider receptive fields. This technique was initially introduced to address multi-scale
problems in object detection [82], and later adapted to a one-dimensional format to tackle
similar issues in action detection. According to [82], there are four methods for constructing
a pyramid-shaped feature structure. Figure 4.4 illustrates the four types of pyramids intro-
duced in [82]. Figure 4.4a represents a method that generates features of different scales
independently by directly adjusting the input resolution, with each layer detecting targets at
its corresponding scale. In Figures 4.4b and 4.4c, features in lower resolution layers are gen-
erated using those from higher resolution layers. This is based on the observation that features
from neighbouring higher resolution layers are beneficial for tasks performed in lower reso-
lution layers. In Figure 4.4d, a lateral connection is added from lower resolution layers to the
higher resolution layer, further enhancing the model’s capability. This configuration is the
most commonly used form of feature pyramid network for addressing multi-scale problems.
These pyramid-shaped variations demonstrate that features from different layers can assist
with tasks performed across other layers at various scales. Depending on how features from
other scales are fused with those of the current scale, various types of feature pyramids can be
created. To facilitate this fusion, a method of combining features from different layers using
an attention mechanism has been introduced.

Attention-based Feature Fusion

(a) Downsample + convolution (b) Upsample + convolution

(c) Pyramidal self-attention

Figure 4.5. Data propagation in Feature Pyramid Network (FPN). The lateral connections in FPN allow fea-
tures to be mixed in one direction ((a), (b)), while pyramidal attention allows features to be fused in both di-
rections as well as from sibling nodes (c).

There are several ways to fuse features from adjacent layers in a Feature Pyramid Network
(FPN). Among them, the most widely used method involves a combination of upsampling (or
downsampling) and convolution to match different temporal dimensions between neighbour-
ing layers. Features from the two layers are then combined using operations such as weighted
average or summation. This method is implemented by inserting lateral connections in the
previously mentioned pyramid-shaped structure. However, when convolution is used, the
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same weight value is applied to all locations because the same convolution filter is utilised
when fusing feature information from other layers in each feature. Figure 4.5 illustrates this
situation. To simplify the explanation, a feature pyramid is considered as a graph. Figures
4.5a and 4.5b illustrate the data propagation directions when a feature pyramid is created
using a convolution operation. In the two top figures, the blue circle represents the feature
vector to be updated. In Figure 4.5a, inserting a lateral connection from a lower layer with
high resolution to a higher layer with low resolution can be implemented using a combina-
tion of downsampling and convolution. The features of the lower layer are weighted with
the convolution filter. The same filter is also applied when updating its sibling nodes. Simi-
larly, in Figure 4.5b, the lateral connection from a higher layer with low resolution to a lower
layer with high-resolution features can be implemented using a combination of upsampling
and convolution. The features are fused in a similar manner. In both cases described above,
it is important to note that only one-way fusion is possible. To implement a bidirectional
lateral connection, as suggested in Figure 4.4d, one approach would be to create a feature
pyramid with bottom-up lateral connections and then calculate it again with top-down lateral
connections. However, such repetitive execution may not be regarded as an efficient compu-
tational method. To address this issue, an attention mechanism is introduced. Figure 4.5c
demonstrates the data propagation in the lateral connection using a pyramidal attention ap-
proach. The blue circle receives feature information from parent nodes, child nodes, and
sibling nodes, and data fusion occurs according to each weight. Such an operation can be
implemented using self-attention with neighbouring nodes.

Figure 4.6. Updated feature pyramid using pyramidal attention.

A feature pyramid network has a graph-like form, with feature vectors in lower layers used
to construct feature vectors in higher layers, creating a parent-children relationship in the
graph. The method of implementing the self-attention module in FPN is first proposed in the
Pyraformer [111]. In this work, long-range data is formed into a pyramidal structure and used
to anticipate future events. Inspired by this work, a self-attention module is implemented in
the form of a Pyraformer. Figure 4.6 illustrates the process of updating the feature pyramid
using pyramidal attention. Given input feature vectors, a feature pyramid is created using
convolution. The attention mechanism is then performed in the same way as the transformer’s
self-attention module. The key difference is that the pyramidal self-attention module is used
instead of the standard self-attention module.

Before explaining pyramidal attention, the self-attention mechanism of the transformer
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architecture will be discussed. Assume the inputs and outputs are X and Y. Initially, X is
converted into three different vectors (query Q = XWQ, key K = XWK , and value V =

XWV ) through linear operations, where WQ,WK , and WV ∈ RL×DK . The attention weight
for the i-th input vector is calculated using the scaled dot product of the i-th query qi and the
key K. In other words, a row vector qi in query Q can interact with all keys. By applying the
softmax function to the calculated value, the final attention weight vector is computed. The
output yi is then determined as a weighted sum of all row vectors of V by multiplying the
weight by value V . This can be expressed as follows.

yi =
L∑︂
l=1

exp(qik
T
l /
√
dKvl)∑︁L

l=1 exp(qik
T
l /
√
dK)

(4.2)

Standard self-attention determines attention weights through similarity calculation with all
input vectors. This process requires a large amount of computation, as the attention weight
is calculated by the query participating in all keys. Many studies have been conducted to
efficiently calculate this part [112]. Pyramidal attention can be considered as one of the results
of these efforts. Pyramidal attention aims to enable more efficient calculation by allowing only
specific vectors to participate in calculating the attention weight. Additionally, to address the
multi-scale issue, it is performed on the feature pyramid. The feature pyramid can be viewed
as a C-ary tree. In the feature pyramid, all nodes except for the leaf nodes and root nodes
have C children and one parent. Therefore, instead of participating in all nodes, each node
can calculate the attention weight by participating in a limited set of directly connected nodes,
as shown in Figure 4.5c. Let n(s)

i be the i-th node of scale s. This node can participate in
neighbouring nodes of three scales: the adjacent nodes (A(s)

i ) of the scale including itself, the
parent node (P(s)

i ), and the children nodes (C(s)
i ). In other words, the nodes participating in

calculating attention weights at each node i can be defined as follows:

N(s)
i = A(s)

i ∪ C(s)
i ∪ P(s)

i

A(s)
i = {n(s)

j : |j − i| ≤ A− 1

2
, 1 ≤ j ≤ L

Cs−1
}

C(s)
i = {n(s)

j : (i− 1)C < j ≤ iC} if s ≥ 2 else 0

P(s)
i = {n(s+1)

j : j = ⌈ i
C
⌉} if s ≤ S − 1 else 0

(4.3)

After determining the nodes to participate in this way, the output Y for the input X in
pyramidal attention can be rewritten as:

yi =
∑︂
l∈N(s)

i

exp(qik
T
l /
√
dKvl)∑︁

l∈N(s)
i
exp(qikTl /

√
dK)

(4.4)

In Figure 4.6, the output Y is denoted as fpy.
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4.4.3 Coarse Proposal Prediction

Figure 4.7. Proposal prediction heads. To predict boundary offsets and classification scores, two simple mod-
ules are used as a classifier and a regressor.

After obtaining fpy in the step of creating a feature pyramid, the model performs classifi-
cation to distinguish the foreground and background of an action and regression to detect the
boundary of an action by predicting left and right offsets. To accomplish these tasks, separate
branches are created that use shared feature vectors. Figure 4.7 shows a diagram of the head-
ers for performing each task in these two branches. Each header has a similar structure. First,
ReLU(GN(Conv1d(c, ks, s))) is used repeatedly N times to convert the output of the feature
pyramid into vectors in the latent space suitable for each task, where c is the dimension of the
output, ks is the kernel size, and s is the stride. Two separate small networks with the same
structure are used to learn the necessary information and output vectors f conf and f loc in the
latent space. For the classification task, as binary classification is performed, f conf is used as
input, and Conv1d(1,ks,s) is applied, followed by the sigmoid function. The same classifier is
used for all feature vectors in all layers. For the regression task, Conv1d(2,ks,s) is performed
using f loc as input. The aim of the regression branch is to predict the left and right offsets
at each time location. To account for the different target scales in each layer of the feature
pyramid, the regression branch uses an output dimension of 2. In order to share one head
for all layers, a learnable scale factor sl is multiplied at the end. As mentioned in [113], the
target value in the regression branch is always a positive, the output value of the regression
branch is transformed by applying the exponential function, which maps the output to any
real number in the range of (0,∞). In the FPN, the action proposal ωl,i

c = {t̂sl,i, t̂
e

l,i} at the
i-th time location of the l-th layer can be obtained as follows:
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t̂
s

l,i = i ∗ 2l − d̂
s

l,i

t̂
e

l,i = i ∗ 2l + d̂
e

l,i

d̂
s

l,i = exp(sl × osl,i)

d̂
e

l,i = exp(sl × oel,i),

(4.5)

where t̂sl,i, t̂
e

l,i are the starting and ending points of the predicted proposal, and d̂
s

l,i, d̂
e

l,i are the
left and right offsets.

4.4.4 Two-Stage Boundary Refinement (Refined Prediction)

The proposed framework performs boundary refinement in two steps: indirect and direct.
Indirect refinement aims to predict more accurate boundaries by improving backbone fea-
tures used as inputs to the action proposal generation, while direct refinement aims to refine
the boundaries of predicted proposals based on boundary information. In Figure 4.3, two
types of action proposal generation are performed in the proposal generation stage: coarse
prediction and refined prediction. In the coarse prediction, proposals are generated on the
feature pyramid updated by pyramidal attention. However, as mentioned in Section 4.2, the
feature pyramid network used in previous studies of the anchor-free method is composed of
feature vectors that only contain partial information of the target actions. These incomplete
features may adversely affect the performance of the model. The pyramidal attention mech-
anism widens the receptive field of each feature vector by incorporating information from
neighbouring nodes, leading to indirect boundary refinement and improving the backbone
structure. In the refined prediction stage, direct boundary refinement is performed using the
proposals obtained in the coarse prediction. In this step, residual offsets are calculated instead
of absolute offsets. The boundary refinement is based on the assumption that creating fea-
tures for boundary refinement in regions aligned with actual boundaries will allow for more
accurate boundary prediction. Previous work has created boundary features for refinement
using vectors with a constant ratio before and after the predicted boundaries. In some cases,
this approach may result in boundary features that are slightly off from the actual boundaries,
leading to inaccurate information being provided to the model. While previous work, such
as [85], applied max pooling to features sampled from the boundary area to obtain salient
values, this method may still not provide accurate boundary information for learning. To
address this issue, a novel method for creating boundary feature vectors is proposed using a
learning-based alignment and sampling technique.

Gaussian Mean Learning

Once the proposals ωc generated from coarse proposal generation have been obtained, a mod-
ule is needed to align the predicted boundaries with the real boundaries. Figure 4.8 shows
a module that learns parameters for creating boundary features. It is hypothesized that the
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Figure 4.8. Mean and standard deviation learning. The StartingNet and EndingNet predict the means and
standard deviations of real boundaries with respect to predicted proposals in coarse prediction.

information required to align the boundary can be modeled as a Gaussian function, and the
purpose of this module is to find the mean and standard deviation of the Gaussian function.
As in other work, the starting area, ending area, and internal area are defined as follows within
the predicted proposals.

rs = {ts − la/k, ts + la/k}

re = {te − la/k, te + la/k}

ra = {ts, te}

la = te − ta,

(4.6)

where rs, ra, re are the starting, internal, ending regions respectively, la is the length of pre-
dicted proposal, k is the ratio factor to set the starting and ending region based on the length
of the predicted proposal; k = 2 was used.

Figure 4.9. Weights for linear interpolation. After calculating weights for linear interpolation in the form of
vectors, uniform sampling is done by multiplying the feature vectors by weight vectors.

Uniform sampling is performed using linear interpolation in each region to create input
vectors for predicting Gaussian parameters. Specifically,Ns points are sampled in the starting
region rs, Na points in the internal region ra, and Ne points in the ending region re. In
each region, a single feature vector is generated by taking a weighted average of the sampled
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vectors. The weights are determined by linear interpolation and a mask matrix composed
of these weights is used to calculate the weighted average efficiently. This weight vector is
illustrated in Figure 4.9. To illustrate, let P = {pi}i=6

i=1 be the points that need to be sampled
and V = ti

i=8
i=1 be the corresponding feature vectors. If the first point p1 lies between t1 and

t2, it can be expressed as p1 = α1
l t1+α1

rt2 resulting in single weight vector. Other points are
expressed in the same way, leading to the mask matrix composed of multiple weight vectors.
The sampling is done using the mask matrix composed of weight values, which is created
based on the interpolation weights for each point. The resulting feature vectors fs, fa, and fe
are used as inputs to StartingNet and EndingNet to obtain the mean and standard deviation
of the boundary through concatenation as follows:

f start
in = concatenate(fs, fa)

f end
in = concatenate(fe, fa),

(4.7)

where f start
in and f end

in are the input to StartingNet and EndingNet, respectively.

StartingNet and EndingNet are constructed with three layers of convolutional layers fol-
lowed by Group Normalisation and ReLU activation functions. The last layers of StartingNet
and EndingNet use the sigmoid function to output values between 0 and 1 for the mean, and
the tanh function to output values between -1 and 1 for the standard deviation.

Boundary Feature Construction

(a) Boundary feature construction based
on uniform sampling

(b) Boundary feature construction based
on Gaussian sampling

Figure 4.10. Illustration of various techniques of constructing boundary features using different sampling
methods.

Boundary features are created for boundary refinement using the outputs of StartingNet
and EndingNet. Figure 4.10 shows different ways of constructing boundary features, using
either uniform sampling (on the left) or Gaussian sampling (on the right). With uniform
sampling, the sampled points have equal weights or learned weights using the convolution
layer. With Gaussian sampling, the parts considered as real boundaries receive more weight,
while the neighbouring areas receive lower weights. Specifically, given µs and σs, Ns points
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are sampled via the Gaussian function G(laµs/sµ, laσssσ) in the starting area, where sµ and
sσ are the scale factors for the mean and standard deviation, respectively. For the mean, it
is set to sµ = 1/2 so as not to deviate from the starting and ending areas, and it is known
that 3× σ in the Gaussian distribution includes 99.7%, so sσ = 1/3 was set so that sampling
is done within each area. To perform Gaussian sampling, first, Ns points are sampled using
uniform sampling. Then, the index for Gaussian sampling is obtained by using the sampled
index as an input to the ICDF for a given Gaussian function, as shown in Figure 4.9. Similar
to the process shown in Figure 4.9, the sampled points are used to create a starting boundary
feature f bd

s using linear interpolation. The same process is applied to the ending area to create
a corresponding ending boundary feature f bd

e . These features, along with the internal feature
vector fa, are used for boundary refinement.

Figure 4.11. Gaussian sampling. After sampling points uniformly, its indices are used to get the indices of
Gaussian sampling via inverse of cumulative distribution function (ICDF).

Boundary Refinement

Figure 4.12. Residual offset prediction for boundary refinement.

The refined prediction follows a similar process to the coarse prediction. However, in-
stead of directly predicting the left and right offsets at each time location, residual offsets are
predicted based on the coarse prediction results to adjust their boundaries. As depicted in Fig-
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ure 4.12, the refined prediction also employs a regressor and a classifier with the same struc-
ture as those used in coarse detection. The classifier outputs the confidence score (∆ŷconf )
for the new proposals, while the regressor outputs ∆d̂

s
and ∆d̂

e
, which are the offsets to be

additionally adjusted for the boundaries of the proposals detected in the previous step. Af-
ter this process, the final predicted boundary can be obtained by combining the coarse and
refined prediction results as follows.

t̂
s

l = tl − oleft
t̂
e

l = tl + oright

oleft = d̂
s

l∆d̂
s

l = exp(sclo
s
l + srl∆o

s
l )

oright = d̂
e

l∆d̂
e

l = exp(sclo
e
l + srl∆o

e
l ),

(4.8)

where t̂sl , t̂
e

l are the final predicted starting and ending points time, oleft, oright are the left
and right offsets, scl , s

f
l are the scale factors of coarse regression branch and refine regres-

sion branch, osl , oel are the output of coarse regression, and ∆osl ,∆o
e
l are the output of fine

regression branch.

4.4.5 Compensation in Anchor-based Method

As mentioned in Section 4.2, the feature vectors included in the feature pyramid may con-
tain incomplete action information. To compensate for these disadvantages of the anchor-free
method, a proposal evaluation module (PEM) and a temporal evaluation module (TEM) used
in the boundary-based method are introduced. The PEM can confirm the reliability of the
generated proposals by evaluating the actionness of the action proposals generated by the
anchor-free method. The PEM of BMN [68] was adopted. The PEM of BMN evaluates all
possible temporal pairs, which is dense evaluation, while that of the proposed model only
evaluates predicted proposals, which is sparse evaluation. The TEM is a module that calcu-
lates the probability of the start and end of an action at each temporal location. Tthe idea
suggested by BSN++ [69] was adopted to the proposed model.

Proposal Evaluation Module

The purpose of the PEM is to generate confidence scores using complete information of ac-
tion proposals generated by the anchor-free method. Given the proposals ω = {ωc, ωr}Np

i=1

as shown in Figure 4.13, proposal-level feature vectors fpem
p are created by referring to the

predicted proposals. The input for this module is the I3D feature vectors F̂ extracted from the
video before creating the feature pyramid. Ns vectors are uniformly sampled for each pro-
posal via linear interpolation in the extended proposal area that includes starting area, internal
area, and ending area to get intermediate proposal features f̂

pem

p ∈ RC×Np×Ns . Then, a 2D
convolution layer with a kernel size of (Ns, 1) is applied to the intermediate features to obtain
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Figure 4.13. Diagram of proposal evaluation module

the proposal-level feature vectors fpem
p ∈ RC×Np . Finally, a head consisting of three convolu-

tional layers is applied to fpem
p to get the actionness score ppema and the regression score ppemreg .

In the coarse prediction and the refined prediction, only confidence scores for classification
are obtained, but without scores for regression. Therefore, the regression scores obtained
from PEM can be used as regression confidence scores for generated proposals.

Temporal Evaluation Module

Figure 4.14. Diagram of temporal evaluation module

TEM is designed to evaluate the probabilities of the start and end of an action at all tem-
poral locations in an untrimmed video. The Complementary Boundary Generator introduced
in BSN++ [69] was adopted, which is based on UNet [114] and can capture both global con-
text and local details. As shown in Figure 4.14, TEM is constructed with six ConvUnits
consisting of a 1D convolution layer with batch normalisation and ReLU activation func-
tion. These modules have a hierarchical structure. The receptive field is widened through
downsampling operations, enabling the learning of surrounding context information, while
features that include both local detail and global context are created by fusing these features
and high-resolution features through upsampling operations. Skip connections are used to
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reduce the semantic gap between feature maps. The feature vectors f tem for temporal eval-
uation are obtained by concatenating the three feature vectors obtained from the top three
ConvUnits.

f tem = concatenate(f0,0, f0,1, f0,2), (4.9)

where f0,0, f0,1, f0,2 are obtained from the first, second, and third ConvUnits in the top layer,
respectively. These feature vectors are concatenated to create the feature vectors f tem for
temporal evaluation. A 1D convolution layer followed by a sigmoid activation function is
applied to ftem to obtain the starting scores (ps) and ending scores (pe). As mentioned in
BSN++, the ending boundary can be considered as a starting boundary when the video is
played backwards. Hence, the reversed starting scores (prs) and ending scores (pre) are obtained
by reversing the feature sequence, and these scores are used for temporal evaluation.

4.5 Model Training

In the proposed framework, both anchor-free and anchor-based methods are used comple-
mentarily. Action proposals are generated using both coarse prediction and refined prediction
in an anchor-free manner and verify them using the boundary-based method. In the anchor-
free part, the model is trained to learn regression offsets and action confidence scores. In
the boundary-based part, it is trained to learn actionness scores and local boundary confi-
dence scores of detected proposals. To jointly train models in both parts, a unified multi-task
framework is used for optimisation.

The training details of the proposed framework are described in this section. After han-
dling how to make training data, label assignment and loss functions are explained for the four
modules of the proposed framework: coarse prediction module, refined prediction module,
proposal evaluation module, and temporal evaluation module.

4.5.1 Training Data Construction

Given an untrimmed video V , feature F with a length of lf can be extracted. The features F
can be segmented into observation windows of length lw with 50% overlap. The training set
Φ = {φn}Nw

n=1 is constructed usingNw observation windows that contains at least one ground
truth.

4.5.2 Label Assignment

Given the ground-truth annotations, labels need to be created for training the model. Ground-
truth annotations for TAL consists of Ψg = {tsg, teg, lcg}, where tsg and teg are the starting and
ending boundaries of action instances, and lcg represents action labels. This information must
be processed for each module: coarse prediction module, refined prediction module, proposal
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evaluation module, and temporal evaluation module. The proposed framework calculates
classification loss and regression loss for coarse prediction, as well as classification loss,
regression loss, and boundary mean loss for refined prediction. Furthermore, actionness loss
and regression loss are computed in the PEM, while boundary confidence loss is determined
in the TEM. In this section, how to assign appropriate labels to each module using the ground-
truth annotations when calculating each loss is explained.

Coarse Prediction Module: Labels must be assigned to each time location of the fea-
ture pyramid. Each layer is designed to detect targets of different scales. Let Γ = {γl =

(sllo, s
l
hi)}

Nl
l=0 be the target scales for each layer. A time location tli is assigned to a ground

truth φj when tsg,j <= tli <= teg,j, s
l
lo <= len(φj) <= slhi) are satisfied, where len(φj) is

the length of the action instance. In this way, labels for both regression and classification are
assigned to the ground-truth instances at each location tli. The classification label yCcls assigns
1 as a positive sample if there is a ground-truth instance assigned to tli, and assigns 0 as a
negative sample otherwise. For regression, offset labels are all positive numbers and can be
assigned as follows.

dcoffset = {tli − tsg,j, teg,j − tli}. (4.10)

Refined Prediction Module: Refined prediction also assigns a ground-truth instance to
each time location tli, similarly to coarse prediction. However, what sets refined prediction
apart is that the regression branch of this module aims to predict the residual offsets, which
are the differences between ground truths and the predicted proposals generated in coarse
prediction. As a result, it is necessary to calculate based on offsets predicted in coarse pre-
diction. three types of labels were created: the residual offset label, boundary mean label,
and refined offset label. The residual offset labels represent the amount of change from the
proposal boundaries detected in coarse prediction to ground truths. An exponential function
is used at the end to ensure that the boundary offset always has a positive value. Therefore,
if the same method is applied to the residual offsets, the residual offset labels are represented
as a ratio to the offsets d̂

s

l , d̂
e

l obtained from coarse prediction and it is expressed as follows:

∆dsg = (tl − tsg)/d̂
s

l

∆deg = (tl − teg)/d̂
e

l .
(4.11)

The boundary mean labels are used for aligning the predicted boundaries with the real
boundaries. This is based on the assumption that the real boundary will exist near the ground
truth, even if the real boundary is misrepresented due to human subjective error. Therefore,
the boundary mean labels, ms

g and me
g, are assigned as follows:

ms
g = tsg − (tl − d̂

s

l )

me
g = teg − (tl + d̂

e

l ).
(4.12)
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In other words, the difference between the boundaries obtained from coarse prediction
and the ground truth is used. The refined offset labels are intended to constrain refined off-
sets to ground truths. Although this is an auxiliary means, and boundary refinement can be
performed without it, prediction through learning does not output ground-truth values with
100% probability. Therefore, there is a possibility that the result after the refinement process
will be worse than the result of coarse prediction. To prevent this, the refined offset labels
were introduced, using the same values as the offset labels employed for the coarse prediction
regression.

Proposal Evaluation Module (PEM): In the PEM, proposals are evaluated in an anchor-
free manner, considering actionness and regression. For this purpose, tIoU was used. The
tIoUs are calculated between all ground-truth instances φi in Φ and each proposal ωi, with
the maximum tIoU gtiou assigned as a label for the proposals.

gtiou(ωi) = max(
φi ∩ ωi

φi ∪ ωi

). (4.13)

For classification, samples satisfying gtiou >= 0.9 are assigned as positive samples. Re-
garding regression, the positive samples are divided into three types according to the tIoU
value: gtiou > 0.7, 0.7 ≥ gtiou > 0.3, and 0.3 ≥ gtiou > 0. These cases are strong positive,
intermediate positive, and weak positive. To learn with various positive samples, a 1:1:1 ratio
is maintained.

Temporal Evaluation Module (TEM): In the TEM, boundary labels are needed to predict
boundary probabilities. A boundary area is set as follows:

rbdg = (ti − αη/2, ti + αη/2), (4.14)

where η is the gap between consecutive time locations in the base feature sequence, and α is
the width of the boundary area. Then, the overlap is computed between the boundary area
(rbdg ) and the area covered by each feature vector (rf ). Overlap is calculated as:

Overlap(og) =
rbdg ∩ rf
rf

, (4.15)

where rf is the area covered by the feature vector. This overlap is used as labels for TEM.

4.5.3 Loss Functions

As explained earlier, the framework consists of four modules: coarse prediction module,
refined prediction module, proposal evaluation module, and temporal evaluation module. The
corresponding multi-task objective function can be defined as follows:

L = λ1Lcoarse + λ2Lrefine + λ3Lpem + λ4Ltem + λ5L2(Θ), (4.16)
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where Lcoarse and Lrefine are the objective functions of the coarse prediction and refined pre-
diction, and Lpem and Ltem are those of the PEM and TEM, while L2(Θ) is a regularisation
term. λi, i = 1…4, are weight terms to ensure different modules are trained appropriately.
The weight terms λi, i = 1…5, are set to 10, 10, 1, 1, and 10−4, respectively, which are deter-
mined empirically.

Coarse Prediction: The objective function of the coarse prediction is composed of the
classification loss lCcls and the regression loss lCloc.

Lcoarse = lCcls + λClocl
C
loc, (4.17)

where λCloc is a weight term. lCcls is a binary focal loss between classification prediction ŷCcls
and ground-truth label yCcls:

lCcls(ŷ
C
cls,i) =

1

NC

∑︂
i

lfocal(ŷ
C
cls,i, y

C
cls,i), (4.18)

where NC represents the number of features in the feature pyramid. lCloc is tIoU loss between
predicted offsets d̂i = (d̂s, d̂e) and ground-truth offset dg = (ds, de):

lCloc(d̂i) =
1

NC
pos

∑︂
i

δ(yi == 1)(1− d̂i ∩ dg
d̂i ∪ dC

), (4.19)

where NC
pos is the number of positive samples, and δ() is the Kronecker delta function.

Refined Prediction: The objective function of refined prediction consists of three types
of loss functions. These functions can be represented as follows:

Lrefine = lRcls + λRlocl
R
loc + λ∆l∆ + λµlµ, (4.20)

where λRloc and λµ are weight terms, and lRcls, lRloc, l∆, and lµ are classification loss, refined
regression loss, residual offset loss, and mean loss, respectively. lRcls is a binary focal loss and
lRreg is tIoU loss in the same way as that of the coarse prediction.

lRcls(ŷ
R
cls,i) =

1

NR

∑︂
i

lfocal(ŷ
R
cls,i, y

R
cls,i)

lRreg(d̂
R
) =

1

NR
pos

∑︂
i

δ(yi == 1)(1− d̂
R

i ∩ dg
d̂i ∪ dC

),

(4.21)

where NR and NR
pos represent the number of samples in the feature pyramid and positive

samples, respectively. l∆, and lµ are L2 loss for the residual offsets and boundary mean.

Proposal Evaluation Module (PEM): The objective function of PEM consists of classi-
fication loss and regression loss, represented as follows:

Lpem = lpemcls + λpemreg l
pem
reg . (4.22)
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Similar to coarse prediction and refined prediction, lpemcls is the binary focal loss between
predicted proposal (ωC , ωR) and ground-truth Φ, while lpemreg is the L2 loss. For the train-
ing phase, the outputs from both coarse prediction and refined prediction were used for data
augmentation purposes.

Temporal Evaluation Module (TEM): The objective function of TEM consists of five
terms:

Ltem =
−→
ls +

−→
le⏞ ⏟⏟ ⏞

forward

+
←−
ls +

←−
le⏞ ⏟⏟ ⏞

backward

+∥f tem
f –f tem

b ∥, (4.23)

where ls and le are a weighted binary cross-entropy losses, and f tem
f and f tem

b are intermediate
features from TEM. Following the approach of BSN++[69], the losses in both forward and
backward passes is calculated, and mean-squared loss is applied to the intermediate features.

4.6 Inference

During inference, the framework generates classification scores ŷCcls and boundary offsets
d̂
C
= (d̂

C

s , d̂
C

e ) in the coarse prediction, as well as classification scores ŷRcls and residual offsets
∆d̂

R
= (∆d̂

R

s ,∆d̂
R

e ) in the refined prediction. PEM generates classification scores ppemcls and
regression scores ppemreg , while TEM generates starting scores ptems and ending scores pteme at
each time location ti. After generating proposals, redundant proposals need to be eliminated
or reduced.

4.6.1 Proposal Generation and Score Fusion

Using the scores and offsets obtained from four modules (coarse prediction, refined predic-
tion, proposal evaluation and temporal evaluation), action boundaries d̂ are generated as de-
scribed in Eq.4.24, and ranking scores ξ for each proposal are calculated as in Eq.4.25. Fi-
nally, a set of predicted proposals ω̂′ = {t̂si , t̂e, ξ̂}

Np

i=1 are obtained, whereNp is the number of
predicted proposals.

d̂ = (t̂s, t̂e)

t̂s = ti − d̂
C

s ∆d̂
R

s

t̂e = ti + d̂
C

e ∆d̂
R

e .

(4.24)
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ξ̂ = ŷcls

√︂
ppemcls p

pem
reg

√︂
p̂tems p̂teme

ŷcls =
1

2
(ŷCcls + ŷRcls)

p̂tems = (1− t̂s)ptems (t̂
down

e ) + t̂sp
tem
s (t̂

up

s )

p̂teme = (1− t̂e)pteme (t̂
down

e ) + t̂ep
tem
e (t̂

up

e )

t̂
down

k = ⌊t̂k⌋, k ∈ {s, e}

t̂
up

k = ⌈t̂k⌉, k ∈ {s, e},

(4.25)

where ŷcls represent the final classification confidence scores, and p̂tems and p̂teme are starting
and ending scores at the predicted boundaries. p̂tems and p̂teme are obtained by linear interpola-
tion because the predicted boundaries are not an integer, so ptems and pteme can not be accessed
directly.

4.6.2 Post-processing

Predicted proposal ω̂′ may contain many redundant proposals. Redundant proposals refer to
highly overlapped proposals that have very similar results. It is necessary to keep only the
one with the highest score and suppress the rest. soft-NMS was applied, which is a method
to suppress redundant proposals by decaying its scores. Then, the final proposal set ω̂ =

{t̂si , t̂e, ξi}
Np

i=1 is obtained, where ξi is the decayed score of proposal ω̂i.

4.7 Experimental Settings

In this section, details are provided for experiments using the proposed framework. The
datasets, video representation, and training parameters will be stated.

4.7.1 Datasets

To verify the effectiveness of the proposed model, it was tested on two challenging datasets:
THUMOS14 [11] and ActivityNet v1.3 [2]. The THUMOS14 dataset consists of a validation
set of 200 untrimmed videos and a testing set of 213 untrimmed videos, and provides temporal
annotations for 20 action categories for these videos. These actions are taken from sports
events. Since the officially provided training set is composed of trimmed video clips, previous
studies trained their models on the validation set and tested them on the testing set. Following
this protocol, the model was trained on the validation set and evaluated on the testing set.
The ActivityNet v1.3 dataset contains 10,024 untrimmed videos in the training set and 4,926
untrimmed videos in the validation set. Each set provides 15,410 action instances and 7,654
action instances as temporal annotations. Although 5,044 untrimmed videos are provided
as a testing set, temporal annotations are not provided. As a result, previous studies trained
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their models on the training set and tested them on the validation set. Experiments were also
conducted following this protocol.

4.7.2 Video Representation

On THUMOS14, for feature extraction, the frame interval was set to 5 and feature vectors
were extracted every 5 frames. Since 96 feature vectors were needed to create a feature pyra-
mid, the sliding window size lw was set to 96. On ActivityNet v1.3, as in ASDF [85], each
video was sampled using different fps. In this way, each video was created as a video clip
with only 768 frames.

For video representation, a two-stream network called the inflated 3D network (I3D) was
used, which is pre-trained on a Kinetics dataset. PWC-Net [115] was used to obtain optical
flow images. Random cropping and horizontal flipping were used for data augmentation in
both datasets, and each image was cropped to 96× 96. The I3D network takes 768 images as
input and output 96 feature vectors at once.

4.7.3 Implementation Details

To train the proposed model, the Adam optimisation method was used. The batch size was
set to 16, and the number of training epochs was 10. The learning rate was set to 10−3 for
the first seven epochs and it was decayed to 10−4 for another three epochs. For soft-NMS, the
tIoU threshold was set to 0.75 for both THUMOS14 and ActivityNet v1.3.

4.8 Result on Temporal Action Proposal Generation

The purpose of action proposal generation is to generate high-quality proposals with a
high overlap with ground-truth instances. To evaluate this, AR was used, following the con-
vention in the literature. Additionally, the effectiveness of the proposed model was evaluated
through comparison with state-of-the-art methods. The model consists of four modules. Ab-
lation studies were conducted to investigate the effectiveness of each module. By comparing
the performance when each module was applied and when it was not, whether each module
contributed to improved performance was accessed.

4.8.1 Evaluation Metric

In the literature, the performance of TAPG is evaluated by AR. For THUMOS14, AR given
50, 100, 200, and 1000 proposals was calculated. For ActivityNet v1.3, two kinds of eval-
uation metrics were used. First, 100 proposals were used for calculating AR. Second, the
area under the AR vs. AN curve (AUC) was also used as an evaluation metric. AR was
calculated under multiple tIoU thresholds. The tIoU thresholds were set to [0.5:0.05:1.0] for
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THUMOS14 and [0.5:0.05:0.95] for ActivityNet v1.3, separately. Using these values, AUC
was calculated.

4.8.2 Performance Comparison

The model was compared with others on the test set of THUMOS14 and the validation set
of ActivityNet v1.3. The two datasets have different characteristics. THUMOS14 contains
many action segments in a video clip, and the length of the action segments accounts for a
relatively low ratio compared to the length of the video clip. On the other hand, ActivityNet
includes long action instances that occupy a large percentage of video clips. Therefore, differ-
ent tIoU criteria were applied. Each model has reported performance using different feature
representation. This is because performance varies based on the type of feature representa-
tion, so the authors used different feature representation method to show the best performance.
Therefore, in Table 4.1 and Table 4.2, results were collected from original papers because it
would be the best.

Table 4.1 lists the results of proposal generation methods on the test set of THUMOS14
dataset, including 13 anchor-based (boundary-based) methods and one anchor-free method,
along with the result of the proposed model (CAFN). In TAPG, only one proposal generation
method in an anchor-free way has been found. The proposed model achieved comparable
performance with the state-of-the-art. In general, boundary-based methods are superior to
anchor-free methods in TAP. Currently, AOE [116] is the best method, which makes use
of additional linguistic information. Although the proposed model did not outperform this
method, it is meaningful that a comparable result was achieved in an anchor-free way.

Table 4.1. Comparison with other state-of-the-art proposal generation methods on THUMOS14 in terms of
AR@AN. (*) means the anchor-free method. (unit: %)

Method Feature @50 @100 @200 @500 @1000 Average
SCNN[78] C3D 17.22 26.17 37.01 51.57 58.20 38.03
SST[59] C3D 19.90 28.36 37.90 51.58 60.27 39.60

TURN[60] C3D 19.63 27.96 38.34 53.52 60.75 40.04
MGG[64] C3D 29.11 36.31 44.32 54.95 60.98 53.55
AOE[116] C3D 44.56 50.26 57.30 64.32 68.19 56.93
TAG[55] 2-Stream (TSN) 18.55 29.00 39.61 - - -
BSN[67] 2-Stream (TSN) 37.46 46.06 53.21 60.64 64.52 52.38
BMN[68] 2-Stream (TSN) 39.36 47.72 54.70 62.07 65.49 53.87
DBG[77] 2-Stream (TSN) 37.32 46.67 54.50 62.21 66.40 53.42
SRG[84] 2-Stream (TSN) 42.19 49.72 56.71 63.78 - -

BSN++[69] 2-Stream (TSN) 42.44 49.84 57.61 65.17 66.83 56.38
TCANet[88] 2-Stream (TSN) 42.05 50.48 57.13 63.61 66.88 56.03

MR[117] 2-Stream (I3D) 44.23 50.67 55.74 - - -
RTD-Net[66](*) 2-Stream (TSN+I3D) 41.52 49.32 56.41 62.91 - -

CAFN (*) 2-Stream (I3D) 41.61 49.96 56.57 63.59 67.03 55.75

Table 4.2 lists the results obtained from the validation set of the ActivityNet v1.3 dataset.
In this dataset, it can be clearly seen that the boundary-based methods show superior perfor-
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mance. The performance of RTD-Net and the proposed model (CAFN), both performed in
the anchor-free method, did not outperform other methods performed in the boundary-based
method.
Table 4.2. Comparison with other state-of-the-art proposal generation methods on ActivityNet v1.3 in terms

of AR@AN. (*) means the anchor-free method. (unit: %)

Method Feature AR@100(val) AUC(val)
BSN[67] 2-Stream (TSN) 74.16 66.17
SRG[84] 2-Stream (TSN) 74.65 66.06
BMN[68] 2-Stream (TSN) 75.01 67.10
DBG[77] 2-Stream (TSN) 76.65 68.23

BSN++[69] 2-Stream (TSN) 76.52 68.26
MGG[64] 2-Stream (I3D) 74.54 66.43

RTD-Net[66](*) 2-Stream (I3D) 73.21 65.78
AOE[116] C3D 77.67 69.71
CAFN (*) 2-Stream (I3D) 70.95 64.28

Table 4.2 indeed shows no advantage of the anchor-free method compared to the boundary-
based method in terms of performance. However, by considering the GPU during training,
as shown in Table 4.3, a clear advantage for anchor-free methods can be seen. Boundary-
based methods require a significant amount of memory because they evaluate all possible
temporal pairs for dense search, whereas anchor-free methods require less memory due to
sparse search. Therefore, there is a trade-off between performance and memory efficiency,
and research using this point like the proposed model will be justified.

Table 4.3. GPU memory usage (unit: MiB).

Boundary-based Anchor-free
Method BMN DBG BSN++ RTD-net CAFN

GPU Memory 13,055 8,299 36,695 1,716 4,549

4.8.3 Ablation Study

In this section, the outcomes from ablation studies on various components are presented so
as to comprehensively evaluate the proposed model. Table 4.4 presents six versions of the
model that are tested to assess the effectiveness of each module. Model A represents the case
where only coarse prediction is performed. Models B, C, and D are designed to evaluate
refined prediction, TEM, and PEM, respectively. Model E tests the effectiveness of boundary
refinement when both PEM and TEM are employed. Model F, on the other hand, incorpo-
rates all modules. By examining the AR, it can be observed that when all modules are utilised,
the performance surpasses that of the other variant models. However, it is worth noting that
the performance difference between models D, E, and F gradually increases, but the differ-
ence is not significant. This observation suggests that further research is necessary to better
understand the implications of these findings.

In the refined prediction stage, three loss functions are used for regression, namely bound-
ary mean loss, refined offset loss, and residual offset loss. The boundary mean loss is used
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Table 4.4. Ablation study on different versions of the proposed model (CAFN).

Model @50 @100 @200 @500 @1000 Average
A. coarse 36.54 43.55 49.71 57.22 62.22 49.85

B. coarse + refine 38.00 45.71 52.44 59.99 64.59 52.15
C. coarse + refine + PEM 41.31 49.17 55.36 61.52 65.08 54.49
D. coarse + refine + TEM 42.22 49.84 56.13 62.18 65.99 55.27
E. coarse + PEM + TEM 41.47 50.12 56.53 63.12 66.48 55.54

F. All 41.61 49.96 56.57 63.59 67.03 55.75

to learn the relationship between the coarse predicted proposals and the actual boundaries,
while the refined offset loss is for the refined boundaries. The residual offset loss is for learn-
ing the residual offsets. It may seem unnecessary to use all three types of loss functions, so
an ablation study is conducted to investigate their effectiveness. The results are shown in Ta-
ble 4.5. It can be concluded that the refined offset loss directly contributes to the performance
improvement. On the other hand, the boundary mean loss and residual offset loss do not show
a significant contribution to the performance improvement in terms of AR. However, when
all loss functions are used, AR@50 and AR@100 are the largest, indicating that the two loss
functions contribute to proposal ranking.

Table 4.5. Ablation study on boundary mean loss, refined offset loss, and residual offset loss.

Model @50 @100 @200 @500 @1000 Average
w/o boundary mean loss 41.19 49.39 55.97 63.04 66.81 55.28
w/o refined offset loss 41.04 48.68 55.66 62.32 66.18 54.78
w/o residual offset loss 41.53 49.77 56.70 63.65 67.16 55.76

All 41.61 49.96 56.57 63.59 67.03 55.75

4.9 Result on Temporal Action Localisation

For completing the process of TAL, both proposal generation and action classification
are required. Therefore, an action classification step is necessary to complete TAL. In many
studies on TAPG for pipeline TAL (especially in two-stage TAL), TAL results are reported
using an external classifier. Following the convention in the literature, an external classifier
was used.

UNet, SCNN-cls, and P-GCN are widely used as external classifiers. The P-GCN classifier
was used for action classification. P-GCN is a proposal-level classifier that recognises actions
by taking generated proposals as input. Experiment were conducted on the THUMOS14
dataset.

4.9.1 Evaluation Metric

The THUMOS14 dataset is derived from the dataset used in the THUMOS Challenge, which
provides a conventional metric for performance evaluation. Previous studies using this dataset
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have reported performance using this convention. This convention was adopted and perfor-
mance using mAP at different tIoU thresholds was reported. Specifically, AP was calculated
to report performance per action category, and AP values at tIoU thresholds of 0.3, 0.4, 0.5,
0.6, and 0.7 were used to report overall performance on TAL by calculating mAP.

4.9.2 Performance Comparison

The results of the proposed model (CAFN) was compared with several state-of-the-art meth-
ods, including not only the pipeline methods (multi-stage methods) but also end-to-end meth-
ods (one-stage methods). Table 4.6 shows the best scores, with the highest scores shown in
bold. Among the pipeline methods, when comparing the results of CAFN with ContextLoc,
which shows the best performance (mAP: 50.9), the proposed model (CAFN) showed compa-
rable performance with mAP of 49.41. In particular, in terms of the anchor-free method, the
proposed model outperformed RTD-Net, which is the only method performed in an anchor-
free way among the pipeline methods.

Including the end-to-end methods in the comparison, it can be seen that pipeline methods
do not perform as well as the latest end-to-end methods. In particular, recent studies tend to
focus on end-to-end models, and significant advances have been made using this methodol-
ogy. Additionally, considering the results in Section 3.2, the use of class labels may not be
helpful when only performing proposal generation, but it is beneficial when detecting and
recognising actions simultaneously.

4.10 Investigation on Challenges – Comparative Study

This section reports on a number of comparative studies, the same as those conducted
in Chapter 3. However, since the relationship between detection and recognition required
two different sets with the same number of proposals, and since TAPG was performed for
the pipeline method, experiment using class labels was not able to be performed. Therefore,
experiments for the remaining three cases out of the five investigations were conducted.

4.10.1 Experiment on Multi-modal Data

To perform a multi-modal test with the proposed model, an experiment was conducted using
two types of data, RGB and Flow. Table 4.7 shows the results of the experiment. Similar to the
results obtained in Chapter 3, the results obtained when using only the Flow channel are better
than when using only the RGB channel. The best results are obtained when both channels
are used. The RGB channel is suitable for expressing the appearance of an action, while
the Flow channel is suitable for expressing motion information. According to the results, it
seems that motion information indicating how the motion has changed is more important than
the appearance of the action. However, since each channel has missing information, the best
results are obtained when both channels are used, indicating that they are complementary.
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One thing that is worth noting is that the results of the proposed model (CAFN) outper-
formed those of BSN, BMN, and BSN++ in Table 3.6. When not only using both modalities
but also using either RGB or Flow independently, the proposed model outperformed the state-
of-the-art boundary-based methods.

Table 4.7. Multi-modal test on THUMOS14.

Channel @50 @100 @200 @500 @1000 Average
RGB 38.73 46.58 52.90 60.24 64.00 52.49
Flow 40.02 48.02 55.28 62.45 66.24 54.40
Both 41.61 49.96 56.57 63.59 67.03 55.75

4.10.2 Experiment on Discontinuous Actions

As mentioned in Chapter 3, it is challenging to create large-scale datasets manually. There-
fore, videos are collected from the internet, movies, and TV programmes to create a video
dataset. However, in these videos, the continuity of motion may be disrupted, or unrelated
scenes may be inserted due to post-production work such as editing. This sub-section reports
on experiments that were conducted using manually selected discontinuous motions in the
THUMOS14 dataset. Table 4.8 shows the results. In contrast to the general multi-modal test
results, the average performance of using only the RGB channel (54.60) is better than that of
using only the Flow channel (52.45). This indicates that the Flow channel is more sensitive
to disrupted motion continuity. Nevertheless, using both channels can improve performance
even in discontinuous actions.

Compared to Table 3.7, the proposed model, CAFN, outperformed other models (BSN,
BMN, BSN++) when using either RGB or both modalities. However, when using only Flow
data, some other models outperformed the proposed one. It is worth noting that the Flow
data might have been affected by the discontinuity of actions, potentially making it unreli-
able. Therefore, it can be concluded that the proposed model is more robust to discontinuous
actions than the other models.

Table 4.8. Performance of discontinuous actions on THUMOS14.

Channel @50 @100 @200 @500 @1000 Average
RGB 39.84 48.68 57.06 62.87 64.57 54.60
Flow 36.86 46.16 53.83 61.39 64.02 52.45
Both 41.81 50.76 57.72 64.73 67.52 56.51

4.10.3 Cross-corpora Test

In this sub-section, the results from a cross-corpora test where the proposed framework was
used to train a model on one dataset and apply it on the other. Specifically, a model was trained
using the training set of ActivityNet v1.3 and tested on the testing set of THUMOS14, and
vice versa. The results are shown in Tables 4.9 and 4.10. Similar to the results obtained in
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Chapter 3, it can be observed that the performance of cross-corpora testing is worse than that
of normal testing using the same dataset. This indicates that the existing benchmark datasets
are biased towards specific purposes. Therefore, it is important to consider the distribution
of data in the dataset to ensure generalisation when constructing training data.

Table 4.9. Performance of Cross-corpora Test on THUMOS14.

Type @50 @100 @200 @500 @1000 Average
Normal 41.81 50.76 57.72 64.73 67.52 56.51
Cross 6.26 13.01 24.49 43.04 53.88 28.14

Table 4.10. Performance of Cross-corpora Test on ActivityNet v1.3.

Type @1 @5 @10 @100 AR@AN
Normal 33.84 47.23 54.89 70.95 64.28
Cross 9.94 29.21 37.51 56.05 48.63

4.11 Summary

In this chapter, the proposed TAPG model (CAFN) and boundary refinement module have
been explained. TAL was performed using a pipeline method. The pipeline method (espe-
cially, two-stage approach) consists of two steps: TAPG and action classification. To address
TAPG, the complementary anchor-free network (CAFN) was proposed. This model takes ad-
vantage of the strengths and compensates for the weaknesses of anchor-based and anchor-free
methods. Anchor-based methods rely on detecting actions using a predefined set of anchors.
The performance of this method depends on the anchor configuration, and increasing the
number of anchors to improve performance leads to inefficient computation and requires a
large amount of memory. Additionally, since predefined anchors are used, the boundary of
the detected action is not accurate, but dense evaluation is possible by increasing the number
of anchors, making it less likely to miss the target. On the other hand, the anchor-free method
requires less memory as it detects targets without anchors, resulting in good computational
efficiency. However, the feature information used for prediction is incomplete. To address
this, a complementary method was proposed so as to leverage the strengths of each approach
while compensating for their weaknesses in a mutually complementary way. First, action
proposals were generated using an anchor-free method and it was used as dynamically gener-
ated anchors. This reduced the number of repetitive computations and verified the predicted
proposals using complete information.

This chapter mainly addressed the second and third research question in Section 1.2. To
answer the second research question, “How can various length of human actions be dealt
with?”, this model was built upon the Feature Pyramid Network (FPN). Each layer of FPN is
designed to detect actions at different scales. In this way, multi-scale actions were modelled
and detected. To enable feature vectors to exchange information across different layers, a
pyramidal attention mechanism was applied. Action instances were detected by predicting
the left and right offsets. These instances were then converted into a single vector with the
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same shape through sparse sampling, which was subsequently used for classification.

In addition, as the answer of the third research question, “ How can the boundary of human
actions be detected?”, a boundary refinement module was proposed to improve the accuracy
of the proposals generated by the anchor-free method. The boundaries of actions were fur-
ther refined by constructing boundary features and predicting residual offsets. These bound-
ary features were constructed using Gaussian sampling, and their parameters were predicted
through mean error learning. As a result, the proposed model can predict more accurate
boundaries, particularly useful for handling inconsistent annotations.

The validity of the proposed model was verified by comparing its performance with state-
of-the-art methods and each module included in the model was evaluated through ablation
studies. Additionally, the performance evaluation of the proposed model was done on the
challenging cases introduced in Chapter 3. Most of the models that demonstrate excellent
performance in TAPG rely on dense search, such as the boundary-based method. However,
obtaining comparative results using an anchor-free approach is significant.
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Chapter 5

Conclusions and Future Work

In this thesis, TAL has been addressed, including the handling of various action durations,
multi-scale representation, boundary refinement, post-processing, and more. Mainly TAPG,
the first step in the two-stage approach, has been addressed using the pipeline approach. To
begin, challenging factors have been set in TAL and experiments have been conducted to in-
vestigate how these factors affect the results, providing insights for future research directions.
Additionally, a complementary anchor-free network (CAFN) and a boundary refinement mod-
ule have been proposed. CAFN utilises both anchor-based and anchor-free methods and the
boundary refinement module improves the accuracy of boundaries through Gaussian sam-
pling and mean error learning. These provide a reasonable answer to the research questions
posed at the beginning of the thesis. Overall, this work has allowed to draw conclusions about
pipeline TAL and suggest potential research directions for future work.

5.1 Summary

In the following subsections, the work presented in Chapters 3 and 4 will be summarised.

5.1.1 Investigation on Challenges in Pipeline TAL - Comparative Study

In Chapter 3, comparative studies were conducted based on five investigations. While TAL is
a promising field with new papers being published every year, it still faces many challenges
and problems compared to similar fields such as object detection.

First, many researchers who adopt the pipeline strategy have made efforts to improve the
performance of TAPG. They have done so because the detection-then-recognition approach
has shown excellent performance in object detection, and they assumed the same would hold
true for TAL. An experiment was conducted to test if this assumption holds true. In general,
the assumption holds true in TAL, but some exceptional cases were found and to know why
it happened, the results were investigated. It was found that TAL performance in a pipeline
approach is affected not only by the proposal generation result but also by the number of true
positive samples in the proposal sets.

Secondly, an experiment was conducted to investigate the effect of using action class la-
bels, which is the main difference between the proposal generation of two-stage methods

114



(pipeline) and one-stage methods (end-to-end). Existing one-stage methods were modified
to set up two different experimental environment: proposal generation with binary classifica-
tion, and one-stage method with multi-label classification. Through experiments conducted,
it was found that action class labels are useful information for TAL performance improvement
because this helps classify actions to multiple labels while boundary detection performance
was not as good as proposal generation performance. It may be because of the complexity
of whole TAL task. Proposal generation task classifies temporal segments to two classes
(action and background) while one-stage method classifies the segments to multiple classes
(ActivityNet: 200, THUMOS14: 20).

Thirdly, as the size of the dataset grows, a large amount of video clips collected from the
internet, films, and TV programmes are included in the dataset, and the continuity of action in
these data is damaged due to editing or occurrence of unexpected situations. In this respect,
an experiment was conducted to determine whether the anchor-based method and anchor-
free method used in TAL can operate robustly in this situation. Discontinuous actions were
collected manually from THUMOS14 dataset, and a trained model was evaluated using the
discontinuous actions. From the experiment, it is found that anchor-free methods are more
robust to discontinuous actions than anchor-based (boundary-based) methods.

Fourth, in many studies of TAL, RGB channels and Flow channels are used as multi-modal
data. The effect of these two types of data on performance was investigated. Experiments
were conducted in three ways: using only RGB, using only Flow, and using both data. It
was found that the Flow channel is more effective in detecting actions than the RGB channel.
However, since each channel includes different information, using both types of channels is
superior to using only one type of information. An experiment was also conducted following
the third investigation with multi-modal data. Unlike using all action instances, using only
the RGB channel was better than using only the Flow channel in the case of discontinuous
actions. This may be because the Flow channel is better suited to representing action continu-
ity, which is disrupted in discontinuous actions. Nevertheless, using both types of channels
is still beneficial for improving performance in this situation.

Lastly, a cross-corpora test was conducted from a generalisation point of view. A model
trained on different datasets was used. Through this experiment, it was found that the datasets
used for benchmarking are biased. This bias may be related to difficulties in collecting data of
desired classes or labelling collected videos. Thus, it is essential to collect unbiased data to
improve the general performance of TAL models. While it is possible to target only actions in
specific fields, such as sports, appropriate data collection is crucial to creating an algorithm
that is helpful in daily life.

5.1.2 Anchor-free Pipeline Temporal Action Localisation

A Complementary Anchor-Free Network (CAFN) and a boundary refinement module were
proposed. The proposed approach was complementary in nature, combining the strengths of
anchor-based and anchor-free methods to compensate for incomplete information. A feature
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pyramid structure was utilised to handle multi-scale issues, incorporating pyramidal atten-
tion to establish lateral connections between features of varying scales. This structure com-
pensated for the disadvantage of using incomplete information in the anchor-free method.
Boundary refinement was also performed to improve the accuracy of coarse predictions for
more precise boundary prediction. This involved predicting a refined boundary by learn-
ing the error between the coarse prediction and the ground-truth labels. It was possible that
the boundary obtained in the coarse prediction step might differ from the actual boundary,
which could adversely affect the results when using these boundary features for further work.
Thus, creating boundary features at locations close to the actual boundary by correcting errors
was proposed to train the model with the correct boundary information, which was verified
through experiments and ablation studies.

It is possible to perform TAPG using only the anchor-free method, but there are drawbacks.
First, the feature vector used for prediction may not align well with the ground-truth action in-
stances, leading to incomplete or background-heavy information. Additionally, the regression
branch in the anchor-free method only outputs left and right offsets without confidence scores,
making it difficult to measure the reliability of the results. To compensate for these short-
comings, a complementary approach was proposed to incorporates an anchor-based method.
Rather than predefining anchors, proposals generated by the anchor-free method were used
to reduce repetitive calculations in the anchor-based method. A PEM enabled proposal-level
evaluation, and the resulting predictions were verified by a TEM that outputs starting and
ending probabilities. These scores served as confidence scores for the proposal boundaries.
By combining the strengths of both methods, their individual disadvantages was overcome,
as demonstrated by the ablation study results.

The anchor-free method is superior to the anchor-based method in terms of both space
complexity and time complexity. Additionally, the proposed model is meaningful as it achieves
comparable results to the anchor-based method using the anchor-free method. However, the
approach has limitations as a pipeline strategy was used. Recent research in TAL tends to use
one-stage methods (end-to-end methods), and results within the past two years have shown
that one-stage methods outperform multi-stage methods. This may be because multi-stage
methods cannot utilise label information from previous steps, even though TAPG performs
better without labels. Nonetheless, there is value in TAPG itself, as there are situations where
actions must be detected without labels, such as in the detection of unspecified actions. In
such cases, class-independent detection may be more useful than classifying actions into pre-
defined classes.

5.2 Conclusions

In Section 1.2, three research questions and the corresponding subsidiary questions have
been asked, these have been answered through this thesis. This section provides overall an-
swer of the questions.
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5.2.1 Investigation on Challenges in Pipeline TAL

The first question was about the factors affecting TAL performance, and five investigations
have been done.

The first investigation was about the relationship between detection and recognition per-
formance, and from which, two subsidiary questions were arisen: “When the performance of
proposal generation improves, will the performance of recognition also improve?” and “Is
there any relationship between the performance of proposal generation and that of recogni-
tion?”. As shown in Tables 3.1 and 3.2, better recognition results tend to be obtained from
better proposal generation models in general. However, some exceptional cases were noticed
such as DBG(TSN) and BSN++(TSN). In TAL, the false positive rate is relatively high due to
the ambiguity of action boundary, which can have a significant impact on the action classifi-
cation results. As demonstrated in Section 3.1, it can be concluded that a higher true positive
rate in TAPG leads to better results in subsequent action classification.

The second investigation was to know whether there is any advantages of using action
labels in terms of boundary detection. Based on the results presented in Section 3.2, it was
observed that proposal generation performance is better when actions are detected in a class-
independent way without using class labels. However, most of the recent research in the TAL
field has been conducted using one-stage methods, which have been shown to outperform
two-stage methods. Therefore, it is concluded that labels play a more critical role in action
classification than boundary detection.

The third investigation was concerning the robustness to discontinuous actions between
anchor-based (boundary-base) methods and anchor-free methods and its reason. Based on the
results obtained in Section 3.3, it can be said that the anchor-free method is more robust in
this situation. There could be several reasons for this. For instance, the anchor-based method
uses proposal-level representation to evaluate the units of temporal segments. Therefore,
when undesirable scenes such as abrupt viewpoint changes are included in the segments, this
method may not avoid such situations. On the other hand, in the anchor-free method, the rep-
resentation used for offset prediction is likely to include only partial information of the action.
Consequently, there is a possibility that unwanted scenes can be avoided. For this reason, it
can be concluded that the anchor-free method is more advantageous for discontinuous actions.

The fourth investigation was to know whether Flow data always have a positive effect on
performance. As shown Table 3.6, Flow data is helpful in improving TAPG performance in
general. However, from Tables 3.7 and 4.7, it can negatively affect performance when the
continuity of actions is disrupted.

The fifth investigation was a cross-corpora test using two different datasets ( THUMOS14
and ActivityNet) to know how models trained on different datasets perform on a dataset that
was not used for training. As shown in Tables 3.8 and 3.9, the performance was deteriorated
on a dataset that was not used for training. The performance was varied according to the size
and classes of the dataset. ActivityNet dtaset is large and the samples were collected from
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200 actions while THUMOS14 dataset is relatively small and it has only 20 classes. It can
be concluded that dataset should be large and unbiased for a general use.

5.2.2 Anchor-free Pipeline Temporal Action Localisation

In this sub-section, the answer of the research questions 2 and 3 are summarised with con-
clusion. The questions were as follows:

• How can various length of human actions be dealt with?

1. How to model multi-scale actions?

2. How to convert actions of different lengths into input vectors to represent them
with the same shape?

• How can the boundary of human actions be detected?

1. How to model the boundaries of actions?

2. How to deal with the inconsistent boundaries of action determined by people’s
subjective judgements?

In the proposed model (CAFN), the Feature Pyramid Network (FPN) was used to handle
various lengths of actions. Instead of using the pure FPN, a pyramidal attention module
was applied, allowing features to exchange information. Each layer of FPN was designed to
detect a different scale of targets, enabling the detection of multi-scale actions. Generated
proposals were converted into vectors with the same shape using sparse sampling. This was
done in three areas: the starting area, internal area, and ending area. A predefined number of
vectors were sampled in each area, and they were then concatenated to construct proposal-
level feature vectors.

Action boundaries were first generated via offset prediction. Then, these boundaries were
verified by the Temporal Evaluation Module (TEM), which predicts boundary scores. The
feature vectors of the boundaries were constructed, including nearby information, as the
boundaries were ambiguous and of very short duration. Therefore, investigating the neigh-
bouring context was necessary. To give more weight to the area close to boundaries, Gaussian
sampling was used. Additionally, to improve robustness against inconsistent annotations, the
mean of the Gaussian function was determined through learning, ensuring that the sampling
was done near generally accepted boundaries, regardless of inconsistent annotations.

5.3 Future Work

Despite the achievements that have been made, the work of this thesis has several limita-
tions. In this regard, potential research directions for future work can be considered.
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5.3.1 Fine-tuned Backbone

In Chapter 3 and Section 4.2, videos were converted to feature vectors using a pre-trained
I3D model from the Kinetics dataset for video encoding. While state-of-the-art methods
have demonstrated sufficient generalisation ability using pre-trained models, as seen in the
cross-corpora test, models trained on datasets other than the target dataset may not have the
best performance. Therefore, fine-tuning the model used for feature extraction on the target
dataset can improve performance. Additionally, the features were primarily extracted using
models designed for action recognition tasks. As these models use trimmed video clips as
training data, they do not consider the temporal information about the boundary or context.
As pointed out in TSP [54], further performance improvement can be achieved by fine-tuning
the backbone model for feature extraction to include temporal information on the boundary.

5.3.2 Alternative Video Representation

Experiments were conducted using two-stream networks, specifically the Temporally Seg-
mented Network (TSN) and the inflated 3D network (I3D). However, there are other back-
bone networks that can be utilised for various feature extractions. For example, the SlowFast
network [6] is a two-stream network with different frame rates, and the Pseudo-3D Resid-
ual Network (P3D) [42] is a spatio-temporal representation that improves the computational
efficiency of 3D CNNs. Furthermore, many models have been studied and published for ac-
tion recognition tasks, which can be used as substitutes for TSN and I3D. Since different
models contain different information, they can provide inspiration for a video representation
that is advantageous to TAL. Additionally, recently proposed models have shown improved
recognition performance, which will ultimately contribute to improving the performance of
TAL.

5.3.3 More Effective Feature Manipulation for Anchor-free Method

Anchor-free methods utilise a pyramidal structure to process input features and handle multi-
scale issues. To improve performance, FPN [82] inserts upward/downward lateral connec-
tions, while pyramidal attention proposed by Pyraformer [111] was used for the same purpose
in the proposed model. Several other methods have been proposed to enhance the feature
pyramid. DRFPN [122] highlights the issue of lateral connections composed of upsampling
and convolution layers and aims to improve it, while ImFPN [123] fuses features of different
scales using similarity. These various methods of feature fusion can improve performance in
object detection, and similar approaches may also be useful in detecting actions.

5.3.4 One-stage Temporal Action Localisation

The pipeline approach was chosen because it is more scalable from an application perspec-
tive, as TAPG can be performed in a class-agnostic way. However, as confirmed through the
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comparative study, this method may not be as effective in recognising the detected proposals,
as class labels of actions are not considered. Recently, TAL tends to be studied as a one-stage
method, which is simpler as the final result can be obtained with one model, and action de-
tection and recognition are performed simultaneously. This allows for the creation of feature
embeddings for detection and recognition by reflecting the labels of each class. This point
is evident from the results of recently published one-stage methods. This study can be im-
proved by adopting a one-stage method that can reflect the characteristics of each action in
the detection of actions.

5.3.5 Applications Beyond Temporal Action Localisation

TAL plays a crucial role in developing application services that require video understanding.
Although it is just one of the many tasks related to video understanding, detecting actions
in a video has various applications in everyday life, especially concerning people. For in-
stance, TAL can be used to identify abnormal behaviours in recorded video footage such as
CCTV, or to search for a video that contains a specific behaviour, thereby improving produc-
tivity compared to manual inspection. Additionally, from a research perspective, TAL can
be extended to semi-supervised learning, which utilises both labelled and unlabelled data, or
few-shot TAL, which involves training with a limited number of samples.
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Appendix A

Datasets

A.1 Action Classes

A.1.1 THUMOS14

Table A.1. Class labels in THUMOS14 dataset. Actions that exist in ActivityNet v1.3 in a similar form are in
bold.

Billiards CleanAndJerk CliffDiving Diving CricketBowling
CricketShot FrisbeeCatch BaseballPitch GolfSwing HammerThrow
HighJump JavelinThrow LongJump PoleVault Shotput

ThrowDiscus SoccerPenalty BasketballDunk TennisSwing VolleyballSpiking

A.1.2 ActivityNet v1.3

Table A.2. Class labels in ActivityNet v1.3 dataset. Actions that exist in THUMOS14 in a similar form are in
bold.

Applying sunscreen Arm wrestling Assembling bicycle
BMX Baking cookies Baton twirling

Beach soccer Beer pong Blow-drying hair
Blowing leaves Playing ten pins Braiding hair

Building sandcastles Bullfighting Calf roping
Camel ride Canoeing Capoeira

Carving jack-o-lanterns Changing car wheel Cleaning sink
Clipping cat claws Croquet Curling
Cutting the grass Decorating the Christmas tree Disc dog

Doing a powerbomb Doing crunches Drum corps
Elliptical trainer Doing fencing Fixing the roof
Fun sliding down Futsal Gargling mouthwash
Grooming dog Hand car wash Hanging wallpaper

Having an ice cream Hitting a pinata Hula hoop
Hurling Ice fishing Installing carpet

Kite flying Kneeling Knitting
Laying tile Longboarding Making a cake

Making a lemonade Making an omelette Mooping floor
Painting fence Painting furniture Peeling potatoes

Plastering Playing beach volleyball Playing blackjack
Continued on next page
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Table A.2 – continued from previous page

Playing congas Playing drums Playing ice hockey
Playing pool Playing rubik cube Powerbocking

Putting in contact lenses Putting on shoes Rafting
Raking leaves Removing ice from car Riding bumper cars
River tubing Rock-paper-scissors Rollerblading

Roof shingle removal Rope skipping Running a marathon
Scuba diving Sharpening knives Shuffleboard

Skiing Slacklining Snow tubing
Snowboarding Spread mulch Sumo

Surfing Swimming Swinging at the playground
Table soccer Throwing darts Trimming branches or hedges
Tug of war Using the monkey bar Using the rowing machine

Wakeboarding Waterskiing Waxing skis
Welding Drinking coffee Zumba

Doing kickboxing Doing karate Tango
Putting on makeup High jump Playing bagpipes

Cheerleading Wrapping presents Cricket
Clean and jerk Preparing pasta Bathing dog
Discus throw Playing field hockey Grooming horse

Preparing salad Playing harmonica Playing saxophone
Chopping wood Washing face Using the pommel horse
Javelin throw Spinning Ping-pong

Making a sandwich Brushing hair Playing guitarra
Doing step aerobics Drinking beer Playing polo

Snatch Paintball Long jump
Cleaning windows Brushing teeth Playing flauta

Tennis serve with ball bouncing Bungee jumping Triple jump
Horseback riding Layup drill in basketball Vacuuming floor
Cleaning shoes Doing nails Shot put
Fixing bicycle Washing hands Ironing clothes

Using the balance beam Shoveling snow Tumbling
Using parallel bars Getting a tattoo Rock climbing
Smoking hookah Shaving Getting a piercing

Springboard diving Playing squash Playing piano
Dodgeball Smoking a cigarette Sailing

Getting a haircut Playing lacrosse Cumbia
Tai chi Painting Mowing the lawn

Shaving legs Walking the dog Hammer throw
Skateboarding Polishing shoes Ballet

Hand washing clothes Plataform diving Playing violin
Breakdancing Windsurfing Hopscotch

Doing motocross Mixing drinks Starting a campfire
Belly dance Removing curlers Archery
Volleyball Playing water polo Playing racquetball
Kayaking Polishing forniture Playing kickball

Using uneven bars Washing dishes Pole vault
Playing accordion Playing badminton
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Appendix B

Feature Extraction

For THUMOS14 dataset, feature vectors were extracted every 5 frames and each vector
was made from 5 image frames as in other work.

For ActivityNet v1.3 dataset, to handle all videos efficiently, all boundary-based methods
resized videos to get a fixed number of feature vectors per video. This was done using linear
interpolation. However, as pointed out in ASDF[85], sampling image frames from video
directly is more useful, so by following their methods, images were sampled. Each video has
different length and different frame per second (FPS). The goal was making video have the
same number of feature vectors. First, image frames were sampled at different frame rates
per video, so each video consisted of 768 image frames. This is because the feature pyramid
needs 96 feature vectors, and the I3D network needs 768 image frames to generate 96 feature
vectors. In this way, all videos were represented by 96 feature vectors, which is the same
effect as linear interpolation. Then, all videos can be processed at once.
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Appendix C

Feature Pyramid Construction

Figure C.1. Details of Feature Pyramid Construction. T is the number of images which is 768, Cin is
the dimension of input channels which is either 1024 or 2048 depending on which type of feature used
(RGB,F low ∈ R1024, Both ∈ R2048). ks is kernel size and s is stride. In pyramidal attention, ws is set
to 3, which is the window size including attentive sibling nodes and the updated node itself.

Figure C.1 shows the details of the feature pyramid construction. The I3D network con-
sumes 768 image frames to generate 96 feature vectors. Feature maps were collected from the
C5 layer. To make the first layer of the feature pyramid, a 3D convolution layer was applied
to reduce the dimensions of width and height followed by group normalisation and ReLU.
For the rest of the layers, the same operations consisting of 1D convolution, group normalisa-
tion and ReLU are applied repeatedly. The difference with the first layer is the stride s is set
to 2 to increase the receptive field gradually. Then, the feature pyramid is updated through
the pyramidal attention whose window size ws is set to 3 indicating the node itself and two
sibling nodes are attending.
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